Science.gov

Sample records for resolution ct scan

  1. Artifacts and pitfalls of high-resolution CT scans.

    PubMed

    Hahn, F J; Chu, W K; Anderson, J C; Dobry, C A

    1985-01-01

    Artifacts on CT images have been observed since the introduction of CT scanners. Some artifacts have been corrected with the improvement of technology and better understanding of the image formation and reconstruction algorithms. Some artifacts, however, are still observable in state-of-the-art high-resolution scans. Many investigations on CT artifacts have been reported. Some artifacts are obvious and some are similar to patterns commonly associated with pathological conditions. The present report summarizes some of the causes of artifacts and presents some artifacts that mimic pathology on clinical scans of the head and spine. It is the intention of this report to bring these artifacts and potential pitfalls to the attention of the radiologists so that misinterpretation can be avoided.

  2. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  3. Dual-resolution image reconstruction for region-of-interest CT scan

    NASA Astrophysics Data System (ADS)

    Jin, S. O.; Shin, K. Y.; Yoo, S. K.; Kim, J. G.; Kim, K. H.; Huh, Y.; Lee, S. Y.; Kwon, O.-K.

    2014-07-01

    In ordinary CT scan, so called full field-of-view (FFOV) scan, in which the x-ray beam span covers the whole section of the body, a large number of projections are necessary to reconstruct high resolution images. However, excessive x-ray dose is a great concern in FFOV scan. Region-of-interest (ROI) scan is a method to visualize the ROI in high resolution while reducing the x-ray dose. But, ROI scan suffers from bright-band artifacts which may hamper CT-number accuracy. In this study, we propose an image reconstruction method to eliminate the band artifacts in the ROI scan. In addition to the ROI scan with high sampling rate in the view direction, we get FFOV projection data with much lower sampling rate. Then, we reconstruct images in the compressed sensing (CS) framework with dual resolutions, that is, high resolution in the ROI and low resolution outside the ROI. For the dual-resolution image reconstruction, we implemented the dual-CS reconstruction algorithm in which data fidelity and total variation (TV) terms were enforced twice in the framework of adaptive steepest descent projection onto convex sets (ASD-POCS). The proposed method has remarkably reduced the bright-band artifacts at around the ROI boundary, and it has also effectively suppressed the streak artifacts over the entire image. We expect the proposed method can be greatly used for dual-resolution imaging with reducing the radiation dose, artifacts and scan time.

  4. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... 2016:chap 133. Radiologyinfo.org. Computed tomography (CT) - abdomen and pelvis. Updated June 16, 2016. www.radiologyinfo. ...

  5. Detection accuracy of condylar defects in cone beam CT images scanned with different resolutions and units

    PubMed Central

    Zhang, Z-l; Shi, X-q; Ma, X-c

    2014-01-01

    Objectives: To assess the impact of spatial resolution and cone beam CT (CBCT) unit on CBCT images for the detection accuracy of condylar defects. Methods: 42 temporomandibular joints were scanned, respectively, with the CBCT units ProMax® 3D (Planmeca Oy, Helsinki, Finland) and DCT PRO (Vatech, Co., Ltd., Yongin-Si, Republic of Korea) at normal and high resolutions. Seven dentists evaluated all the test images with respect to the presence or the absence of condylar defects. Receiver operating characteristic curve analysis was employed to define the detection accuracy. Two-way analysis of variance was used to analyse the values under the receiver operating characteristic curves for the differences among imaging groups and observers. Intraobserver variation was analysed using the Wilcoxon test. Results: Macroscopic anatomy examination revealed that, of the 42 temporomandibular joint condylar surfaces, 18 were normal and 24 had defects on the surface of condyles. No significant differences were found between the images scanned with normal and high resolutions for both CBCT units ProMax 3D (p = 0.119) and DCT PRO (p = 0.740). Significant differences exist between image groups of DCT PRO and ProMax 3D (p < 0.05). Neither the inter- nor the intraobserver variability were significant. Conclusions: The spatial resolution per se did not have an impact on the detection accuracy of condylar defects. The detection accuracy of condylar defects highly depends on the CBCT unit used for examination. PMID:24408818

  6. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... creates detailed pictures of the body, including the pelvis and areas near the pelvis. The test may ...

  7. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... on film. Three-dimensional (3D) models of the leg can be created by adding the slices together. ...

  8. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  9. Technical aspects of CT scanning.

    PubMed

    Maravilla, K R; Pastel, M S

    1978-01-01

    The advent of computed tomography (CT) has initiated a technological revolution which continues to the present time. A brief review of basic principles of CT scanning is presented, and the evolution of modern CT scanner systems is traced. Some early indications of future trends are also presented.

  10. Children, CT Scan and Radiation

    PubMed Central

    Bajoghli, Morteza; Bajoghli, Farshad; Tayari, Nazila; Rouzbahani, Reza

    2010-01-01

    Children are more sensitive to radiation than adults. Computerized tomography (CT) consists of 25 % of all medical imaging. It was estimated that more than 2% of all carcinomas in the USA are due to CT scans. There is an ongoing focus on the reduction of CT scan radiation dose. Awareness about risk-benefits of CT has increased. Reduction of radiological exam is an important issue because the accumulation effects of radiation can be hazardous. In addition, proper protocol should be followed for diagnostic procedures of ionization radiation and computerized tomography. Effective radiation dose should range from 0.8 to 10.5 millisievert. The same protocol should be followed in different hospitals as well. Basic principles of radiation protection should be monitored. As much as possible, both technician and radiologist must be present during computerized tomography for children, and MRI and ultrasound should be replaced if possible. PMID:21566776

  11. CT Scans - Multiple Languages: MedlinePlus

    MedlinePlus

    ... الأشعة المقطعية الحاسوبية - العربية Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) CT (Computerized Tomography) Scan CT ( ... 扫描 - 简体中文 (Chinese - Simplified) Bilingual PDF Health Information Translations Chinese - Traditional (繁體中文) CT (Computerized Tomography) Scan CT ( ...

  12. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  13. Multislice helical CT: image temporal resolution.

    PubMed

    Hui, H; Pan, T; Shen, Y

    2000-05-01

    A multislice helical computed tomography (CT) halfscan (HS) reconstruction algorithm is proposed for cardiac applications. The imaging performances (in terms of the temporal resolution, z-axis resolution, image noise, and image artifacts) of the HS algorithm are compared to the existing algorithms using theoretical models and clinical data. A theoretical model of the temporal resolution performance (in terms of the temporal sensitivity profile) is established for helical CT, in general, i.e., for any number of detector rows and any reconstruction algorithm used. It is concluded that the HS reconstruction results in improved image temporal resolution than the corresponding 180 degrees LI (linear interpolation) reconstruction and is more immune to the inconsistent data problem induced by cardiac motions. The temporal resolution of multislice helical CT with the HS algorithm is comparable to that of single-slice helical CT with the HS algorithm. In practice, the 180 degrees LI and HS-LI algorithms can be used in parallel to generate two image sets from the same scan acquisition, one (180 degrees LI) for improved z-resolution and noises, and the other (HS-LI) for improved image temporal resolution.

  14. Reconstructing high-resolution climate using CT scanning of unsectioned stalagmites: A case study identifying the mid-Holocene onset of the Mediterranean climate in southern Iberia

    NASA Astrophysics Data System (ADS)

    Walczak, Izabela W.; Baldini, James U. L.; Baldini, Lisa M.; McDermott, Frank; Marsden, Stuart; Standish, Christopher D.; Richards, David A.; Andreo, Bartolomé; Slater, Jonathan

    2015-11-01

    The forcing mechanisms responsible for the mid-Holocene onset of the Mediterranean-type climate in south-western Europe are currently unclear, but understanding these is critical for accurate climate projections under future greenhouse gas warming. Additionally, regional studies that present conflicting patterns for the onset and advancement of Mediterranean climatic conditions complicate definitively ascribing causality. Here, we use a new high resolution stalagmite density record obtained non-destructively using Computed Tomography (CT scanning) to reconstruct southern Iberian climate between 9.3 and 2.9 ka BP. We suggest that stalagmite density can be used as a water-excess proxy, with lower densities associated with more variable drip rates, possibly reflecting increased seasonality consistent with expectations from previous studies of speleothem textures and crystal fabrics. Our results reveal an early Holocene humid interval and mid-Holocene year-round aridity that preceded the onset of Mediterranean climate at 5.3 ka BP in southern Iberia. Using this new dataset combined with previously published results, we link the gradual advancement of the Mediterranean climate to the southward migration of the North Atlantic Subtropical High induced by an orbitally driven decrease in Northern Hemisphere insolation. Future anthropogenic warming could result in a reversal of this trend, a northward migration of the North Atlantic Subtropical High, and a return to year-round aridity in south-western Europe.

  15. Resolution-enhancing hybrid, spectral CT reconstruction

    NASA Astrophysics Data System (ADS)

    Clark, D. P.; Badea, C. T.

    2016-04-01

    Spectral x-ray imaging based on photon-counting x-ray detectors (PCXD) is an area of growing interest. By measuring the energy of x-ray photons, a spectral CT system can better differentiate elements using a single scan. However, the spatial resolution achievable with most PCXDs limits their application, particularly in preclinical CT imaging. Consequently, our group is developing a hybrid micro-CT scanner based on a high-resolution, energy-integrating (EID) detector and a lower-resolution, PCXD. To complement this system, we propose and demonstrate a hybrid, spectral CT reconstruction algorithm which robustly combines the spectral contrast of the PCXD with the spatial resolution of the EID. Specifically, the high-resolution, spectrally resolved data (X) is recovered as the sum of two matrices: one with low column rank (XL) determined from the EID data and one with intensity gradient sparse columns (XS) corresponding to the upsampled spectral contrast obtained from the PCXD data. We test the proposed algorithm in a feasibility study focused on molecular imaging of atherosclerotic plaque using activatable iodine and gold nanoparticles. The results show accurate estimation of material concentrations at increased spatial resolution for a voxel size ratio between the PCXD and the EID of 500 μm3:100 μm3. Specifically, regularized, iterative reconstruction of the MOBY mouse phantom around the K-edges of iodine (33.2 keV) and gold (80.7 keV) reduces the reconstruction error by more than a factor of three relative to least-squares, algebraic reconstruction. Likewise, the material decomposition accuracy into iodine, gold, calcium, and water improves by more than a factor of two.

  16. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  17. Re-scan confocal microscopy: scanning twice for better resolution.

    PubMed

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  18. CT scan correlates of gesture recognition.

    PubMed Central

    Ferro, J M; Martins, I P; Mariano, G; Caldas, A C

    1983-01-01

    The ability to recognise gestures was studied in 65 left-hemispheric stroke patients whose lesions were located by CT scan. In the acute stage (first month) frontal lobe and basal ganglia were frequently involved in patients showing inability to recognise gestures. In the later (third to fourth month) and chronic stages (greater than 6 months) parietal lobe involvement was important; lesions causing gesture recognition impairment were larger, had more extensive and frequent parietal involvement and produced less temporal lobe damage than those causing aural comprehension defects. These findings are discussed in the light of recent models of cerebral localisation of complex functions. Images PMID:6644319

  19. Dynamic CT scanning of spinal column trauma

    SciTech Connect

    Brown, B.M.; Brant-Zawadzki, M.; Cann, C.E.

    1982-12-01

    Dynamic sequential computed tomographic scanning with automatic table incrementation uses low milliampere-second technique to eliminate tube cooling delays between scanning slices and, thus, markedly shortens examination times. A total of 25 patients with spinal column trauma involving 28 levels were studied with dynamic scans and retrospectively reviewed. Dynamic studies were considerably faster than conventional spine examinations and yielded reliable diagnosis. Bone disruption and subluxation was accurately evaluated, and the use of intrathecal metrizamide in low doses allowed direct visualization of spinal cord or radicular compromise. Multiplanar image reformation was aided by the dynamic incrementation technique, since motion between slices (and the resulting misregistration artifact on image reformation) was minimized. A phantom was devised to test spatial resolution of computed tomography for objects 1-3 mm in size and disclosed minimal differences for dynamic and conventional computed tomographic techniques in resolving medium-to-high-contrast objects.

  20. High resolution CT mammography for surgical biopsy specimens

    SciTech Connect

    Raptopoulos, V.; Baum, J.K.; Hochman, M.; Houlihan, M.J.

    1996-03-01

    Our goal was to assess the performance of high resolution CT on breast biopsy specimens before considering the reevaluation of refined CT techniques in patients with breast abnormalities. High resolution CT was done in 44 surgical biopsy specimens following conventional X-ray specimen mammography. The specimens comprised 38 palpable and nonpalpable soft tissue abnormalities with mean size of 19 mm and 6 specimens with clustered microcalcifications only. There were 21 carcinomas, 10 fibroadenomas, and 13 other benign conditions. Evaluation of CT and conventional images was done separately, and a feature-grading list was used to compare the two modalities. In fatty specimens, grading of morphologic features of masses and the confidence to detect a soft tissue abnormality were equal with both techniques. CT significantly improved the confidence to detect a mass in 17 specimens with dense tissue: On a scale of 0-10, the mean score for detection was 3.8 with radiography and 5.8 with CT (p < 0.008). For clustered microcalcifications, X-ray was superior to CT. The mean CT attenuation of 18 malignant masses (82 HU) was significantly lower than the mean attenuation of 10 fibroadenomas (131 HU; p = 0.003). CT scans of the American College of Radiology test phantom met the requirements for X-ray accreditation. For soft tissue abnormalities, CT specimen mammography performed equally as or better than specimen radiography. These in vitro results suggest potential advantages for increased sensitivity and specificity with CT and justify further investigations. 25 refs., 4 figs.

  1. Evolution of spatial resolution in breast CT at UC Davis

    SciTech Connect

    Gazi, Peymon M.; Yang, Kai; Burkett, George W.; Aminololama-Shakeri, Shadi; Anthony Seibert, J.; Boone, John M.

    2015-04-15

    Purpose: Dedicated breast computed tomography (bCT) technology for the purpose of breast cancer screening has been a focus of research at UC Davis since the late 1990s. Previous studies have shown that improvement in spatial resolution characteristics of this modality correlates with greater microcalcification detection, a factor considered a potential limitation of bCT. The aim of this study is to improve spatial resolution as characterized by the modulation transfer function (MTF) via changes in the scanner hardware components and operational schema. Methods: Four prototypes of pendant-geometry, cone-beam breast CT scanners were designed and developed spanning three generations of design evolution. To improve the system MTF in each bCT generation, modifications were made to the imaging components (x-ray tube and flat-panel detector), system geometry (source-to-isocenter and detector distance), and image acquisition parameters (technique factors, number of projections, system synchronization scheme, and gantry rotational speed). Results: Characterization of different generations of bCT systems shows these modifications resulted in a 188% improvement of the limiting MTF properties from the first to second generation and an additional 110% from the second to third. The intrinsic resolution degradation in the azimuthal direction observed in the first generation was corrected by changing the acquisition from continuous to pulsed x-ray acquisition. Utilizing a high resolution detector in the third generation, along with modifications made in system geometry and scan protocol, resulted in a 125% improvement in limiting resolution. An additional 39% improvement was obtained by changing the detector binning mode from 2 × 2 to 1 × 1. Conclusions: These results underscore the advancement in spatial resolution characteristics of breast CT technology. The combined use of a pulsed x-ray system, higher resolution flat-panel detector and changing the scanner geometry and image

  2. Evolution of spatial resolution in breast CT at UC Davis

    PubMed Central

    Gazi, Peymon M.; Yang, Kai; Burkett, George W.; Aminololama-Shakeri, Shadi; Anthony Seibert, J.; Boone, John M.

    2015-01-01

    Purpose: Dedicated breast computed tomography (bCT) technology for the purpose of breast cancer screening has been a focus of research at UC Davis since the late 1990s. Previous studies have shown that improvement in spatial resolution characteristics of this modality correlates with greater microcalcification detection, a factor considered a potential limitation of bCT. The aim of this study is to improve spatial resolution as characterized by the modulation transfer function (MTF) via changes in the scanner hardware components and operational schema. Methods: Four prototypes of pendant-geometry, cone-beam breast CT scanners were designed and developed spanning three generations of design evolution. To improve the system MTF in each bCT generation, modifications were made to the imaging components (x-ray tube and flat-panel detector), system geometry (source-to-isocenter and detector distance), and image acquisition parameters (technique factors, number of projections, system synchronization scheme, and gantry rotational speed). Results: Characterization of different generations of bCT systems shows these modifications resulted in a 188% improvement of the limiting MTF properties from the first to second generation and an additional 110% from the second to third. The intrinsic resolution degradation in the azimuthal direction observed in the first generation was corrected by changing the acquisition from continuous to pulsed x-ray acquisition. Utilizing a high resolution detector in the third generation, along with modifications made in system geometry and scan protocol, resulted in a 125% improvement in limiting resolution. An additional 39% improvement was obtained by changing the detector binning mode from 2 × 2 to 1 × 1. Conclusions: These results underscore the advancement in spatial resolution characteristics of breast CT technology. The combined use of a pulsed x-ray system, higher resolution flat-panel detector and changing the scanner geometry and image

  3. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    SciTech Connect

    Neuwelt, E.A.; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-10-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. In eight of the 19 patients who had seizures after barrier disruption and enhanced CT scan, four subsequently had repeat procedures monitored by radionuclide scan alone. In only one of these patients was further seizure activity noted; a single focal motor seizure was observed. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented.

  4. Intracranial extramedullary hematopoiesis. CT and bone marrow scan findings

    SciTech Connect

    Urman, M.; O'Sullivan, R.A.; Nugent, R.A.; Lentle, B.C. )

    1991-06-01

    This case concerns a patient with intracranial extramedullary hematopoiesis (EH) suspected on a CT scan and subsequently confirmed with In-111 chloride and Tc-99m SC bone marrow scans. The bone marrow scans also provided additional information by demonstrating other sites of EH in the paravertebral tissues and bone marrow expansion into the distal extremities.

  5. Doctors Should Bone Up on CT Scan Cancer Risks

    MedlinePlus

    ... Medicine. For the study, the researchers surveyed doctors, radiologists and imaging technologists about radiation exposure from CT scans. They found the vast majority knew that one abdominal-pelvic CT increases patients' risk for cancer. But many didn't know how the dose ...

  6. Resolution and noise trade-off analysis for volumetric CT

    SciTech Connect

    Li Baojun; Avinash, Gopal B.; Hsieh, Jiang

    2007-10-15

    Until recently, most studies addressing the trade-off between spatial resolution and quantum noise were performed in the context of single-slice CT. In this study, we extend the theoretical framework of previous works to volumetric CT and further extend it by taking into account the actual shapes of the preferred reconstruction kernels. In the experimental study, we also attempt to explore a three-dimensional approach for spatial resolution measurement, as opposed to the conventional two-dimensional approaches that were widely adopted in previously published studies. By scanning a finite-sized sphere phantom, the MTF was measured from the edge profile along the spherical surface. Cases of different resolutions (and noise levels) were generated by adjusting the reconstruction kernel. To reduce bias, the total photon fluxes were matched: 120 kVp, 200 mA, and 1 s per gantry rotation. All data sets were reconstructed using a modified FDK algorithm under the same condition: Scan field-of-view (SFOV)=10 cm, and slice thickness=0.625 mm. The theoretical analysis indicated that the variance of noise is proportional to >4th power of the spatial resolution. Our experimental results supported this conclusion by showing the relationship is 4.6th (helical) or 5th (axial) power.

  7. Resolution and noise trade-off analysis for volumetric CT.

    PubMed

    Li, Baojun; Avinash, Gopal B; Hsieh, Jiang

    2007-10-01

    Until recently, most studies addressing the trade-off between spatial resolution and quantum noise were performed in the context of single-slice CT. In this study, we extend the theoretical framework of previous works to volumetric CT and further extend it by taking into account the actual shapes of the preferred reconstruction kernels. In the experimental study, we also attempt to explore a three-dimensional approach for spatial resolution measurement, as opposed to the conventional two-dimensional approaches that were widely adopted in previously published studies. By scanning a finite-sized sphere phantom, the MTF was measured from the edge profile along the spherical surface. Cases of different resolutions (and noise levels) were generated by adjusting the reconstruction kernel. To reduce bias, the total photon fluxes were matched: 120 kVp, 200 mA, and 1 s per gantry rotation. All data sets were reconstructed using a modified FDK algorithm under the same condition: Scan field-of-view (SFOV) = 10 cm, and slice thickness = 0.625 mm. The theoretical analysis indicated that the variance of noise is proportional to > 4th power of the spatial resolution. Our experimental results supported this conclusion by showing the relationship is 4.6th (helical) or 5th (axial) power.

  8. Exploring miniature insect brains using micro-CT scanning techniques.

    PubMed

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  9. Exploring miniature insect brains using micro-CT scanning techniques.

    PubMed

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-02-24

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures.

  10. Exploring miniature insect brains using micro-CT scanning techniques

    PubMed Central

    Smith, Dylan B.; Bernhardt, Galina; Raine, Nigel E.; Abel, Richard L.; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  11. Measuring temporal resolution of cardiac CT reconstructions

    NASA Astrophysics Data System (ADS)

    Matthews, David; Heuscher, Dominic

    2005-04-01

    Multi-slice CT today is capable of imaging the heart with excellent temporal resolution. Algorithms have been developed to perform reconstructions combining data from multiple cardiac cycles. This paper presents a simulation phantom that enables a direct measurement of the actual temporal resolution achieved by these algorithms. This is not only useful for assessing the temporal resolution but also for validating the algorithms themselves. A simulation phantom was developed that consists of a 20 cm. diameter water phantom containing an array of cylinders whose intensities are pulsed for various durations ranging from 10 msec. to 250 msec. The intensity varied between the background value of water (0 HU) and 800 HU. By measuring the nominal attenuation value at the center of each cylinder, a curve can be derived representing the response over the given temporal range. A temporal resolution representing the FWHM value is determined based on the half-max value of this curve. Reconstructions were performed using a multi-cycle cardiac algorithm described previously in the literature. The measured FWHM values agree quite well to the temporal resolution predicted by the cardiac algorithm itself. Even the variation along the longitudinal axis can be accounted for by the predicted values. A simulated phantom can be used to accurately assess the temporal resolution of cardiac reconstruction algorithms. Excellent agreement was achieved between the predicted and measured temporal resolution values for the multi-cycle algorithm used in this study.

  12. High resolution obtained by photoelectric scanning techniques.

    NASA Technical Reports Server (NTRS)

    Hall, J. S.

    1972-01-01

    Several applications of linear scanning of different types of objects are described; examples include double stars, satellites, the Red Spot of Jupiter and a landing site on the moon. This technique allows one to achieve a gain of about an order of magnitude in resolution over conventional photoelectric techniques; it is also effective in providing sufficient data for removing background effects and for the application of deconvolution procedures. Brief consideration is given to two-dimensional scanning, either at the telescope or of electronographic images in the laboratory. It is suggested that some of the techniques described should be given serious consideration for space applications.

  13. Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR)

    NASA Astrophysics Data System (ADS)

    Wang, Tonghe; Zhu, Lei

    2016-09-01

    Conventional dual-energy CT (DECT) reconstruction requires two full-size projection datasets with two different energy spectra. In this study, we propose an iterative algorithm to enable a new data acquisition scheme which requires one full scan and a second sparse-view scan for potential reduction in imaging dose and engineering cost of DECT. A bilateral filter is calculated as a similarity matrix from the first full-scan CT image to quantify the similarity between any two pixels, which is assumed unchanged on a second CT image since DECT scans are performed on the same object. The second CT image from reduced projections is reconstructed by an iterative algorithm which updates the image by minimizing the total variation of the difference between the image and its filtered image by the similarity matrix under data fidelity constraint. As the redundant structural information of the two CT images is contained in the similarity matrix for CT reconstruction, we refer to the algorithm as structure preserving iterative reconstruction (SPIR). The proposed method is evaluated on both digital and physical phantoms, and is compared with the filtered-backprojection (FBP) method, the conventional total-variation-regularization-based algorithm (TVR) and prior-image-constrained-compressed-sensing (PICCS). SPIR with a second 10-view scan reduces the image noise STD by a factor of one order of magnitude with same spatial resolution as full-view FBP image. SPIR substantially improves over TVR on the reconstruction accuracy of a 10-view scan by decreasing the reconstruction error from 6.18% to 1.33%, and outperforms TVR at 50 and 20-view scans on spatial resolution with a higher frequency at the modulation transfer function value of 10% by an average factor of 4. Compared with the 20-view scan PICCS result, the SPIR image has 7 times lower noise STD with similar spatial resolution. The electron density map obtained from the SPIR-based DECT images with a second 10-view scan has an

  14. Multimodal imaging of the human temporal bone: A comparison of CT and optical scanning techniques

    NASA Astrophysics Data System (ADS)

    Voie, Arne H.; Whiting, Bruce; Skinner, Margaret; Neely, J. Gail; Lee, Kenneth; Holden, Tim; Brunsden, Barry

    2003-10-01

    A collaborative effort between Washington University in St. Louis and Spencer Technologies in Seattle, WA has been undertaken to create a multimodal 3D reconstruction of the human cochlea and vestibular system. The goal of this project is to improve the accuracy of in vivo CT reconstructions of implanted cochleae, and to expand the knowledge of high-resolution anatomical detail provided by orthogonal-plane optical sectioning (OPFOS). At WUSL, computed tomography (CT) images of the cochlea are used to determine the position of cochlear implant electrodes relative to target auditory neurons. The cochlear implant position is determined using pre- and post-operative CT scans. The CT volumes are cross-registered to align the semicircular canals and internal auditory canal, which have a unique configuration in 3-D space. The head of a human body donor was scanned with a clinical CT device, after which the temporal bones were removed, fixed in formalin and trimmed prior to scanning with a laboratory Micro CT scanner. Following CT, the temporal bones were sent to the OPFOS Imaging Lab at Spencer Technologies for a further analysis. 3-D reconstructions of CT and OPFOS imaging modalities were compared, and results are presented. [Work supported by NIDCD Grants R44-03623-5 and R01-00581-13.

  15. State-of-the-art in CT hardware and scan modes for cardiovascular CT

    PubMed Central

    Halliburton, Sandra; Arbab-Zadeh, Armin; Dey, Damini; Einstein, Andrew J.; Gentry, Ralph; George, Richard T.; Gerber, Thomas; Mahesh, Mahadevappa; Weigold, Wm. Guy

    2013-01-01

    Multidetector row computed tomography (CT) allows noninvasive anatomic and functional imaging of the heart, great vessels, and the coronary arteries. In recent years, there have been several advances in CT hardware, which have expanded the clinical utility of CT for cardiovascular imaging; such advances are ongoing. This review article from the Society of Cardiovascular Computed Tomography (SCCT) Basic and Emerging Sciences and Technology (BEST) Working Group summarizes the technical aspects of current state-of-the-art CT hardware and describes the scan modes this hardware supports for cardiovascular CT imaging. PMID:22551595

  16. CT Scan of NASA Booster Nozzle

    SciTech Connect

    Schneberk, D; Perry, R; Thompson, R

    2004-07-27

    We scanned a Booster Nozzle for NASA with our 9 meV LINAC, AmSi panel scanner. Three scans were performed using different filtering schemes and different positions of the nozzle. The results of the scan presented here are taken from the scan which provided the best contrast and lowest noise of the three. Our inspection data shows a number of indications of voids in the outer coating of rubber/carbon. The voids are mostly on the side of the nozzle, but a few small voids are present at the ends of the nozzle. We saw no large voids in the adhesive layer between the Aluminum and the inner layer of carbon. This 3D inspection data did show some variation in the size of the adhesive layer, but none of the indications were larger than 3 pixels in extent (21 mils). We have developed a variety of contour estimation and extraction techniques for inspecting small spaces between layers. These tools might work directly on un-sectioned nozzles since the circular contours will fit with our tools a little better. Consequently, it would be useful to scan a full nozzle to ensure there are no untoward degradations in data quality, and to see if our tools would work to extract the adhesive layer.

  17. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    SciTech Connect

    Neuwelt, E.A; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-10-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented.

  18. CT Scanning Imaging Method Based on a Spherical Trajectory.

    PubMed

    Chen, Ping; Han, Yan; Gui, Zhiguo

    2016-01-01

    In industrial computed tomography (CT), the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object's complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning.

  19. CT Scanning Imaging Method Based on a Spherical Trajectory

    PubMed Central

    2016-01-01

    In industrial computed tomography (CT), the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object’s complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning. PMID:26934744

  20. [Usefulness of CT scan in the diagnosis of pulmonary aspergilloma].

    PubMed

    Gea, J; Arán, X; Sauleda, J; Broquetas, J M; Alegret, X; Bartrina, J

    1991-05-01

    Early diagnosis and precise anatomical localization of aspergillomas are essential for an effective treatment of their complications. We have evaluated the usefulness of thorax CT scan in the fulfillment of these objectives. Nine consecutive patients were studied with a presumable diagnosis of pulmonary aspergilloma. A thorax CT scan was performed in all patients (sections every 5 to 10 mm) in lying position and with lateral mobilizations. This technique allowed to rule out as fibrotic lesions some of the images previously attributed to mycetomas by conventional X-ray. On the other hand it helped to identify small size aspergillomas, to precise their localization and to demonstrate the possible communication between the main cavity and bronchial tree. In three patients who died in the period immediately following the study an excellent correlation between CT scan and underlying pathological lesions was observed. PMID:1891635

  1. [Examination of motion artifacts for helical and non-helical scanning modes in head CT].

    PubMed

    Fujimura, Ichiro; Ichikawa, Katsuhiro; Terakawa, Shoichi; Hara, Takanori; Miura, Yohei

    2011-01-01

    For head computed tomography (CT), non-helical scanning has been recommended even in the widely used multi-slice CT (MSCT). Also, an acute stroke imaging standardization group has recommended the non-helical mode in Japan. However, no detailed comparison has been reported for current MSCT with more than 16 slices. In this study, we compared the non-helical and helical modes for head CT, focusing on temporal resolution and motion artifacts. The temporal resolution was evaluated by using temporal sensitivity profiles (TSPs) measured using a temporal impulse method. In both modes, the TSPs and temporal modulation transfer factors (MTFs) were measured for various pitch factors using 64-slice CT (Aquilion 64, Toshiba). Two motion phantoms were scanned to evaluate motion artifacts, and then quantitative analyses for motion artifacts and helical artifacts were performed by measuring multiple regions of interest (ROIs) in the phantom images. In addition, the rates of artifact occurrence for retrospective clinical cases were compared. The temporal resolution increased as the pitch factor was increased. Remarkable streak artifacts appeared in the non-helical images of the motion phantom, in spite of the equivalent effective temporal resolution. In clinical analysis, results consistent with the phantom studies were shown. These results indicated that the low pitch helical mode would be effective for emergency head CT with patient movement.

  2. Digital radiographic localization for CT scanning of the larynx

    SciTech Connect

    Silverman, P.M.; Korobkin, M.; Rauch, R.F.

    1983-12-01

    Computed tomography (CT) of the larynx is the preferred method for staging laryngeal carcinoma and assessing the extent of injury from trauma. The standard method of examination consists of 5 mm contiguous scans throughout the larynx in quiet respiration. Scans are performed with the patient supine with the neck slightly extended allowing the long axis of the larynx to be perpendicular to the scanning plane. A complete examination requires scanning from the supraglottic region (level of hyoid bone) to the subglottic region (level of cricoid cartlage). In the authors' experience when this method is used, multiple scans are performed cephalad to the level of interest because no upper limit of the examination is established before transaxial scans are done. We have used the lateral digital radiograph of the neck to identify specific landmarks so that the upper and lower limets of the examination can be established before scanning.

  3. Treatment of Alzheimer Disease With CT Scans

    PubMed Central

    Moore, Eugene R.; Hosfeld, Victor D.; Nadolski, David L.

    2016-01-01

    Alzheimer disease (AD) primarily affects older adults. This neurodegenerative disorder is the most common cause of dementia and is a leading source of their morbidity and mortality. Patient care costs in the United States are about 200 billion dollars and will more than double by 2040. This case report describes the remarkable improvement in a patient with advanced AD in hospice who received 5 computed tomography scans of the brain, about 40 mGy each, over a period of 3 months. The mechanism appears to be radiation-induced upregulation of the patient’s adaptive protection systems against AD, which partially restored cognition, memory, speech, movement, and appetite. PMID:27103883

  4. Comparison of full-scan and half-scan for cone beam breast CT imaging

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Lai, Chao-jen; Altunbas, Mustafa C.; Wang, Tianpeng; Tu, Shu-ju; Liu, Xinming

    2006-03-01

    The half-scan cone beam technique, requiring a scan for 180° plus detector width only, can help achieve both shorter scan time as well as higher exposure in each individual projection image. This purpose of this paper is to investigate whether half-scan cone beam CT technique can provide acceptable images for clinical application. The half-scan cone beam reconstruction algorithm uses modified Parker's weighting function and reconstructs from slightly more than half of the projection views for full-scan, giving out promising results. A rotation phantom, stationary gantry bench top system was built to conduct experiments to evaluate half-scan cone beam breast CT technique. A post-mastectomy breast specimen, a stack of lunch meat slices embedded with various sizes of calcifications and a polycarbonate phantom inserted with glandular and adipose tissue equivalents are imaged and reconstructed for comparison study. A subset of full-scan projection images of a mastectomy specimen were extracted and used as the half-scan projection data for reconstruction. The results show half-scan reconstruction algorithm for cone beam breast CT images does not significantly degrade image quality when compared with the images of same or even half the radiation dose level. Our results are encouraging, emphasizing the potential advantages in the use of half-scan technique for cone beam breast imaging.

  5. [MRI and CT-scan in presumed benign ovarian tumors].

    PubMed

    Thomassin-Naggara, I; Bazot, M

    2013-12-01

    Radiological examinations are required for the assessment of complex or indeterminate ovarian masses, mainly using MRI and CT-scan. MRI provides better tissue characterization than Doppler ultrasound or CT-scan (LE2). Pelvic MRI is recommended in case of an indeterminate or complex ovarian ultrasonographic mass (grade B). The protocol of a pelvic MRI should include morphological T1 and T2 sequences (grade B). In case of solid portion, perfusion and diffusion sequences are recommended (grade C). In case of doubt about the diagnosis of ovarian origin, pelvic MRI is preferred over the CT-scan (grade C). MRI is the technique of choice for the difference between functional and organic ovarian lesion diagnosis (grade C). It can be useful in case of clinical diagnostic uncertainty between polycystic ovary syndrome and ovarian hyperstimulation and multilocular ovarian tumor syndrome (grade C). No MRI classification for ovarian masses is currently validated. The establishment of a presumption of risk of malignancy is required in a MRI report of adnexal mass with if possible a guidance on the histological diagnosis. In the absence of clinical or sonographic diagnosis, pelvic CT-scan is recommended in the context of acute painful pelvic mass in non-pregnant patients (grade C). It specifies the anomalies and allows the differential diagnosis with digestive and urinary diseases (LE4). Given the lack of data in the literature, the precautionary principle must be applied to the realization of a pelvic MRI in a pregnant patient. A risk-benefit balance should be evaluated case by case by the clinician and the radiologist and information should be given to the patient. In an emergency situation during pregnancy, pelvic MRI is an alternative to CT-scan for the exploration of acute pelvic pain in case of uncertain sonographic diagnosis (grade C).

  6. Thromboembolic Complications Following Spine Surgery Assessed with Spiral CT Scans

    PubMed Central

    Kim, Han Jo; Walcott-Sapp, Sarah; Adler, Ronald S.; Pavlov, Helene; Boachie-Adjei, Oheneba

    2010-01-01

    Spine surgery is associated with a significant risk of postoperative pulmonary embolism (PE) and/or deep vein thrombosis (DVT). The goal of this study was to determine which symptoms and risk factors were associated with spiral CT scans positive for PE and/or DVT in the postoperative spine surgery patient. We conducted a retrospective review of all spine patients who underwent a postoperative CT to rule out PE during the period of March 2004–February 2006. The type of surgical procedure, risk factors, symptoms prompting scan ordering, anticoagulation, and treatment were recorded. Logistic regression models were used to determine significant predictors of a positive CT in this patient population. Of the 3,331 patients that had spine surgery during the study period, 130 (3.9%) had a spiral CT scan to rule out PE and/or proximal DVT. Thirty-three of the 130 (25.4%) CT scans were positive for PE only, five (3.8%) for PE and DVT, and three (2.3%) for DVT only. Only 24.5% (32) patients had risk factors for thromboembolic disease, and of these, a history of PE and/or DVT was the only significant risk factor for a positive scan (p = 0.03). No presenting symptoms or demographic variables were noted to have a significant association with PE and/or DVT. The type of surgical procedure (i.e., anterior, posterior, and percutaneous) was not associated with an increased risk for PE and/or DVT. Patients who are undergoing spine surgery with a history of thromboembolic disease should be carefully monitored postoperatively and may benefit from more aggressive prophylaxis. PMID:22294955

  7. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans.

    PubMed

    Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les

    2015-12-01

    We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.

  8. Interobserver discrepancies in distance measurements from lumbar spine CT scans

    SciTech Connect

    Beers, G.J.; Carter, A.P.; Leiter, B.E.; Tilak, S.P.; Shah, R.R.

    1985-02-01

    Lumbar spine computed tomographic (CT) scans of 10 patients were examined independently at two levels by five experienced radiologists. At each level the minimum midline sagittal diameter was measured, and at each intervertebral space the left foramen was measured for its minimum diameter. Statistically significant differences were found between the measurements of different observers, differences that in a number of cases could have led to disagreement over whether or not stenosis was present. There were reasonably strong correlations between different observers' readings of midline sagittal diameters but generally not of foraminal diameters. Reasons for discrepancies between observers in spine CT measurements are reviewed briefly.

  9. Interactive annotation of textures in thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Kockelkorn, Thessa T. J. P.; de Jong, Pim A.; Gietema, Hester A.; Grutters, Jan C.; Prokop, Mathias; van Ginneken, Bram

    2010-03-01

    This study describes a system for interactive annotation of thoracic CT scans. Lung volumes in these scans are segmented and subdivided into roughly spherical volumes of interest (VOIs) with homogeneous texture using a clustering procedure. For each 3D VOI, 72 features are calculated. The observer inspects the scan to determine which textures are present and annotates, with mouse clicks, several VOIs of each texture. Based on these annotations, a k-nearest-neighbor classifier is trained, which classifies all remaining VOIs in the scan. The algorithm then presents a slice with suggested annotations to the user, in which the user can correct mistakes. The classifier is retrained, taking into account these new annotations, and the user is presented another slice for correction. This process continues until at least 50% of all lung voxels in the scan have been classified. The remaining VOIs are classified automatically. In this way, the entire lung volume is annotated. The system has been applied to scans of patients with usual and non-specific interstitial pneumonia. The results of interactive annotation are compared to a setup in which the user annotates all predefined VOIs manually. The interactive system is 3.7 times as fast as complete manual annotation of VOIs and differences between the methods are similar to interobserver variability. This is a first step towards precise volumetric quantitation of texture patterns in thoracic CT in clinical research and in clinical practice.

  10. Scan mirrors relay for high resolution laser scanning systems

    NASA Astrophysics Data System (ADS)

    Kessler, David

    2014-09-01

    Two dimensional beam deflection is often required in medical laser scanning systems such as OCT or confocal microscopy. Commonly two linear galvo mirrors are used for performance in terms of their large apertures and scan angles. The galvo mirrors are placed at the vicinity of entrance pupil of the scan lens with a "displacement distance" separating them. This distance limits the scan fields and/or reduces the effective aperture of the scan lens. Another option is to use a beam or pupil relay, and image one galvo mirror onto the other. However, beam (or pupil) relays are notoriously complicated, expensive and can add significant aberrations. This paper discusses a simple, all reflective, diffraction limited, color corrected, beam relay, capable of large scan angles and large deflecting mirrors. The design is based on a unique combination of an Offner configuration with a Schmidt aspheric corrector. The design is highly corrected up to large scan mirrors and large scan angles down to milliwaves of aberrations. It allows significantly larger scan field and or scan lenses with higher numerical aperture as compared with scanners using galvos separated by the displacement distance. While this relay is of exceptionally high performance, it has one element located where the beam is focused which may present a problem for high power lasers. Thus modifications of the above design are introduced where the beam is focused in mid air thus making it usable for high power systems such including laser marking and fabrication systems.

  11. Improvement in CT image resolution due to the use of focal spot deflection and increased sampling.

    PubMed

    Rubert, Nicholas; Szczykutowicz, Timothy; Ranallo, Frank

    2016-01-01

    When patient anatomy is positioned away from a CT scanner's isocenter, scans of limited diagnostic value may result. Yet in some cases, positioning of patient anatomy far from isocenter is unavoidable. This study examines the effect of posi-tion and reconstruction algorithm on image resolution achieved by a CT scanner operating in a high resolution (HR) scan mode which incorporates focal spot deflection and acquires an increased number of projections per rotation. Images of a metal bead contained in a phantom were acquired on a GE CT750 HD scanner with multiple reconstruction algorithms, in the normal and HR scan mode, and at two positions, scanner isocenter and 15 cm directly above isocenter. The images of the metal bead yielded two-dimensional point spread functions which were averaged along two perpendicular directions to yield line spread functions. Fourier transforms of the line spread functions yielded radial and azimuthal modulation transfer functions (MTFs). At isocenter, the radial and azimuthal MTFs were aver-aged. MTF improvement depended on image position and modulation direction. The results from a single algorithm, Edge, can be generalized to other algorithms. At isocenter, the 10% MTF cutoff was 14.4 cycles/cm in normal and HR mode. At 15 cm above isocenter, the 10% cutoff was 6.0 and 8.5 cycles/cm for the azimuthal and radial MTFs in normal mode. In HR mode, the azimuthal and radial MTF 10% cutoff was 8.3 and 10.3 cycles/cm. Our results indicate that the best image resolu-tion is achieved at scanner isocenter and that the azimuthal resolution degrades more significantly than the radial resolution. For the GE CT750 HD CT scanner, the resolution is significantly enhanced by the HR scan mode away from scanner isocenter, and the use of the HR scan mode has much more of an impact on image resolution away from isocenter than the choice of algorithm.

