Science.gov

Sample records for resolution cryogenic dielectric

  1. Polyamide 66 as a Cryogenic Dielectric

    SciTech Connect

    Tuncer, Enis; Polyzos, Georgios; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Messman, Jamie M; Aytug, Tolga

    2009-01-01

    Improvements in superconductor and cryogenic technologies enable novel power apparatus, \\eg, cables, transformers, fault current limiters, generators, \\etc, with better device characteristics than their conventional counterparts. In these applications electrical insulation materials play an important role in system weight, footprint (size), and voltage level. The trend in the electrical insulation material selection has been to adapt or to employ conventional insulation materials to these new systems. However, at low temperatures, thermal contraction and loss of mechanical strength in many materials make them unsuitable for superconducting power applications. In this paper, a widely used commercial material was characterized as a potential cryogenic dielectric. The material is used in ``oven bag'' a heat-resistant polyamide (nylon) used in cooking (produced by Reynolds\\textregistered, Richmond, VA, USA). It is first characterized by Fourier transform infrared and x-ray diffraction techniques and determined to be composed of polyamide 66 (PA66) polymer. Secondly the complex dielectric permittivity and dielectric breakdown strength of the PA66 films are investigated. The dielectric data are then compared with data reported in the literature. A comparison of dielectric strength with a widely used high-temperature superconductor electrical insulation material, polypropylene-laminated paper (PPLP\\texttrademark\\ a product of Sumitomo Electric Industries, Japan), is provided. It is observed that the statistical analysis of the PA66 films yields 1\\% failure probability at $127\\ \\kilo\\volt\\milli\\meter^{-1}$; this value is approximately $46\\ \\kilo\\volt\\milli\\meter^{-1}$ higher than PPLP\\texttrademark. It is concluded that PA66 may be a good candidate for cryogenic applications. Finally, a summary of dielectric properties of some of the commercial tape insulation materials and various polymers is also provided.

  2. Bulk Charging of Dielectrics in Cryogenic Space Environments

    NASA Technical Reports Server (NTRS)

    Minow, J. I.; Coffey, V. N.; Blackwell, W. C., Jr.; Parker, L. N.; Jun, I.; Garrett, H. B.

    2007-01-01

    We use a 1-D bulk charging model to evaluate dielectric charging at cryogenic temperatures relevant to space systems using passive cooling to <100K or extended operations in permanently dark lunar craters and the lunar night.

  3. Effects of Cryogenic Temperatures on Spacecraft Internal Dielectric Discharges

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale c.; Schneider, Todd A.; Vaughn, Jason A.

    2009-01-01

    Abstract Most calculations of internal dielectric charging on spacecraft use tabulated values of material surface and bulk conductivities, dielectric constants, and dielectric breakdown strengths. Many of these properties are functions of temperature, and the temperature dependences are not well known. At cryogenic temperatures, where it is well known that material conductivities decrease dramatically, it is an open question as to the timescales over which buried charge will dissipate and prevent the eventual potentially disastrous discharges of dielectrics. In this paper, measurements of dielectric charging and discharging for cable insulation materials at cryogenic temperatures (approx. 90 K) are presented using a broad spectrum electron source at the NASA Marshall Space Flight Center. The measurements were performed for the James Webb Space Telescope (JWST), which will orbit at the Earth-Sun L2 point, and parts of which will be perennially at temperatures as low as 40 K. Results of these measurements seem to show that Radiation Induced Conductivity (RIC) under cryogenic conditions at L2 will not be sufficient to allow charges to bleed off of some typical cable insulation materials even over the projected JWST lifetime of a dozen years or more. After the charging and discharging measurements are presented, comparisons are made between the material conductivities that can be inferred from the measured discharges and conductivities calculated from widely used formulae. Furthermore, the measurement-inferred conductivities are compared with extrapolations of recent measurements of materials RIC and dark conductivities performed with the charge-storage method at Utah State University. Implications of the present measurements are also given for other spacecraft that may operate at cryogenic temperatures, such as probes of the outer planets or the permanently dark cratered areas on the moon. The present results will also be of interest to those who must design or

  4. Cryogenic high resolution translation unit (CTU)

    NASA Astrophysics Data System (ADS)

    Serrano, Javier; Moreno Raso, Javier; Pedrosa, Enrique; Moral, Andoni; San Juan, José Luis; Lecina, María; Díez, Lucía; Sanz, Alfonso; Belenguer, Tomás; Ramos, Gonzalo

    2008-07-01

    The CTU (Cryogenics Translation Unit) is a low range (+/-1 mm) high resolution (<50 nm) translation unit to be used at cryogenic temperature (20K). The unit is a multipurpose device capable of fine closed loop positioning. This device can be used as active element in IR Instrumentation for compensating thermo-elastic deformation moving optical elements or sensors. CTU motion system is based in thin flexures deformation to assure repeatability and moves in closed loop mode by means of a fine linear actuator and a calibrated non contact capacitive sensor. This paper describes main design features, how cryogenic testing of main requirements was carried out (including methodologies used for calibration and submicron verification), tested performances, and main lesson learned during the development.

  5. Preliminary Evaluation of Polyarylate Dielectric Films for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Fialla, Peter

    2002-01-01

    Polymeric materials are used extensively on spacecraft and satellites in electrical power and distribution systems, as thermal blankets and optical surface coatings, as well as mechanical support structures. The reliability of these systems when exposed to the harsh environment of space is very critical to the success of the mission and the safety of the crew in manned-flight ventures. In this work, polyarylate films were evaluated for potential use as capacitor dielectrics and wiring insulation for cryogenic applications. Two grades of the film were characterized in terms of their electrical and mechanical properties before and after exposure to liquid nitrogen (-196 C). The electrical characterization consisted of capacitance and dielectric loss measure Cents in the frequency range of 50 Hz to 100 kHz, and volume and surface resistivities. The mechanical measurements performed included changes in tensile (Young's modulus, elongation-at-break, and tensile strength) and structural properties (dimensional change, weight, and surface morphology). The preliminary results, which indicate good stability of the polymer after exposure to liquid nitrogen, are presented and discussed.

  6. High-resolution, cryogenic, side-entry type specimen stage

    DOEpatents

    King, Wayne E.; Merkle, Karl L.

    1979-01-01

    A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.

  7. Effect of dielectric properties of solvents on the quality factor for a beyond 900 MHz cryogenic probe model.

    PubMed

    Horiuchi, Takashi; Takahashi, Masato; Kikuchi, Jun; Yokoyama, Shigeyuki; Maeda, Hideaki

    2005-05-01

    A previous report by Kelly et al. [J. Am. Chem. Soc. 124 (2002) 12013] indicated that the ionic conductivity of aqueous solution produces a significant contribution to the sensitivity loss in high-resolution NMR equipped with a cryogenically cooled probe. The loss in a sample solution contains two contributions: one from the ionic conductivity and the other from the dielectric loss; the latter is especially important at high frequencies such as above 900 MHz. Here, we investigated the effect of the dielectric conductivity on the quality factor of a 930 MHz cryogenic probe model; in particular, it deals with the ionic aqueous solutions and organic solvents commonly used for NMR in biological research and the chemistry of natural compounds. The sample quality factor, Qs, at first increases with the real part of the relative dielectric permittivity epsilon' and then saturates. In the case of polar organic solvents, the transverse electric field on the sample decreases with epsilon', resulting in an increase of Qs. In the case of non-polar organic solvents, the dielectric conductivity is so small that the gradient of the increase is steep, resulting in much larger Qs though the epsilon' is small. The effect of the transverse electric field is negligible if the epsilon' becomes large, thus the loss for ionic aqueous solution is mainly governed by a loop current induced in the sample solution. As the induced electromotive force is independent of the epsilon', the Qs is saturated at high values of epsilon'. Based on the Qs obtained with the cryogenic probe model, the sensitivity for the cryogenic probe is expected to be as follows: the loss in sensitivity by loading water is more than 66%, i.e., the effect of the dielectric conductivity of water is remarkable at high frequencies; polar organic solvent suffers much larger losses, which is due to the enhancement of the effective sample resistance by the effect of epsilon'; a non-polar organic solvent is nearly free of the

  8. Some characteristics of dielectric materials at cryogenic temperatures for HVDC systems

    SciTech Connect

    Chowdhuri, P.

    1981-02-01

    This dielectric study was performed as part of the dc Superconducting Power Transmission Line Program. During a screening test program, the dc breakdown strength of 12 dielectric materials, in sheet form, was determined at 12 K under 1.38 MPa of helium pressure, the operating conditions of the cable design. Tests were also made with four of these materials impregnated with mineral oil. Further dc breakdown tests were performed on five of these dielectric materials at various temperatures (12 to 298 K) and pressures (0.69 and 1.38 MPa) of helium. Two sets of experiments were performed on cellulose paper impregnated with distilled water at 83 K and 1.38 MPa of helium pressure. Five dielectric materials were then selected for tests as cable samples with dc and impulse voltages at 12 K and 1.38 MPa of helium. Data are presented on these tests, as well as on those of the electrical conductivity of four dielectric materials at cryogenic temperatures, and of the surface flashover strength of an epoxy bushing at 12 K and 298 K under 0.69 MPa and 1.38 MPa of helium pressures. The characteristics of the dielectric behavior at cryogenic temperatures are discussed.

  9. Dielectric-loaded waveguide circulator for cryogenically cooled and cascaded maser waveguide structures

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Quinn, R. B. (Inventor)

    1980-01-01

    A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.

  10. Resolution and polarization distribution in cryogenic DNP/MAS experiments

    PubMed Central

    Barnes, Alexander B.; Corzilius, Björn; Mak-Jurkauskas, Melody L.; Andreas, Loren B.; Bajaj, Vikram S.; Matsuki, Yoh; Belenky, Marina L.; Lugtenburg, Johan; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Herzfeld, Judith; Griffin, Robert G.

    2014-01-01

    This contribution addresses four potential misconceptions associated with high-resolution dynamic nuclear polarization/magic angle spinning (DNP/MAS) experiments. First, spectral resolution is not generally compromised at the cryogenic temperatures at which DNP experiments are performed. As we demonstrate at a modest field of 9 T (380 MHz 1H), 1 ppm linewidths are observed in DNP/MAS spectra of a membrane protein in its native lipid bilayer, and <0.4 ppm linewidths are reported in a crystalline peptide at 85 K. Second, we address the concerns about paramagnetic broadening in DNP/MAS spectra of proteins by demonstrating that the exogenous radical polarizing agents utilized for DNP are distributed in the sample in such a manner as to avoid paramagnetic broadening and thus maintain full spectral resolution. Third, the enhanced polarization is not localized around the polarizing agent, but rather is effectively and uniformly dispersed throughout the sample, even in the case of membrane proteins. Fourth, the distribution of polarization from the electron spins mediated via spin diffusion between 1H–1H strongly dipolar coupled spins is so rapid that shorter magnetization recovery periods between signal averaging transients can be utilized in DNP/MAS experiments than in typical experiments performed at ambient temperature. PMID:20454732

  11. Dielectric properties of PbNb{sub 2}O{sub 6} ferroelectric ceramics at cryogenic temperatures

    SciTech Connect

    Guerra, J. de los S; Venet, M.; Garcia, D.; Eiras, J. A.; Guerrero, F.

    2007-08-06

    Complex dielectric permittivity measurements in PbNb{sub 2}O{sub 6} ceramics were performed in a frequency and temperature range of 1 kHz-1 MHz and from 15 to 900 K, respectively. The results revealed two dielectric anomalies showing typical characteristics of relaxor ferroelectric materials at cryogenic temperatures. Comparison with other tetragonal tungsten bronze (TTB) structure-type materials suggests the existence of successive phase transitions, which until now were not reported. The observed low temperature dielectric behaviors seem to be due to intrinsic physical characteristics related to the TTB structure.

  12. Dielectric Resonator for Ka-Band Pulsed EPR Measurements at Cryogenic Temperatures: Probehead Construction and Applications

    PubMed Central

    Astashkin, A.; Enemark, J. H.; Blank, A.; Twig, Y.; Song, Y.; Meade, T. J.

    2013-01-01

    The construction and performance of a Ka-band pulsed electron paramagnetic resonance (EPR) cryogenic probehead that incorporates dielectric resonator (DR) is presented. We demonstrate that the use of DR allows one to optimize pulsed double electron–electron resonance (DEER) measurements utilizing large resonator bandwidth and large amplitude of the microwave field B1. In DEER measurements of Gd-based spin labels, use of this probe finally allows one to implement the potentials of Gd-based labels in distance measurements. Evidently, this DR is well suited to any applications requiring large B1-fields and resonator bandwidths, such as electron spin echo envelope modulation spectroscopy of nuclei having low magnetic moments and strong hyperfine interactions and double quantum coherence dipolar spectroscopy as was recently demonstrated in the application of a similar probe based on an loop-gap resonator and reported by Forrer et al. (J Magn Reson 190:280, 2008). PMID:23626406

  13. High-energy resolution X-ray, gamma and electron spectroscopy with cryogenic detectors.

    PubMed

    Loidl, M; Leblanc, E; Bouchard, J; Branger, T; Coron, N; Leblanc, J; de Marcillac, P; Rotzinger, H; Daniyarov, T; Linck, M; Fleischmann, A; Enss, C

    2004-01-01

    Cryogenic detectors offer remarkably better energy resolutions than those achievable with conventional semiconductor or scintillation detectors. With the additional asset of a detection efficiency close to unity for low-energy X-ray photons and electrons, these detectors have the potential to perform X-ray, gamma and electron spectroscopy of a hitherto unknown quality, in particular at low energies. Two types of cryogenic detectors are described and the results of prototype detectors are presented.

  14. Super-resolution optical microscopy by using dielectric microwires

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Wu, Gaoxiang; Yang, Shu; Finlay, Jarod C.

    2016-03-01

    We demonstrate that super-resolution imaging of specimens containing sub-diffraction-limited features is feasible by using dielectric microwires fabricated through capillary force lithography followed by photopatterning. As supplementary micron scale cylindrical lenses, we fabricated uniform-sized microwires with and 5 and 10 μm diameters and refractive index ~1.3-1.6. The microwires are placed in contact with the specimen to collect the information of the sub-wavelength features of the specimen and transmit them to the far-field with magnification enabling imaging with two-fold resolution improvement. Potential applications of our imaging technique include biological imaging, microfluidics, and nanophotonics applications.

  15. Generation of H2O-ice dielectric barrier discharge for the development of novel cryogenic reaction fields

    NASA Astrophysics Data System (ADS)

    Sakakibara, Noritaka; Terashima, Kazuo

    2017-06-01

    We generated H2O-ice dielectric barrier discharge (DBD), which has H2O ice as a dielectric barrier, at a wide range of cryogenic temperatures down to 6.5 K, and controlled plasma gas temperature as a control parameter. H2O-ice DBD exhibited variations in optical emissions and transition of discharge modes with changing plasma gas temperature. Furthermore, H2O-ice DBD is revealed to be anticipated to have sufficient reactivity as a reaction field on the ice surface in comparison with ultraviolet irradiated chemical reactions such as formation of amino acids. This study is the first report on gas temperature-controlled plasma generation coexistent with H2O ice, focusing on plasma gas temperature as a control parameter.

  16. Ultra-low vibration linear stirling cryogenic refrigerator for sub-nano resolution microscopy

    NASA Astrophysics Data System (ADS)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2008-04-01

    Wide use of so called "dry-cooling" technology, eventually replacing the LN2 cooling approach in high-resolution instrumentation, such as Scanning Electronic Microscopes, Helium Ion Microscopes, Superconductive Quantum Interference Devices, etc., motivates further quieting of appropriate cryogenic refrigerators. Linear Stirling cryogenic refrigerators are known to be a major source of harmful vibration export compromising the overall performance of vibration-sensitive equipment. The dual-piston approach to a design of a linear compressor yields inherently low vibration export and, therefore, is widely accepted across the industry. However, the residual vibration disturbance originated even from the technological tolerances, natural wear and contamination cannot be completely eliminated. Moreover, a vibration disturbance produced by a pneumatically driven cold head is much more powerful as compared to this of a compressor. The authors successfully redesigned the existing Ricor model K535 Stirling cryogenic refrigerator for use in vibration-sensitive electronic microscopy, where the image resolution is specified in angstroms. The objective was achieved by passive mechanical counterbalancing of the expander portion of the refrigerator, in a combination with an active two-axis control of residual vibrations, relying on National Instruments CompactRIO hardware, incorporating a real-time processor and reconfigurable FPGA for reliable stand-alone embedded application, developed using LabVIEW graphical programming tools. The attainable performance of the Ultra-Low Vibration linear Stirling cryogenic refrigerator RICOR model K535-ULV was evaluated through the full-scale experimentation.

  17. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    SciTech Connect

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-08-10

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm{sup 3} Sn absorber is 50 -90eV for {gamma}-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity.

  18. Cryogenic optical localization provides 3D protein structure data with Angstrom resolution.

    PubMed

    Weisenburger, Siegfried; Boening, Daniel; Schomburg, Benjamin; Giller, Karin; Becker, Stefan; Griesinger, Christian; Sandoghdar, Vahid

    2017-02-01

    We introduce Cryogenic Optical Localization in 3D (COLD), a method to localize multiple fluorescent sites within a single small protein with Angstrom resolution. We demonstrate COLD by determining the conformational state of the cytosolic Per-ARNT-Sim domain from the histidine kinase CitA of Geobacillus thermodenitrificans and resolving the four biotin sites of streptavidin. COLD provides quantitative 3D information about small- to medium-sized biomolecules on the Angstrom scale and complements other techniques in structural biology.

  19. Cryogenic temperature relaxor-like dielectric responses and magnetodielectric coupling in Aurivillius Bi5Ti3FeO15 multiferroic thin films

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yin, Wenhao; Yang, Jing; Tang, Kai; Zhang, Yuanyuan; Lin, Tie; Meng, Xiangjian; Duan, Chun-Gang; Tang, Xiaodong; Chu, Junhao

    2014-08-01

    Dielectric responses and magnetodielectric (MD) behavior of Aurivillius Bi5Ti3FeO15 multiferroics were systemically studied at cryogenic temperatures. Dielectric anomaly at ˜145 K was found by the temperature dependent dielectric spectroscopy, and relaxor-like relaxation dynamics was further confirmed unambiguously. Besides the two abnormal MD transitions at about 98 K and 220 K, remarkable MD couplings were observed near relaxation peak over the whole frequency range of 102-106 Hz. Finally, the possible mechanisms of the relaxation and MD properties were discussed in association with the occurrence of local Fe-O nano-clusters because of the antisite disorder defects in Aurivillius multiferroic phases.

  20. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  1. High resolution 11B NMR of magnesium diboride using cryogenic magic angle spinning

    NASA Astrophysics Data System (ADS)

    Beckett, Peter; Denning, Mark S.; Heinmaa, Ivo; Dimri, Mukesh C.; Young, Edward A.; Stern, Raivo; Carravetta, Marina

    2012-09-01

    Static and magic-angle spinning 11B nuclear magnetic resonance (NMR) data at 4.7 T and 8.5 T have been obtained under cryogenic conditions on a diluted sample of magnesium diboride powder in the normal and superconducting state. The data provide accurate information on the magnetic shift and longitudinal relaxation time down to a temperature of 8 K, with a resolution improvement over the entire temperature range. The onset of superconductivity is unaffected by the sample rotation, as revealed by a steep variation of the magnetic shift just below the critical temperature.

  2. A Liquid-Cryogen-Free Cryostat for Ultrahigh Resolution Gamma-Ray Spectrometers

    SciTech Connect

    Dreyer, J G; Hertrich, T; Drury, O B; Hohne, J; Friedrich, S

    2008-06-30

    We are developing ultra-high energy resolution gamma-ray detectors based on superconducting transition edge sensors (TESs) for nuclear non-proliferation and fundamental science applications. They use bulk tin absorbers attached to molybdenum-copper multilayer TESs, and have achieved an energy resolution between 50 and 90 eV FWHM for gamma-ray energies below 122 keV. For increased user-friendliness, we have built a cryostat that attains the required detector operating temperature of 0.1 K at the push of a button without the use of cryogenic liquids. It uses a two-stage mechanical pulse tube refrigerator for precooling to {approx}3 K, and a two-stage adiabatic demagnetization refrigerator for cooling to the base temperature. The cryostat is fully automated, attains a base temperature below 30 mK without the use of cryogenic liquids, and has a hold time of {approx}2 days at 0.1 K between 1-hour demagnetization cycles. Here we discuss the performance of the cryostat for operation in a Gamma-spectrometer with 112-pixel arrays of superconducting TES detectors.

  3. A cryogenically cooled, ultra-high-energy-resolution, trap-based positron beam

    SciTech Connect

    Natisin, M. R. Danielson, J. R.; Surko, C. M.

    2016-01-11

    A technique is described to produce a pulsed, magnetically guided positron beam with significantly improved beam characteristics over those available previously. A pulsed, room-temperature positron beam from a buffer gas trap is used as input to a trap that captures the positrons, compresses them both radially and axially, and cools them to 50 K on a cryogenic CO buffer gas before ejecting them as a pulsed beam. The total energy spread of the beam formed using this technique is 6.9 ± 0.7 meV FWHM, which is a factor of ∼5 better than the previous state-of-the-art, while simultaneously having sub-microsecond temporal resolution and millimeter spatial resolution. Possible further improvements in beam quality are discussed.

  4. Mitigation of plasma-induced damage in porous low-k dielectrics by cryogenic precursor condensation

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; de Marneffe, Jean-François; Leroy, Floriane; Lefaucheux, Philippe; Tillocher, Thomas; Dussart, Remi; Maekawa, Kaoru; Yatsuda, Koichi; Dussarrat, Christian; Goodyear, Andy; Cooke, Mike; De Gendt, Stefan; Baklanov, Mikhail R.

    2016-05-01

    The present work describes the plasma etch properties of porous organo-silicate materials at cryogenic temperature. The mechanism of plasma damage is studied by means of in situ ellipsometry and post-etch material evaluation. Using conventional volatile reactants such as SF6, it is found that low plasma damage can be achieved below  -120 °C through two main channels: pore sidewall passivation by molecular SF6 and partial condensation of non-volatile etch by-products. The protection can be enhanced by means of gas phase precursors with low saturated vapor pressure. Using C4F8, complete pore filling is achieved at  -110 °C and negligible plasma-induced damage is demonstrated on both blanket and patterned low-k films. The characteristics of the precursor condensation process are described and discussed in detail, establishing an optimal process window. It is shown that the condensation temperature can be raised by using precursors with even lower vapor pressure. The reported in situ densification through precursor condensation could enable damage-free plasma processing of mesoporous media.

  5. High resolution 11B NMR of MgB2 using cryogenic magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Stern, Raivo; Beckett, Peter; Denning, Mark S.; Heinmaa, Ivo; Dimri, Mukesh C.; Young, Edward A.; Carravetta, Marina

    2013-03-01

    Static and magic-angle spinning (MAS) 11B NMR data at 4.7 T and 8.5 T have been obtained under cryogenic conditions on a diluted sample of magnesium diboride powder in the normal and superconducting state. We demonstrate that MAS NMR is possible on type-II superconductors despite the sample rotation. The data provide accurate information on the magnetic shift variation and longitudinal relaxation data down to a temperature of 8 K, with a resolution improvement over the entire temperature range. The onset of superconductivity is unaffected by the sample rotation, as revealed by a steep variation of the magnetic shift just below the critical temperature. Appeared in JCP 137, 114201, http://dx.doi.org/10.1063/1.4751476

  6. High-resolution vibrational and rotational spectroscopy of CD2H+ in a cryogenic ion trap

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Stoffels, Alexander; Thorwirth, Sven; Brünken, Sandra; Schlemmer, Stephan; Asvany, Oskar

    2017-02-01

    The low-lying rotational states (J = 0, … , 5) of CD2H+ have been probed by high-resolution ro-vibrational and pure rotational spectroscopy, applying several action spectroscopic methods in a cryogenic 22-pole ion trap. For this, the ν1 ro-vibrational band has been revisited, detecting 108 transitions, among which 36 are new. The use of a frequency comb system allowed us to measure the ro-vibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing equal combination differences in the ground and excited state. Moreover, precise predictions of pure rotational transitions were possible for the ground state. Twenty-five rotational transitions have been detected directly by a novel IR-mm-wave double resonance method, giving rise to highly accurate ground state spectroscopic parameters.

  7. High-resolution photoelectron imaging of cryogenically cooled α- and β-furanyl anions

    NASA Astrophysics Data System (ADS)

    DeVine, Jessalyn A.; Weichman, Marissa L.; Lyle, Steven J.; Neumark, Daniel M.

    2017-02-01

    Isomer-specific, high-resolution photoelectron spectra of α- and β-furanyl obtained via slow electron velocity-map imaging of cryogenically cooled anions are reported. The spectra yield electron affinities of 1.8546(4) and 1.6566(4) eV for the α- and β-furanyl neutral radicals, respectively. New vibronic structure is resolved and assigned based on density functional theory and Franck-Condon simulations, providing several vibrational frequencies for the ground electronic state of both neutral isomers. Subtle differences in orbital hybridization resulting from varying proximity of the deprotonated carbon to the heteroatom are inferred from photoelectron angular distributions, and the Cβsbnd H bond dissociation energy is estimated from a combination of experimental and theoretical results to be 119.9(2) kcal mol-1.

  8. Broadband and Microwave Dielectric Studies on Ba5Nb4O15 Ceramics Supplemented with Its Nanoparticles for Cryogenic Electronic Applications

    NASA Astrophysics Data System (ADS)

    Anil Kumar, C.; Pamu, D.

    2017-02-01

    Ba5Nb4O15 (BNO) nanopowders were prepared by sol-gel process. The effect of BNO nanopowders ( x = 1 wt.%, 2 wt.%, and 3 wt.%) on micron-sized BNO polycrystalline powders were studied systematically. Transmission electron microscope (TEM) images of BNO nanoparticles revealed spherical and cylindrical shapes with average particle sizes of 45 nm and 60 nm, respectively. Further, the dielectric response of BNO ceramics with x wt.% of nanosized particles ( x = 1-3) measured in the temperature range of 80°C to 200°C showed relaxation behaviour and is described by using Havriliak-Negami equation. The best microwave dielectric properties of ɛ r and Q × f 0 values of 39.2 GHz and 59,000 GHz, at 6.52 GHz are obtained for the x = 3 wt.% sample, sintered at 1100°C, and is attributed to maximum density, large and uniform microstructure. The acquired static dielectric response of BNO ceramics with x wt.% of nanosized particles ( x = 1-3) are suitable for cryogenic electronic and dielectric resonator applications.

  9. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O- and Fe5O-

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; DeVine, Jessalyn A.; Neumark, Daniel M.

    2016-08-01

    We report high-resolution photodetachment spectra of the cryogenically cooled iron monoxide clusters Fe4O- and Fe5O- obtained with slow photoelectron velocity-map imaging (cryo-SEVI). Well-resolved vibrational progressions are observed in both sets of spectra, and transitions to low-lying excited states of both species are seen. In order to identify the structural isomers, electronic states, and vibrational modes that contribute to the cryo-SEVI spectra of these clusters, experimental results are compared with density functional theory calculations and Franck-Condon simulations. The main bands observed in the SEVI spectra are assigned to the 15A2←16B2 photodetachment transition of Fe4O- and the 17A'←18A″ photodetachment transition of Fe5O-. We report electron affinities of 1.6980(3) eV for Fe4O and 1.8616(3) eV for Fe5O, although there is some uncertainty as to whether the 15A2 state is the true ground state of Fe4O. The iron atoms have a distorted tetrahedral geometry in Fe4O0/- and a distorted trigonal-bipyramidal arrangement in Fe5O0/-. For both neutral and anionic species, the oxygen atom preferably binds in a μ2-oxo configuration along the cluster edge. This finding is in contrast to prior predictions that Fe5O0/- exhibits a μ3 face-bound structure.

  10. Dielectric resistive plate chamber—the first step in new high-resolution TOF technology

    NASA Astrophysics Data System (ADS)

    Akindinov, A.; Golovine, V.; Martemianov, A.; Petrov, V.; Smirnitski, A.; Voloshin, K.

    2002-11-01

    Modern high-energy nuclear physics experiments, in which many thousands of particles are produced, require qualitatively new detectors for particle identification (PID). Dielectric Resistive Plate Chamber (DRPC) is one of the first options of a new high-resolution time-measuring technology. It was invented and studied during the initial stage of R&D for the ALICE/LHC PID system based on Time-of-Flight measurements. In this article, the main DRPC features are described.

  11. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  12. High resolution characterizations of fine structure of semiconductor device and material using scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Cho, Yasuo

    2017-10-01

    Scanning nonlinear dielectric microscopy (SNDM) can easily distinguish the dopant type (PN) and has a wide dynamic range of sensitivity from low to high concentrations of dopants, because it has a high sensitivity to capacitance variation on the order of 10‑22 F/\\sqrt{\\text{Hz}} . It is also applicable to the analysis of compound semiconductors with much lower signal levels than Si. We can avoid misjudgments from the two-valued function (contrast reversal) problem of dC/dV signals. Under an ultrahigh-vacuum condition, SNDM has atomic resolution. As the extended versions of SNDM, super-higher-order SNDM, local-deep-level transient spectroscopy, noncontact SNDM, and scanning nonlinear dielectric potentiometory have been developed and introduced. The favorable features of SNDM originate from its significantly high sensitivity.

  13. The dielectric properties of gaseous cryogen mixtures of He, H2, Ne, and N2 in a temperature range of 50-80 K at pressures up to 2.0 MPa

    NASA Astrophysics Data System (ADS)

    Park, Chanyeop; Graber, Lukas; Pamidi, Sastry

    2017-02-01

    This study investigates the dielectric properties of various mixtures of potential gaseous cryogens containing helium (He), hydrogen (H2), neon (Ne), and nitrogen (N2) under extended temperature and pressure ranges for high-temperature superconducting applications. We present the results of the Boltzmann analysis on a variety of binary and ternary gas mixtures in terms of the electron energy distribution function and the coefficients that represent the electron kinetic process, including the density-reduced ionization coefficient ( α / N ), the density-reduced attachment coefficient ( η / N ), the density-reduced effective ionization coefficient ( ( α - η ) / N ), and the density-reduced critical electric field ( ( E / N ) c r ). The study provides insights into the important characteristics and correlations that lead to the enhanced dielectric strength of gas mixtures and predicts further enhancements in the dielectric strengths of He-H2 mixtures by introducing the ternary mixtures of He-H2-N2. The study results recommend the potential ternary gas mixtures suitable for various cryogenic operating conditions and aid in the development of superconducting applications incorporating gaseous cryogens.

  14. Microstructure development in particulate coatings examined with high-resolution cryogenic scanning electron microscopy

    SciTech Connect

    Sheehan, J.G.; Davis, H.T.; Scriven, L.E.; Takamura, Koichi

    1993-12-01

    The authors used cryogenic scanning electron microscopy to examine the early stages of latex film formation. They visualized the influence of ionic strength and extent of carboxylation in latex-calcium carbonate formulations and in latex-only formulations. Results demonstrated that latex particles deposited on calcium carbonate surfaces creating a suspension of carboxylic acid-stabilized calcium carbonate particles. Images of consolidation fronts showed that variation of ionic strength and extent of carboxylation dramatically changes the way latex particles consolidate and form films.

  15. Cryogenic phased-array for high resolution magnetic resonance imaging (MRI); assessment of clinical and research applications

    NASA Astrophysics Data System (ADS)

    Ip, Flora S.

    Magnetic Resonance (MR) imaging is one of the most powerful tools in diagnostic medicine for soft tissue imaging. Image acquisition techniques and hardware receivers are very important in achieving high contrast and high resolution MR images. An aim of this dissertation is to design single and multi-element room and cryogenic temperature arrays and make assessments of their signal-to-noise ratio (SNR) and SNR gain. In this dissertation, four sets of MR receiver coils are built. They are the receiver-only cryo-coils that are not commercially available. A tuning and matching circuit is attached to each coil. The tuning and matching circuits are simple; however, each device component has to operate at a high magnetic field and cryogenic temperature environment. Remote DC bias of the varactor controls the tuning and matching outside the scanner room. Active detuning of the resonator is done by two p-i-n junction (PIN) diodes. Cooling of the receiver is done by a customized liquid nitrogen cryostat. The first application is to build a 3-Tesla 2x1 horseshoe counter-rotating current (CRC) cryogenic array to image the tibia in a human body. With significant increase in SNR, the surface coil should deliver high contrast and resolution images that can show the trabecular bone and bone marrow structure. This structural image will be used to model the mechanical strength of the bone as well as bone density and chance of fracture. The planar CRC is a unique design of this surface array. The second application is to modify the coil design to 7-Tesla to study the growth of infant rhesus monkey eyes. Fast scan MR images of the infant monkey heads are taken for monitoring shapes of their eyeballs. The monkeys are induced with shortsightedness by eye lenses, and they are scanned periodically to get images of their eyeballs. The field-of-view (FOV) of these images is about five centimeters and the area of interest is two centimeters deep from the surface. Because of these reasons

  16. A High-Resolution Integrated Model of the National Ignition Campaign Cryogenic Layered Experiments

    DOE PAGES

    Jones, O. S.; Callahan, D. A.; Cerjan, C. J.; ...

    2012-05-29

    A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60.more » Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-40% of the calculated yields.« less

  17. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube

    NASA Astrophysics Data System (ADS)

    Nguyen Pham, Hai Huy; Hisatake, Shintaro; Minin, Oleg Vladilenovich; Nagatsuma, Tadao; Minin, Igor Vladilenovich

    2017-05-01

    The terahertz (THz, 0.1-10 THz) region has been attracting tremendous research interest owing to its potential in practical applications such as biomedical, material inspection, and nondestructive imaging. Those applications require enhancing the spatial resolution at a specific frequency of interest. A variety of resolution-enhancement techniques have been proposed, such as near-field scanning probes, surface plasmons, and aspheric lenses. Here, we demonstrate for the first time that a mesoscale dielectric cube can be exploited as a novel resolution enhancer by simply placing it at the focused imaging point of a continuous wave THz imaging system. The operating principle of this enhancer is based on the generation—by the dielectric cuboid—of the so-called terajet, a photonic jet in the THz region. A subwavelength hotspot is obtained by placing a Teflon cube, with a 1.46 refractive index, at the imaging point of the imaging system, regardless of the numerical aperture (NA). The generated terajet at 125 GHz is experimentally characterized, using our unique THz-wave visualization system. The full width at half maximum (FWHM) of the hotspot obtained by placing the enhancer at the focal point of a mirror with a measured NA of 0.55 is approximately 0.55λ, which is even better than the FWHM obtained by a conventional focusing device with the ideal maximum numerical aperture (NA = 1) in air. Nondestructive subwavelength-resolution imaging demonstrations of a Suica integrated circuit card, which is used as a common fare card for trains in Japan, and an aluminum plate with 0.63λ trenches are presented. The amplitude and phase images obtained with the enhancer at 125 GHz can clearly resolve both the air-trenches on the aluminum plate and the card's inner electronic circuitry, whereas the images obtained without the enhancer are blurred because of insufficient resolution. An increase of the image contrast by a factor of 4.4 was also obtained using the enhancer.