  12. The autonomic orienting response and CT scan findings in schizophrenia.

    PubMed

    Schnur, D B; Bernstein, A S; Mukherjee, S; Loh, J; Degreef, G; Reidel, J

    1989-01-01

    CT scan measures of prefrontal sulcal prominence, parieto-occipital sulcal prominence, ventricle-brain ratio (VBR), and third ventricle width (TVW) were examined in 24 schizophrenic patients who were grouped on the basis of their autonomic orienting response (OR) status. A two-component definition of the OR was used that required concordance across both electrodermal and finger pulse volume components for response status assignment. The nine OR responders had significantly greater TVW than the 15 OR nonresponders. Although OR responders had higher values also on the other CT scan measures, these differences were not significant. These findings are consistent with the possibility that OR responsiveness and nonresponsiveness are related to different pathological dimensions of schizophrenia. PMID:2487186

  13. Semi-automatic classification of textures in thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Kockelkorn, Thessa T. J. P.; de Jong, Pim A.; Schaefer-Prokop, Cornelia M.; Wittenberg, Rianne; Tiehuis, Audrey M.; Gietema, Hester A.; Grutters, Jan C.; Viergever, Max A.; van Ginneken, Bram

    2016-08-01

    The textural patterns in the lung parenchyma, as visible on computed tomography (CT) scans, are essential to make a correct diagnosis in interstitial lung disease. We developed one automatic and two interactive protocols for classification of normal and seven types of abnormal lung textures. Lungs were segmented and subdivided into volumes of interest (VOIs) with homogeneous texture using a clustering approach. In the automatic protocol, VOIs were classified automatically by an extra-trees classifier that was trained using annotations of VOIs from other CT scans. In the interactive protocols, an observer iteratively trained an extra-trees classifier to distinguish the different textures, by correcting mistakes the classifier makes in a slice-by-slice manner. The difference between the two interactive methods was whether or not training data from previously annotated scans was used in classification of the first slice. The protocols were compared in terms of the percentages of VOIs that observers needed to relabel. Validation experiments were carried out using software that simulated observer behavior. In the automatic classification protocol, observers needed to relabel on average 58% of the VOIs. During interactive annotation without the use of previous training data, the average percentage of relabeled VOIs decreased from 64% for the first slice to 13% for the second half of the scan. Overall, 21% of the VOIs were relabeled. When previous training data was available, the average overall percentage of VOIs requiring relabeling was 20%, decreasing from 56% in the first slice to 13% in the second half of the scan.

  14. Colitis detection on abdominal CT scans by rich feature hierarchies

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Lay, Nathan; Wei, Zhuoshi; Lu, Le; Kim, Lauren; Turkbey, Evrim; Summers, Ronald M.

    2016-03-01

    Colitis is inflammation of the colon due to neutropenia, inflammatory bowel disease (such as Crohn disease), infection and immune compromise. Colitis is often associated with thickening of the colon wall. The wall of a colon afflicted with colitis is much thicker than normal. For example, the mean wall thickness in Crohn disease is 11-13 mm compared to the wall of the normal colon that should measure less than 3 mm. Colitis can be debilitating or life threatening, and early detection is essential to initiate proper treatment. In this work, we apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals to detect potential colitis on CT scans. Our method first generates around 3000 category-independent region proposals for each slice of the input CT scan using selective search. Then, a fixed-length feature vector is extracted from each region proposal using a CNN. Finally, each region proposal is classified and assigned a confidence score with linear SVMs. We applied the detection method to 260 images from 26 CT scans of patients with colitis for evaluation. The detection system can achieve 0.85 sensitivity at 1 false positive per image.

  15. High resolution scanning electron microscopy of plasmodesmata.

    PubMed

    Brecknock, Sarah; Dibbayawan, Teresa P; Vesk, Maret; Vesk, Peter A; Faulkner, Christine; Barton, Deborah A; Overall, Robyn L

    2011-10-01

    Symplastic transport occurs between neighbouring plant cells through functionally and structurally dynamic channels called plasmodesmata (PD). Relatively little is known about the composition of PD or the mechanisms that facilitate molecular transport into neighbouring cells. While transmission electron microscopy (TEM) provides 2-dimensional information about the structural components of PD, 3-dimensional information is difficult to extract from ultrathin sections. This study has exploited high-resolution scanning electron microscopy (HRSEM) to reveal the 3-dimensional morphology of PD in the cell walls of algae, ferns and higher plants. Varied patterns of PD were observed in the walls, ranging from uniformly distributed individual PD to discrete clusters. Occasionally the thick walls of the giant alga Chara were fractured, revealing the surface morphology of PD within. External structures such as spokes, spirals and mesh were observed surrounding the PD. Enzymatic digestions of cell wall components indicate that cellulose or pectin either compose or stabilise the extracellular spokes. Occasionally, the PD were fractured open and desmotubule-like structures and other particles were observed in their central regions. Our observations add weight to the argument that Chara PD contain desmotubules and are morphologically similar to higher plant PD.

  16. TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections

    SciTech Connect

    Wang, T; Zhu, L

    2014-06-15

    Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction from very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.

  17. Double-low protocol for hepatic dynamic CT scan

    PubMed Central

    Zhang, Xiuli; Li, Shaodong; Liu, Wenlou; Huang, Ning; Li, Jingjing; Cheng, Li; Xu, Kai

    2016-01-01

    Abstract The radiation-induced carcinogenesis from computed tomography (CT) and iodine contrast agent induced nephropathy has attracted international attention. The reduction of the radiation dose and iodine intake in CT scan is always a direction for researchers to strive. The purpose of this study was to evaluate the feasibility of a “double-low” (i.e., low tube voltage and low-dose iodine contrast agent) scanning protocol for dynamic hepatic CT with the adaptive statistical iterative reconstruction (ASIR) in patients with a body mass index (BMI) of 18.5 to 27.9 kg/m2. A total of 128 consecutive patients with a BMI between 18.5 and 27.9 kg/m2 were randomly assigned into 3 groups according to tube voltage, iodine contrast agent, and reconstruction algorithms. Group A (the “double-low” protocol): 100 kVp tube voltage with 40% ASIR, iodixanol at 270 mg I/mL, group B: 120 kVp tube voltage with filtered back projection (FBP), iodixanol at 270 mg I/ mL, and group C: 120 kVp tube voltage with FBP, ioversol at 350 mg I/ mL. The volume CT dose index (CTDIvol) and effective dose (ED) in group A were lower than those in group B and C (all P < 0.01). The iodine intake in group A was decreased by approximately 26.5% than group C, whereas no statistical difference was observed between group A and B (P > 0.05). There was no significant difference of the CT values between group A and C (P > 0.05), which both showed higher CT values than that in group B (P < 0.001). However, no statistic difference was observed in the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), and image-quality scores among the 3 groups (all P > 0.05). Near-perfect consistency of the evaluation for group A, B, and C (Kenall's W = 0.921, 0.874, and 0.949, respectively) was obtained by the 4 readers with respect to the overall image quality. These results suggested that the “double-low” protocol with ASIR algorithm for multi-phase hepatic CT scan

  18. Variation of quantitative emphysema measurements from CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Henschke, Claudia I.; Barr, R. Graham; Yankelevitz, David F.

    2008-03-01

    Emphysema is a lung disease characterized by destruction of the alveolar air sacs and is associated with long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema, and several measures have been introduced for the quantification of the extent of disease. In this paper we compare these measures for repeatability over time. The measures of interest in this study are emphysema index, mean lung density, histogram percentile, and the fractal dimension. To allow for direct comparisons, the measures were normalized to a 0-100 scale. These measures have been computed for a set of 2,027 scan pairs in which the mean interval between scans was 1.15 years (σ: 93 days). These independent pairs were considered with respect to three different scanning conditions (a) 223 pairs where both were scanned with a 5 mm slice thickness protocol, (b) 695 with the first scanned with the 5 mm protocol and the second with a 1.25 mm protocol, and (c) 1109 pairs scanned both times using a 1.25 mm protocol. We found that average normalized emphysema index and histogram percentiles scores increased by 5.9 and 11 points respectively, while the fractal dimension showed stability with a mean difference of 1.2. We also found, a 7 point bias introduced for emphysema index under condition (b), and that the fractal dimension measure is least affected by scanner parameter changes.

  19. Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?

    SciTech Connect

    Nattenmüller, Johanna Filsinger, Matthias Bryant, Mark Stiller, Wolfram Radeleff, Boris Grenacher, Lars Kauczor, Hans-Ullrich Hosch, Waldemar

    2013-06-19

    PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % in drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.

  20. Volumetric expiratory high-resolution CT of the lung.

    PubMed

    Nishino, Mizuki; Hatabu, Hiroto

    2004-11-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001).

  1. Quantitative analysis of CT scans of ceramic candle filters

    SciTech Connect

    Ferer, M.V.; Smith, D.H.

    1996-12-31

    Candle filters are being developed to remove coal ash and other fine particles (<15{mu}m) from hot (ca. 1000 K) gas streams. In the present work, a color scanner was used to digitize hard-copy CT X-ray images of cylindrical SiC filters, and linear regressions converted the scanned (color) data to a filter density for each pixel. These data, with the aid of the density of SiC, gave a filter porosity for each pixel. Radial averages, density-density correlation functions, and other statistical analyses were performed on the density data. The CT images also detected the presence and depth of cracks that developed during usage of the filters. The quantitative data promise to be a very useful addition to the color images.

  2. High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.

    2012-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection

  3. Light scattering in optical CT scanning of Presage dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Adamovics, J.; Cheeseborough, J. C.; Chao, K. S.; Wuu, C. S.

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS" optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  4. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. These views depict vertical slices from side to middle of a flight specimen. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.

  5. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from a series of horizontal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.

  6. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view depict horizontal slices from top to bottom of a flight specimen. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.

  7. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the specimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from three orthogonal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: Los Alamos National Laboratory and the University of Colorado at Boulder).

  8. Multi-detector row CT scanning in Paleoanthropology at various tube current settings and scanning mode.

    PubMed

    Badawi-Fayad, J; Yazbeck, C; Balzeau, A; Nguyen, T H; Istoc, A; Grimaud-Hervé, D; Cabanis, E- A

    2005-12-01

    The purpose of this study was to determine the optimal tube current setting and scanning mode for hominid fossil skull scanning, using multi-detector row computed tomography (CT). Four fossil skulls (La Ferrassie 1, Abri Pataud 1, CroMagnon 2 and Cro-Magnon 3) were examined by using the CT scanner LightSpeed 16 (General Electric Medical Systems) with varying dose per section (160, 250, and 300 mAs) and scanning mode (helical and conventional). Image quality of two-dimensional (2D) multiplanar reconstructions, three-dimensional (3D) reconstructions and native images was assessed by four reviewers using a four-point grading scale. An ANOVA (analysis of variance) model was used to compare the mean score for each sequence and the overall mean score according to the levels of the scanning parameters. Compared with helical CT (mean score=12.03), the conventional technique showed sustained poor image quality (mean score=4.17). With the helical mode, we observed a better image quality at 300 mAs than at 160 in the 3D sequences (P=0.03). Whereas in native images, a reduction in the effective tube current induced no degradation in image quality (P=0.05). Our study suggests a standardized protocol for fossil scanning with a 16 x 0.625 detector configuration, a 10 mm beam collimation, a 0.562:1 acquisition mode, a 0.625/0.4 mm slice thickness/reconstruction interval, a pitch of 5.62, 120 kV and 300 mAs especially when a 3D study is required.

  9. Multi-detector row CT scanning in Paleoanthropology at various tube current settings and scanning mode.

    PubMed

    Badawi-Fayad, J; Yazbeck, C; Balzeau, A; Nguyen, T H; Istoc, A; Grimaud-Hervé, D; Cabanis, E- A

    2005-12-01

    The purpose of this study was to determine the optimal tube current setting and scanning mode for hominid fossil skull scanning, using multi-detector row computed tomography (CT). Four fossil skulls (La Ferrassie 1, Abri Pataud 1, CroMagnon 2 and Cro-Magnon 3) were examined by using the CT scanner LightSpeed 16 (General Electric Medical Systems) with varying dose per section (160, 250, and 300 mAs) and scanning mode (helical and conventional). Image quality of two-dimensional (2D) multiplanar reconstructions, three-dimensional (3D) reconstructions and native images was assessed by four reviewers using a four-point grading scale. An ANOVA (analysis of variance) model was used to compare the mean score for each sequence and the overall mean score according to the levels of the scanning parameters. Compared with helical CT (mean score=12.03), the conventional technique showed sustained poor image quality (mean score=4.17). With the helical mode, we observed a better image quality at 300 mAs than at 160 in the 3D sequences (P=0.03). Whereas in native images, a reduction in the effective tube current induced no degradation in image quality (P=0.05). Our study suggests a standardized protocol for fossil scanning with a 16 x 0.625 detector configuration, a 10 mm beam collimation, a 0.562:1 acquisition mode, a 0.625/0.4 mm slice thickness/reconstruction interval, a pitch of 5.62, 120 kV and 300 mAs especially when a 3D study is required. PMID:16211320

  10. Scanning electron microscope and micro-CT evaluation of cranial sutures in health and disease.

    PubMed

    Anderson, Peter J; Netherway, David J; David, David J; Self, Peter

    2006-09-01

    Current knowledge of suture biology has been ascertained as a result of morphological studies of normal cranial sutures (and rarely those undergoing craniosynostosis). These were initially undertaken often using histological investigations, or more recently using CT scans, as investigative tools, but have often used animal models. However, recent technological advances have provided the potential to refine our understanding of the ultrastructure by the use of new advanced scanning technology, which offers the possibility of more detailed resolution. Our aim was to undertake detailed scans of normal, fusing and fused sutures from patients with craniosynosotosis affecting different sutures, to study the detailed structure at different stages of the fusion process using a modern micro-CT scanner and a microanalytical scanning electron microscope. We wished to include in our study all the human sutures because previous studies have mostly been undertaken using the sagittal suture. Ten sutures from seven patients have revealed a complex ultra-structural arrangement. The different patterns of bone ridging seen on the ectocranial and endocranial surfaces of the fused sagittal suture were not repeated on closer inspection of either fused coronal or lambdoid sutures. Elemental analysis confirmed that the amount of calcium increased and the amount of carbon decreased as sampled areas moved away from the suture margin. We conclude that scanning allowed detailed assessment and revealed the complex arrangement of the structure of the human cranial sutures and those undergoing the process of craniosynostosis, with some differences in final structure depending on the affected suture.

  11. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients

    SciTech Connect

    Wolthaus, Jochem; Schneider, Christoph; Sonke, Jan-Jakob; Herk, Marcel van; Belderbos, Jose; Rossi, Maddalena; Lebesque, Joos V.; Damen, Eugene M.F. . E-mail: e.damen@nki.nl

    2006-08-01

    Purpose: Four-dimensional (4D) respiration-correlated imaging techniques can be used to obtain (respiration) artifact-free computed tomography (CT) images of the thorax. Current radiotherapy planning systems, however, do not accommodate 4D-CT data. The purpose of this study was to develop a simple, new concept to incorporate patient-specific motion information, using 4D-CT scans, in the radiotherapy planning process of lung cancer patients to enable smaller error margins. Methods and Materials: A single CT scan was selected from the 4D-CT data set. This scan represented the tumor in its time-averaged position over the respiratory cycle (the mid-ventilation CT scan). To select the appropriate CT scan, two methods were used. First, the three-dimensional tumor motion was analyzed semiautomatically to calculate the mean tumor position and the corresponding respiration phase. An alternative automated method was developed to select the correct CT scan using the diaphragm motion. Results: Owing to hysteresis, mid-ventilation selection using the three-dimensional tumor motion had a tumor position accuracy (with respect to the mean tumor position) better than 1.1 {+-} 1.1 mm for all three directions (inhalation and exhalation). The accuracy in the diaphragm motion method was better than 1.1 {+-} 1.1 mm. Conventional free-breathing CT scanning had an accuracy better than 0 {+-} 3.9 mm. The mid-ventilation concept can result in an average irradiated volume reduction of 20% for tumors with a diameter of 40 mm. Conclusion: Tumor motion and the diaphragm motion method can be used to select the (artifact-free) mid-ventilation CT scan, enabling a significant reduction of the irradiated volume.

  12. To Scan or not to Scan: Consideration of Medical Benefit in the Justification of CT Scanning.

    PubMed

    McCollough, Cynthia H

    2016-03-01

    While there are ongoing debates with regard to the level of risk, if any, associated with medical imaging, the benefits from medical imaging exams are well documented. This forum article looks at outcome-based medical studies and guidance from expert panels in an effort to bring the benefits of medical imaging, specifically CT imaging, into focus. The position is taken that imaging, medical, and safety communities must not continue to discuss small hypothetical risks from ionizing radiation without emphasizing the large well-documented benefits from medical imaging exams that use ionizing radiation. PMID:26808885

  13. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    SciTech Connect

    Hu, Jianzhong; Cao, Yong; Wu, Tianding; Li, Dongzhe; Lu, Hongbin

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord was clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.

  14. Scanning multiple samples simultaneously in tube-based microCT systems

    NASA Astrophysics Data System (ADS)

    Stock, S. R.; Rajamannan, N. M.; Spelsberg, T. C.; Malayannan, S.; Riaz, R.; Polavarapu, M.; Hsu, E. L.; Hsu, W., K.; Chen, Yan; Zhang, Ming

    2010-09-01

    The world-wide explosion of commercial microComputed Tomography (microCT) system emplacement has led to dayin, day-out access to laboratory scanners. Most biologically-oriented microCT facilities must characterize large numbers of samples rapidly at moderate spatial resolution (e.g., 10-20 μm isotropic volume elements, voxels). Scanning multiple specimens simultaneously is one efficient solution. Sample positioning is critical if the region of interest of each specimen is to be imaged without increasing the number of slices recorded (i.e., data acquisition and reconstruction times). Three very different, multiple sample data acquisitions are reported: mouse heart tissue calcification, rat spinal fusion and mouse tibial bone cancer models

  15. Image Resolution in Scanning Transmission Electron Microscopy

    SciTech Connect

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  16. Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow.

    PubMed

    Quadrio, Maurizio; Pipolo, Carlotta; Corti, Stefano; Messina, Francesco; Pesci, Chiara; Saibene, Alberto M; Zampini, Samuele; Felisati, Giovanni

    2016-03-01

    The article focuses on the robustness of a CFD-based procedure for the quantitative evaluation of the nasal airflow. CFD ability to yield robust results with respect to the unavoidable procedural and modeling inaccuracies must be demonstrated to allow this tool to become part of the clinical practice in this field. The present article specifically addresses the sensitivity of the CFD procedure to the spatial resolution of the available CT scans, as well as to the choice of the segmentation level of the CT images. We found no critical problems concerning these issues; nevertheless, the choice of the segmentation level is potentially delicate if carried out by an untrained operator.

  17. The high spectral resolution (scanning) lidar (HSRL)

    SciTech Connect

    Eloranta, E.

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  18. Childhood CT scans linked to leukemia and brain cancer later in life

    Cancer.gov

    Children and young adults scanned multiple times by computed tomography (CT), a commonly used diagnostic tool, have a small increased risk of leukemia and brain tumors in the decade following their first scan.

  19. Tuning and scanning control system for high resolution alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Smith, James C.; Schwemmer, Geary K.

    1988-01-01

    An alexandrite laser is spectrally narrowed and tuned by the use of three optical elements. Each element provides a successively higher degree of spectral resolution. The digitally controlled tuning and scanning control servo system simultaneously positions all three optical elements to provide continuous high resolution laser spectral tuning. The user may select manual, single, or continuous modes of automated scanning of ranges up to 3.00/cm and at scan rates up to 3.85/cm/min. Scanning over an extended range of up to 9.999/cm may be achieved if the highest resolution optic is removed from the system. The control system is also capable of being remotely operated by another computer or controller via standard RS-232 serial data link.

  20. Resolution enhancement of lung 4D-CT data using multiscale interphase iterative nonlocal means

    SciTech Connect

    Zhang Yu; Yap, Pew-Thian; Wu Guorong; Feng Qianjin; Chen Wufan; Lian Jun; Shen Dinggang

    2013-05-15

    Purpose: Four-dimensional computer tomography (4D-CT) has been widely used in lung cancer radiotherapy due to its capability in providing important tumor motion information. However, the prolonged scanning duration required by 4D-CT causes considerable increase in radiation dose. To minimize the radiation-related health risk, radiation dose is often reduced at the expense of interslice spatial resolution. However, inadequate resolution in 4D-CT causes artifacts and increases uncertainty in tumor localization, which eventually results in extra damages of healthy tissues during radiotherapy. In this paper, the authors propose a novel postprocessing algorithm to enhance the resolution of lung 4D-CT data. Methods: The authors' premise is that anatomical information missing in one phase can be recovered from the complementary information embedded in other phases. The authors employ a patch-based mechanism to propagate information across phases for the reconstruction of intermediate slices in the longitudinal direction, where resolution is normally the lowest. Specifically, the structurally matching and spatially nearby patches are combined for reconstruction of each patch. For greater sensitivity to anatomical details, the authors employ a quad-tree technique to adaptively partition the image for more fine-grained refinement. The authors further devise an iterative strategy for significant enhancement of anatomical details. Results: The authors evaluated their algorithm using a publicly available lung data that consist of 10 4D-CT cases. The authors' algorithm gives very promising results with significantly enhanced image structures and much less artifacts. Quantitative analysis shows that the authors' algorithm increases peak signal-to-noise ratio by 3-4 dB and the structural similarity index by 3%-5% when compared with the standard interpolation-based algorithms. Conclusions: The authors have developed a new algorithm to improve the resolution of 4D-CT. It outperforms

  1. Value of repeat CT scans in low back pain and radiculopathy.

    PubMed

    Schroeder, Josh E; Barzilay, Yair; Kaplan, Leon; Itshayek, Eyal; Hiller, Nurith

    2016-02-01

    We assessed the clinical value of repeat spine CT scan in 108 patients aged 18-60 years who underwent repeat lumbar spine CT scan for low back pain or radiculopathy from January 2008 to December 2010. Patients with a neoplasm or symptoms suggesting underlying disease were excluded from the study. Clinical data was retrospectively reviewed. Index examinations and repeat CT scan performed at a mean of 24.3 ± 11.3 months later were compared by a senior musculoskeletal radiologist. Disc abnormalities (herniation, sequestration, bulge), spinal stenosis, disc space narrowing, and bony changes (osteophytes, fractures, other changes) were documented. Indications for CT scan were low back pain (60 patients, 55%), radiculopathy (46 patients, 43%), or nonspecific back pain (two patients, 2%). A total of 292 spine pathologies were identified in 98 patients (90.7%); in 10 patients (9.3%) no spine pathology was seen on index or repeat CT scan. At repeat CT scan, 269/292 pathologies were unchanged (92.1%); 10/292 improved (3.4%), 8/292 worsened (2.8%, disc herniation or spinal stenosis), and five new pathologies were identified. No substantial therapeutic change was required in patients with worsened or new pathology. Added diagnostic value from repeat CT scan performed within 2-3 years was rare in patients suffering chronic or recurrent low back pain or radiculopathy, suggesting that repeat CT scan should be considered only in patients with progressive neurologic deficits, new neurologic complaints, or signs implying serious underlying conditions.

  2. Knowledge Representation Of CT Scans Of The Head

    NASA Astrophysics Data System (ADS)

    Ackerman, Laurens V.; Burke, M. W.; Rada, Roy

    1984-06-01

    We have been investigating diagnostic knowledge models which assist in the automatic classification of medical images by combining information extracted from each image with knowledge specific to that class of images. In a more general sense we are trying to integrate verbal and pictorial descriptions of disease via representations of knowledge, study automatic hypothesis generation as related to clinical medicine, evolve new mathematical image measures while integrating them into the total diagnostic process, and investigate ways to augment the knowledge of the physician. Specifically, we have constructed an artificial intelligence knowledge model using the technique of a production system blending pictorial and verbal knowledge about the respective CT scan and patient history. It is an attempt to tie together different sources of knowledge representation, picture feature extraction and hypothesis generation. Our knowledge reasoning and representation system (KRRS) works with data at the conscious reasoning level of the practicing physician while at the visual perceptional level we are building another production system, the picture parameter extractor (PPE). This paper describes KRRS and its relationship to PPE.

  3. Study on Neurological Manifestations of Eclampsia & Findings of CT scan of Brain.

    PubMed

    Begum, F; Nahar, K; Ahmed, M U; Ferdousi, R A; Akter, F A; Rahman, M M

    2015-10-01

    This cross sectional study was carried out in the Department of Obstetrics & Gynaecology in Mymensingh Medical College Hospital during the period of January 2011 to December 2012 to evaluate neurological manifestations in eclampsia by CT scan of brain. A total 35 patients with eclampsia were studied, who underwent CT scan of brain in Radiology & Imaging Department of Mymensingh Medical College Hospital. The study patients were divided into two groups, those who had changes in brain on CT scan (Group A) & those who had no changes in brain on CT scan (Group B). Finally the study variables were compared between these two groups. Each selected patient fulfilling the criteria was sent to the department of Radiology & Imaging for CT scanning of brain. In antepartum cases of eclampsia CT scan of brain were done after delivery/ termination of pregnancy. In all cases, CT scan of brain was done within 72 hours of admission. Out of 35 patients total 85.72% had changes in brain on CT scan & 14.28% had no changes in brain on CT scan. Among them 45.72% patients had cerebral oedema, 37.14% had cerebral infarct & 2.86% patients had intracerebral haemorrhage. Comparison of neurological parameters were done & showed that there were statistically significant difference between the two groups regarding headache, visual disturbance, hypereflexia & depression of consciousness. There was no statistically significant difference regarding aphasia & hemiplegia between the two groups. So the CT scan of brain has been useful in demonstrating the lesion of brain in patients with eclampsia & also helpful to evaluate the neurological manifestations in eclampsia.

  4. Scanning SQUID susceptometers with sub-micron spatial resolution

    NASA Astrophysics Data System (ADS)

    Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.-K.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.; Gibson, Gerald W.; Moler, Kathryn A.

    2016-09-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ0/Hz1/2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  5. High-resolution and high-speed CT in industry and research

    NASA Astrophysics Data System (ADS)

    Zabler, S.; Fella, C.; Dietrich, A.; Nachtrab, F.; Salamon, Michael; Voland, V.; Ebensperger, T.; Oeckl, S.; Hanke, R.; Uhlmann, N.

    2012-10-01

    The application of industrial CT covers many orders of magnitude of object sizes, ranging from freight containers (few meters) down to liquid foams (i.e. for food industry) or even parts of insects which are only several hundreds of micrometers in size. Similarly, the specifications for acquisition speed extend over some orders of magnitude, from hours to sub-second CT. We present the current technology in terms of X-ray sources and detectors, along with numerous applications from industry and materials research: e.g. industrial high-speed CT of car pistons, in situ micro-CT of milk foam decay at micrometer spatial resolution and 8 s scan time, as well as ex situ scans of tensile tested Nickel-alloys. The Fraunhofer Development Center X-ray Technology (Fürth, Germany) and the Chair of X-ray Microscopy (University Würzburg, Germany) are currently working on extending the technological limits, demonstrated, e,g. by the development of advanced X-ray detectors or a new inhouse CT system which comprises a high-brilliance liquid metal jet anode.

  6. LandScan 2013 High Resolution Global Population Data Set

    SciTech Connect

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  7. Widefield scanning imaging with optical super-resolution

    NASA Astrophysics Data System (ADS)

    Li, Yanghui; Shi, Zhaoyi; Shuai, Shaojie; Wang, Le

    2015-08-01

    An economical, pollution-free microsphere-based widefield scanning imaging method is presented. This system is able to visualize the surface pattern of the sample through a transparent dielectric microsphere stuck onto a glass probe. The microsphere endows the system with super-resolution capability, while the field of view can easily be expanded by scanning and image stitching. The feasibilities and advantages of this method have been verified experimentally.

  8. Laser-scanning optical-resolution photoacoustic microscopy.

    PubMed

    Xie, Zhixing; Jiao, Shuliang; Zhang, Hao F; Puliafito, Carmen A

    2009-06-15

    We have developed a laser-scanning optical-resolution photoacoustic microscopy method that can potentially fuse with existing optical microscopic imaging modalities. To acquire an image, the ultrasonic transducer is kept stationary during data acquisition, and only the laser light is raster scanned by an x-y galvanometer scanner. A lateral resolution of 7.8 microm and a circular field of view with a diameter of 6 mm were achieved in an optically clear medium. Using a laser system working at a pulse repetition rate of 1,024 Hz, the data acquisition time for an image consisting of 256 x 256 pixels was less than 2 min. PMID:19529698

  9. High-resolution CT of temporal bone trauma

    SciTech Connect

    Holland, B.A.; Brant-Zawadzki, M.

    1984-08-01

    Computed tomographic (CT) finding in 18 patients with temporal bone trauma were reviewed. Eight patients suffered longitudinal fractures of the petrous bone, which were associated with ossicular dislocation in two patients. Transverse fractures were detected in six patients, with a contralateral mastoid fracture in one patient. In four patients, the fractures were restricted to the mastoid region. Of the 14 patients in whom adequate neurologic evaluation was available, seven had a permanent facial nerve or hearing deficit while five suffered at least a transient neurologic deficit related to the temporal bone trauma. Routine head CT (10 mm sections) demonstrated only eight of 19 petrous bone injuries. Evidence of brain trauma or extra-axial hemotoma was seen in 12 patients. In 13 cases, high-resolution CT was also performed, demonstrating temporal bone injuries in all. This latter technique allows rapid and detailed evaluation of temporal bone trauma.

  10. Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT

    SciTech Connect

    Flohr, T. G.; Stierstorfer, K.; Suess, C.; Schmidt, B.; Primak, A. N.; McCollough, C. H.

    2007-05-15

    We present and evaluate a special ultrahigh resolution mode providing considerably enhanced spatial resolution both in the scan plane and in the z-axis direction for a routine medical multi-detector row computed tomography (CT) system. Data acquisition is performed by using a flying focal spot both in the scan plane and in the z-axis direction in combination with tantalum grids that are inserted in front of the multi-row detector to reduce the aperture of the detector elements both in-plane and in the z-axis direction. The dose utilization of the system for standard applications is not affected, since the grids are moved into place only when needed and are removed for standard scanning. By means of this technique, image slices with a nominal section width of 0.4 mm (measured full width at half maximum=0.45 mm) can be reconstructed in spiral mode on a CT system with a detector configuration of 32x0.6 mm. The measured 2% value of the in-plane modulation transfer function (MTF) is 20.4 lp/cm, the measured 2% value of the longitudinal (z axis) MTF is 21.5 lp/cm. In a resolution phantom with metal line pair test patterns, spatial resolution of 20 lp/cm can be demonstrated both in the scan plane and along the z axis. This corresponds to an object size of 0.25 mm that can be resolved. The new mode is intended for ultrahigh resolution bone imaging, in particular for wrists, joints, and inner ear studies, where a higher level of image noise due to the reduced aperture is an acceptable trade-off for the clinical benefit brought about by the improved spatial resolution.

  11. A Simple Low-dose X-ray CT Simulation from High-dose Scan

    PubMed Central

    Zeng, Dong; Huang, Jing; Bian, Zhaoying; Niu, Shanzhou; Zhang, Hua; Feng, Qianjin; Liang, Zhengrong

    2015-01-01

    Low-dose X-ray computed tomography (CT) simulation from high-dose scan is required in optimizing radiation dose to patients. In this study, we propose a simple low-dose CT simulation strategy in sinogram domain using the raw data from high-dose scan. Specially, a relationship between the incident fluxes of low- and high- dose scans is first determined according to the repeated projection measurements and analysis. Second, the incident flux level of the simulated low-dose scan is generated by properly scaling the incident flux level of high-dose scan via the determined relationship in the first step. Third, the low-dose CT transmission data by energy integrating detection is simulated by adding a statistically independent Poisson noise distribution plus a statistically independent Gaussian noise distribution. Finally, a filtered back-projection (FBP) algorithm is implemented to reconstruct the resultant low-dose CT images. The present low-dose simulation strategy is verified on the simulations and real scans by comparing it with the existing low-dose CT simulation tool. Experimental results demonstrated that the present low-dose CT simulation strategy can generate accurate low-dose CT sinogram data from high-dose scan in terms of qualitative and quantitative measurements. PMID:26543245

  12. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  13. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    SciTech Connect

    Alva-Sánchez, Héctor

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  14. Super-resolution for scanning light stimulation systems

    NASA Astrophysics Data System (ADS)

    Bitzer, L. A.; Neumann, K.; Benson, N.; Schmechel, R.

    2016-09-01

    Super-resolution (SR) is a technique used in digital image processing to overcome the resolution limitation of imaging systems. In this process, a single high resolution image is reconstructed from multiple low resolution images. SR is commonly used for CCD and CMOS (Complementary Metal-Oxide-Semiconductor) sensor images, as well as for medical applications, e.g., magnetic resonance imaging. Here, we demonstrate that super-resolution can be applied with scanning light stimulation (LS) systems, which are common to obtain space-resolved electro-optical parameters of a sample. For our purposes, the Projection Onto Convex Sets (POCS) was chosen and modified to suit the needs of LS systems. To demonstrate the SR adaption, an Optical Beam Induced Current (OBIC) LS system was used. The POCS algorithm was optimized by means of OBIC short circuit current measurements on a multicrystalline solar cell, resulting in a mean square error reduction of up to 61% and improved image quality.

  15. Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: observer performance study

    NASA Astrophysics Data System (ADS)

    Sahiner, Berkman; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Shi, Jiazheng; Cascade, Philip N.; Kazerooni, Ella A.; Zhou, Chuan; Wei, Jun; Chughtai, Aamer R.; Poopat, Chad; Song, Thomas; Nojkova, Jadranka S.; Frank, Luba; Attili, Anil

    2007-03-01

    The purpose of this study was to evaluate the effect of computer-aided diagnosis (CAD) on radiologists' performance for the detection of lung nodules on thoracic CT scans. Our computer system was designed using an independent training set of 94 CT scans in our laboratory. The data set for the observer performance study consisted of 48 CT scans. Twenty scans were collected from patient files at the University of Michigan, and 28 scans by the Lung Imaging Database Consortium (LIDC). All scans were read by multiple experienced thoracic radiologists to determine the true nodule locations, defined as any region identified by one or more expert radiologists as containing a nodule larger than 3 mm in diameter. Eighteen CT examinations were nodule-free, while the remaining 30 CT examinations contained a total of 73 nodules having a median size of 5.5 mm (range 3.0-36.4 mm). Four other study radiologists read the CT scans first without and then with CAD, and provided likelihood of nodule ratings for suspicious regions. Two of the study radiologists were fellowship trained in cardiothoracic radiology, and two were cardiothoracic radiology fellows. Freeresponse receiver-operating characteristic (FROC) curves were used to compare the two reading conditions. The computer system had a sensitivity of 79% (58/73) with an average of 4.9 marks per normal scan (88/18). Jackknife alternative FROC (JAFROC) analysis indicated that the improvement with CAD was statistically significant (p=0.03).

  16. Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3D X-ray CT

    PubMed Central

    Cho, Jang Hwan; Fessler, Jeffrey A.

    2014-01-01

    Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in [1] to 3D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in [1] with both phantom simulation and clinical reconstruction in 3D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT. PMID:25361500

  17. An Effort to Develop an Algorithm to Target Abdominal CT Scans for Patients After Gastric Bypass.

    PubMed

    Pernar, Luise I M; Lockridge, Ryan; McCormack, Colleen; Chen, Judy; Shikora, Scott A; Spector, David; Tavakkoli, Ali; Vernon, Ashley H; Robinson, Malcolm K

    2016-10-01

    Abdominal CT (abdCT) scans are frequently ordered for Roux-en-Y gastric bypass (RYGB) patients presenting to the emergency department (ED) with abdominal pain, but often do not reveal intra-abdominal pathology. We aimed to develop an algorithm for rational ordering of abdCTs. We retrospectively reviewed our institution's RYGB patients presenting acutely with abdominal pain, documenting clinical and laboratory data, and scan results. Associations of clinical parameters to abdCT results were examined for outcome predictors. Of 1643 RYGB patients who had surgery between 2005 and 2015, 355 underwent 387 abdCT scans. Based on abdCT, 48 (12 %) patients required surgery and 86 (22 %) another intervention. No clinical or laboratory parameter predicted imaging results. Imaging decisions for RYGB patients do not appear to be amenable to a simple algorithm, and patient work-up should be based on astute clinical judgment.

  18. Full-Body CT Scans - What You Need to Know

    MedlinePlus

    ... FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary ... for assuring the safety and effectiveness of such medical devices, and it prohibits manufacturers of CT systems to ...

  19. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning

    SciTech Connect

    Yin, Zhye De Man, Bruno; Yao, Yangyang; Wu, Mingye; Montillo, Albert; Edic, Peter M.; Kalra, Mannudeep

    2015-05-15

    Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies to achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.

  20. Concepts and Analyses in the CT Scanning of Root Systems and Leaf Canopies: A Timely Summary.

    PubMed

    Lafond, Jonathan A; Han, Liwen; Dutilleul, Pierre

    2015-01-01

    Non-medical applications of computed tomography (CT) scanning have flourished in recent years, including in Plant Science. This Perspective article on CT scanning of root systems and leaf canopies is intended to be of interest to three categories of readers: those who have not yet tried plant CT scanning, and should find inspiration for new research objectives; readers who are on the learning curve with applications-here is helpful advice for them; and researchers with greater experience-the field is evolving quickly and it is easy to miss aspects. Our conclusion is that CT scanning of roots and canopies is highly demanding in terms of technology, multidisciplinarity and big-data analysis, to name a few areas of expertise, but eventually, the reward for researchers is directly proportional! PMID:26734022

  1. Concepts and Analyses in the CT Scanning of Root Systems and Leaf Canopies: A Timely Summary

    PubMed Central

    Lafond, Jonathan A.; Han, Liwen; Dutilleul, Pierre

    2015-01-01

    Non-medical applications of computed tomography (CT) scanning have flourished in recent years, including in Plant Science. This Perspective article on CT scanning of root systems and leaf canopies is intended to be of interest to three categories of readers: those who have not yet tried plant CT scanning, and should find inspiration for new research objectives; readers who are on the learning curve with applications—here is helpful advice for them; and researchers with greater experience—the field is evolving quickly and it is easy to miss aspects. Our conclusion is that CT scanning of roots and canopies is highly demanding in terms of technology, multidisciplinarity and big-data analysis, to name a few areas of expertise, but eventually, the reward for researchers is directly proportional! PMID:26734022

  2. Concepts and Analyses in the CT Scanning of Root Systems and Leaf Canopies: A Timely Summary.

    PubMed

    Lafond, Jonathan A; Han, Liwen; Dutilleul, Pierre

    2015-01-01

    Non-medical applications of computed tomography (CT) scanning have flourished in recent years, including in Plant Science. This Perspective article on CT scanning of root systems and leaf canopies is intended to be of interest to three categories of readers: those who have not yet tried plant CT scanning, and should find inspiration for new research objectives; readers who are on the learning curve with applications-here is helpful advice for them; and researchers with greater experience-the field is evolving quickly and it is easy to miss aspects. Our conclusion is that CT scanning of roots and canopies is highly demanding in terms of technology, multidisciplinarity and big-data analysis, to name a few areas of expertise, but eventually, the reward for researchers is directly proportional!

  3. Pictorial essay: CT scan of appendicitis and its mimics causing right lower quadrant pain

    PubMed Central

    Sharma, Monika; Agrawal, Anjali

    2008-01-01

    CT scanning is widely used in the diagnostic workup of right lower quadrant pain. While appendicitis remains the most frequent cause, a majority of patients referred for suspected appendicitis turn out to have alternative diagnoses or a normal CT study. The purpose of our pictorial essay is to present an overview of the CT findings of appendicitis and its common mimics and to highlight the features that provide clues to alternative diagnoses.

  4. Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...

  5. Dual energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-03-01

    Knowledge of the composition of urinary stones is an essential part to determine suitable treatments for patients. The aim of this research is to characterize the urinary stones by using dual energy micro CT SkyScan 11173. This technique combines high-energy and low- energy scanning during a single acquisition. Six human urinary stones were scanned in vitro using 80 kV and 120 kV micro CT SkyScan 1173. Projected images were produced by micro CT SkyScan 1173 and then reconstructed using NRecon (in-house software from SkyScan) to obtain a complete 3D image. The urinary stone images were analysed using CT analyser to obtain information of internal structure and Hounsfield Unit (HU) values to determine the information regarding the composition of the urinary stones, respectively. HU values obtained from some regions of interest in the same slice are compared to a reference HU. The analysis shows information of the composition of the six scanned stones obtained. The six stones consist of stone number 1 (calcium+cystine), number 2 (calcium+struvite), number 3 (calcium+cystine+struvite), number 4 (calcium), number 5 (calcium+cystine+struvite), and number 6 (calcium+uric acid). This shows that dual energy micro CT SkyScan 1173 was able to characterize the composition of the urinary stone.

  6. High-resolution low-dose scanning transmission electron microscopy

    PubMed Central

    Buban, James P.; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D.; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM. PMID:19915208

  7. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  8. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  9. Increase in dicentric chromosome formation after a single CT scan in adults

    PubMed Central

    Abe, Yu; Miura, Tomisato; Yoshida, Mitsuaki A.; Ujiie, Risa; Kurosu, Yumiko; Kato, Nagisa; Katafuchi, Atsushi; Tsuyama, Naohiro; Ohba, Takashi; Inamasu, Tomoko; Shishido, Fumio; Noji, Hideyoshi; Ogawa, Kazuei; Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Muto, Satoshi; Ohsugi, Jun; Suzuki, Hiroyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Sakai, Akira

    2015-01-01

    Excess risk of leukemia and brain tumors after CT scans in children has been reported. We performed dicentric chromosome assay (DCAs) before and after CT scan to assess effects of low-dose ionizing radiation on chromosomes. Peripheral blood (PB) lymphocytes were collected from 10 patients before and after a CT scan. DCA was performed by analyzing either 1,000 or 2,000 metaphases using both Giemsa staining and centromere-fluorescence in situ hybridization (Centromere-FISH). The increment of DIC formation was compared with effective radiation dose calculated using the computational dosimetry system, WAZA-ARI and dose length product (DLP) in a CT scan. Dicentric chromosome (DIC) formation increased significantly after a single CT scan, and increased DIC formation was found in all patients. A good correlation between the increment of DIC formation determined by analysis of 2,000 metaphases using Giemsa staining and those by 2,000 metaphases using Centromere-FISH was observed. However, no correlation was observed between the increment of DIC formation and the effective radiation dose. Therefore, these results suggest that chromosome cleavage may be induced by one CT scan, and we recommend 2,000 or more metaphases be analyzed in Giemsa staining or Centromere-FISH for DCAs in cases of low-dose radiation exposure. PMID:26349546

  10. Increase in dicentric chromosome formation after a single CT scan in adults.

    PubMed

    Abe, Yu; Miura, Tomisato; Yoshida, Mitsuaki A; Ujiie, Risa; Kurosu, Yumiko; Kato, Nagisa; Katafuchi, Atsushi; Tsuyama, Naohiro; Ohba, Takashi; Inamasu, Tomoko; Shishido, Fumio; Noji, Hideyoshi; Ogawa, Kazuei; Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Muto, Satoshi; Ohsugi, Jun; Suzuki, Hiroyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Sakai, Akira

    2015-01-01

    Excess risk of leukemia and brain tumors after CT scans in children has been reported. We performed dicentric chromosome assay (DCAs) before and after CT scan to assess effects of low-dose ionizing radiation on chromosomes. Peripheral blood (PB) lymphocytes were collected from 10 patients before and after a CT scan. DCA was performed by analyzing either 1,000 or 2,000 metaphases using both Giemsa staining and centromere-fluorescence in situ hybridization (Centromere-FISH). The increment of DIC formation was compared with effective radiation dose calculated using the computational dosimetry system, WAZA-ARI and dose length product (DLP) in a CT scan. Dicentric chromosome (DIC) formation increased significantly after a single CT scan, and increased DIC formation was found in all patients. A good correlation between the increment of DIC formation determined by analysis of 2,000 metaphases using Giemsa staining and those by 2,000 metaphases using Centromere-FISH was observed. However, no correlation was observed between the increment of DIC formation and the effective radiation dose. Therefore, these results suggest that chromosome cleavage may be induced by one CT scan, and we recommend 2,000 or more metaphases be analyzed in Giemsa staining or Centromere-FISH for DCAs in cases of low-dose radiation exposure. PMID:26349546

  11. Low-dose high-resolution CT of lung parenchyma

    SciTech Connect

    Zwirewich, C.V.; Mayo, J.R.; Mueller, N.L. )

    1991-08-01

    To evaluate the efficacy of low-dose high-resolution computed tomography (HRCT) in the assessment of lung parenchyma, three observers reviewed the scans of 31 patients. The 1.5-mm-collimation, 2-second, 120-kVp scans were obtained at 20 and 200 mA at selected identical levels in the chest. The observers evaluated the visualization of normal pulmonary anatomy, various parenchymal abnormalities and their distribution, and artifacts. The low-dose and conventional scans were equivalent in the evaluation of vessels, lobar and segmental bronchi, and anatomy of secondary pulmonary lobules, and in characterizing the extent and distribution of reticulation, honeycomb cysts, and thickened interlobular septa. The low-dose technique failed to demonstrate ground-glass opacity in two of 10 cases (20%) and emphysema in one of nine cases (11%), in which they were evident but subtle on the high-dose scans. These differences were not statistically significant. Linear streak artifact was more prominent on images acquired with the low-dose technique, but the two techniques were judged equally diagnostic in 97% of cases. The authors conclude that HRCT images acquired at 20 mA yield anatomic information equivalent to that obtained with 200-mA scans in the majority of patients, without significant loss of spatial resolution or image degradation due to linear streak artifact.

  12. A versatile high resolution scanning tunneling potentiometry implementation.

    PubMed

    Druga, T; Wenderoth, M; Homoth, J; Schneider, M A; Ulbrich, R G

    2010-08-01

    We have developed a new scanning tunneling potentiometry technique which can-with only minor changes of the electronic setup-be easily added to any standard scanning tunneling microscope (STM). This extension can be combined with common STM techniques such as constant current imaging or scanning tunneling spectroscopy. It is capable of performing measurements of the electrochemical potential with microvolt resolution. Two examples demonstrate the versatile application. First of all, we have determined local variations of the electrochemical potential due to charge transport of biased samples down to angstrom length scales. Second, with tip and sample at different temperatures we investigated the locally varying thermovoltage occurring at the tunneling junction. Aside from its use in determining the chemical identity of substances at the sample surface our method provides a controlled way to eliminate the influence of laterally varying thermovoltages on low-bias constant current topographies.

  13. [Preliminary investigation on dynamic CT scan of intracranial tumors].

    PubMed

    Wu, E H

    1989-04-01

    74 patients with various intracranial tumors were studied by means of dynamic CT, among them 45 cases were confirmed by operation and pathology. In analyzing the time-density curve and the ratio of increase in CT number of the tumoral tissue to that in the arterial lumens (tissue-blood ratio, TBR), we found that: (1) Dynamic CT technique is safe and easy to perform suitable for out-patients; (2) The time-density curves in acoustic neurinoma, meningioma, glioma and metastatic tumors are different from each other because of difference in vascularity and the degree of B.B.B. breakdown. Meningioma curve shows a rapid rise to the peak followed by a subsequent plateau; (3) TBR at the peak time (TBRp) is useful as an index for tumor. Combined analysis of time-density curve and TBRp is helpful for tumor differentiation. PMID:2758930

  14. The theory and practice of high resolution scanning electron microscopy

    SciTech Connect

    Joy, D.C. Oak Ridge National Lab., TN )

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  15. High-Resolution, Wide-Field-of-View Scanning Telescope

    NASA Technical Reports Server (NTRS)

    Sepulveda, Cesar; Wilson, Robert; Seshadri, Suresh

    2007-01-01

    A proposed telescope would afford high resolution over a narrow field of view (<0.10 ) while scanning over a total field of view nominally 16 wide without need to slew the entire massive telescope structure. The telescope design enables resolution of a 1-m-wide object in a 50- km-wide area of the surface of the Earth as part of a 200-km-wide area field of view monitored from an orbit at an altitude of 700 km. The conceptual design of this telescope could also be adapted to other applications both terrestrial and extraterrestrial in which there are requirements for telescopes that afford both wide- and narrow-field capabilities. In the proposed telescope, the scanning would be effected according to a principle similar to that of the Arecibo radio telescope, in which the primary mirror is stationary with respect to the ground and a receiver is moved across the focal surface of the primary mirror. The proposed telescope would comprise (1) a large spherical primary mirror that would afford high resolution over a narrow field of view and (2) a small displaceable optical relay segment that would be pivoted about the center of an aperture stop to effect the required scanning (see figure). Taken together, both comprise a scanning narrow-angle telescope that does not require slewing the telescope structure. In normal operation, the massive telescope structure would stare at a fixed location on the ground. The inner moveable relay optic would be pivoted to scan the narrower field of view over the wider one, making it possible to retain a fixed telescope orientation, while obtaining high-resolution images over multiple target areas during an interval of 3 to 4 minutes in the intended orbit. The pivoting relay segment of the narrow-angle telescope would include refractive and reflective optical elements, including two aspherical mirrors, to counteract the spherical aberration of the primary mirror. Overall, the combination of the primary mirror and the smaller relay optic

  16. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  17. The Role of CT Scanning in Multidimensional Phenotyping of COPD

    PubMed Central

    2011-01-01

    Background: COPD is a heterogeneous disease characterized by airflow obstruction and diagnosed by lung function. CT imaging is emerging as an important, noninvasive tool in phenotyping COPD. However, the use of CT imaging in defining the disease heterogeneity above lung function is not fully known. Methods: Seventy-five patients with COPD (58 men, 17 women) were studied with CT imaging and with measures of airway inflammation. Airway physiology and health status were also determined. Results: The presence of emphysema (EM), bronchiectasis (BE), and bronchial wall thickening (BWT) was found in 67%, 27%, and 27% of subjects, respectively. The presence of EM was associated with lower lung function (mean difference % FEV1, −20%; 95% CI, −28 to −11; P < .001). There was no difference in airway inflammation, exacerbation frequency, or bacterial load in patients with EM alone or with BE and/or BWT ± EM. The diffusing capacity of the lung for carbon monoxide/alveolar volume ratio was the most sensitive and specific parameter in identifying EM (area under the receiver operator characteristic curve, 0.87; 95% CI, 0.79-0.96). Physiologic cluster analysis identified three clusters, two of which were EM predominant and the third characterized by a heterogeneous combination of EM and BE. Conclusions: The application of CT imaging can be useful as a tool in the multidimensional approach to phenotyping patients with COPD. PMID:21454400

  18. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    NASA Astrophysics Data System (ADS)

    Doran, S. J.; Krstajic, N.; Adamovics, J.; Jenneson, P. M.

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGETM (Heuris Pharma, Skillman, NJ).

  19. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT.

    PubMed

    Razi, Tahmineh; Niknami, Mahdi; Alavi Ghazani, Fakhri

    2014-01-01

    Background and aims. Cone-beam computed tomography (CBCT) is an imaging system which has many advantages over computed tomography (CT). In CT scan, Hounsfield Unit (HU) is proportional to the degree of x-ray attenuation by the tissue. In CBCT, the degree of x-ray attenuation is shown by gray scale (voxel value). The aim of the present study was to investigate the relationship between gray scale in CBCT) and Hounsfield Unit (HU) in CT scan. Materials and methods. In this descriptive study, the head of a sheep was scanned with 3 CBCT and one medical CT scanner. Gray scales and HUs were detected on images. Reconstructed data were analyzed to investigate relationship between CBCT gray scales and HUs. Results. A strong correlation between gray scales of CBCT and HUs of CT scan was determined. Conclusion. Considering the fact that gray scale in CBCT is the criteria in measurement of bone density before implant treatments, it is recommended because of the lower dose and cost compared to CT scan.

  20. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT

    PubMed Central

    Razi, Tahmineh; Niknami, Mahdi; Alavi Ghazani, Fakhri

    2014-01-01

    Background and aims. Cone-beam computed tomography (CBCT) is an imaging system which has many advantages over computed tomography (CT). In CT scan, Hounsfield Unit (HU) is proportional to the degree of x-ray attenuation by the tissue. In CBCT, the degree of x-ray attenuation is shown by gray scale (voxel value). The aim of the present study was to investigate the relationship between gray scale in CBCT) and Hounsfield Unit (HU) in CT scan. Materials and methods. In this descriptive study, the head of a sheep was scanned with 3 CBCT and one medical CT scanner. Gray scales and HUs were detected on images. Reconstructed data were analyzed to investigate relationship between CBCT gray scales and HUs. Results. A strong correlation between gray scales of CBCT and HUs of CT scan was determined. Conclusion. Considering the fact that gray scale in CBCT is the criteria in measurement of bone density before implant treatments, it is recommended because of the lower dose and cost compared to CT scan. PMID:25093055

  1. The role of PET/CT scanning in radiotherapy planning.

    PubMed

    Jarritt, P H; Carson, K J; Hounsell, A R; Visvikis, D

    2006-09-01

    The introduction of functional data into the radiotherapy treatment planning process is currently the focus of significant commercial, technical, scientific and clinical development. The potential of such data from positron emission tomography (PET) was recognized at an early stage and was integrated into the radiotherapy treatment planning process through the use of image fusion software. The combination of PET and CT in a single system (PET/CT) to form an inherently fused anatomical and functional dataset has provided an imaging modality which could be used as the prime tool in the delineation of tumour volumes and the preparation of patient treatment plans, especially when integrated with virtual simulation. PET imaging typically using 18F-Fluorodeoxyglucose (18F-FDG) can provide data on metabolically active tumour volumes. These functional data have the potential to modify treatment volumes and to guide treatment delivery to cells with particular metabolic characteristics. This paper reviews the current status of the integration of PET and PET/CT data into the radiotherapy treatment process. Consideration is given to the requirements of PET/CT data acquisition with reference to patient positioning aids and the limitations imposed by the PET/CT system. It also reviews the approaches being taken to the definition of functional/tumour volumes and the mechanisms available to measure and include physiological motion into the imaging process. The use of PET data must be based upon a clear understanding of the interpretation and limitations of the functional signal. Protocols for the implementation of this development remain to be defined, and outcomes data based upon clinical trials are still awaited. PMID:16980683

  2. A review of patient dose and optimisation methods in adult and paediatric CT scanning.

    PubMed

    Dougeni, E; Faulkner, K; Panayiotakis, G

    2012-04-01

    An increasing number of publications and international reports on computed tomography (CT) have addressed important issues on optimised imaging practice and patient dose. This is partially due to recent technological developments as well as to the striking rise in the number of CT scans being requested. CT imaging has extended its role to newer applications, such as cardiac CT, CT colonography, angiography and urology. The proportion of paediatric patients undergoing CT scans has also increased. The published scientific literature was reviewed to collect information regarding effective dose levels during the most common CT examinations in adults and paediatrics. Large dose variations were observed (up to 32-fold) with some individual sites exceeding the recommended dose reference levels, indicating a large potential to reduce dose. Current estimates on radiation-related cancer risks are alarming. CT doses account for about 70% of collective dose in the UK and are amongst the highest in diagnostic radiology, however the majority of physicians underestimate the risk, demonstrating a decreased level of awareness. Exposure parameters are not always adjusted appropriately to the clinical question or to patient size, especially for children. Dose reduction techniques, such as tube-current modulation, low-tube voltage protocols, prospective echocardiography-triggered coronary angiography and iterative reconstruction algorithms can substantially decrease doses. An overview of optimisation studies is provided. The justification principle is discussed along with tools that assist clinicians in the decision-making process. There is the potential to eliminate clinically non-indicated CT scans by replacing them with alternative examinations especially for children or patients receiving multiple CT scans.

  3. Predictors of Positive Head CT Scan and Neurosurgical Procedures After Minor Head Trauma

    PubMed Central

    Kisat, Mehreen; Zafar, Syed Nabeel; Latif, Asad; Villegas, Cassandra V.; Efron, David T.; Stevens, Kent A.; Haut, Elliott R; Schneider, Eric B.; Zafar, Hasnain; Haider, Adil H.

    2012-01-01

    Background There continues to be an ongoing debate regarding the utility of Head CT scans in patients with a normal Glasgow Coma Scale (GCS) after minor head injury. The objective of this study is to determine patient and injury characteristics that predict a positive head CT scan or need for a Neurosurgical Procedure (NSP) among patients with blunt head injury and a normal GCS. Materials and Methods Retrospective analysis of adult patients in the National Trauma Data Bank who presented to the ED with a history of blunt head injury and a normal GCS of 15. The primary outcomes were a positive head CT scan or a NSP. Multivariate logistic regression controlling for patient and injury characteristics was used to determine predictors of each outcome. Results Out of a total of 83,566 patients, 24,414 (29.2%) had a positive head CT scan and 3,476 (4.2%) underwent a NSP. Older patients and patients with a history of fall (as compared to a motor vehicle crash) were more likely to have a positive finding on a head CT scan. Male patients, African-Americans (as compared to Caucasians) and those who presented with a fall were more likely to have a NSP. Conclusions Older age, male gender, ethnicity and mechanism of injury are significant predictors of a positive finding on head CT scans and the need for neurosurgical procedures. This study highlights patient and injury specific characteristics that may help in identifying patients with supposedly minor head injury who will benefit from a head CT scan. PMID:21872271

  4. Expanded applications of CT. Helical scanning in five common acute conditions.

    PubMed

    Nipper, M L; Jacobson, L K

    2001-06-01

    Helical CT has become a valuable imaging tool for detection of pulmonary embolism, deep venous thrombosis, ureteral colic, acute small-bowel obstruction, and acute appendicitis. Generally, helical CT has good sensitivity and specificity values, and scans can be performed more quickly than previous gold standard diagnostic examinations for the conditions mentioned. In some cases, helical CT can also identify other findings that may be responsible for a patient's symptoms. One notable disadvantage of helical CT is the charge for the procedure, which in some circumstances can be considerably more costly than diagnostic examinations preferred previously. However, because helical CT can often obviate the need for other tests--and may consequently reduce hospital stays--this technology may have the ability to reduce overall expenditures. Cost of helical CT is therefore a multifaceted issue and requires further study before conclusions can be drawn.

  5. CT of multiple sclerosis: reassessment of delayed scanning with high doses of contrast material

    SciTech Connect

    Spiegel, S.M.; Vinuela, F.; Fox, A.J.; Pelz, D.M.

    1985-09-01

    A prospective study involving 87 patients was carried out to evaluate the necessity for a high dose of contrast material in addition to delayed computed tomographic (CT) scanning for optimal detection of the lesions of multiple sclerosis in the brain. In patients with either clinically definite multiple sclerosis or laboratory-supported definite multiple sclerosis, CT scans were obtained with a uniform protocol. Lesions consistent with multiple sclerosis were demonstrated on the second scan in 54 patients. In 36 of these 54 patients, the high-dose delayed scan added information. These results are quite similar to those of a previous study from this institution using different patients, in whom the second scan was obtained immediately after the bolus injection of contrast material containing 40 g of organically bound iodine. The lack of real difference in the results of the two studies indicate that the increased dose, not just the delay in scanning, is necessary for a proper study.

  6. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis.

    PubMed

    Loizidou, Eriketi Z; Inoue, Nicholas T; Ashton-Barnett, Johnny; Barrow, David A; Allender, Chris J

    2016-10-01

    Computerized tomography scan (CT scan) imaging and finite element analysis were employed to investigate how the geometric composition of microneedles affects their mechanical strength and penetration characteristics. Simulations of microneedle arrays, comprising triangular, square and hexagonal microneedle base, revealed a linear dependence of the mechanical strength to the number of vertices in the polygon base. A laser-enabled, micromoulding technique was then used to fabricate 3×3 microneedle arrays, each individual microneedle having triangular, square or hexagonal base geometries. Their penetration characteristics into ex-vivo porcine skin, were investigated for the first time by CT scan imaging. This revealed greater penetration depths for the triangular and square-based microneedles, demonstrating CT scan as a powerful and reliable technique for studying microneedle skin penetration. PMID:27373753

  7. Three-Dimensions Segmentation of Pulmonary Vascular Trees for Low Dose CT Scans

    NASA Astrophysics Data System (ADS)

    Lai, Jun; Huang, Ying; Wang, Ying; Wang, Jun

    2016-12-01

    Due to the low contrast and the partial volume effects, providing an accurate and in vivo analysis for pulmonary vascular trees from low dose CT scans is a challenging task. This paper proposes an automatic integration segmentation approach for the vascular trees in low dose CT scans. It consists of the following steps: firstly, lung volumes are acquired by the knowledge based method from the CT scans, and then the data are smoothed by the 3D Gaussian filter; secondly, two or three seeds are gotten by the adaptive 2D segmentation and the maximum area selecting from different position scans; thirdly, each seed as the start voxel is inputted for a quick multi-seeds 3D region growing to get vascular trees; finally, the trees are refined by the smooth filter. Through skeleton analyzing for the vascular trees, the results show that the proposed method can provide much better and lower level vascular branches.

  8. Characterization of sub-resolution microcirculatory status using whole-body CT imaging

    NASA Astrophysics Data System (ADS)

    Dong, Yue; Malyar, Nasser M.; Beighley, Patricia E.; Ritman, Erik L.

    2005-04-01

    Myocardial microcirculation disturbances often precede angiographically visible of narrowing large epicardial coronary arteries and associated symptoms. Clinical tomographic imaging cannot resolve the microcirculation, hence an indirect method of quantitating microvascular disturbances in those images must be developed. We propose that such an indirect method can be based on the characterization of the spatial heterogeneity of myocardial intravascular blood volume. We evaluated the relationship of multi-resolution, nested multi Region-of-Interest (ROI) analysis of EBCT images to the actual intravascular volume of microvascular branches as measured directly with micro-CT images in the same myocardial regions. We selectively altered the intravascular volume of vessels by injecting 30, 100, 200 or 300μm diameter microspheres into anesthetized pigs" LAD coronary arteries prior to EBCT scanning during contrast injection. The heart was then harvested and the LAD coronary artery was infused with Microfil polymer. An approximately 2cm3 transmural "biopsy" of the same ROI within the myocardium analyzed in the EBCT images was scanned by micro-CT resulting in a 3D image of 20μm cubic voxels. Myocardial opacification was measured in both the EBCT and micro-CT images. The EBCT and micro-CT images were analyzed with the nested multi ROI method which provides an index of spatial heterogeneity of intramyocardial blood volume in terms of the linear relationship between the logarithms of the coefficient of variation within the data obtained at any one size of the ROI, and the logarithm of the volume of that selected ROI. The minimum ROI volume in the EBCT analysis was 8.96 mm3 and for the micro-CT it was 0.07 mm3. There is linear correlation when EBCT and micro-CT image CT gray-scale numbers are plotted as Log (standard deviation/mean) against Log (Volume of ROI). The results show that the slopes and offsets of the EBCT-based and micro-CT-based regression lines were

  9. Application of offset-CT scanning to the inspection of high power feeder lines and connections

    NASA Astrophysics Data System (ADS)

    Schneberk, Daniel; Maziuk, Robert; Soyfer, Boris; Shashishekhar, N.; Alreja, Rahul

    2016-02-01

    VJT is developing techniques and scanning methods for the in-situ Radiographic and Computed Tomographic inspection of underground high-power feeder cables. The goals for the inspection are to measure the 3D state of the cables and the cable-connections. Recent in-situ Digital Radiographic inspections performed by VJT have demonstrated the value of NDE inspection information for buried power lines. These NDE data have raised further questions as to the exact state of the cables and connections and pointed to the need for more 3D information of the type provided by volumetric CT scanning. VJT is pursuing a three phased approach to address the many issues involved in this type of inspection: 1) develop a high-power feeder-cable test-bed CT scanner, 2) acquire scans on underground feeder pipes that have been removed from service, and 3) from the work in 1) and 2) develop limited-angle CT scanning methods for extending in-situ Digital Radiography to volumetric CT measurements. To this end, VJT has developed and fielded a high-energy test-bed Gantry-type CT scanner (the source and detector move around the object) with a number of important properties. First, the geometry of the gantry-scans can be configured to match the techniques used in the in-situ radiographic inspection. The same X-ray source is employed as in portable Radiographic inspections, a 7.5 MeV Betatron coupled to a Perkin-Elmer Amorphous Silicon detector. Offset-CT scanning is employed as the high-power feeder line assembly is larger than the detector. A description of this scanner and the scan geometry will be presented showing the connection to in-situ radiography. Results from the CT scans of high-power feeder-cable specimens removed from service will be presented with a focus on the inspection potential of volumetric CT data on these assemblies. An evaluation of the scan performance properties of these data compared to the spectrum of life-cycle inspection issues will be presented. Continuing and

  10. Scan-rescan reproducibility of CT densitometric measures of emphysema

    NASA Astrophysics Data System (ADS)

    Chong, D.; van Rikxoort, E. M.; Kim, H. J.; Goldin, J. G.; Brown, M. S.

    2011-03-01

    This study investigated the reproducibility of HRCT densitometric measures of emphysema in patients scanned twice one week apart. 24 emphysema patients from a multicenter study were scanned at full inspiration (TLC) and expiration (RV), then again a week later for four scans total. Scans for each patient used the same scanner and protocol, except for tube current in three patients. Lung segmentation with gross airway removal was performed on the scans. Volume, weight, mean lung density (MLD), relative area under -950HU (RA-950), and 15th percentile (PD-15) were calculated for TLC, and volume and an airtrapping mask (RA-air) between -950 and -850HU for RV. For each measure, absolute differences were computed for each scan pair, and linear regression was performed against volume difference in a subgroup with volume difference <500mL. Two TLC scan pairs were excluded due to segmentation failure. The mean lung volumes were 5802 +/- 1420mL for TLC, 3878 +/- 1077mL for RV. The mean absolute differences were 169mL for TLC volume, 316mL for RV volume, 14.5g for weight, 5.0HU for MLD, 0.66p.p. for RA-950, 2.4HU for PD-15, and 3.1p.p. for RA-air. The <500mL subgroup had 20 scan pairs for TLC and RV. The R2 values were 0.8 for weight, 0.60 for MLD, 0.29 for RA-950, 0.31 for PD-15, and 0.64 for RA-air. Our results indicate that considerable variability exists in densitometric measures over one week that cannot be attributed to breathhold or physiology. This has implications for clinical trials relying on these measures to assess emphysema treatment efficacy.

  11. SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation

    SciTech Connect

    Liu, H; Liu, T; Xu, X; Wu, J; Zhuo, W

    2015-06-15

    Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, and the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)

  12. Answers to Common Questions About the Use and Safety of CT Scans.

    PubMed

    McCollough, Cynthia H; Bushberg, Jerrold T; Fletcher, Joel G; Eckel, Laurence J

    2015-10-01

    Articles in the scientific literature and lay press over the past several years have implied that computed tomography (CT) may cause cancer and that physicians and patients must exercise caution in its use. Although there is broad agreement on the latter point--unnecessary medical tests of any type should always be avoided--there is considerable controversy surrounding the question of whether, or to what extent, CT scans can lead to future cancers. Although the doses used in CT are higher than those used in conventional radiographic examinations, they are still 10 to 100 times lower than the dose levels that have been reported to increase the risk of cancer. Despite the fact that at the low doses associated with a CT scan the risk either is too low to be convincingly demonstrated or does not exist, the magnitude of the concern among patients and some medical professionals that CT scans increase cancer risk remains unreasonably high. In this article, common questions about CT scanning and radiation are answered to provide physicians with accurate information on which to base their medical decisions and respond to patient questions. PMID:26434964

  13. Profile of CT scan output dose in axial and helical modes using convolution

    NASA Astrophysics Data System (ADS)

    Anam, C.; Haryanto, F.; Widita, R.; Arif, I.; Dougherty, G.

    2016-03-01

    The profile of the CT scan output dose is crucial for establishing the patient dose profile. The purpose of this study is to investigate the profile of the CT scan output dose in both axial and helical modes using convolution. A single scan output dose profile (SSDP) in the center of a head phantom was measured using a solid-state detector. The multiple scan output dose profile (MSDP) in the axial mode was calculated using convolution between SSDP and delta function, whereas for the helical mode MSDP was calculated using convolution between SSDP and the rectangular function. MSDPs were calculated for a number of scans (5, 10, 15, 20 and 25). The multiple scan average dose (MSAD) for differing numbers of scans was compared to the value of CT dose index (CTDI). Finally, the edge values of MSDP for every scan number were compared to the corresponding MSAD values. MSDPs were successfully generated by using convolution between a SSDP and the appropriate function. We found that CTDI only accurately estimates MSAD when the number of scans was more than 10. We also found that the edge values of the profiles were 42% to 93% lower than that the corresponding MSADs.

  14. [Evaluation of resolving power property to the position and direction of in-plane in CT-scan system].

    PubMed

    Hara, Takanori; Ichikawa, Katsuhiro; Niwa, Shinji

    2008-01-20

    Analysis of the detailed physical property in CT system is important in an understanding of a clinical image. In this study, we evaluated resolution power property about the positions and direction for in-plane in CT system. The indexes of the resolving power property of CT images were measured by MTFs using the thin metal wire (diameter of 0.2 mm). We measured the positions of the iso-center and the off-center (32 mm, 64 mm, 96 mm, 128 mm) in in-plane. One-dimensional MTFs for the X-direction and Y-direction were calculated by the numerical slit scanning method. Then, MTF was calculated from the corresponding direction. As a result, when a filter kernel of high resolutions (B70) is used in the position of 128 mm, the resolution of X-direction was inferior to the Y-direction about 30% (at the MTF-value of 0.5 cycles/mm). Moreover, the resolution of X-direction at the position of 128 mm was inferior to the center about 33% (at the MTF-value of 0.5 cycles/mm). The resolving power property of in-plane in CT system was decreased in the calculation from the numerical slit that becomes perpendicular to the direction of centrifugal and, decreased proportionately with the distance from the center. Also, the resolutions along the centrifugal direction fell off remarkably at the peripheral area. And also, it turned out that the declining trend becomes larger, when the filter function for high-resolving power that is adapted for lungs is used.

  15. Scanning near-field optical microscopy signal processing and resolution.

    PubMed

    Grosges, Thomas; Barchiesi, Dominique

    2007-04-20

    To increase the signal-to-noise ratio and to remove the spatially slow varying signals, a lock-in amplifier is often used in scanning probe microscopy. The signal reconstructed from the lock-in data contains the contributions of the evanescent and homogeneous waves that are mixed in the near-field zone (i.e., at a very short distance). The resolution is determined and a method is given to suppress the useless background information. Experimental images of nanoparticles are processed.

  16. Use of gallium scanning in predicting resolution of Legionnaires' pneumonia

    SciTech Connect

    Imbriano, L.J.; Mandel, P.R.; Cordaro, A.F.

    1983-01-01

    The value of Ga-67 scanning to detect acute infectious lung disease has been described. We present a patient who apparently improved both clinically and radiographically after acute Legionnaires' pneumonia. Five months later a relapse developed. During his relapse the pulmonary uptake of Ga-67 and the appearance of chest x-rays were disparate. We suggest that pulmonary Ga-67 uptake may be a more sensitive indicator of the resolution of pneumonia than is chest radiography. Therapeutic success may be assumed when pulmonary Ga-67 uptake is absent.

  17. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD

    PubMed Central

    2013-01-01

    Background Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Methods Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < −950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp−856, the percent of lung < −856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC856-950, the difference between expiratory and inspiratory lung volumes with attenuation between −856 and −950 HU; and (4) Residuals from the regression of Exp−856 on percent emphysema. Results In 8517 subjects with complete data, Exp−856 was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp−856, E/I MLA and RVC856-950 were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC856-950 showed the highest correlations with clinical variables. Conclusions Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans. PMID:23566024

  18. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis

    PubMed Central

    Tang, Shi-Yang; Zhang, Wei; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2014-01-01

    Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment. PMID:25089528

  19. Single energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-08-01

    A urinary stone is a solid piece of material produced from crystallization of excreted substances in the urine. Knowledge of the composition of urinary stones is essential to determine the suitable treatment for the patient. The aim of this research was to characterize urinary stones using single energy micro CT SkyScan 1173. Six human urinary stones were scanned in vitro using 80 kV in micro CT SkyScan 1173. The produced projection, images, were reconstructed using NRecon (in-house software from SkyScan). The images of urinary stones were analyzed using CT Analyser (CT An) to obtain information of the internal structure and the Hounsfield Unit (HU) value to determine the information regarding the composition of the urinary stones, respectively. The average HU values from certain region of interests in the same slice were compared with spectral curves of known materials from National Institute of Standards and Technology (NIST). From the analysis, the composition of the six scanned stones were obtained. Two stones are composed of cystine, two are composed of struvite, two other stones are composed of struvite+cystine. In conclusion, the single energy micro CT with 80 kV can be used identifying cystine and struvite urinary stone.

  20. Feasibility of iodine contrast enhanced CT-scan during a 18F-fluorodeoxyglucose Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Houzard, C.; Tychyj, C.; Morelec, I.; Ricard, F.; Got, P.; Cotton, F.; Giammarile, F.; Maintas, D.

    2009-06-01

    OBJECTIVE: this prospective study evaluates the feasibility in current clinical practice of contrast enhanced CT-scan for diagnosis purpose, performed during 18FDG PET-CT study with a PET/CT tomography. METHOD: 25 patients underwent FDG imaging for lymphoma staging. The PET scan was done immediately after the usual low dose CT (lCT). A second CT scan was consequently acquired, by using classical diagnosis CT parameters (dCT) and iodinated contrast. For each patient, all CT attenuation correction (CTAC) PET images were visually compared. Density in Hounsfield units (HU) and maximum Standardized Uptake Value (SUVmax) were then measured on different organs and up to 5 specific lymphoma localizations (total of 294 measurements). RESULTS: Visual analysis was similar for the 2 modalities, without discordant interpretation for the pathologic sites. SUVmax means and standard deviation of each organ for lCTAC and dCTAC were comparable. The equation of the fitted multiple linear regression model was: dCT=0.0748191 + 1.17024*lCT (98.71%; p < 0.01). CONCLUSION: These first results allow the use of injected CT scan, before the PET scan acquisition for lymphoma staging with this PET-CT scan, not affected by the height atomic number and elevated density. A great benefit is therefore obtained on diagnostic, logistic and radioprotection purposes.

  1. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    2015-03-11

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  2. Pancreas tumor model in rabbit imaged by perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Gunn, Jason; Tichauer, Kenneth; Moodie, Karen; Kane, Susan; Hoopes, Jack; Stewart, Errol E.; Hadway, Jennifer; Lee, Ting-Yim; Pereira, Stephen P.; Pogue, Brian W.

    2013-03-01

    The goal of this work was to develop and validate a pancreas tumor animal model to investigate the relationship between photodynamic therapy (PDT) effectiveness and photosensitizer drug delivery. More specifically, this work lays the foundation for investigating the utility of dynamic contrast enhanced blood perfusion imaging to be used to inform subsequent PDT. A VX2 carcinoma rabbit cell line was grown in the tail of the pancreas of three New Zealand White rabbits and approximately 3-4 weeks after implantation the rabbits were imaged on a CT scanner using a contrast enhanced perfusion protocol, providing parametric maps of blood flow, blood volume, mean transit time, and vascular permeability surface area product.

  3. CT Hounsfield Numbers of Soft Tissues on Unenhanced Abdominal CT Scans: Variability Between Two Different Manufacturers’ MDCT Scanners

    PubMed Central

    Lamba, Ramit; McGahan, John P.; Corwin, Michael T.; Li, Chin-Shang; Tran, Tien; Seibert, J. Anthony; Boone, John M.

    2016-01-01

    OBJECTIVE The purpose of this study is to determine whether Hounsfield numbers of soft tissues on unenhanced abdominal CT of the same patient vary on repeat scans done on two different manufacturers’ MDCT scanners. MATERIALS AND METHODS A database search was performed to identify patients older than 18 years who underwent unenhanced CT of the abdomen and pelvis performed both on a Volume CT (GE Healthcare) and a Definition AS Plus (Siemens Healthcare) 64-MDCT scanner within 12 months of each other. After excluding those patients for whom Hounsfield unit measurements would be affected by mitigating factors, 48 patients (mean age, 58.8 years) were identified. Hounsfield unit measurements were obtained in nine different soft-tissue anatomic locations on each scan, and the location of these sites was kept identical on each scan pair. Data were analyzed to evaluate Hounsfield unit differences between these scanners. RESULTS In general, there was a low consistency in the Hounsfield unit measurements for each of these sites on scans obtained by the two scanners, with the subcutaneous fat in the left posterolateral flank showing the lowest correlation (intraclass correlation coefficient, 0.198). There were differences in the Hounsfield unit measurements obtained in all anatomic sites on scans obtained by both scanners. Mean Hounsfield unit measurements obtained on the Definition AS Plus scanner were lower than those obtained on the Volume CT scanner, with the intriguing exception of the anterior midline subcutaneous fat Hounsfield unit measurements, which were higher on the Definition AS Plus scanner. All differences were statistically significant (p < 0.05). CONCLUSION Hounsfield unit measurements for unenhanced abdominal soft tissues of the same patient vary between scanners of two common MDCT manufacturers. PMID:25341139

  4. High-resolution fully vectorial scanning Kerr magnetometer.

    PubMed

    Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; Vaňatka, Marek; Turčan, Igor; Šikola, Tomáš

    2016-05-01

    We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-μm-wide magnetic disk. PMID:27250432

  5. High-resolution fully vectorial scanning Kerr magnetometer

    NASA Astrophysics Data System (ADS)

    Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; VaÅatka, Marek; Turčan, Igor; Šikola, Tomáš

    2016-05-01

    We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-μm-wide magnetic disk.

  6. High-resolution fully vectorial scanning Kerr magnetometer.

    PubMed

    Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; Vaňatka, Marek; Turčan, Igor; Šikola, Tomáš

    2016-05-01

    We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-μm-wide magnetic disk.

  7. Degradation of the z- resolution due to a longitudinal motion with a 64-channel CT scanner.

    PubMed

    Grosjean, Romain; Sauer, Benoît; Guerra, Rui Matias; Blum, Alain; Felblinger, Jacques; Hubert, Jacques

    2007-01-01

    Isotropic acquisitions are routinely achievable with 64- channel CT scanners,. As it predecessors, it includes MultiPlanar Reformation (MPR) projection for the reconstruction of two-dimensional images and volume rendering for the creation of three dimensional images. The accuracy of images obtained with these postprocessing methods depends on the spatial resolution of image data acquired along the long axis of the patient (ie longitudinal, or z-inis spatial resolution). But physiologic motions can appear during a Computed Tomography (CT) exam and can leacd to a degradation of this spatial resolution. By using two different phantoms and a dynamic platform, we have studied the influence of a z-axis linear motion on the MPR images quality. Our results show that the corruption of the data results in the loss of information about the form, the contrast and/or the size of the scanned object. This corruption of data can lead to diagnostic errors by mimicking diseases or by masking physiologic details.

  8. What to do when a smoker's CT scan is "normal"?: Implications for lung cancer screening.

    PubMed

    Zurawska, Joanna H; Jen, Rachel; Lam, Stephen; Coxson, Harvey O; Leipsic, Jonathon; Sin, Don D

    2012-05-01

    Lung cancer is the leading cause of cancer-related mortality in the United States and around the world. There are > 90 million current and ex-smokers in the United States who are at increased risk of lung cancer. The published data from the National Lung Screening Trial (NLST) suggest that yearly screening with low-dose thoracic CT scan in heavy smokers can reduce lung cancer mortality by 20% and all-cause mortality by 7%. However, to implement this program nationwide using the NLST inclusion and exclusion criteria would be extremely expensive, with CT scan costs alone > $2 billion per annum. In this article, we offer a possible low-cost strategy to risk-stratify smokers on the basis of spirometry measurements and emphysema scoring by radiologists on CT scans. PMID:22553261

  9. Renal angiomyolipoma: diagnosis with B-ultrasonography, CT scanning, DSA and its interventional treatment.

    PubMed

    Zheng, C; Feng, G; Yang, J; Liang, H; Tian, Z

    1996-01-01

    From 1989, 15 cases of renal angiomyolipoma (AML) have been diagnosed by ultrasonography. CT scanning and digital subtraction angiography (DSA) at our hospital. In 8 patients with uneven hyperechoes on B-mode ultrasonography (B-US) (8/15) and 7 with low density of fat on CT scanning (7/12) accurate diagnosis was established preoperatively. DSA revealed the "berry-like" pseudoaneurysms in the arterial phase (14 cases), the defined lucent area in the nephrogram phase (10 cases) and the "onion-peel appearances" during venous phases (8 cases), correct diagnosis was achieved in all patients. 8 cases were surgically treated and 7 treated by subselective embolization of renal artery. Effects in all cases were good. The diagnostic value of B-US, CT scanning, DSA and interventional treatment of AML was discussed. It was believed that the diagnosis with DSA was a technique with high specificity, and embolization therapy was simple and effective for AML. PMID:9389091

  10. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies

    PubMed Central

    Welch, D; Harken, A D; Randers-Pehrson, G; Brenner, D J

    2015-01-01

    We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions. PMID:25860401

  11. CT imaging of the internal human ear: Test of a high resolution scanner

    NASA Astrophysics Data System (ADS)

    Bettuzzi, M.; Brancaccio, R.; Morigi, M. P.; Gallo, A.; Strolin, S.; Casali, F.; Lamanna, Ernesto; Ariù, Marilù

    2011-08-01

    During the course of 2009, in the framework of a project supported by the National Institute of Nuclear Physics, a number of tests were carried out at the Department of Physics of the University of Bologna in order to achieve a good quality CT scan of the internal human ear. The work was carried out in collaboration with the local “S. Orsola” Hospital in Bologna and a company (CEFLA) already involved in the production and commercialization of a CT scanner dedicated to dentistry. A laboratory scanner with a simple concept detector (CCD camera-lens-mirror-scintillator) was used to see to what extent it was possible to enhance the quality of a conventional CT scanner when examining the internal human ear. To test the system, some conventional measurements were made, such as the spatial resolution calculation with the MTF and dynamic range evaluation. Different scintillators were compared to select the most suitable for the purpose. With 0.5 mm thick structured cesium iodide and a field of view of 120×120 mm2, a spatial resolution of 6.5l p/mm at 5% MTF was obtained. The CT of a pair of human head phantoms was performed at an energy of 120 kVp. The first phantom was a rough representation of the human head shape, with soft tissue made of coarse slabs of Lucite. Some inserts, like small aluminum cylinders and cubes, with 1 mm diameter drilled holes, were used to simulate the channels that one finds inside the human inner ear. The second phantom is a plastic PVC fused head with a real human cranium inside. The bones in the cranium are well conserved and the inner ear features, such as the cochlea and semicircular channels, are clearly detectable. After a number of CT tests we obtained good results as far as structural representation and channel detection are concerned. Some images of the 3D rendering of the CT volume are shown below. The doctors of the local hospital who followed our experimentation expressed their satisfaction. The CT was compared to a virtual

  12. Imaging of pore networks and related interfaces in soil systems by using high resolution X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias

    2016-04-01

    Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the

  13. CCD-based optical CT scanning of highly attenuating phantoms

    NASA Astrophysics Data System (ADS)

    Al-Nowais, Shamsa; Doran, Simon J.

    2009-05-01

    The introduction of optical computed tomography (optical-CT) offers economic and easy to use 3-D optical readout for gel dosimeters. However, previous authors have noted some challenges regarding the accuracy of such imaging techniques at high values of optical density. In this paper, we take a closer look at the 'cupping' artefact evident in both light-scattering polymer systems and highly light absorbing phantoms using our CCD-based optical scanner. In addition, a technique is implemented whereby the maximum measurable optical absorbance is extended to correct for any errors that may have occurred in the estimated value of the dark current or ambient light reaching the detector. The results indicate that for absorbance values up to 2.0, the optical scanner results have good accuracy, whereas this is not the case at high absorbance values for reasons yet to be explained.