  18. Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Geints, Y. E.; Zemlyanov, A. A.

    2017-10-01

    Specific spatially-localized optical field structure, which is often referred to as a photonic nanojet (PNJ), is formed in the near-field scattering area of non-absorbing dielectric micron-sized particle exposed to an optical radiation. By virtue of the finite-difference time-domain technique we numerically simulate the two-dimensional array of PNJs created by an ordered single-layer microassembly of glass microspheres immersed in a transparent polymer matrix. The behavior of the main PNJ parameters (length, diameter, and intensity) is analyzed subject to the immersion depth of the microparticles and cooperative interference effects of the neighboring microspheres. We show that depending on microassembly configuration, the PNJ quality can be significantly improved; in particular, the PNJ spatial resolution better than λ/5 can be achieved.

  19. Zirconium tungstate/epoxy resin nanocomposites with negative coefficient of thermal expansion for all-dielectric cryogenic temperature sensors

    NASA Astrophysics Data System (ADS)

    See, Erich; Kochergin, Vladimir; Neely, Lauren; Zayetnikov, Madrakhim; Ciovati, Gianluigi; Robinson, Hans

    2012-02-01

    The α-phase of zirconium tungstate (ZrW2O8) has the remarkable property that its coefficient of thermal expansion (CTE) is negative over its entire range of thermal stability (0-1050K), and through this range it has a nearly constant negative CTE. When ZrW2O8 nanoparticles are mixed into a polymer resin, the resulting composite has a reduced CTE when compared with that of the pure polymer. However, previous research on such composites has occurred only near room temperature. We show that at cryogenic temperatures, it is possible to make ZrW2O8/resin nanocomposites with negative CTE. By coating a fiber-optic Bragg grating with such a composite, we were able to create an all-optical temperature sensor without the use of metals, which would be of particular use in superconducting RF cavities. The sensor has sensitivity down to at least 2 K, six times lower than previous fiber-optic temperature sensors.

  20. Improvement in spatial resolution of plasma-enhanced quantum-well intermixing by stress-inducing dielectric mask

    NASA Astrophysics Data System (ADS)

    Djie, H. S.; Mei, T.; Arokiaraj, J.

    2004-10-01

    We report the use of a stress-inducing dielectric mask to improve the spatial resolution of the proximity quantum-well intermixing process. Photoluminescence and Raman spectroscopy were used to study the band gap modification and the spatial resolution using Ar plasma in the InGaAs /InGaAsP laser structure. A spatial resolution of 2.4μm has been achieved with the presence of an SixNy annealing cap as a stress-inducing mask. The simple technique provides a promising approach of lateral band gap tuning with a high spatial resolution for high-density photonic integrated circuits.

  1. Digital Signal Processors for Cryogenic High-Resolution X-Ray Detector Readout

    SciTech Connect

    Friedrich, S; Drury, O; Bechstein, S; Henning, W; Momayezi, M

    2003-01-01

    The authors are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer on-line filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. They discuss DSP performance with the 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy.

  2. CSHELL: a high spectral resolution 1-5 um cryogenic echelle spectrograph for the IRTF

    NASA Astrophysics Data System (ADS)

    Greene, Thomas P.; Tokunaga, Alan T.; Toomey, Douglas W.; Carr, Jonathan B.

    1993-10-01

    A 1 - 5.4 micrometers Cryogenic Echelle Spectrograph (CSHELL) for the NASA Infrared Telescope Facility is described. It achieves a resolving power of 5,000 to 40,000 using slits ranging from 4.0' to 0.5' in width and 30' long. It operates in a single-order long-slit mode, and a circular variable filter is used as an order sorter. Two infrared arrays are employed to achieve spectral coverage from 1 - 5.4 micrometers : a 256 X 256 HgCdTe NICMOS-3 array for 1 - 2.5 micrometers and a SBRC 58 X 62 InSb array for 2.8 - 5.4 micrometers . A closed- cycle cooler is employed to keep the optics and supporting structure at 73 K and to maintain the detectors at their proper operating temperatures. The entire spectrograph fits within an envelope of 64 cm X 35 cm X 27 cm. The instrument is controlled by a microcomputer mounted on the telescope, but the observer commands the instrument from a UNIX X Windows workstation on the Internet. This use of the Internet for communication between instrument control and user interface computers facilitates remote observing. A limiting magnitude of 12.3 mag is achieved for S/N equals 10 in 1 hour integration time, at resolving power of 20,000 at 2.2 micrometers wavelength.

  3. Cryogenic scanning Hall-probe microscope with centimeter scan range and submicron resolution

    NASA Astrophysics Data System (ADS)

    Dinner, Rafael B.; Beasley, M. R.; Moler, Kathryn A.

    2005-10-01

    We have constructed a scanning Hall-probe microscope that combines a 1×4cm scan range with 200 nm positioning resolution by coupling stepper motors to high-resolution drivers and reducing gears. The instrument is uniquely suited for efficient magnetic imaging of mesoscopic devices, media, and materials, operating from 4 K to room temperature with fast turn-around time. Its potential for studying dissipation in coated conductors—high-Tc superconducting tapes—is demonstrated via model systems. We image an entire sample of YBa2Cu3O7-δ, then zoom in to individual fluxons. Flux penetration into a single artificial grain boundary is imaged with 4×10-3G /√Hz field resolution and 25μs time resolution by averaging over cycles of ac driving current. Using the resulting magnetic movie, we map out ac power losses.

  4. NOTE: Preliminary Measurements of the Cryogenic Dielectric Properties of Water-Ammonia Ices: Implications for Radar Observations of Icy Satellites

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    1998-12-01

    I report preliminary measurements of the complex permittivity of frozen aqueous ammonia solutions at liquid nitrogen temperatures, representative of those in the saturnian system. The real part of the dielectric constant of 30% ammonia ice is around 4.5 at near-DC frequencies and at ∼1 MHz, compared with around 3.1 for pure water ice. The loss tangents of ammonia-rich ices seem somewhat (∼50%) higher than those for water ice, for which the few low-temperature experiments to date indicate values comparable with predictions by Thompson and Squyres (1990,Icarus86, 336-354) and Maetzler (1998, inSolar System Ices(B. Schmitt, C. DeBergh, and M. Festou, Eds.), pp. 241-257, Kluwer Academic, Dordrecht), but considerably higher than models by Chybaet al. (1998,Icarus, in press). Ammonia-rich ice may reconcile the radar and optical appearance of Titan's surface: the detectability of water-ammonia ice on Titan by the Cassini mission and the implications for Titan's origin and evolution are discussed.

  5. An application of electrothermal feedback for high resolution cryogenic particle detection

    SciTech Connect

    Irwin, K.D.

    1995-04-10

    A novel type of superconducting transition edge sensor is proposed. In this sensor, the temperature of a superconducting film is held constant by feeding back to its position on the resistive transition edge. Energy deposited in the film is measured by a reduction in the feedback Joule heating. This mode of operation should lead to substantial improvements in resolution, linearity, dynamic range, and count rate. Fundamental resolution limits are below {Delta}{ital E}={radical}{ital kT}{sup 2}{ital C}, which is sometimes incorrectly referred to as the thermodynamic limit. This performance is better than any existing technology operating at the same temperature, count rate, and absorber heat capacity. Applications include high resolution x-ray spectrometry, dark matter searches, and neutrino detection.

  6. Soft x-ray spectrometer (SXS): the high-resolution cryogenic spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Akamatsu, Hiroki; Bialas, Thomas; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng; Costantini, Elisa; den Herder, Jan-Willem; de Vries, Cor; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark; Kitamoto, Shunji; Konami, Saori; Leutenegger, Maurice A.; McCammon, Dan; Miko, Joseph; Mitsuishi, Ikuyuki; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. Scott; Sato, Kosuke; Sato, Yoichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto S.; Terada, Yukikatsu; Tsujimoto, Masahiro; Yamada, Shinya; Yamasaki, Noriko Y.

    2014-07-01

    We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of < 7eV in the energy range of 0.3 - 10 keV. It utilizes an X-ray micorcalorimeter array operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat.

  7. Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK

    SciTech Connect

    Haan, A. M. J. den Wijts, G. H. C. J.; Galli, F.; Oosterkamp, T. H.; Usenko, O.; Baarle, G. J. C. van; Zalm, D. J. van der

    2014-03-15

    Pulse tube refrigerators are becoming more common, because they are cost efficient and demand less handling than conventional (wet) refrigerators. However, a downside of a pulse tube system is the vibration level at the cold-head, which is in most designs several micrometers. We implemented vibration isolation techniques which significantly reduced vibration levels at the experiment. These optimizations were necessary for the vibration sensitive magnetic resonance force microscopy experiments at milli-kelvin temperatures for which the cryostat is intended. With these modifications we show atomic resolution scanning tunneling microscopy on graphite. This is promising for scanning probe microscopy applications at very low temperatures.

  8. Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK.

    PubMed

    den Haan, A M J; Wijts, G H C J; Galli, F; Usenko, O; van Baarle, G J C; van der Zalm, D J; Oosterkamp, T H

    2014-03-01

    Pulse tube refrigerators are becoming more common, because they are cost efficient and demand less handling than conventional (wet) refrigerators. However, a downside of a pulse tube system is the vibration level at the cold-head, which is in most designs several micrometers. We implemented vibration isolation techniques which significantly reduced vibration levels at the experiment. These optimizations were necessary for the vibration sensitive magnetic resonance force microscopy experiments at milli-kelvin temperatures for which the cryostat is intended. With these modifications we show atomic resolution scanning tunneling microscopy on graphite. This is promising for scanning probe microscopy applications at very low temperatures.

  9. High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy.

    PubMed

    Tranca, D E; Stanciu, S G; Hristu, R; Stoichita, C; Tofail, S A M; Stanciu, G A

    2015-07-03

    A new method for high-resolution quantitative measurement of the dielectric function by using scattering scanning near-field optical microscopy (s-SNOM) is presented. The method is based on a calibration procedure that uses the s-SNOM oscillating dipole model of the probe-sample interaction and quantitative s-SNOM measurements. The nanoscale capabilities of the method have the potential to enable novel applications in various fields such as nano-electronics, nano-photonics, biology or medicine.

  10. Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry

    SciTech Connect

    Rabin, Michael W; Hoover, Andrew S; Bacrania, Mnesh K; Croce, Mark P; Hoteling, N J; Lamont, S P; Plionis, A A; Dry, D E; Ullom, J N; Bennett, D A; Horansky, R; Kotsubo, V; Cantor, R

    2009-01-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with {approx}15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.

  11. High sensitivity, wide coverage, and high-resolution NIR non-cryogenic spectrograph, WINERED

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Otsubo, Shogo; Hamano, Satoshi; Sameshima, Hiroaki; Yoshikawa, Tomoshiro; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Kinoshita, Masaomi; Kitano, Ayaka; Asano, Akira; Takenaka, Keiichi; Watase, Ayaka; Mito, Hiroyuki; Yasui, Chikako; Minami, Atsushi; Izumu, Natsuko; Yamamoto, Ryo; Mizumoto, Misaki; Arasaki, Takayuki; Arai, Akira; Matsunaga, Noriyuki; Kawakita, Hideyo

    2016-08-01

    Near-infrared (NIR) high-resolution spectroscopy is a fundamental observational method in astronomy. It provides significant information on the kinematics, the magnetic fields, and the chemical abundances, of astronomical objects embedded in or behind the highly extinctive clouds or at the cosmological distances. Scientific requirements have accelerated the development of the technology required for NIR high resolution spectrographs using 10 m telescopes. WINERED is a near-infrared (NIR) high-resolution spectrograph that is currently mounted on the 1.3 m Araki telescope of the Koyama Astronomical Observatory in Kyoto-Sangyo University, Japan, and has been successfully operated for three years. It covers a wide wavelength range from 0.90 to 1.35 μm (the z-, Y-, and J-bands) with a spectral resolution of R = 28,000 (Wide-mode) and R = 80,000 (Hires-Y and Hires-J modes). WINERED has three distinctive features: (i) optics with no cold stop, (ii) wide spectral coverage, and (iii) high sensitivity. The first feature, originating from the Joyce proposal, was first achieved by WINERED, with a short cutoff infrared array, cold baffles, and custom-made thermal blocking filters, and resulted in reducing the time for development, alignment, and maintenance, as well as the total cost. The second feature is realized with the spectral coverage of Δλ/λ 1/6 in a single exposure. This wide coverage is realized by a combination of a decent optical design with a cross-dispersed echelle and a large format array (2k x 2k HAWAII- 2RG). The Third feature, high sensitivity, is achieved via the high-throughput optics (>60 %) and the very low noise of the system. The major factors affecting the high throughput are the echelle grating and the VPH cross-disperser with high diffraction efficiencies of 83 % and 86 %, respectively, and the high QE of HAWAII-2RG (83 % at 1.23 μm). The readout noise of the electronics and the ambient thermal background radiation at longer wavelengths could be

  12. Dielectric elastomer actuator for the measurement of cell traction forces with sub-cellular resolution

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Poulin, Alexandre; Zollinger, Alicia; Smith, Michael; Shea, Herbert

    2017-04-01

    We report on the use of dielectric elastomer actuators (DEAs) to measure the traction force field of cells with subcellular resolution. The study of cellular electrochemical and mechanical response to deformation is an important area of research, as mechanotransduction has been shown to be linked with fundamental cell functions, or the progression of diseases such as cancer or atherosclerosis. Experimental cell mechanics is based on two fundamental concepts: the ability to measure cell stiffness, and to apply controlled strains to small clusters of cells. However, there is a lack of tools capable of applying precise deformation to a small cell population while being compatible with an inverted microscope (stable focal plane, transparency, compactness, etc.). Here, we use an anisotropically prestretched silicone-based DEA to deform a soft (7.6kPa) polyacrylamide gel on which the cells are cultured. An array of micro-dots of fluorescent fibronectin is transferred on the gel by micro-contact printing and serves as attachment points for the cells. In addition, the fluorescent dots (which have a diameter of 2 μm with a spacing of 6 μm) are used during the experiment to monitor the traction forces of a single cell (or small cluster of cells). The cell locally exerts traction on the gel, thus deforming the matrix of dots. The position of dots versus time is monitored live when the cells are submitted to a uniaxial strain step. Our deformable bioreactor enables the measurement of the local stiffness of cells submitted to mechanical strain, and is fully compatible with an inverted microscope set-up.

  13. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  14. Response delay caused by dielectric relaxation of polymer insulators for organic transistors and resolution method

    NASA Astrophysics Data System (ADS)

    Suemori, Kouji; Kamata, Toshihide

    2012-08-01

    We investigated the effect of dielectric relaxation in polymer gate insulators on the device characteristics of organic field effect transistors. Dielectric relaxation of polymer gate insulators caused an increase in drain current (ID) in a period starting immediately after the application of the gate voltage (VG) and lasting several milliseconds. This induced an apparent delay in the response of ID. Based on the observed results, we suggested an ideal gate insulator to achieve organic field effect transistors that have a fast response and high performance.

  15. High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy

    PubMed Central

    Tranca, D. E.; Stanciu, S. G.; Hristu, R.; Stoichita, C.; Tofail, S. A. M.; Stanciu, G. A.

    2015-01-01

    A new method for high-resolution quantitative measurement of the dielectric function by using scattering scanning near-field optical microscopy (s-SNOM) is presented. The method is based on a calibration procedure that uses the s-SNOM oscillating dipole model of the probe-sample interaction and quantitative s-SNOM measurements. The nanoscale capabilities of the method have the potential to enable novel applications in various fields such as nano-electronics, nano-photonics, biology or medicine. PMID:26138665

  16. Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet.

    PubMed

    Yang, Hui; Trouillon, Raphaël; Huszka, Gergely; Gijs, Martin A M

    2016-08-10

    Dielectric microspheres with appropriate refractive index can image objects with super-resolution, that is, with a precision well beyond the classical diffraction limit. A microsphere is also known to generate upon illumination a photonic nanojet, which is a scattered beam of light with a high-intensity main lobe and very narrow waist. Here, we report a systematic study of the imaging of water-immersed nanostructures by barium titanate glass microspheres of different size. A numerical study of the light propagation through a microsphere points out the light focusing capability of microspheres of different size and the waist of their photonic nanojet. The former correlates to the magnification factor of the virtual images obtained from linear test nanostructures, the biggest magnification being obtained with microspheres of ∼6-7 μm in size. Analyzing the light intensity distribution of microscopy images allows determining analytically the point spread function of the optical system and thereby quantifies its resolution. We find that the super-resolution imaging of a microsphere is dependent on the waist of its photonic nanojet, the best resolution being obtained with a 6 μm Ø microsphere, which generates the nanojet with the minimum waist. This comparison allows elucidating the super-resolution imaging mechanism.

  17. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    DOE PAGES

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; ...

    2016-08-15

    Here, we present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen andmore » focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].« less

  18. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    SciTech Connect

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; Gamboa, E. J.; Goede, S.; Schumaker, W.; Ravasio, A.; Gauthier, M.; MacDonald, M. J.; Chen, Z.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Pelka, A.; Kraus, D.; Barbrel, B.; Döppner, T.; Glenzer, S. H.

    2016-08-15

    Here, we present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  19. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    NASA Astrophysics Data System (ADS)

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; Gamboa, E. J.; Goede, S.; Schumaker, W.; Ravasio, A.; Gauthier, M.; MacDonald, M. J.; Chen, Z.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Pelka, A.; Kraus, D.; Barbrel, B.; Döppner, T.; Glenzer, S. H.

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  20. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    SciTech Connect

    Fletcher, L. B. Galtier, E.; Gamboa, E. J.; Schumaker, W.; Gauthier, M.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Glenzer, S. H.; Zastrau, U.; Goede, S.; Ravasio, A.; MacDonald, M. J.; Chen, Z.; Pelka, A.; Kraus, D.; Barbrel, B.; and others

    2016-11-15

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  1. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source.

    PubMed

    Fletcher, L B; Zastrau, U; Galtier, E; Gamboa, E J; Goede, S; Schumaker, W; Ravasio, A; Gauthier, M; MacDonald, M J; Chen, Z; Granados, E; Lee, H J; Fry, A; Kim, J B; Roedel, C; Mishra, R; Pelka, A; Kraus, D; Barbrel, B; Döppner, T; Glenzer, S H

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  2. Cryogenic exciter

    DOEpatents

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  3. Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon-dielectric interactions

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Lee, Joon; Arce, Fernando Teran; Yoon, Ilsun; Angsantikul, Pavimol; Liu, Justin; Shi, Yuesong; Villanueva, Josh; Thamphiwatana, Soracha; Ma, Xuanyi; Zhang, Liangfang; Chen, Shaochen; Lal, Ratnesh; Sirbuly, Donald J.

    2017-06-01

    Ultrasensitive nanomechanical instruments, including the atomic force microscope (AFM) and optical and magnetic tweezers, have helped shed new light on the complex mechanical environments of biological processes. However, it is difficult to scale down the size of these instruments due to their feedback mechanisms, which, if overcome, would enable high-density nanomechanical probing inside materials. A variety of molecular force probes including mechanophores, quantum dots, fluorescent pairs and molecular rotors have been designed to measure intracellular stresses; however, fluorescence-based techniques can have short operating times due to photo-instability and it is still challenging to quantify the forces with high spatial and mechanical resolution. Here, we develop a compact nanofibre optic force transducer (NOFT) that utilizes strong near-field plasmon-dielectric interactions to measure local forces with a sensitivity of <200 fN. The NOFT system is tested by monitoring bacterial motion and heart-cell beating as well as detecting infrasound power in solution.

  4. A Low-Cost and High-Resolution Droplet Position Detector for an Intelligent Electrowetting on Dielectric Device.

    PubMed

    Li, Yiyan; Li, Hongzhong; Baker, R Jacob

    2015-12-01

    A low-cost and high-resolution capacitive-to-digital converter integrated circuit is used for droplet position detection in a digital microfluidic system. A field-programmable gate array FPGA is used as the integrated logic hub of the system for a highly reliable and efficient control of the circuit. A fast-fabricating PCB (printed circuit board) substrate microfluidic system is proposed. Smaller actuation threshold voltages than those previously reported are obtained. Droplets (3 µL) are actuated by using a 200 V, 500 Hz modulating pulsed voltage. Droplet positions can be detected and displayed on a PC-based 3D animation in real time. The actuators and the capacitance sensing circuits are implemented on one PCB to reduce the size of the system. With the capacitive droplet position detection system, the PCB-based electrowetting on dielectric device (EWOD) reported in this work has promise in automating immunohistochemistry experiments.

  5. An Evanescent Microwave Probe for Super-Resolution Nondestructive Imaging of Metals, Semiconductors, Dielectrics, Composites and Biological Specimens

    NASA Technical Reports Server (NTRS)

    Pathak, P. S.; Tabib-Azar, M.; Ponchak, G.

    1998-01-01

    Using evanescent microwaves with decay lengths determined by a combination of microwave wavelength (lambda) and waveguide termination geometry, we have imaged and mapped material non-uniformities and defects with a resolving capability of lambda/3800=79 microns at 1 GHz. In our method a microstrip quarter wavelength resonator was used to generate evanescent microwaves. We imaged materials with a wide range of conductivities. Carbon composites, dielectrics (Duroid, polymers), semiconductors (3C-SiC, polysilicon, natural diamond), metals (tungsten alloys, copper, zinc, steel), high-temperature superconductors, and botanical samples were scanned for defects, residual stresses, integrity of brazed junctions, subsurface features, areas of different film thickness and moisture content. The evanescent microwave probe is a versatile tool and it can be used to perform very fast, large scale mapping of a wide range of materials. This method of characterization compares favorably with ultrasound testing, which has a resolution of about 0.1 mm and suffers from high absorption in composite materials and poor transmission across boundaries. Eddy current methods which can have a resolution on the order of 50 microns are restricted to evaluating conducting materials. Evanescent microwave imaging, with careful choice of operating frequency and probe geometry, can have a resolution of up to 1 micron. In this method we can scan hot and moving objects, sample preparation is not required, testing is non-destructive, non-invasive and non-contact, and can be done in air, in liquid or in vacuum.

  6. Fundamental limits of super-resolution microscopy by dielectric microspheres and microfibers

    NASA Astrophysics Data System (ADS)

    Astratov, V. N.; Maslov, A. V.; Allen, K. W.; Farahi, N.; Li, Y.; Brettin, A.; Limberopoulos, N. I.; Walker, D. E.; Urbas, A. M.; Liberman, V.; Rothschild, M.

    2016-03-01

    In recent years, optical super-resolution by microspheres and microfibers emerged as a new paradigm in nanoscale label-free and fluorescence imaging. However, the mechanisms of such imaging are still not completely understood and the resolution values are debated. In this work, the fundamental limits of super-resolution imaging by high-index barium-titanate microspheres and silica microfibers are studied using nanoplasmonic arrays made from Au and Al. A rigorous resolution analysis is developed based on the object's convolution with the point-spread function that has width well below the conventional (~λ/2) diffraction limit, where λ is the illumination wavelength. A resolution of ~λ/6-λ/7 is demonstrated for imaging nanoplasmonic arrays by microspheres. Similar resolution was demonstrated for microfibers in the direction perpendicular to the fiber axis with hundreds of times larger field-of-view in comparison to microspheres. Using numerical solution of Maxwell's equations, it is shown that extraordinary close point objects can be resolved in the far field, if they oscillate out of phase. Possible super-resolution using resonant excitation of whispering gallery modes is also studied.

  7. Real-time high-resolution magnetic resonance tracking of macrophage subpopulations in a murine inflammation model: a pilot study with a commercially available cryogenic probe.

    PubMed

    Al Faraj, Achraf; Luciani, Nathalie; Kolosnjaj-Tabi, Jelena; Mattar, Essam; Clement, Olivier; Wilhelm, Claire; Gazeau, Florence

    2013-01-01

    Macrophages present different polarization states exhibiting distinct functions in response to environmental stimuli. However, the dynamic of their migration to sites of inflammation is not fully elucidated. Here we propose a real-time in vivo cell tracking approach, using high-resolution (HR)-MRI obtained with a commercially available cryogenic probe (Cryoprobe™), to monitor trafficking of differently polarized macrophages after systemic injection into mice. Murine bone marrow-derived mononuclear cells were differentiated ex vivo into nonpolarized M0, pro-inflammatory M1 and immunomodulator M2 macrophage subsets and labeled with citrate-coated anionic iron oxide nanoparticles (AMNP). These cells were subsequently intravenously injected to mice bearing calf muscle inflammation. Whole body migration dynamics of macrophage subsets was monitored by MRI at 4.7 T with a volume transmission/reception radiofrequency coil and macrophage infiltration to the inflamed paw was monitored with the cryogenic probe, allowing 3D spatial resolution of 50 µm with a scan time of only 10 min. Capture of AMNP was rapid and efficient regardless of macrophage polarization, with the highest uptake in M2 macrophages. Flow cytometry confirmed that macrophages preserved their polarization hallmarks after labeling. Migration kinetics of labeled cells differed from that of free AMNP. A preferential homing of M2-polarized macrophages to inflammation sites was observed. Our in vivo HR-MRI protocol highlights the extent of macrophage infiltration to the inflammation site. Coupled to whole body imaging, HR-MRI provides quantitative information on the time course of migration of ex vivo-polarized intravenously injected macrophages.

  8. Method and apparatus of cryogenic cooling for high temperature superconductor devices

    DOEpatents

    Yuan, Xing; Mine, Susumu

    2005-02-15

    A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.

  9. Cryogenic submicron linear actuator

    NASA Astrophysics Data System (ADS)

    Serrano, Javier; Moreno Raso, Javier; González de María, David; Argelaguet Vilaseca, Heribert; Lamensans, Mikel; López Justo, David; Sanz Puig, Violeta

    2010-07-01

    The Cryogenic Submicron Linear Actuator (CSA) is a medium range (+/-5 mm) submicron resolution linear actuator suitable to be used at cryogenic temperature (12K). The unit has been developed for fine positioning use. The unit is based on classic motor-gear concept with nut and screw; different materials and lubrications have been tested for the same design configuration to compare performances. Load capability is above 20N. This paper describes main design features, results of different lubrications tested, tested performances, and main lessons learned.

  10. Biological Applications of Cryogenic Detectors

    SciTech Connect

    Friedrich, S

    2003-12-03

    High energy resolution and broadband efficiency are enabling the use of cryogenic detectors in biological research. Two areas where they have found initial application are X-ray absorption spectroscopy (XAS) and time-of-flight mass spectrometry (TOF-MS). In synchrotron-based fluorescence-detected XAS cryogenic detectors are used to examine the role of metals in biological systems by measuring their oxidation states and ligand symmetries. In time-of-flight mass spectrometry cryogenic detectors increase the sensitivity for biomolecule detection and identification for masses above {approx}50 kDa, and thus enable TOF-MS on large protein complexes or even entire viruses. More recently, cryogenic detectors have been proposed as optical sensors for fluorescence signals from biomarkers. We discuss the potential for cryogenic detectors in biological research, as well as the challenges the technology faces.

  11. Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  12. Dual Cryogenic Capacitive Density Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  13. Cryogenic shutter

    NASA Technical Reports Server (NTRS)

    Barney, Richard D. (Inventor); Magner, Thomas J. (Inventor)

    1991-01-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also termally connected to a reservoir containing the cryogen to further reduce the internal temperature.

  14. Cryogenic shutter

    NASA Technical Reports Server (NTRS)

    Barney, Richard D. (Inventor); Magner, Thomas J. (Inventor)

    1992-01-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also thermally connected to a reservoir containing cryogen to further reduce the internal temperature.

  15. Rocketborne cryogenic (10 K) high-resolution interferometer spectrometer flight HIRIS: auroral and atmospheric IR emission spectra.

    PubMed

    Stair, A T; Pritchard, J; Coleman, I; Bohne, C; Williamson, W; Rogers, J; Rawlins, W T

    1983-04-01

    A Michelson interferometer spectrometer cooled to 10 degrees by liquid helium was flown into an IBC class III aurora on 1 April 1976 from Poker Flat, Alas. The sensor, HIRIS, covered the spectral range 455-2500 wave numbers (4-22 microm) with a spectral resolution of 1.8 cm(-1) and an NESR of 5 x 10-12 W/cm2 scrm(-1) at 1000 cm(-1). An atmospheric emission spectrum was obtained every 0.7 sec over an altitude range of 70-125 km. Atmospheric spectra were obtained of CO2 (nu3), NO (Deltanu = 1), O3 (nu3) and CO2 (nu2). Auroral produced excitations were observed for each band, this being the first known measurement of auroral enhancements of O3 (nu3), 9.6 microm, and CO2 (nu2), 15 microm, emissions.

  16. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  17. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  18. High resolution imaging in cross-section of a metal-oxide-semiconductor field-effect-transistor using super-higher-order nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Chinone, N.; Yamasue, K.; Honda, K.; Cho, Y.

    2013-11-01

    Scanning nonlinear dielectric microscopy (SNDM) can evaluate carrier or charge distribution in semiconductor devices. High sensitivity to capacitance variation enables SNDM to measure the super-high-order (higher than 3rd) derivative of local capacitance-voltage (C-V) characteristics directly under the tip (dnC/dVn,n = 3, 4, ...). We demonstrate improvement of carrier density resolution by measurement of dnC/dVn,n = 1, 2, 3, 4 (super-higher-order method) in the cross-sectional observation of metal-oxide-semiconductor field-effect-transistor.

  19. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region.

    PubMed

    Sato, Yohei; Terauchi, Masami; Mukai, Masaki; Kaneyama, Toshikatsu; Adachi, Kenji

    2011-07-01

    The dielectric properties of LaB(6) crystals and the plasmonic behavior of LaB(6) nanoparticles, which have been applied to solar heat-shielding filters, were studied by high energy-resolution electron energy-loss spectroscopy (HR-EELS). An EELS spectrum of a LaB(6) crystal showed a peak at 2.0 eV, which was attributed to volume plasmon excitation of carrier electrons. EELS spectra of single LaB(6) nanoparticles showed peaks at 1.1-1.4 eV depending on the dielectric effect from the substrates. The peaks were assigned to dipole oscillation excitations. These peak energies almost coincided with the peak energy of optical absorption of a heat-shielding filter with LaB(6) nanoparticles. On the other hand, those energies were a smaller than a dipole oscillation energy predicted using the dielectric function of bulk LaB(6) crystal. It is suggested that the lower energy than expected is due to an excitation at 1.2 eV, which was observed for oxidized LaB(6) area.

  20. Cryogenic technology for CMBPol

    NASA Astrophysics Data System (ADS)

    Di Pirro, M.; Johnson, D. L.; Shirron, P.

    2009-03-01

    Future space telescopes such as CMBPol, SAFIR, DARWIN, SPICA and XEUS will require cooling to very low temperatures. Staged cooling is the most efficient means of achieving low temperature in an observatory or instrument with the least cost and mass. The first stage is usually passive radiators taking advantage of views to deep space. In the past stored cryogen systems provided the next lower stagesof cooling. Mechanical cryocoolers represent a significant enabling technology, especially at the lower temperatures where the passive coolers' effectiveness is limited. These coolers are in general lighter, have more cooling capability, and more operationally flexible than stored cryogens. Sub Kelvin cooling is required for many of the most sensitive detectors. For fundamental reasons, microcalorimeters and bolometers must be cooled to extremely low temperature to achieve their ultimate resolution and, eventually, background-limited detection. The state of the art for these cryogenic cooling technologies are presented along with plans to advance the technology readiness level to enable these future missions.

  1. Cryogenic vacuumm RF feedthrough device

    DOEpatents

    Wu, Genfa; Phillips, Harry Lawrence

    2008-12-30

    A cryogenic vacuum rf feedthrough device comprising: 1) a probe for insertion into a particle beam; 2) a coaxial cable comprising an inner conductor and an outer conductor, a dielectric/insulating layer surrounding the inner conductor, the latter being connected to the probe for the transmission of higher mode rf energy from the probe; and 3) a high thermal conductivity stub attached to the coaxial dielectric about and in thermal contact with the inner conductor which high thermal conductivity stub transmits heat generated in the vicinity of the probe efficiently and radially from the area of the probe and inner conductor all while maintaining useful rf transmission line characteristics between the inner and outer coaxial conductors.

  2. Charge dissipative dielectric for cryogenic devices

    NASA Technical Reports Server (NTRS)

    Cantor, Robin Harold (Inventor); Hall, John Addison (Inventor)

    2007-01-01

    A Superconducting Quantum Interference Device (SQUID) is disclosed comprising a pair of resistively shunted Josephson junctions connected in parallel within a superconducting loop and biased by an external direct current (dc) source. The SQUID comprises a semiconductor substrate and at least one superconducting layer. The metal layer(s) are separated by or covered with a semiconductor material layer having the properties of a conductor at room temperature and the properties of an insulator at operating temperatures (generally less than 100 Kelvins). The properties of the semiconductor material layer greatly reduces the risk of electrostatic discharge that can damage the device during normal handling of the device at room temperature, while still providing the insulating properties desired to allow normal functioning of the device at its operating temperature. A method of manufacturing the SQUID device is also disclosed.

  3. Low noise cryogenic dielectric resonator oscillator

    NASA Technical Reports Server (NTRS)

    Dick, G. John (Inventor)

    1988-01-01

    A microwave oscillator is provided which can operate at a temperature of many degrees above absolute zero while providing very low phase noise that has heretofore generally required temperatures within a few degrees K. The oscillator includes a ring-shaped resonant element of ruby (sapphire plus chromium) or iron sapphire crystal, lying adjacent to a resonator element of sapphire, so that the regenerator element lies directly in the magnetic field of the resonator element. The resonator element is substantially devoid of contact with electrically conductive material. Microwave energy of a pump frequency (e.g., 31 GHz) is outputted from the regenerator element, while signal energy (e.g., 10 GHz) is outputted from the resonator element.