  14. Radiation dose calculations for CT scans with tube current modulation using the approach to equilibrium function

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-11-01

    Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approach that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan

  15. Estimating Radiation Dose Metrics for Patients Undergoing Tube Current Modulation CT Scans

    NASA Astrophysics Data System (ADS)

    McMillan, Kyle Lorin

    Computed tomography (CT) has long been a powerful tool in the diagnosis of disease, identification of tumors and guidance of interventional procedures. With CT examinations comes the concern of radiation exposure and the associated risks. In order to properly understand those risks on a patient-specific level, organ dose must be quantified for each CT scan. Some of the most widely used organ dose estimates are derived from fixed tube current (FTC) scans of a standard sized idealized patient model. However, in current clinical practice, patient size varies from neonates weighing just a few kg to morbidly obese patients weighing over 200 kg, and nearly all CT exams are performed with tube current modulation (TCM), a scanning technique that adjusts scanner output according to changes in patient attenuation. Methods to account for TCM in CT organ dose estimates have been previously demonstrated, but these methods are limited in scope and/or restricted to idealized TCM profiles that are not based on physical observations and not scanner specific (e.g. don't account for tube limits, scanner-specific effects, etc.). The goal of this work was to develop methods to estimate organ doses to patients undergoing CT scans that take into account both the patient size as well as the effects of TCM. This work started with the development and validation of methods to estimate scanner-specific TCM schemes for any voxelized patient model. An approach was developed to generate estimated TCM schemes that match actual TCM schemes that would have been acquired on the scanner for any patient model. Using this approach, TCM schemes were then generated for a variety of body CT protocols for a set of reference voxelized phantoms for which TCM information does not currently exist. These are whole body patient models representing a variety of sizes, ages and genders that have all radiosensitive organs identified. TCM schemes for these models facilitated Monte Carlo-based estimates of fully

  16. Precise 3D dimensional metrology using high-resolution x-ray computed tomography (μCT)

    NASA Astrophysics Data System (ADS)

    Brunke, Oliver; Santillan, Javier; Suppes, Alexander

    2010-09-01

    Over the past decade computed tomography (CT) with conventional x-ray sources has evolved from an imaging method in medicine to a well established technology for industrial applications in fields such as material science, light metals and plastics processing, microelectronics and geology. By using modern microfocus and nanofocus X-ray tubes, parts can be scanned with sub-micrometer resolutions. Currently, micro-CT is a technology increasingly used for metrology applications in the automotive industry. CT offers big advantages compared with conventional tactile or optical coordinate measuring machines (CMMs). This is of greater importance if complex parts with hidden or difficult accessible surfaces have to be measured. In these cases, CT offers the advantage of a high density of measurement points and a non-destructive and fast capturing of the sample's complete geometry. When using this growing technology the question arises how precise a μCT based CMM can measure as compared to conventional and established methods for coordinate measurements. For characterizing the metrological capabilities of a tactile or optical CMM, internationally standardized parameters like length measurement error and probing error are defined and used. To increase the acceptance of CT as a metrological method, our work seeks to clarify the definition and usage of parameters used in the field of metrology as these apply to CT. In this paper, an overview of the process chain in CT based metrology will be given and metrological characteristics will be described. For the potential user of CT as 3D metrology tool it is important to show the measurement accuracy and repeatability on realistic samples. Following a discussion of CT metrology techniques, two samples are discussed. The first compares a measured CT Data set to CAD data using CMM data as a standard for comparison of results. The second data second realistic data set will compare the results of applying both the CMM method of

  17. Conversion of a Micro-CT Scanned Rock Fracture Into a Useful Model

    SciTech Connect

    Crandall, Dustin; Bromhal, Grant; Smith, Duane

    2009-01-01

    Within geologic reservoirs the flow of fluids through fractures is often orders of magnitude greater than through the surrounding, low-permeability rock. Because of the number and size of fractures in geological fields, reservoir-scale discrete-fracture simulators often model fluid motion through fractures as flow through narrow, parallel plates. In reality fractures within rock are narrow openings between two rough rock surfaces. In order to model the geometry of an actual fracture in rock, a ~9 cm by 2.5 cm fracture within Berea sandstone was created and the aperture distribution was obtained with micro-Computed Tomography (CT) scans by Karpyn et al. [1]. The original scans had a volume-pixel (voxel) resolution of 27 by 27 by 32 microns. This data was up-scaled to voxels with 120 microns to a side to facilitate data transfer and for practicality of use. Using three separate reconstruction techniques, six different fracture meshes were created from this up-scaled data set, each with slightly different final geometries. Flow through each of these fracture meshes was evaluated using the finite-volume simulator FLUENT. While certain features of the fracture meshes, such as the shape of the fracture aperture distributions and overall volume of the void, remained similar between the different geometric reconstructions, the flow in different models was observed to vary dramatically. Rough fracture walls induced more tortuous flow paths and a higher resistance to flow. Natural fractures do vary in-situ, due to sidewall dissolution and mineral precipitation, smoothing and coarsening fracture walls respectively. Thus for our study the range of fracture properties was actually beneficial, allowing us to describe the flow through a range of fracture types. A compromise between capturing the geometric details within a domain of interest and a tractable computational mesh must always be addressed when flow through a physical geometry is modeled. The fine level of detail that

  18. Overbeaming and overlapping of volume-scan CT with tube current modulation in a 320-detector row CT scanner

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Lan; Chen, Yan-Shi; Lai, Nan-Ku; Chuang, Keh-Shih; Tsai, Hui-Yu

    2014-11-01

    The purpose of this study was to evaluate the performance of volume scan tube current modulation (VS-ATCM) with adaptive iterative dose reduction 3D (AIDR3D) technique in abdomen CT examinations. We scanned an elliptical cone-shaped phantom utilizing AIDR3D technique combined with VS-ATCM mode in a 320-detector row CT scanner. The image noise distributions with conventional filtered back-projction (FBP) technique and those with AIDR3D technique were compared. The radiation dose profile and tube current time product (mAs) in three noise levels of VS-ATCM modes were compared. The radiation beam profiles of five preset scan lengths were measured using Gafchromic film strips to assess the effects of overbeaming and everlapping. The results indicated that the image noises with AIDR3D technique was 13-74% lower than those in FBP technique. The mAs distributions can be a prediction for various abdominal sizes when undergoing a VS-ATCM mode scan. Patients can receive the radiation dose of overbeaming and overlapping during the VS-ATCM mode scans.

  19. Lung function in silica-exposed workers. A relationship to disease severity assessed by CT scan.

    PubMed

    Bégin, R; Ostiguy, G; Cantin, A; Bergeron, D

    1988-09-01

    To investigate the relationship of lung function, airflow limitation, and lung injury in silica-exposed workers, we analyzed the clinical, functional, and radiologic data of 94 long-term workers exposed in the granite industry or in foundries. The subjects were divided into four subsets based on chest roentgenogram and CT scan of the thorax: group 1 consisted of 21 subjects with category 0 chest roentgenogram and category 0 CT scan; group 2, 28 subjects with category E 1 on both chest roentgenogram and CT scan; group 3, 18 subjects with category E 1 on chest roentgenogram but with coalescence or conglomeration or both seen only on CT scan; and group 4, 27 subjects with category E 1 and coalescence or conglomeration or both on roentgenogram and CT scan. The groups did not differ in terms of age, height, cigarette smoking, or years of exposure. Lung volumes were significantly reduced only in group 4 (p less than 0.05). Lung compliance, diffusion capacity, and the rest-exercise P(A-a)O2 gradient were reduced in groups 3 and 4 (p less than 0.05). Expiratory flow rates were significantly reduced in groups 2, 3, and 4, with the lowest values in group 4. The expiratory flow rates in group 3 were significantly lower in group 3 than in group 2. These results support the concept that airflow in silica-exposed workers is significantly reduced when the disease is detectable on simple chest roentgenogram; coalescence or conglomeration or both on chest roentgenogram or CT scan is associated with significant loss of lung volumes, gas exchange function, and increased airflow obstruction.

  20. Clinical evaluation of semi-automatic landmark-based lesion tracking software for CT-scans

    PubMed Central

    2014-01-01

    Background To evaluate a semi-automatic landmark-based lesion tracking software enabling navigation between RECIST lesions in baseline and follow-up CT-scans. Methods The software automatically detects 44 stable anatomical landmarks in each thoraco/abdominal/pelvic CT-scan, sets up a patient specific coordinate-system and cross-links the coordinate-systems of consecutive CT-scans. Accuracy of the software was evaluated on 96 RECIST lesions (target- and non-target lesions) in baseline and follow-up CT-scans of 32 oncologic patients (64 CT-scans). Patients had to present at least one thoracic, one abdominal and one pelvic RECIST lesion. Three radiologists determined the deviation between lesions’ centre and the software’s navigation result in consensus. Results The initial mean runtime of the system to synchronize baseline and follow-up examinations was 19.4 ± 1.2 seconds, with subsequent navigation to corresponding RECIST lesions facilitating in real-time. Mean vector length of the deviations between lesions’ centre and the semi-automatic navigation result was 10.2 ± 5.1 mm without a substantial systematic error in any direction. Mean deviation in the cranio-caudal dimension was 5.4 ± 4.0 mm, in the lateral dimension 5.2 ± 3.9 mm and in the ventro-dorsal dimension 5.3 ± 4.0 mm. Conclusion The investigated software accurately and reliably navigates between lesions in consecutive CT-scans in real-time, potentially accelerating and facilitating cancer staging. PMID:25609496

  1. High-Resolution Underwater Mapping Using Side-Scan Sonar.

    PubMed

    Burguera, Antoni; Oliver, Gabriel

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region. PMID:26821379

  2. High-Resolution Underwater Mapping Using Side-Scan Sonar

    PubMed Central

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region. PMID:26821379

  3. High-Resolution Underwater Mapping Using Side-Scan Sonar.

    PubMed

    Burguera, Antoni; Oliver, Gabriel

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region.

  4. Extraction of the Brain from CT Head Scans Based on Domain Knowledge

    SciTech Connect

    Qian Guoyu; Luo Suhuai; Jin, Jesse; Park, Mira; Nowinski, Wieslaw L.

    2007-11-02

    We present an automatic approach for an efficient brain extraction from CT head scans. Regions of interest are first set in each slice by applying thresholding and region growing. Next, the brain candidates are extracted by using three-dimensional region growing with a variable, anatomy-dependent structuring element. Domain knowledge, including Hounsfield unit ranges, anatomy, and image acquisition parameters, is applied. The proposed method has been applied automatically to 27 CT normal and pathological scans and has shown promising results. The average sensitivity, specificity and Dice's index for 5 cases are 99.6%, 99.4% and 98.7%, respectively.

  5. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans

    SciTech Connect

    Sarrut, David; Boldea, Vlad; Miguet, Serge; Ginestet, Chantal

    2006-03-15

    Purpose: We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. Materials and methods: Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were performed. The method was a minimization of the sum of squared differences (SSD) using an approximated second-order gradient. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing step, called a priori lung density modification (APLDM), was proposed to take into account lung density changes due to inspiration. It consisted of modulating the lung densities in one image according to the densities in the other, in order to make them comparable. Simulated 4-D images were then built by vector field interpolation and image resampling of the two initial CT images. A variation in the lung density was taken into account to generate intermediate artificial CT images. The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The accuracy of the deformable registration was assessed by the spatial correspondence of anatomic landmarks located by experts. Results: APLDM produced statistically significantly better results than the reference method (registration without APLDM preprocessing). The mean (and standard deviation) of distances between automatically found landmark positions and landmarks set by experts were 2.7(1.1) mm with APLDM, and 6.3(3.8) mm without. Interexpert variability was 2.3(1.2) mm. The differences between Gaussian and linear elastic regularizations were not statistically significant. In the second experiment using 4-D images, the mean difference between automatic and manual landmark positions for intermediate CT images was 2.6(2.0) mm. Conclusion: The generation of 4-D CT images by deformable registration of inhale and exhale CT images is

  6. Normalization of CT scans reconstructed with different kernels to reduce variability in emphysema measurements

    NASA Astrophysics Data System (ADS)

    Gallardo Estrella, L.; van Ginneken, B.; van Rikxoort, E. M.

    2013-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized by progressive air flow limitation caused by emphysema and chronic bronchitis. Emphysema is quantified from chest computed tomography (CT) scans as the percentage of attentuation values below a fixed threshold. The emphysema quantification varies substantially between scans reconstructed with different kernels, limiting the possibilities to compare emphysema quantifications obtained from scans with different reconstruction parameters. In this paper we propose a method to normalize scans reconstructed with different kernels to have the same characteristics as scans reconstructed with a reference kernel and investigate if this normalization reduces the variability in emphysema quantification. The proposed normalization splits a CT scan into different frequency bands based on hierarchical unsharp masking. Normalization is performed by changing the energy in each frequency band to the average energy in each band in the reference kernel. A database of 15 subjects with COPD was constructed for this study. All subjects were scanned at total lung capacity and the scans were reconstructed with four different reconstruction kernels. The normalization was applied to all scans. Emphysema quantification was performed before and after normalization. It is shown that the emphysema score varies substantially before normalization but the variation diminishes after normalization.

  7. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    PubMed Central

    2011-01-01

    Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology. PMID:21338504

  8. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    PubMed

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.

  9. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    PubMed

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues. PMID:24437605

  10. Imaging plasmodesmata with high-resolution scanning electron microscopy.

    PubMed

    Barton, Deborah A; Overall, Robyn L

    2015-01-01

    High-resolution scanning electron microscopy (HRSEM) is an effective tool to investigate the distribution of plasmodesmata within plant cell walls as well as to probe their complex, three-dimensional architecture. It is a useful alternative to traditional transmission electron microscopy (TEM) in which plasmodesmata are sectioned to reveal their internal substructures. Benefits of adopting an HRSEM approach to studies of plasmodesmata are that the specimen preparation methods are less complex and time consuming than for TEM, many plasmodesmata within a large region of tissue can be imaged in a single session, and three-dimensional information is readily available without the need for reconstructing TEM serial sections or employing transmission electron tomography, both of which are lengthy processes. Here we describe methods to prepare plant samples for HRSEM using pre- or postfixation extraction of cellular material in order to visualize plasmodesmata embedded within plant cell walls.

  11. Interactive lung segmentation in abnormal human and animal chest CT scans

    SciTech Connect

    Kockelkorn, Thessa T. J. P. Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  12. Metabolic super scan in F-FDG PET/CT imaging.

    PubMed

    Kim, Dae-Weung; Kim, Chang Guhn; Park, Soon-Ah; Jung, Sang-Ah; Yang, Sei-Hoon

    2010-08-01

    A 50-yr-old man presented with intermittent hemoptysis and was diagnosed small cell lung cancer. (18)F-FDG PET/CT for staging demonstrated extensive hypermetabolic lesions throughout the skeleton and liver. Interestingly, skeletal muscles of limbs, mediastinum, bowel, and especially brain showed very low FDG uptake. Because of some characteristics in common with super scan on skeletal scintigraphy, this case could be considered as 'metabolic super scan'.

  13. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    SciTech Connect

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish; Minniti, Ronaldo; Parry, Marie I.; Skopec, Marlene

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 m

  14. Nonlinear histogram binning for quantitative analysis of lung tissue fibrosis in high-resolution CT data

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Bartholmai, Brian J.; Robb, Richard A.

    2007-03-01

    Diffuse lung diseases, such as idiopathic pulmonary fibrosis (IPF), can be characterized and quantified by analysis of volumetric high resolution CT scans of the lungs. These data sets typically have dimensions of 512 x 512 x 400. It is too subjective and labor intensive for a radiologist to analyze each slice and quantify regional abnormalities manually. Thus, computer aided techniques are necessary, particularly texture analysis techniques which classify various lung tissue types. Second and higher order statistics which relate the spatial variation of the intensity values are good discriminatory features for various textures. The intensity values in lung CT scans range between [-1024, 1024]. Calculation of second order statistics on this range is too computationally intensive so the data is typically binned between 16 or 32 gray levels. There are more effective ways of binning the gray level range to improve classification. An optimal and very efficient way to nonlinearly bin the histogram is to use a dynamic programming algorithm. The objective of this paper is to show that nonlinear binning using dynamic programming is computationally efficient and improves the discriminatory power of the second and higher order statistics for more accurate quantification of diffuse lung disease.

  15. Semiautomated three-dimensional segmentation software to quantify carpal bone volume changes on wrist CT scans for arthritis assessment.

    PubMed

    Duryea, J; Magalnick, M; Alli, S; Yao, L; Wilson, M; Goldbach-Mansky, R

    2008-06-01

    Rapid progression of joint destruction is an indication of poor prognosis in patients with rheumatoid arthritis. Computed tomography (CT) has the potential to serve as a gold standard for joint imaging since it provides high resolution three-dimensional (3D) images of bone structure. The authors have developed a method to quantify erosion volume changes on wrist CT scans. In this article they present a description and validation of the methodology using multiple scans of a hand phantom and five human subjects. An anthropomorphic hand phantom was imaged with a clinical CT scanner at three different orientations separated by a 30-deg angle. A reader used the semiautomated software tool to segment the individual carpal bones of each CT scan. Reproducibility was measured as the root-mean-square standard deviation (RMMSD) and coefficient of variation (CoV) between multiple measurements of the carpal volumes. Longitudinal erosion progression was studied by inserting simulated erosions in a paired second scan. The change in simulated erosion size was calculated by performing 3D image registration and measuring the volume difference between scans in a region adjacent to the simulated erosion. The RMSSD for the total carpal volumes was 21.0 mm3 (CoV = 1.3%) for the phantom, and 44.1 mm3 (CoV = 3.0%) for the in vivo subjects. Using 3D registration and local volume difference calculations, the RMMSD was 1.0-3.0 mm3 The reader time was approximately 5 min per carpal bone. There was excellent agreement between the measured and simulated erosion volumes. The effect of a poorly measured volume for a single erosion is mitigated by the large number of subjects that would comprise a clinical study and that there will be many erosions measured per patient. CT promises to be a quantifiable tool to measure erosion volumes and may serve as a gold standard that can be used in the validation of other modalities such as magnetic resonance imaging.

  16. Investigation of the potential causes of partial scan artifacts in dynamic CT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    Tao, Yinghua; Speidel, Michael; Szczykutowicz, Timothy; Chen, Guang-Hong

    2014-03-01

    In recent years, there have been several findings regarding CT number variations (partial scan artifact or PSA) across time in dynamic myocardial perfusion studies with short scan gated reconstruction. These variations are correlated with the view angle range corresponding to the short scan acquisition for a given cardiac phase, which can vary from one cardiac cycle to another due to the asynchrony between heart rate and gantry rotation speed. In this study, we investigate several potential causes of PSA, including noise, beam hardening and scatter, using numerical simulations. In addition, we investigate partial scan artifact in a single source 64-slice diagnostic CT scanner in vivo data sets, and report its effect on perfusion analysis. Results indicated that among all three factors investigated, scatter can cause obvious partial scan artifact in dynamic myocardial perfusion imaging. Further, scatter is a low frequency phenomenon and is not heavily dependent on the changing contrasts, as both the frequency method and the virtual scan method are effective in reducing partial scan artifact. However, PSA does not necessarily lead to different blood volume maps compared to the full scan, because these maps are usually generated with a curve fitting procedure.

  17. NOTE: An anatomically shaped lower body model for CT scanning of cadaver femurs

    NASA Astrophysics Data System (ADS)

    Tanck, Esther; Deenen, J. C. W.; Huisman, Henk Jan; Kooloos, Jan G.; Huizenga, Henk; Verdonschot, Nico

    2010-01-01

    Bone specific, CT-based finite element (FE) analyses have great potential to accurately predict the fracture risk of deteriorated bones. However, it has been shown that differences exist between FE-models of femora scanned in a water basin or scanned in situ within the human body, as caused by differences in measured bone mineral densities (BMD). In this study we hypothesized that these differences can be reduced by re-creating the patient CT-conditions by using an anatomically shaped physical model of the lower body. BMD distributions were obtained from four different femora that were scanned under three conditions: (1) in situ within the cadaver body, (2) in a water basin and (3) in the body model. The BMD of the three scanning protocols were compared at two locations: proximally, in the trabecular bone of the femoral head, and in the cortical bone of the femoral shaft. Proximally, no significant differences in BMD were found between the in situ scans and the scans in the body model, whereas the densities from the water basin scans were on average 10.8% lower than in situ. In the femoral shaft the differences between the three scanning protocols were insignificant. In conclusion, the body model better approached the in situ situation than a water basin. Future studies can use this body model to mimic patient situations and to develop protocols to improve the performance of the FE-models in actual patients.

  18. Study Finds Small Increase in Cancer Risk after Childhood CT Scans

    Cancer.gov

    A study published in the June 6, 2012, issue of The Lancet shows that radiation exposure from computed tomography (CT) scans in childhood results in very small but increased risks of leukemia and brain tumors in the first decade after exposure.

  19. The use of isodose curves on radiographs and on CT scans in interstitial brachytherapy.

    PubMed

    Warszawski, N; Bleher, M; Bratengeier, K; Bohndorf, W

    1992-07-01

    In brachytherapy an accurate dose distribution is usually not definable, and therefore not required. If flexible catheters are implanted, such as in head and neck cancer, resulting isodose curves only rarely fit exactly to radiographic films, and the target volume is not easily reconstructed. Usually no clear relationship exists between the three-dimensional (3D) dose distribution and target volume on the one hand and the two-dimensional (2D) radiographic films on the other. Dose distributions on radiographs are not sufficient to define the target absorbed dose and doses that critical areas will receive. A 3D imaging system, like computed tomographic (CT) scans, is needed in order to visualize underdosage inside the target volume and non-tolerable hot spots outside the tumour. Large-scale and expensive techniques exist to tackle these problems. Our inexpensive and verifiable approach to solve these problems combines localization radiographs with CT scans. Whereas tumour and critical areas are displayed on CT scans, flexible catheters loaded with dummy sources are best seen on radiographic films. With the help of a self-developed computer program, dose distributions are superimposed on CT scans. Doses to the target and critical organs are easily read and verified by external and internal detectors.

  20. Alignment of full and partial CT thoracic scans using bony structures

    NASA Astrophysics Data System (ADS)

    Gavrielides, Marios A.; Petrick, Nicholas; Myers, Kyle J.

    2006-03-01

    Diagnostic thoracic procedures using computed tomography (CT) often include comparisons of scans acquired with different slice thicknesses. In this manuscript, we investigated the potential for alignment of different CT scans from the same patient using skeletal knowledge of the thoracic region. Skeletal matching was selected because it is expected to be less susceptible to differences associated with patient breath hold, positioning and cardiac motion. Our method utilized the positioning of the ribs relative to the vertebra for matching. It also included matching the scapula when visible in the scans. Rib positioning was described by the angles formed between the vertebra centroid and combinations of pairs of rib centroids visible on each CT slice; this was used as the primary matching mechanism. Scapula morphology was described using a feature based on the local maxima of the distance transform. Since the scapula is not visible in all slices of a full scan, its description was limited to only defining the potential range of slices. A cost function incorporating the difference of features from rib positioning and scapula morphology between two slices was derived and used to match slices. The method was evaluated on an independent set of 10 pairs of full and partial CT scans. Assessment was based on whether or not slices containing known nodules between each pair of scans were overlapping after the alignment procedure. Results showed that the proposed metric correctly aligned 9 out of 10 scans. The preliminary results are encouraging for using this method as a first step towards temporal analysis of lung nodules.

  1. Pancreatic Cancer Tumor Size on CT Scan Versus Pathologic Specimen: Implications for Radiation Treatment Planning

    SciTech Connect

    Arvold, Nils D.; Niemierko, Andrzej; Mamon, Harvey J.; Hong, Theodore S.

    2011-08-01

    Purpose: Pancreatic cancer primary tumor size measurements are often discordant between computed tomography (CT) and pathologic specimen after resection. Dimensions of the primary tumor are increasingly relevant in an era of highly conformal radiotherapy. Methods and Materials: We retrospectively evaluated 97 consecutive patients with resected pancreatic cancer at two Boston hospitals. All patients had CT scans before surgical resection. Primary endpoints were maximum dimension (in millimeters) of the primary tumor in any direction as reported by the radiologist on CT and by the pathologist for the resected gross fresh specimen. Endoscopic ultrasound (EUS) findings were analyzed if available. Results: Of the patients, 87 (90%) had preoperative CT scans available for review and 46 (47%) had EUS. Among proximal tumors (n = 69), 40 (58%) had pathologic duodenal invasion, which was seen on CT in only 3 cases. The pathologic tumor size was a median of 7 mm larger compared with CT size for the same patient (range, -15 to 43 mm; p < 0.0001), with 73 patients (84%) having a primary tumor larger on pathology than CT. Endoscopic ultrasound was somewhat more accurate, with pathologic tumor size being a median of only 5 mm larger compared with EUS size (range, -15 to 35 mm; p = 0.0003). Conclusions: Computed tomography scans significantly under-represent pancreatic cancer tumor size compared with pathologic specimens in resectable cases. We propose a clinical target volume expansion formula for the primary tumor based on our data. The high rate of pathologic duodenal invasion suggests a risk of duodenal undercoverage with highly conformal radiotherapy.

  2. "High-precision, reconstructed 3D model" of skull scanned by conebeam CT: Reproducibility verified using CAD/CAM data.

    PubMed

    Katsumura, Seiko; Sato, Keita; Ikawa, Tomoko; Yamamura, Keiko; Ando, Eriko; Shigeta, Yuko; Ogawa, Takumi

    2016-01-01

    Computed tomography (CT) scanning has recently been introduced into forensic medicine and dentistry. However, the presence of metal restorations in the dentition can adversely affect the quality of three-dimensional reconstruction from CT scans. In this study, we aimed to evaluate the reproducibility of a "high-precision, reconstructed 3D model" obtained from a conebeam CT scan of dentition, a method that might be particularly helpful in forensic medicine. We took conebeam CT and helical CT images of three dry skulls marked with 47 measuring points; reconstructed three-dimensional images; and measured the distances between the points in the 3D images with a computer-aided design/computer-aided manufacturing (CAD/CAM) marker. We found that in comparison with the helical CT, conebeam CT is capable of reproducing measurements closer to those obtained from the actual samples. In conclusion, our study indicated that the image-reproduction from a conebeam CT scan was more accurate than that from a helical CT scan. Furthermore, the "high-precision reconstructed 3D model" facilitates reliable visualization of full-sized oral and maxillofacial regions in both helical and conebeam CT scans. PMID:26832374

  3. Self-guided clinical cases for medical students based on postmortem CT scans of cadavers.

    PubMed

    Bohl, Michael; Francois, Webster; Gest, Thomas

    2011-07-01

    In the summer of 2009, we began full body computed tomography (CT) scanning of the pre-embalmed cadavers in the University of Michigan Medical School (UMMS) dissection lab. We theorized that implementing web-based, self-guided clinical cases based on postmortem CT (PMCT) scans would result in increased student appreciation for the clinical relevance of anatomy, increased knowledge of cross-sectional anatomy, and increased ability to identify common pathologies on CT scans. The PMCT scan of each cadaver was produced as a DICOM dataset, and then converted into a Quicktime movie file using Osirix software. Clinical cases were researched and written by the authors, and consist of at least one Quicktime movie of a PMCT scan surrounded by a novel navigation interface. To assess the value of these clinical cases we surveyed medical students at UMMS who are currently using the clinical cases in their coursework. Students felt the clinical cases increased the clinical relevance of anatomy (mean response 7.77/10), increased their confidence finding anatomical structures on CT (7.00/10), and increased their confidence recognizing common pathologies on CT (6.17/10). Students also felt these clinical cases helped them synthesize material from numerous courses into an overall picture of a given disease process (7.01/10). These results support the conclusion that our clinical cases help to show students why the anatomy they are learning is foundational to their other coursework. We would recommend the use of similar clinical cases to any medical school utilizing cadaver dissection as a primary teaching method in anatomy education.

  4. Analysis of chromosome translocation frequency after a single CT scan in adults

    PubMed Central

    Abe, Yu; Miura, Tomisato; Yoshida, Mitsuaki A.; Ujiie, Risa; Kurosu, Yumiko; Kato, Nagisa; Katafuchi, Atsushi; Tsuyama, Naohiro; Kawamura, Fumihiko; Ohba, Takashi; Inamasu, Tomoko; Shishido, Fumio; Noji, Hideyoshi; Ogawa, Kazuei; Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Muto, Satoshi; Ohsugi, Jun; Suzuki, Hiroyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Sakai, Akira

    2016-01-01

    We recently reported an increase in dicentric chromosome (DIC) formation after a single computed tomography (CT) scan (5.78–60.27 mSv: mean 24.24 mSv) and we recommended analysis of 2000 metaphase cells stained with Giemsa and centromere-FISH for dicentric chromosome assay (DCA) in cases of low-dose radiation exposure. In the present study, we analyzed the frequency of chromosome translocations using stored Carnoy's-fixed lymphocyte specimens from the previous study; these specimens were from 12 patients who were subject to chromosome painting of Chromosomes 1, 2 and 4. Chromosomes 1, 2 and 4 were analyzed in ∼5000 cells, which is equivalent to the whole-genome analysis of almost 2000 cells. The frequency of chromosome translocation was higher than the number of DICs formed, both before and after CT scanning. The frequency of chromosome translocations tended to be higher, but not significantly higher, in patients with a treatment history compared with patients without such a history. However, in contrast to the results for DIC formation, the frequency of translocations detected before and after the CT scan did not differ significantly. Therefore, analysis of chromosome translocation may not be a suitable assay for detecting chromosome aberrations in cases of low-dose radiation exposure from a CT scan. A significant increase in the frequency of chromosome translocations was not likely to be detected due to the high baseline before the CT scan; the high and variable frequency of translocations was probably due to multiple confounding factors in adults. PMID:26874116

  5. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    SciTech Connect

    Pyka, Grzegorz; Kerckhofs, Greet

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  6. Variation compensation and analysis on diaphragm curvature analysis for emphysema quantification on whole lung CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.

    2010-03-01

    CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.

  7. High-resolution 3D micro-CT imaging of breast microcalcifications: a preliminary analysis

    PubMed Central

    2014-01-01

    Background Detection of microcalcifications on mammograms indicates the presence of breast lesion, and the shapes of the microcalcifications as seen by conventional mammography correlates with the probability of malignancy. This preliminary study evaluated the 3D shape of breast microcalcifications using micro-computed tomography (micro-CT) and compared the findings with those obtained using anatomopathological analysis. Methods The study analyzed breast biopsy samples from 11 women with findings of suspicious microcalcifications on routine mammograms. The samples were imaged using a micro-CT (SkyScan 1076) at a resolution of 35 μm. Images were reconstructed using filtered back-projection and analyzed in 3D using surface rendering. The samples were subsequently analyzed by the pathology service. Reconstructed 3D images were compared with the corresponding histological slices. Results Anatomopathological analysis showed that 5 of 11 patients had ductal breast carcinoma in situ. One patient was diagnosed with invasive ductal carcinoma. Individual object analysis was performed on 597 microcalcifications. Malignant microcalcifications tended to be thinner and to have a smaller volume and surface area, while their surface area-to-volume ratio was greater than that of benign microcalcifications. The structure model index values were the same for malignant and benign microcalcifications. Conclusions This is the first study to use micro-CT for quantitative 3D analysis of microcalcifications. This high-resolution imaging technique will be valuable for gaining a greater understanding of the morphologic characteristics of malignant and benign microcalcifications. The presence of many small microcalcifications can be an indication of malignancy. For the larger microcalcifications, 3D parameters confirmed the more irregular shape of malignant microcalcifications. PMID:24393444

  8. User Friendly Processing of Sediment CT Data: Software and Application in High Resolution Non-Destructive Sediment Core Data Sets

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.; Abbott, M. B.; Francus, P.; Lapointe, F.

    2015-12-01

    Computed Tomography (CT) of sediment cores allow for high resolution images, three dimensional volumes, and down core profiles, generated through the attenuation of X-rays as a function of density and atomic number. When using a medical CT-Scanner, these quantitative data are stored in pixels using the Hounsfield scale, which are relative to the attenuation of X-rays in water and air at standard temperature and pressure. Here we present MATLAB based software specifically designed for sedimentary applications with a user friendly graphical interface to process DICOM files and stitch overlapping CT scans. For visualization, the software allows easy generation of core slice images with grayscale and false color relative to a user defined Hounsfield number range. For comparison to other high resolution non-destructive methods, down core Hounsfield number profiles are extracted using a method robust to coring imperfections, like deformation, bowing, gaps, and gas expansion. We demonstrate the usefulness of this technique with lacustrine sediment cores from the Western United States and Canadian High Arctic, including Fish Lake, Oregon, and Sawtooth Lake, Ellesmere Island. These sites represent two different depositional environments and provide examples for a variety of common coring defects and lithologies. The Hounsfield profiles and images can be used in combination with other high resolution data sets, including sediment magnetic parameters, XRF core scans and many other types of data, to provide unique insights into how lithology influences paleoenvironmental and paleomagnetic records and their interpretations.

  9. 18F-Fluorodeoxyglucose Positron Emission Tomography/CT Scanning in Diagnosing Vascular Prosthetic Graft Infection

    PubMed Central

    Saleem, Ben R.; Pol, Robert A.; Slart, Riemer H. J. A.; Reijnen, Michel M. P. J.; Zeebregts, Clark J.

    2014-01-01

    Vascular prosthetic graft infection (VPGI) is a severe complication after vascular surgery. CT-scan is considered the diagnostic tool of choice in advanced VPGI. The incidence of a false-negative result using CT is relatively high, especially in the presence of low-grade infections. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning has been suggested as an alternative for the diagnosis and assessment of infectious processes. Hybrid 18F-FDG PET/CT has established the role of 18F-FDG PET for the assessment of suspected VPGI, providing accurate anatomic localization of the site of infection. However, there are no clear guidelines for the interpretation of the uptake patterns of 18F-FDG as clinical tool for VPGI. Based on the available literature it is suggested that a linear, diffuse, and homogeneous uptake should not be regarded as an infection whereas focal or heterogeneous uptake with a projection over the vessel on CT is highly suggestive of infection. Nevertheless, 18F-FDG PET and 18F-FDG PET/CT can play an important role in the detection of VPGI and monitoring response to treatment. However an accurate uptake and pattern recognition is warranted and cut-off uptake values and patterns need to be standardized before considering the technique to be the new standard. PMID:25210712

  10. Automatic detection of axillary lymphadenopathy on CT scans of untreated chronic lymphocytic leukemia patients

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.

    2012-03-01

    Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.

  11. Technical Note: Measuring contrast- and noise-dependent spatial resolution of an iterative reconstruction method in CT using ensemble averaging

    SciTech Connect

    Yu, Lifeng Vrieze, Thomas J.; Leng, Shuai; Fletcher, Joel G.; McCollough, Cynthia H.

    2015-05-15

    Purpose: The spatial resolution of iterative reconstruction (IR) in computed tomography (CT) is contrast- and noise-dependent because of the nonlinear regularization. Due to the severe noise contamination, it is challenging to perform precise spatial-resolution measurements at very low-contrast levels. The purpose of this study was to measure the spatial resolution of a commercially available IR method using ensemble-averaged images acquired from repeated scans. Methods: A low-contrast phantom containing three rods (7, 14, and 21 HU below background) was scanned on a 128-slice CT scanner at three dose levels (CTDI{sub vol} = 16, 8, and 4 mGy). Images were reconstructed using two filtered-backprojection (FBP) kernels (B40 and B20) and a commercial IR method (sinogram affirmed iterative reconstruction, SAFIRE, Siemens Healthcare) with two strength settings (I40-3 and I40-5). The same scan was repeated 100 times at each dose level. The modulation transfer function (MTF) was calculated based on the edge profile measured on the ensemble-averaged images. Results: The spatial resolution of the two FBP kernels, B40 and B20, remained relatively constant across contrast and dose levels. However, the spatial resolution of the two IR kernels degraded relative to FBP as contrast or dose level decreased. For a given dose level at 16 mGy, the MTF{sub 50%} value normalized to the B40 kernel decreased from 98.4% at 21 HU to 88.5% at 7 HU for I40-3 and from 97.6% to 82.1% for I40-5. At 21 HU, the relative MTF{sub 50%} value decreased from 98.4% at 16 mGy to 90.7% at 4 mGy for I40-3 and from 97.6% to 85.6% for I40-5. Conclusions: A simple technique using ensemble averaging from repeated CT scans can be used to measure the spatial resolution of IR techniques in CT at very low contrast levels. The evaluated IR method degraded the spatial resolution at low contrast and high noise levels.

  12. Computed Tomography (CT) Scanning Facilitates Early Identification of Neonatal Cystic Fibrosis Piglets

    PubMed Central

    Guillon, Antoine; Chevaleyre, Claire; Barc, Celine; Berri, Mustapha; Adriaensen, Hans; Lecompte, François; Villemagne, Thierry; Pezant, Jérémy; Delaunay, Rémi; Moënne-Loccoz, Joseph; Berthon, Patricia; Bähr, Andrea; Wolf, Eckhard; Klymiuk, Nikolai; Attucci, Sylvie; Ramphal, Reuben; Sarradin, Pierre; Buzoni-Gatel, Dominique; Si-Tahar, Mustapha; Caballero, Ignacio

    2015-01-01

    Background Cystic Fibrosis (CF) is the most prevalent autosomal recessive disease in the Caucasian population. A cystic fibrosis transmembrane conductance regulator knockout (CFTR-/-) pig that displays most of the features of the human CF disease has been recently developed. However, CFTR-/- pigs presents a 100% prevalence of meconium ileus that leads to death in the first hours after birth, requiring a rapid diagnosis and surgical intervention to relieve intestinal obstruction. Identification of CFTR-/- piglets is usually performed by PCR genotyping, a procedure that lasts between 4 to 6 h. Here, we aimed to develop a procedure for rapid identification of CFTR-/- piglets that will allow placing them under intensive care soon after birth and immediately proceeding with the surgical correction. Methods and Principal Findings Male and female CFTR+/- pigs were crossed and the progeny was examined by computed tomography (CT) scan to detect the presence of meconium ileus and facilitate a rapid post-natal surgical intervention. Genotype was confirmed by PCR. CT scan presented a 94.4% sensitivity to diagnose CFTR-/- piglets. Diagnosis by CT scan reduced the birth-to-surgery time from a minimum of 10 h down to a minimum of 2.5 h and increased the survival of CFTR-/- piglets to a maximum of 13 days post-surgery as opposed to just 66 h after later surgery. Conclusion CT scan imaging of meconium ileus is an accurate method for rapid identification of CFTR-/- piglets. Early CT detection of meconium ileus may help to extend the lifespan of CFTR-/- piglets and, thus, improve experimental research on CF, still an incurable disease. PMID:26600426

  13. Precision of cortical bone reconstruction based on 3D CT scans.

    PubMed

    Wang, Jianping; Ye, Ming; Liu, Zhongtang; Wang, Chengtao

    2009-04-01

    The precision and accuracy of human cortical bone reconstruction using 3D CT scans was evaluated using machined bone segments. Both linear and angular errors were measured. Cadaver adult femoral and tibial cortical bone segments were obtained and machined in six orthogonal planes with a precision milling machine. CT scans were then obtained and the bone segments were reconstructed as digital replicas. Dimensional and angular measurements errors were evaluated for the machined bone segments and the results were compared with known dimensions based on milling machine settings to calculate errors due to scanning and model reconstruction. The model dimensional error in the coronal, sagittal and axial directions had a mean of 0.21 mm, with standard a deviation of 0.12 mm and a maximum error of 0.47 mm. The mean percent error was 0.74% and the maximum percent error was 1.9%. The angular error of models in the coronal, sagittal and axial directions was calculated, yielding a mean of 0.47 degrees with a standard deviation of 0.37 degrees and a maximum of 1.33 degrees. The error in the cross-sectional axial direction had a mean of 0.54 mm with a maximum error of 0.83 mm, depending on the slice interval. The main error source was of the image processing, which was about 70% of the total error. We found that machining cortical bone segments prior to CT scanning is an effective method for accuracy evaluation of CT-based bone reconstruction. This method can provide a reference for assessing the sensitivity, reliability and accuracy of CT-based applications in the study of movement, finite element modeling, and prosthesis construction.

  14. Comparison of demons deformable registration-based methods for texture analysis of serial thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Fei, Xianhan M.; Tuohy, Rachel E.; Armato, Samuel G.

    2013-02-01

    To determine how 19 image texture features may be altered by three image registration methods, "normal" baseline and follow-up computed tomography (CT) scans from 27 patients were analyzed. Nineteen texture feature values were calculated in over 1,000 32x32-pixel regions of interest (ROIs) randomly placed in each baseline scan. All three methods used demons registration to map baseline scan ROIs to anatomically matched locations in the corresponding transformed follow-up scan. For the first method, the follow-up scan transformation was subsampled to achieve a voxel size identical to that of the baseline scan. For the second method, the follow-up scan was transformed through affine registration to achieve global alignment with the baseline scan. For the third method, the follow-up scan was directly deformed to the baseline scan using demons deformable registration. Feature values in matched ROIs were compared using Bland- Altman 95% limits of agreement. For each feature, the range spanned by the 95% limits was normalized to the mean feature value to obtain the normalized range of agreement, nRoA. Wilcoxon signed-rank tests were used to compare nRoA values across features for the three methods. Significance for individual tests was adjusted using the Bonferroni method. nRoA was significantly smaller for affine-registered scans than for the resampled scans (p=0.003), indicating lower feature value variability between baseline and follow-up scan ROIs using this method. For both of these methods, however, nRoA was significantly higher than when feature values were calculated directly on demons-deformed followup scans (p<0.001). Across features and methods, nRoA values remained below 26%.