  4. Cryogenic Wind Tunnels.

    DTIC Science & Technology

    1980-07-01

    CRYOGENIC WIND TUNNEL by J.D.CadweD 18 A CRYOGENIC TRANSONIC INTERMITTENT TUNNEL PROJECT: THE INDUCED -FLOW CRYOGENIC WIND-TUNNEL T2 AT ONERA/CERT by...CRYOGENIC TUNNELS The types of tunnel drive and test gas currently exploited in cryogenic wind tunnels include: Drive Test Gas fan nitrogen induced flow...reduce other heat fluxes. Other sources can arise from thermally induced oscillations under both storage and transfer con- ditions. 1.3 (c) Reduction

  5. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  6. Mode Orientation Control For Sapphire Dielectric Ring Resonator

    NASA Technical Reports Server (NTRS)

    Santiago, David G.; Dick, G. John; Prata, Aluizio

    1996-01-01

    Small sapphire tuning wedge used in technique for solving mode-purity problem associated with sapphire dielectric-ring resonator part of cryogenic microwave frequency discriminator. Breaks quasi-degeneracy of two modes and allows selective coupling to just one mode. Wedge mounted on axle entering resonator cavity and rotated while resonator cryogenically operating in vacuum. Furthermore, axle moved vertically to tune resonant frequency.

  7. Properties of a nanodielectric cryogenic resin

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Sauers, Isidor; More, Karren Leslie

    2010-01-01

    Physical properties of a nanodielectric composed of in situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles ({le} 5 nm in diameter) and a cryogenic resin are reported. The dielectric losses were reduced by a factor of 2 in the nanocomposite, indicating that the presence of small TiO{sub 2} nanoparticles restricted the mobility of the polymer chains. Dielectric breakdown data of the nanodielectric was distributed over a narrower range than that of the unfilled resin. The nanodielectric had 1.56 times higher 1% breakdown probability than the resin, yielding 0.64 times thinner insulation thickness for the same voltage level, which is beneficial in high voltage engineering.

  8. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Guedj, C.; Hung, L.; Zobelli, A.; Blaise, P.; Sottile, F.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO2) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO2, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO2 may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  9. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    SciTech Connect

    Guedj, C.; Hung, L.; Sottile, F.; Zobelli, A.; Blaise, P.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO{sub 2}) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO{sub 2}, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO{sub 2} may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  10. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOEpatents

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  11. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOEpatents

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  12. Refrigeration for Cryogenic Sensors

    SciTech Connect

    Gasser, M.G.

    1983-12-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  13. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  14. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  15. Development and operation of a Pr2 Fe14 B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, C.; Valléau, M.; Ghaith, A.; Berteaud, P.; Chapuis, L.; Marteau, F.; Briquez, F.; Marcouillé, O.; Marlats, J.-L.; Tavakoli, K.; Mary, A.; Zerbib, D.; Lestrade, A.; Louvet, M.; Brunelle, P.; Medjoubi, K.; Herbeaux, C.; Béchu, N.; Rommeluere, P.; Somogyi, A.; Chubar, O.; Kitegi, C.; Couprie, M.-E.

    2017-03-01

    Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE2 Fe14B (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr2 Fe14B instead of Nd2 Fe14B , which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K). We describe here the development of a full scale (2 m), 18 mm period Pr2 Fe14B cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. The commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.

  16. Development and operation of a Pr2Fe14B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line

    DOE PAGES

    Benabderrahmane, C.; Valleau, M.; Ghaith, A.; ...

    2017-03-02

    Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE2Fe14B (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr2Fe14B instead of Nd2Fe14B, which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77more » K). We describe here the development of a full scale (2 m), 18 mm period Pr2Fe14B cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. In conclusion, the commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.« less

  17. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution

    SciTech Connect

    Henn, T.; Kiessling, T. Ossau, W.; Molenkamp, L. W.; Biermann, K.; Santos, P. V.

    2013-12-15

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  18. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Sacramento, R. L.; Oliveira, A. N.; Alves, B. X.; Silva, B. A.; Li, M. S.; Wolff, W.; Cesar, C. L.

    2015-07-01

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H2 are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  19. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    SciTech Connect

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L.; Oliveira, A. N.; Li, M. S.

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  20. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules.

    PubMed

    Sacramento, R L; Oliveira, A N; Alves, B X; Silva, B A; Li, M S; Wolff, W; Cesar, C L

    2015-07-01

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H2 are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  1. Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths.

    PubMed

    Yan, Changchun; Zhang, Dao Hua; Zhang, Yuan; Li, Dongdong; Fiddy, M A

    2010-07-05

    We report beam splitting in a metamaterial composed of a silver-alumina composite covered by a layer of chromium containing one slit. By simulating distributions of energy flow in the metamaterial for H-polarized waves, we find that the beam splitting occurs when the width of the slit is shorter than the wavelength, which is conducive to making a beam splitter in sub-wavelength photonic devices. We also find that the metamaterial possesses deep sub-wavelength resolution capabilities in the far field when there are two slits and the central silver layer is at least 36 nm in thickness, which has potential applications in superresolution imaging.

  2. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  3. A Cryogenic Infrared Calibration Target

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R < or = 0.003, from 800 to 4800/cm (12 - 2 microns ). Upon expanding the spectral range under consideration to 400-10,000/ cm-1 (25 - 1 microns) the observed performance gracefully degrades to R < or = 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented

  4. Cryogenic properties of several copolyesters

    SciTech Connect

    Yano, O.; Kimoto, A.; Yamaoka, H.

    1997-06-01

    Copolyesters of polyethylene terephthalate(PET) and polyethylene-2,6-naphthalene dicarboxylate(PEN) with composition of PET/PEN= 100/0, 95/5, 90/10, 85/15, 70/30, 50/50, 30/70, 10/90, 0/100 were prepared. The mechanical properties of uniaxial-drawn films were examined at 83 K and 296 K. PET/PEN=90/10 copolymer film possessed especially excellent cryogenic properties. It was found to withstand elongations in excess of 40% at stress levels of about 400 MPa at 83 K for PET/PEN=90/10 film uniaxial-drawn 5 times. Differential scanning calorimetry(DSC) curves of samples before and after tensile test at 83 K were compared for PET/PEN=90/10 film uniaxial-drawn 5 times. After tensile test at 83 K, the peak position of cold-crystallization shifted and the peak area between the curve and a baseline decreased, indicating that crystallization is allowed to take place during tensile test at 83 K. Dielectric loss tangent was measured in the temperature range from 18 K to the glass transition temperature. The relaxation below 100 K of PET and its copolymers was observed to be dependent on the morphology of samples. On the basis of the results obtained, relationship between the structure of polymers and their cryogenic properties has been discussed.

  5. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy

    PubMed Central

    Okada, Tomoko; Ogura, Toshihiko

    2017-01-01

    Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS). PMID:28230204

  6. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Ogura, Toshihiko

    2017-02-01

    Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS).

  7. A cryogenic test facility

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  8. Possible human endogenous cryogens.

    PubMed

    Shido, Osamu; Sugimoto, Naotoshi

    2011-06-01

    Anapyrexia, which is a regulated fall in core temperature, is beneficial for animals and humans when the oxygen supply is limited, e.g., hypoxic, ischemic, or histotoxic hypoxia, since at low body temperature the tissues require less oxygen due to Q(10). Besides hypoxia, anapyrexia can be induced various exogenous and endogenous substances, named cryogens. However, there are only a few reports investigating endogenous cryogens in mammals. We have experienced one patient who suffered from severe hypothermia. The patient seemed to be excessively producing endogenous peptidergic cryogenic substances the molecular weight of which may be greater than 30 kDa. In animal studies, the patient's cryogen appeared to affect metabolic functions, including thermogenic threshold temperatures, and then to produce hypothermia. Since endogenous cryogenic substances may be regarded as useful tool in human activities, e.g., during brain hypothermia therapy or staying in a space station or spaceship, further studies may be needed to identify human endogenous cryogens.

  9. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  10. System accurately controls pressure in cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Kirchmeier, W. E., Jr.

    1971-01-01

    High-resolution differential pressure transducer senses very small positive or negative pressure variations in the cryogenic tank relative to absolute reference pressure. System is useful in calibrating instruments where working fluid must be maintained at closely controlled temperature, or in processes requiring very fine pressure control.

  11. Dielectric relaxation and phase transitions at cryogenic temperatures in 0.65[Pb(Ni1/3Nb2/3)O3]-0.35PbTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Singh, Satendra Pal; Singh, Akhilesh Kumar; Pandey, Dhananjai; Yusuf, S. M.

    2007-08-01

    Dielectric measurements on 0.65[Pb(Ni1/3Nb2/3)O3]-0.35PbTiO3 ceramic in the temperature range 90-470K show a relaxor ferroelectric transition around 350K with a Vogel-Fulcher freezing temperature of 338K and an appearance of a nonergodic relaxor ferroelectric phase of tetragonal structure at room temperature. This nonergodic phase reenters into the relaxor state at low temperatures as evidenced by the appearance of a frequency dependent anomaly in the imaginary part of the dielectric constant around 160K , similar to those reported in other relaxor ferroelectric based morphotropic phase boundary ceramics. The polarization relaxation time for the 160K anomaly also follows Vogel-Fulcher type temperature dependence. Temperature dependent magnetization measurements show that this low temperature anomaly is not linked with any magnetic transition. Elastic modulus and low temperature x-ray diffraction measurements reveal a tetragonal to monoclinic phase transition around 225K . It is argued that the low temperature dielectric dispersion around 160K results from the freezing of mesoscopic conformally miniaturized monoclinic domains formed inside the parent tetragonal domains below the structural phase transition temperature of 225K .

  12. Scanning Quantum Cryogenic Atom Microscope

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  13. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  14. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  15. MCP-based photodetectors for cryogenic applications

    DOE PAGES

    Dharmapalan, R.; Mane, A.; Byrum, K.; ...

    2016-02-08

    The Argonne MCP-based photo detector is an offshoot of the Large Area Pico-second Photo Detector (LAPPD) project, wherein 6 cm × 6 cm sized detectors are made at Argonne National Laboratory. We have successfully built and tested our first detectors for pico-second timing and few mm spatial resolution. We discuss our efforts to customize these detectors to operate in a cryogenic environment. Initial plans aim to operate in liquid argon. As a result, we are also exploring ways to mitigate wave length shifting requirements and also developing bare-MCP photodetectors to operate in a gaseous cryogenic environment.

  16. Thallous halide materials for use in cryogenic applications

    NASA Technical Reports Server (NTRS)

    Lawless, William N. (Inventor)

    1981-01-01

    Thallous halides, either alone or in combination with other ceramic materials, are used in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated onto substrates.

  17. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  18. A Cryogenic, Insulating Suspension System for the High Resolution Airborne Wideband Camera (HAWC)and Submillemeter And Far Infrared Experiment (SAFIRE) Adiabatic Demagnetization Refrigerators (ADRs)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.

    2002-01-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists of two parts that can be assembled and tensioned offline, and later bolted onto the salt pill.

  19. FRIB Cryogenic Plant Status

    SciTech Connect

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  20. SNS Cryogenic Systems Commissioning

    NASA Astrophysics Data System (ADS)

    Hatfield, D.; Casagrande, F.; Campisi, I.; Gurd, P.; Howell, M.; Stout, D.; Strong, H.; Arenius, D.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2006-04-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  1. SNS Cryogenic Systems Commissioning

    SciTech Connect

    D. Hatfield; F. Casagrande; I. Campisi; P. Gurd; M. Howell; D. Stout; H. Strong; D. Arenius; J. Creel; K. Dixon; V. Ganni; and P. Knudsen

    2005-08-29

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  2. Advances in Cryogenic Principles

    NASA Astrophysics Data System (ADS)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  3. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  4. Liquid cryogenic lubricant

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Townsend, D. P.; Zaretsky, E. V.

    1970-01-01

    Fluorinated polyethers are suitable lubricants for rolling-element bearings in cryogenic systems. Lubrication effectiveness is comparable to that of super-refined mineral oil lubricants operating at room temperature.

  5. Vuilleumier Cycle Cryogenic Refrigeration

    DTIC Science & Technology

    1976-04-01

    WORDS (Continue on reverse side if necessary and identify by block number) Cryogenic Refrigerator Vuilleumier Cycle 20. ABSTRACT (Continue on reverse ...The energy added to the gas was stored in the regenerator packing, or matrix, by gas flow in the reverse direction during a previous part of the cycle ...AFFDL-TR-76-17 VUILLEUMIER CYCLE CRYOGENIC REFRIGERATION ENVIRONMENTAL CONTROL BRANCH 4 VEHICLE EQUIPMENT DIVISION APRIL 1976 TECHNICAL REPORT AFFDL

  6. Cryogenic Feedthrough Test Rig

    NASA Technical Reports Server (NTRS)

    Skaff, Antony

    2009-01-01

    The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.

  7. Cryogenic Shutter Mechanism

    NASA Technical Reports Server (NTRS)

    Barney, Richard D.; Magner, Thomas J.

    1989-01-01

    Electromagnetic shutter mechanism operates at ambient and cryogenic temperatures to shield optical element, such as mirror, filter, polarizer, beam splitter, or detector, from external light and radiation in cryogenic Dewar equipped with window for optical evaluation. Shutter mechanism in Dewar container alternately shields and exposes optical element as paddle rotates between mechanical stops. Mounted on cold plate of liquid-helium reservoir. Paddle, shaft, and magnet constitutes assembly rotated by electromagnetic field on coil.

  8. Settled Cryogenic Propellant Transfer

    NASA Technical Reports Server (NTRS)

    Kutter, Bernard F.; Zegler, Frank; Sakla, Steve; Wall, John; Hopkins, Josh; Saks, Greg; Duffey, Jack; Chato, David J.

    2006-01-01

    Cryogenic propellant transfer can significantly benefit NASA s space exploration initiative. LMSSC parametric studies indicate that "Topping off" the Earth Departure Stage (EDS) in LEO with approx.20 mT of additional propellant using cryogenic propellant transfer increases the lunar delivered payload by 5 mT. Filling the EDS to capacity in LEO with 78 mT of propellants increases the delivered payload by 20 mT. Cryogenic propellant transfer is directly extensible to Mars exploration in that it provides propellant for the Mars Earth Departure stage and in-situ propellant utilization at Mars. To enable the significant performance increase provided by cryogenic propellant transfer, the reliability and robustness of the transfer process must be guaranteed. By utilizing low vehicle acceleration during the cryogenic transfer the operation is significantly simplified and enables the maximum use of existing, reliable, mature upper stage cryogenic-fluid-management (CFM) techniques. Due to settling, large-scale propellant transfer becomes an engineering effort, and not the technology development endeavor required with zero-gravity propellant transfer. The following key CFM technologies are all currently implemented by settling on both the Centaur and Delta IV upper stages: propellant acquisition, hardware chilldown, pressure control, and mass gauging. The key remaining technology, autonomous rendezvous and docking, is already in use by the Russians, and must be perfected for NASA whether the use of propellant transfer is utilized or not.

  9. High Energy Density Dielectrics for Pulsed Power Applications

    DTIC Science & Technology

    2008-09-01

    next page). 14. ABSTRACT This report was developed under a SBIR contract. Aluminum oxynitride (AlON) capacitors exhibit several promising...characteristics for high energy density capacitor applications in extreme environments. Dielectric constants in the range of 9 and dielectric strength in...properties remain stable from cryogenic temperatures of -200 °C to temperatures above 400 °C. Stacked capacitor devices have been developed and

  10. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  11. Electromechanical Materials for Cryogenic Use

    NASA Technical Reports Server (NTRS)

    Leidinger, Peter; Pilgrim, Steven M.

    1996-01-01

    Electromechanical materials can be used in smart sensor and actuator devices. Yet none performing at low temperatures are available. To meet this need, Pb((MgNi)(1/3)Ta(2/3))03 was synthesized as an electrostrictive ceramic for applications in cryogenic environments. Employing the columbite precursor route, samples with 0% to 100% Ni substitution for Mg were prepared, but only samples with Ni-substitutions less than or equal to 20% yielded primarily the desired perovskite phase. For these compositions the temperature of highest permittivity decreased linearly with increasing Ni content to yield a minimum value of -124 C for 20% Ni-substitution. This composition showed good relaxor dielectric behavior with a maximum relative permittivity of 5890 at 1 kHz. Additionally, in samples with excess MgO, the magnitude of permittivity doubled. In this effort, Pb((MgNi)(1/3)Ta(2/3))03 (PMNiTa) was fabricated to lower its transition temperature by substituting Ni for Mg successively.

  12. A cryogenic infrared calibration target.

    PubMed

    Wollack, E J; Kinzer, R E; Rinehart, S A

    2014-04-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R ⩽ 0.003, from 800 to 4800 cm(-1) (12 - 2 μm). Upon expanding the spectral range under consideration to 400-10,000 cm(-1) (25 - 1 μm) the observed performance gracefully degrades to R ⩽ 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to ∼4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented.

  13. TPC magnet cryogenic system

    SciTech Connect

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  14. High-aperture cryogenic light microscopy.

    PubMed

    Le Gros, M A; McDermott, G; Uchida, M; Knoechel, C G; Larabell, C A

    2009-07-01

    We report here the development of instruments and protocols for carrying out high numerical aperture immersion light microscopy on cryogenic specimens. Imaging by this modality greatly increases the lifetimes of fluorescence probes, including those commonly used for protein localization studies, while retaining the ability to image the specimen with high fidelity and spatial resolution. The novel use of a cryogenic immersion fluid also minimizes the refractive index mismatch between the sample and lens, leading to a more efficient coupling of the light from the sample to the image forming system. This enhancement is applicable to both fluorescence and transmitted light microscopy techniques. The design concepts used for the cryogenic microscope can be applied to virtually any existing light-based microscopy technique. This prospect is particularly exciting in the context of 'super-resolution' techniques, where enhanced fluorescence lifetime probes are especially useful. Thus, using this new modality it is now possible to observe dynamic events in a live cell, and then rapidly vitrify the specimen at a specific time point prior to carrying out high-resolution imaging. The techniques described can be used in conjunction with other imaging modalities in correlated studies. We have also developed instrumentation to perform cryo-light imaging together with soft X-ray tomography on the same cryo-fixed specimen as a means of carrying out high content, quantifiable correlated imaging analyses. These methods are equally applicable to correlated light and electron microscopy of frozen biological objects.

  15. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  16. Versatile cryogenic rotary positioning systems

    NASA Astrophysics Data System (ADS)

    Birner, Robert; Sodeikat, Dieter W.; Ruppert, U.

    1990-11-01

    Systems for scan mirror positioning and filter wheel grating and indexing used in the Infrared Background Signature Survey sensor are described. A control loop which incorporates a cryogenic brushless torquer, an ironless inductive position sensor, and associated control electronics is used to achieve precise angular positioning with the angular range of +/- 7.5 deg. The motion programs include step, sawtooth, and staircase operations. A positioning accuracy of greater than 0.03 deg and a position resolution of greater than 0.001 deg have been achieved. Fixation of grating and mirror mechanism during launch is accomplished using short circuiting of motor windings for providing high braking torques. For a filter wheel indexing, the inductive position sensor is replaced by Hall probes, and the torque motor commutation uses Hall sensor signals. The same signals are applied to control the required 12 positions. A Hall sensor located at the filter wheel marks a reference position.

  17. Industrial x-ray fluorescence analysis new applications and challenges for cryogenic detectors

    SciTech Connect

    Frank, M.

    1997-08-01

    Cryogenic, high-resolution X-ray detectors have potential applications in industrial X-ray fluorescence (XRF) analysis. We discuss various XRF analysis techniques currently used in the semiconductor industry, problems encountered due to limitations of current detectors and the potential benefits of using cryogenic detectors in these applications. We give examples of demonstration experiments, compare the performance of current conventional and cryogenic X-ray spectrometers and present an outlook.

  18. Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.

    2001-01-01

    An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.

  19. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  20. Cryogenic generator cooling

    NASA Astrophysics Data System (ADS)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  1. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  2. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  3. Cryogenic foil bearing turbopumps

    NASA Technical Reports Server (NTRS)

    Gu, Alston L.

    1993-01-01

    Cryogenic foil bearing turbopumps offer high reliability and low cost. The fundamental cryogenic foil bearing technology has been validated in both liquid hydrogen and liquid oxygen. High load capacity, excellent rotor dynamics, and negligible bearing wear after over 100 starts and stops, and over many hours of testing, were observed in both fluids. An experimental liquid hydrogen foil bearing turbopump was also successfully demonstrated. The results indicate excellent stability, high reliability, wide throttle-ability, low bearing cooling flow, and two-phase bearing operability. A liquid oxygen foil bearing turbopump has been built and is being tested at NASA MSFC.

  4. Computed tomography of cryogenic cells

    SciTech Connect

    Schneider, Gerd; Anderson, E.; Vogt, S.; Knochel, C.; Weiss, D.; LeGros, M.; Larabell, C.

    2001-08-30

    Due to the short wavelengths of X-rays and low numerical aperture of the Fresnel zone plates used as X-ray objectives, the depth of field is several microns. Within the focal depth, imaging a thick specimen is to a good approximation equivalent to projecting the specimen absorption. Therefore, computed tomography based on a tilt series of X-ray microscopic images can be used to reconstruct the local linear absorption coefficient and image the three-dimensional specimen structure. To preserve the structural integrity of biological objects during image acquisition, microscopy is performed at cryogenic temperatures. Tomography based on X-ray microscopic images was applied to study the distribution of male specific lethal 1 (MSL-1), a nuclear protein involved in dosage compensation in Drosophila melanogaster, which ensures that males with single X chromosome have the same amount of most X-linked gene products as females with two X chromosomes. Tomographic reconstructions of X-ray microscopic images were used to compute the local three-dimensional linear absorption coefficient revealing the arrangement of internal structures of Drosophila melanogaster cells. Combined with labelling techniques, nanotomography is a new technique to study the 3D distribution of selected proteins inside whole cells. We want to improve this technique with respect to resolution and specimen preparation. The resolution in the reconstruction can be significantly improved by reducing the angular step size to collect more viewing angles, which requires an automated data acquisition. In addition, fast-freezing with liquid ethane instead of cryogenic He gas will be applied to improve the vitrification of the hydrated samples. We also plan to apply cryo X-ray nanotomography in order to study different types of cells and their nuclear protein distributions.

  5. Cryogenic Cermic Multilayer Capacitors for Power Electronics

    SciTech Connect

    Alberta, E. F.; Hackenberger, W. S.

    2006-03-31

    Recent advances in the areas of high temperature superconductors and low temperature MOSFET devices have opened the door to the possibility of developing highly efficient low-temperature power electronics. The most commonly used high-efficiency capacitors are based on high dielectric constant (K {approx} 1000-4000) barium titanate doped to yield and X7R temperature dependence ({+-}15% change in capacitance from -55 deg. C to 125 deg. C); however, below their minimum use temperature the capacitance drops-off quickly leading to a low volumetric efficiency and high temperature coefficient of capacitance (TCC) at cryogenic temperatures.A series of low temperature materials with moderate to high dielectric constants have been specifically developed for low temperature operation (below 80K). The capacitors fall into three main categories: low TCC, high volumetric efficiency, and energy storage. In the low TCC category, co-fired multilayer ceramic capacitors (MLCCs) were fabricated with capacitance values up to 62nF at 30K, TCCs from 0.9 to 2% below 80K, and losses on the order of 0.0001. In the high volumetric efficiency category, dielectrics with permittivities ranging from 1,000 to 30,000 were demonstrated.

  6. Cryogenic Cermic Multilayer Capacitors for Power Electronics

    NASA Astrophysics Data System (ADS)

    Alberta, E. F.; Hackenberger, W. S.

    2006-03-01

    Recent advances in the areas of high temperature superconductors and low temperature MOSFET devices have opened the door to the possibility of developing highly efficient low-temperature power electronics. The most commonly used high-efficiency capacitors are based on high dielectric constant (K ˜ 1000-4000) barium titanate doped to yield and X7R temperature dependence (±15% change in capacitance from -55°C to 125°C); however, below their minimum use temperature the capacitance drops-off quickly leading to a low volumetric efficiency and high temperature coefficient of capacitance (TCC) at cryogenic temperatures. A series of low temperature materials with moderate to high dielectric constants have been specifically developed for low temperature operation (below 80K). The capacitors fall into three main categories: low TCC, high volumetric efficiency, and energy storage. In the low TCC category, co-fired multilayer ceramic capacitors (MLCCs) were fabricated with capacitance values up to 62nF at 30K, TCCs from 0.9 to 2% below 80K, and losses on the order of 0.0001. In the high volumetric efficiency category, dielectrics with permittivities ranging from 1,000 to 30,000 were demonstrated.

  7. Insulation design of cryogenic bushing for superconducting electric power applications

    NASA Astrophysics Data System (ADS)

    Koo, J. Y.; Lee, Y. J.; Shin, W. J.; Kim, Y. H.; Kim, J. T.; Lee, B. W.; Lee, S. H.

    2013-01-01

    Recently, the superconductivity projects to develop commercial superconducting devices for extra high voltage transmission lines have been undergoing in many countries. One of the critical components to be developed for high voltage superconducting devices, including superconducting transformers, cables, and fault current limiters, is a high voltage bushing, to supply high current to devices without insulating difficulties, that is designed for cryogenic environments. Unfortunately, suitable bushings for HTS equipment were not fully developed for some cryogenic insulation issues. Such high voltage bushings would need to provide electrical insulation capabilities from room temperature to cryogenic temperatures. In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. First, the dielectric strength of three kinds of metals has been measured with uniform and non-uniform electrodes by withstand voltage of impulse and AC breakdown test in LN2. Second, puncture breakdown voltage of glass fiber reinforced plastics (GFRPs) plates has been analyzed with non-uniform electrodes. Finally, creepage discharge voltages were measured according to the configuration of non-uniform and uniform electrode on the FRP plate. From the test results, we obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic environment.

  8. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  9. Broadband local dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Labardi, M.; Lucchesi, M.; Prevosto, D.; Capaccioli, S.

    2016-05-01

    A route to extend the measurement bandwidth of local dielectric spectroscopy up to the MHz range has been devised. The method is based on a slow amplitude modulation at a frequency Ω of the excitation field oscillating at a frequency ω and the coherent detection of the modulated average electric force or force gradient at Ω. The cantilever mechanical response does not affect the measurement if Ω is well below its resonant frequency; therefore, limitations on the excitation field frequency are strongly reduced. Demonstration on a thin poly(vinyl acetate) film is provided, showing its structural relaxation spectrum on the local scale up to 45 °C higher than glass temperature, and nanoscale resolution dielectric relaxation imaging near conductive nanowires embedded in the polymer matrix was obtained up to 5 MHz frequency, with no physical reason to hinder further bandwidth extension.

  10. Disk Valve For Cryogenics

    NASA Technical Reports Server (NTRS)

    Calhoun, Richard B.

    1993-01-01

    Lightweight disk valve designed to have dimensions and capabilities similar to those of valve described in "Lightweight Right-Angle Valve For Cryogenics" (MSC-21889). Simple unit remains leaktight over wide range of pressures and temperatures without need for manual readjustment of packing gland. Weighs less than 60 g and made relatively inexpensively from some commercial and few simple custom-machined components.

  11. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  12. Valve for cryogenic service

    DOEpatents

    Worwetz, H.A.

    1975-09-02

    This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

  13. Cryogenic structural support

    DOEpatents

    Niemann, Ralph C.; Mataya, Karl F.; Gonczy, John D.

    1982-01-01

    A tensile support member is provided for use in a cryogenic environment. The member is in the form of a link formed of an epoxy glass laminate with at least one ply of the laminate having its fibers aligned circumferentially about the link.

  14. Toward High-Resolution Monitoring of Snow and Ice in Remote Environments - Estimating the dielectric properties and SWE of snow using Duke University's L-band Snow Sensor Mote

    NASA Astrophysics Data System (ADS)

    Barros, A. P.; Kang, D.

    2008-12-01

    Measurements of snow properties at high spatial and temporal resolution are necessary to investigate and characterize the space-time scaling behavior of the hydrological and radiometric properties of surface snow and ice. Work toward the development of affordable, adaptive wireless networks of L-band snow sensor motes has been going on at Duke University for the last three years. The vision is to investigate, adapt and test existing MEMS (Micro-Electro-Mechanical Systems) and IC (Integrated Circuit) RF (radiofrequency) technology for developing low-cost (under 50 USD), low maintenance, environmentally neutral snow sensors to operate as high-spatial resolution (hundreds to thousands of sensors) wireless networks over large areas, and in remote regions (distributed from low-flying aircraft); and to develop and evaluate retrieval and snow characterization algorithms to quantify the spatial and temporal variability of water equivalent from the snow sensor measurements. The basic measurements consist of amplitude attenuation and relative phase change (snowpack/air) of electromagnetic waves in 39 channels between 1 and 1.76 GHz. Here, we present sensor and the retrieval algorithm to estimate the dielectric properties of the snowpack and snow water content from the amplitude attenuation and phase change measurements using selected channels between 1 and 1.34 GHZ. The algorithm is tested and evaluated for controlled laboratory conditions under which all state variables were measured independently. In the laboratory a synthetic snowpack was created using various types of foam with different structural characteristics and water content for which all dielectric properties were measured independently. The objective of this work is to demonstrate the skill and range of observations from the snow sensor motes to characterize the space-time heterogeneity of snow at high resolution.

  15. Sensor and Instrumentation Development for Cryogenic Detectors

    NASA Astrophysics Data System (ADS)

    Allen, Nicholas; Febbraro, Micheal; Pain, Steven; Aidala, Christine; Lesser, Ezra; White, Aaron

    2015-10-01

    In the study of nuclear science, there is an ever increasing need for better efficiency and resolution in In nuclear sciences, new detectors with improved detection efficiency and energy resolution are constantly needed to drive experimental discovery and accuracy. Certain cryogenic liquids, particularly liquid noble gases such as Argon and Xenon, are very sensitive to energy deposited by ionizing particles and have many other useful properties for detector development. Developing these cryogenic liquids to operate with known detection methods offers exciting opportunities for experimental setups and has a wide variety of uses with regards to nuclear studies, such as gamma ray, neutron, and neutrino detection. However, operating at such low temperatures presents many complications when trying to effectively control and maintain detectors. In this poster, I will present some of the equipment and systems developed for particular low temperature applications. This will include the use of platinum resistance thermometers, capacitance-based liquid level sensors, and various systems used to regulate fluid flow for cryogenic detector systems.

  16. High-aperture cryogenic light microscopy

    PubMed Central

    LE GROS, M.A.; McDERMOTT, G.; UCHIDA, M.; KNOECHEL, C.G.; LARABELL, C.A.

    2012-01-01

    Summary We report here the development of instruments and protocols for carrying out high numerical aperture immersion light microscopy on cryogenic specimens. Imaging by this modality greatly increases the lifetimes of fluorescence probes, including those commonly used for protein localization studies, while retaining the ability to image the specimen with high fidelity and spatial resolution. The novel use of a cryogenic immersion fluid also minimizes the refractive index mismatch between the sample and lens, leading to a more efficient coupling of the light from the sample to the image forming system. This enhancement is applicable to both fluorescence and transmitted light microscopy techniques. The design concepts used for the cryogenic microscope can be applied to virtually any existing light-based microscopy technique. This prospect is particularly exciting in the context of ‘super-resolution’ techniques, where enhanced fluorescence lifetime probes are especially useful. Thus, using this new modality it is now possible to observe dynamic events in a live cell, and then rapidly vitrify the specimen at a specific time point prior to carrying out high-resolution imaging. The techniques described can be used in conjunction with other imaging modalities in correlated studies. We have also developed instrumentation to perform cryo-light imaging together with soft X-ray tomography on the same cryo-fixed specimen as a means of carrying out high content, quantifiable correlated imaging analyses. These methods are equally applicable to correlated light and electron microscopy of frozen biological objects. PMID:19566622

  17. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  18. Stirling cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P. (Inventor)

    1983-01-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  19. Cryogenic Control System

    SciTech Connect

    Goloborod'ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  20. Cryogenic treatment of gas

    DOEpatents

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  1. Flexible cryogenic conduit

    SciTech Connect

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-12-21

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  2. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  3. Stirling cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P.

    1983-06-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  4. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  5. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  6. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  7. Cryogenic Test Technology 1984.

    DTIC Science & Technology

    1985-04-01

    super- sonic cruise research model (Figure 19) made from Vascomax 200, a flat-plate delta wing model (Figure 20) made from Vascomax 200 with pressure...beam welded together Sting design has been considered in papers 8),93, from General Dynamics. An attempt was made to design a composite sting but the...ment in the cryogenic toughness of comrcial high-strength martensitic and maragingW steels has been demonstrated through the use of grain-refining

  8. A compact cryogenic pump

    SciTech Connect

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  9. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark

    2015-01-01

    Under our NASA Innovative Advanced Concepts (NIAC) project we have theoretically demonstrated a novel selective surface that reflects roughly 100 times more solar radiation than any other known coating. If this prediction holds up under experimental tests it will allow cryogenic temperatures to be reached in deep space even in the presence of the sun. It may allow LOX to be carried to the Moon and Mars. It may allow superconductors to be used in deep space without a refrigeration system.

  10. Cryogenic Production Testing

    NASA Astrophysics Data System (ADS)

    Buchness, R. K.; Banks, E.; Doidge, J.; Gable, A.; Nelson, L.; Olsen, D.

    1985-10-01

    Rockwell has realized rapid testing of Infrared Focal Plane Arrays (IRFPAs) using a totally automated cryogenic test station with the latest technology in device handling, data acquisition, illumination and throughput capabilities. This station provides testing of HgCdTe Focal Plane Arrays fabricated in a fully certified production facility. All aspects of this facility are under Quality Control surveillance including the hardware and software used by the automated test station.

  11. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark; Gibson, Tracy; Johnson, Wesley

    2017-01-01

    The NASA Innovative Advanced Concept (NIAC) program has been funding work at KSC on a novel coating that should allow cryogenic materials to be stored in deep space. The NIAC Symposium will be the last week of September and it is a requirement that the funded material be presented both orally and at a poster session. This DAA submission is requesting approval to go public with both the presentation and the poster.

  12. A compact cryogenic pump

    NASA Astrophysics Data System (ADS)

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  13. Inventing atomic resolution scanning dielectric microscopy to see a single protein complex operation live at resonance in a neuron without touching or adulterating the cell.