  15. Evaluating the Influence of Wall-Roughness on Fracture Transmissivity with CT Scanning and Flow Simulations

    SciTech Connect

    Crandall, Dustin; Bromhal, Grant; McIntyre, Dustin

    2010-01-01

    Combining CT imaging of geomaterials with computational fluid dynamics provides substantial benefits to researchers. With simulations, geometric parameters can be varied in systematic ways that are not possible in the lab. This paper details the conversion of micro-CT images of a physical fracture in Berea sandstone to several tractable finite volume meshes. By computationally varying the level of detail captured from the scans we produced several realistic fracture geometries with different degrees of wall-roughness and various geometric properties. Simulations were performed and it was noted that increasing roughness increased the resistance to fluid flow. Also, as the distance between walls was increased the mean aperture approached the effective aperture.

  16. High-resolution imaging in the scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Pennycook, S. J.; Jesson, D. E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. S states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z.

  17. Raman and CT scan mapping of chalcogenide glass diffusion generated gradient index profiles

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Berg, R. H.; Deegan, J.; Benson, R.; Salvaggio, P. S.; Gross, N.; Weinstein, B. A.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2016-05-01

    Metrology of a gradient index (GRIN) material is non-trivial, especially in the realm of infrared and large refractive index. Traditional methods rely on index matching fluids which are not available for indexes as high as those found in the chalcogenide glasses (2.4-3.2). By diffusing chalcogenide glasses of similar composition one can blend the properties in a continuous way. In an effort to measure this we will present data from both x-ray computed tomography scans (CT scans) and Raman mapping scans of the diffusion profiles. Proof of concept measurements on undiffused bonded sheets of chalcogenide glasses were presented previously. The profiles measured will be of axially stacked sheets of chalcogenide glasses diffused to create a linear GRIN profile and nested tubes of chalcogenide glasses diffused to create a radial parabolic GRIN profile. We will show that the x-ray absorption in the CT scan and the intensity of select Raman peaks spatially measured through the material are indicators of the concentration of the diffusion ions and correlate to the spatial change in refractive index. We will also present finite element modeling (FEM) results and compare them to post precision glass molded (PGM) elements that have undergone CT and Raman mapping.

  18. Efficient correction for CT image artifacts caused by objects extending outside the scan field of view.

    PubMed

    Ohnesorge, B; Flohr, T; Schwarz, K; Heiken, J P; Bae, K T

    2000-01-01

    The purpose of this paper is to develop a method of eliminating CT image artifacts generated by objects extending outside the scan field of view, such as obese or inadequately positioned patients. CT projection data are measured only within the scan field of view and thus are abruptly discontinuous at the projection boundaries if the scanned object extends outside the scan field of view. This data discontinuity causes an artifact that consists of a bright peripheral band that obscures objects near the boundary of the scan field of view. An adaptive mathematical extrapolation scheme with low computational expense was applied to reduce the data discontinuity prior to convolution in a filtered backprojection reconstruction. Despite extended projection length, the convolution length was not increased and thus the reconstruction time was not affected. Raw projection data from ten patients whose bodies extended beyond the scan field of view were reconstructed using a conventional method and our extended reconstruction method. Limitations of the algorithm are investigated and extensions for further improvement are discussed. The images reconstructed by conventional filtered backprojection demonstrated peripheral bright-band artifacts near the boundary of the scan field of view. Images reconstructed with our technique were free of such artifacts and clearly showed the anatomy at the periphery of the scan field of view with correct attenuation values. We conclude that bright-band artifacts generated by obese patients whose bodies extend beyond the scan field of view were eliminated with our reconstruction method, which reduces boundary data discontinuity. The algorithm can be generalized to objects with inhomogeneous peripheral density and to true "Region of Interest Reconstruction" from truncated projections.

  19. Three-dimensional volumetric display of CT data: effect of scan parameters upon image quality.

    PubMed

    Ney, D R; Fishman, E K; Magid, D; Robertson, D D; Kawashima, A

    1991-01-01

    Of the many steps involved in producing high quality three-dimensional (3D) images of CT data, the data acquisition step is of greatest consequence. The principle of "garbage in, garbage out" applies to 3D imaging--bad scanning technique produces equally bad 3D images. We present a formal study of the effect of two basic scanning parameters, slice thickness and slice spacing, on image quality. Three standard test objects were studied using variable CT scanning parameters. The objects chosen were a bone phantom, a cadaver femur with a simulated 5 mm fracture gap, and a cadaver femur with a simulated 1 mm fracture gap. Each object was scanned at three collimations: 8, 4, and 2 mm. For each collimation, four sets of scans were performed using four slice intervals: 8, 4, 3, and 2 mm. The bone phantom was scanned in two positions: oriented perpendicular to the scanning plane and oriented 45 degrees from the scanning plane. Three-dimensional images of the resulting 48 sets of data were produced using volumetric rendering. Blind review of the resultant 48 data sets was performed by three reviewers rating five factors for each image. The images resulting from scans with thin collimation and small table increments proved to rate the highest in all areas. The data obtained using 2 mm slice intervals proved to rate the highest in perceived image quality. Three millimeter slice spacing with 4 mm collimation, which clinically provides a good compromise between image quality and acquisition time and dose, also produced good perceived image quality. The studies with 8 mm slice intervals provided the least detail and introduced the worst inaccuracies and artifacts and were not suitable for clinical use. Statistical analysis demonstrated that slice interval (i.e., table incrementation) was of primary importance and slice collimation was of secondary, although significant, importance in determining perceived 3D image quality.

  20. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration

    SciTech Connect

    Wolthaus, J. W. H.; Sonke, J.-J.; Herk, M. van; Damen, E. M. F.

    2008-09-15

    Purpose: lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. Methods and Materials: 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Results: Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods <0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good

  1. CT scan

    MedlinePlus

    ... type of contrast given into a vein contains iodine. If you have an iodine allergy, a type of contrast may cause nausea ... steroids before the test. Your kidneys help remove iodine from the body. You may need to receive ...

  2. Evolving Bioprosthetic Tissue Calcification Can Be Quantified Using Serial Multislice CT Scanning

    PubMed Central

    Meuris, B.; De Praetere, H.; Coudyzer, W.; Flameng, W.

    2013-01-01

    Background. We investigated the value of serial multislice CT scanning for in vivo determination of evolving tissue calcification in three separate experimental settings. Materials and Methods. Bioprosthetic valve tissue was implanted in three different conditions: (1) glutaraldehyde-fixed porcine stentless conduits in pulmonary position (n = 6); (2) glutaraldehyde-fixed stented pericardial valves in mitral position (n = 3); and (3) glutaraldehyde-fixed pericardial tissue as patch in the jugular vein and carotid artery (n = 16). Multislice CT scanning was performed at various time intervals. Results. In stentless conduits, the distribution of wall calcification can be reliably quantified with CT. After 20 weeks, the CT-determined mean calcium volume was 1831 ± 581 mm³, with a mean wall calcium content of 89.8 ± 44.4 μg/mg (r2 = 0.68). In stented pericardial valves implanted in mitral position, reliable determination of tissue mineralization is disturbed by scattering caused by the (continuously moving) alloy of the stent material. Pericardial patches in the neck vessels revealed progressive mineralization, with a significant increase in mean HU and calcium volume at 8 weeks after implantation, rising up to a level of 131.1 ± 39.6 mm³ (mean calcium volume score) and a mean calcium content of 19.1 ± 12.3 μg/mg. Conclusion. The process of bioprosthetic tissue mineralization can be visualized and quantified in vivo using multislice CT scanning. This allows determination of the kinetics of tissue mineralization with intermediate in vivo evaluations. PMID:24089616

  3. Intracranial myeloid metaplasia: diagnosis by CT and Fe52 scans and treatment by cranial irradiation

    SciTech Connect

    Cornfield, D.B.; Shipkin, P.; Alavi, A.; Becker, J.; Peyster, R.

    1983-11-01

    A patient with longstanding agnogenic myeloid metaplasia developed a progressive dementia. CT scanning demonstrated multiple intracranial masses, and a Fe/sub 52/ bone marrow scan demonstrated erythroid activity within the masses and confirmed the suspicion of extra-medullary hematopoiesis. A potentially hazardous biopsy was avoided, and a course of cranial irradiation was administered, resulting in regression of the masses and clearing of the patient's dementia. Fe/sub 52/ scintigraphy provides a specific and useful diagnostic approach which may eliminate the need for invasive procedures.

  4. Noise filtering in thin-slice 4D cerebral CT perfusion scans

    NASA Astrophysics Data System (ADS)

    Mendrik, Adri"nne; Vonken, Evert-jan; Dankbaar, Jan-Willem; Prokop, Mathias; van Ginneken, Bram

    2010-03-01

    Patients suffering from cerebral ischemia or subarachnoid hemorrhage, undergo a 4D (3D+time) CT Perfusion (CTP) scan to assess the cerebral perfusion and a CT Angiography (CTA) scan to assess the vasculature. The aim of our research is to extract the vascular information from the CTP scan. This requires thin-slice CTP scans that suffer from a substantial amount of noise. Therefore noise reduction is an important prerequisite for further analysis. So far, the few noise filtering methods for 4D datasets proposed in literature deal with the temporal dimension as a 4th dimension similar to the 3 spatial dimensions, mixing temporal and spatial intensity information. We propose a bilateral noise reduction method based on time-intensity profile similarity (TIPS), which reduces noise while preserving temporal intensity information. TIPS was compared to 4D bilateral filtering on 10 patient CTP scans and, even though TIPS bilateral filtering is much faster, it results in better vessel visibility and higher image quality ranking (observer study) than 4D bilateral filtering.

  5. Association Between a Quantitative CT Scan Measure of Brain Edema and Outcome After Cardiac Arrest

    PubMed Central

    Metter, Robert B.; Rittenberger, Jon C.; Guyette, Francis X.; Callaway, Clifton W.

    2011-01-01

    Background Cerebral edema is one physical change associated with brain injury and decreased survival after cardiac arrest. Edema appears on computed tomography (CT) scan of the brain as decreased x-ray attenuation by gray matter. This study tested whether the gray matter attenuation to white matter attenuation ratio (GWR) was associated with survival and functional recovery. Methods Subjects were patients hospitalized after cardiac arrest at a single institution between 1/1/2005 and 7/30/2010. Subjects were included if they had non-traumatic cardiac arrest and a non-contrast CT scan within 24 hours after cardiac arrest. Attenuation (Hounsfield Units) was measured in gray matter (caudate nucleus, putamen, thalamus, and cortex) and in white matter (internal capsule, corpus callosum and centrum semiovale). The GWR was calculated for basal ganglia and cerebrum. Outcomes included survival and functional status at hospital discharge. Results For 680 patients, 258 CT scans were available, but 18 were excluded because of hemorrhage (10), intravenous contrast (3) or technical artifact (5), leaving 240 CT scans for analysis. Lower GWR values were associated with lower initial Glasgow Coma Scale motor score. Overall survival was 36%, but decreased with decreasing GWR. The average of basal ganglia and cerebrum GWR provided the best discrimination. Only 2/58 subjects with average GWR<1.20 survived and both were treated with hypothermia. The association of GWR with functional outcome was completely explained by mortality when GWR<1.20. Conclusions Subjects with severe cerebral edema, defined by GWR<1.20, have very low survival with conventional care, including hypothermia. GWR estimates pre-treatment likelihood of survival after cardiac arrest. PMID:21592642

  6. Classification of pulmonary emphysema from chest CT scans using integral geometry descriptors

    NASA Astrophysics Data System (ADS)

    van Rikxoort, E. M.; Goldin, J. G.; Galperin-Aizenberg, M.; Brown, M. S.

    2011-03-01

    To gain insight into the underlying pathways of emphysema and monitor the effect of treatment, methods to quantify and phenotype the different types of emphysema from chest CT scans are of crucial importance. Current standard measures rely on density thresholds for individual voxels, which is influenced by inspiration level and does not take into account the spatial relationship between voxels. Measures based on texture analysis do take the interrelation between voxels into account and therefore might be useful for distinguishing different types of emphysema. In this study, we propose to use Minkowski functionals combined with rotation invariant Gaussian features to distinguish between healthy and emphysematous tissue and classify three different types of emphysema. Minkowski functionals characterize binary images in terms of geometry and topology. In 3D, four Minkowski functionals are defined. By varying the threshold and size of neighborhood around a voxel, a set of Minkowski functionals can be defined for each voxel. Ten chest CT scans with 1810 annotated regions were used to train the method. A set of 108 features was calculated for each training sample from which 10 features were selected to be most informative. A linear discriminant classifier was trained to classify each voxel in the lungs into a subtype of emphysema or normal lung. The method was applied to an independent test set of 30 chest CT scans with varying amounts and types of emphysema with 4347 annotated regions of interest. The method is shown to perform well, with an overall accuracy of 95%.

  7. Intermediate follow-up after endovascular aneurysm repair: can we forgo CT scanning in certain patients?

    PubMed

    Tomlinson, Jared; McNamara, Joanne; Matloubieh, Jubin; Hart, Joseph; Singh, Michael J; Davies, Mark G; Rhodes, Jeffrey M; Illig, Karl A

    2007-11-01

    Current recommendations for follow-up after endovascular repair of abdominal aortic aneurysms (EVAR) include yearly computed tomographic (CT) scans after the first year. We hypothesize that this is unnecessary for patients who have aneurysm sacs that are stable or shrinking at 1 year and no evidence of endoleak. To explore this hypothesis, we reviewed the records of all patients undergoing EVAR at our institution who were implanted with grafts that are currently commercially available and had a minimum of 18 months' follow-up. Of 415 patients who underwent EVAR over an 8-year period, 93 met the entry criteria. At a mean follow-up of approximately 3 years, secondary interventions were required in 13%, 39%, and 25% of patients undergoing EVAR with Zenith, AneuRx, and Excluder devices, respectively, and secondary interventions after the first year were required in 3%, 22%, and 8% of such grafts, respectively. Seventy-one patients (76%) had aneurysm sacs that were stable or shrinking at 1 year and no endoleak. Only two of these patients subsequently required reintervention. Both patients had AneuRx grafts, and both problems could have easily been identified without CT scanning. Our data support the hypothesis that patients who meet these criteria at 1 year are unlikely to have problems that cannot be identified by ultrasound and/or clinical evaluation alone and, thus, that CT scans are not necessary after this point, especially in patients with Zenith or reengineered Excluder devices. PMID:17980790

  8. Edge guided image reconstruction in linear scan CT by weighted alternating direction TV minimization.

    PubMed

    Cai, Ailong; Wang, Linyuan; Zhang, Hanming; Yan, Bin; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2014-01-01

    Linear scan computed tomography (CT) is a promising imaging configuration with high scanning efficiency while the data set is under-sampled and angularly limited for which high quality image reconstruction is challenging. In this work, an edge guided total variation minimization reconstruction (EGTVM) algorithm is developed in dealing with this problem. The proposed method is modeled on the combination of total variation (TV) regularization and iterative edge detection strategy. In the proposed method, the edge weights of intermediate reconstructions are incorporated into the TV objective function. The optimization is efficiently solved by applying alternating direction method of multipliers. A prudential and conservative edge detection strategy proposed in this paper can obtain the true edges while restricting the errors within an acceptable degree. Based on the comparison on both simulation studies and real CT data set reconstructions, EGTVM provides comparable or even better quality compared to the non-edge guided reconstruction and adaptive steepest descent-projection onto convex sets method. With the utilization of weighted alternating direction TV minimization and edge detection, EGTVM achieves fast and robust convergence and reconstructs high quality image when applied in linear scan CT with under-sampled data set.

  9. Carotid plaque characterization using CT and MRI scans for synergistic image analysis

    NASA Astrophysics Data System (ADS)

    Getzin, Matthew; Xu, Yiqin; Rao, Arhant; Madi, Saaussan; Bahadur, Ali; Lennartz, Michelle R.; Wang, Ge

    2014-09-01

    Noninvasive determination of plaque vulnerability has been a holy grail of medical imaging. Despite advances in tomographic technologies , there is currently no effective way to identify vulnerable atherosclerotic plaques with high sensitivity and specificity. Computed tomography (CT) and magnetic resonance imaging (MRI) are widely used, but neither provides sufficient information of plaque properties. Thus, we are motivated to combine CT and MRI imaging to determine if the composite information can better reflect the histological determination of plaque vulnerability. Two human endarterectomy specimens (1 symptomatic carotid and 1 stable femoral) were imaged using Scanco Medical Viva CT40 and Bruker Pharmascan 16cm 7T Horizontal MRI / MRS systems. μCT scans were done at 55 kVp and tube current of 70 mA. Samples underwent RARE-VTR and MSME pulse sequences to measure T1, T2 values, and proton density. The specimens were processed for histology and scored for vulnerability using the American Heart Association criteria. Single modality-based analyses were performed through segmentation of key imaging biomarkers (i.e. calcification and lumen), image registration, measurement of fibrous capsule, and multi-component T1 and T2 decay modeling. Feature differences were analyzed between the unstable and stable controls, symptomatic carotid and femoral plaque, respectively. By building on the techniques used in this study, synergistic CT+MRI analysis may provide a promising solution for plaque characterization in vivo.

  10. Energy deposition in the breast during CT scanning: quantification and implications for dose reduction

    NASA Astrophysics Data System (ADS)

    Rupcich, Franco; Kyprianou, Iacovos; Badal, Andreu; Schmidt, Taly G.

    2011-03-01

    Studies suggest that dose to the breast leads to a higher lifetime attributable cancer incidence risk from a chest CT scan for women compared to men. Numerous methods have been proposed for reducing dose to the breast during CT scanning, including bismuth shielding, tube current modulation, partial-angular scanning, and reduced kVp. These methods differ in how they alter the spectrum and fluence across projection angle. This study used Monte Carlo CT simulations of a voxelized female phantom to investigate the energy (dose) deposition in the breast as a function of both photon energy and projection angle. The resulting dose deposition matrix was then used to investigate several questions regarding dose reduction to the breast: (1) Which photon energies deposit the most dose in the breast, (2) How does increased filtration compare to tube current reduction in reducing breast dose, and (3) Do reduced kVp scans reduce dose to breast, and if so, by what mechanism? The results demonstrate that while high-energy photons deposit more dose per emitted photon, the low-energy photons deposit more dose to the breast for a 120 kVp acquisition. The results also demonstrate that decreasing the tube current for the AP views to match the fluence exiting a shield deposits nearly the same dose to the breast as when using a shield (within ~1%). Finally, results suggest that the dose reduction observed during lower kVp scans is caused by reduced photon fluence rather than the elimination of high-energy photons from the beam. Overall, understanding the mechanisms of dose deposition in the breast as a function of photon energy and projection angle enables comparisons of dose reduction methods and facilitates further development of optimized dose reduction schemes.

  11. A CT scan protocol for the detection of radiographic loosening of the glenoid component after total shoulder arthroplasty

    PubMed Central

    2014-01-01

    Background and purpose It is difficult to evaluate glenoid component periprosthetic radiolucencies in total shoulder arthroplasties (TSAs) using plain radiographs. This study was performed to evaluate whether computed tomography (CT) using a specific patient position in the CT scanner provides a better method for assessing radiolucencies in TSA. Methods Following TSA, 11 patients were CT scanned in a lateral decubitus position with maximum forward flexion, which aligns the glenoid orientation with the axis of the CT scanner. Follow-up CT scanning is part of our routine patient care. Glenoid component periprosthetic lucency was assessed according to the Molé score and it was compared to routine plain radiographs by 5 observers. Results The protocol almost completely eliminated metal artifacts in the CT images and allowed accurate assessment of periprosthetic lucency of the glenoid fixation. Positioning of the patient within the CT scanner as described was possible for all 11 patients. A radiolucent line was identified in 54 of the 55 observed CT scans and osteolysis was identified in 25 observations. The average radiolucent line Molé score was 3.4 (SD 2.7) points with plain radiographs and 9.5 (SD 0.8) points with CT scans (p = 0.001). The mean intra-observer variance was lower in the CT scan group than in the plain radiograph group (p = 0.001). Interpretation The CT scan protocol we used is of clinical value in routine assessment of glenoid periprosthetic lucency after TSA. The technique improves the ability to detect and monitor radiolucent lines and, therefore, possibly implant loosening also. PMID:24286563

  12. Potential for Adult-Based Epidemiological Studies to Characterize Overall Cancer Risks Associated with a Lifetime of CT Scans

    PubMed Central

    Shuryak, Igor; Lubin, Jay H.; Brenner, David J.

    2014-01-01

    Recent epidemiological studies have suggested that radiation exposure from pediatric CT scanning is associated with small excess cancer risks. However, the majority of CT scans are performed on adults, and most radiation-induced cancers appear during middle or old age, in the same age range as background cancers. Consequently, a logical next step is to investigate the effects of CT scanning in adulthood on lifetime cancer risks by conducting adult-based, appropriately designed epidemiological studies. Here we estimate the sample size required for such studies to detect CT-associated risks. This was achieved by incorporating different age-, sex-, time- and cancer type-dependent models of radiation carcinogenesis into an in silico simulation of a population-based cohort study. This approach simulated individual histories of chest and abdominal CT exposures, deaths and cancer diagnoses. The resultant sample sizes suggest that epidemiological studies of realistically sized cohorts can detect excess lifetime cancer risks from adult CT exposures. For example, retrospective analysis of CT exposure and cancer incidence data from a population-based cohort of 0.4 to 1.3 million (depending on the carcinogenic model) CT-exposed UK adults, aged 25–65 in 1980 and followed until 2015, provides 80% power for detecting cancer risks from chest and abdominal CT scans. PMID:24828111

  13. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    NASA Astrophysics Data System (ADS)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  14. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    SciTech Connect

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H.

    2009-12-15

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6{<=}pitch{<=}3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  15. National Survey of Radiation Dose and Image Quality in Adult CT Head Scans in Taiwan

    PubMed Central

    Lin, Chung-Jung; Mok, Greta S. P.; Tsai, Mang-Fen; Tsai, Wei-Ta; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin

    2015-01-01

    Introduction The purpose of the present study was to evaluate the influence of different variables on radiation dose and image quality based on a national database. Materials and Methods Taiwan’s Ministry of Health and Welfare requested all radiology departments to complete a questionnaire for each of their CT scanners. Information gathered included all scanning parameters for CT head scans. For the present analysis, CT machines were divided into three subgroups: single slice CT (Group A); multi-detector CT (MDCT) with 2-64 slices (Group B); and MDCT with more than 64 slices (Group C). Correlations between computed tomography dose index (CTDI) and signal-to-noise ratio (SNR) with cumulated tube rotation number (CTW(n)) and cumulated tube rotation time (CTW(s)), and sub group analyses of CTDI and SNR across the three groups were performed. Results CTDI values demonstrated a weak correlation (r = 0.33) with CTW(n) in Group A. SNR values demonstrated a weak negative correlation (r = -0.46) with CTW(n) in Group C. MDCT with higher slice numbers used more tube potential resulting in higher effective doses. There were both significantly lower CTDI and SNR values in helical mode than in axial mode in Group B, but not Group C. Conclusion CTW(n) and CTW(s) did not influence radiation output. Helical mode is more often used in MDCT and results in both lower CTDI and SNR compared to axial mode in MDCT with less than 64 slices. PMID:26125549

  16. Diagnostic applications of simultaneously acquired dual-isotope single-photon emission CT scans

    SciTech Connect

    Mathews, D.; Walker, B.S.; Allen, B.C.; Batjer, H.; Purdy, P.D. )

    1994-01-01

    To report the development and validation of a technique of dual tracer single-photon emission CT brain imaging using technetium-99m hexamethyl-propyleneamine oxime and iodine-123 iodoamphetamine agents and the application of this technique in patients with a variety of diagnoses. Contamination between the two isotopes' energy windows was calculated by opening both energy windows while scanning a group of patients using a single isotope. To compare uniformity of I-123 down-scatter. Tc-99m studies were performed both before and after the administration of I-123 in five of 24 dual studies. The 24 patients studied with the dual-isotope technique were evaluated during acetazolamide testing, trial balloon occlusion, or embolization of an arteriovenous malformation. In a dual acquisition, average count contamination of an I-123 study by Tc-99m was less than 1% of the total I-123 counts, and contamination of a Tc-99m study by I-123 was approximately 12% of the total Tc-99m counts. Tc-99m studies performed both before and after the administration of I-123 demonstrated that contaminating counts do not adversely affect scan interpretation. Dual-tracer scans were completed in all 24 patients, 10 of whom showed changes after intervention. Dual-tracer single-photon emission CT brain scans of adequate diagnostic quality are possible using Tc-99m and I-123. 18 refs., 5 figs., 3 tabs.

  17. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance

    SciTech Connect

    Li, Ke; Chen, Guang-Hong; Garrett, John; Ge, Yongshuai

    2014-07-15

    Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than

  18. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  19. A new CT collimator for producing two simultaneous overlapping slices from one scan. [for biomedical applications

    NASA Technical Reports Server (NTRS)

    Kwoh, Y. S.; Glenn, W. V., Jr.; Reed, I. S.; Truong, T. K.

    1981-01-01

    A new CT collimator is developed which is capable of producing two simultaneous successive overlapping images from a single scan. The collimator represents a modification of the standard EMI 5005 collimator achieved by alternately masking one end or portions of both ends of the X-ray detectors at a 13-mm beamwidth so that a set of 540 filtered projections is obtained for each scan which can be separated into two sets of interleaved projections corresponding to views 3 mm apart. Tests have demonstrated that the quality of the images produced from these two projections almost equals the quality of those produced by the standard collimator from two separate scans. The new collimator may thus be used to achieve a speed improvement in the generation of overlapping sections as well as a reduction in X-ray dosage.

  20. The impact of CT scan energy on range calculation in proton therapy planning.

    PubMed

    Grantham, Kevin K; Li, Hua; Zhao, Tianyu; Klein, Eric E

    2015-01-01

    The purpose of this study was to investigate the impact of tube potential (kVp) on the CT number (HU) to proton stopping power ratio (PSPR) conversion. The range and dosimetric change introduced by a mismatch in kVp used for the CT scan and the HU to PSPR table, based on a specific kVp, used to calculate dose are analyzed. Three HU to PSPR curves, corresponding to three kVp settings on the CT scanner, were created. A treatment plan was created for a single beam in a water phantom passing through a wedge-shaped bone heterogeneity. The dose was recalculated by changing only the HU to PSPR table used in the dose calculation. The change in the position of the distal 90% isodose line was recorded as a function of heterogeneity thickness along the beam path. The dosimetric impact of a mismatch in kVp between the CT and the HU to PSPR table was investigated by repeating this procedure for five clinical plans comparing DVH data and dose difference distributions. The HU to PSPR tables diverge for CT numbers greater than 200 HU. In the phantom plan, the divergence of the tables resulted in a difference in range of 1.6 mm per cm of bone in the beam path, for the HU used. For the clinical plans, the dosimetric effect of a kVp mismatch depends on the amount of bone in the beam path and the proximity of OARs to the distal range of the planned beams. A mismatch in kVp between the CT and the HU to PSPR table can introduce inaccuracy in the proton beam range. For dense bone, the measured range difference was approximately 1.6 mm per cm of bone along the beam path. However, the clinical cases analyzed showed a range change of 1 mm or less. Caution is merited when such a mismatch may occur. PMID:26699561

  1. A Survey of Pediatric CT Protocols and Radiation Doses in South Korean Hospitals to Optimize the Radiation Dose for Pediatric CT Scanning

    PubMed Central

    Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung

    2015-01-01

    Abstract Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2–5 years), 23.5 to 44.1 (6–10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2–5 years), 3.9 to 9.3 (6–10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2–5 years), 5.7 to 12.4 (6–10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients <5 years old, whereas the CTDIvol was lower in patients ≥6 years old. Our study describes the various parameters and dosimetry metrics of pediatric CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK

  2. Automatic classication of pulmonary function in COPD patients using trachea analysis in chest CT scans

    NASA Astrophysics Data System (ADS)

    van Rikxoort, E. M.; de Jong, P. A.; Mets, O. M.; van Ginneken, B.

    2012-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease that is characterized by airflow limitation. COPD is clinically diagnosed and monitored using pulmonary function testing (PFT), which measures global inspiration and expiration capabilities of patients and is time-consuming and labor-intensive. It is becoming standard practice to obtain paired inspiration-expiration CT scans of COPD patients. Predicting the PFT results from the CT scans would alleviate the need for PFT testing. It is hypothesized that the change of the trachea during breathing might be an indicator of tracheomalacia in COPD patients and correlate with COPD severity. In this paper, we propose to automatically measure morphological changes in the trachea from paired inspiration and expiration CT scans and investigate the influence on COPD GOLD stage classification. The trachea is automatically segmented and the trachea shape is encoded using the lengths of rays cast from the center of gravity of the trachea. These features are used in a classifier, combined with emphysema scoring, to attempt to classify subjects into their COPD stage. A database of 187 subjects, well distributed over the COPD GOLD stages 0 through 4 was used for this study. The data was randomly divided into training and test set. Using the training scans, a nearest mean classifier was trained to classify the subjects into their correct GOLD stage using either emphysema score, tracheal shape features, or a combination. Combining the proposed trachea shape features with emphysema score, the classification performance into GOLD stages improved with 11% to 51%. In addition, an 80% accuracy was achieved in distinguishing healthy subjects from COPD patients.

  3. Analysis of calibration materials to improve dual-energy CT scanning for petrophysical applications

    SciTech Connect

    Ayyalasomavaiula, K.; McIntyre, D.; Jain, J.; Singh, J.; Yueh, F.

    2011-01-01

    Dual energy CT-scanning is a rapidly emerging imaging technique employed in non-destructive evaluation of various materials. Although CT (Computerized Tomography) has been used for characterizing rocks and visualizing and quantifying multiphase flow through rocks for over 25 years, most of the scanning is done at a voltage setting above 100 kV for taking advantage of the Compton scattering (CS) effect, which responds to density changes. Below 100 kV the photoelectric effect (PE) is dominant which responds to the effective atomic numbers (Zeff), which is directly related to the photo electric factor. Using the combination of the two effects helps in better characterization of reservoir rocks. The most common technique for dual energy CT-scanning relies on homogeneous calibration standards to produce the most accurate decoupled data. However, the use of calibration standards with impurities increases the probability of error in the reconstructed data and results in poor rock characterization. This work combines ICP-OES (inductively coupled plasma optical emission spectroscopy) and LIBS (laser induced breakdown spectroscopy) analytical techniques to quantify the type and level of impurities in a set of commercially purchased calibration standards used in dual-energy scanning. The Zeff data on the calibration standards with and without impurity data were calculated using the weighted linear combination of the various elements present and used in calculating Zeff using the dual energy technique. Results show 2 to 5% difference in predicted Zeff values which may affect the corresponding log calibrations. The effect that these techniques have on improving material identification data is discussed and analyzed. The workflow developed in this paper will translate to a more accurate material identification estimates for unknown samples and improve calibration of well logging tools.

  4. Male and Female Human Body Tissue Radiation Shielding Models Based upon CT-scan Data for Organ Dose Prediction

    NASA Astrophysics Data System (ADS)

    Qualls, G.; Nealy, J.; Wilson, J.; Cucinotta, F.

    As present and future human space mission lengths are extended, it becomes increasingly important and valuable to have accurate analytic predictions of radiation doses to specific tissues within the body. New computational models are being developed to help predict the effective radiation shielding to points inside the human body provided by the surrounding body tissue. A female body tissue model, based upon a full-body CT-scan from the Visible Human Project, is presented along with a male body tissue model based upon a full-body CT-scan data set obtained from Johns Hopkins University. The advantages of using CT-scan based models are presented along with initial results and comparisons to previous models. Details of the data processing required to transform a raw CT-scan into a tissue shielding model are also presented.

  5. In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans

    PubMed Central

    Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Liu, Tianyu; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob

    2014-01-01

    Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% − 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the

  6. In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans

    SciTech Connect

    Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Liu, Bob; Liu, Tianyu; Xu, X. George

    2014-09-15

    Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% − 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the

  7. Cervical CT scan-guided epidural blood patches for spontaneous intracranial hypotension.

    PubMed

    Maingard, Julian; Giles, Lauren; Marriott, Mark; Phal, Pramit M

    2015-12-01

    We describe two patients with spontaneous intracranial hypotension (SIH), presenting with postural headache due to C1-C2 cerebrospinal fluid (CSF) leak. Both patients were refractory to lumbar epidural blood patching (EBP), and subsequently underwent successful CT scan-guided cervical EBP. SIH affects approximately 1 in 50,000 patients, with females more frequently affected. Its associated features are variable, and as such, misdiagnosis is common. Therefore, imaging plays an important role in the diagnostic workup of SIH and can include MRI of the brain and spine, CT myelogram, and radionuclide cisternography. In patients with an established diagnosis and confirmed CSF leak, symptoms will usually resolve with conservative management. However, in a select subgroup of patients, the symptoms are refractory to medical management and require more invasive therapies. In patients with cervical leaks, EBP in the cervical region is an effective management approach, either in close proximity to, or directly targeting a dural defect. CT scan-guided cervical EBP is an effective treatment approach in refractory SIH, and should be considered in those patients who are refractory to conservative management. PMID:26209918

  8. Cervical CT scan-guided epidural blood patches for spontaneous intracranial hypotension.

    PubMed

    Maingard, Julian; Giles, Lauren; Marriott, Mark; Phal, Pramit M

    2015-12-01

    We describe two patients with spontaneous intracranial hypotension (SIH), presenting with postural headache due to C1-C2 cerebrospinal fluid (CSF) leak. Both patients were refractory to lumbar epidural blood patching (EBP), and subsequently underwent successful CT scan-guided cervical EBP. SIH affects approximately 1 in 50,000 patients, with females more frequently affected. Its associated features are variable, and as such, misdiagnosis is common. Therefore, imaging plays an important role in the diagnostic workup of SIH and can include MRI of the brain and spine, CT myelogram, and radionuclide cisternography. In patients with an established diagnosis and confirmed CSF leak, symptoms will usually resolve with conservative management. However, in a select subgroup of patients, the symptoms are refractory to medical management and require more invasive therapies. In patients with cervical leaks, EBP in the cervical region is an effective management approach, either in close proximity to, or directly targeting a dural defect. CT scan-guided cervical EBP is an effective treatment approach in refractory SIH, and should be considered in those patients who are refractory to conservative management.

  9. Regarding the Credibility of Data Showing an Alleged Association of Cancer with Radiation from CT Scans.

    PubMed

    Socol, Yehoshua; Welsh, James S

    2016-02-01

    Computed tomography (CT) scans are of high clinical value as a diagnostic technique, and new applications continue to be identified. However, their application is challenged by emerging concerns regarding carcinogenesis from their radiation. Recent articles made a significant contribution to the above-mentioned concerns by reporting evidence for direct association of the radiation from CT scans with cancer. Such interpretation of the data has already been criticized; there is the possibility of reverse causation due to confounding factors. Nevertheless, such work has had a high impact, with one article being cited more than 300 times from the Web of Science Core Collection within 2 years. However, the data points on cancer relative risk versus CT dose in that article fit straight lines corresponding to the linear no-threshold hypothesis suspiciously well. Here, by applying rigorous statistical analysis, it is shown that the probability of the fit truly being that good or better is only 2%. The results of such studies therefore appear "too good to be true" and the credibility of their conclusions must be questioned.

  10. Cardiac imaging with multi-sector data acquisition in volumetric CT: variation of effective temporal resolution and its potential clinical consequences

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Hsieh, Jiang; Taha, Basel H.; Vass, Melissa L.; Seamans, John L.; Okerlund, Darin R.

    2009-02-01

    With increasing longitudinal detector dimension available in diagnostic volumetric CT, step-and-shoot scan is becoming popular for cardiac imaging. In comparison to helical scan, step-and-shoot scan decouples patient table movement from cardiac gating/triggering, which facilitates the cardiac imaging via multi-sector data acquisition, as well as the administration of inter-cycle heart beat variation (arrhythmia) and radiation dose efficiency. Ideally, a multi-sector data acquisition can improve temporal resolution at a factor the same as the number of sectors (best scenario). In reality, however, the effective temporal resolution is jointly determined by gantry rotation speed and patient heart beat rate, which may significantly lower than the ideal or no improvement (worst scenario). Hence, it is clinically relevant to investigate the behavior of effective temporal resolution in cardiac imaging with multi-sector data acquisition. In this study, a 5-second cine scan of a porcine heart, which cascades 6 porcine cardiac cycles, is acquired. In addition to theoretical analysis and motion phantom study, the clinical consequences due to the effective temporal resolution variation are evaluated qualitative or quantitatively. By employing a 2-sector image reconstruction strategy, a total of 15 (the permutation of P(6, 2)) cases between the best and worst scenarios are studied, providing informative guidance for the design and optimization of CT cardiac imaging in volumetric CT with multi-sector data acquisition.

  11. LandScan 2011 High Resolution Global Population Data Set

    SciTech Connect

    2012-11-19

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  12. LandScan 2008 High Resolution Global Population Data Set

    SciTech Connect

    2009-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  13. LandScan 2010 High Resolution Global Population Data Set

    SciTech Connect

    2010-07-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  14. LandScan 2006 High Resolution Global Population Data Set

    SciTech Connect

    2006-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  15. LandScan 2007 High Resolution Global Population Data Set

    SciTech Connect

    2008-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  16. LandScan 2005 High Resolution Global Population Data Set

    SciTech Connect

    2006-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  17. LandScan 2009 High Resolution Global Population Data Set

    SciTech Connect

    2009-07-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  18. LandScan 2000 High Resolution Global Population Data Set

    2001-12-31

    The LandScan data set is a worldwide population database compiled on a 30" X 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  19. LandScan 2003 High Resolution Global Population Data Set

    2004-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  20. LandScan 2004 High Resolution Global Population Data Set

    2005-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  1. LandScan 2002 High Resolution Global Population Data Set

    2003-01-01

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other data sets. LandScan 2001 has been developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient population risk.

  2. Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan

    2016-03-01

    Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.

  3. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    SciTech Connect

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-11-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF.

  4. Mineral Volume and Morphology in Carotid Plaque Specimens Using High-Resolution MRI and CT

    PubMed Central

    Wolf, Ronald L.; Wehrli, Suzanne L.; Popescu, Andra M.; Woo, John H.; Song, Hee Kwon; Wright, Alexander C.; Mohler, Emile R.; Harding, John D.; Zager, Eric L.; Fairman, Ronald M.; Golden, Michael A.; Velazquez, Omaida C.; Carpenter, Jeffrey P.; Wehrli, Felix W.

    2006-01-01

    Objective High-resolution MRI methods have been used to evaluate carotid artery atherosclerotic plaque content. The purpose of this study was to assess the performance of high-resolution MRI in evaluation of the quantity and pattern of mineral deposition in carotid endarterectomy (CEA) specimens, with quantitative micro-CT as the gold standard. Methods and Results High-resolution MRI and CT were compared in 20 CEA specimens. Linear regression comparing mineral volumes generated from CT (VCT) and MRI (VMRI) data demonstrated good correlation using simple thresholding (VMRI=-0.01+0.98VCT; R2=0.90; threshold=4×noise) and k-means clustering methods (VMRI=-0.005+1.38VCT; R2=0.93). Bone mineral density (BMD) and bone mineral content (BMC [mineral mass]) were calculated for CT data and BMC verified with ash weight. Patterns of mineralization like particles, granules, and sheets were more clearly depicted on CT. Conclusions Mineral volumes generated from MRI or CT data were highly correlated. CT provided a more detailed depiction of mineralization patterns and provided BMD and BMC in addition to mineral volume. The extent of mineralization as well as the morphology may ultimately be useful in assessing plaque stability. PMID:15947239

  5. Combined optical and mechanical scanning in optical-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yeh, Chenghung; Hu, Song; Wang, Lidai; Soetikno, Brian T.; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk; Maslov, Konstantin I.; Wang, Lihong V.

    2014-03-01

    Combined optical and mechanical scanning (COMS) in optical-resolution photoacoustic microscopy (OR-PAM) has provided five scanning modes with fast imaging speed and wide field of view (FOV). With two-dimensional (2D) galvanometer-based optical scanning, we have achieved a 2 KHz B-scan rate and 50 Hz volumetric-scan rate, which enables real-time tracking of cell activities in vivo. With optical-mechanical hybrid 2D scanning, we are able to image a wide FOV (10×8 mm2) within 150 seconds, which is 20 times faster than the conventional mechanical scan in our second-generation OR-PAM. With three-dimensional mechanical-based contour scanning, we can maintain the optimal signal-to-noise ratio and spatial resolution of OR-PAM while imaging objects with uneven surfaces, which is ideal for fast and quantitative studies of tumors and the brain.

  6. Semi-automated method to measure pneumonia severity in mice through computed tomography (CT) scan analysis

    NASA Astrophysics Data System (ADS)

    Johri, Ansh; Schimel, Daniel; Noguchi, Audrey; Hsu, Lewis L.

    2010-03-01

    Imaging is a crucial clinical tool for diagnosis and assessment of pneumonia, but quantitative methods are lacking. Micro-computed tomography (micro CT), designed for lab animals, provides opportunities for non-invasive radiographic endpoints for pneumonia studies. HYPOTHESIS: In vivo micro CT scans of mice with early bacterial pneumonia can be scored quantitatively by semiautomated imaging methods, with good reproducibility and correlation with bacterial dose inoculated, pneumonia survival outcome, and radiologists' scores. METHODS: Healthy mice had intratracheal inoculation of E. coli bacteria (n=24) or saline control (n=11). In vivo micro CT scans were performed 24 hours later with microCAT II (Siemens). Two independent radiologists scored the extent of airspace abnormality, on a scale of 0 (normal) to 24 (completely abnormal). Using the Amira 5.2 software (Mercury Computer Systems), a histogram distribution of voxel counts between the Hounsfield range of -510 to 0 was created and analyzed, and a segmentation procedure was devised. RESULTS: A t-test was performed to determine whether there was a significant difference in the mean voxel value of each mouse in the three experimental groups: Saline Survivors, Pneumonia Survivors, and Pneumonia Non-survivors. It was found that the voxel count method was able to statistically tell apart the Saline Survivors from the Pneumonia Survivors, the Saline Survivors from the Pneumonia Non-survivors, but not the Pneumonia Survivors vs. Pneumonia Non-survivors. The segmentation method, however, was successfully able to distinguish the two Pneumonia groups. CONCLUSION: We have pilot-tested an evaluation of early pneumonia in mice using micro CT and a semi-automated method for lung segmentation and scoring system. Statistical analysis indicates that the system is reliable and merits further evaluation.