    PubMed

    Agrawal, Lokesh; Sahu, Satyajit; Ghosh, Subrata; Shiga, Takashi; Fujita, Daisuke; Bandyopadhyay, Anirban

    2016-12-01

    A substantial ion flow in a normally wet protein masks any other forms of signal transmission. We use hysteresis and linear conduction (both are artifacts) as a marker to precisely wet a protein, which restricts the ionic conduction (hysteresis disappears), and at the same time, it is not denatured (quantized conductance and Raman spectra are intact). Pure electric visualization of proteins at work by eliminating the screening of ions, electrons, would change the way we study biology. Here we discuss the technical challenges resolved for imaging a protein or live cell using nonlinear dielectric response (spatial distribution of conductance, capacitance and phase, GCP trio). We electromagnetically triggered electrical, mechanical, thermal and ionic resonant vibrations in a protein. During resonant oscillations, we imaged the protein using resonant scanning tunneling microscopy of biomaterials (Brestum) and during ionic firing we imaged live what happens inside an axon core of a neuron by using our atomic scale scanning dielectric microscopy (Asadim). Both Asadim and Brestum are housed in a homebuilt scanning tunneling microscope (bio-STM) and a special micro-grid developed by us (patent JP-5187804) for fractal supercomputing. We found the trick to turn a membrane transparent and see inside without making any physical contact. We image live that a protein molecule adopts a unique configuration for each resonance frequency, - thus far unknown to biology. "Membrane alone fires" is found to be wrong after a century, micro-neuro-filaments communicate prior to firing to decide its necessity and then regulate it suitably. We introduce a series of technologies e.g., fractal grid, point contact, micro THz antenna, to discover that from atomic structure to a living cell, the biomaterials vibrate collectively.

  14. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  15. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  16. Precision Cryogenic Dilatometer

    NASA Technical Reports Server (NTRS)

    Dudik, Matthew; Halverson, Peter; Levine-West, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart

    2005-01-01

    A dilatometer based on a laser interferometer is being developed to measure mechanical creep and coefficients of thermal expansion (CTEs) of materials at temperatures ranging from ambient down to 15 K. This cryogenic dilatometer has been designed to minimize systematic errors that limit the best previously available dilatometers. At its prototype stage of development, this cryogenic dilatometer yields a strain measurement error of 35 ppb or 1.7 ppb/K CTE measurement error for a 20-K thermal load, for low-expansion materials in the temperature range from 310 down to 30 K. Planned further design refinements that include a provision for stabilization of the laser and addition of a high-precision sample-holding jig are expected to reduce the measurement error to 5-ppb strain error or 0.3-ppb/K CTE error for a 20-K thermal load. The dilatometer (see figure) includes a common-path, differential, heterodyne interferometer; a dual-frequency, stabilized source bench that serves as the light source for the interferometer; a cryogenic chamber in which one places the material sample to be studied; a cryogenic system for cooling the interior of the chamber to the measurement temperature; an ultra-stable alignment stage for positioning the chamber so that the sample is properly positioned with respect to the interferometer; and a data-acquisition and control system. The cryogenic chamber and the interferometer portion of the dilatometer are housed in a vacuum chamber on top of a vibration isolating optical table in a cleanroom. The sample consists of two pieces a pillar on a base both made of the same material. Using reflections of the interferometer beams from the base and the top of the pillar, what is measured is the change in length of the pillar as the temperature in the chamber is changed. In their fundamental optical and electronic principles of operation, the laser light source and the interferometer are similar to those described in Common-Path Heterodyne

  17. Cross polarization magic-angle spinning NMR at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Macho, V.; Kendrick, R.; Yannoni, C. S.

    A magic angle spinning (MAS) apparatus which can be used for high resolution solid state NMR at temperatures as low as 15 K is described. To demonstrate the utility of this apparatus, 13C spectra of molecules containing methyl groups have been investigated at cryogenic temperatures. The spectra, which are described in detail, provide direct evidence for the slowdown of methyl rotation.

  18. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  19. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  20. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  1. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  2. Cryogenic support member

    DOEpatents

    Niemann, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1987-01-01

    A cryogenic support member is comprised of a non-metallic rod having a depression in at least one end and a metallic end connection assembled to the rod. The metallic end connection comprises a metallic plug which conforms to the shape and is disposed in the depression and a metallic sleeve is disposed over the rod and plug. The plug and the sleeve are shrink-fitted to the depression in the rod to form a connection good in compression, tension and bending.

  3. Cryogenic insulation development

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1972-01-01

    Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.

  4. FRIB cryogenic distribution system

    SciTech Connect

    Ganni, Venkatarao; Dixon, Kelly D.; Laverdure, Nathaniel A.; Knudsen, Peter N.; Arenius, Dana M.; Barrios, Matthew N.; Jones, S.; Johnson, M.; Casagrande, Fabio

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  5. Cryogenic ribbon-cutting

    NASA Image and Video Library

    2011-03-30

    NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson of Jacobs Technology; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.

  6. Cryogenic ribbon-cutting

    NASA Image and Video Library

    2011-03-30

    NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson, outgoing program manager of the Jacobs Technology NASA Test Operations Group; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.

  7. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  8. Cryogenic Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Louie, B.; Kemp, N. J.; Daney, D. E.

    1985-01-01

    A detailed description of a computer model that has been developed for assessing the feasibility of low g cryogen propellant scavenging from the space shuttle External Tank (ET) is given. Either pump-assisted or pressure-induced propellant transfer may be selected. The program will accept a wide range of input variables, including the fuel to be transferred (LOX or LH2), heat leaks, tank temperatures, and piping and equipment specifications. The model has been parametrically analyzed to determine initial design specification for the system.

  9. Dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Valentine, Jason

    While plasmonics metasurfaces have seen much development over the past several years, they still face throughput limitations due to ohmic losses. On the other hand, dielectric resonators and associated metasurfaces can eliminate the issue of ohmic loss while still providing the freedom to engineer the optical properties of the composite. In this talk, I will present our recent efforts to harness this freedom using metasurfaces formed from silicon and fabricated using CMOS-compatible techniques. Operating in the telecommunications band, I will discuss how we have used this platform to realize a number of novel functionalities including wavefront control, near-perfect reflection, and high quality factor resonances. In many cases the optical performance of these silicon-based metasurfaces can surpass their plasmonic counterparts. Furthermore, for some cases the surfaces are more amenable to large-area fabrication techniques.

  10. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  11. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  12. Cryogenics maintenance strategy

    NASA Astrophysics Data System (ADS)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  13. The Heidelberg CSR: Stored Ion Beams in a Cryogenic Environment

    SciTech Connect

    Wolf, A.; Hahn, R. von; Grieser, M.; Orlov, D. A.; Fadil, H.; Welsch, C. P.; Andrianarijaona, V.; Diehl, A.; Schroeter, C. D.; Crespo Lopez-Urrutia, J. R.; Weber, T.; Mallinger, V.; Schwalm, D.; Ullrich, J.; Rappaport, M.; Urbain, X.; Haberstroh, Ch.; Quack, H.; Zajfman, D.

    2006-03-20

    A cryogenic electrostatic ion storage ring CSR is under development at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany. Cooling of the ultrahigh vacuum chamber is envisaged to lead to extremely low pressures as demonstrated by cryogenic ion traps. The ring will apply electron cooling with electron beams of a few eV up to 200 eV. Through long storage times of 1000 s as well as through the low wall temperature, internal cooling of infrared-active molecular ions to their rotational ground state will be possible and their collisions with merged collinear beams of electrons and neutral atoms can be detected with high energy resolution. In addition storage of slow highly charged ions is foreseen. Using a fixed in-ring gas target and a reaction microscope, collisions of the stored ions at a speed of the order of the atomic unit can be kinematically reconstructed. The layout and the cryogenic concept are introduced.

  14. Capacitive Sensors for Measuring Masses of Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert

    2003-01-01

    An effort is under way to develop capacitive sensors for measuring the masses of cryogenic fluids in tanks. These sensors are intended to function in both microgravitational and normal gravitational settings, and should not be confused with level sensors, including capacitive ones. A sensor of this type is conceptually simple in the sense that (1) it includes only one capacitor and (2) if properly designed, its single capacitance reading should be readily convertible to a close approximation of the mass of the cryogenic fluid in the tank. Consider a pair of electrically insulated electrodes used as a simple capacitive sensor. In general, the capacitance is proportional to the permittivity of the dielectric medium (in this case, a cryogenic fluid) between the electrodes. The success of design and operation of a sensor of the present type depends on the accuracy of the assumption that to a close approximation, the permittivity of the cryogenic fluid varies linearly with the density of the fluid. Data on liquid nitrogen, liquid oxygen, and liquid hydrogen, reported by the National Institute of Standards and Technology, indicate that the permittivities and densities of these fluids are, indeed, linearly related to within a few tenths of a percent over the pressure and temperature regions of interest. Hence, ignoring geometric effects for the moment, the capacitance between two electrodes immersed in the fluid should vary linearly with the density, and, hence, with the mass of the fluid. Of course, it is necessary to take account of the tank geometry. Because most cryogenic tanks do not have uniform cross sections, the readings of level sensors, including capacitive ones, are not linearly correlated with the masses of fluids in the tanks. In a sensor of the present type, the capacitor electrodes are shaped so that at a given height, the capacitance per unit height is approximately proportional to the cross-sectional area of the tank in the horizontal plane at that

  15. Towards the cryogenic sliding mechanism for MOONS-ESO

    NASA Astrophysics Data System (ADS)

    Tozzi, A.; Carbonaro, L.; Oliva, T.; Iuzzolino, M.; Strachan, J.; Rees, P.

    2016-08-01

    The Multi-Object Optical and Near-Infrared Spectrograph (MOONS) shall be installed at one of the Very Large Telescopes (VLT) at the European Southern Observatory (ESO) in Paranal Chile. The instrument is being designed and built by an international consortium on behalf of ESO. The design is based on a three arms configuration, RI, YJ and H band, where RI and H have two possible resolutions. To achieve this goal it will be necessary to implement a sliding mechanism changing the dispersers, the filters and the cross dispersion prisms. This article describes the cryogenic exchanger mechanism that is under realization and the preliminary mechanical and optical tests that we have done at the cryogenic facility of Arcetri observatory of Florence. Parts of these test are based on interferometric measurements of the optics to study the behaviour of the mechanical supporting structure, and part are based on the cryogenic sliding system that will be used to move approximately 200 Kg of mass for 350 mm of travel range. The cryogenic sliding system, rails, screws, motors, is based on commercial components as the position measurement device that is based on commercial potentiometers. The results of the tests and performances at cryogenic temperature are reported in this paper.

  16. Thermo-cryogenic controls of fracture kinematics in permafrost rockwalls

    NASA Astrophysics Data System (ADS)

    Draebing, D.; Krautblatter, M.; Hoffmann, T.

    2017-04-01

    Thermo-cryogenic processes prepare and trigger rockfalls and rockslides in alpine environments. Temporal occurrence, controls, and applied stresses of Thermo-cryogenic processes on rock masses are poorly understood. This paper reports annual crackmeter measurements with 3 h resolution across perennially ice-filled fractures in an unstable rock permafrost crestline. Thermo-cryogenic processes are controlled by snow cover onset and duration. Thermal changes in snow-free periods control expansion and contraction coincident temperature gradients on a daily to seasonal scale. We can show how snow cover promotes sustained temperatures from -9 to -1°C and boosts ice segregation-related fracture opening up to 1 cm in 8 months. During snowmelt, meltwater induces ice erosion and ice relaxation, which occur in the freeze-thaw window close to the thawing point. We hypothesize that Thermo-cryogenic processes and their cyclic repetition can lead to Thermo-cryogenic fatigue preparing rock slope failure and can control type and location of rockfalls in a changing climate.

  17. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.

  18. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.

  19. Neutron Detection with a Cryogenic Spectrometer

    SciTech Connect

    Bell, Z.W.; Lamberti, V.E.; Carpenter, D.A.; Cristy, S.S.

    2003-06-23

    Cryogenic calorimeters are used for x-ray detection because of their exquisite energy resolution and have found application in x-ray astronomy, and the search for dark matter. These devices operate by detecting the heat pulse produced by ionization in an absorber cooled to temperatures below 1 K. Such temperatures are needed to lower the absorber's heat capacity to the point that the deposition of even a few eV results in a measurable temperature excursion. Typical absorbers for dark matter measurements are massive Si or Ge crystals, and, with Ge, have achieved a resolution of 650 eV at 10 keV. Chow, et al., report the measurement of the 60 keV emission from {sup 241}Am with 230 eV resolution using a superconducting tin absorber. Cunningham, et al., also using a superconducting tin absorber, have recently reported a four-fold improvement over Chow. With such results being reported from the x- and gamma-ray world it is natural to examine the possibilities for cryogenic neutron spectroscopy. Such a detector would operate by detecting the heat pulses caused by neutron capture and scattering. To date, {sup 6}LiF has been the absorber of choice because relatively large crystals can be grown, and it is an insulating material with low heat capacity. Silver reports the fabrication of a {sup 6}LiF spectrometer operating at 328 mK and achieving a resolution of 39 keV. De Marcillac reports the fabrication of a spectrometer operating at 80 mK and achieving 16 keV resolution when bombarded with 5 MeV alpha particles. In this paper, we report preliminary results with a TiB{sub 2} absorber exposed to thermal neutrons. In contrast to lithium, whose chemistry selects for LiF as the absorber, boron offers a rich chemistry from which to select materials with high boron content. We will discuss the considerations governing the choice of absorber material as well as the basic considerations needed to understand a cryogenic spectrometer. The capture and scattering reactions in boron and

  20. Cryogenic expansion machine

    DOEpatents

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  1. Cryogenic Research and Development

    DTIC Science & Technology

    1961-12-31

    8A/8p)TdpT + A*(p,T) - A*(l,T). (14-c) T -8- If A be Helmholtz energy, then (8A/8p) = -RT/p (15) and A*(p,T) = uo0 Q*dpT’ (16) 0 00 where u l/ vI is...respectively, then, are (z - 1)/ u = ( vI -k M-2 /T) +CU + du2 + + klk m+4/T. (5) (z -l)/ u B 1 +CGu + DU + ..... (6) where the conventional virial...r on Cryogenic Research and Development for Quarter Ending December 31, 1960 ~TC94-17400 C 94 6 8017 U . S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF

  2. Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Jones, David

    2011-01-01

    The CPS is an in-space cryogenic propulsive stage based largely on state of the practice design for launch vehicle upper stages. However, unlike conventional propulsive stages, it also contains power generation and thermal control systems to limit the loss of liquid hydrogen and oxygen due to boil-off during extended in-space storage. The CPS provides the necessary (Delta)V for rapid transfer of in-space elements to their destinations or staging points (i.e., E-M L1). The CPS is designed around a block upgrade strategy to provide maximum mission/architecture flexibility. Block 1 CPS: Short duration flight times (hours), passive cryo fluid management. Block 2 CPS: Long duration flight times (days/weeks/months), active and passive cryo fluid management.

  3. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  4. Cryogenic Cam Butterfly Valve

    NASA Technical Reports Server (NTRS)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  5. Cryogenic nuclear gyroscope

    SciTech Connect

    Gallop, J.C.; Potts, S.P.

    1980-09-30

    A cryogenic nuclear gyroscope is described that is comprised of a cylinder of niobium cooled within a helium cryostat so as to be superconducting and to provide a trapped, substantially homogeneous magnetic field, a helium-3 sample contained within a spherical pyrex cell having nuclei possessing a net magnetic moment, coils provided to polarize the sample to provide that net magnetic moment, and a SQUID magnetometer coupled to the sample by a pick-up coil of a transformer and frequency sensitive means coupled to the SQUID to detect changes in the precession of the nuclear moments of the sample caused by rotation of the gyroscope about an axis parallel to the direction of the homogeneous magnetic field. A superconducting lead shield isolates the helium-3 sample from external magnetic fields.

  6. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  7. Electron microscopy with high accuracy and precision at atomic resolution: In-situ observation of a dielectric crystal under electric field

    NASA Astrophysics Data System (ADS)

    Sato, Yukio; Gondo, Takashi; Miyazaki, Hiroya; Teranishi, Ryo; Kaneko, Kenji

    2017-08-01

    Measuring atomic positions in-situ under an external electric field can provide important insights into the structure-property relationship of electronic materials. In this paper, we demonstrate picometer level accuracy and precision of atomic positions in single-crystalline SrTiO3 under an electric field through annular dark-field scanning transmission electron microscopy. By carrying out electrical biasing in-situ electron microscopy at the atomic scale, the lattice constant was measured with a precision of 9.0 pm under an electric field of ±0.57 kV/cm. In addition, the Ti position in the SrTiO3 unit cell was measured with an accuracy of 20.0 pm at a confidence level of greater than 93%. This opens up a possibility of characterizing functional electronic devices at atomic resolution under operative conditions.

  8. Method of forming a multiple layer dielectric and a hot film sensor therewith

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr. (Inventor); Tran, Sang Q. (Inventor)

    1990-01-01

    The invention is a method of forming a multiple layer dielectric for use in a hot-film laminar separation sensor. The multiple layer dielectric substrate is formed by depositing a first layer of a thermoelastic polymer such as on an electrically conductive substrate such as the metal surface of a model to be tested under cryogenic conditions and high Reynolds numbers. Next, a second dielectric layer of fused silica is formed on the first dielectric layer of thermoplastic polymer. A resistive metal film is deposited on selected areas of the multiple layer dielectric substrate to form one or more hot-film sensor elements to which aluminum electrical circuits deposited upon the multiple layered dielectric substrate are connected.

  9. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  10. Cryogenic storage tank thermal analysis

    NASA Technical Reports Server (NTRS)

    Wright, J. P.

    1976-01-01

    Parametric study discusses relationship between cryogenic boil-off and factors such as tank size, insulation thickness and performance, structural-support heat leaks and use of vapor-cooled shields. Data presented as series of nomographs and curves.

  11. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system; and, Provide a sound...technical basis for subsequent applications of superconductive power in the area of ship propulsion .

  12. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  13. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  14. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  15. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  16. A Piezoelectric Cryogenic Heat Switch

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  17. The RHIC cryogenic control system

    SciTech Connect

    Farah, Y.; Sondericker, J.

    1993-08-01

    A cryogenic process control system for the RHIC Project is discussed. It is independent of the main RHIC Control System, consisting of an upgrade of the existing 24.8 Kw helium refrigerator control section with the addition of a ring control section that regulates and monitors all cryogenic signals in the RHIC tunnel. The system is fully automated, which can run without the continuous presence of operators.

  18. Latest developments in cryogenic safety

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1983-01-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  19. Latest developments in cryogenic safety

    NASA Astrophysics Data System (ADS)

    Webster, T. J.

    1983-03-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  20. Cryogenic deformable mirror technology development

    NASA Astrophysics Data System (ADS)

    Mulvihill, Maureen L.; Roche, Michael E.; Cavaco, Jeffrey L.; Shawgo, Ryan J.; Chaudhry, Zaffir A.; Ealey, Mark A.

    2003-10-01

    Xinetics is working with NASA to develop a cryogenic deformable mirror (DM) specific to the needs of future Origins Program missions such as TPF and JWST. Of utmost importance was the development of an electroceramic material that exhibited electrostrictive properties at cryogenic temperatures. In this paper, the actuator developmental tests and subsequent cryogenic deformable mirror design and cryogenic testing performance of the 349-channel discrete actuator deformable mirror demonstrator are discussed. The cofired actuator stroke response was nearly constant from 35 to 65 K such that at 150V the actuator free-stroke was ~3 microns. The 349-ch cryogenic DM was designed and built with as few parts and materials as possible to minimize the CTE mismatch. The polished mirror was cycled twice from 300 to 35 K. The rms surface figure was monitored using a Zygo interferometer on cooling and consistent data was measured during both temperature cycles. The figure changed from 0.5 waves (P-V) at 300 K to 5 waves at 35 K and returned to 0.6 waves at 300K. The actuators were powered and the influence functions were measured between 35 and 65 K. Even though it is not a functional DM at 35 K, it is a substantial step forward in the development of a cryogenic deformable mirror technology.

  1. A cryogenic circulating advective multi-pass absorption cell

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Lawler, J. E.

    2012-03-01

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 107 cm-3. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  2. A cryogenic circulating advective multi-pass absorption cell.

    PubMed

    Stockett, M H; Lawler, J E

    2012-03-01

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 10(7) cm(-3). A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  3. A cryogenic circulating advective multi-pass absorption cell

    SciTech Connect

    Stockett, M. H.; Lawler, J. E.

    2012-03-15

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 10{sup 7} cm{sup -3}. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  4. Development of Cryogenic Bolometer for 0νββ in 124Sn

    NASA Astrophysics Data System (ADS)

    Singh, Vivek; Yashwant, G.; Mathimalar, S.; Dokania, Neha; Nanal, V.; Pillay, R. G.; Datar, V. M.

    2011-11-01

    Cryogenic bolometer detectors, with their high resolution spectroscopy capability, are ideal for neutrino mass experiments as well as for search of rare processes like neutrinoless double beta decay (0νββ) and dark matter. A feasibility study for investigation of 0νββ in 124Sn at the upcoming underground facility of India based Neutrino Observatory (INO) has been initiated. This paper describes endeavors towards cryogenic tin bolometer development.

  5. Cryogenic Permanent Magnet Undulators

    SciTech Connect

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-06-23

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm{sub 2}Co{sub 17} or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  6. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  7. Cryogenic Refractive Index of Heraeus Homosil Glass

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-01-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34-3.16 microns and temperature range of 120-335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASAs Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitivity performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/d(lamda)) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in literature.

  8. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Technical Reports Server (NTRS)

    Henderson, S.W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.

  9. Cryogenic Refractive Index of Heraeus Homosil Glass

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-01-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.343.16 m and temperature range of 120335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASAs Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitivity performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dndT) and dispersion relation (dnd) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in literature.

  10. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Technical Reports Server (NTRS)

    Henderson, S.W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.

  11. Cryogenic Technology for Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2012-01-01

    Superconducting devices such as magnets and cavities are key components in the accelerator field for increasing the beam energy and intensity, and at the same time making the system compact and saving on power consumption in operation. An effective cryogenic system is required to cool and keep the superconducting devices in the superconducting state stably and economically. The helium refrigeration system for application to accelerators will be discussed in this review article. The concept of two cooling modes -- the liquefier and refrigerator modes -- will be discussed in detail because of its importance for realizing efficient cooling and stable operation of the system. As an example of the practical cryogenic system, the TRISTAN cryogenic system of KEK Laboratory will be treated in detail and the main components of the cryogenic system, including the high-performance multichannel transfer line and liquid nitrogen circulation system at 80K, will also be discussed. In addition, we will discuss the operation of the cryogenic system, including the quench control and safety of the system. The satellite refrigeration system will be discussed because of its potential for wide application in medium-size accelerators and in industry.

  12. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  13. Latest developments in cryogenic safety

    SciTech Connect

    Webster, T.J.

    1983-03-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of crygenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  14. Cryogenic needs for future tokamaks

    NASA Astrophysics Data System (ADS)

    Katheder, H.

    The ITER tokamak is a machine using superconducting magnets. The windings of these magnets will be subjected to high heat loads resulting from a combination of nuclear energy absorption and AC-losses. It is estimated that about 100 kW at 4.5 K are needed. The total cooling mass flow rate will be around 10 - 15 kg/s. In addition to the large cryogenic power required for the superconducting magnets cryogenic power is also needed for refrigerated radiation shield, various cryopumps, fuel processing and test beds. A general description of the overall layout and the envisaged refrigerator cycle, necessary cold pumps and ancillary equipment is given. The basic cryogenic layout for the ITER tokakmak design, as developed during the conceptual design phase and a short overview about existing tokamak designs using superconducting magnets is given.

  15. Other cryogenic wind tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1989-01-01

    The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

  16. Other cryogenic wind tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1989-01-01

    The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

  17. Latest developments in cryogenic safety

    NASA Astrophysics Data System (ADS)

    Webster, T.

    1982-05-01

    The Cryogenic Safety Manual, published under the auspices of the British Cryogenics Council, is summarized. Since an awareness of the physical properties of the cryogenic fluids being dealt with is considered important in directing attention to hazardous situations which may arise, the manual lists the more important properties, such as molecular weight, boiling point, and freezing point. Since hydrogen and helium are very light, the possibility arises of explosive mixtures being formed at high points in buildings. Since argon is unexpectedly heavy, its removal requires suction rather than blowing. It is also pointed out that the use of inert liquid nitrogen can lead to the creation of a noninert atmosphere which supports combustion because it contains oxygen. Attention is also given to the danger of asphyxiation posed by the growing use of inert gases.

  18. Other Cryogenic Wind Tunnel Projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1997-01-01

    The first cryogenic tunnel was built at the NASA Langley Research Center in 1972. Since then, many cryogenic wind-tunnels have been built at aeronautical research centers around the world. In this lecture some of the more interesting and significant of these projects that have not been covered by other lecturers at this Special Course are described. In this lecture authors describe cryogenic wind-tunnel projects at research centers in four countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Defence Research Agency - Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); and United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign, and NASA Langley).

  19. Cryogenic Detectors (Narrow Field Instruments)

    NASA Astrophysics Data System (ADS)

    Hoevers, H.; Verhoeve, P.

    Two cryogenic imaging spectrometer arrays are currently considered as focal plane instruments for XEUS. The narrow field imager 1 (NFI 1) will cover the energy range from 0.05 to 3 keV with an energy resolution of 2 eV, or better, at 500 eV. A second narrow field imager (NFI 2) covers the energy range from 1 to 15 keV with an energy resolution of 2 eV (at 1 keV) and 5 eV (at 7 keV), creating some overlap with part of the NFI 1 energy window. Both narrow field imagers have a 0.5 arcmin field of view. Their imaging capabilities are matched to the XEUS optics of 2 to 5 arcsec leading to 1 arcsec pixels. The detector arrays will be cooled by a closed cycle system comprising a mechanical cooler with a base temperature of 2.5 K and either a low temperature 3He sorption pump providing the very low temperature stage and/or an Adiabatic Demagnetization Refrigerator (ADR). The ADR cooler is explicitly needed to cool the NFI 2 array. The narrow field imager 1} Currently a 48 times 48 element array of superconducting tunnel junctions (STJ) is envisaged. Its operating temperature is in the range between 30 and 350 mK. Small, single Ta STJs (20-50 mum on a side) have shown 3.5 eV (FWHM) resolution at E = 525 eV and small arrays have been successfully demonstrated (6 times 6 pixels), or are currently tested (10 times 12 pixels). Alternatively, a prototype Distributed Read-Out Imaging Device (DROID), consisting of a linear superconducting Ta absorber of 20 times 100 mum2, including a 20 times 20 mum STJ for readout at either end, has shown a measured energy resolution of 2.4 eV (FWHM) at E = 500 eV. Simulations involving the diffusion properties as well as loss and tunnel rates have shown that the performance can be further improved by slight modifications in the geometry, and that the size of the DROIDS can be increased to 0.5-1.0 mm without loss in energy resolution. The relatively large areas and good energy resolution compared to single STJs make DROIDS good candidates for the

  20. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  1. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  2. A piezoelectric cryogenic heat switch.

    PubMed

    Jahromi, Amir E; Sullivan, Dan F

    2014-06-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios of about 100-200 at lowest and highest measures temperature were achieved when the positioner applied its maximum force of 8 N, respectively. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an ideal PZHS.

  3. Molecular Aggregates in Cryogenic Solutions.

    DTIC Science & Technology

    1981-07-07

    of aggregates from solutions of monomers. Rapid deposition into a precooled sample cell is required to generate an aggregate solution. Such a solution...U AU-A11b 490 COLORAO0 STATE UNIV FORT COLLINS DEPT OF CHEMISTRY F/G 20/8 MOLECULAR AGGREGATES IN CRYOGENIC SOLUTIONS.CU) JUL 81 M W SCHAUER- J LEE...MOLECULAR AGGREGATES IN CRYOGENIC SOLUTIONS by M.W. Schauer, J. Lee, and E.R. Bernstein Prepared for Publication in The Journal of Chemical Physics

  4. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  5. Spectroscopic studies of cryogenic fluids: Benzene in propane

    NASA Astrophysics Data System (ADS)

    Nowak, R.; Bernstein, E. R.

    1987-03-01

    Energy shifts and bandwidths for the 1B2u↔1A1g optical absorption and emission transitions of benzene dissolved in propane are presented as a function of pressure, temperature, and density. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas no shifts are observed if density is kept constant and temperature and pressure are varied simultaneously. Density is thus the fundamental microscopic parameter for energy shifts of optical transitions. The emission half-width is a linear function of both temperature and pressure but the absorption half-width is dependent only upon pressure. These results are interpreted qualitatively in terms of changes occurring in the intermolecular potentials of the ground and excited states. Both changes in shape of and separation between the ground and excited state potentials are considered as a function of density. Classical dielectric (Onsager-Böttcher), microscopic dielectric (Wertheim) and microscopic quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute electronic spectra are compared with the experimental results. Calculations suggest limited applicability of dielectric theories but good agreement between experiment and microscopic theory. The results demonstrate the usefulness of cryogenic solutions for high pressure, low temperature spectroscopic studies of liquids.

  6. Ultra-long photonic nanojet formed by dielectric cubes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Chang, Li-Jen

    2015-05-01

    The capability of generating photonic nanojets using dielectric cubes working in the visible light region is introduced and investigated numerically. The simulation of electric intensity distributions for a dielectric cube is performed using the finite-difference time-domain method. The focusing characteristic of the photonic nanojets is evaluated in terms of both focal length and transversal full width at half maximum along both transversal directions. Moreover, the ultra-long photonic nanojet is studied by theoretical calculations for a dielectric cube. By changing the dimension of the dielectric cube, it has been demonstrated that the focus point is moved from inside to outside the cube with a high intensity nanojet. The super resolution imaging of the dielectric cube can be expected from the focal length and the maximum intensity. The photonic nanojet enhancement and super resolution technique could be functional for the imaging of nanoscale targets on substrates and films.

  7. A simple device for dielectric spectroscopy of polymers with temperature regulation close to 300 K based on a Peltier junction.

    PubMed

    Raihane, A; Tourbot, R; Ladieu, F; L'Hôte, D

    2012-04-01

    We present a simple thermostat device for performing dielectric spectroscopy measurements on polymers close to their glass transition temperature. By using a vacuum chamber containing a Peltier junction with its regulator, we show that a very simple setup yields a temperature accuracy which is good enough for accurate studies of polymer dielectric properties. This technique is also more cost effective than standard setups using cryogenic fluids.

  8. A simple device for dielectric spectroscopy of polymers with temperature regulation close to 300 K based on a Peltier junction

    NASA Astrophysics Data System (ADS)

    Raihane, A.; Tourbot, R.; Ladieu, F.; L'Hôte, D.

    2012-04-01

    We present a simple thermostat device for performing dielectric spectroscopy measurements on polymers close to their glass transition temperature. By using a vacuum chamber containing a Peltier junction with its regulator, we show that a very simple setup yields a temperature accuracy which is good enough for accurate studies of polymer dielectric properties. This technique is also more cost effective than standard setups using cryogenic fluids.

  9. Fast imaging of intact and shattered cryogenic neon pellets.

    PubMed

    Wang, Zhehui; Combs, S K; Baylor, L R; Foust, C R; Lyttle, M S; Meitner, S J; Rasmussen, D A

    2014-11-01

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100-µm- and sub-µs-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of µm to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  10. Fast Imaging of Intact and Shattered Cryogenic Neon Pellets

    SciTech Connect

    Wang, Zhehui; Combs, Stephen Kirk; Baylor, Larry R; Foust, Charles R; Lyttle, Mark S; Meitner, Steven J; Rasmussen, David A

    2014-01-01

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100- m- and sub- s-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of m to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  11. Fast imaging of intact and shattered cryogenic neon pellets

    SciTech Connect

    Wang, Zhehui; Combs, S. K.; Baylor, L. R.; Foust, C. R.; Lyttle, M. S.; Meitner, S. J.; Rasmussen, D. A.

    2014-11-15

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100-µm- and sub-µs-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of µm to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  12. Background reduction in cryogenic detectors

    SciTech Connect

    Bauer, Daniel A.; /Fermilab

    2005-04-01

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  13. ILC cryogenic systems reference design

    SciTech Connect

    Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; Parma, V.; Tavian, L.; /CERN

    2008-01-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  14. Ilc Cryogenic Systems Reference Design

    NASA Astrophysics Data System (ADS)

    Peterson, T. J.; Geynisman, M.; Klebaner, A.; Parma, V.; Tavian, L.; Theilacker, J.

    2008-03-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  15. Dust Charge in Cryogenic Environment

    SciTech Connect

    Kubota, J.; Kojima, C.; Sekine, W.; Ishihara, O.

    2008-09-07

    Dust charges in a complex helium gas plasma, surrounded by cryogenic liquid, are studied experimentally. The charge is determined by frequency and equilibrium position of damped dust oscillation proposed by Tomme et al.(2000) and is found to decrease with ion temperature of the complex plasma.

  16. Cryogenic Tank Technology Program (CTTP)

    NASA Technical Reports Server (NTRS)

    Vaughn, T. P.

    2001-01-01

    The objectives of the Cryogenic Tank Technology Program were to: (1) determine the feasibility and cost effectiveness of near net shape hardware; (2) demonstrate near net shape processes by fabricating large scale-flight quality hardware; and (3) advance state of current weld processing technologies for aluminum lithium alloys.

  17. Level Sensor for Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Simmons, N. E.; Schroff, R. A.

    1983-01-01

    Hot wire sensor combined with voltage-comparator circuit monitors liquid level in cryogenic-fluid storage tanks. Sensor circuit adaptable to different liquids and sensors. Constant-current source drives current through sensing probe and fixed resistor. Voltage comparator circuits interpret voltage drops to tell whether probe is immersed in liquid and is current in probe.

  18. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  19. Ames Research Center cryogenics program

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1987-01-01

    Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.

  20. Survey of cryogenic semiconductor devices

    SciTech Connect

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  1. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  2. Characterization of dielectric materials

    DOEpatents

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  3. Cryogenic Electronics Being Developed for Space Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Gerber, Scott S.

    2002-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that can operate efficiently and reliably in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units to maintain the surrounding temperature of the onboard electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures would not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures. Thereby, such electronics would reduce system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results because semiconductor and dielectric materials have better behavior and tolerance in their electrical and thermal properties at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center is focusing on the research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and in deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial off-the-shelf as well as developed components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, dc-dc converters, operational amplifiers, and oscillators are also being investigated for potential use in low-temperature applications. For example, the output response of an advanced oscillator at room temperature and at -190 C is shown. Most oscillators can operate at temperatures

  4. A Magnetically Coupled Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  5. Resonant dielectric metamaterials

    DOEpatents

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  6. Inductive dielectric analyzer

    NASA Astrophysics Data System (ADS)

    Agranovich, Daniel; Polygalov, Eugene; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri

    2017-03-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions.