  7. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  8. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  9. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation.

    PubMed

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-21

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  10. High-resolution melting analysis using unlabeled probe and amplicon scanning simultaneously detects several lactase persistence variants.

    PubMed

    Janukonyté, Jurgita; Vestergaard, Else M; Ladefoged, Søren A; Nissen, Peter H

    2010-12-01

    Lactase persistence and thereby tolerance to lactose is a common trait in people of Northern European descent. It is linked to the LCT -13910C>T variant located in intron 13 of the MCM6 gene 13.9 kb upstream of the lactase (LCT) gene. In people of African and Middle Eastern descent, lactase persistence can be associated with other variants nearby the -13910C>T variant, limiting the use of the -13910C>T-based SNP analysis, e.g. TaqMan assays for the diagnosis of lactose intolerance. Using high-resolution melting analysis, we identified five samples that were heterozygous for the -13915T>G variant among 78 patients genotyped as -13910C/C by a TaqMan assay. All samples originated from patients of probable Middle Eastern descent. In order to detect the -13910 and -13915 variants simultaneously, we developed a new high-resolution melting (HRM) analysis assay based on unlabeled probe genotyping and simultaneous amplicon scanning analysis. By using this assay we were able to distinguish the -13910 and -13915 genotypes clearly. Furthermore, we identified two rare variants, the -13907C>G and -13913T>C. With this method, based on an inexpensive unlabeled probe, it is possible to simultaneously detect the -13910C>T and -13915T>G variants in addition to rarer variants surrounding the -13910 site. This new method may contribute to improve the diagnostic performance of the genetic analysis for lactose intolerance.

  11. Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning

    SciTech Connect

    Aristophanous, Michalis; Sher, David J.; Allen, Aaron M.; Larson, Elysia; Chen, Aileen B.

    2012-01-01

    Purpose: The potential role of four-dimensional (4D) positron emission tomography (PET)/computed tomography (CT) in radiation treatment planning, relative to standard three-dimensional (3D) PET/CT, was examined. Methods and Materials: Ten patients with non-small-cell lung cancer had sequential 3D and 4D [{sup 18}F]fluorodeoxyglucose PET/CT scans in the treatment position prior to radiation therapy. The gross tumor volume and involved lymph nodes were contoured on the PET scan by use of three different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; a technique with a constant threshold of standardized uptake value (SUV) greater than 2.5; and an automatic segmentation technique. For each technique, the tumor volume was defined on the 3D scan (VOL3D) and on the 4D scan (VOL4D) by combining the volume defined on each of the five breathing phases individually. The range of tumor motion and the location of each lesion were also recorded, and their influence on the differences observed between VOL3D and VOL4D was investigated. Results: We identified and analyzed 22 distinct lesions, including 9 primary tumors and 13 mediastinal lymph nodes. Mean VOL4D was larger than mean VOL3D with all three techniques, and the difference was statistically significant (p < 0.01). The range of tumor motion and the location of the tumor affected the magnitude of the difference. For one case, all three tumor definition techniques identified volume of moderate uptake of approximately 1 mL in the hilar region on the 4D scan (SUV maximum, 3.3) but not on the 3D scan (SUV maximum, 2.3). Conclusions: In comparison to 3D PET, 4D PET may better define the full physiologic extent of moving tumors and improve radiation treatment planning for lung tumors. In addition, reduction of blurring from free-breathing images may reveal additional information regarding regional disease.

  12. Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Apanosovich, Tatiyana V.; Wang, Jianwei; Yankelevitz, David F.; Henschke, Claudia I.

    2009-02-01

    Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema and for visual assessment by radiologists of the extent present in the lungs. Several measures have been introduced for the quantification of the extent of disease directly from CT data in order to add to the qualitative assessments made by radiologists. In this paper we compare emphysema index, mean lung density, histogram percentiles, and the fractal dimension to visual grade in order to evaluate the predictability of radiologist visual scoring of emphysema from low-dose CT scans through quantitative scores, in order to determine which measures can be useful as surrogates for visual assessment. All measures were computed over nine divisions of the lung field (whole lung, individual lungs, and upper/middle/lower thirds of each lung) for each of 148 low-dose, whole lung scans. In addition, a visual grade of each section was also given by an expert radiologist. One-way ANOVA and multinomial logistic regression were used to determine the ability of the measures to predict visual grade from quantitative score. We found that all measures were able to distinguish between normal and severe grades (p<0.01), and between mild/moderate and all other grades (p<0.05). However, no measure was able to distinguish between mild and moderate cases. Approximately 65% prediction accuracy was achieved from using quantitative score to predict visual grade, with 73% if mild and moderate cases are considered as a single class.

  13. [What are the tools for post-occupational follow-up, how should they be performed and what are their performance, limits and benefit/risk ratio? Chest X-Ray and CT scan].

    PubMed

    Ferretti, G

    2011-06-01

    Chest radiography and computed tomography (CT) are the two radiological techniques used for the follow-up of people exposed to asbestos. Since the last conference of consensus (1999), the scientific literature has primarily covered high-resolution CT and high-resolution volume CT (HR-VCT). We consider in turn the contribution of digital thoracic radiography, recommendations for the performance of HR-VCT to ensure the quality of examination while controlling the delivered radiation dose, and the need to refer to the "CT atlas of benign diseases related to asbestos exposure", published by a group of French experts in 2007, for interpretation. The results of the published studies concerning radiography or CT are then reviewed. We note the great interobserver variability in the recognition of pleural plaques and asbestosis, indicating the need for adequate training of radiologists, and the importance of defining standardized, quantified criteria for CT abnormalities. The very low agreement between thoracic and general radiologists must be taken into account. The reading of CT scans in cases of occupational exposure to asbestos should be entrusted to thoracic radiologists or to general radiologists having validated specific training. A double interpretation of CT could be considered in medicosocial requests. CT is more sensitive than chest radiography in the detection of bronchial carcinoma but generates a great number of false positive results (96 to 99%). No scientific data are available to assess the role of imaging by either CT or chest radiography in the early detection of mesothelioma.

  14. The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: A retrospective study

    PubMed Central

    Servello, Domenico; Zekaj, Edvin; Saleh, Christian; Pacchetti, Claudio; Porta, Mauro

    2016-01-01

    Background: Deep brain stimulation (DBS) is an established therapy for movement disorders, such as Parkinson's disease (PD), dystonia, and tremor. The efficacy of DBS depends on the correct lead positioning. The commonly adopted postoperative radiological evaluation is performed with computed tomography (CT) scan and/or magnetic resonance imaging (MRI). Methods: We conducted a retrospective study on 202 patients who underwent DBS from January 2009 to October 2013. DBS indications were PD, progressive supranuclear palsy, tremor, dystonia, Tourette syndrome, obsessive compulsive disorder, depression, and Huntington's disease. Preoperatively, all patients underwent brain MRI and brain CT scan with the stereotactic frame positioned. The lead location was confirmed intraoperatively with CT. The CT images were subsequently transferred to the Stealth Station Medtronic and merged with the preoperative planning. On the first or second day after, implantation we performed a brain MRI to confirm the correct position of the lead. Results: In 14 patients, leads were in suboptimal position after intraoperative CT scan positioning. The cases with alteration in the Z-axis were corrected immediately under fluoroscopic guidance. In all the 14 patients, an immediate repositioning was done. Conclusions: Based on our data, intraoperative CT scan is fast, safe, and a useful tool in the evaluation of the position of the implanted lead. It also reduces the patient's discomfort derived from the transfer of the patient from the operating room to the radiological department. However, intraoperative CT should not be considered as a substitute for postoperative MRI. PMID:27583182

  15. A novel reconstruction algorithm to extend the CT scan field-of-view.

    PubMed

    Hsieh, J; Chao, E; Thibault, J; Grekowicz, B; Horst, A; McOlash, S; Myers, T J

    2004-09-01

    For various reasons, a projection dataset acquired on a computed tomography (CT) scanner can be truncated. That is, a portion of the scanned object is positioned outside the scan field-of-view (SFOV) and the line integrals corresponding to those regions are not measured. A projection truncation problem causes imaging artifacts that lead to suboptimal image quality. In this paper, we propose a reconstruction algorithm that enables an adequate estimation of the projection outside the SFOV. We make use of the fact that the total attenuation of each ideal projection in a parallel sampling geometry remains constant over views. We use the magnitudes and slopes of the projection samples at the location of truncation to estimate water cylinders that can best fit to the projection data outside the SFOV. To improve the robustness of the algorithm, continuity constraints are placed on the fitting parameters. Extensive phantom and patient experiments were conducted to test the robustness and accuracy of the proposed algorithm.

  16. Extracting Information From Previous Full-Dose CT Scan for Knowledge-Based Bayesian Reconstruction of Current Low-Dose CT Images.

    PubMed

    Zhang, Hao; Han, Hao; Liang, Zhengrong; Hu, Yifan; Liu, Yan; Moore, William; Ma, Jianhua; Lu, Hongbing

    2016-03-01

    Markov random field (MRF) model has been widely employed in edge-preserving regional noise smoothing penalty to reconstruct piece-wise smooth images in the presence of noise, such as in low-dose computed tomography (LdCT). While it preserves edge sharpness, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it may compromise clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodules or colon polyps. This study aims to shift the edge-preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF's neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of muscle, fat, bone, lung, etc. from previous full-dose CT (FdCT) scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of the proposed reconstruction framework, experiments using clinical patient scans were conducted. The experimental outcomes showed a dramatic gain by the a priori knowledge for LdCT image reconstruction using the commonly-used Haralick texture measures. Thus, it is conjectured that the texture-preserving LdCT reconstruction has advantages over the edge-preserving regional smoothing paradigm for texture-specific clinical applications.

  17. Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters

    SciTech Connect

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.

    2010-02-15

    The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4x4 cm{sup 2} photon fields or 6x6 cm{sup 2} electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6x6 cm{sup 2}, 12 and 16 MeV electron fields. The dose response of the BANG 3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752{+-}3%, 0.0756{+-}3%, 0.0767{+-}3%, and 0.0759{+-}3% cm{sup -1} Gy{sup -1}) and the PDD matching methods (0.0768{+-}3% and 0.0761{+-}3% cm{sup -1} Gy{sup -1}) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6x6 cm{sup 2} electron field. Three-dimensional dose distributions

  18. Sensitivity calibration procedures in optical-CT scanning of BANG®3 polymer gel dosimeters

    PubMed Central

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.

    2010-01-01

    The dose response of the BANG®3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS™ laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4×4 cm2 photon fields or 6×6 cm2 electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6×6 cm2, 12 and 16 MeV electron fields. The dose response of the BANG®3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752±3%, 0.0756±3%, 0.0767±3%, and 0.0759±3% cm−1 Gy−1) and the PDD matching methods (0.0768±3% and 0.0761±3% cm−1 Gy−1) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6×6 cm2 electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse

  19. The relationship of pineal calcification to cerebral atrophy on CT scan in multiple sclerosis.

    PubMed

    Sandyk, R; Awerbuch, G I

    1994-05-01

    Calcification is a known morphological feature of the pineal gland. The mechanisms underlying the development of pineal calcification (PC) are elusive although there is experimental evidence that calcification may be a marker of the past secretory activity of the gland and/or of degeneration. The increased incidence of PC with aging suggests that it may reflect cerebral degenerative changes as well. In a recent Editorial in this Journal it was proposed that the pineal gland is implicated in the pathogenesis of multiple sclerosis (MS). Cerebral atrophy, which can be demonstrated on CT scan, is a common feature of MS resulting from demyelination and gliosis. If PC is a marker of a cerebral degenerative process, then one would expect a higher incidence of calcification of the gland in patients with cerebral atrophy compared to those without cerebral atrophy. To test this hypothesis, we studied the incidence of PC on CT scan in a cohort of 48 MS patients, 21 of whom had cerebral atrophy. For the purpose of comparison, we also assessed the incidence of choroid plexus calcification (CPC) in relation to cerebral atrophy. PC was found in 42 patients (87.5%) and its incidence in patients with cerebral atrophy was significantly higher compared to the incidence in patients without cerebral atrophy (100% vs. 77.7%; p < .025). In contrast, CPC was unrelated to cerebral atrophy or to PC thus supporting the notion of a specific association between the pineal gland and the pathogenesis of MS.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7960471

  20. Use of CT scanning to optimise the localisation procedure for breast radiotherapy.

    PubMed

    Rattray, G

    1989-07-01

    The continually improving technology in breast screening is now allowing diagnosis of patients with early stage breast cancer who would otherwise not have presented for many years. Surgical techniques are directed to achieving the best possible cosmetic result following the surgery. Radiotherapy treatment machines are becoming more complex and sophisticated in design and capability. Why, therefore, should we not employ today's technology for the localisation process? This is a report of our experience in using CT scanning to localise the treatment volumes for breast patients over a period of one year. A comparison between marking patients by palpation and the use of CT scanning has prevented a number of patients being under-treated and has enabled the reduction of lung volume included in the treatment volume for other patients. It has also proved a valuable aid in the decision to use electron fields for mastectomy patients. Other means of localising the treatment volumes are considered in the light of our experiences. PMID:2590443

  1. Evaluating 3D registration of CT-scan images using crest lines

    NASA Astrophysics Data System (ADS)

    Ayache, Nicholas; Gueziec, Andre P.; Thirion, Jean-Philippe; Gourdon, A.; Knoplioch, Jerome

    1993-06-01

    We consider the issue of matching 3D objects extracted from medical images. We show that crest lines computed on the object surfaces correspond to meaningful anatomical features, and that they are stable with respect to rigid transformations. We present the current chain of algorithmic modules which automatically extract the major crest lines in 3D CT-Scan images, and then use differential invariants on these lines to register together the 3D images with a high precision. The extraction of the crest lines is done by computing up to third order derivatives of the image intensity function with appropriate 3D filtering of the volumetric images, and by the 'marching lines' algorithm. The recovered lines are then approximated by splines curves, to compute at each point a number of differential invariants. Matching is finally performed by a new geometric hashing method. The whole chain is now completely automatic, and provides extremely robust and accurate results, even in the presence of severe occlusions. In this paper, we briefly describe the whole chain of processes, already presented to evaluate the accuracy of the approach on a couple of CT-scan images of a skull containing external markers.

  2. Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning

    PubMed Central

    Wang, Hong-kui; Wang, Ya-xian; Xue, Cheng-bin; Li, Zhen-mei-yu; Huang, Jing; Zhao, Ya-hong; Yang, Yu-min; Gu, Xiao-song

    2016-01-01

    Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 μm. The blood vessels with diameters from 27 to 155 μm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo. PMID:26981108

  3. Consecutive Short-Scan CT for Geological Structure Analog Models with Large Size on In-Situ Stage.

    PubMed

    Yang, Min; Zhang, Wen; Wu, Xiaojun; Wei, Dongtao; Zhao, Yixin; Zhao, Gang; Han, Xu; Zhang, Shunli

    2016-01-01

    For the analysis of interior geometry and property changes of a large-sized analog model during a loading or other medium (water or oil) injection process with a non-destructive way, a consecutive X-ray computed tomography (XCT) short-scan method is developed to realize an in-situ tomography imaging. With this method, the X-ray tube and detector rotate 270° around the center of the guide rail synchronously by switching positive and negative directions alternately on the way of translation until all the needed cross-sectional slices are obtained. Compared with traditional industrial XCTs, this method well solves the winding problems of high voltage cables and oil cooling service pipes during the course of rotation, also promotes the convenience of the installation of high voltage generator and cooling system. Furthermore, hardware costs are also significantly decreased. This kind of scanner has higher spatial resolution and penetrating ability than medical XCTs. To obtain an effective sinogram which matches rotation angles accurately, a structural similarity based method is applied to elimination of invalid projection data which do not contribute to the image reconstruction. Finally, on the basis of geometrical symmetry property of fan-beam CT scanning, a whole sinogram filling a full 360° range is produced and a standard filtered back-projection (FBP) algorithm is performed to reconstruct artifacts-free images. PMID:27537104

  4. Consecutive Short-Scan CT for Geological Structure Analog Models with Large Size on In-Situ Stage.

    PubMed

    Yang, Min; Zhang, Wen; Wu, Xiaojun; Wei, Dongtao; Zhao, Yixin; Zhao, Gang; Han, Xu; Zhang, Shunli

    2016-01-01

    For the analysis of interior geometry and property changes of a large-sized analog model during a loading or other medium (water or oil) injection process with a non-destructive way, a consecutive X-ray computed tomography (XCT) short-scan method is developed to realize an in-situ tomography imaging. With this method, the X-ray tube and detector rotate 270° around the center of the guide rail synchronously by switching positive and negative directions alternately on the way of translation until all the needed cross-sectional slices are obtained. Compared with traditional industrial XCTs, this method well solves the winding problems of high voltage cables and oil cooling service pipes during the course of rotation, also promotes the convenience of the installation of high voltage generator and cooling system. Furthermore, hardware costs are also significantly decreased. This kind of scanner has higher spatial resolution and penetrating ability than medical XCTs. To obtain an effective sinogram which matches rotation angles accurately, a structural similarity based method is applied to elimination of invalid projection data which do not contribute to the image reconstruction. Finally, on the basis of geometrical symmetry property of fan-beam CT scanning, a whole sinogram filling a full 360° range is produced and a standard filtered back-projection (FBP) algorithm is performed to reconstruct artifacts-free images.

  5. Consecutive Short-Scan CT for Geological Structure Analog Models with Large Size on In-Situ Stage

    PubMed Central

    Yang, Min; Zhang, Wen; Wu, Xiaojun; Wei, Dongtao; Zhao, Yixin; Zhao, Gang; Han, Xu; Zhang, Shunli

    2016-01-01

    For the analysis of interior geometry and property changes of a large-sized analog model during a loading or other medium (water or oil) injection process with a non-destructive way, a consecutive X-ray computed tomography (XCT) short-scan method is developed to realize an in-situ tomography imaging. With this method, the X-ray tube and detector rotate 270° around the center of the guide rail synchronously by switching positive and negative directions alternately on the way of translation until all the needed cross-sectional slices are obtained. Compared with traditional industrial XCTs, this method well solves the winding problems of high voltage cables and oil cooling service pipes during the course of rotation, also promotes the convenience of the installation of high voltage generator and cooling system. Furthermore, hardware costs are also significantly decreased. This kind of scanner has higher spatial resolution and penetrating ability than medical XCTs. To obtain an effective sinogram which matches rotation angles accurately, a structural similarity based method is applied to elimination of invalid projection data which do not contribute to the image reconstruction. Finally, on the basis of geometrical symmetry property of fan-beam CT scanning, a whole sinogram filling a full 360° range is produced and a standard filtered back-projection (FBP) algorithm is performed to reconstruct artifacts-free images. PMID:27537104

  6. Accuracy of cancellous bone volume fraction measured by micro-CT scanning.

    PubMed

    Ding, M; Odgaard, A; Hvid, I

    1999-03-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed. PMID:10093033

  7. CT scanning carcases has no detrimental effect on the colour stability of M. longissimus dorsi from beef and sheep.

    PubMed

    Jose, C G; Pethick, D W; Jacob, R H; Gardner, G E

    2009-01-01

    This study investigated the effect of computerised tomography imaging (CT scan), for carcase composition determination, on the oxy/metmyoglobin ratio, hue and L(∗), a(∗) and b(∗) scores of M. longissimus dorsi from both beef and lamb. Beef and lamb M. longissimus dorsi were divided into four proportions and randomly allocated to one of the following treatments; CT 30 day aged; CT fresh; control 30 day aged; control fresh. Colour measurements were made over a 96h retail display period. CT scan had little effect on the colour of both lamb and beef across all colour parameters. There was a small negative affect observed in CT aged samples (P<0.05) for ratio, hue, a(∗) and b(∗) values, however these differences were so small that they are unlikely to impact upon the commercial shelf-life of the product. Other factors such as aging, species and vitamin E concentration play a much greater role in colour stability than CT. Aged M. longissimus dorsi clearly had a worse colour stability than the fresh packaged samples, while beef was a lot more colour stable than lamb. It appears that CT scan for the purpose of body composition determination will not have any commercially relevant impact on colour stability of both beef and lamb.

  8. [Exposure to CT scans in childhood and long-term cancer risk: A review of epidemiological studies].

    PubMed

    Baysson, Hélène; Journy, Neige; Roué, Tristan; Ducou-Lepointe, Hubert; Etard, Cécile; Bernier, Marie-Odile

    2016-02-01

    Amongst medical exams requiring ionizing radiation, computed tomography (CT) scans are used more frequently, including in children. These CT examinations are associated with absorbed doses that are much higher than those associated with conventional radiology. In comparison to adults, children have a greater sensitivity to radiation and a longer life span with more years at cancer risks. Five epidemiological studies on cancer risks after CT scan exposure during childhood were published between 2012 and 2015. The results of these studies are consistent and show an increase of cancer risks in children who have been exposed to several CT scans. However, methodological limits due to indication bias, retrospective assessment of radiation exposure from CT scans and lack of statistical power are to be taken into consideration. International projects such as EPI-CT (Epidemiological study to quantify risks for pediatric computerized tomography and to optimize dose), with a focus on dosimetric reconstruction and minimization of bias will provide more precise results. In the meantime, available results reinforce the necessity of justification and optimization of doses.

  9. [Exposure to CT scans in childhood and long-term cancer risk: A review of epidemiological studies].

    PubMed

    Baysson, Hélène; Journy, Neige; Roué, Tristan; Ducou-Lepointe, Hubert; Etard, Cécile; Bernier, Marie-Odile

    2016-02-01

    Amongst medical exams requiring ionizing radiation, computed tomography (CT) scans are used more frequently, including in children. These CT examinations are associated with absorbed doses that are much higher than those associated with conventional radiology. In comparison to adults, children have a greater sensitivity to radiation and a longer life span with more years at cancer risks. Five epidemiological studies on cancer risks after CT scan exposure during childhood were published between 2012 and 2015. The results of these studies are consistent and show an increase of cancer risks in children who have been exposed to several CT scans. However, methodological limits due to indication bias, retrospective assessment of radiation exposure from CT scans and lack of statistical power are to be taken into consideration. International projects such as EPI-CT (Epidemiological study to quantify risks for pediatric computerized tomography and to optimize dose), with a focus on dosimetric reconstruction and minimization of bias will provide more precise results. In the meantime, available results reinforce the necessity of justification and optimization of doses. PMID:26782078

  10. Image-based motion compensation for high-resolution extremities cone-beam CT

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  11. Registration based super-resolution reconstruction for lung 4D-CT.

    PubMed

    Wu, Xiuxiu; Xiao, Shan; Zhang, Yu

    2014-01-01

    Lung 4D-CT plays an important role in lung cancer radiotherapy for tumor localization and treatment planning. In lung 4D-CT data, the resolution in the slice direction is often much lower than the in-plane resolution. For multi-plane display, isotropic resolution is necessary, but the commonly used interpolation operation will blur the images. In this paper, we present a registration based method for super resolution enhancement of the 4D-CT multi-plane images. Our working premise is that the low-resolution images of different phases at the corresponding position can be regarded as input "frames" to reconstruct high resolution images. First, we employ the Demons registration algorithm to estimate the motion field between different "frames". Then, the projections onto convex sets (POCS) approach is employed to reconstruction high-resolution lung images. We show that our method can get clearer lung images and enhance image structure, compared with the cubic spline interpolation and back projection method. PMID:25570484

  12. Registration based super-resolution reconstruction for lung 4D-CT.

    PubMed

    Wu, Xiuxiu; Xiao, Shan; Zhang, Yu

    2014-01-01

    Lung 4D-CT plays an important role in lung cancer radiotherapy for tumor localization and treatment planning. In lung 4D-CT data, the resolution in the slice direction is often much lower than the in-plane resolution. For multi-plane display, isotropic resolution is necessary, but the commonly used interpolation operation will blur the images. In this paper, we present a registration based method for super resolution enhancement of the 4D-CT multi-plane images. Our working premise is that the low-resolution images of different phases at the corresponding position can be regarded as input "frames" to reconstruct high resolution images. First, we employ the Demons registration algorithm to estimate the motion field between different "frames". Then, the projections onto convex sets (POCS) approach is employed to reconstruction high-resolution lung images. We show that our method can get clearer lung images and enhance image structure, compared with the cubic spline interpolation and back projection method.

  13. Modeling atomic-resolution scanning transmission electron microscopy images.

    PubMed

    Findlay, Scott D; Oxley, Mark P; Allen, Leslie J

    2008-02-01

    A real-space description of inelastic scattering in scanning transmission electron microscopy is derived with particular attention given to the implementation of the projected potential approximation. A hierarchy of approximations to expressions for inelastic images is presented. Emphasis is placed on the conditions that must hold in each case. The expressions that justify the most direct, visual interpretation of experimental data are also the most approximate. Therefore, caution must be exercised in selecting experimental parameters that validate the approximations needed for the analysis technique used. To make the most direct, visual interpretation of electron-energy-loss spectroscopic images from core-shell excitations requires detector improvements commensurate with those that aberration correction provides for the probe-forming lens. Such conditions can be relaxed when detailed simulations are performed as part of the analysis of experimental data. PMID:18096101

  14. Modelling atomic resolution scanning transmission electron microscopy images

    SciTech Connect

    Findlay, Scott D.; Oxley, Mark P; Allen, L. J.

    2008-01-01

    A real-space description of inelastic scattering in scanning transmission electron microscopy is derived with particular attention given to the implementation of the projected potential approximation. A hierarchy of approximations to expressions for inelastic images is presented. Emphasis is placed on the conditions that must hold in each case. The expressions that justify the most direct, visual interpretation of experimental data are also the most approximate. Therefore, caution must be exercised in selecting experimental parameters that validate the approximations needed for the analysis technique used. To make the most direct, visual interpretation of electron-energy-loss spectroscopic images from core-shell excitations requires detector improvements commensurate with those that aberration correction provides for the probe-forming lens. Such conditions can be relaxed when detailed simulations are performed as part of the analysis of experimental data.

  15. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    SciTech Connect

    Toftegaard, Jakob Fledelius, Walther; Worm, Esben S.; Poulsen, Per R.; Seghers, Dieter; Huber, Michael; Brehm, Marcus; Elstrøm, Ulrik V.

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  16. TU-F-BRF-03: Effect of Radiation Therapy Planning Scan Registration On the Dose in Lung Cancer Patient CT Scans

    SciTech Connect

    Cunliffe, A; Contee, C; White, B; Justusson, J; Armato, S; Malik, R; Al-Hallaq, H

    2014-06-15

    Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps) using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used

  17. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy

    NASA Astrophysics Data System (ADS)

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C.; Somekh, Michael G.

    2016-02-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results.

  18. A case of catastrophic antiphospholipid syndrome, which presented an acute interstitial pneumonia-like image on chest CT scan.

    PubMed

    Kameda, Tomohiro; Dobashi, Hiroaki; Susaki, Kentaro; Danjo, Junichi; Nakashima, Shusaku; Shimada, Hiromi; Izumikawa, Miharu; Takeuchi, Yohei; Mitsunaka, Hiroki; Bandoh, Shuji; Imataki, Osamu; Nose, Masato; Matsunaga, Takuya

    2015-01-01

    We report the case of catastrophic antiphospholipid syndrome (CAPS) complicated with mixed connective tissue disease (MCTD). A female patient was diagnosed with acute interstitial pneumonia (AIP) with MCTD by chest CT scan. Corticosteroid therapy was refractory for lung involvement, and she died due to acute respiratory failure. The autopsy revealed that AIP was compatible with lung involvement of CAPS. We therefore suggest that chest CT might reveal AIP-like findings in CAPS patients whose condition is complicated with pulmonary manifestations.

  19. High-resolution CT findings in pulmonary hyalinizing granuloma.

    PubMed

    Shibata, Yoshihiro; Kobayashi, Takeshi; Hattori, Yuki; Matsui, Osamu; Gabata, Toshifumi; Tamori, Shunichi; Minato, Hiroshi; Ohta, Yasuhiko

    2007-11-01

    A 47-year-old man with pulmonary hyalinizing granuloma is herein presented. The patient, whose chief complaint was a mild cough, was found by chest radiograph to have multiple bilateral nodules. Subsequent high-resolution computed tomography demonstrated multiple slightly irregular nodules, perinodular ground-glass opacity, peribronchovascular interstitial thickening, and cysts. A mild enlargement of systemic lymph nodes was also noted. Laboratory tests disclosed a slight elevation in the C-reactive protein, gamma-globulin, interleukin-6, and soluble interleukin-2 receptor levels. A histopathologic examination of the specimen yielded from a thoracoscopic lung biopsy resulted in a definite diagnosis of pulmonary hyalinizing granuloma. PMID:18043399

  20. A study of the short- to long-phantom dose ratios for CT scanning without table translation

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob; Yang, Jie

    2014-09-15

    Purpose: For CT scanning in the stationary-table modes, AAPM Task Group 111 proposed to measure the midpoint dose on the central and peripheral axes of sufficiently long phantoms. Currently, a long cylindrical phantom is usually not available in many clinical facilities. The use of a long phantom is also challenging because of the heavy weight. In order to shed light on assessing the midpoint dose in CT scanning without table movement, the authors present a study of the short- to long-phantom dose ratios, and perform a cross-comparison of CT dose ratios on different scanner models. Methods: The authors performed Geant4-based Monte Carlo simulations with a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare), and modeled dosimetry measurements using a 0.6 cm{sup 3} Farmer type chamber and a 10-cm long pencil ion chamber. The short (15 cm) to long (90 cm) phantom dose ratios were computed for two PMMA diameters (16 and 32 cm), two phantom axes (the center and the periphery), and a range of beam apertures (3–25 cm). The results were compared with the published data of previous studies with other multiple detector CT (MDCT) scanners and cone beam CT (CBCT) scanners. Results: The short- to long-phantom dose ratios changed with beam apertures but were insensitive to beam qualities (80–140 kV, the head and body bowtie filters) and MDCT and CBCT scanner models. Conclusions: The short- to long-phantom dose ratios enable medical physicists to make dosimetry measurements using the standard CT dosimetry phantoms and a Farmer chamber or a 10 cm long pencil chamber, and to assess the midpoint dose in long phantoms. This method provides an effective approach for the dosimetry of CBCT scanning in the stationary-table modes, and is useful for perfusion and interventional CT.

  1. Lateral resolution enhancement of vertical scanning interferometry by sub-pixel sampling.

    PubMed

    Arvidson, Rolf S; Fischer, Cornelius; Sawyer, Dale S; Scott, Gavin D; Natelson, Douglas; Lüttge, Andreas

    2014-02-01

    We apply common image enhancement principles and sub-pixel sample positioning to achieve a significant enhancement in the spatial resolution of a vertical scanning interferometer. We illustrate the potential of this new method using a standard atomic force microscope calibration grid and other materials having motifs of known lateral and vertical dimensions. This approach combines the high vertical resolution of vertical scanning interferometry and its native advantages (large field of view, rapid and nondestructive data acquisition) with important increases in lateral resolution. This combination offers the means to address a common challenge in microscopy: the integration of properties and processes that depend on, and vary as a function of observational length.

  2. Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus

    PubMed Central

    El Maghnouji, Alouahab; Foster, Richard

    2005-01-01

    We demonstrate experimentally that the method of scanning holographic microscopy is capable of producing images reconstructed numerically from holograms recorded digitally in the time domain by scanning, with transverse and axial resolutions comparable to those of wide-field or scanning microscopy with the same objective. Furthermore, we show that it is possible to synthesize the point-spread function of scanning holographic microscopy to obtain, with the same objective, holographic reconstructions with a transverse resolution exceeding the Rayleigh limit of the objective up to a factor of 2 in the limit of low numerical aperture. These holographic reconstructions also exhibit an extended depth of focus, the extent of which is adjustable without compromising the transverse resolution. PMID:15898548

  3. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    SciTech Connect

    Yang, Ching-Ching; Liu, Shu-Hsin; Mok, Greta S. P.; Wu, Tung-Hsin

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  4. [Cerebral neuroblastoma in the adult. Clinical and C.T. scan aspects (author's transl)].

    PubMed

    Boudouresques, G; Boudouresques, J; Grisoli, F; Hassoun, J; Delpuech, F; Vincentelli, F; Khalil, R

    1980-01-01

    The case of a thirty two years old patient with a frontal syndrome developing over the last three years is reported. CT scan showed a large calcified lesion, situated on the median line enhanced by iodine. The patient was operated. Ultrastructural and histologie studies concluded that it the tumor was a neuroblastoma. After operation an unquestionable amelioration of the frontal disorders appeared. Facial paralysis with a inverse automatic-voluntary dissociation and an underuse of motricity, both left-sided, after cortectomy of the right-sided premotor area were observed. We therefore suggest that the lesion of the external premotor cortex was responsible of the facial paralysis with an inverse automatic voluntary dissociation and of the underuse the left side.

  5. Cerebral embolism: local CFBF and edema measured by CT scanning and Xe inhalation. [Baboons

    SciTech Connect

    Meyer, J.S.; Yamamoto, M.; Hayman, L.A.; Sakai, F.; Nakajima, S.; Armstrong, D.

    1980-01-01

    Serial CT scans were made in baboons after cerebral embolization during stable Xe inhalation for measuring local values for CBF and lambda (brain-blood partition or solubility coefficients), followed by iodine infusion for detecting blood-brain barrier (BBB) damage. Persistent zones of zero flow surrounded by reduced flow were measured predominantly in subcortical regions, which showed gross and microscopic evidence of infarction at necropsy. Overlying cortex was relatively spared. Reduced lambda values attributed to edema appeared within 3 to 5 minutes and progressed up to 60 minutes. Damage to BBB with visible transvascular seepage of iodine began to appear 1 to 1 1/2 hours after embolism. In chronic animals, lambda values were persistently reduced in areas showing histologic infarction. Contralateral hemispheric CBF increased for the first 15 minutes after embolism, followed by progressive reduction after 30 minutes (diaschisis).

  6. Fourier-based reconstruction via alternating direction total variation minimization in linear scan CT

    NASA Astrophysics Data System (ADS)

    Cai, Ailong; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2015-03-01

    In this study, we consider a novel form of computed tomography (CT), that is, linear scan CT (LCT), which applies a straight line trajectory. Furthermore, an iterative algorithm is proposed for pseudo-polar Fourier reconstruction through total variation minimization (PPF-TVM). Considering that the sampled Fourier data are distributed in pseudo-polar coordinates, the reconstruction model minimizes the TV of the image subject to the constraint that the estimated 2D Fourier data for the image are consistent with the 1D Fourier transform of the projection data. PPF-TVM employs the alternating direction method (ADM) to develop a robust and efficient iteration scheme, which ensures stable convergence provided that appropriate parameter values are given. In the ADM scheme, PPF-TVM applies the pseudo-polar fast Fourier transform and its adjoint to iterate back and forth between the image and frequency domains. Thus, there is no interpolation in the Fourier domain, which makes the algorithm both fast and accurate. PPF-TVM is particularly useful for limited angle reconstruction in LCT and it appears to be robust against artifacts. The PPF-TVM algorithm was tested with the FORBILD head phantom and real data in comparisons with state-of-the-art algorithms. Simulation studies and real data verification suggest that PPF-TVM can reconstruct higher accuracy images with lower time consumption.

  7. Scale-invariant registration of monocular endoscopic images to CT-scans for sinus surgery.

    PubMed

    Burschka, Darius; Li, Ming; Ishii, Masaru; Taylor, Russell H; Hager, Gregory D

    2005-10-01

    In this paper, we present a novel method for intra-operative registration directly from monocular endoscopic images. This technique has the potential to provide a more accurate surface registration at the surgical site than existing methods. It can operate autonomously from as few as two images and can be particularly useful in revision cases where surgical landmarks may be absent. A by-product of video registration is an estimate of the local surface structure of the anatomy, thus providing the opportunity to dynamically update anatomical models as the surgery progresses. Our approach is based on a previously presented method [Burschka, D., Hager, G.D., 2004. V-GPS (SLAM):--Vision-based inertial system for mobile robots. In: Proceedings of ICRA, 409-415] for reconstruction of a scaled 3D model of the environment from unknown camera motion. We use this scaled reconstruction as input to a PCA-based algorithm that registers the reconstructed data to the CT data and recovers the scale and pose parameters of the camera in the coordinate frame of the CT scan. The result is used in an ICP registration step to refine the registration estimates. The details of our approach and the experimental results with a phantom of a human skull and a head of a pig cadaver are presented in this paper.

  8. Postoperative follow-up of juvenile nasopharyngeal angiofibromas: assessment by CT scan and MR imaging.

    PubMed

    Chagnaud, C; Petit, P; Bartoli, J; Champsaur, P; Gaubert, J; Dessi, P; Zanaret, M; Cannoni, M; Moulin, G

    1998-01-01

    The purpose of this study was to assess the radiological findings after surgical removal of juvenile nasopharyngeal angiofibromas (JNA). The postoperative CT and MRI scans of ten patients were reviewed. The cured group included six patients. The non-controlled group included six patients with eight recurrences. Two patients belonged to both groups as they were also followed and cured after surgery for relapse. Four recurrences were asymptomatic and diagnosed by imaging. The imaging patterns were matched to the patients clinical status and endoscopic findings. In the cured group, non-enhanced residual soft tissue masses were seen in all cases. In the non-controlled group, recurrence was always demonstrated on early postoperative CT or MR as a dramatically enhanced mass. The recurrence was located in the lateral or superior aspect of the nasopharynx (n = 3), deep to the fossa of Rosenmuller (n = 4) or out of the nasopharynx (n = 1). In two cases a remaining enhanced mass disappeared spontaneously on iterated examinations. Because of numerous asymptomatic relapses, a radiological workup is recommended four months after surgery, even in patients with normal endoscopy, to rule out posterolateral or extranasopharyngeal recurrences. Spontaneous evolution of residual masses must be appreciated on iterated imaging examinations.

  9. Automatic three-dimensional rib centerline extraction from CT scans for enhanced visualization and anatomical context

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Sowmya; Alvino, Christopher; Grady, Leo; Kiraly, Atilla

    2011-03-01

    We present a complete automatic system to extract 3D centerlines of ribs from thoracic CT scans. Our rib centerline system determines the positional information for the rib cage consisting of extracted rib centerlines, spinal canal centerline, pairing and labeling of ribs. We show an application of this output to produce an enhanced visualization of the rib cage by the method of Kiraly et al., in which the ribs are digitally unfolded along their centerlines. The centerline extraction consists of three stages: (a) pre-trace processing for rib localization, (b) rib centerline tracing, and (c) post-trace processing to merge the rib traces. Then we classify ribs from non-ribs and determine anatomical rib labeling. Our novel centerline tracing technique uses the Random Walker algorithm to segment the structural boundary of the rib in successive 2D cross sections orthogonal to the longitudinal direction of the ribs. Then the rib centerline is progressively traced along the rib using a 3D Kalman filter. The rib centerline extraction framework was evaluated on 149 CT datasets with varying slice spacing, dose, and under a variety of reconstruction kernels. The results of the evaluation are presented. The extraction takes approximately 20 seconds on a modern radiology workstation and performs robustly even in the presence of partial volume effects or rib pathologies such as bone metastases or fractures, making the system suitable for assisting clinicians in expediting routine rib reading for oncology and trauma applications.

  10. Surgical navigation display system using volume rendering of intraoperatively scanned CT images.

    PubMed

    Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Otake, Yoshito; Suzuki, Shigeyuki; Nakata, Norio

    2006-09-01

    As operative procedures become more complicated, simply increasing the number of devices will not facilitate such operations. It is necessary to consider the ergonomics of the operating environment, especially with regard to the provision of navigation data, the prevention of technical difficulties, and the comfort of the operating room staff. We have designed and created a data-fusion interface that enables volumetric Maximum Intensity Projection (MIP) image navigation using intra-operative mobile 3D-CT data in the OR. The 3D volumetric data reflecting a patient's inner structure is directly displayed on the monitor through video images of the surgical field using a 3D optical tracking system, a ceiling-mounted articulating monitor, and a small-size video camera mounted at the back of the monitor. The system performance and accuracy was validated experimentally. This system provides a novel interface for a surgeon with volume rendering of intra-operatively scanned CT images, as opposed to preoperative images.

  11. Rapid super-resolution line-scanning microscopy through virtually structured detection.

    PubMed

    Zhi, Yanan; Lu, Rongwen; Wang, Benquan; Zhang, Qiuxiang; Yao, Xincheng

    2015-04-15

    Virtually structured detection (VSD) has been demonstrated to break the diffraction limit in scanning laser microscopy (SLM). VSD provides an easy, low-cost, and phase-artifact-free strategy to achieve super-resolution imaging. However, practical application of this method is challenging due to a limited image acquisition speed. We report here the combination of VSD and line-scanning microscopy (LSM) to improve the image acquisition speed. A motorized dove prism was used to achieve automatic control of four-angle (i.e., 0°, 45°, 90°, and 135°) scanning, thus ensuring isotropic resolution improvement. Both an optical resolution target and a living frog eyecup were used to verify resolution enhancement.

  12. Rapid super-resolution line-scanning microscopy through virtually structured detection

    PubMed Central

    Zhi, Yanan; Lu, Rongwen; Wang, Benquan; Zhang, Qiuxiang; Yao, Xincheng

    2015-01-01

    Virtually structured detection (VSD) has been demonstrated to break the diffraction limit in scanning laser microscopy (SLM). VSD provides an easy, low-cost, and phase-artifact-free strategy to achieve super-resolution imaging. However, practical application of this method is challenging due to a limited image acquisition speed. We report here the combination of VSD and line-scanning microscopy (LSM) to improve the image acquisition speed. A motorized dove prism was used to achieve automatic control of four-angle (i.e., 0°, 45°, 90°, and 135°) scanning, thus ensuring isotropic resolution improvement. Both an optical resolution target and a living frog eyecup were used to verify resolution enhancement. PMID:25872047

  13. TU-A-12A-04: Quantitative Texture Features Calculated in Lung Tissue From CT Scans Demonstrate Consistency Between Two Databases From Different Institutions

    SciTech Connect

    Cunliffe, A; Armato, S; Castillo, R; Pham, N; Guerrero, T; Al-Hallaq, H

    2014-06-15

    Purpose: To evaluate the consistency of computed tomography (CT) scan texture features, previously identified as stable in a healthy patient cohort, in esophageal cancer patient CT scans. Methods: 116 patients receiving radiation therapy (median dose: 50.4Gy) for esophageal cancer were retrospectively identified. For each patient, diagnostic-quality pre-therapy (0-183 days) and post-therapy (5-120 days) scans (mean voxel size: 0.8mm×0.8mm×2.5mm) and a treatment planning scan and associated dose map were collected. An average of 501 32x32-pixel ROIs were placed randomly in the lungs of each pre-therapy scan. ROI centers were mapped to corresponding locations in post-therapy and planning scans using the displacement vector field output by demons deformable registration. Only ROIs with mean dose <5Gy were analyzed, as these were expected to contain minimal post-treatment damage. 140 texture features were calculated in pre-therapy and post-therapy scan ROIs and compared using Bland-Altman analysis. For each feature, the mean feature value change and the distance spanned by the 95% limits of agreement were normalized to the mean feature value, yielding normalized range of agreement (nRoA) and normalized bias (nBias). Using Wilcoxon signed rank tests, nRoA and nBias were compared with values computed previously in 27 healthy patient scans (mean voxel size: 0.67mm×0.67mm×1mm) acquired at a different institution. Results: nRoA was significantly (p<0.001) larger in cancer patients than healthy patients. Differences in nBias were not significant (p=0.23). The 20 features identified previously as having nRoA<20% for healthy patients had the lowest nRoA values in the current database, with an average increase of 5.6%. Conclusion: Despite differences in CT scanner type, scan resolution, and patient health status, the same 20 features remained stable (i.e., low variability and bias) in the absence of disease changes for databases from two institutions. Identification of

  14. Fully automated shape model positioning for bone segmentation in whole-body CT scans

    NASA Astrophysics Data System (ADS)

    Fränzle, A.; Sumkauskaite, M.; Hillengass, J.; Bäuerle, T.; Bendl, R.

    2014-03-01

    Analysing osteolytic and osteoblastic bone lesions in systematically affected skeletons, e.g. in multiple myeloma or bone metastasis, is a complex task. Quantification of the degree of bone destruction needs segmentation of all lesions but cannot be managed manually. Automatic bone lesion detection is necessary. Our future objective is comparing modified bones with healthy shape models. For applying model based strategies successfully, identification and position information of single bones is necessary. A solution to these requirements based on bone medullary cavities is presented in this paper. Medullary cavities are useful for shape model positioning since they have similar position and orientation as the bone itself but can be separated more easily. Skeleton segmentation is done by simple thresholding. Inside the skeleton medullary cavities are segmented by a flood filling algorithm. The filled regions are considered as medullary cavity objects. To provide automatic shape model selection, medullary cavity objects are assigned to bone structures with pattern recognition. To get a good starting position for shape models, principal component analysis of medullary cavities is performed. Bone identification was tested on 14 whole-body low-dose CT scans of multiple myeloma patients. Random forest classification assigns medullary cavities of long bones to the corresponding bone (overall accuracy 90%). Centroid and first principal component of medullary cavity are sufficiently similar to those of bone (mean centroid difference 21.7 mm, mean difference angle 1.54° for all long bones of one example patient) and therefore suitable for shape model initialization. This method enables locating long bone structures in whole-body CT scans and provides useful information for a reasonable shape model initialization.

  15. Characterizing Functional Lung Heterogeneity in COPD Using Reference Equations for CT Scan-Measured Lobar Volumes

    PubMed Central

    Diaz, Alejandro A.; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P.; Zach, Jordan A.; Schroeder, Joyce; Lynch, David A.; Celli, Bartolome; Washko, George R.

    2013-01-01

    Background: CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Methods: Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. Results: In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Conclusions: Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction. PMID:23699785

  16. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    NASA Astrophysics Data System (ADS)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  17. Heart region segmentation from low-dose CT scans: an anatomy based approach

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Biancardi, Alberto M.; Yankelevitz, David F.; Cham, Matthew D.; Henschke, Claudia I.

    2012-02-01

    Cardiovascular disease is a leading cause of death in developed countries. The concurrent detection of heart diseases during low-dose whole-lung CT scans (LDCT), typically performed as part of a screening protocol, hinges on the accurate quantification of coronary calcification. The creation of fully automated methods is ideal as complete manual evaluation is imprecise, operator dependent, time consuming and thus costly. The technical challenges posed by LDCT scans in this context are mainly twofold. First, there is a high level image noise arising from the low radiation dose technique. Additionally, there is a variable amount of cardiac motion blurring due to the lack of electrocardiographic gating and the fact that heart rates differ between human subjects. As a consequence, the reliable segmentation of the heart, the first stage toward the implementation of morphologic heart abnormality detection, is also quite challenging. An automated computer method based on a sequential labeling of major organs and determination of anatomical landmarks has been evaluated on a public database of LDCT images. The novel algorithm builds from a robust segmentation of the bones and airways and embodies a stepwise refinement starting at the top of the lungs where image noise is at its lowest and where the carina provides a good calibration landmark. The segmentation is completed at the inferior wall of the heart where extensive image noise is accommodated. This method is based on the geometry of human anatomy and does not involve training through manual markings. Using visual inspection by an expert reader as a gold standard, the algorithm achieved successful heart and major vessel segmentation in 42 of 45 low-dose CT images. In the 3 remaining cases, the cardiac base was over segmented due to incorrect hemidiaphragm localization.

  18. Resolution enhancement of lung 4D-CT via group-sparsity

    SciTech Connect

    Bhavsar, Arnav; Wu, Guorong; Shen, Dinggang; Lian, Jun

    2013-12-15

    Purpose: 4D-CT typically delivers more accurate information about anatomical structures in the lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer. However, a critical concern with 4D-CT that substantially compromises this advantage is the low superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate slices, so as to improve the superior-inferior resolution.Methods: In this method the authors exploit the observation that sampling information across respiratory phases in 4D-CT can be complimentary due to lung motion. The authors’ approach uses this locally complimentary information across phases in a patch-based sparse-representation framework. Moreover, unlike some recent approaches that treat local patches independently, the authors’ approach employs the group-sparsity framework that imposes neighborhood and similarity constraints between patches. This helps in mitigating the trade-off between noise robustness and structure preservation, which is an important consideration in resolution enhancement. The authors discuss the regularizing ability of group-sparsity, which helps in reducing the effect of noise and enables better structural localization and enhancement.Results: The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero, “A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets,” Phys. Med. Biol. 54, 1849–1870 (2009)]. First, the authors carry out empirical parametric analysis of some important parameters in their approach. The authors then demonstrate, qualitatively as well as

  19. Longitudinal dose distribution and energy absorption in PMMA and water cylinders undergoing CT scans

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-10-15

    Purpose: The knowledge of longitudinal dose distribution provides the most direct view of the accumulated dose in computed tomography (CT) scanning. The purpose of this work was to perform a comprehensive study of dose distribution width and energy absorption with a wide range of subject sizes and beam irradiated lengths. Methods: Cumulative dose distribution along the z-axis was calculated based on the previously published CT dose equilibration data by Li, Zhang, and Liu [Med. Phys. 40, 031903 (10pp.) (2013)] and a mechanism for computing dose on axial lines by Li, Zhang, and Liu [Med. Phys. 39, 5347–5352 (2012)]. Full width at half maximum (FWHM), full width at tenth maximum (FWTM), the total energy (E) absorbed in a small cylinder of unit mass per centimeter square about the central or peripheral axis, and the energy (E{sub in}) absorbed inside irradiated length (L) were subsequently extracted from the dose distribution. Results: Extensive results of FWHM, FWTM, and E{sub in}/E were presented on the central and peripheral axes of infinitely long PMMA (diameters 6–50 cm) and water (diameters 6–55 cm) cylinders with L < 100 cm. FWHM was greater than the primary beam width only on the central axes of large phantoms and also with L ranging from a few centimeter to about 33 cm. FWTM generally increased with phantom diameter, and could be up to 32 cm longer than irradiated length, depending on L, phantom diameter and axis, but was insensitive to phantom material (PMMA or water). E{sub in}/E increased with L and asymptotically approached unity for large L. As phantom diameter increased, E{sub in}/E generally decreased, but asymptotically approached constant levels on the peripheral axes of large phantoms. A heuristic explanation of dose distribution width results was presented. Conclusions: This study enables the reader to gain a comprehensive view of dose distribution width and energy absorption and provides useful data for estimating doses to organs inside or

  20. High-resolution CT findings of patients with pulmonary nocardiosis

    PubMed Central

    Tsujimoto, Naoki; Saraya, Takeshi; Kikuchi, Ken; Takata, Saori; Kurihara, Yasuyuki; Hiraoka, Sayuki; Makino, Hiroshi; Yonetani, Shota; Araki, Koji; Ishii, Haruyuki; Takizawa, Hajime

    2012-01-01

    Background Opportunistic pulmonary infection with Nocardia species is rare in humans, and only a few studies have radiologically analyzed patients with pulmonary nocardiosis using high-resolution computed tomography (HRCT). Methods We retrospectively reviewed the medical records of patients with pulmonary nocardiosis at our hospital between April 2006 and December 2011 to assess HRCT and clinical findings. We also searched the medical literature for pulmonary nocardiosis reported in Japan between 2002 and 2011 for comparison. Results We identified seven patients at our institution and 33 reported infections in Japan. Four of our patients were immunocompetent, whereas the other three had impaired cellular immunity due to type 2 diabetes mellitus or having been inappropriately treated with steroid. Thoracic HRCT revealed no zonal predominance, but tropism for distribution from the middle to the peripheral area, and radiological findings of nodules, cavitation, mass, consolidations, bronchial wall thickening, septal line thickening and ground glass opacity (GGO) were evident. The main HRCT finding in our study comprised nodules (n=5, 71.4%) <30 mm and four patients had multiple nodules as described in other reports. Furthermore, we discovered a crazy paving appearance (CPA) around nodules, cavities, masses or consolidations in five patients (71.4%). Conclusions Multiple nodules distributed from the middle to the peripheral area on HRCT might reflect pulmonary nocardiosis, and CPA seemed to be a worth paying attention to the diagnosis. PMID:23205281

  1. Planned FDG PET-CT Scan in Follow-Up Detects Disease Progression in Patients With Locally Advanced NSCLC Receiving Curative Chemoradiotherapy Earlier Than Standard CT

    PubMed Central

    Pan, Yi; Brink, Carsten; Schytte, Tine; Petersen, Henrik; Wu, Yi-long; Hansen, Olfred

    2015-01-01

    Abstract The role of positron emission tomography-computed tomography (PET-CT) in surveillance of patients with nonsmall cell lung cancer (NSCLC) treated with curatively intended chemoradiotherapy remains controversial. However, conventional chest X-ray and computed tomography (CT) are of limited value in discriminating postradiotherapy changes from tumor relapse. The aim of this study was to evaluate the clinical value of PET-CT scan in the follow-up for patients with locally advanced (LA) NSCLC receiving concomitant chemoradiotherapy (CCRT). Between 2009 and 2013, eligible patients with stages IIB–IIIB NSCLC were enrolled in the clinical trial NARLAL and treated in Odense University Hospital (OUH). All patients had a PET-CT scan scheduled 9 months (PET-CT9) after the start of the radiation treatment in addition to standard follow-up (group A). Patients who presented with same clinical stage of NSCLC and received similar treatment, but outside protocol in OUH during this period were selected as control group (group B). Patients in group B were followed in a conventional way without PET-CT9. All patients were treated with induction chemotherapy followed by CCRT. Group A included 37 and group B 55 patients. The median follow-up was 16 months. Sixty-six (72%) patients were diagnosed with progression after treatment. At the time of tumor progression, patients in group A had better performance status (PS) than those in group B (P = 0.02). Because of death (2 patients), poor PS (3) or retreatment of relapse (9), only 23 patients had PET-CT9 in group A. Eleven (48%) patients were firstly diagnosed with progression by PET-CT9 without any clinical symptoms of progression. The median progression-free survival (PFS) was 8.8 months in group A and 12.5 months in group B (P = 0.04). Hazard function PFS showed that patients in group A had higher risk of relapse than in group B. Additional FDG PET-CT scan at 9 months in surveillance increases probability of early

  2. Beam hardening and smoothing correction effects on performance of micro-ct SkyScan 1173 for imaging low contrast density materials

    SciTech Connect

    Sriwayu, Wa Ode; Haryanto, Freddy; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar

    2015-04-16

    We have designed and fabricated phantom mimicking breast cancer composition known as a region that has low contrast density. The used compositions are a microcalcifications, fatty tissues and tumor mass by using Al{sub 2}O{sub 3}, C{sub 27}H{sub 46}O, and hard nylon materials. Besides, phantom also has a part to calculate low cost criteria /CNR (Contrast to Noise Ratio). Uniformity will be measured at water distillation medium located in a part of phantom scale contrast. Phantom will be imaged by using micro ct-sky scan 1173 high energy type, and then also can be quantified CT number to examine SkyScan 1173 performance in imaging low contrast density materials. Evaluation of CT number is done at technique configuration parameter using voltage of 30 kV, exposure 0.160 mAs, and camera resolution 560x560 pixel, the effect of image quality to reconstruction process is evaluated by varying image processing parameters in the form of beam hardening corrections with amount of 25%, 66% and100% with each smoothing level S10,S2 and S7. To obtain the better high quality image, the adjustment of beam hardening correction should be 66% and smoothing level reach maximal value at level 10.

  3. Beam hardening and smoothing correction effects on performance of micro-ct SkyScan 1173 for imaging low contrast density materials

    NASA Astrophysics Data System (ADS)

    Sriwayu, Wa Ode; Haryanto, Freddy; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar

    2015-04-01

    We have designed and fabricated phantom mimicking breast cancer composition known as a region that has low contrast density. The used compositions are a microcalcifications, fatty tissues and tumor mass by using Al2O3, C27H46O, and hard nylon materials. Besides, phantom also has a part to calculate low cost criteria /CNR (Contrast to Noise Ratio). Uniformity will be measured at water distillation medium located in a part of phantom scale contrast. Phantom will be imaged by using micro ct-sky scan 1173 high energy type, and then also can be quantified CT number to examine SkyScan 1173 performance in imaging low contrast density materials. Evaluation of CT number is done at technique configuration parameter using voltage of 30 kV, exposure 0.160 mAs, and camera resolution 560x560 pixel, the effect of image quality to reconstruction process is evaluated by varying image processing parameters in the form of beam hardening corrections with amount of 25%, 66% and100% with each smoothing level S10,S2 and S7. To obtain the better high quality image, the adjustment of beam hardening correction should be 66% and smoothing level reach maximal value at level 10.

  4. Mapping permeability in low-resolution micro-CT images: A multiscale statistical approach

    NASA Astrophysics Data System (ADS)

    Botha, Pieter W. S. K.; Sheppard, Adrian P.

    2016-06-01

    We investigate the possibility of predicting permeability in low-resolution X-ray microcomputed tomography (µCT). Lower-resolution whole core images give greater sample coverage and are therefore more representative of heterogeneous systems; however, the lower resolution causes connecting pore throats to be represented by intermediate gray scale values and limits information on pore system geometry, rendering such images inadequate for direct permeability simulation. We present an imaging and computation workflow aimed at predicting absolute permeability for sample volumes that are too large to allow direct computation. The workflow involves computing permeability from high-resolution µCT images, along with a series of rock characteristics (notably open pore fraction, pore size, and formation factor) from spatially registered low-resolution images. Multiple linear regression models correlating permeability to rock characteristics provide a means of predicting and mapping permeability variations in larger scale low-resolution images. Results show excellent agreement between permeability predictions made from 16 and 64 µm/voxel images of 25 mm diameter 80 mm tall core samples of heterogeneous sandstone for which 5 µm/voxel resolution is required to compute permeability directly. The statistical model used at the lowest resolution of 64 µm/voxel (similar to typical whole core image resolutions) includes open pore fraction and formation factor as predictor characteristics. Although binarized images at this resolution do not completely capture the pore system, we infer that these characteristics implicitly contain information about the critical fluid flow pathways. Three-dimensional permeability mapping in larger-scale lower resolution images by means of statistical predictions provides input data for subsequent permeability upscaling and the computation of effective permeability at the core scale.

  5. Effect of scanning beam size on the lateral resolution of mouse retinal imaging with SLO

    PubMed Central

    Zhang, Pengfei; Goswami, Mayank; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.

    2016-01-01

    Scanning laser ophthalmoscopy (SLO) employs the eye’s optics as a microscope objective for retinal imaging in vivo. The mouse retina has become an increasingly important object for investigation of ocular disease and physiology with optogenetic probes. SLO imaging of the mouse eye, in principle, can achieve submicron lateral resolution thanks to a numerical aperture (NA) of ~0.5, about 2.5 times larger than that of the human eye. In the absence of adaptive optics, however, natural ocular aberrations limit the available optical resolution. The use of a contact lens, in principle, can correct many aberrations, permitting the use of a wider scanning beam and, thus, achieving greater resolution then would otherwise be possible. In this Letter, using an SLO equipped with a rigid contact lens, we report the effect of scanning beam size on the lateral resolution of mouse retinal imaging. Theory predicts that the maximum beam size full width at half-maximum (FWHM) that can be used without any deteriorating effects of aberrations is ~0.6 mm. However, increasing the beam size up to the diameter of the dilated pupil is predicted to improve lateral resolution, though not to the diffraction limit. To test these predictions, the dendrites of a retinal ganglion cell expressing YFP were imaged, and transverse scans were analyzed to quantify the SLO system resolution. The results confirmed that lateral resolution increases with the beam size as predicted. With a 1.3 mm scanning beam and no high-order aberration correction, the lateral resolution is ~1.15 μm, superior to that achievable by most human AO-SLO systems. Advantages of this approach include stabilization of the mouse eye and simplified optical design. PMID:26670523

  6. Effect of scanning beam size on the lateral resolution of mouse retinal imaging with SLO.

    PubMed

    Zhang, Pengfei; Goswami, Mayank; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J

    2015-12-15

    Scanning laser ophthalmoscopy (SLO) employs the eye's optics as a microscope objective for retinal imaging in vivo. The mouse retina has become an increasingly important object for investigation of ocular disease and physiology with optogenetic probes. SLO imaging of the mouse eye, in principle, can achieve submicron lateral resolution thanks to a numerical aperture (NA) of ∼0.5, about 2.5 times larger than that of the human eye. In the absence of adaptive optics, however, natural ocular aberrations limit the available optical resolution. The use of a contact lens, in principle, can correct many aberrations, permitting the use of a wider scanning beam and, thus, achieving greater resolution then would otherwise be possible. In this Letter, using an SLO equipped with a rigid contact lens, we report the effect of scanning beam size on the lateral resolution of mouse retinal imaging. Theory predicts that the maximum beam size full width at half-maximum (FWHM) that can be used without any deteriorating effects of aberrations is ∼0.6  mm. However, increasing the beam size up to the diameter of the dilated pupil is predicted to improve lateral resolution, though not to the diffraction limit. To test these predictions, the dendrites of a retinal ganglion cell expressing YFP were imaged, and transverse scans were analyzed to quantify the SLO system resolution. The results confirmed that lateral resolution increases with the beam size as predicted. With a 1.3 mm scanning beam and no high-order aberration correction, the lateral resolution is ∼1.15  μm, superior to that achievable by most human AO-SLO systems. Advantages of this approach include stabilization of the mouse eye and simplified optical design.

  7. Are routine preoperative CT scans necessary in adult cochlear implantation? Implications for the allocation of resources in cochlear implant programs.

    PubMed

    Kenway, Bruno; Vlastarakos, Petros V; Kasbekar, Anand V; Axon, Patrick R; Donnelly, Neil

    2016-08-01

    Our aim was to critically assess the influence of preoperative computed tomography (CT) scans on implantation decisions for adult cochlear implant candidates. The working hypothesis was that these routine scans might not provide critical additional information in most adult cochlear implant candidates. The charts of 175 adults with unilateral cochlear implantation were reviewed. Preoperative CT scan reports were audited, and scans with reported pathology were examined by an Otologist/ENT Surgeon. Clinic notes and multidisciplinary team meeting summaries were also analyzed to assess whether the results of the radiology report had influenced the decision to implant or the laterality of implantation. Twenty-five of the 175 scans (14.3%) showed an abnormality. Five of those 25 scans showed evidence of previous surgeries already known to the clinicians. Of the remaining 20 scans, 17 showed abnormalities, including wide vestibular aqueducts, Mondini deformities, and varying degrees of otospongiosis, the identification of which can be considered preoperatively helpful. Of the 175 scans, 3 (1.7%) demonstrated abnormalities that influenced the side of implantation or the decision to implant and, therefore, had an impact on treatment. We conclude that a preoperative CT scan seems to have an impact on treatment in only a small percentage of adult cochlear implantees. Hence, it may only need to be performed in patients with a history or clinical suspicion of meningitis or otosclerosis, if the individual was born deaf or became deaf before the age of 16, or if there are other clinical reasons to scan (e.g., otoscopic appearance). The related resources can be allocated to other facets of cochlear implant programs. PMID:27551842

  8. Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods

    SciTech Connect

    Chen, Baiyu; Christianson, Olav; Wilson, Joshua M.; Samei, Ehsan

    2014-07-15

    Purpose: For nonlinear iterative image reconstructions (IR), the computed tomography (CT) noise and resolution properties can depend on the specific imaging conditions, such as lesion contrast and image noise level. Therefore, it is imperative to develop a reliable method to measure the noise and resolution properties under clinically relevant conditions. This study aimed to develop a robust methodology to measure the three-dimensional CT noise and resolution properties under such conditions and to provide guidelines to achieve desirable levels of accuracy and precision. Methods: The methodology was developed based on a previously reported CT image quality phantom. In this methodology, CT noise properties are measured in the uniform region of the phantom in terms of a task-based 3D noise-power spectrum (NPS{sub task}). The in-plane resolution properties are measured in terms of the task transfer function (TTF) by applying a radial edge technique to the rod inserts in the phantom. The z-direction resolution properties are measured from a supplemental phantom, also in terms of the TTF. To account for the possible nonlinearity of IR, the NPS{sub task} is measured with respect to the noise magnitude, and the TTF with respect to noise magnitude and edge contrast. To determine the accuracy and precision of the methodology, images of known noise and resolution properties were simulated. The NPS{sub task} and TTF were measured on the simulated images and compared to the truth, with criteria established to achieve NPS{sub task} and TTF measurements with <10% error. To demonstrate the utility of this methodology, measurements were performed on a commercial CT system using five dose levels, two slice thicknesses, and three reconstruction algorithms (filtered backprojection, FBP; iterative reconstruction in imaging space, IRIS; and sinogram affirmed iterative reconstruction with strengths of 5, SAFIRE5). Results: To achieve NPS{sub task} measurements with <10% error, the

  9. Resolution enhancement in a double-helix phase engineered scanning microscope (RESCH microscope) (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jesacher, Alexander; Ritsch-Marte, Monika; Piestun, Rafael

    2015-08-01

    Recently we introduced RESCH microscopy [1] - a scanning microscope that allows slightly refocusing the sample after the acquisition has been performed, solely by performing appropriate data post-processing. The microscope features a double-helix phase-engineered emission point spread function in combination with camera-based detection. Based on the principle of transverse resolution enhancement in Image Scanning Microscopy [2,3], we demonstrate similar resolution improvement in RESCH. Furthermore, we outline a pathway for how the collected 3D sample information can be used to construct sharper optical sections. [1] A. Jesacher, M. Ritsch-Marte and R. Piestun, accepted for Optica. [2] C.J.R. Sheppard, "Super-resolution in Confocal imaging," Optik, 80, 53-54 (1988). [3] C.B. Müller and J. Enderlein "Image Scanning Microscopy," Phys. Rev. Lett. 104, 198101 (2010).

  10. Determination of surface topography of biological specimens at high resolution by scanning tunnelling microscopy.

    PubMed

    Baró, A M; Miranda, R; Alamán, J; García, N; Binnig, G; Rohrer, H; Gerber, C; Carrascosa, J L

    Although techniques are available for the determination of the three-dimensional structure of biological specimens, for example scanning electron microscopy, they all have some serious drawback, such as low resolution, the requirement for crystals or for the sample to be analysed in a high vacuum. In an attempt to develop a technique for high-resolution three-dimensional structure analysis of non-crystalline biological material, we have tested the applicability of scanning tunnelling microscopy (STM), a method that has been used successfully in the analysis of metal and semiconductor surface structures. We report here that scanning tunnelling electron microscopy can be used to determine the surface topography of biological specimens at atmospheric pressure and room temperature, giving a vertical resolution of the order of 1 A. Our results show that quantum mechanical tunnelling of electrons through biological material is possible provided that the specimen is deposited on a conducting surface.

  11. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Fu, Guo-Tao; Sun, Cui-Li; Wang, Yan-Fang; Wei, Cun-Feng; Cao, Da-Quan; Que, Jie-Min; Tang, Xiao; Shi, Rong-Jian; Wei, Long; Yu, Zhong-Qiang

    2011-10-01

    In this paper, we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution. Due to the polychromatic character of the X-ray spectrum used, cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images, causing reduced image quality. In addition, enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect. The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space. Thus, in the CT images with beam hardening artifacts, enhanced ERFs will be extracted to calculate the modulation transfer function (MTF), obtaining a better spatial resolution that deviates from the real value. Reasonable spatial resolution can be obtained after reducing the artifacts. The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.

  12. Incorporating Radiology into Medical Gross Anatomy: Does the Use of Cadaver CT Scans Improve Students' Academic Performance in Anatomy?

    ERIC Educational Resources Information Center

    Lufler, Rebecca S.; Zumwalt, Ann C.; Romney, Carla A.; Hoagland, Todd M.

    2010-01-01

    Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with…

  13. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study

    PubMed Central

    Pearce, Mark S; Salotti, Jane A; Little, Mark P; McHugh, Kieran; Lee, Choonsik; Kim, Kwang Pyo; Howe, Nicola L; Ronckers, Cecile M; Rajaraman, Preetha; Craft, Alan W; Parker, Louise; de González, Amy Berrington

    2012-01-01

    Summary Background Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. Methods In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. Findings During follow-up, 74 of 178 604 patients were diagnosed with leukaemia and 135 of 176 587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005–0·120; p=0·0097) and brain tumours (0·023, 0·010–0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46–6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50–74 mGy (mean dose 60·42 mGy) was 2·82 (1·33–6·03). Interpretation Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain

  14. LandScan 2014 High-Resolution Global Population Data Set

    SciTech Connect

    2015-01-01

    The LandScan data set is a worldwide population database compiled on a 30" X 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  15. CT scan evaluation of glenoid bone and pectoralis major tendon: interest in shoulder prosthesis

    PubMed Central

    Obert, Laurent; Peyron, Christelle; Boyer, Etienne; Menu, Gauthier; Loisel, François; Aubry, Sébastien

    2016-01-01

    Introduction: The shoulder arthroplasty brings satisfaction to patients in terms of quality of life and indolence. However whether anatomic implant or reverse, it does not escape from the loosening of the glenoid component. Moreover, optimal implantation is required to ensure the functional outcome without shortening of the arm. The purpose of this study is obtain CT scan evaluation of the glenoid bone stock in order to optimize glenoid component implantation and obtain a reference to determine optimal humeral component placement in case of humeral proximal fracture. Materials and methods: Between 2010 and 2011 we have analyzed 200 intact shoulder’s CT. We measured maximal and minimal width in the transverse plane of the glenoid, the distance from the pectoralis major (PM) tendon to the humeral head, the greater tubercle, change of curvature and the anatomical neck. Results: Mean maximum width was 27.4 ± 3.4 mm and mean minimum width was 15.5 ± 2.8 mm. Distances between upper edge of PM tendon to: humeral head, greater tubercle, change of curvature and anatomical neck were respectively: 67.6 ± 9.98 mm, 57.8 ± 10.3 mm, 28.7 ± 9 mm, and 34.2 ± 9.7 mm. Conclusion: Our study has produced an assessment of glenoid bone stock for optimal positioning of the glenoid implant but also to obtain a reference to determine the ideal location of the humeral component in the case of proximal humerus fracture. PMID:27716461

  16. The relationship between organ dose and patient size in tube current modulated adult thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Khatonabadi, Maryam; Zhang, Di; Yang, Jeffrey; DeMarco, John J.; Cagnon, Chris C.; McNitt-Gray, Michael F.

    2012-03-01

    Recently published AAPM Task Group 204 developed conversion coefficients that use scanner reported CTDIvol to estimate dose to the center of patient undergoing fixed tube current body exam. However, most performed CT exams use TCM to reduce dose to patients. Therefore, the purpose of this study was to investigate the correlation between organ dose and a variety of patient size metrics in adult chest CT scans that use tube current modulation (TCM). Monte Carlo simulations were performed for 32 voxelized models with contoured lungs and glandular breasts tissue, consisting of females and males. These simulations made use of patient's actual TCM data to estimate organ dose. Using image data, different size metrics were calculated, these measurements were all performed on one slice, at the level of patient's nipple. Estimated doses were normalized by scanner-reported CTDIvol and plotted versus different metrics. CTDIvol values were plotted versus different metrics to look at scanner's output versus size. The metrics performed similarly in terms of correlating with organ dose. Looking at each gender separately, for male models normalized lung dose showed a better linear correlation (r2=0.91) with effective diameter, while female models showed higher correlation (r2=0.59) with the anterior-posterior measurement. There was essentially no correlation observed between size and CTDIvol-normalized breast dose. However, a linear relationship was observed between absolute breast dose and size. Dose to lungs and breasts were consistently higher in females with similar size as males which could be due to shape and composition differences between genders in the thoracic region.

  17. The evaluation and comparison of kidney length obtained from axial cuts in spiral CT scan with its true length

    PubMed Central

    Karami, Mehdi; Rahimi, Farshad; Tajadini, Mohammadhasan

    2015-01-01

    Background: Increased size of kidney is the main symptom of pyelonephritis and renal ischemia in children. Ultrasound and computed tomography (CT) scan methods are the imaging methods for evaluating the urogenital system. The aim of this study is to compare the kidney length obtained from spiral CT scan with the true length obtained from multi-slice CT. Materials and Methods: From 100 patients 200 kidneys were examined in Alzahra Hospital in 2012. Multi-slice CT was used to obtain coronal and sagittal cuts to find the length of kidneys. Results: The mean values of true size of axial sections of the right and left kidneys were 108.37 ± 12.3 mm and 109.74 ± 13.6 mm, respectively. The mean difference of axial sections’ lengths in the right and left kidneys was 1.37 ± 1.22 mm. The mean values of length in the spiral CT scan of the right and left kidneys were 98.61 ± 15.8 mm and 103.11 ± 15.9 mm, respectively. The difference in the estimated size by multi-slice CT scan in oblique and axial images was significant (9.77 ± 1.19 mm and 6.63 ± 0.8 mm for the right and left kidneys, respectively (P < 0.001). Conclusion: The average size of both kidneys determined in axial images was smaller than the actual size. The estimation of kidney size in axial images is not reliable, and to obtain the actual size, it is required to have the coronal and sagittal cuts with proper quality, which could be achieved by multi-slice method. PMID:25709984

  18. Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone.

    PubMed

    De Boever, Wesley; Derluyn, Hannelore; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2015-07-01

    When dealing with the characterization of the structure and composition of natural stones, problems of representativeness and choice of analysis technique almost always occur. Since feature-sizes are typically spread over the nanometer to centimeter range, there is never one single technique that allows a rapid and complete characterization. Over the last few decades, high resolution X-ray CT (μ-CT) has become an invaluable tool for the 3D characterization of many materials, including natural stones. This technique has many important advantages, but there are also some limitations, including a tradeoff between resolution and sample size and a lack of chemical information. For geologists, this chemical information is of importance for the determination of minerals inside samples. We suggest a workflow for the complete chemical and structural characterization of a representative volume of a heterogeneous geological material. This workflow consists of combining information derived from CT scans at different spatial resolutions with information from scanning electron microscopy and energy-dispersive X-ray spectroscopy. PMID:25939085

  19. Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone.

    PubMed

    De Boever, Wesley; Derluyn, Hannelore; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2015-07-01

    When dealing with the characterization of the structure and composition of natural stones, problems of representativeness and choice of analysis technique almost always occur. Since feature-sizes are typically spread over the nanometer to centimeter range, there is never one single technique that allows a rapid and complete characterization. Over the last few decades, high resolution X-ray CT (μ-CT) has become an invaluable tool for the 3D characterization of many materials, including natural stones. This technique has many important advantages, but there are also some limitations, including a tradeoff between resolution and sample size and a lack of chemical information. For geologists, this chemical information is of importance for the determination of minerals inside samples. We suggest a workflow for the complete chemical and structural characterization of a representative volume of a heterogeneous geological material. This workflow consists of combining information derived from CT scans at different spatial resolutions with information from scanning electron microscopy and energy-dispersive X-ray spectroscopy.

  20. A versatile fluorescence lifetime imaging system for scanning large areas with high time and spatial resolution

    NASA Astrophysics Data System (ADS)

    Bernardo, César; Belsley, Michael; de Matos Gomes, Etelvina; Gonçalves, Hugo; Isakov, Dmitry; Liebold, Falk; Pereira, Eduardo; Pires, Vladimiro; Samantilleke, Anura; Vasilevskiy, Mikhail; Schellenberg, Peter

    2014-08-01

    We present a flexible fluorescence lifetime imaging device which can be employed to scan large sample areas with a spatial resolution adjustable from many micrometers down to sub-micrometers and a temporal resolution of 20 picoseconds. Several different applications of the system will be presented including protein microarrays analysis, the scanning of historical samples, evaluation of solar cell surfaces and nanocrystalline organic crystals embedded in electrospun polymeric nanofibers. Energy transfer processes within semiconductor quantum dot superstructures as well as between dye probes and graphene layers were also investigated.

  1. Varied-space grazing incidence gratings in high resolution scanning spectrometers

    SciTech Connect

    Hettrick, M.C.; Underwood, J.H.

    1986-10-01

    We discuss the dominant geometrical aberrations of a grazing incidence reflection grating and new techniques which can be used to reduce or eliminate them. Convergent beam geometries and the aberration correction possible with varied groove spacings are each found to improve the spectral resolution and speed of grazing incidence gratings. In combination, these two techniques can result in a high resolution (lambda/..delta..lambda > 10/sup 4/) monochromator or scanning spectrometer with a simple rotational motion for scanning wavelength or selecting the spectral band. 21 refs., 4 figs.

  2. 4D CT amplitude binning for the generation of a time-averaged 3D mid-position CT scan.

    PubMed

    Kruis, Matthijs F; van de Kamer, Jeroen B; Belderbos, José S A; Sonke, Jan-Jakob; van Herk, Marcel

    2014-09-21

    The purpose of this study was to develop a method to use amplitude binned 4D-CT (A-4D-CT) data for the construction of mid-position CT data and to compare the results with data created from phase-binned 4D-CT (P-4D-CT) data. For the latter purpose we have developed two measures which describe the regularity of the 4D data and we have tried to correlate these measures with the regularity of the external respiration signal. 4D-CT data was acquired for 27 patients on a combined PET-CT scanner. The 4D data were reconstructed twice, using phase and amplitude binning. The 4D frames of each dataset were registered using a quadrature-based optical flow method. After registration the deformation vector field was repositioned to the mid-position. Since amplitude-binned 4D data does not provide temporal information, we corrected the mid-position for the occupancy of the bins. We quantified the differences between the two mid-position datasets in terms of tumour offset and amplitude differences. Furthermore, we measured the standard deviation of the image intensity over the respiration after registration (σregistration) and the regularity of the deformation vector field (Delta J) to quantify the quality of the 4D-CT data. These measures were correlated to the regularity of the external respiration signal (σsignal).The two irregularity measures, Delta J and σregistration, were dependent on each other (p<0.0001, R2=0.80 for P-4D-CT, R2=0.74 for A-4D-CT). For all datasets amplitude binning resulted in lower Delta J and σregistration and large decreases led to visible quality improvements in the mid-position data. The quantity of artefact decrease was correlated to the irregularity of the external respiratory signal.The average tumour offset between the phase and amplitude binned mid-position without occupancy correction was 0.42 mm in the caudal direction (10.6% of the amplitude). After correction this was reduced to 0.16 mm in caudal direction (4.1% of the amplitude

  3. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    NASA Astrophysics Data System (ADS)

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to <500 nm (<0.5 microns). It is the first 180 kV nanofocus® computed tomography system in the world which is tailored specifically to the highest-resolution applications in the fields of material science, micro electronics, geology and biology. Therefore it is particularly suitable for nanoCT-examinations e.g. of synthetic materials, metals, ceramics, composite materials, mineral and organic samples. There are a few physical effects influencing the CT quality, such as beam-hardening within the sample or ring-artefacts, which can not be completely avoided. To optimize the quality of high resolution 3D volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the

  4. Automatic segmentation and identification of solitary pulmonary nodules on follow-up CT scans based on local intensity structure analysis and non-rigid image registration

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Naito, Hideto; Nakamura, Yoshihiko; Kitasaka, Takayuki; Rueckert, Daniel; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2011-03-01

    This paper presents a novel method that can automatically segment solitary pulmonary nodule (SPN) and match such segmented SPNs on follow-up thoracic CT scans. Due to the clinical importance, a physician needs to find SPNs on chest CT and observe its progress over time in order to diagnose whether it is benign or malignant, or to observe the effect of chemotherapy for malignant ones using follow-up data. However, the enormous amount of CT images makes large burden tasks to a physician. In order to lighten this burden, we developed a method for automatic segmentation and assisting observation of SPNs in follow-up CT scans. The SPNs on input 3D thoracic CT scan are segmented based on local intensity structure analysis and the information of pulmonary blood vessels. To compensate lung deformation, we co-register follow-up CT scans based on an affine and a non-rigid registration. Finally, the matches of detected nodules are found from registered CT scans based on a similarity measurement calculation. We applied these methods to three patients including 14 thoracic CT scans. Our segmentation method detected 96.7% of SPNs from the whole images, and the nodule matching method found 83.3% correspondences from segmented SPNs. The results also show our matching method is robust to the growth of SPN, including integration/separation and appearance/disappearance. These confirmed our method is feasible for segmenting and identifying SPNs on follow-up CT scans.

  5. Comparing the brain CT scan interpretation of emergency medicine team with radiologists' report and its impact on patients' outcome.

    PubMed

    Talebian, Mohammad-Taghi; Kavandi, Elahe; Farahmand, Shervin; Shahlafar, Neda; Arbab, Mona; Seyedhosseini-Davarani, Seyedhossein; Nejati, Amir; Bagheri-Hariri, Shahram

    2015-06-01

    Requesting non-enhanced brain CT scans for trauma and non-trauma patients in ER is very common. In this study, the impact of incorrect brain CT scan interpretations by emergency medicine team on patients' primary and secondary outcome was evaluated in the setting where neuroradiologist reports are not always available. During a 3-month period, 450 patients were enrolled and followed for 28 days. All CT scans were interpreted by the emergency medicine team, and the patients were managed accordingly. Neuroradiologists' reports were considered as gold standard, and the patients were then grouped into the agreement or disagreement group. A panel of experts further evaluated the disagreement group and placed them in clinically significant and insignificant. The agreement rate between emergency medicine team and neuroradiologists was 86.4 %. The inter-rater reliability between emergency team and neuroradiologists was substantial (kappa = 0.68) and statistically significant (p < 0.0001). Only five patients did not receive the necessary management, and among them, only one patient died, and 12 patients received unnecessary management including repeated CT scan, brain MRI, and lumbar puncture. Forty-one patients were managed clinically appropriate in spite of misinterpretation. A 28-day follow-up showed a mortality rate of 0.2 %; however, expert panel believed the death of this patient was not related to the CT scan misinterpretation. We conclude that although the disagreement rate in this study was 13.6 %, primary and secondary outcomes were not clinically jeopardized according to the expert panel idea and 28-day follow-up results.

  6. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    SciTech Connect

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley; Justusson, Julia; Contee, Clay; Malik, Renuka; Al-Hallaq, Hania A.

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An

  7. Response Assessment and Prediction in Esophageal Cancer Patients via F-18 FDG PET/CT Scans

    NASA Astrophysics Data System (ADS)

    Higgins, Kyle J.

    Purpose: The purpose of this study is to utilize F-18 FDG PET/CT scans to determine an indicator for the response of esophageal cancer patients during radiation therapy. There is a need for such an indicator since local failures are quite common in esophageal cancer patients despite modern treatment techniques. If an indicator is found, a patient's treatment strategy may be altered to possibly improve the outcome. This is investigated with various standard uptake volume (SUV) metrics along with image texture features. The metrics and features showing the most promise and indicating response are used in logistic regression analysis to find an equation for the prediction of response. Materials and Methods: 28 patients underwent F-18 FDG PET/CT scans prior to the start of radiation therapy (RT). A second PET/CT scan was administered following the delivery of ~32 Gray (Gy) of dose. A physician contoured gross tumor volume (GTV) was used to delineate a PET based GTV (GTV-pre-PET) based on a threshold of >40% and >20% of the maximum SUV value in the GTV. Deformable registration was used in VelocityAI software to register the pre-treatment and intra-treatment CT scans so that the GTV-pre-PET contours could be transferred from the pre to intra scans (GTV-intra-PET). The fractional decrease in the maximum, mean, volume to the highest intensity 10%-90%, and combination SUV metrics of the significant previous SUV metrics were compared to post-treatment pathologic response for an indication of response. Next for the >40% threshold, texture features based on a neighborhood gray-tone dimension matrix (NGTDM) were analyzed. The fractional decrease in coarseness, contrast, busyness, complexity, and texture strength were compared to the pathologic response of the patients. From these previous two types of analysis, SUV and texture features, the two most significant results were used in logistic regression analysis to find an equation to predict the probability of a non

  8. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  9. High resolution multidetector CT aided tissue analysis and quantification of lung fibrosis

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Karwoski, Ronald A.; Bartholmai, Brian; Robb, Richard A.