  7. Method of making dielectric capacitors with increased dielectric breakdown strength

    DOEpatents

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  8. High-precision Photogrammetric Surface Figure Measurements under Cryogenic Environment

    NASA Astrophysics Data System (ADS)

    Lou, Z.; Qian, Y.; Fan, S. H.; Liu, C. R.; Wang, H. R.; Zuo, Y. X.; Cheng, J. Q.; Yang, J.

    2016-01-01

    Limited by the working temperature of the measurement equipments, most of the high-precision surface figure measurement techniques cannot be applied under a cryogenic environment. This paper reports the first attempt to measure the surface figure of a high-precision terahertz reflector panel under low temperatures based on photogrammetry. The measurement employs a high resolution industrial camera sitting on an automatic experimental platform which enables photos been taken in an automatic fashion inside a climate chamber. A repeatable accuracy of 2.1 μm rms is achieved under the cryogenic environment. Furthermore, surface figure measured by a three-coordinate measuring machine under room temperature is used to calibrate the thickness variation of the paper targets. By this technique, the surface figure of an aluminum prototype panel of the 5 meter Dome A Terahertz Telescope (DATE5) is measured from room temperature down to -55°C.

  9. Cryogenic scintillators in searches for extremely rare events

    NASA Astrophysics Data System (ADS)

    Mikhailik, V. B.; Kraus, H.

    2006-03-01

    Inorganic scintillators are important elements of a new type of cryogenic phonon scintillation detector (CPSD) being developed for single particle detection. These detectors, exhibiting superior energy resolution and the ability to identify the type of interaction in an event, are considered to be the next generation of instrumentation in the search for extremely rare events. This paper presents the latest results of our research on cryogenic scintillators for CPSD applications in the search for dark matter. The paper gives a description of the concept of direct dark matter detection and the operation principles of CPSD, discusses the major material requirements and summarizes the results of investigations over a wide temperature range of the luminescence and scintillation properties of tungstates (CaWO4 and ZnWO4), molybdates (CaMoO4, MgMoO4 and CdMoO4) and Ti-doped Al2O3.

  10. Cryogenics and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  11. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  12. Thermal properties of dielectric solids below 4 K. I - Polycarbonate

    NASA Technical Reports Server (NTRS)

    Cieloszyk, G. S.; Cruz, M. T.; Salinger, G. L.

    1973-01-01

    Polymers and other dielectric materials are frequently used for many purposes in the construction of cryogenic apparatus. Yet very few values of the thermal properties of these materials below 4 K have been reported. It is, however, known that one can not use the Debye theory to extrapolate to lower temperatures the measurements of the specific heat capacity above 1 K. The thermal conductivity also follows no theoretically predictable temperature dependence. As a by-product of our studies of the thermal properties of amorphous and partly crystalline materials below 4 K, we wish to report values for the thermal conductivity, specific heat capacity, and velocity of sound below 4 K in materials useful for the construction of cryogenic apparatus. In this article we will describe our measurement techniques and report values for polycarbonate (Lexan). In subsequent notes we will give values for other materials of interest.

  13. Development of a cryogenic force actuator

    NASA Astrophysics Data System (ADS)

    Nalbandian, Ruben

    2003-09-01

    This paper summarizes the design and development of a miniature Force Actuator, used in spacecraft optical instruments, notably the James Webb Space Telescope (JWST). The design challenge was to develop a lightweight, compact, high bandwidth, low power, thermally stable force actuator capable of controlling force with a resolution of better than 0.000225 N (5×10-5 lbf). This paper outlines the design, development and testing of the force actuator assembly, with particular emphasis placed on the cryogenic aspects of the design, and the load cell and capacitive sensor development and testing. The paper outlines the following four novel points of the design: 1. Development of a linear actuator capable of a resolution better than 0.64 microns (25 micro-inches). 2. Challenges to meet performance requirements for temperatures of 30K to 350K. 3. Load cell development with linearity better than 0.000225 N. 4. Development of a capacitive displacement sensor capable of resolving a stroke of 2.6 millimeters with an accuracy of 1.3 micron.

  14. The Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Sander, Joel

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) is an experiment to search for Weakly Interacting Massive Particles (WIMPs). The experiment initially was deployed at a shallow underground site, and is currently deployed at a deep underground site at the Soudan Mine in Minnesota. The detectors operate at cryogenic temperature, and are capable of distinguishing nuclear recoils from WIMP interactions from various backgrounds. The detectors are shielded from background by both active and passive elements. We will describe the components of the overall experiment, and focus on the novel data acquisition system that has been develop to control and monitor the experiment via the World Wide Web. Preliminary signals from the operation at Soudan will be discussed.

  15. Advanced cryogenic tank development status

    NASA Astrophysics Data System (ADS)

    Braun, G. F.; Tack, W. T.; Scholz, E. F.

    1993-06-01

    Significant advances have been made in the development of materials, structures, and manufacturing technologies for the next generation of cryogenic propellant tanks under the auspices of a joint U.S. Air Force/NASA sponsored advanced development program. This paper summarizes the achievements of this three-year program, particularly in the evolution and properties of Weldalite 049, net shape component technology, Al-Li welding technology, and efficient manufacturing concepts. Results of a recent mechanical property characterization of a full-scale integrally stiffened barrel panel extrusion are presented, as well as plans for an additional weld process optimization program using response surface design of experiment techniques. A further discussion is given to the status of hardware completed for the Advanced Manufacturing Development Center and Martin Marietta's commitment to the integration of these technologies into the production of low-cost, light-weight cryogenic propellant tanks.

  16. Cryogenic High-Sensitivity Magnetometer

    NASA Technical Reports Server (NTRS)

    Day, Peter; Chui, Talso; Goodstein, David

    2005-01-01

    A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

  17. Cryogenic Flange and Seal Evaluation

    NASA Technical Reports Server (NTRS)

    Ramirez, Adrian

    2014-01-01

    The assembly of flanges, seals, and pipes are used to carry cryogenic fluid from a storage tank to the vehicle at launch sites. However, after a certain amount of cycles these raised face flanges with glass-filled Teflon gaskets have been found to have torque relaxation and are as a result susceptible to cryogenic fluid leakage if not re-torqued. The intent of this project is to identify alternate combinations of flanges and seals which may improve thermal cycle performance and decrease re-torque requirements. The general approach is to design a test fixture to evaluate leak characteristics between spiral and concentric serrations and to test alternate flange and seal combinations. Due to insufficient time, it was not possible to evaluate these different types of combinations for the combination that improved thermal cycle performance the most. However, the necessary drawings for the test fixture were designed and assembled along with the collection of the necessary parts.

  18. A cryogenic receiver for EPR.

    PubMed

    Narkowicz, R; Ogata, H; Reijerse, E; Suter, D

    2013-12-01

    Cryogenic probes have significantly increased the sensitivity of NMR. Here, we present a compact EPR receiver design capable of cryogenic operation. Compared to room temperature operation, it reduces the noise by a factor of ≈2.5. We discuss in detail the design and analyze the resulting noise performance. At low microwave power, the input noise density closely follows the emission of a cooled 50Ω resistor over the whole measurement range from 20K up to room temperature. To minimize the influence of the microwave source noise, we use high microwave efficiency (≈1.1-1.7mTW(-1/2)) planar microresonators. Their efficient conversion of microwave power to magnetic field permits EPR measurements with very low power levels, typically ranging from a few μW down to fractions of nW. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Studies on metal-dielectric plasmonic structures.

    SciTech Connect

    Chettiar, Uday K.; Liu, Zhengtong; Thoreson, Mark D.; Shalaev, Vladimir M.; Drachev, Vladimir P.; Pack, Michael Vern; Kildishev, Alexander V.; Nyga, Piotr

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  20. Cryogenic moderator simulations : confronting reality.

    SciTech Connect

    Iverson, E. B.

    1999-01-06

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities.

  1. Foam Insulation for Cryogenic Flowlines

    NASA Technical Reports Server (NTRS)

    Sonju, T. R.; Carbone, R. L.; Oves, R. E.

    1985-01-01

    Welded stainless-steel vacuum jackets on cryogenic ducts replaced by plastic foam-insulation jackets that weigh 12 percent less. Foam insulation has 85 percent of insulating ability of stainless-steel jacketing enclosing vacuum of 10 microns of mercury. Foam insulation easier to install than vacuum jacket. Moreover, foam less sensitive to damage and requires minimal maintenance. Resists vibration and expected to have service life of at least 10 years.

  2. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  3. Distributed liquid level sensors using self-heated optical fibers for cryogenic liquid management.

    PubMed

    Chen, Tong; Wang, Qingqing; Chen, Rongzhang; Zhang, Botao; Lin, Yuankun; Chen, Kevin P

    2012-09-10

    We present a continuous liquid level sensing system for both room temperature and cryogenic fluids with millimeter spatial resolution. Change of in-fiber Rayleigh backscattering signal from the distinct thermal response of the heated sensing fiber in liquid and in air were interrogated and spatially resolved using the optical frequency domain reflectometry. Both electrical and optical heating techniques were investigated for cryogenic liquid applications at 4 K, 77 K, and the room temperature. The successful combination of self-heated fiber and wavelength-swept Rayleigh scattering interferometry provides, for the first time to our best knowledge, a truly distributed fuel gauge with high spatial resolution for cryogenic fuel storage, transportation, and management on ground and in space.

  4. Advances in cryogenic engineering. Volume 29

    SciTech Connect

    Fast, R.W.

    1984-01-01

    Applications of superconductivity are discussed, taking into account the thermal performance of the MFTF magnets, the design and testing of a large bore superconducting magnet test facility, the development of a 12-tesla multifilamentary Nb3Sn magnet, a superconducting magnet for solid NMR studies, advanced applications of superconductors, transition and recovery of a cryogenically stable superconductor, and finite-difference modeling of the cryostability of helium II cooled conductor packs. Other topics explored are related to resource availability, heat exchangers, heat transfer to He I, liquid nitrogen, heat transfer in He II, refrigeration for superconducting and cryopump systems, refrigeration of cryogenic systems, refrigeration and liquefaction, dilution and magnetic refrigeration, cryocoolers, refrigeration for space applications, cryogenic applications, cryogenic instrumentation and data acquisition, and properties of fluids. Attention is given to biomedical applications of cryogenics in China, long-term cryogen storage in space, and a passive orbital disconnect strut.

  5. Cryogenics for the superconducting module test facility

    SciTech Connect

    Klebaner, A.L.; Theilacker, J.C.; /Fermilab

    2006-01-01

    A group of laboratories and universities, with Fermilab taking the lead, are constructing a superconducting cryomodule test facility (SMTF) in the Meson Detector Building (MDB) area at Fermilab. The facility will be used for testing and validating designs for both pulsed and CW systems. A multi phase approach is taken to construct the facility. For the initial phase of the project, cryogens for a single cavity cryomodule will be supplied from the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at MDB results from the liquefaction capacity of the CTF cryogenic system. A cryogenic distribution system to supply cryogens from CTF to MDB is under construction. This paper describes plans, status and challenges of the initial phase of the SMTF cryogenic system.

  6. Advances of cryogenics in aeronautics and astronautics

    NASA Astrophysics Data System (ADS)

    You, Lixin

    1992-02-01

    The application principles of cryogenic techniques in aerospace are discussed in detail. Recent advances are addressed, including those made in China. These include: (1) characteristics and applications of rockets propelled by cryogenic liquid hydrogen (LOH)/LOX fuels and those propelled by a new generation of cryogenic liquid propellants; (2) characteristics and status of LOH/LOX-fueled and LNG-fueled aircraft; (3) principles and working envelopes of cryogenic wind tunnels performing aerodynamic experiments at full-scale Re; (4) the main application fields of cryogenics in space technology and their requirements regarding refrigeration temperature and load; (5) the application of cryogenics to fields such as cooling reentry flight vehicles, space simulation facilities, environmental control systems for flight vehicles, and life support systems.

  7. Cryogenics and the human exploration of Mars.

    NASA Astrophysics Data System (ADS)

    Salerno, L. J.; Kittel, P.

    1999-04-01

    Current studies within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars proposed in 2014. The key cryogenic technology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Passive technologies such as advanced multilayer insulation (MLI) concepts, vapor-cooled shields (VCS), and catalytic converters will be combined with the development of active coolers (cryogenic refrigerators). The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. This paper presents a brief overview of the proposed Mars reference mission and the concomitant cryogenic fluid management technology, focusing on active cooling technology.

  8. Cryomechanism: a cryogenic rotating actuator

    NASA Astrophysics Data System (ADS)

    Barriere, J.-C.; Berthé, M.; Carty, M.; Duboué, B.; Fontignie, J.; Leboeuf, D.; Martignac, J.; Cara, C.; Charon, P.; Durand, G. A.; Bachet, D.

    2013-09-01

    Fifteen years ago, CEA started the development of cryogenic rotating actuators for the astrophysical infrared camera (VISIR) that is set on the Very Large Telescope (VLT). At the time of the VISIR first light in 2004, 10 cryogenic rotating actuators, also known as "CryoMechanisms" (CM), were present in the instrument. Today VISIR is still operating and the CM that are actuated several times a day, have no reported failure up to now. In continuation of the VISIR project, CEA undertook space qualification tests with the aim of making the CM compatible with space missions. Relying on this background, a smaller model of the mechanism has been built and tested at cryogenic temperatures. Today, the cryomechanisms are selected for the ESA/EUCLID [1] space mission. The qualification program will run throughout 2014. This paper first describes the VISIR's baseline specification, the CM design and its operation principle. Then, the upgrades for the space constrains are shown and the qualification plan with respect to vibrations, thermal cycling and life testing campaigns is given. Some results of the tests carried out on a qualification model are addressed. At end, the design improvements for the EUCLID project are presented and a summary of the CM capabilities is highlighted.

  9. ZERODUR TAILORED for cryogenic application

    NASA Astrophysics Data System (ADS)

    Jedamzik, R.; Westerhoff, T.

    2014-07-01

    ZERODUR® glass ceramic from SCHOTT is known for its very low thermal expansion coefficient (CTE) at room temperature and its excellent CTE homogeneity. It is widely used for ground-based astronomical mirrors but also for satellite applications. Many reference application demonstrate the excellent and long lasting performance of ZERODUR® components in orbit. For space application a low CTE of the mirror material is required at cryogenic temperatures together with a good match of the thermal expansion to the supporting structure material. It is possible to optimize the coefficient of thermal expansion of ZERODUR® for cryogenic applications. This paper reports on measurements of thermal expansion of ZERODUR® down to cryogenic temperatures of 10 K performed by the PTB (Physikalisch Technische Bundesanstallt, Braunschweig, Germany, the national metrology laboratory). The ZERODUR® TAILORED CRYO presented in this paper has a very low coefficient of thermal expansion down to 70 K. The maximum absolute integrated thermal expansion down to 10 K is only about 20 ppm. Mirror blanks made from ZERODUR® TAILORED CRYO can be light weighted to almost 90% with our modern processing technologies. With ZERODUR® TAILORED CRYO, SCHOTT offers the mirror blank material for the next generation of space telescope applications.

  10. Cryogenic fluid management in space

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1988-01-01

    Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.

  11. Usaf Space Sensing Cryogenic Considerations

    NASA Astrophysics Data System (ADS)

    Roush, F.

    2010-04-01

    Infrared (IR) space sensing missions of the future depend upon low mass components and highly capable imaging technologies. Limitations in visible imaging due to the earth's shadow drive the use of IR surveillance methods for a wide variety of applications for Intelligence, Surveillance, and Reconnaissance (ISR), Ballistic Missile Defense (BMD) applications, and almost certainly in Space Situational Awareness (SSA) and Operationally Responsive Space (ORS) missions. Utilization of IR sensors greatly expands and improves mission capabilities including target and target behavioral discrimination. Background IR emissions and electronic noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use unless they are cooled to cryogenic temperatures. This paper describes the role of cryogenic coolers as an enabling technology for generic ISR and BMD missions and provides ISR and BMD mission and requirement planners with a brief glimpse of this critical technology implementation potential. The interaction between cryogenic refrigeration component performance and the IR sensor optics and FPA can be seen as not only mission enabling but also as mission performance enhancing when the refrigeration system is considered as part of an overall optimization problem.

  12. Shuttle cryogenic supply system optimization study. Volume 4: Cryogenic cooling in environmental control systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.

  13. Properties of cryogenically worked metals. [stainless steels

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Kiefer, T. F.

    1975-01-01

    A program was conducted to determine whether the mechanical properties of cryogenically worked 17-7PH stainless steel are suitable for service from ambient to cryogenic temperatures. It was determined that the stress corrosion resistance of the cryo-worked material is quite adequate for structural service. The tensile properties and fracture toughness at room temperature were comparable to titanium alloy 6Al-4V. However, at cryogenic temperatures, the properties were not sufficient to recommend consideration for structural service.

  14. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  15. Cryogenic transfer options for exploration missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1991-01-01

    The literature of in-space cryogenic transfer is reviewed in order to propose transportation concepts to support the Space Exploration Initiative (SEI). Forty-nine references are listed and key findings are synopsized. An assessment of the current maturity of cryogenic transfer system technology is made. Although the settled transfer technique is the most mature technology, the No-Vent Fill technology is maturing rapidly. Future options for development of cryogenic transfer technology are also discussed.

  16. Cryogenic transfer options for exploration missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1991-01-01

    The literature of in-space cryogenic transfer is reviewed in order to propose transportation concepts to support the Space Exploration Initiative (SEI). Forty-nine references are listed and key findings are synopsized. An assessment of the current maturity of cryogenic transfer system technology is made. Although the settled transfer techniques is the most mature technology, the No-Vent Fill technology is maturing rapidly. Future options for development of cryogenic transfer technology are also discussed.

  17. Cryogenics at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Weisend, J. G., II; Arnold, P.; Hees, J. Fydrych. W.; Jurns, J. M.; Wang, X. L.

    Cryogenics plays an important role at the European Spallation Source, a world class neutron science center, currently under construction in Lund, Sweden. Three principal applications of cryogenics are found at ESS. The SRF cryomodules of the ESS proton linac require cooling at 2 K, 4.5 K and 40 K; the hydrogenmoderator surrounding the target that produces neutrons, requires cooling via 16.5 K helium and LHe is required for many of the scientific instruments. These needs will be met by a set of three cryogenic refrigeration/liquefaction plants and an extensive cryogenic distribution system. Significant progress has been made on the ESS cryogenic system in preparation for the expected first beam on target in 2019. This work includes: funding of industry studies for the accelerator cryoplant, preliminary design of the cryogenic distribution system, investigation of possible in kind contributors and release of the invitation to tender for the accelerator cryoplant.This paper describes the requirements, design solutions and current status of the ESS cryogenic system. The planned recovery of waste heat from the cryogenic plants, a unique aspect of ESS, is described. The procurement of the cryogenic system, expected to be done via a combination of purchase via competitive bids and in kind contributions is also discussed.

  18. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  19. Improved Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  20. Fabrication of Polyurethane Dielectric Actuators

    DTIC Science & Technology

    2005-01-01

    a summary of a 3 year Technology Investment Fund Project entitled “Dielectric Polymer Actuators for Active/ Passive Vibration Isolation”, which was...completed in March 2005. The purpose of this project was to investigate dielectric polymer materials for potential use in active/ passive vibration...devices and systems based on dielectric polymer actuators. Keywords: dielectric actuators, electroactive polymers , Technology Investment Fund 1

  1. The Fast Alternative Cryogenic Experiment Testbed

    NASA Technical Reports Server (NTRS)

    Nash, Alfred; Holmes, Warren

    2000-01-01

    One of the challenges in the area of cryogenics for space exploration in the next millennium is providing the capability for inexpensive, frequent, access to space. Faced with this challenge during the International Space Station (ISS) build era, when other Space Shuttle manifesting opportunities are unavailable, a "proof of concept" cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier. The Hitchhiker siderail carrier is available on a "mass available" basis during the ISS build era. In fact, several hitchhiker payloads flew with the deployment of the Unity module. Hitchhiker siderail carrier payloads have historically flown an average of about four times a year. A hybrid Solid Neon - Superfluid Helium cryostat has been developed with Janis Research Company to accommodate instruments of 16.5 cm diameter and 30 cm. length. This hybrid approach was taken in part to provide adequate on-orbit lifetime for instruments with high (conducted) heat loads from the instrumentation wiring. Mass, volume, lifetime and the launch hold scenario were all design drivers. In addition, with Ball Aerospace and Technologies Corporation, a multichannel VME architecture Germanium Resistance Thermometer (GRT) readout and heater control servo system has been developed. In a flight system, the cryostat and electronics payloads would be umbilically attached in a paired Hitchhiker siderail mount, and permit on-orbit command and telemetry capability. The results of performance tests of both the cryostat, and a helium sample instrument will be presented. The instrument features a self contained, miniaturized, nano-Kelvin resolution High Resolution Thermometer (HRT). This high level of thermal resolution is achieved through the utilization of a dc Superconducting Quantum Interference Device (SQUID). Although developed for the Low Temperature Microgravity Fundamental Physics

  2. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  3. Photonic jets produced by dielectric micro cuboids.

    PubMed

    Liu, Cheng-Yang

    2015-10-10

    The formation of photonic jets produced by dielectric micro cuboids is reported. The spatial electromagnetic field has been numerically analyzed on the basis of the finite-difference time-domain calculation. The characteristics of photonic jets, such as propagation length and location, can be drastically changed by controlling the cuboid dimensions. Visually three morphological types of photonic jets are introduced for classification. Combining key parameters of photonic jets, the quality criterion is used to describe the jet quality. The super resolution imaging of the dielectric micro cuboid can be expected from the long focal length and small beam waist. The simulation results show that it can be of interest for several potential applications, such as subdiffraction resolution optical microlenses, ultradirectional optical antennae, and nanolithography based on the micro cuboid.

  4. Cryogenic X-Ray Diffraction Microscopy for Biological Samples

    SciTech Connect

    Lima, Enju; Wiegart, Lutz; Pernot, Petra; Howells, Malcolm; Timmins, Joanna; Zontone, Federico; Madsen, Anders

    2009-11-06

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  5. Low Mn alloy steel for cryogenic service

    DOEpatents

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  6. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  7. Electrically conductive, thermally insulating cryogenic current leads

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A. (Inventor); Hooker, Matthew W. (Inventor)

    1994-01-01

    An electrically conductive, thermally insulating current lead assembly has been developed for cryogenic systems. This lead assembly consists of thick film elements of high temperature superconductive materials deposited onto a low thermal conductivity substrate. The superconductor elements provide current transport but minimize heat transfer. The substrate provides the mechanical durability necessary for cryogenic and other environments.

  8. Continuous-Reading Cryogen Level Sensor

    NASA Technical Reports Server (NTRS)

    Barone, F. E.; Fox, E.; Macumber, S.

    1984-01-01

    Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.

  9. Neutron Detection with Cryogenics and Semiconductors

    SciTech Connect

    bell, Z.W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.

    2005-03-10

    The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI{sub 2} for direct detection of neutrons.

  10. Cryogenic fluid management program flight concept definition

    NASA Technical Reports Server (NTRS)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  11. Foam vessel for cryogenic fluid storage

    SciTech Connect

    Spear, Jonathan D

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  12. CRESST cryogenic dark matter search

    NASA Astrophysics Data System (ADS)

    Cozzini, C.; Angloher, G.; Bucci, C.; Feilitzsch, F. von; Frank, T.; Hauff, D.; Henry, S.; Jagemann, T.; Jochum, J.; Kraus, H.; Majorovits, B.; Ninkovic, J.; Petricca, F.; Pröbst, F.; Ramachers, Y.; Rau, W.; Razeti, M.; Seidel, W.; Stark, M.; Stodolsky, L.; Uchaikin, S.; Wulandari, H.

    2005-05-01

    The CRESST Phase II experiment at Gran Sasso is using 300 g scintillating CaWO 4 crystals as absorbers for direct WIMP (weakly interactive massive particles) detection. The phonon signal in the CaWO 4 crystal is registered in coincidence with the light signal, which is measured with a separate cryogenic light detector. The absorber crystal and the silicon light detector are read out by tungsten superconducting phase transition thermometers (W-SPTs). As a result an active discrimination of the electron recoils against nuclear recoils is achieved. Results on the properties of the detector modules and on the WIMP sensitivity are presented.

  13. Residual contact restraints in cryogenics

    NASA Astrophysics Data System (ADS)

    Cretegny, J. F.; Demonicault, J. M.

    The use of residual stress measurements to evaluate the state of cryogenic turbomachines, whose surfaces are worn by the working conductions in dry contact, is addressed. Their contribution to the understanding of the reasons of possible ruptures is considered. It is stated that residual stress measurements should be used as a complementary tool rather than as input data for models. It is shown, thanks to two examples concerning the ball bearings and splines of the liquid hydrogen turbopump of the Vulcain engine, what can be expected from such techniques. Total exploitation of the results has still to be done, but preliminary results are quite encouraging.

  14. Fiberglass supports for cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Keller, C. W.

    1972-01-01

    Analysis, design, fabrication, and test activities were conducted to develop additional technology needed for application of filament-wound fiberglass struts to cryogenic flight tankage. It was conclusively verified that monocoque cylinder or ogive struts are optimum or near-optimum for the range of lengths and loads studied, that a higher strength-to-weight ratio can be achieved for fiberglass struts than for any metallic struts, and that integrally-wrapped metallic end fittings can be used to achieve axial load transfer without reliance on bond strength or mechanical fasteners.

  15. Cryogenic Systems: Recent Trends and New Directions

    NASA Astrophysics Data System (ADS)

    Weisend, John

    2011-03-01

    The production of reliable cryogenic temperatures is vital for the use of superconductivity in accelerators. Cryogenics is found in the accelerating structures and magnets of the accelerator as well as in the magnets and calorimeters of the detectors in the experimental areas. In the century since the discovery of superconductivity, cryogenic systems have gone from small laboratory devices to very large industrial scale systems involving multiple refrigeration plants, containing over 100 tonnes of liquid helium. These systems, while specialized, represent a mature, well understood technology. This paper will survey the current status of cryogenic systems in accelerators and describe recent trends including: the large scale use of He II (superfluid helium) and the development of higher reliability and higher efficiency systems. It will also discuss future directions including the increased use of HiTc current leads, possible applications for small cryocoolers and the potential impact of the world helium supply on accelerator cryogenics.

  16. Techniques for on-orbit cryogenic servicing

    NASA Astrophysics Data System (ADS)

    DeLee, C. H.; Barfknecht, P.; Breon, S.; Boyle, R.; DiPirro, M.; Francis, J.; Huynh, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; Wegel, D.

    2014-11-01

    NASA (National Aeronautics and Space Administration) has a renewed interest in on-orbit cryogen storage and transfer to support its mission to explore near-earth objects such as asteroids and comets. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission (CPST-TDM), managed by the NASA Glenn Research Center (GRC) and scheduled for launch in 2018, will demonstrate numerous key technologies applicable to a cryopropellant fuel depot. As an adjunct to the CPST-TDM work, experiments at NASA Goddard Space Flight Center (GSFC) will support the development of techniques to manage and transfer cryogens on-orbit and expand these techniques as they may be applicable to servicing science missions using solid cryogens such as the Wide-field Infrared Survey Explorer (WISE). The results of several ground experiments are described, including autogenous pressurization used for transfer of liquid nitrogen and argon, characterization of the transfer and solidification of argon, and development of robotic tools for cryogen transfer.

  17. Numerical simulations of cryogenic cavitating flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunji; Kim, Hyeongjun; Min, Daeho; Kim, Chongam

    2015-12-01

    The present study deals with a numerical method for cryogenic cavitating flows. Recently, we have developed an accurate and efficient baseline numerical scheme for all-speed water-gas two-phase flows. By extending such progress, we modify the numerical dissipations to be properly scaled so that it does not show any deficiencies in low Mach number regions. For dealing with cryogenic two-phase flows, previous EOS-dependent shock discontinuity sensing term is replaced with a newly designed EOS-free one. To validate the proposed numerical method, cryogenic cavitating flows around hydrofoil are computed and the pressure and temperature depression effect in cryogenic cavitation are demonstrated. Compared with Hord's experimental data, computed results are turned out to be satisfactory. Afterwards, numerical simulations of flow around KARI turbopump inducer in liquid rocket are carried out under various flow conditions with water and cryogenic fluids, and the difference in inducer flow physics depending on the working fluids are examined.

  18. Novel Cryogenic Insulation Materials: Aerogel Composites

    NASA Technical Reports Server (NTRS)

    White, Susan

    2001-01-01

    New insulation materials are being developed to economically and reliably insulate future reusable spacecraft cryogenic tanks over a planned lifecycle of extreme thermal challenges. These insulation materials must prevent heat loss as well as moisture and oxygen condensation on the cryogenic tanks during extended groundhold, must withstand spacecraft launch conditions, and must protect a partly full or empty reusable cryogenic tank from significant reentry heating. To perform over such an extreme temperature range, novel composites were developed from aerogels and high-temperature matrix material such as Space Shuttle tile. These materials were fabricated and tested for use both as cryogenic insulation and as high-temperature insulation. The test results given in this paper were generated during spacecraft re-entry heating simulation tests using cryogenic cooling.

  19. Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy

    NASA Technical Reports Server (NTRS)

    Edwards, Lawrence G.; Haberbusch, Mark

    1993-01-01

    The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.

  20. Cryogenic magnetostrictive actuators and stepper motors

    NASA Astrophysics Data System (ADS)

    Joshi, Chad H.

    2000-11-01

    Energen, Inc. has developed actuators based on cryogenic magnetostrictive materials. These actuators are designed to provide precision positioning and active control of adaptive optical surfaces such as those that are being considered for the Next Generation Space Telescope (NGST). The NGST is a large 8-mm diameter segmented reflecting telescope that uses a thin optical surface mounted on a rigid composite backstructure. The mounts consists of multiple actuators that are used to align the mirror segments and actively control the radius of curvature for optimum optical performance. Energen, Inc. has developed several types of actuators. A linear actuator consists of a rod of magnetostrictor surrounded by an electric coil that when energized causes the rod to elongate. These type of actuators are used for high speed active control. Energen also has developed a linear stepper motor that consists of an actuator mounted in two clamps. By operating the clamps and actuator in the proper sequence the actuator indexes forward and backward. Submicron positioning resolution along with strokes of 20 mm are possible. Furthermore, the stepper motor locks into position when powered off--ideal for applications where position must be held for long periods of time.

  1. Cryogenics on the stratospheric terahertz observatory (STO)

    NASA Astrophysics Data System (ADS)

    Mills, G.; Young, A.; Dominguez, R.; Duffy, B.; Kulesa, C.; Walker, C.

    2015-12-01

    The Stratospheric TeraHertz Observatory (STO) is a NASA funded, Long Duration Balloon experiment designed to address a key problem in modern astrophysics: understanding the Life Cycle of the Interstellar Medium. STO surveys a section of the Galactic plane in the dominant interstellar cooling line at 1.9 THz and the important star formation tracer at 1.46 THz, at ∼1 arc minute angular resolution, sufficient to spatially resolve atomic, ionic, and molecular clouds at 10 kpc. The STO instrument package uses a liquid helium cryostat to maintain the THz receiver at < 9 K and to cool the low noise amplifiers to < 20 K. The first STO mission (STO-1) flew in January of 2012 and the second mission (STO-2) is planned for December 2015. For the STO-2 flight a cryocooler will be added to extend the mission lifetime. This paper discusses the integration of the STO instrument into an existing cryostat and the cryogenic aspects of the launch and operation of the STO balloon mission in the challenging Antarctic environment.

  2. Influence of the electron spin resonance saturation on the power sensitivity of cryogenic sapphire resonators

    SciTech Connect

    Giordano, Vincent Grop, Serge; Bourgeois, Pierre-Yves; Kersalé, Yann; Rubiola, Enrico

    2014-08-07

    Here, we study the paramagnetic ions behavior in presence of a strong microwave electromagnetic field sustained inside a cryogenic sapphire whispering gallery mode resonator. The high frequency measurement resolution that can be now achieved by comparing two Cryogenic Sapphire Oscillators (CSOs) permit to observe clearly the non-linearity of the resonator power sensitivity. These observations that, in turn, allow us to optimize the CSO operation are well explained by the electron spin resonance saturation of the paramagnetic impurities contained in the sapphire crystal.

  3. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  4. A new method of probing mechanical losses of coatings at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Galliou, Serge; Deléglise, Samuel; Goryachev, Maxim; Neuhaus, Leonhard; Cagnoli, Gianpietro; Zerkani, Salim; Dolique, Vincent; Bon, Jérémy; Vacheret, Xavier; Abbé, Philippe; Pinard, Laurent; Michel, Christophe; Karassouloff, Thibaut; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine; Tobar, Michael E.; Bourquin, Roger

    2016-12-01

    A new method of probing mechanical losses and comparing the corresponding deposition processes of metallic and dielectric coatings in 1-100 MHz frequency range and cryogenic temperatures is presented. The method is based on the use of high-quality quartz acoustic cavities whose internal losses are orders of magnitude lower than any available coating nowadays. The approach is demonstrated for chromium, chromium/gold, and multilayer tantala/silica coatings. The Ta2O5/SiO2 coating has been found to exhibit a loss angle lower than 1.6 × 10-5 near 30 MHz at 4 K. The results are compared to the previous measurements.

  5. Gates for electron confinement in Si/SiGe 2DEGs at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Slinker, K. A.; Klein, L. J.; Goswami, S.; Truitt, J. L.; Savage, D. E.; Lagally, M. G.; van der Weide, D. W.; Coppersmith, S. N.; Eriksson, M. A.; Chu, J. O.; Ott, J. A.; Mooney, P. M.

    2004-03-01

    A major challenge is the fabrication of ultra-low leakage gates for 2DEG confinement in Si/SiGe at cryogenic temperatures. Here we report results on the fabrication of gates by four different methods: metallic Schottky gates, metal-oxide-silicon, metal-dielectric-silicon using spin-on glass, and lateral etch-defined gates. Lateral etch-defined gates are shown to produce quantum dots displaying Coulomb blockade. We discuss the prospects for producing similar structures using truly metallic gates in combination with etch-defined trenches.

  6. Dielectric Property Measurements to Support Interpretation of Cassini Radar Data

    NASA Astrophysics Data System (ADS)

    Jamieson, Corey; Barmatz, M.

    2012-10-01

    Radar observations are useful for constraining surface and near-surface compositions and illuminating geologic processes on Solar System bodies. The interpretation of Cassini radiometric and radar data at 13.78 GHz (2.2 cm) of Titan and other Saturnian icy satellites is aided by laboratory measurements of the dielectric properties of relevant materials. However, existing dielectric measurements of candidate surface materials at microwave frequencies and low temperatures is sparse. We have set up a microwave cavity and cryogenic system to measure the complex dielectric properties of liquid hydrocarbons relevant to Titan, specifically methane, ethane and their mixtures to support the interpretation of spacecraft instrument and telescope radar observations. To perform these measurements, we excite and detect the TM020 mode in a custom-built cavity with small metal loop antennas powered by a Vector Network Analyzer. The hydrocarbon samples are condensed into a cylindrical quartz tube that is axially oriented in the cavity. Frequency sweeps through a resonance are performed with an empty cavity, an empty quartz tube inserted into the cavity, and with a sample-filled quartz tube in the cavity. These sweeps are fit by a Lorentzian line shape, from which we obtain the resonant frequency, f, and quality factor, Q, for each experimental arrangement. We then derive dielectric constants and loss tangents for our samples near 13.78 GHz using a new technique ideally suited for measuring liquid samples. We will present temperature-dependent, dielectric property measurements for liquid methane and ethane. The full interpretation of the radar and radiometry observations of Saturn’s icy satellites depends critically on understanding the dielectric properties of potential surface materials. By investigating relevant liquids and solids we will improve constrains on lake depths, volumes and compositions, which are important to understand Titan’s carbon/organic cycle and inevitably

  7. Challenges for Cryogenics at Iter

    NASA Astrophysics Data System (ADS)

    Serio, L.

    2010-04-01

    Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.

  8. Simulations of Cavitating Cryogenic Inducers

    NASA Technical Reports Server (NTRS)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2004-01-01

    Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.

  9. Models for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1989-01-01

    Model requirements, types of model construction methods, and research in new ways to build models are discussed. The 0.3-m Transonic Cryogenic Tunnel was in operation for 16 years and many 2-D airfoil pressure models were tested. In addition there were airfoil models dedicated to transition detection techniques and other specialized research. There were also a number of small 3-D models tested. A chronological development in model building technique is described which led to the construction of many successful models. The difficulties of construction are illustrated by discussing several unsuccessful model fabrication attempts. The National Transonic Facility, a newer and much larger tunnel, was used to test a variety of models including a submarine, transport and fighter configurations, and the Shuttle Orbiter. A new method of building pressure models was developed and is described. The method is centered on the concept of bonding together plates with pressure channels etched into the bond planes, which provides high density pressure instrumentation with minimum demand on parent model material. With care in the choice of materials and technique, vacuum brazing can be used to produce strong bonds without blocking pressure channels and with no bonding voids between channels. Using multiple plates, a 5 percent wing with 96 orifices was constructed and tested in a transonic cryogenic wind tunnel. Samples of test data are presented and future applications of the technology are suggested.

  10. CRYOTE (Cryogenic Orbital Testbed) Concept

    NASA Technical Reports Server (NTRS)

    Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie

    2009-01-01

    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.

  11. Cryogenics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  12. A new cryogenic diode thermometer

    NASA Astrophysics Data System (ADS)

    Courts, S. S.; Swinehart, P. R.; Yeager, C. J.

    2002-05-01

    While the introduction of yet another cryogenic diode thermometer is not earth shattering, a new diode thermometer, the DT-600 series, recently introduced by Lake Shore Cryotronics, possesses three features that make it unique among commercial diode thermometers. First, these diodes have been probed at the chip level, allowing for the availability of a bare chip thermometer matching a standard curve-an important feature in situations where real estate is at a premium (IR detectors), or where in-situ calibration is difficult. Second, the thermometry industry has assumed that interchangeability should be best at low temperatures. Thus, good interchangeability at room temperatures implies a very good interchangeability at cryogenic temperature, resulting in a premium priced sensor. The DT-600 series diode thermometer is available in an interchangeability band comparable to platinum RTDs with the added advantage of interchangeability to 2 K. Third, and most important, the DT-600 series diode does not exhibit an instability in the I-V characteristic in the 8 K to 20 K temperature range that is observed in other commercial diode thermometer devices [1]. This paper presents performance characteristics for the DT-600 series diode thermometer along with a comparison of I-V curves for this device and other commercial diode thermometers exhibiting an I-V instability.

  13. The cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  14. Cryogenic Capillary Screen Heat Entrapment

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L.G.; Hastings, L.J.; Stathman, G.

    2007-01-01

    Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of sub-cooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: "To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs.?"Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, "200x1400" and "325x2300", both with Twill Dutch Weave. Upon consideration of both the water and LN2 data it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.

  15. Shadowgraphy of transcritical cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Woodward, R. D.; Talley, D. G.; Anderson, T. J.; Winter, M.

    1994-01-01

    The future of liquid-rocket propulsion depends heavily on continued development of high pressure liquid oxygen/hydrogen systems that operate near or above the propellant critical states; however, current understanding of transcritical/supercritical injection and combustion is yet lacking. The Phillips Laboratory and the United Technologies Research Center are involved in a collaborative effort to develop diagnostics for and make detailed measurements of transcritical droplet vaporization and combustion. The present shadowgraph study of transcritical cryogenic fluids is aimed at providing insight into the behavior of liquid oxygen or cryogenic stimulants as they are injected into a supercritical environment of the same or other fluids. A detailed history of transcritical injection of liquid nitrogen into gaseous nitrogen at reduced pressures of 0.63 (subcritical) to 1.05 (supercritical) is provided. Also, critical point enhancement due to gas phase solubility and mixture effects is investigated by adding helium to the nitrogen system, which causes a distinct liquid phase to re-appear at supercritical nitrogen pressures. Liquid oxygen injection into supercritical argon or nitrogen, however, does not indicate an increase in the effective critical pressure of the system.

  16. Models for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1989-01-01

    Model requirements, types of model construction methods, and research in new ways to build models are discussed. The 0.3-m Transonic Cryogenic Tunnel was in operation for 16 years and many 2-D airfoil pressure models were tested. In addition there were airfoil models dedicated to transition detection techniques and other specialized research. There were also a number of small 3-D models tested. A chronological development in model building technique is described which led to the construction of many successful models. The difficulties of construction are illustrated by discussing several unsuccessful model fabrication attempts. The National Transonic Facility, a newer and much larger tunnel, was used to test a variety of models including a submarine, transport and fighter configurations, and the Shuttle Orbiter. A new method of building pressure models was developed and is described. The method is centered on the concept of bonding together plates with pressure channels etched into the bond planes, which provides high density pressure instrumentation with minimum demand on parent model material. With care in the choice of materials and technique, vacuum brazing can be used to produce strong bonds without blocking pressure channels and with no bonding voids between channels. Using multiple plates, a 5 percent wing with 96 orifices was constructed and tested in a transonic cryogenic wind tunnel. Samples of test data are presented and future applications of the technology are suggested.

  17. The cryogenic storage ring CSR

    SciTech Connect

    Hahn, R. von; Becker, A.; Berg, F.; Blaum, K.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; and others

    2016-06-15

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm{sup −3} is derived, equivalent to a room-temperature pressure below 10{sup −14} mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  18. The cryogenic storage ring CSR.

    PubMed

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  19. PREFACE: Dielectrics 2011

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Lewin, Paul

    2011-08-01

    In 2011, the biennial meeting of the Dielectrics Group of the IOP, Dielectrics 2011, was held for the first time in a number of years at the University of Kent at Canterbury. This conference represents the most recent in a long standing series that can trace its roots back to a two-day meeting that was held in the spring of 1968 at Gregynog Hall of the University of Wales. In the intervening 43 years, this series of meetings has addressed many topics, including dielectric relaxation, high field phenomena, biomaterials and even molecular electronics, and has been held at many different venues within the UK. However, in the early 1990s, a regular venue was established at the University of Kent at Canterbury and, it this respect, this year's conference can be considered as "Dielectrics coming home". The format for the 2011 meeting followed that established at Dielectrics 2009, in breaking away from the concept of a strongly themed event that held sway during the mid 2000s. Rather, we again adopted a general, inclusive approach that was based upon four broad technical areas: Theme 1: Insulation/HV Materials Theme 2: Dielectric Spectroscopy Theme 3: Modelling Dielectric Response Theme 4: Functional Materials The result was a highly successful conference that attracted more than 60 delegates from eight countries, giving the event a truly international flavour, and which included both regular and new attendees; it was particularly pleasing to see the number of early career researchers at the meeting. Consequently, the organizing committee would like to thank our colleagues at the IOP, the invited speakers, our sponsors and all the delegates for making the event such a success. Finally, we look forward to convening again in 2013, when we will be returning to The University of Reading. Prof Alun Vaughan and Prof Paul Lewin, Editors

  20. A single dielectric nanolaser

    NASA Astrophysics Data System (ADS)

    Huang, Tsung-Yu; Yen, Ta-Jen

    2016-09-01

    To conquer Ohmic losses from metal and enhance pump absorption efficiency of a nanolaser based on surface plasmon polariton, we theoretically calculate the first magnetic and electric scattering coefficient of a dielectric sphere under a plane wave excitation with a dielectric constant of around 12. From this calculation, we could retrieve both negative effective permittivity and permeability of the sphere simultaneously at frequencies around 153 THz in the aids of Lewin's theory and the power distribution clearly demonstrate the expected negative Goos-Hänchen effect, which usually occurred in a negative refractive waveguide, thus creating two energy vortices to trap incident energy and then promoting the pump absorption efficiency. Meanwhile, a magnetic lasing mode at 167.3 THz is demonstrated and reveals a magnetic dipole resonance mode and a circulating energy flow within the dielectric sphere, providing a possible stopped light feedback mechanism to enable the all-dielectric nanolaser. More importantly, the corresponding mode volume is reduced to 0.01λ3 and a gain threshold of 5.1×103 is obtained. To validate our design of all-dielectric nanolaser, we employ finite-difference-time-domain simulation software to examine the behavior of the nanolaser. From simulation, we could obtain a pinned-down population inversion of 0.001 and a lasing peak at around 166.5 THz, which is very consistent with the prediction of Mie theory. Finally, according to Mie theory, we can regard the all-dielectric nanolaser as the excitation of material polariton and thus could make an analogue between lasing modes of the dielectric and metallic nanoparticles.

  1. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  2. National and International Security Applications of Cryogenic Detectors—Mostly Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Rabin, Michael W.

    2009-12-01

    As with science, so with security—in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  3. Vibration Measurements to Study the Effect of Cryogen Flow in Superconducting Quadrupole.

    SciTech Connect

    He,P.; Anerella, M.; aydin, S.; Ganetis, G. Harrison, M.; Jain, A.; Parker, B.

    2007-06-25

    The conceptual design of compact superconducting magnets for the International Linear Collider final focus is presently under development. A primary concern in using superconducting quadrupoles is the potential for inducing additional vibrations from cryogenic operation. We have employed a Laser Doppler Vibrometer system to measure the vibrations in a spare RHIC quadrupole magnet under cryogenic conditions. Some preliminary results of these studies were limited in resolution due to a rather large motion of the laser head as well as the magnet. As a first step towards improving the measurement quality, a new set up was used that reduces the motion of the laser holder. The improved setup is described, and vibration spectra measured at cryogenic temperatures, both with and without helium flow, are presented.

  4. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    SciTech Connect

    Rabin, Michael W

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  5. Experimental study on the dielectric properties of polyacrylate dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Qiang, Junhua; Chen, Hualing; Li, Bo

    2012-02-01

    The dielectric constant of elastomeric dielectric material is an essential physical parameter, whose value may affect the electromechanical deformation of a dielectric elastomer actuator. Since the dielectric constant is influenced by several external factors as reported before, and no certain value has been confirmed to our knowledge, in the present paper, on the basis of systematical comparison of recent past literature, we conducted extensive works on the measurement of dielectric properties of VHB films, involving five influencing factors: prestretch (both equal and unequal biaxial), electrical frequency, electrode material, stress relaxation time and temperature. Experimental results directly show that the dielectric response changes according to these factors, based on which we investigate the significance of each factor, especially the interaction of two external conditions on the dielectric constant of deformable dielectric, by presenting a physical picture of the mechanism of polarization.

  6. Experimental methods in cryogenic spectroscopy: Stark effect measurements in substituted myoglobin

    NASA Astrophysics Data System (ADS)

    Moran, Bradley M.

    Dawning from well-defined tertiary structure, the active regions of enzymatic proteins exist as specifically tailored electrostatic microenvironments capable of facilitating chemical interaction. The specific influence these charge distributions have on ligand binding dynamics, and their impact on specificity, reactivity, and biological functionality, have yet to be fully understood. A quantitative determination of these intrinsic fields would offer insight towards the mechanistic aspects of protein functionality. This work seeks to investigate the internal molecular electric fields that are present at the oxygen binding site of myoglobin. Experiments are performed at 1 K on samples located within a glassy matrix, using the high-resolution technique spectral hole-burning. The internal electric field distributions can be explored by implementing a unique mathematical treatment for analyzing the effect that externally applied electric fields have on the spectral hole profiles. Precise control of the light field, the temperature, and the externally applied electric field at the site of the sample is crucial. Experimentally, the functionality of custom cryogenic temperature confocal scanning microscope was extended to allow for collection of imaging and spectral data with the ability to modulate the polarization of the light at the sample. Operation of the instrumentation was integrated into a platform allowing for seamless execution of input commands with high temporal inter-instrument resolution for collection of data streams. For the regulated control and cycling of the sample temperature. the thermal characteristics of the research Dewar were theoretically modeled to systematically predict heat flows throughout the system. A high voltage feedthrough for delivering voltages of up to 5000 V to the sample as positioned within the Dewar was developed. The burning of spectral holes with this particular experimental setup is highly repeatable. The quantum mechanical

  7. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  8. Cryogenic storage tank with a retrofitted in-tank cryogenic pump

    SciTech Connect

    Zwick, E.B.; Brigham, W.D.

    1989-08-29

    This patent describes a low boiloff submersible pump assembly for use in a conventional cryogenic tank having an open access port. It comprises: a pump; a removable pump mounting tube extending through the access port of the cryogenic tank. The pump mounting tube having an inner surface thermally insulated from an outer surface of the tube and thermally insulated from the access port of the cryogenic tank. The tube having an open lower end, the upper end of the tube including means adapted to make a gas-tight seal with the pump mounted thereto. The tube extending through the tank and into the cryogen stored in the tank; and block means for thermally insulating the removable pump mounting tube from the cryogenic tank at the access port of the cryogenic tank. The mounting tube connecting the tank only at the access port through the block means.

  9. Dielectric Constant of Suspensions

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.; Ackmann, James J.

    1997-03-01

    We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.

  10. PREFACE: Dielectrics 2013

    NASA Astrophysics Data System (ADS)

    Hadjiloucas, Sillas; Blackburn, John

    2013-11-01

    This volume records the 42nd Dielectrics Group Proceedings of the Dielectrics Conference that took place at the University of Reading UK from 10-12 April 2013. The meeting is part of the biennial Dielectrics series of the Dielectrics Group, and formerly Dielectrics Society, and is organised by the Institute of Physics. The conference proceedings showcase some of the diversity and activity of the Dielectrics community worldwide, and bring together contributions from academics and industrial researchers with a diverse background and experiences from the Physics, Chemistry and Engineering communities. It is interesting to note some continuing themes such as Insulation/HV Materials, Dielectric Spectroscopy, Dielectric Measurement Techniques and Ferroelectric materials have a growing importance across a range of technologically important areas from the Energy sector to Materials research, Semiconductor and Electronics industries, and Metrology. We would like to thank all of our colleagues and friends in the Dielectrics community who have supported this event by contributing manuscripts and participating in the event. The conference has provided excellent networking opportunities for all delegates. Our thanks go also to our theme chairs: Dr Stephen Dodd (University of Leicester) on Insulation/HV Materials, Professor Darryl Almond (University of Bath) on Dielectric Spectroscopy, Dr John Blackburn (NPL) on Dielectric Measurement Techniques and Professor Anthony R West (University of Sheffield) on Ferroelectric Materials. We would also like to thank the other members of the Technical Programme Committee for their support, and refereeing the submitted manuscripts. Our community would also like to wish a full recovery to our plenary speaker Prof John Fothergill (City University London) who was unexpectedly unable to give his talk as well as thank Professor Alun Vaughan for stepping in and giving an excellent plenary lecture in his place at such very short notice. We are also

  11. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  12. Superdirective dielectric nanoantennas

    NASA Astrophysics Data System (ADS)

    Krasnok, Alexander E.; Simovski, Constantin R.; Belov, Pavel A.; Kivshar, Yuri S.

    2014-06-01

    We introduce the novel concept of superdirective nanoantennas based on the excitation of higher-order magnetic multipole moments in subwavelength dielectric nanoparticles. Our superdirective nanoantenna is a small Si nanosphere containing a notch, and is excited by a dipole located within the notch. In addition to extraordinary directivity, this nanoantenna demonstrates efficient radiation steering at the nanoscale, resulting from the subwavelength sensitivity of the beam radiation direction to variation of the source position inside the notch. We compare our dielectric nanoantenna with a plasmonic nanoantenna of similar geometry, and reveal that the nanoantenna's high directivity in the regime of transmission is not associated with strong localization of near fields in the regime of reception. Likewise, the absence of hot spots inside the nanoantenna leads to low dissipation in the radiation regime, so that our dielectric nanoantenna has significantly smaller losses and high radiation efficiency of up to 70%.

  13. Controlling birefringence in dielectrics

    NASA Astrophysics Data System (ADS)

    Danner, Aaron J.; Tyc, Tomáš; Leonhardt, Ulf

    2011-06-01

    Birefringence, from the very essence of the word itself, refers to the splitting of light rays into two parts. In natural birefringent materials, this splitting is a beautiful phenomenon, resulting in the perception of a double image. In optical metamaterials, birefringence is often an unwanted side effect of forcing a device designed through transformation optics to operate in dielectrics. One polarization is usually implemented in dielectrics, and the other is sacrificed. Here we show, with techniques beyond transformation optics, that this need not be the case, that both polarizations can be controlled to perform useful tasks in dielectrics, and that rays, at all incident angles, can even follow different trajectories through a device and emerge together as if the birefringence did not exist at all. A number of examples are shown, including a combination Maxwell fisheye/Luneburg lens that performs a useful task and is achievable with current fabrication materials.

  14. Progress on the CUORE Cryogenic System

    SciTech Connect

    Martinez, M.; Arnaboldi, C.; Nucciotti, A.; Schaeffer, D.; Sisti, M.; Barucci, M.; Bucci, C.; Frossati, G.; De Waard, A.; Woodcraft, A.

    2009-12-16

    We give here an update on the CUORE cryogenic system. It consists of a large cryogen-free cryostat cooled by five pulse tubes and one high-power specially designed dilution refrigerator built by Leiden Cryogenics. The cryostat design has been completed and it is presently under construction. The site at the Gran Sasso Underground Laboratory is ready for the installation of the cryostat which is expected to begin by the end of 2009. We discuss here the preliminary results obtained on the performance of the mechanical cryorefrigerators. We also present a measurement of the residual heat leak of the copper which has been selected for the cryostat fabrication.

  15. Nanosecond cryogenic Yb:YAG disk laser

    SciTech Connect

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Vadimova, O L; Palashov, O V

    2014-05-30

    A cryogenic Yb:YAG disk laser is modernised to increase its average and peak power. The master oscillator unit of the laser is considerably modified so that the pulse duration decreases to several nanoseconds with the same pulse energy. A cryogenic disk laser head with a flow-through cooling system is developed. Based on two such laser heads, a new main amplifier is assembled according to an active multipass cell scheme. The total small-signal gain of cryogenic cascades is ∼10{sup 8}. (lasers)

  16. Super Dielectric Materials

    PubMed Central

    Fromille, Samuel; Phillips, Jonathan

    2014-01-01

    Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz), herein called super dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc.), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density. PMID:28788298

  17. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  18. Photomultiplier Tubes at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Saunders, Nathan

    2016-09-01

    Liquid noble gas scintillators are widely used in experiments searching for physics beyond the Standard Model. Photomultiplier Tubes (PMTs) working at cryogenic temperatures have been developed as the primary light readout device in those experiments. Three PMTs from Hamamatsu Photonics K.K. (R6041, R11065, and R8520) have been systematically characterized at liquid nitrogen temperature. The high voltage dividing circuits for two of the PMTs were custom-built to make sure there is similar performance at both room and liquid nitrogen temperatures. Their dark count rates at both temperatures were measured. Also measured were their single photoelectron responses at both temperatures using 300, 340, 370, and 420 nm LEDs. The intention is to couple these PMTs directly with inorganic scintillators at liquid nitrogen temperature to achieve high light yeilds for rare-event searches.

  19. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  20. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  1. Apollo cryogenic integrated systems program

    NASA Technical Reports Server (NTRS)

    Seto, R. K. M.; Cunningham, J. E.

    1971-01-01

    The integrated systems program is capable of simulating both nominal and anomalous operation of the Apollo cryogenics storage system (CSS). Two versions of the program exist; one for the Apollo 14 configuration and the other for J Type Mission configurations. The program consists of two mathematical models which are dynamically coupled. A model of the CSS components and lines determines the oxygen and hydrogen flowrate from each storage tank given the tank pressures and temperatures, and the electrical power subsystem and environmental control subsystem flow demands. Temperatures and pressures throughout the components and lines are also determined. A model of the CSS tankage determines the pressure and temperatures in the tanks given the flowrate from each tank and the thermal environment. The model accounts for tank stretch and includes simplified oxygen tank heater and stratification routines. The program is currently operational on the Univac 1108 computer.

  2. Brush seals for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Proctor, Margaret P.

    1994-07-01

    This viewgraph presentation presents test results of brush seals for cryogenic applications. Leakage for a single brush seal was two to three times less than for a 12-tooth labyrinth seal. The maximum temperature rise for a single brush seal was less than 50 R and occurred at 25 psid across the seal and 35,000 rpm. A static blowout test demonstrated sealing capability up to 550 psid. The seal limit was not obtained. The power loss for a single brush at 35,000 rpm and 175 psid was 2.45 hp. Two brushes far apart leak less than two brushes tight packed. Rotor wear was approximately 0.00075 mils and bristle wear was 1-3 mils after 4-1/2 hours.

  3. Designing insulation for cryogenic ducts

    NASA Astrophysics Data System (ADS)

    Love, C. C.

    1984-03-01

    It is pointed out that the great temperature difference between the outside of a cryogenic duct and the liquified gas it carries can cause a high heat input unless blocked by a high thermal resistance. High thermal resistance for lines needing maximum insulation is provided by metal vacuum jackets. Low-density foam is satisfactory in cases in which higher heat input can be tolerated. Attention is given to the heat transfer through a duct vacuum jacket, the calculation of heat input and the exterior surface's steady-state temperature for various thicknesses of insulation, the calculation of the heat transfer through gimbal jackets, and design specifications regarding the allowable pressure rise in the jacket's annular space.

  4. Cryogenic thermal control technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

    1974-01-01

    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  5. Exploring the electron transfer pathways in photosystem I by high-time-resolution electron paramagnetic resonance: observation of the B-side radical pair P700(+)A1B(-) in whole cells of the deuterated green alga Chlamydomonas reinhardtii at cryogenic temperatures.

    PubMed

    Berthold, Thomas; von Gromoff, Erika Donner; Santabarbara, Stefano; Stehle, Patricia; Link, Gerhard; Poluektov, Oleg G; Heathcote, Peter; Beck, Christoph F; Thurnauer, Marion C; Kothe, Gerd

    2012-03-28

    Crystallographic models of photosystem I (PS I) highlight a symmetrical arrangement of the electron transfer cofactors which are organized in two parallel branches (A, B) relative to a pseudo-C2 symmetry axis that is perpendicular to the membrane plane. Here, we explore the electron transfer pathways of PS I in whole cells of the deuterated green alga Chlamydomonas reinhardtii using high-time-resolution electron paramagnetic resonance (EPR) at cryogenic temperatures. Particular emphasis is given to quantum oscillations detectable in the tertiary radical pairs P700(+)A1A(-) and P700(+)A1B(-) of the electron transfer chain. Results are presented first for the deuterated site-directed mutant PsaA-M684H in which electron transfer beyond the primary electron acceptor A0A on the PsaA branch of electron transfer is impaired. Analysis of the quantum oscillations, observed in a two-dimensional Q-band (34 GHz) EPR experiment, provides the geometry of the B-side radical pair. The orientation of the g tensor of P700(+) in an external reference system is adapted from a time-resolved multifrequency EPR study of deuterated and 15N-substituted cyanobacteria (Link, G.; Berthold, T.; Bechtold, M.; Weidner, J.-U.; Ohmes, E.; Tang, J.; Poluektov, O.; Utschig, L.; Schlesselman, S. L.; Thurnauer, M. C.; Kothe, G. J. Am. Chem. Soc. 2001, 123, 4211-4222). Thus, we obtain the three-dimensional structure of the B-side radical pair following photoexcitation of PS I in its native membrane. The new structure describes the position and orientation of the reduced B-side quinone A1B(-) on a nanosecond time scale after light-induced charge separation. Furthermore, we present results for deuterated wild-type cells of C. reinhardtii demonstrating that both radical pairs P700(+)A1A(-) and P700(+)A1B(-) participate in the electron transfer process according to a mole ratio of 0.71/0.29 in favor of P700(+)A1A(-). A detailed comparison reveals different orientations of A1A(-) and A1B(-) in their

  6. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  7. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  8. A dielectric affinity microbiosensor

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Schultz, Jerome S.; Wang, Qian; Lin, Qiao

    2010-01-01

    We present an affinity biosensing approach that exploits changes in dielectric properties of a polymer due to its specific, reversible binding with an analyte. The approach is demonstrated using a microsensor comprising a pair of thin-film capacitive electrodes sandwiching a solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid), a synthetic polymer with specific affinity to glucose. Binding with glucose induces changes in the permittivity of the polymer, which can be measured capacitively for specific glucose detection, as confirmed by experimental results at physiologically relevant concentrations. The dielectric affinity biosensing approach holds the potential for practical applications such as long-term continuous glucose monitoring.

  9. Thermally switchable dielectrics

    DOEpatents

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  10. Neutron crystallographic studies of T4 lysozyme at cryogenic temperature.

    PubMed

    Li, Le; Shukla, Shantanu; Meilleur, Flora; Standaert, Robert F; Pierce, Josh; Myles, Dean A A; Cuneo, Matthew J

    2017-07-13

    Bacteriophage T4 lysozyme (T4L) has been used as a paradigm for seminal biophysical studies on protein structure, dynamics, and stability. Approximately 700 mutants of this protein and their respective complexes have been characterized by X-ray crystallography; however, despite the high resolution diffraction limits attained in several studies, no hydrogen atoms were reported being visualized in the electron density maps. To address this, a 2.2 Å-resolution neutron data set was collected at 80 K from a crystal of perdeuterated T4L pseudo-wild type. We describe a near complete atomic structure of T4L, which includes the positions of 1737 hydrogen atoms determined by neutron crystallography. The cryogenic neutron model reveals explicit detail of the hydrogen bonding interactions in the protein, in addition to the protonation states of several important residues. © 2017 The Protein Society.

  11. LINC-NIRVANA: cryogenic optics for diffraction limited beam combination

    NASA Astrophysics Data System (ADS)

    Bizenberger, Peter; Baumeister, Harald; Herbst, Tom; Zhang, Xianyu

    2012-09-01

    LINC-NIRVANA is an interferometric imaging camera, which combines the two 8.4 m telescopes of the Large Binocular Telescope (LBT). The instrument operates in the wavelength range from 1.1 μm to 2.4 μm, covering the J, H and K-band, respectively. The beam combining camera (NIRCS) offers the possibility to achieve diffraction limited images with the special resolution of a 23 m telescope. The optics are designed to deliver a 10 arcsec × 10 arcsec field of view with 5 mas resolution. In this paper we describe the evolution of the cryogenic optics, from design and manufacturing to verification. Including the argumentation for decisions we made in order to present a sort of guideline for large cryo-optics. We also present the alignment and testing strategies at a detailed level.

  12. The development of radiant cooler and cryogenic heat pipes for 200K cryogenic optical system cooling

    NASA Astrophysics Data System (ADS)

    Liu, Enguang; Wu, Yinong; Yang, Xiaofeng; Mu, Yongbin

    2016-05-01

    This paper presents a heat transfer system, in which a radiant cooler, cryogenic heat pipes and flexible thermal links were developed for heat transfer, by which a cryogenic system was cooled down to 200K from room temperature. A scrolling mechanism was designed for the radiant cooler to anti-contamination and block sunlight in the initial orbit phase. The cryogenic heat pipe is a type of grooved heat pipe with the working fluid of ethane and working temperature ranging from 160K to 210K. Some experimental and simulation results of the radiant cooler, cryogenic heat pipes will be discussed in this paper.

  13. Advances in cryogenic engineering. Volume 33 - Proceedings of the Cryogenic Engineering Conference, Saint Charles, IL, June 14-18, 1987

    NASA Technical Reports Server (NTRS)

    Fast, R. W. (Editor)

    1988-01-01

    Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.

  14. The Fast Alternative Cryogenic Experiment Testbed

    NASA Astrophysics Data System (ADS)

    Nash, Alfred

    One of the challenges in the area of cryogenics for space exploration in the next millennium is providing the capability for inexpensive, frequent, access to space. Faced with this challenge during the International Space Station (ISS) build era, when other Space Shuttle manifesting opportunities are unavailable, a "proof of concept" cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier. The Hitchhiker siderail carrier is available on a "mass available" basis during the ISS build era. In fact, several hitchhiker payloads flew with the deployment of the Unity module. Hitchhiker siderail carrier payloads have historically flown an average of about four times a year. A hybrid Solid Neon - Superfluid Helium cryostat has been developed with Janis Research Company to accommodate instruments of 16.5 cm diameter and 30 cm length. This hybrid approach was taken in part to provide adequate on-orbit lifetime for instruments with high (conducted) heat loads from the instrumentation wiring. Mass, volume, lifetime and the launch hold scenario were all design drivers. In addition, with Ball Aerospace and Technologies Corporation, a multi-channel VME architecture Germanium Resistance Thermometer (GRT) readout and heater control servo system has been developed. In a flight system, the cryostat and electronics payloads would be umbilically attached in a paired Hitchhiker siderail mount, and permit on-orbit command and telemetry capability. The results of performance tests of both the cryostat, and a helium sample instrument will be presented. The instrument features a self contained, miniaturized, nano-Kelvin resolution High Resolution Thermometer (HRT). This high level of thermal resolution is achieved through the utilization of a dc Superconducting Quantum Interference Device (SQUID). Although developed for the Low Temperature Microgravity Fundamental Physics

  15. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  16. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  17. A brief overview of cryogenics in China

    NASA Astrophysics Data System (ADS)

    Li, S.-M.

    In this paper general aspects of cryogenics in China are introduced, and applications of cryogenics in the space programme are described briefly, such as its application to the Long March 3 rocket vehicles with LH2/LO2 engines, the development of a 750 dm 3 hr -1 liquid hydrogen plant and railway tank cars with 60 and 70 m 3 capacities. In addition, the progress of various cryogenic techniques in China is presented, such as the FY-1 radiation refrigerator loaded on a meteorology satellite, regenerative cryocoolers of the Gifford-McMahon, Solvay, Vuilleumier, Stirling and pulse tube types, and the KM-3 and KM-4 space simulation facilities. Finally, the paper discusses current education about refrigeration and cryogenics for undergraduates and graduates.

  18. SCRF Cryogenic Operating Experience at FNPL

    NASA Astrophysics Data System (ADS)

    DeGraff, B.; Soyars, W.; Martinez, A.

    2006-04-01

    The Fermilab-NICADD Photoinjector Laboratory (FNPL), a photoelectron research and development beam line, has been operational since 1998. A single TESLA 9-cell superconducting RF cavity is operated in support of this accelerator system. The superfluid cryogenic system consists of a dewar-fed liquid helium supply with up to 2 g/s vacuum pumping capacity. Helium gas is recovered to the Tevatron cryogenic system. The photoinjector static load is about 2.5 W to 1.8 K, with a typical dynamic component of about 0.5 W. The capabilities, performance, operating experience, and reliability of this superfluid cryogenic system will be discussed. An auxiliary cryogenic system for testing bare superconducting RF cavities in a vertical dewar is also available, providing a steady state capacity of about 12 W at 1.8 K for testing.

  19. Space propulsion technology and cryogenic fluid depot

    NASA Technical Reports Server (NTRS)

    Diehl, Larry A.

    1988-01-01

    Information on space propulsion and technology and the cryogenic fluid depot is given in viewgraph form. Information is given on orbit transfer, electric propulsion, spacecraft propulsion, and program objectives.

  20. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D.

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  1. Cryogenic materials selection, availability, and cost considerations

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1983-01-01

    The selection of structural alloys, composite materials, solder alloys, and filler materials for use in cryogenic models is discussed. In particular, materials testing programs conducted at Langley are described.

  2. The cryogenic control system of BEPCII

    NASA Astrophysics Data System (ADS)

    Li, Gang; Wang, Ke-Xiang; Zhao, Ji-Jiu; Yue, Ke-Juan; Dai, Ming-Hui; Huang, Yi-Ling; Jiang, Bo

    2008-04-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron- Positron Collider Upgrade Project (BEPCII). The system consists of a Siemens PLC (S7-PLC, Programmable Logic Controller) for the compressor control, an Allen Bradley (AB) PLC for the cryogenic equipments, and the Experimental Physics and Industrial Control System (EPICS) that integrates the PLCs. The system fully automates the superconducting cryogenic control with process control, PID (Proportional-Integral-Differential) control loops, real-time data access and data storage, alarm handler and human machine interface. It is capable of automatic recovery as well. This paper describes the BEPCII cryogenic control system, data communication between S7-PLC and EPICS Input/Output Controllers (IOCs), and the integration of the flow control, the low level interlock, the AB-PLC, and EPICS.

  3. Cryogenic Preservation of Granulocytes and Monocytes.

    DTIC Science & Technology

    1982-01-25

    plateletpheresis bags and preserved with the granulocyte protocol. All cells were recovered after 3 months storage in liquid nitrogen with 94...phagocytic index. Technical Reports. Cryogenic preservation of monocytes from human blood and plateletpheresis cellular residues. December 20, 1980. Long...and Callalan, A.B. : Cryogenic preservation of monocytes from human blood and plateletpheresis cellular residues. Blood 57:592-598, 1981. Arnaout, A.A

  4. Cryogenic Yb: YAG Thin-Disk Laser

    DTIC Science & Technology

    2016-09-09

    at room and cryogenic (80°K) temperatures will be presented. The Yb:YAG gain media is cooled using either a pressurized R134A refrigerant system or...thin disk laser performance at room and cryogenic (80°K) temperatures will be presented. The Yb:YAG gain media is cooled using either a pressurized...is thicker than that which would be necessary for room temperature operation. This is to alleviate stresses from the large difference in expansion

  5. Filament-wound, fiberglass cryogenic tank supports

    NASA Technical Reports Server (NTRS)

    Carter, J. S.; Timberlake, T. E.

    1971-01-01

    The design, fabrication, and testing of filament-wound, fiberglass cryogenic tank supports for a LH2 tank, a LF2/FLOX tank and a CH4 tank. These supports consist of filament-wound fiberglass tubes with titanium end fittings. These units were satisfactorily tested at cryogenic temperatures, thereby offering a design that can be reliably and economically produced in large or small quantities. The basic design concept is applicable to any situation where strong, lightweight axial load members are desired.

  6. Visual-Inspection Probe For Cryogenic Chamber

    NASA Technical Reports Server (NTRS)

    Friend, Steve; Valenzuela, James; Yoshinaga, Jay

    1990-01-01

    Visual-inspection probe that resembles borescope enables observer at ambient temperature to view objects immersed in turbulent flow of liquid oxygen, liquid nitrogen, or other cryogenic fluid. Design of probe fairly conventional, except special consideration given to selection of materials and to thermal expansion to provide for expected range of operating temperatures. Penetrates wall of cryogenic chamber to provide view of interior. Similar probe illuminates scene. View displayed on video monitor.

  7. Lightweight Right-Angle Valve For Cryogenics

    NASA Technical Reports Server (NTRS)

    Calhoun, Richard B.

    1993-01-01

    Lightweight right-angle valve isolates pressurized liquid or gas stream from vacuum over wide range of temperatures from ambient down to cryogenic. Sized to fit tubes of types ordinarily used in cryogenic equipment. Maintains isolation, without need for manual adjustment of packing gland as pressure and temperature vary. Mass of valve less than 60 grams. Made of off-the-shelf parts and few simple custom-machined parts.

  8. Progress in Cryogenic Target Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    McCrory, R. L.; Meyerhofer, D. D.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Glebov, V. Yu; Goncharov, V. N.; Harding, D. R.; Hu, S. X.; Knauer, J. P.; Marshall, F. J.; McKenty, P. W.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Short, R. W.; Shvarts, D.; Skupsky, S.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Theobald, W.; Yaakobi, B.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H.; Casey, D. T.

    2016-10-01

    Cryogenic deuterium-tritium targets are imploded on the OMEGA Laser System in a direct-drive configuration. Areal densities of approximately 200 mg/cm2 have been measured with implosion velocities of 3 × 107 cm/s. These implosions are used to study the dynamics of cryogenic target compression and to develop areal-density diagnostics that will be used as part of the ignition campaign on the National Ignition Facility.

  9. Large Cryogenic Germanium Detector. Final Report

    SciTech Connect

    Mandic, Vuk

    2013-02-13

    The goal of this project was to investigate possible ways of increasing the size of cryogenic Ge detectors. This project identified two possible approaches to increasing the individual cryogenic Ge detector size. The first approach relies on using the existing technology for growing detector-grade (high-purity) germanium crystals of dislocation density 100-7000 cm{sup -2}. The second approach is to consider dislocation-free Ge crystals.

  10. Visual-Inspection Probe For Cryogenic Chamber

    NASA Technical Reports Server (NTRS)

    Friend, Steve; Valenzuela, James; Yoshinaga, Jay

    1990-01-01

    Visual-inspection probe that resembles borescope enables observer at ambient temperature to view objects immersed in turbulent flow of liquid oxygen, liquid nitrogen, or other cryogenic fluid. Design of probe fairly conventional, except special consideration given to selection of materials and to thermal expansion to provide for expected range of operating temperatures. Penetrates wall of cryogenic chamber to provide view of interior. Similar probe illuminates scene. View displayed on video monitor.

  11. Below-Ambient and Cryogenic Thermal Testing

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  12. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  13. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  14. Femtosecond Laser-Induced Damage of Dielectrics

    NASA Astrophysics Data System (ADS)

    Lenzner, M.

    Optical damage in non-metals (dielectrics) may severely affect the performance of high-power laser systems as well as the efficiency of optical systems based on nonlinear processes and has therefore been subject to extensive research for some 30 years. The current knowledge of laser-induced optical damage in these materials is reviewed. Emphasis is placed on the recent extension of available experimental data into the femtosecond range. Recent results are presented achieved with a sub-10 fs laser system which explores the limits of time resolution as well as the limit of intensities that a solid can sustain without irreversible damage. It is concluded that sub-10fs laser pulses open up the way to reversible nonperturbative nonlinear optics at intensities greater than 1014 W/cm2 (slightly below damage threshold) and to nanometer-precision laser ablation (slightly above threshold) in dielectric materials.

  15. Photonic nanojet properties of dielectric microcylinders

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Bollinger, Douglas

    2017-02-01

    In recent years, it has been demonstrated that micron-scale dielectric spheres and cylinders can form an intense sharply focused photon beam, termed a photonic nanojet. The photonic nanojet effect can be used in a broad range of biomedical and photonics applications, including super-resolution microscopy, optical endoscopy, spectroscopy, and nanolithography. In this work, by means of finite-difference time-domain (FDTD) numerical simulation, we studied the nanojet properties of dielectric microcylinders over a wide range of diameters (4λ-20λ) and refractive indices (1.5-2.0), where λ is the wavelength of light. We studied how the nanojet beam size, intensity, and focal distance vary as a function of size and refractive index of the microcylinders, and refractive index contrast between the microcylinders and the background medium surrounding them.

  16. Inverse electromagnetic diffraction by biperiodic dielectric gratings

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Li, Peijun

    2017-08-01

    Consider the incidence of a time-harmonic electromagnetic plane wave onto a biperiodic dielectric grating, where the surface is assumed to be a small and smooth perturbation of a plane. The diffraction is modeled as a transmission problem for Maxwell’s equations in three dimensions. This paper concerns the inverse diffraction problem which is to reconstruct the grating surface from either the diffracted field or the transmitted field. A novel approach is developed to solve the challenging nonlinear and ill-posed inverse problem. The method requires only a single incident field and is realized via the fast Fourier transform. Numerical results show that it is simple, fast, and stable to reconstruct biperiodic dielectric grating surfaces with super-resolved resolution.

  17. A high-resolution x-ray spectrometer for a kaon mass measurement

    NASA Astrophysics Data System (ADS)

    Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo

    2017-02-01

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  18. Model of dissipative dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chiang Foo, Choon; Cai, Shengqiang; Jin Adrian Koh, Soo; Bauer, Siegfried; Suo, Zhigang

    2012-02-01

    The dynamic performance of dielectric elastomer transducers and their capability of electromechanical energy conversion are affected by dissipative processes, such as viscoelasticity, dielectric relaxation, and current leakage. This paper describes a method to construct a model of dissipative dielectric elastomers on the basis of nonequilibrium thermodynamics. We characterize the state of the dielectric elastomer with kinematic variables through which external loads do work, and internal variables that measure the progress of the dissipative processes. The method is illustrated with examples motivated by existing experiments of polyacrylate very-high-bond dielectric elastomers. This model predicts the dynamic response of the dielectric elastomer and the leakage current behavior. We show that current leakage can be significant under large deformation and for long durations. Furthermore, current leakage can result in significant hysteresis for dielectric elastomers under cyclic voltage.

  19. Cryogenic ion chemistry and spectroscopy.

    PubMed

    Wolk, Arron B; Leavitt, Christopher M; Garand, Etienne; Johnson, Mark A

    2014-01-21

    The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to

  20. Measurement of the dielectric properties of high-purity sapphire at 1.865 GHZ from 2-10 Kelvin

    SciTech Connect

    N. Pogue, P. McIntyre, Akhdiyor Sattarov, Charles Reece

    2012-06-01

    A dielectric test cavity was designed and tested to measure the microwave dielectric properties of ultrapure sapphire at cryogenic temperatures. Measurements were performed by placing a large cylindrical crystal of sapphire in a Nb superconducting cavity operating in the TE01 mode at 1.865 GHz. The dielectric constant, heat capacity, and loss tangent were all calculated using experimental data and RF modeling software. The motivation for these measurements was to determine if such a sapphire could be used as a dielectric lens to focus the magnetic field onto a sample wafer in a high field wafer test cavity. The measured properties have been used to finalize the design of the wafer test cavity.

  1. Antenna with Dielectric Having Geometric Patterns

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  2. Advances in post AFM repair cleaning of photomask with CO2 cryogenic aerosol technology

    NASA Astrophysics Data System (ADS)

    Bowers, Charles; Varghese, Ivin; Balooch, Mehdi; Brandt, Werner

    2009-04-01

    As the mask technology matures, critical printing features and sub-resolution assist features (SRAF) shrink below 100 nm, forcing critical cleaning processes to face significant challenges. These challenges include use of new materials, oxidation, chemical contamination sensitivity, proportionally decreasing printable defect size, and a requirement for a damage-free clean. CO2 cryogenic aerosol cleaning has the potential to offer a wide process window for meeting these new challenges, if residue adder issues and damage can be eliminated. Some key differentiations of CO2 cryogenic aerosol cleaning are the non-oxidizing and non-etching properties compared to conventional chemical wet clean processes with or without megasonics. In prior work, the feasibility of CO2 cryogenic aerosol in post AFM repair photomask cleaning was demonstrated. In this paper, recent advancements of CO2 cryogenic aerosol cleaning technology are presented, focusing on the traditional problem areas of particle adders, electrostatic discharge (ESD), and mask damage mitigation. Key aspects of successful CO2 cryogenic aerosol cleaning include the spray nozzle design, CO2 liquid purity, and system design. The design of the nozzle directly controls the size, density, and velocity of the CO2 snow particles. Methodology and measurements of the solid CO2 particle size and velocity distributions will be presented, and their responses to various control parameters will be discussed. Adder control can be achieved only through use of highly purified CO2 and careful materials selection. Recent advances in CO2 purity will be discussed and data shown. The mask cleaning efficiency by CO2 cryogenic aerosol and damage control is essentially an optimization of the momentum of the solid CO2 particles and elimination of adders. The previous damage threshold of 150 nm SRAF structures has been reduced to 70nm and data will be shown indicating 60 nm is possible in the near future. Data on CO2 tribocharge mitigation

  3. The future of cryogenic propulsion

    NASA Astrophysics Data System (ADS)

    Palerm, S.; Bonhomme, C.; Guelou, Y.; Chopinet, J. N.; Danous, P.

    2015-07-01

    As the French Space Agency, CNES is funding an ambitious program to identify, develop and evaluate the technologies and skills that will enable to design cost efficient future launchers. This program deals together with, researches for mastering complex physical phenomena, set ups of robust and efficient numerical tools for design and justification, and identification of innovative manufacturing processes and hardware. It starts from low Technical Readiness Level (TRL 2) up to a maturation of TRL 6 with the use of demonstrators, level that allows to be ready for a development. This paper focuses on cryogenic propulsion activities conducted with SNECMA and French laboratories to prepare next generation engines. The physics in that type of hardware addresses a large range of highly complex phenomena, among them subcritical and supercritical combustion and possible associated High Frequency oscillations in combustion devices, tribology in bearings and seals, cavitation and rotordynamics in turbopump. The research activities conducted to master those physical phenomena are presented. Moreover, the operating conditions of these engines are very challenging, both thermally and mechanically. The innovative manufacturing processes and designs developed to cope with these conditions while filling cost reduction requirements are described. Finally, the associated demonstrators put in place to prepare the implementation of these new technologies on future engines are presented.

  4. Repeatability of Cryogenic Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-01-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between multiple identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five GRC provided coupons with 25 layers was shown to be +/- 8.4 whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0. A second group of 10 coupons have been fabricated by Yetispace and tested by Florida State University, through the first 4 tests, the repeatability has been shown to be +/- 16. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  5. Cryogenic Fluid Management Technology Development Roadmaps

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Johnson, W. L.

    2017-01-01

    Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.

  6. Active Costorage of Cryogenic Propellants for Exploration

    NASA Technical Reports Server (NTRS)

    Canavan, Edgar R.; Boyle, Rob; Mustafi, Shuvo

    2008-01-01

    Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used cryogens to cool instruments. In many cases, the lifetime of the primary cryogen tank has been extended by intercepting much of the heat incident on the tank at an intermediate-temperature shield cooled either by a second cryogen tank or a mechanical cryocooler. For an LH2/LO2 propellant system, a combination of these ideas can be used, in which the shield around the LO2 tank is attached to, and at the same temperature as, the LO2 tank, but is actively cooled so as to remove all heat impinging on the tank and shield. This configuration eliminates liquid oxygen boil-off and cuts the liquid hydrogen boil-off to a small fraction of the unshielded rate. This paper studies the concept of active costorage as a means of long-term cryogenic propellant storage. The paper describes the design impact of an active costorage system for the Crew Exploration Vehicle (CEV). This paper also compares the spacecraft level impact of the active costorage concept with a passive storage option in relation to two different scales of spacecraft that will be used for the lunar exploration effort, the CEV and the Earth Departure Stage (EDS). Spacecraft level studies are performed to investigate the impact of scaling of the costorage technologies for the different components of the Lunar Architecture and for different mission durations.

  7. Cryogenic processes and equipment - 1984; Proceedings of the Fifth Intersociety Cryogenics Symposium, New Orleans, LA, December 9-14, 1984

    NASA Astrophysics Data System (ADS)

    Kerney, P. J.; Chatterjee, N.; Crawford, D. B.; El-Masri, M.

    The topics of cryogenic processes for LNG and EOR, cryogenic refrigerators, components for cryogenic systems, liquid hydrogen as a fuel, cryogenic processes and equipment for large systems, and cryogenic thermodynamics and heat transfer are discussed. The papers include analysis of process efficiency for baseload LNG production, process efficiency considerations for nitrogen rejection units, design and performance analysis of gas sorption compressors, cryogenic vacuum pump design, and the hydrogen-fueled hydrogen transport rail system (a NASA proposal). In addition, refueling considerations for liquid hydrogen-fueled vehicles, variable oxygen supply systems, and orientation dependence to liquid helium heat transfer from a cable-in-channel configuration are considered.

  8. Dielectric nanoresonators for light manipulation

    NASA Astrophysics Data System (ADS)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  9. Nonintrusive cryogenic propellant sensing with millimeter-wave/EM beams

    NASA Astrophysics Data System (ADS)

    Osterwalder, J. M.; Nyland, T. W.

    1993-07-01

    In this paper experimental results of cryogenic tankage mass measurements and descriptions of level sensors using optical and millimeter wave signal beams are presented. The discussed results are based on a 100 GHz frequency modulated radar mass sensor. Test results are compared with a similar system which makes use of a laser beam and a frequency modulated microwave subcarrier. In addition the performance of a laser triangulation level sensor is presented which is suitable for normal gravity applications. Performance prediction in terms of the resolution and measurement accuracy are discussed with emphasis on the measurement difficulties encountered while using liquid hydrogen under normal gravity conditions. For a mass sensor the small 11% refractive index change between an empty and a filled tank of hydrogen causes a loss of measurement accuracy by a factor of ten, as compared to a level sensor. This loss is common to all mass propellant sensing systems, including the conventional capacitance probe sensor. Special processing techniques are indicated. Extensions of the presented millimeter wave mass sensor concept for micro and zero gravity cryogenic systems and for other special space related propellant conditions such as slush hydrogen are discussed.

  10. Super-selective cryogenic etching for sub-10 nm features.

    PubMed

    Liu, Zuwei; Wu, Ying; Harteneck, Bruce; Olynick, Deirdre

    2013-01-11

    Plasma etching is a powerful technique for transferring high-resolution lithographic masks into functional materials. Significant challenges arise with shrinking feature sizes, such as etching with thin masks. Traditionally this has been addressed with hard masks and consequently additional costly steps. Here we present a pathway to high selectivity soft mask pattern transfer using cryogenic plasma etching towards low-cost high throughput sub-10 nm nanofabrication. Cryogenic SF(6)/O(2) gas chemistry is studied for high fidelity, high selectivity inductively coupled plasma etching of silicon. Selectivity was maximized on large features (400 nm-1.5 μm) with a focus on minimizing photoresist etch rates. An overall anisotropic profile with selectivity around 140:1 with a photoresist mask for feature size 1.5 μm was realized with this clean, low damage process. At the deep nanoscale, selectivity is reduced by an order of magnitude. Despite these limits, high selectivity is achieved for anisotropic high aspect ratio 10 nm scale etching with thin polymeric masks. Gentler ion bombardment resulted in planar-dependent etching and produced faceted sub-100 nm features.

  11. CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer

    NASA Astrophysics Data System (ADS)

    Tartari, A.; Battistelli, E. S.; Piat, M.; Prêle, D.

    2016-08-01

    Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE-FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE-FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across ˜ 2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz-6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh-Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from ˜ tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit.

  12. LINC-NIRVANA: Diffraction limited optics in cryogenic environment

    NASA Astrophysics Data System (ADS)

    Bizenberger, Peter; Baumeister, Harald; Fopp, Patrick; Herbst, Tom; Laun, Werner; Mohr, Lars; Moreno-Ventas, Javier

    2014-07-01

    LINC-NIRVANA is an instrument combining the two 8.4 m telescopes of the Large Binocular Telescope (LBT) coherently, in order to achieve the optical resolution of the 23 meter baseline. For this interferometric instrument concept, the common beam combination requires diffraction limited optical performance. The optics, realized as a Cassegrain telescope design, consists of aluminum mirrors, designed and manufactured to fulfill the challenging specifications required for interferometric imaging. Due to the science wavelength range from 1 μm to 2.4 μm, covering the J, H and K band of the atmosphere, the complete beam combiner including the optics is operated in cryogenic environment at 60 Kelvin. Here, we demonstrate the verification of the optical performance at this temperature for classical in-coherent and coherent illumination. We outline the test setup and present the achieved results of wavefront error for the individual beams and fringe contrast for the interferometric point spread function. This paper continues the already presented integration of the interferometric camera with the focus on the performance of the cryogenic optics.

  13. Conformation of protonated glutamic acid at room and cryogenic temperatures.

    PubMed

    Bouchet, Aude; Klyne, Johanna; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Dopfer, Otto

    2017-05-03

    Recognition properties of biologically relevant molecules depend on their conformation. Herein, the conformation of protonated glutamic acid (H(+)Glu) isolated in quadruple ion traps is characterized by vibrational spectroscopy at room and cryogenic temperatures and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. The infrared multiple photon dissociation (IRMPD) spectrum recorded in the fingerprint range at room temperature using an IR free electron laser is attributed to the two most stable and nearly isoenergetic conformations (1-cc and 2-cc) with roughly equal population (ΔG298 = 0.0 kJ mol(-1)). Both have bridging C[double bond, length as m-dash]O(HNH)(+)O[double bond, length as m-dash]C ionic H-bonds of rather different strengths but cannot be distinguished by their similar IRMPD spectra. In contrast, the higher-resolution single-photon IRPD spectrum of H2-tagged H(+)Glu recorded in the conformation-sensitive X-H stretch range in a trap held at 10 K distinguishes both conformers. At low temperature, 1-cc is roughly twice more abundant than 2-cc, in line with its slightly lower calculated energy (ΔE0 = 0.5 kJ mol(-1)). This example illustrates the importance of cryogenic cooling, single-photon absorption conditions, and the consideration of the X-H stretch range for the identification of biomolecular conformations involving hydrogen bonds.

  14. High-precision Photogrammetric Surface Figure Measurements under Cryogenic Environment

    NASA Astrophysics Data System (ADS)

    Zheng, Lou; Yuan, Qian; Sheng-hong, Fan; Chang-ru, Liu; Hai-ren, Wang; Ying-xi, Zuo; Jin-quan, Cheng; Ji, Yang

    2017-01-01

    Limited by the working temperature of the test equipment, most of high-precision surface figure measurement techniques cannot be put into application under a cryogenic environment. This paper reports the first attempt to measure the surface figure of a high-precision terahertz reflector panel under low temperatures based on photogrammetry. The measurement employs a high-resolution industrial camera sitting on the automatic testing platform which enables photos been taken in an automatic fashion inside a climate chamber. A repeatable accuracy of 2.1 μm (rms) is achieved under the cryogenic environment. Furthermore, the surface figure measured by a three-coordinate measuring machine under the room temperature is used to calibrate the thickness differences of the targets. By this technique, the surface figure of an aluminum prototype panel of the 5 meter Dome A Terahertz Telescope (DATE5) is measured from room temperature down to -55°C to obtain the rule of variation of surface deformation of the panel under low temperatures.

  15. DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J

    2007-10-18

    The dielectric wall accelerator (DWA) is a compact pulsed power device where the pulse forming lines, switching, and vacuum wall are integrated into a single compact geometry. For this effort, we initiated a extensive compact pulsed power development program and have pursued the study of switching (gas, oil, laser induced surface flashover and photoconductive), dielectrics (ceramics and nanoparticle composites), pulse forming line topologies (asymmetric and symmetric Blumleins and zero integral pulse forming lines), and multilayered vacuum insulator (HGI) technology. Finally, we fabricated an accelerator cell for test on ETAII (a 5.5 MeV, 2 kA, 70 ns pulsewidth electron beam accelerator). We review our past results and report on the progress of accelerator cell testing.

  16. Temperature switchable polymer dielectrics.

    SciTech Connect

    Kholwadwala, Fenil Manish; Johnson, Ross Stefan; Dirk, Shawn M.

    2010-06-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  17. Temperature switchable polymer dielectrics.

    SciTech Connect

    Johnson, Ross Stefan

    2010-08-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  18. Dielectric Circuit Board Bonding.

    DTIC Science & Technology

    circuit boards to form subassemblies and the bonding of subassemblies together. The finished circuit may include a bonded-in ground plate of copper...The patent application describes a method and apparatus for bonding of dielectric circuit boards for microwave use, the bonding together of several...wire cloth or the like and may include through- plate holes. The technique includes the build-up of thin films to provide strength, toughness and

  19. Dielectric spectroscopy of polyaniline

    SciTech Connect

    Calleja, R.D.; Matveeva, E.M.

    1993-12-31

    Polyaniline films (PANI) are being considered as attractive new galvanic sources, electrochromic displays, chemical sensors, etc. So far much work has been done to study their optical, electrochemical and electrical properties. However, there are still doubts about the basic electric conductivity mechanisms of PANI. The aim of this paper is to study the influence of water molecules and acid anions on the properties of PANI films by dielectric spectroscopy.

  20. All-dielectric metamaterials.

    PubMed

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  1. All-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  2. Silicon Powder Filters for Large-Aperture Cryogenic Receivers

    NASA Astrophysics Data System (ADS)

    Boone, Fletcher; Essinger-Hileman, T.; Bennett, C. L.; Marriage, T.; Xu, Z.

    2014-01-01

    Upcoming experiments probing for the existence of B-mode polarization in the cosmic microwave background (CMB) will require large arrays of background-limited detectors. This will necessitate the use of cryogenic receivers with large-aperture vacuum windows and correspondingly large low-pass infrared-blocking filters to minimize thermal load. Large-diameter filters composed of absorptive dielectrics are difficult to conductively cool adequately, and thus tend to heat up and re-radiate towards the focal plane. Reflective metal-mesh filters are challenging to manufacture at such large apertures and with feature sizes small enough to effectively block 300K thermal radiation. In order to overcome these difficulties, we have developed a novel type of thermal filter that scatters, rather than reflects or absorbs, unwanted infrared radiation. Comprised of ultra-pure silicon powder distributed within a polymethylpentene (PMP) substrate, these filters are not absorptive in the infrared while being transparent to microwaves, and are comparatively straightforward to produce. By adjusting the size of the silicon particles, the frequency cut-off of these low-pass filters is fully tunable. Small scale (70mm diameter, 3mm thickness) prototypes have exhibited <10% transmission throughout the infrared spectrum and <1% transmission at the peak of the 300K blackbody spectrum, while maintaining an estimated 97% transmission in the microwave regime.

  3. The Future with Cryogenic Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  4. The dielectric breakdown limit of silicone dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Gatti, Davide; Haus, Henry; Matysek, Marc; Frohnapfel, Bettina; Tropea, Cameron; Schlaak, Helmut F.

    2014-02-01

    Soft silicone elastomers are used in a generation of dielectric elastomer actuators (DEAs) with improved actuation speed and durability compared to the commonly used, highly viscoelastic polyacrylate 3M VHB™ films. The maximum voltage-induced stretch of DEAs is ultimately limited by their dielectric breakdown field strength. We measure the dependence of dielectric breakdown field strength on thickness and stretch for a silicone elastomer, when voltage-induced deformation is prevented. The experimental results are combined with an analytic model of equi-biaxial actuation to show that accounting for variable dielectric field strength results in different values of optimal pre-stretch and thickness that maximize the DEA actuation.

  5. Tunable Dielectric Properties of Ferrite-Dielectric Based Metamaterial

    PubMed Central

    Bi, K.; Huang, K.; Zeng, L. Y.; Zhou, M. H.; Wang, Q. M.; Wang, Y. G.; Lei, M.

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  6. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    PubMed

    Bi, K; Huang, K; Zeng, L Y; Zhou, M H; Wang, Q M; Wang, Y G; Lei, M

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices.

  7. Cryogenic Applications of Commercial Electronic Components

    NASA Technical Reports Server (NTRS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.

    2012-01-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  8. Aerogel Blanket Insulation Materials for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  9. Status of the ESS cryogenic system

    SciTech Connect

    Weisend II, J. G.; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L.

    2014-01-29

    The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

  10. Status of the ESS cryogenic system

    NASA Astrophysics Data System (ADS)

    Weisend, J. G., II; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L.

    2014-01-01

    The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

  11. Cryogenic System for the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Arenius, D.; Chronis, W.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2004-06-01

    The Spallation Neutron Source (SNS) is a neutron-scattering facility being built at Oak Ridge, TN for the US Department of Energy. The SNS accelerator linac consists of superconducting radio-frequency (SRF) cavities in cryostats (cryomodules). The linac cryomodules are cooled to 2.1 K by a 2300 watt cryogenic refrigeration system. As an SNS partner laboratory, Jefferson Lab is responsible for the installed integrated cryogenic system design for the SNS linac accelerator consisting of major subsystem equipment engineered and procured from industry. Jefferson Lab's work included developing the major vendor subsystem equipment procurement specifications, equipment procurement, and the integrated system engineering support of the field installation and commissioning. The major cryogenic system components include liquid nitrogen storage, gaseous helium storage, cryogen distribution transfer line system, 2.1-K cold box consisting of four stages of cold compressors, 4.5-K cold box, warm helium compressors with its associated oil removal, gas management, helium purification, gas impurity monitoring systems, and the supportive utilities of electrical power, cooling water and instrument air. The system overview, project organization, the important aspects, and the capabilities of the cryogenic system are described.

  12. Cryogenic applications of commercial electronic components

    NASA Astrophysics Data System (ADS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.

    2012-10-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  13. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  14. Advanced cryogenics for cutting tools. Final report

    SciTech Connect

    Lazarus, L.J.

    1996-10-01

    The purpose of the investigation was to determine if cryogenic treatment improved the life and cost effectiveness of perishable cutting tools over other treatments or coatings. Test results showed that in five of seven of the perishable cutting tools tested there was no improvement in tool life. The other two tools showed a small gain in tool life, but not as much as when switching manufacturers of the cutting tool. The following conclusions were drawn from this study: (1) titanium nitride coatings are more effective than cryogenic treatment in increasing the life of perishable cutting tools made from all cutting tool materials, (2) cryogenic treatment may increase tool life if the cutting tool is improperly heat treated during its origination, and (3) cryogenic treatment was only effective on those tools made from less sophisticated high speed tool steels. As a part of a recent detailed investigation, four cutting tool manufacturers and two cutting tool laboratories were queried and none could supply any data to substantiate cryogenic treatment of perishable cutting tools.

  15. Energy Efficient Cryogenics on Earth and in Space

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2012-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for energy-efficient cryogenics on Earth and in space.

  16. Heating liquid dielectrics by time dependent fields

    NASA Astrophysics Data System (ADS)

    Khalife, A.; Pathak, U.; Richert, R.

    2011-10-01

    Steady state and time-resolved dielectric relaxation experiments are performed at high fields on viscous glycerol and the effects of energy absorption from the electric field are studied. Time resolution is obtained by a sinusoidal field whose amplitude is switched from a low to a high level and by recording voltage and current traces with an oscilloscope during this transition. Based on their distinct time and frequency dependences, three sources of modifying the dynamics and dielectric loss via an increase in the effective temperature can be distinguished: electrode temperature, real sample temperature, and configurational temperatures of the modes that absorbed the energy. Isothermal conditions that are desired for focusing on the configurational temperature changes (as in dielectric hole burning and related techniques) are maintained only for very thin samples and for moderate power levels. For high frequencies, say ν > 1 MHz, changes of the real temperature will exceed the effects of configurational temperatures in the case of macroscopic samples. Regarding microwave chemistry, heating via cell phone use, and related situations in which materials are subject to fields involving frequencies beyond the MHz regime, we conclude that changes in the configurational (or fictive) temperatures remain negligible compared with the increase of the real temperature. This simplifies the assessment of how time dependent electric fields modify the properties of materials.

  17. Terahertz imaging in dielectric media with quasi-Bessel beams

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuopeng; Buma, Takashi

    2011-02-01

    Terahertz (THz) imaging is promising for nondestructive evaluation, since many optically opaque dielectrics are transparent to THz waves. Conventional THz imaging systems employ focusing elements such as spherical lenses and off-axis parabolas, but their fixed focal length produces an inherent trade-off between lateral resolution and depth of focus. Furthermore, image quality suffers when imaging objects located inside a dielectric medium. The air-dielectric interface introduces significant spherical aberration that degrades spatial resolution. Bessel beams are known to produce a small spot size over a large depth of focus. The contribution of our work is two-fold: (1) We demonstrate THz imaging with a significantly improved depth of focus using a zero-th order Bessel beam produced by an axicon lens. (2) We also demonstrate, for the first time to our knowledge, that Bessel beams experience reduced spherical aberration when imaging objects embedded in a dielectric medium. Imaging experiments are performed with a time-domain THz system, where a zero-th order quasi-Bessel beam is formed with an axicon lens made from high density polyethylene (HDPE). The HDPE axicon has a 50 mm diameter and an apex angle of 120 degrees. Point spread function (PSF) measurements confirm that lateral resolution is maintained over a 25 mm depth of field in air. The same lateral resolution is achieved over a 35 mm range inside a HDPE substrate. Needle objects embedded inside a thick HDPE substrate are imaged with high spatial resolution. Image contrast is significantly improved by digital filtering to reduce sidelobe levels. These promising results suggest that Bessel beams are well suited for terahertz nondestructive imaging of thick dielectric objects.

  18. Dielectric Nonlinear Transmission Line (Postprint)

    DTIC Science & Technology

    2011-12-01

    Technical Paper 3. DATES COVERED (From - To) 2011 4. TITLE AND SUBTITLE Dielectric Nonlinear Transmission Line (POSTPRINT) 5a. CONTRACT NUMBER...14. ABSTRACT A parallel plate nonlinear transmission line (NLTL) was constructed. Periodic loading of nonlinear dielectric slabs provides the...846-9101 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Dielectric Nonlinear Transmission Line David M. French, Brad W. Hoff

  19. Dielectric properties of lunar surface

    NASA Astrophysics Data System (ADS)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  20. A Reference Guide for Cryogenic Properties of Materials

    SciTech Connect

    Weisend, John G

    2003-09-16

    A thorough knowledge of the behavior of materials at cryogenic temperatures is critical for the design of successful cryogenic systems. Over the past 50 years, a tremendous amount of material properties at cryogenic temperatures have been measured and published. This guide lists resources for finding these properties. It covers online databases, computer codes, conference proceedings, journals, handbooks, overviews and monographs. It includes references for finding reports issued by government laboratories and agencies. Most common solids and fluids used in cryogenics are covered.

  1. Cryogenic phonon-scintillation detectors with PMT readout for rare event search experiments

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lin, J.; Mikhailik, V. B.; Kraus, H.

    2016-06-01

    Cryogenic phonon-scintillation detectors (CPSD) for rare event search experiments require reliable, efficient and robust photon detectors that can resolve individual photons in a scintillation event. We report on a cryogenic detector containing a scintillating crystal, equipped with an NTD-Ge phonon sensor and a photon detector based on a low-temperature photomultiplier tube (PMT) that is powered by a Cockcroft-Walton generator. Here we present results from the characterisation of two detector modules, one with CaWO4, the other with CaMoO4 as scintillator. The energy resolutions (FWHM) at 122.1 keV for the scintillation/PMT channel are 19.9% and 29.7% respectively for CaWO4 and CaMoO4 while the energy resolutions (FWHM) for the phonon channels are 2.17 keV (1.8%) and 0.97 keV (0.79%). These characteristics compare favourably with other CPSDs currently used in cryogenic rare-event search experiments. The detection module with PMT readout benefits from the implementation of a well-understood, reliable, and commercially available component and improved time resolution, while retaining the major advantages of conventional CPSD, such as high sensitivity, resolving power and discrimination ability.

  2. Cryogenic surface-electrode ion trap apparatus

    NASA Astrophysics Data System (ADS)

    Dubielzig, Timko; Carsjens, Martina; Kohnen, Matthias; Grondkowski, Sebastian; Ospelkaus, Christian

    2014-05-01

    In this talk we describe the infrastructure necessary to operate a surface-electrode ion trap with integrated microwave conductors for near-field quantum control of 9Be+ in a cryogenic environment. These traps are promising systems for analog quantum simulators and for quantum logic applications. Our group recently developed a trap with an integrated meander-like microwave guide for driving motional sidebands on an 9Be+ ion. The trap will be operated in a cryogenic vacuum chamber. We will discuss the vibrational isolated closed cycle cryostat and the design of the vacuum chamber with all electrical supplies necessary to apply two different microwave currents, dc voltages and three independent rf supplies to generate a reconfigurable rf trapping potential. We will also discuss the used hyperfine qubit and the laser systems required to cool and repump. Furthermore we will present the cryogenic, high aperture and fully acromatic imaging system.

  3. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  4. Cryogenic Amplifier Based Receivers at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Reck, Theodore and; Schlecht, Erich; Lin, Robert; Deal, William

    2012-01-01

    The operating frequency of InP high electron mobility transistor (HEMT) based amplifiers has moved well in the submillimeter-wave frequencies over the last couple of years. Working amplifiers with usable gain in waveguide packages has been reported beyond 700 GHz. When cooled cryogenically, they have shown substantial improvement in their noise temperature. This has opened up the real possibility of cryogenic amplifier based heterodyne receivers at submillimeter wavelengths for ground-based, air-borne, and space-based instruments for astrophysics, planetary, and Earth science applications. This paper provides an overview of the science applications at submillimeter wavelengths that will benefit from this technology. It also describes the current state of the InP HEMT based cryogenic amplifier receivers at submillimeter wavelengths.

  5. Cryogenic Fluid Management Flight Experiment (CFMFE)

    NASA Technical Reports Server (NTRS)

    Defelice, David M.

    1987-01-01

    Since its foundation, NASA has excelled in the study and development of microgravity fluid management technology. With the advent of space-based vehicles and systems, the use of and the ability to efficiently manage subcritical cryogens in the space environment has become necessary to our growing space program. The NASA Lewis Research Center is responsible for the planning and execution of a program which will provide advanced in-space cryogenic fluid management technology. A number of future space missions have been identified that will require or could benefit from this technology. These technology needs have been prioritized and the Cryogenic Fluid Management Flight Experiment (CFMFE) is being designed to provide the experimental data necessary for the technological development effort.

  6. Long term storage of cryogens in space

    NASA Technical Reports Server (NTRS)

    Fester, D. A.; Eberhardt, R. N.

    1982-01-01

    Experimental design procedures leading to the configuration of a space-based cryogenic fluids test system are reported. Large quantities of cryogenic fluids are expected to be required in space for cooling systems, chemical and electrical OTVs, and resupply tankers. The design was guided by the necessity for representative storage and supply systems to be compatible with the Shuttle. Consideration was given to liquid hydrogen, oxygen, methane, and argon containers and concommitant fluid dynamics, thermal, and structural analyses. A 5% initial ullage was included for the liquids, except for methane, which was calculated at 8.9%. The Ar, CH4, and O2 tanks were set at 12.5 cu m, while the H2 tank was 37.4 cu m. The orbital experiment is required to provide actual thermal stabilization lags in a zero-g environment. Details of the Cryogenic Fluid Management Facility test module for flight on board the Shuttle are presented.

  7. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  8. Spacelab 2 infrared telescope cryogenic system

    NASA Technical Reports Server (NTRS)

    Urban, E. W.; Katz, L.; Hendricks, J. B.; Karr, G. R.

    1979-01-01

    The paper discusses the development of a cryogenic helium system to provide cooling to a scanning infrared telescope for the Spacelab 2 mission. The infrared optical/detector system and related electronics are being developed by the Smithsonian Astrophysical Observatory and the University of Arizona. A superfluid helium dewar and porous plug phase separator permit gas cooling of the infrared focal plane assembly to about 2.5 K, and of the two telescope sections to 8 K and 60 K. The design of the cryogenic system,including a commandable vacuum cover, and the prelaunch liquid helium servicing and maintenance approach were discussed. It is concluded that the system will satisfy the Infrared Telescope requirements, and the superfluid helium system shall be capable of satisfying cryogenic helium cooled requirements for the next several years.

  9. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  10. Performance of Power Converters at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2001-01-01

    Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

  11. Conceptual design of the FRIB cryogenic system

    SciTech Connect

    Weisend II, J G; Bull, Brad; Burns, Chris; Fila, Adam; Kelley, Patrick; Laumer, Helmut; Mann, Thomas; McCartney, Allyn; Jones, S; Zeller, A

    2012-06-01

    The Facility for Rare Isotope Beams (FRIB) is a new nuclear science facility funded by the DOE Office of Science and Michigan State University (MSU). FRIB is currently under design and will be located on the MSU campus. The centerpiece of FRIB is a heavy ion linac utilizing superconducting RF cavities and magnets which in turn requires a large cryogenic system. The cryogenic system consists of a commercially produced helium refrigeration plant and an extensive distribution system. Superconducting components will operate at both 4.5 K and 2 K. This paper describes the conceptual design of the system including the expected heat loads and operating modes. The strategy for procuring a custom turnkey helium refrigeration plant from industry, an overview of the distribution system, the interface of the cryogenic system to the conventional facilities and the project schedule are also described.

  12. Designs of pulsed power cryogenic transformers

    SciTech Connect

    Singh, S.K.; Heyne, C.J.; Hackowrth, D.T.; Shestak, E.J.; Eckels, P.W.; Rogers, J.D.

    1988-03-01

    The Westinghouse Electric Corporation has completed designs of three pulsed power cryogenic transformers of three pulsed power cryogenic transformers for the Los Alamos National Laboratory. These transformers will be configured to transfer their stored energy sequentially to an electro-magnetic launcher and form a three-stage power supply. The pulse transformers will act as two winding energy storage solenoids which provide a high current and energy pulse compression by transforming a 50 kA power supply into a megamp level power supply more appropriate for the electromagnetic launcher duty. This system differs from more traditional transformer applications in that significant current levels do not exists simultaneously in the two windings of the pulse transformer. This paper describes the designs of the pulsed power cryogenic transformers.

  13. Rotating sample magnetometer for cryogenic temperatures and high magnetic fields.

    PubMed

    Eisterer, M; Hengstberger, F; Voutsinas, C S; Hörhager, N; Sorta, S; Hecher, J; Weber, H W

    2011-06-01

    We report on the design and implementation of a rotating sample magnetometer (RSM) operating in the variable temperature insert (VTI) of a cryostat equipped with a high-field magnet. The limited space and the cryogenic temperatures impose the most critical design parameters: the small bore size of the magnet requires a very compact pick-up coil system and the low temperatures demand a very careful design of the bearings. Despite these difficulties the RSM achieves excellent resolution at high magnetic field sweep rates, exceeding that of a typical vibrating sample magnetometer by about a factor of ten. In addition the gas-flow cryostat and the high-field superconducting magnet provide a temperature and magnetic field range unprecedented for this type of magnetometer. © 2011 American Institute of Physics

  14. Cryogenic performance of high-efficiency germanium immersion grating

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kaji, Sayumi; Kobayashi, Naoto; Sukegawa, Takashi; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-08-01

    Immersion gratings will play important roles for infrared astronomy in the next generation. We have been developing immersion gratings with a variety of kinds of materials and have succeeded in fabricating a high-efficiency germanium (Ge) immersion grating with both a reflection coating on the grating surface and an AR coating on the entrance surface. The grating will be installed in a K-, L-, and M-bands (2-5μm) high-resolution (R=80,000) spectrograph, VINROUGE, which is a prototype for the TMT MIR instrument. In this paper, we report the preliminary results on the evaluation of the Ge immersion grating. We confirmed that the peak absolute diffraction efficiency was in the range of 70-80%, which was as expected from the design, at both room and cryogenic temperatures.

  15. Scanning SQUID microscopy in a cryogen-free refrigerator

    NASA Astrophysics Data System (ADS)

    Schaefer, Brian T.; Low, David; Prawiroatmodjo, Guenevere E. D. K.; Nangoi, J. Kevin; Kim, Jihoon; Nowack, Katja C.

    With helium prices rising and supply becoming increasingly uncertain, it has become attractive to use dry cryostats with cryocoolers rather than liquid helium to reach low temperatures. However, a cryocooler introduces vibrations at the sample stage, making scanning probe experiments more challenging. Here, we report our progress on a superconducting quantum interference device (SQUID) microscope implemented for the first time in a compact, cryogen-free 5 K system. Our microscope is designed to reach submicron spatial resolution and a flux sensitivity of approximately 1 μΦ0 /√{ Hz} , where Φ0 is the magnetic flux quantum. To enable height feedback while approaching and scanning samples, we mount the SQUID on a quartz tuning fork. Our system promises to meet the capabilities of similar systems implemented in helium cryostats.

  16. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure relief valves only. (ii) Tanks in helium and atmospheric gas (except oxygen) cryogenic liquid service. For a tank used in helium and atmospheric gas (except oxygen) cryogenic liquid service, the tank... Pamphlet S-1.2. (ii) Tanks in helium and atmospheric gas (except oxygen) cryogenic liquid service....

  17. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure relief valves only. (ii) Tanks in helium and atmospheric gas (except oxygen) cryogenic liquid service. For a tank used in helium and atmospheric gas (except oxygen) cryogenic liquid service, the tank... Pamphlet S-1.2. (ii) Tanks in helium and atmospheric gas (except oxygen) cryogenic liquid service....

  18. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pressure relief valves only. (ii) Tanks in helium and atmospheric gas (except oxygen) cryogenic liquid service. For a tank used in helium and atmospheric gas (except oxygen) cryogenic liquid service, the tank... Pamphlet S-1.2. (ii) Tanks in helium and atmospheric gas (except oxygen) cryogenic liquid service....

  19. 49 CFR 173.318 - Cryogenic liquids in cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure relief valves only. (ii) Tanks in helium and atmospheric gas (except oxygen) cryogenic liquid service. For a tank used in helium and atmospheric gas (except oxygen) cryogenic liquid service, the tank... Pamphlet S-1.2. (ii) Tanks in helium and atmospheric gas (except oxygen) cryogenic liquid service....

  20. 21 CFR 882.4250 - Cryogenic surgical device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cryogenic surgical device. 882.4250 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4250 Cryogenic surgical device. (a) Identification. A cryogenic surgical device is a device used to destroy nervous tissue or...

  1. 21 CFR 882.4250 - Cryogenic surgical device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cryogenic surgical device. 882.4250 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4250 Cryogenic surgical device. (a) Identification. A cryogenic surgical device is a device used to destroy nervous tissue or...

  2. 21 CFR 882.4250 - Cryogenic surgical device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cryogenic surgical device. 882.4250 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4250 Cryogenic surgical device. (a) Identification. A cryogenic surgical device is a device used to destroy nervous tissue or...

  3. 21 CFR 882.4250 - Cryogenic surgical device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cryogenic surgical device. 882.4250 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4250 Cryogenic surgical device. (a) Identification. A cryogenic surgical device is a device used to destroy nervous tissue or...

  4. Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent

    2013-01-01

    Objectives: 1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration. 2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment. 3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment.

  5. 21 CFR 882.4250 - Cryogenic surgical device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cryogenic surgical device. 882.4250 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4250 Cryogenic surgical device. (a) Identification. A cryogenic surgical device is a device used to destroy nervous tissue or produce...

  6. Cryogenic system for the interferometric cryogenic gravitationalwave telescope, KAGRA - design, fabrication, and performance test -

    NASA Astrophysics Data System (ADS)

    Tokoku, C.; Kimura, N.; Koike, S.; Kume, T.; Sakakibara, Y.; Suzuki, T.; Yamamoto, K.; Chen, D.; Goto, S.; Tanaka, M.; Ioka, S.; Nakamoto, K.; Nezuka, H.; Uchiyama, T.; Ohashi, M.; Kuroda, K.

    2014-01-01

    KAGRA is the cryogenic interferometric gravitational wave telescope designed for the direct detection of gravitational waves from the astronomical sources. To achieve the best sensitivity, one of the most difficult challenges is cooling the mirrors to 20K to reduce the thermal noise. We developed four cryostats and sixteen very-low-vibration cryocooler units to accomplish our purpose. In this paper, we describe the outline of the cryogenic design and fabrication, and the results of the cryogenic performance test of the cryostats and cryocooler units.

  7. A cryogen-free variable temperature scanning tunneling microscope capable for inelastic electron tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    While low temperature scanning tunneling microscope (STM) has become an indispensable research tool in surface science, its versatility is yet limited by the shortage or high cost of liquid helium. The makeshifts include the use of alternative cryogen (such as liquid nitrogen) at higher temperature or the development of helium liquefier system usually at departmental or campus wide. The ultimate solution would be the direct integration of a cryogen-free cryocooler based on GM or pulse tube closed cycle in the STM itself. However, the nasty mechanical vibration at low frequency intrinsic to cryocoolers has set the biggest obstacle because of the known challenges in vibration isolation required to high performance of STM. In this talk, we will present the design and performance of our home-built cryogen-free variable temperature STM at Fudan University. This system can obtain atomically sharp STM images and high resolution dI/dV spectra comparable to state-of-the-art low temperature STMs, but with no limitation on running hours. Moreover, we demonstrated the inelastic tunneling spectroscopy (STM-IETS) on a single CO molecule with a cryogen-free STM for the first time.

  8. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy

    SciTech Connect

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    2016-06-15

    The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM images and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world.

  9. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy.

    PubMed

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    2016-06-01

    The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM images and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world.

  10. Control System For Cryogenic THD Layering At The National Ignition Facility

    SciTech Connect

    Fedorov, M; Blubaugh, J; Edwards, O; Mauvais, M; Sanchez, R; Wilson, B

    2011-03-18

    The National Ignition Facility (NIF) is the world largest and most energetic laser system for Inertial Confinement Fusion (ICF). In 2010, NIF began ignition experiments using cryogenically cooled targets containing layers of the tritium-hydrogen-deuterium (THD) fuel. The 75 {micro}m thick layer is formed inside of the 2 mm target capsule at temperatures of approximately 18 K. The ICF target designs require sub-micron smoothness of the THD ice layers. Formation of such layers is still an active research area, requiring a flexible control system capable of executing the evolving layering protocols. This task is performed by the Cryogenic Target Subsystem (CTS) of the NIF Integrated Computer Control System (ICCS). The CTS provides cryogenic temperature control with the 1 mK resolution required for beta-layering and for the thermal gradient fill of the capsule. The CTS also includes a 3-axis x-ray radiography engine for phase contrast imaging of the ice layers inside of the plastic and beryllium capsules. In addition to automatic control engines, CTS is integrated with the Matlab interactive programming environment to allow flexibility in experimental layering protocols. The CTS Layering Matlab Toolbox provides the tools for layer image analysis, system characterization and cryogenic control. The CTS Layering Report tool generates qualification metrics of the layers, such as concentricity of the layer and roughness of the growth boundary grooves. The CTS activities are automatically coordinated with other NIF controls in the carefully orchestrated NIF Shot Sequence.

  11. Origins of enhanced dielectric properties in titania-modified tantalum pentoxide ceramics

    NASA Astrophysics Data System (ADS)

    Brennecka, Geoffrey Lee

    Tantalum oxide (Ta2O5)-based materials are of interest for various applications, including dynamic random access memories (DRAMS) and thermal and environmental barrier coatings (TBCs, EBCs). Widespread use, however, has been limited due to practical difficulties in densification of ceramic forms, and a lack of basic understanding of structure-processing-property relationships for Ta2O5-based ceramics. The current research was designed to investigate these relationships and to determine the origins of a previously reported dielectric enhancement for TiO2 -modified Ta2O5. Rapid and expansive grain growth associated with the L⇒H-Ta 2O5 phase transformation was found to trap residual porosity, so sintering at temperatures below the transformation was required for full densification. A simple and effective solution-coated powder processing route was developed to enable reduced-temperature densification of chemically-homogeneous TiO2-modified H-Ta2O5 ceramics for the first time. A new crystal structure of H-Ta2O5 based upon extensive polyhedral edge-sharing was verified using high-resolution X-ray diffraction at the Advanced Photon Source. Simulated diffraction patterns matched data collected at up to 1500°C out to 2theta values equivalent to 110° (CuKalpha). In-situ XRD and Raman studies both revealed two distinct phase transformations during cooling from the high-temperature prototypic phase for specimens containing ≤5% TiO2, but only one transformation for specimens containing 8% TiO2, and revealed that the H-Ta2O5 form present at room temperature depended strongly upon TiO2 content. Dense and homogeneous specimens enabled the first detailed investigation into the electrical properties of TiO2-modified H-Ta2O 5 ceramics. Specimens containing 8% TiO2 exhibited dielectric constant (K) values of ˜280 at 20°C with tan delta values ˜0.01, but undoped specimens had tan delta values of ˜0.10 and DC resistivity values of <1011O·cm. Hyper-Raman spectroscopy revealed

  12. The new cryogenic facility at LMA

    NASA Astrophysics Data System (ADS)

    Degallaix, Jérôme; Flaminio, Raffaele; Forest, Danièle; Franc, Janyce; Gautier, Kevin; Granata, Massimo; Lagrange, Bernard; Michel, Christophe; Morgado, Nazario; Pinard, Laurent; Saracco, Emeline; Benoit, Quentin

    2012-06-01

    To support the research effort for the third generation of gravitational wave interferometers, the Laboratoire des Matériaux Avancés (LMA) at Lyon, France has developed a new cryogenic facility to characterize optics at low temperature. The new cryostat is installed in a clean room and allows samples to be cooled down to 10 Kelvin in around 12 hours. Currently, two independent experiments have been installed in the cryostat: the measure of the optical absorption of silicon and the measurement of the coating mechanical loss. After a short presentation of the cryogenic and optical setup, preliminary results from the optical absorption experiment will be presented.

  13. Photochemistry of chloropicrin in cryogenic matrices

    NASA Astrophysics Data System (ADS)

    Wade, Elisabeth A.; Reak, Kristina E.; Parsons, Bradley F.; Clemes, Thomas P.; Singmaster, Karen A.

    2002-11-01

    The photolysis of chloropicrin (CCl 3NO 2) was investigated in Ar and N 2 cryogenic matrices. The extent of reaction was monitored using FT-IR spectroscopy. Phosgene and nitrosyl chloride were the observed photoproducts at all wavelengths investigated (220, 251, 313, 365, and 405 nm). When the photolysis was performed with 220, 251, or 313 nm light, two additional bands were also observed. These bands have been assigned to CCl 3ONO. Chloropicrin was also photolyzed in the presence of O 2 and 18O2. 18O-labeled photoproducts were not detected in cryogenic matrices.

  14. Cryogenic fluid management experiment trunnion fatigue verification

    NASA Technical Reports Server (NTRS)

    Bailey, W. J.; Fester, D. A.; Toth, J. M., Jr.; Kasper, H. J.

    1983-01-01

    A subcritical liquid hydrogen orbital storage and transfer experiment was designed for flight in the Shuttle cargo bay. The Cryogenic Fluid Management Experiment (CFME) includes a liquid hydrogen tank supported in a vacuum jacket by two fiberglass epoxy trunnion mounts. This composite material was selected for the trunnions since it provides desirable strength, weight and thermal characteristics for supporting cryogenic tankage. An experimental program was conducted to provide material property and fatigue data for S-glass epoxy composite materials at ambient and liquid hydrogen temperatures and to verify structural integrity of the CFME trunnion supports.

  15. Resolving Ultrafast Heating of Dense Cryogenic Hydrogen

    NASA Astrophysics Data System (ADS)

    Zastrau, U.; Sperling, P.; Harmand, M.; Becker, A.; Bornath, T.; Bredow, R.; Dziarzhytski, S.; Fennel, T.; Fletcher, L. B.; Förster, E.; Göde, S.; Gregori, G.; Hilbert, V.; Hochhaus, D.; Holst, B.; Laarmann, T.; Lee, H. J.; Ma, T.; Mithen, J. P.; Mitzner, R.; Murphy, C. D.; Nakatsutsumi, M.; Neumayer, P.; Przystawik, A.; Roling, S.; Schulz, M.; Siemer, B.; Skruszewicz, S.; Tiggesbäumker, J.; Toleikis, S.; Tschentscher, T.; White, T.; Wöstmann, M.; Zacharias, H.; Döppner, T.; Glenzer, S. H.; Redmer, R.

    2014-03-01

    We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ˜0.9 ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.

  16. JWST NIRSpec Cryogenic Light Shield Mechanism

    NASA Technical Reports Server (NTRS)

    Hale, Kathleen; Sharma, Rajeev

    2006-01-01

    The focal plane detectors for the Near-Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST) require a light tight cover for calibration along with an open field-of-view during ground performance testing within a cryogenic dewar. In order to meet the light attenuation requirements and provide open and closed fields of view without breaking vacuum, a light shield mechanism was designed. This paper describes the details of the light shield mechanism design and test results. Included is information on the labyrinth light path design, motor capability and performance, dry film lubrication, mechanism control, and mechanism cryogenic performance results.

  17. Compact insert design for cryogenic pressure vessels

    DOEpatents

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.

  18. Cryogenic fluid management experiment trunnion fatigue verification

    NASA Technical Reports Server (NTRS)

    Bailey, W. J.; Fester, D. A.; Toth, J. M., Jr.; Kasper, H. J.

    1983-01-01

    A subcritical liquid hydrogen orbital storage and transfer experiment was designed for flight in the Shuttle cargo bay. The Cryogenic Fluid Management Experiment (CFME) includes a liquid hydrogen tank supported in a vacuum jacket by two fiberglass epoxy trunnion mounts. This composite material was selected for the trunnions since it provides desirable strength, weight and thermal characteristics for supporting cryogenic tankage. An experimental program was conducted to provide material property and fatigue data for S-glass epoxy composite materials at ambient and liquid hydrogen temperatures and to verify structural integrity of the CFME trunnion supports.

  19. Sorption cryogenic refrigeration - Status and future

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    The operation principles of sorption cryogenic refrigeration are discussed. Sorption refrigerators have virtually no wear-related moving parts, have negligible vibration, and offer extremely long life (at least ten years), making it possible to obtain efficient, long life and low vibration cooling to as low as 7 K for cryogenic sensors. The physisorption and chemisorption systems recommended for various cooling ranges down to 7 K are described in detail. For long-life cooling at 4-5 K temperatures, a hybrid chemisorption-mechanical refrigeration system is recommended.

  20. Cryogenic Quenching Process for Electronic Part Screening

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.; Cressler, John

    2011-01-01

    The use of electronic parts at cryogenic temperatures (less than 100 C) for extreme environments is not well controlled or developed from a product quality and reliability point of view. This is in contrast to the very rigorous and well-documented procedures to qualify electronic parts for mission use in the 55 to 125 C temperature range. A similarly rigorous methodology for screening and evaluating electronic parts needs to be developed so that mission planners can expect the same level of high reliability performance for parts operated at cryogenic temperatures. A formal methodology for screening and qualifying electronic parts at cryogenic temperatures has been proposed. The methodology focuses on the base physics of failure of the devices at cryogenic temperatures. All electronic part reliability is based on the bathtub curve, high amounts of initial failures (infant mortals), a long period of normal use (random failures), and then an increasing number of failures (end of life). Unique to this is the development of custom screening procedures to eliminate early failures at cold temperatures. The ability to screen out defects will specifically impact reliability at cold temperatures. Cryogenic reliability is limited by electron trap creation in the oxide and defect sites at conductor interfaces. Non-uniform conduction processes due to process marginalities will be magnified at cryogenic temperatures. Carrier mobilities change by orders of magnitude at cryogenic temperatures, significantly enhancing the effects of electric field. Marginal contacts, impurities in oxides, and defects in conductor/conductor interfaces can all be magnified at low temperatures. The novelty is the use of an ultra-low temperature, short-duration quenching process for defect screening. The quenching process is designed to identify those defects that will precisely (and negatively) affect long-term, cryogenic part operation. This quenching process occurs at a temperature that is at least

  1. Cryogenic propulsion for lunar and Mars missions

    NASA Technical Reports Server (NTRS)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  2. Design and testing of cryogenic target systems

    SciTech Connect

    Alexander, N B; Baugh, W A; Bernat, T P; Besenbruch, G E; Boline, K K; Brown, L C; Collins, G P; Gibson, C R; Goodin, D T; Harding, D R; Nobile, A; Schultz, K R; Steimke, R E

    1999-09-09

    General Atomics (GA) together with the University of Rochester/Laboratory for Laser Energetics (UR/LLE) and Los Alamos National Laboratory (LANL), has designed the OMEGA Cryogenic Target System. This system fills, cools, and layers DT targets and places them in the center of the OMEGA Target Chamber. All equipment was procured, assembled, and tested at GA and UR/LLE. GA along with Lawrence Livermore National Laboratory and LANL is designing a test unit to evaluate the key process parameters and design issues associated with fielding cryogenic targets on the National Ignition Facility.

  3. Adjustable expandable cryogenic piston and ring

    DOEpatents

    Mazur, Peter O.; Pallaver, Carl B.

    1980-01-01

    The operation of a reciprocating expansion engine for cryogenic refrigeration is improved by changing the pistons and rings so that the piston can be operated from outside the engine to vary the groove in which the piston ring is located. This causes the ring, which is of a flexible material, to be squeezed so that its contact with the wall is subject to external control. This control may be made manually or it may be made automatically in response to instruments that sense the amount of blow-by of the cryogenic fluid and adjust for an optimum blow-by.

  4. Comparative study of high voltage bushing designs suitable for apparatus containing cryogenic helium gas

    NASA Astrophysics Data System (ADS)

    Rodrigo, H.; Graber, L.; Kwag, D. S.; Crook, D. G.; Trociewitz, B.

    2013-10-01

    The high voltage bushing forms a critical part of any termination on cables, transformers and other power system devices. Cryogenic entities such as superconducting cables or fault current limiters add more complexity to the design of the bushing. Even more complex are bushings designed for superconducting devices which are cooled by high pressure helium gas. When looking for a bushing suitable for dielectric cable tests in a helium gas cryostat no appropriate device could be found that fulfilled the criterion regarding partial discharge inception voltage level. Therefore we decided to design and manufacture a bushing in-house. In the present work we describe the dielectric tests and operational experience on three types of bushings: One was a modified commercially available ceramics feed through which we adopted for our special need. The second bushing was made of an epoxy resin, with an embedded copper squirrel cage arrangement at the flange, extending down about 30 cm into the cold end of the bushing. This feature reduced the electric field on the surface of the bushing to a negligible value. The third bushing was based on a hollow body consisting of glass fiber reinforced polymer and stainless steel filled with liquid nitrogen. The measurements showed that the dielectric quality of all three bushings exceeded the requirements for the intended purpose. The partial discharge (PD) data from these studies will be used for the design and fabrication of a cable termination for a specialized application on board a US Navy ship.

  5. Wakefields in a Dielectric Tube with Frequency Dependent Dielectric Constant

    SciTech Connect

    Siemann, R.H.; Chao, A.W.; /SLAC

    2005-05-27

    Laser driven dielectric accelerators could operate at a fundamental mode frequency where consideration must be given to the frequency dependence of the dielectric constant when calculating wakefields. Wakefields are calculated for a frequency dependence that arises from a single atomic resonance. Causality is considered, and the effects on the short range wakefields are calculated.

  6. Fiber-Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging

    NASA Technical Reports Server (NTRS)

    Xu. Wei

    2010-01-01

    An innovative fiber-optic sensor has been developed for low-thrust-level settled mass gauging with measurement uncertainty <0.5 percent over cryogenic propellant tank fill levels from 2 to 98 percent. The proposed sensor uses a single optical fiber to measure liquid level and liquid distribution of cryogenic propellants. Every point of the sensing fiber is a point sensor that not only distinguishes liquid and vapor, but also measures temperature. This sensor is able to determine the physical location of each point sensor with 1-mm spatial resolution. Acting as a continuous array of numerous liquid/vapor point sensors, the truly distributed optical sensing fiber can be installed in a propellant tank in the same manner as silicon diode point sensor stripes using only a single feedthrough to connect to an optical signal interrogation unit outside the tank. Either water or liquid nitrogen levels can be measured within 1-mm spatial resolution up to a distance of 70 meters from the optical interrogation unit. This liquid-level sensing technique was also compared to the pressure gauge measurement technique in water and liquid nitrogen contained in a vertical copper pipe with a reasonable degree of accuracy. It has been demonstrated that the sensor can measure liquid levels in multiple containers containing water or liquid nitrogen with one signal interrogation unit. The liquid levels measured by the multiple fiber sensors were consistent with those virtually measured by a ruler. The sensing performance of various optical fibers has been measured, and has demonstrated that they can survive after immersion at cryogenic temperatures. The fiber strength in liquid nitrogen has also been measured. Multiple water level tests were also conducted under various actual and theoretical vibration conditions, and demonstrated that the signal-to-noise ratio under these vibration conditions, insofar as it affects measurement accuracy, is manageable and robust enough for a wide variety of

  7. Very high dielectric strength for dielectric elastomer actuators in liquid dielectric immersion

    NASA Astrophysics Data System (ADS)

    La, Thanh-Giang; Lau, Gih-Keong

    2013-05-01

    This letter reported that a dielectric elastomer actuator (3M VHB), which is immersed in a liquid dielectric bath, is enhanced tremendously in dielectric strength up to 800 MV/m, as compared to 450 MV/m for the actuator operated in air. The bath consists of silicone oil (Dow Corning Fluid 200 50cSt), which is 6.5 times more thermally conductive than air, and it is found able to maintain the actuator at a stable temperature. As a result, the oil-immersed dielectric elastomer actuator is prevented from local thermal runaway, which causes loss of electrical insulation, and consequently avoids the damage by electromechanical instability.

  8. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    SciTech Connect

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario; Zhang, Meiyun; Long, Shibing; Lian, Xiaojuan; Miao, Feng; Larcher, Luca; Wu, Ernest

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  9. Square dielectric THz waveguides.

    PubMed

    Aflakian, N; Yang, N; LaFave, T; Henderson, R M; O, K K; MacFarlane, D L

    2016-06-27

    A holey cladding dielectric waveguide with square cross section is designed, simulated, fabricated and characterized. The TOPAS waveguide is designed to be single mode across the broad frequency range of 180 GHz to 360 GHz as shown by finite-difference time domain simulation and to robustly support simultaneous TE and TM mode propagation. The square fiber geometry is realized by pulling through a heat distribution made square by appropriate furnace design. The transmitted mode profile is imaged using a vector network analyzer with a pinhole at the receiver module. Good agreement between the measured mode distribution and the calculated mode distribution is demonstrated.

  10. Inorganic optical dielectric films

    NASA Astrophysics Data System (ADS)

    Woollam, John A.

    1996-07-01

    Dielectric coatings have been in use for a very long time, yet today they represent a steadily growing wold-wide industry. A wide range of materials, and applications from the near ultraviolet into the infrared are in use, or under development. This paper is a brief survey, including references to the literature, and a discussion of materials diagnostics. Discussed is the microstructure, optical constants and their relationship as determined especially by optical measurements. This paper emphasizes the materials science aspects rather than applications.

  11. Low Dielectric Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2002-01-01

    This report summarizes results obtained from research funded through Research Cooperative Agreement No. NCC-1-01033-"Low Dielectric Polymers" (from 5/10/01 through 5/09/02). Results are reported in three of the proposed research areas (Tasks 1-3 in the original proposal): (1) Repeat and confirm the preparation and properties of the new alkyl-substituted PEK, 6HC17-PEK, (2) Prepare and evaluate polymers derived from a highly fluorinated monomer, and (3) Prepare and evaluate new silicon and/or fluorine-containing polymers expected to retain useful properties at low temperature.

  12. Heat loss analysis of a 10 kA warm dielectric HTS DC cable

    NASA Astrophysics Data System (ADS)

    Dai, Shaotao; Xiao, Liye; Teng, Yuping; Song, Naihao; Gao, Zhiyuan; Zhu, Zhiqing; Liang, Xueming; Cao, Zhicheng; Zhang, Dong; Ma, Tao; Zhang, Hongen; Lin, Liangzhen

    2014-09-01

    A 10 kA/360 m warm-dielectric high-temperature superconducting direct current (DC) power cable system (10 kA cable), supported jointly the Chinese government and industrial enterprise, was developed and has been operating as a branch circuit to transmit power for a 320 kA aluminum electrolyzing production line for more than 10 months at an industrial plant in central China. Both the 10 kA cable and its supporting system of the cable system are introduced. The cryogenic system for the 10 kA cable adopts closed loop and the sub-cooled liquid nitrogen is forced to flow inside by a pump. The design of corrugated cryogenic envelope pipe is modularized and every independent module has two standardized joints, which makes it easy to integrate with the other pipes and the terminations. The heat loss sources and the structure including both the termination and the cryogenic envelope pipe of the 10 kA cable are discussed. The total heat loss of the 10 kA cable excluding the loss of cryogenic pipe for liquid nitrogen backward flowing is designed to be less than 1698 W at 10 kA, and the heat loss was compared and discussed with that of the aluminum bar. The field test and commissioning of the cable show that the 10 kA cable performs steadily and its heat loss is less than the expected value.

  13. Structural and dielectric study of parylene C thin films

    NASA Astrophysics Data System (ADS)

    Kahouli, A.; Sylvestre, A.; Ortega, L.; Jomni, F.; Yangui, B.; Maillard, M.; Berge, B.; Robert, J.-C.; Legrand, J.

    2009-04-01

    α, β, and γ relaxation mechanisms have been identified in semicrystalline (45% of crystallinity) parylene-C (-H2C-C6H3Cl-CH2-)n films. C-Cl bonds induce the β-relaxation and explain increase in the dielectric constant as the frequency decreases in usual temperatures of operation for devices incorporating parylene-C. At cryogenic temperature (<-20 °C), γ-relaxation is assigned to the local motions of phenyl groups. Both β and γ relaxation processes obey an Arrhenius law with activation energy Ea(β)=91.7 kJ/mole and Ea(γ)=8.68 kJ/mole. α-relaxation associated with cooperative segmental motions of the (-H2C-∅-CH2-)n chains is observed with a peak at 10-2 Hz for T =80 °C and follows a Vogel-Fulcher-Tamman-Hesse law.

  14. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    SciTech Connect

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-03-16

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented.

  15. Research on On-Orbit Storage Scheme of Cryogenic Propellant

    NASA Astrophysics Data System (ADS)

    Xiaolin, Dong

    2016-07-01

    For manned deep space explorations as lunar and mars exploration,the cryogenic propellant is required to be on-orbit for a long time, from several days to years. However, because of the low boiling point of cryogenic propellant, it is easy to be boiled off. We should pay attention to the heat transfer path and influencing factors of cryogenic propellant on-orbit storage. This Paper proposed a scheme of cryogenic propellant on-orbit storage and gave an analysis of the key technologies, in order to promote the on-orbit application of cryogenic propellant.

  16. Method of measuring heat influx of a cryogenic transfer system

    DOEpatents

    Niemann, Ralph C.; Zelipsky, Steven A.; Rezmer, Ronald R.; Smelser, Peter

    1981-01-01

    A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

  17. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  18. Microwave Propagation in Dielectric Fluids.

    ERIC Educational Resources Information Center

    Lonc, W. P.

    1980-01-01

    Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)

  19. Microwave Propagation in Dielectric Fluids.

    ERIC Educational Resources Information Center

    Lonc, W. P.

    1980-01-01

    Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)

  20. Effect of entry of subcooled cryogen on thermal stratification in a cryogenic storage tank

    NASA Technical Reports Server (NTRS)

    Wang, Pao-lien

    1995-01-01

    The purpose of this study was to predict if subcooled cryogenic liquid entering the bottom of a storage tank will destroy the thermal stratification of the tank. After an extensive literature search, a formula for maximum critical Reynolds Number which used to predict the destratification of a cryogenic tank was found. Example of calculations and graphics to determine the mixing of fluid in the tank were presented.