    2006-03-01

    Idiopathic pulmonary fibrosis (IPF, also known as Idiopathic Usual Interstitial Pneumontis, pathologically) is a progressive diffuse lung disease which has a median survival rate of less than four years with a prevalence of 15-20/100,000 in the United States. Global function changes are measured by pulmonary function tests and the diagnosis and extent of pulmonary structural changes are typically assessed by acquiring two-dimensional high resolution CT (HRCT) images. The acquisition and analysis of volumetric high resolution Multi-Detector CT (MDCT) images with nearly isotropic pixels offers the potential to measure both lung function and structure. This paper presents a new approach to three dimensional lung image analysis and classification of normal and abnormal structures in lungs with IPF.

  10. Photodynamic therapy light dose analysis of a patient based upon arterial and venous contrast CT scan information

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Davis, Scott C.; Dehghani, Hamid; Huggett, Matthew; Hasan, Tayyaba; Pereira, Stephen P.; Pogue, Brian W.

    2013-03-01

    The goal of this work was to determine the light dose required to induce necrosis in verteporfin-based photodynamic therapy, in the VERTPAC-1 trial. Patient CT scans were obtained of the abdomen, including the entire treatment zone of pancreas and surrounding tissues, before and after treatment, as well as fast scans during needle placement. These scans were used to estimate arterial and venous blood content, and provide structural information of the pancreas and nearby blood vessels. Using NIRFAST, a finite-element based package for modeling diffuse near-infrared light transport in tissue, simulations were run to create maps of light fluence within the pancreas. These maps provided visualizations of light dose overlaid on the original CT scans, and were used to estimate light dose at the boundary of the zone of necrosis, as observed in follow up treatment outcome CT scans. The aim of these simulation studies was to assist pre-treatment planning by informing the light treatment parameters. This paper presents a case study of the process used on a single patient.

  11. Impact of number of repeated scans on model observer performance for a low-contrast detection task in CT

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Vrieze, Thomas; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2015-03-01

    In previous investigations on CT image quality, channelized Hotelling observer (CHO) models have been shown to well represent human observer performance in several phantom-based detection/discrimination tasks. In these studies, a large number of independent images was necessary to estimate the expectation images and covariance matrices for each test condition. The purpose of this study is to investigate how the number of repeated scans affects the precision and accuracy of the CHO's performance in a signal-known-exactly detection task. A phantom containing 21 low-contrast objects (3 contrast levels and 7 sizes) was scanned with a 128-slice CT scanner at three dose levels. For each dose level, 100 independent images were acquired for each test condition. All images were reconstructed using filtered-backprojection (FBP) and a commercial iterative reconstruction algorithm. For each combination of dose level and reconstruction method, the low-contrast detectability, quantified with the area under receiver operating characteristic curve (Az), was calculated using a previously validated CHO model. To determine the dependency of CHO performance on the number of repeated scans, the Az value was calculated for different number of channel filters, for each object size and contrast, and for different dose/reconstruction settings using all 100 repeated scans. The Az values were also calculated using randomly selected subsets of the scans (from 10 to 90 scans with an increment of 10 scans). Using the Az from the 100 scans as the reference, the accuracy of Az values calculated from a fewer number of scans was determined and the minimal number of scans was subsequently derived. For the studied signal-known-exactly detection task, results demonstrated that, the minimal number of scans depends on dose level, object size and contrast level, and channel filters.

  12. A study on the change in image quality before and after an attenuation correction with the use of a CT image in a SPECT/CT scan

    NASA Astrophysics Data System (ADS)

    Park, Yong-Soon; Kim, Woo-Hyun; Shim, Dong-Oh; Kim, Ho-Sung; Chung, Woon-Kwan; Cho, Jae-Hwan

    2012-12-01

    This study compared the SPECT (single-photon emission computed tomography) images before and after applying an attenuation correction by using the CT (computed tomography) image in a SPECT/CT scan and examined depending of the change in image quality on the CT dose. A flangeless Esser PET (positron emission tomography) Phantom was used to evaluate the image quality for the Precedence 16 SPECT/CT system manufactured by Philips. The experimental method was to obtain a SPECT image and a CT image of a flangeless Esser PET Phantom to acquire an attenuation-corrected SPECT image. A ROI (region of interest) was then set up at a hot spot of the acquired image to measure the SNR (signal to noise ratio) and the FWHM (full width at half maximum) and to compare the image quality with that of an unattenuation-corrected SPECT image. To evaluate the quality of a SPECT image, we set the ROI as a cylinder diameter (25, 16, 12, and 8 mm) and the BKG (background) radioactivity of the phantom images was obtained when each CT condition was changed. Subsequently, the counts were compared to measure the SNR. The FWHM of the smallest cylinder (8 mm) was measured to compare the image quality. A comparison of the SPECT images with and without attenuation correction revealed 5.01-fold, 4.77 fold, 4.43-fold, 4.38-fold, and 5.13-fold differences in SNR for the 25-mm cylinder, 16-mm cylinder, 12-mm cylinder, 8-mm cylinder, and BKG, respectively. In the phantom image obtained when the CT dose was changed, the FWHM of the 8-mm cylinder showed almost no difference under each condition regardless of the changes in kVp and mAs.

  13. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    SciTech Connect

    Tselikas, Lambros Joskin, Julien; Roquet, Florian; Farouil, Geoffroy; Dreuil, Serge; Hakimé, Antoine Teriitehau, Christophe; Auperin, Anne; Baere, Thierry de Deschamps, Frederic

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  14. [Super-resolution reconstruction of lung 4D-CT images based on fast sub-pixel motion estimation].

    PubMed

    Xiao, Shan; Wang, Tingting; Lü, Qingwen; Zhang, Yu

    2015-07-01

    Super-resolution image reconstruction techniques play an important role for improving image resolution of lung 4D-CT. We presents a super-resolution approach based on fast sub-pixel motion estimation to reconstruct lung 4D-CT images. A fast sub-pixel motion estimation method was used to estimate the deformation fields between "frames", and then iterative back projection (IBP) algorithm was employed to reconstruct high-resolution images. Experimental results showed that compared with traditional interpolation method and super-resolution reconstruction algorithm based on full search motion estimation, the proposed method produced clearer images with significantly enhanced image structure details and reduced time for computation.

  15. A multi-resolution approach to retrospectively-gated cardiac micro-CT reconstruction

    NASA Astrophysics Data System (ADS)

    Clark, D. P.; Johnson, G. A.; Badea, C. T.

    2014-03-01

    In preclinical research, micro-CT is commonly used to provide anatomical information; however, there is significant interest in using this technology to obtain functional information in cardiac studies. The fastest acquisition in 4D cardiac micro-CT imaging is achieved via retrospective gating, resulting in irregular angular projections after binning the projections into phases of the cardiac cycle. Under these conditions, analytical reconstruction algorithms, such as filtered back projection, suffer from streaking artifacts. Here, we propose a novel, multi-resolution, iterative reconstruction algorithm inspired by robust principal component analysis which prevents the introduction of streaking artifacts, while attempting to recover the highest temporal resolution supported by the projection data. The algorithm achieves these results through a unique combination of the split Bregman method and joint bilateral filtration. We illustrate the algorithm's performance using a contrast-enhanced, 2D slice through the MOBY mouse phantom and realistic projection acquisition and reconstruction parameters. Our results indicate that the algorithm is robust to under sampling levels of only 34 projections per cardiac phase and, therefore, has high potential in reducing both acquisition times and radiation dose. Another potential advantage of the multi-resolution scheme is the natural division of the reconstruction problem into a large number of independent sub-problems which can be solved in parallel. In future work, we will investigate the performance of this algorithm with retrospectively-gated, cardiac micro-CT data.

  16. Sliding slice: A novel approach for high accuracy and automatic 3D localization of seeds from CT scans

    SciTech Connect

    Tubic, Dragan; Beaulieu, Luc

    2005-01-01

    We present a conceptually novel principle for 3D reconstruction of prostate seed implants. Unlike existing methods for implant reconstruction, the proposed algorithm uses raw CT data (sinograms) instead of reconstructed CT slices. Using raw CT data solves several inevitable problems related to the reconstruction from CT slices. First, the sinograms are not affected by reconstruction artifacts in the presence of metallic objects and seeds in the patient body. Second, the scanning axis is not undersampled as in the case of CT slices; as a matter of fact the scanning axis is the most densely sampled and each seed is typically represented by several hundred samples. Moreover, the shape of a single seed in a sinogram can be modeled exactly, thus facilitating the detection. All this allows very accurate 3D reconstruction of both position and the orientation of the seeds. Preliminary results indicate that the seed position can be estimated with 0.15 mm accuracy (average), while the orientation estimate accuracy is within 3 deg. on average. Although the main contribution of the paper is to present a new principle of reconstruction, a preliminary implementation is also presented as a proof of concept. The implemented algorithm has been tested on a phantom and the obtained results are presented to validate the proposed approach.

  17. Expectation values for low resolution flow slit scan prescreening: influence of nuclear shape and DNA density

    SciTech Connect

    Mullaney, P.F.; Mann, R.; Seger, G.; Achatz, M.

    1981-01-01

    High resolution fluorescent image analysis has been conducted with mithramycin stained cells from clinical gynecological specimens. Features characteristic of the usual, low resolution, one dimensional slit-scan flow cytometric measurements were extracted from 250 high resolution nuclear images. In addition to the measurement of the usual parameters, nuclear ellipticity and DNA density (DNA per unit nuclear size) were also determined. Preliminary results indicate both these features offer increased discrimination. When nuclear shape is included as a global feature, at least 77% of the diagnostic cells can be distinguished from normals, with no overlap. Both features hold promise for improving the discrimination possible with flow cytometry.

  18. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    SciTech Connect

    Wu, Meng; Fahrig, Rebecca

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images that are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT

  19. Sex determination from scapular length measurements by CT scans images in a Caucasian population.

    PubMed

    Giurazza, F; Schena, E; Del Vescovo, R; Cazzato, R L; Mortato, L; Saccomandi, P; Paternostro, F; Onofri, L; Zobel, B Beomonte

    2013-01-01

    Together with race, stature and age, sex is a main component of the biological identity. Thanks to its proportional correlation with parts of the human body, sex can be evaluated form the skeleton. The most accurate approach to determine sex by bone size is based on os coxae or skull. After natural disaster their presence can never be guaranteed, therefore the development of methods of sex determination using other skeletal elements can result crucial. Herein, sexual dimorphism in the human scapula is used to develop a two-variable discriminant function for sex estimation. We have enrolled 100 males and 100 females who underwent thoracic CT scan evaluation and we have estimated two scapular diameters. The estimation has been carried out by analyzing images of the scapulae of each patient after three dimensional post-processing reconstructions. The two-variable function allows to obtain an overall accuracy of 88% on the calibration sample. Furthermore, we have employed the mentioned function on a collection of 10 individual test sample from the collection of the "Museo di Anatomia Umana di Firenze" of the Università degli Studi di Firenze; sex has been correctly predicted on 9 skeletons.

  20. A CT-scan database for the facial soft tissue thickness of Taiwan adults.

    PubMed

    Chung, Ju-Hui; Chen, Hsiao-Ting; Hsu, Wan-Yi; Huang, Guo-Shu; Shaw, Kai-Ping

    2015-08-01

    Facial reconstruction is a branch of forensic anthropology used to assist in the identification of skeletal remains. The majority of facial reconstruction techniques use facial soft tissue depth chart data to recreate facial tissue on a skull or a model of a skull through the use of modeling clay. This study relied on 193 subjects selected from the Taiwanese population on the basis of age and gender to determine the average values of 32 landmarks, include midline and bilateral measures, by means of CT scans. The mean age of the subjects was 46.9±16.4 years, with a mean age of 43.8±16.6 for males and 49.9±15.8 for females respectively. There were 16 landmarks with statistically significant differences between male and female subjects, namely S, G, N, Na, Ph, Sd and Id in the midline portion, FE, LO, ZA and Sub M2 in the bilateral-right and left portion, and IM point in the bilateral-left portion (abbreviations adapted from Karen T. Taylor's work). The mean soft tissue depth was greater in males than in females, and there was significant difference between the right and left sides of the face in Za point. This study's findings were compared with those of Bulut et al. PMID:26028278

  1. Scatter correction method for cone-beam CT based on interlacing-slit scan

    NASA Astrophysics Data System (ADS)

    Huang, Kui-Dong; Zhang, Hua; Shi, Yi-Kai; Zhang, Liang; Xu, Zhe

    2014-09-01

    Cone-beam computed tomography (CBCT) has the notable features of high efficiency and high precision, and is widely used in areas such as medical imaging and industrial non-destructive testing. However, the presence of the ray scatter reduces the quality of CT images. By referencing the slit collimation approach, a scatter correction method for CBCT based on the interlacing-slit scan is proposed. Firstly, according to the characteristics of CBCT imaging, a scatter suppression plate with interlacing slits is designed and fabricated. Then the imaging of the scatter suppression plate is analyzed, and a scatter correction calculation method for CBCT based on the image fusion is proposed, which can splice out a complete set of scatter suppression projection images according to the interlacing-slit projection images of the left and the right imaging regions in the scatter suppression plate, and simultaneously complete the scatter correction within the flat panel detector (FPD). Finally, the overall process of scatter suppression and correction is provided. The experimental results show that this method can significantly improve the clarity of the slice images and achieve a good scatter correction.

  2. The First Ant-Termite Syninclusion in Amber with CT-Scan Analysis of Taphonomy

    PubMed Central

    Coty, David; Aria, Cédric; Garrouste, Romain; Wils, Patricia; Legendre, Frédéric; Nel, André

    2014-01-01

    We describe here a co-occurrence (i.e. a syninclusion) of ants and termites in a piece of Mexican amber (Totolapa deposit, Chiapas), whose importance is two-fold. First, this finding suggests at least a middle Miocene antiquity for the modern, though poorly documented, relationship between Azteca ants and Nasutitermes termites. Second, the presence of a Neivamyrmex army ant documents an in situ raiding behaviour of the same age and within the same community, confirmed by the fact that the army ant is holding one of the termite worker between its mandibles and by the presence of a termite with bitten abdomen. In addition, we present how CT-scan imaging can be an efficient tool to describe the topology of resin flows within amber pieces, and to point out the different states of preservation of the embedded insects. This can help achieving a better understanding of taphonomical processes, and tests ethological and ecological hypotheses in such complex syninclusions. PMID:25140873

  3. Pleural plaque profiles on the chest radiographs and CT scans of asbestos-exposed Japanese construction workers.

    PubMed

    Elshazley, Momen; Shibata, Eiji; Hisanaga, Naomi; Ichihara, Gaku; Ewis, Ashraf A; Kamijima, Michihiro; Ichihara, Sahoko; Sakai, Kiyoshi; Sato, Mitsuo; Kondo, Masashi; Hasegawa, Yoshinori

    2011-01-01

    Pleural plaques are asymptomatic focal thickenings of the pleura and considered the hallmark of asbestos exposure. However, it is often difficult to detect pleural plaques on chest x-rays (CXR). In a retrospective study, using chest CT scans of 140 Japanese asbestos-exposed construction workers who have probable or definite findings of pleural plaque on CXR; firstly, we proposed plaque morphology-based classification for CXR findings, and then we examined if those classified findings could be confirmed as pleural plaques on CT scans. Our morphology-based classification of pleural plaque findings included nine types. The percentages of confirmed pleural plaques on CT scans by type (number of confirmed pleural plaque on CT/number of observed on CXR) were 93% (40/43) for straight, 89% (56/63) for diamond, 88% (7/8) for double, 83% (19/23) for tapered medially, 80% (20/25) for parallel, 77% (23/30) for crescent, 79% (11/14) for tenting, 72% (18/25) for tapered-laterally (long type), and 0% (0/9) for tapered-laterally (short type). When added to the ILO classification, morphology-based classification of CXR pleural plaque findings makes its detection easier and hence chest radiograph continues to be a suitable tool for screening asbestos-related pleural plaques based on its simplicity, low radiation exposure, wide availability and cost-effectiveness. PMID:21828957

  4. Automatic identification of IASLC-defined mediastinal lymph node stations on CT scans using multi-atlas organ segmentation

    NASA Astrophysics Data System (ADS)

    Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.

    2015-03-01

    Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.

  5. LandScan 2012 High Resolution Global Population DataSet

    SciTech Connect

    2013-09-17

    The LandScan data set is a worldwide population database compiled on a 30"x20" latitude/longitude grid. Census counts at sub-national level were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets.

  6. An Indirect Method to Measure Abutment Screw Preload: A Pilot Study Based on Micro-CT Scanning.

    PubMed

    Rezende, Carlos Eduardo E; Griggs, Jason Alan; Duan, Yuanyuan; Mushashe, Amanda M; Nolasco, Gisele Maria Correr; Borges, Ana Flávia Sanches; Rubo, José Henrique

    2015-01-01

    This study aimed to measure the preload in different implant platform geometries based on micro-CT images. External hexagon (EH) implants and Morse Tapered (MT) implants (n=5) were used for the preload measurement. The abutment screws were scanned in micro-CT to obtain their virtual models, which were used to record their initial length. The abutments were screwed on the implant with a 20 Ncm torque and the set composed by implant, abutment screw and abutment were taken to the micro-CT scanner to obtain virtual slices of the specimens. These slices allowed the measurement of screw lengths after torque application and based on the screw elongation. Preload values were calculated using the Hooke's Law. The preloads of both groups were compared by independent t-test. Removal torque of each specimen was recorded. To evaluate the accuracy of the micro-CT technique, three rods with known lengths were scanned and the length of their virtual model was measured and compared with the original length. One rod was scanned four times to evaluate the measuring method variation. There was no difference between groups for preload (EH = 461.6 N and MT = 477.4 N), but the EH group showed higher removal torque values (13.8 ± 4.7 against 8.2 ± 3.6 N cm for MT group). The micro-CT technique showed a variability of 0.053% and repeatability showed an error of 0.23 to 0.28%. Within the limitations of this study, there was no difference between external hexagon and Morse taper for preload. The method using micro-CT may be considered for preload calculation.

  7. The Value of Restaging With Chest and Abdominal CT/MRI Scan After Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer

    PubMed Central

    Liu, Guo-Chen; Zhang, Xu; Xie, E.; An, Xin; Cai, Pei-Qiang; Zhu, Ying; Tang, Jing-Hua; Kong, Ling-Heng; Lin, Jun-Zhong; Pan, Zhi-Zhong; Ding, Pei-Rong

    2015-01-01

    Abstract Little was known with regard to the value of preoperative systemic restaging for patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (CRT). This study was designed to evaluate the role of chest and abdominal computed tomography (CT) scan or magnetic resonance imaging (MRI) on preoperative restaging in LARC after neoadjuvant CRT and to assess the impact on treatment strategy. Between January 2007 and April 2013, 386 newly diagnosed consecutive patients with LARC who underwent neoadjuvant CRT and received restaging with chest and abdominal CT/MRI scan were included. Imaging results before and after CRT were analyzed. Twelve patients (3.1%) (6 liver lesions, 2 peritoneal lesions, 2 distant lymph node lesions, 1 lung lesions, 1 liver and lung lesions) were diagnosed as suspicious metastases on the restaging scan after radiotherapy. Seven patients (1.8%) were confirmed as metastases by pathology or long-term follow-up. The treatment strategy was changed in 5 of the 12 patients as a result of restaging CT/MRI findings. Another 10 patients (2.6%) who present with normal restaging imaging findings were diagnosed as metastases intra-operatively. The sensitivity, specificity accuracy, negative predictive value, and positive predictive values of restaging CT/MRI was 41.4%, 98.6%, 58.3%, and 97.3%, respectively. The low incidence of metastases and minimal consequences for the treatment plan question the clinical value of routine restaging of chest and abdomen after neoadjuvant CRT. Based on this study, a routine restaging CT/MRI of chest and abdomen in patients with rectal cancer after neoadjuvant CRT is not advocated, carcino-embryonic antigen (CEA) -guided CT/MRI restaging might be an alternative. PMID:26632714

  8. [3D Super-resolution Reconstruction and Visualization of Pulmonary Nodules from CT Image].

    PubMed

    Wang, Bing; Fan, Xing; Yang, Ying; Tian, Xuedong; Gu, Lixu

    2015-08-01

    The aim of this study was to propose an algorithm for three-dimensional projection onto convex sets (3D POCS) to achieve super resolution reconstruction of 3D lung computer tomography (CT) images, and to introduce multi-resolution mixed display mode to make 3D visualization of pulmonary nodules. Firstly, we built the low resolution 3D images which have spatial displacement in sub pixel level between each other and generate the reference image. Then, we mapped the low resolution images into the high resolution reference image using 3D motion estimation and revised the reference image based on the consistency constraint convex sets to reconstruct the 3D high resolution images iteratively. Finally, we displayed the different resolution images simultaneously. We then estimated the performance of provided method on 5 image sets and compared them with those of 3 interpolation reconstruction methods. The experiments showed that the performance of 3D POCS algorithm was better than that of 3 interpolation reconstruction methods in two aspects, i.e., subjective and objective aspects, and mixed display mode is suitable to the 3D visualization of high resolution of pulmonary nodules.

  9. Comparison of Two Deformable Registration Algorithms in the Presence of Radiologic Change Between Serial Lung CT Scans.

    PubMed

    Cunliffe, Alexandra R; White, Bradley; Justusson, Julia; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A; Armato, Samuel G

    2015-12-01

    We evaluated the image registration accuracy achieved using two deformable registration algorithms when radiation-induced normal tissue changes were present between serial computed tomography (CT) scans. Two thoracic CT scans were collected for each of 24 patients who underwent radiation therapy (RT) treatment for lung cancer, eight of whom experienced radiologically evident normal tissue damage between pre- and post-RT scan acquisition. For each patient, 100 landmark point pairs were manually placed in anatomically corresponding locations between each pre- and post-RT scan. Each post-RT scan was then registered to the pre-RT scan using (1) the Plastimatch demons algorithm and (2) the Fraunhofer MEVIS algorithm. The registration accuracy for each scan pair was evaluated by comparing the distance between landmark points that were manually placed in the post-RT scans and points that were automatically mapped from pre- to post-RT scans using the displacement vector fields output by the two registration algorithms. For both algorithms, the registration accuracy was significantly decreased when normal tissue damage was present in the post-RT scan. Using the Plastimatch algorithm, registration accuracy was 2.4 mm, on average, in the absence of radiation-induced damage and 4.6 mm, on average, in the presence of damage. When the Fraunhofer MEVIS algorithm was instead used, registration errors decreased to 1.3 mm, on average, in the absence of damage and 2.5 mm, on average, when damage was present. This work demonstrated that the presence of lung tissue changes introduced following RT treatment for lung cancer can significantly decrease the registration accuracy achieved using deformable registration.

  10. Comparison of Two Deformable Registration Algorithms in the Presence of Radiologic Change Between Serial Lung CT Scans.

    PubMed

    Cunliffe, Alexandra R; White, Bradley; Justusson, Julia; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A; Armato, Samuel G

    2015-12-01

    We evaluated the image registration accuracy achieved using two deformable registration algorithms when radiation-induced normal tissue changes were present between serial computed tomography (CT) scans. Two thoracic CT scans were collected for each of 24 patients who underwent radiation therapy (RT) treatment for lung cancer, eight of whom experienced radiologically evident normal tissue damage between pre- and post-RT scan acquisition. For each patient, 100 landmark point pairs were manually placed in anatomically corresponding locations between each pre- and post-RT scan. Each post-RT scan was then registered to the pre-RT scan using (1) the Plastimatch demons algorithm and (2) the Fraunhofer MEVIS algorithm. The registration accuracy for each scan pair was evaluated by comparing the distance between landmark points that were manually placed in the post-RT scans and points that were automatically mapped from pre- to post-RT scans using the displacement vector fields output by the two registration algorithms. For both algorithms, the registration accuracy was significantly decreased when normal tissue damage was present in the post-RT scan. Using the Plastimatch algorithm, registration accuracy was 2.4 mm, on average, in the absence of radiation-induced damage and 4.6 mm, on average, in the presence of damage. When the Fraunhofer MEVIS algorithm was instead used, registration errors decreased to 1.3 mm, on average, in the absence of damage and 2.5 mm, on average, when damage was present. This work demonstrated that the presence of lung tissue changes introduced following RT treatment for lung cancer can significantly decrease the registration accuracy achieved using deformable registration. PMID:25822396

  11. Kilovoltage cone-beam CT: Comparative dose and image quality evaluations in partial and full-angle scan protocols

    SciTech Connect

    Kim, Sangroh; Yoo, Sua; Yin Fangfang; Samei, Ehsan; Yoshizumi, Terry

    2010-07-15

    Purpose: To assess imaging dose of partial and full-angle kilovoltage CBCT scan protocols and to evaluate image quality for each protocol. Methods: The authors obtained the CT dose index (CTDI) of the kilovoltage CBCT protocols in an on-board imager by ion chamber (IC) measurements and Monte Carlo (MC) simulations. A total of six new CBCT scan protocols were evaluated: Standard-dose head (100 kVp, 151 mA s, partial-angle), low-dose head (100 kVp, 75 mA s, partial-angle), high-quality head (100 kVp, 754 mA s, partial-angle), pelvis (125 kVp, 706 mA s, full-angle), pelvis spotlight (125 kVp, 752 mA s, partial-angle), and low-dose thorax (110 kVp, 271 mA s, full-angle). Using the point dose method, various CTDI values were calculated by (1) the conventional weighted CTDI (CTDI{sub w}) calculation and (2) Bakalyar's method (CTDI{sub wb}). The MC simulations were performed to obtain the CTDI{sub w} and CTDI{sub wb}, as well as from (3) central slice averaging (CTDI{sub 2D}) and (4) volume averaging (CTDI{sub 3D}) techniques. The CTDI values of the new protocols were compared to those of the old protocols (full-angle CBCT protocols). Image quality of the new protocols was evaluated following the CBCT image quality assurance (QA) protocol [S. Yoo et al., ''A quality assurance program for the on-board imager registered ,'' Med. Phys. 33(11), 4431-4447 (2006)] testing Hounsfield unit (HU) linearity, spatial linearity/resolution, contrast resolution, and HU uniformity. Results: The CTDI{sub w} were found as 6.0, 3.2, 29.0, 25.4, 23.8, and 7.7 mGy for the new protocols, respectively. The CTDI{sub w} and CTDI{sub wb} differed within +3% between IC measurements and MC simulations. Method (2) results were within {+-}12% of method (1). In MC simulations, the CTDI{sub w} and CTDI{sub wb} were comparable to the CTDI{sub 2D} and CTDI{sub 3D} with the differences ranging from -4.3% to 20.6%. The CTDI{sub 3D} were smallest among all the CTDI values. CTDI{sub w} of the new protocols

  12. Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar

    PubMed Central

    Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu

    2015-01-01

    Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871

  13. Synchronous scanning of reference mirror and objective lens for high-resolution full-field interferometry

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Ken; Kasuya, Yosuke; Kojima, Shuto; Kurokawa, Takashi

    2015-03-01

    We realized a long-scanning-range and high-resolution interferometry in a time-domain full-field microscopic scheme by adopting a simple configuration. A reference mirror was synchronously scanned with an objective lens, which was installed in a common path, to prevent lateral resolution degradation due to defocus at the mirror. High axial resolution was obtained using a broadband supercontinuum (SC) generated by a 1.55 µm pump. The SC was generated by propagating a femtosecond pulse at 1.55 µm through a highly nonlinear dispersion shifted fiber with a small dispersion slope. We designed and constructed an interferometer carefully to utilize the entire bandwidth. The broad bandwidth of the interferometer achieved an axial resolution of 2.50 µm in air. The synchronous scanning maintained a lateral resolution longer than 1 mm. The system successfully yielded a cross-sectional image of two layers of scotch tape along the 400-µm-depth and 90-nm-step surface profiles.

  14. Single scan parameterization of space-variant point spread functions in image space via a printed array: the impact for two PET/CT scanners

    NASA Astrophysics Data System (ADS)

    Kotasidis, F. A.; Matthews, J. C.; Angelis, G. I.; Noonan, P. J.; Jackson, A.; Price, P.; Lionheart, W. R.; Reader, A. J.

    2011-05-01

    Incorporation of a resolution model during statistical image reconstruction often produces images of improved resolution and signal-to-noise ratio. A novel and practical methodology to rapidly and accurately determine the overall emission and detection blurring component of the system matrix using a printed point source array within a custom-made Perspex phantom is presented. The array was scanned at different positions and orientations within the field of view (FOV) to examine the feasibility of extrapolating the measured point source blurring to other locations in the FOV and the robustness of measurements from a single point source array scan. We measured the spatially-variant image-based blurring on two PET/CT scanners, the B-Hi-Rez and the TruePoint TrueV. These measured spatially-variant kernels and the spatially-invariant kernel at the FOV centre were then incorporated within an ordinary Poisson ordered subset expectation maximization (OP-OSEM) algorithm and compared to the manufacturer's implementation using projection space resolution modelling (RM). Comparisons were based on a point source array, the NEMA IEC image quality phantom, the Cologne resolution phantom and two clinical studies (carbon-11 labelled anti-sense oligonucleotide [11C]-ASO and fluorine-18 labelled fluoro-l-thymidine [18F]-FLT). Robust and accurate measurements of spatially-variant image blurring were successfully obtained from a single scan. Spatially-variant resolution modelling resulted in notable resolution improvements away from the centre of the FOV. Comparison between spatially-variant image-space methods and the projection-space approach (the first such report, using a range of studies) demonstrated very similar performance with our image-based implementation producing slightly better contrast recovery (CR) for the same level of image roughness (IR). These results demonstrate that image-based resolution modelling within reconstruction is a valid alternative to projection

  15. Resolution enhancement of two-photon microscopy via intensity-modulated laser scanning structured illumination.

    PubMed

    Yeh, Chia-Hua; Chen, Szu-Yu

    2015-03-20

    Conventional structured illumination microscopy (SIM) with wide-field illumination is an applicable tool to provide resolution enhancement. And yet its applications in thick specimens are still full of challenges. By combing the structured illumination concept with two-photon excitation, a laser scanning two-photon structured illumination microscope (LSTP-SIM) was constructed to gain ∼1.42-fold lateral resolution enhancement in contrast to two-photon fluorescence microscopy. With a point-scanning geometry, an acoustic-optical modulator was used to modulate temporally the excitation intensity in order to produce the structured illumination pattern. The theoretical models of image formation and image reconstruction were clearly established. Simulation and experiments were both performed to show the capability of this system to enhance the lateral resolution. Combined with the inherent optical sectioning power of the two-photon excitation, LSTP-SIM would have the potential for applications in optically-thick specimens. PMID:25968516

  16. Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy

    PubMed Central

    Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.

    2014-01-01

    The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734

  17. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement

    PubMed Central

    2011-01-01

    Purpose This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). Materials and Methods This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. Results The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. Conclusion CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement. PMID:21977476

  18. High Resolution Imaging of Murine Myocardial Infarction With Delayed Enhancement and Cine Micro-CT

    PubMed Central

    Nahrendorf, Matthias; Badea, Cristian; Hedlund, Laurence W; Figueiredo, Jose-Luiz; Sosnovik, David E.; Johnson, G Allan; Weissleder, Ralph

    2009-01-01

    Objective To determine the feasibility of delayed enhancement µCT imaging to quantify myocardial infarct size in experimental mouse models. Methods and Results A total of 20 mice were imaged 5 or 35 days after surgical ligation of the left coronary artery, or sham surgery (n=6–7 per group). We utilized a prototype εCT which covers a 3D volume with an isotropic spatial resolution of 100 µm. A series of image acquisitions were started after a 200 µL bolus of a high molecular weight blood pool CT agent to outline the ventricles. CT imaging was continuously performed over 60 minutes, while an intravenous constant infusion with iopamidol 370 was started at a dosage of 1 mL/h. Thirty minutes after the initiation of this infusion, signal intensity in Hounsfild Units was significantly higher in the infarct than in the remote, uninjured myocardium. Cardiac morphology and motion was visualized with excellent contrast and in fine detail. In vivo CT determination of infarct extension and transmurality was in good agreement with ex vivo staining with triphenyltetrazolium chloride (5 days post MI: r2= 0.86, p < 0.01; 35 days post MI r2=0.92, p < 0.01). In addition, we detected significant left ventricular remodeling consisting of left ventricular dilation and decreased ejection fraction. Conclusion 3D cine µCT reliably and rapidly quantifies infarct size and assesses murine anatomy and physiology after coronary ligation, despite the small size and the fast movement of the mouse heart. This efficient imaging tool is a valuable addition to the current phenotyping armamentarium and will allow rapid testing of novel drugs and cell based interventions in murine models. PMID:17322414

  19. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection

    PubMed Central

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2016-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461

  20. High-resolution CT analysis of facial struts in trauma: 1. Normal anatomy

    SciTech Connect

    Gentry, L.R.; Manor, W.F.; Turski, P.A.; Strother, C.M.

    1983-03-01

    The recent availability of high-spatial-resolution thin-section computed tomography (CT), capable of accurately depicting the thin body septa of the facial skeleton, has expanded the role that diagnostic radiology can play in the evaluation of the patient with facial trauma. A detailed knowledge of the normal CT anatomy of the face, however, is essential to optimally utilize this modality. The normal anatomy of the face was investigated in six cadavers using thin-section (1.5 mm) high-resolution CT. A systematic method of analysis that can facilitate evaluation of the face is presented. The face is conceptualized as three groups of interconnected osseous struts or buttresses that are oriented in the horizontal, sagittal, and coronal planes. Each group of struts is closely related to specific soft-tissue structures that are susceptible to injury. Sequential evaluation of each strut and its associated soft tissue assures a comprehensive evaluation of the face. While both axial and coronal sections are of value in some circumstances, the coronal ones are most helpful in accurately depicting the structures of the face that are most likely to be injured in trauma.

  1. Application of an ultrahigh-resolution scanning electron microscope (UHS-T1) to biological specimens.

    PubMed

    Tanaka, K; Mitsushima, A; Kashima, Y; Nakadera, T; Osatake, H

    1989-06-01

    In 1985 we developed an ultrahigh-resolution scanning electron microscope with a resolution of 0.5 nm. It is equipped with a field emission gun and an objective lens with a very short focal length. In this study we report a survey of some different preparation techniques and biological specimens using the new scanning electron microscope. Intracellular structures such as cell organelles were observed surprisingly sharper than those observed by ordinary scanning electron microscopes. However, at magnifications over 250,000 x, platinum particles could be discerned as scattered pebbles on the surface of all structures in coated materials. Using an uncoated but conductively stained specimen, we successfully observed ribosomes on a rough endoplasmic reticulum at a direct magnification of 1 million. In these images some protrusions were recognized on the ribosomes. Ferritin and immunoglobulin G were used as samples of biological macromolecules. These samples were observed without metal coating and conductive staining. The ferritin particles appeared as rounded bodies without any substructure on the surface and immunoglobulin G as complexes of three-unit bodies. In the latter the central body might correspond to the Fc fragment and two side ones to Fab fragments. We assume that ultrahigh-resolution scanning electron microscopy is an effective means for observation of the cell fine structures and biological macromolecules. It will open a new research field in biomedicine.

  2. Force scanning: A rapid, high-resolution approach for spatial mechanical property mapping

    PubMed Central

    Darling, E M

    2011-01-01

    Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the micro-and nano-scales is force mapping, which involves taking individual force curves at discrete sites across a region of interest. Limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straight-forward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue. PMID:21411911

  3. Method and phantom to study combined effects of in-plane (x,y) and z-axis resolution for 3D CT imaging.

    PubMed

    Goodenough, David; Levy, Josh; Kristinsson, Smari; Fredriksson, Jesper; Olafsdottir, Hildur; Healy, Austin

    2016-09-08

    Increasingly, the advent of multislice CT scanners, volume CT scanners, and total body spiral acquisition modes has led to the use of Multi Planar Reconstruction and 3D datasets. In considering 3D resolution properties of a CT system it is important to note that both the in-plane (x,y) and z-axis (slice thickness) influence the visual-ization and detection of objects within the scanned volume. This study investigates ways to consider both the in-plane resolution and the z-axis resolution in a single phantom wherein analytic or visualized analysis can yield information on these combined effects. A new phantom called the "Wave Phantom" is developed that can be used to sample the 3D resolution properties of a CT image, including in-plane (x,y) and z-axis information. The key development in this Wave Phantom is the incorporation of a z-axis aspect of a more traditional step (bar) resolution gauge phantom. The phantom can be examined visually wherein a cutoff level may be seen; and/or the analytic analysis of the various characteristics of the waveform profile by including amplitude, frequency, and slope (rate of climb) of the peaks, can be extracted from the Wave Pattern using mathematical analysis such as the Fourier transform. The combined effect of changes in in-plane resolution and z-axis (thickness), are shown, as well as the effect of changes in either in-plane resolu-tion, or z-axis thickness. Examples of visual images of the Wave pattern as well as the analytic characteristics of the various harmonics of a periodic Wave pattern resulting from changes in resolution filter and/or slice thickness, and position in the field of view are shown. The Wave Phantom offers a promising way to investigate 3D resolution results from combined effect of in-plane (x-y) and z-axis resolution as contrasted to the use of simple 2D resolution gauges that need to be used with separate measures of z-axis dependency, such as angled ramps. It offers both a visual pattern as well as a

  4. Method and phantom to study combined effects of in-plane (x,y) and z-axis resolution for 3D CT imaging.

    PubMed

    Goodenough, David; Levy, Josh; Kristinsson, Smari; Fredriksson, Jesper; Olafsdottir, Hildur; Healy, Austin

    2016-01-01

    Increasingly, the advent of multislice CT scanners, volume CT scanners, and total body spiral acquisition modes has led to the use of Multi Planar Reconstruction and 3D datasets. In considering 3D resolution properties of a CT system it is important to note that both the in-plane (x,y) and z-axis (slice thickness) influence the visual-ization and detection of objects within the scanned volume. This study investigates ways to consider both the in-plane resolution and the z-axis resolution in a single phantom wherein analytic or visualized analysis can yield information on these combined effects. A new phantom called the "Wave Phantom" is developed that can be used to sample the 3D resolution properties of a CT image, including in-plane (x,y) and z-axis information. The key development in this Wave Phantom is the incorporation of a z-axis aspect of a more traditional step (bar) resolution gauge phantom. The phantom can be examined visually wherein a cutoff level may be seen; and/or the analytic analysis of the various characteristics of the waveform profile by including amplitude, frequency, and slope (rate of climb) of the peaks, can be extracted from the Wave Pattern using mathematical analysis such as the Fourier transform. The combined effect of changes in in-plane resolution and z-axis (thickness), are shown, as well as the effect of changes in either in-plane resolu-tion, or z-axis thickness. Examples of visual images of the Wave pattern as well as the analytic characteristics of the various harmonics of a periodic Wave pattern resulting from changes in resolution filter and/or slice thickness, and position in the field of view are shown. The Wave Phantom offers a promising way to investigate 3D resolution results from combined effect of in-plane (x-y) and z-axis resolution as contrasted to the use of simple 2D resolution gauges that need to be used with separate measures of z-axis dependency, such as angled ramps. It offers both a visual pattern as well as a

  5. New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution

    NASA Astrophysics Data System (ADS)

    Süss, B.; Ringleb, F.; Heberle, J.

    2016-06-01

    A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy.

  6. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    NASA Astrophysics Data System (ADS)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  7. Optics and experimental resolution of the Heidelberg slit-scan flow fluorometer

    NASA Astrophysics Data System (ADS)

    Hausmann, Michael; Wickert, Burkhard; Vogel, Michael; Schurwanz, Michael; Doelle, Juergen; Wolf, Dietmar; Aldinger, Klaus; Cremer, Christoph G.

    1996-01-01

    Slit-scan flow fluorometry is a laser-technological approach for accelerated screening and sorting of fluorescence labelled metaphase chromosomes. Details of the optics of the Heidelberg slit-scan sorter are presented. In a fluid stream the fluorescence labelled chromosomes rapidly pass one at a time by a scanning laser beam. The laser can be focused by a less complex optic consisting of only a few commercially available lenses. The laser intensity distribution around the focus was measured for 488 nm for two lens configurations. Although the light distribution obtained by such an optic is normally not aberration free, the requirements of a 'ribbonlike' shape in the center of the fluid stream can be fulfilled. Since the chromosomes are oriented perpendicularly to the laser beam by hydrodynamic focusing of the fluid stream, the fluorescence intensity along the chromosome axis can be measured time (equals spatially) resolved. According to their intensity profiles the chromosomes can be classified. Signal processing of the profiles can be performed in less than 600 microseconds, so that in the order of hundred chromosomes per second can be sorted out by a computer controlled electro-acoustic sorting unit. The final spatial resolution of a slit-scan flow sorter is not only affected by the focusing optics of the laser but also by the fluid stream, the detection optics and electronics, as well as by the computer analysis algorithm. Calculations often consider only the optics under ideal conditions. Here, a method is shown how to estimate the overall resolution of a slit-scan flow fluorometer experimentally. According to this criterion the resolution of the Heidelberg slit-scan sorter for 488 nm fluorescence excitation was estimated to be 2.4 micrometer in its basic optical configuration and 1.7 micrometer with additional correction of chromatic aberration effects.

  8. Lateral resolution improvement of laser-scanning imaging for nano defects detection

    NASA Astrophysics Data System (ADS)

    Yokozeki, Hiroki; Kudo, Ryota; Takahashi, Satoru; Takamasu, Kiyoshi

    2014-08-01

    Demand for higher efficiency in the semiconductor manufacturing industry is continually increasing. In particular, nano defects measurement on patterned or bare Si semiconductor wafer surfaces is an important quality control factor for realizing high productivity and reliability of semiconductor device fabrication. Optical methods and electron beam methods are conventionally used for the inspection of semiconductor wafers. Because they are nondestructive and suitable for high-throughput inspection, optical methods are preferable to electron beam methods such as scanning electron microscopy, transmission electron microscopy, and so on. However, optical methods generally have an essential disadvantage about lateral spatial resolution than electron beam methods, because of the diffraction limit depending on the optical wavelength. In this research, we aim to develop a novel laser-scanning imaging method that can be applied to nano-/micro manufacturing processes such as semiconductor wafer surface inspection to allow lateral spatial super-resolution imaging with resolution beyond the diffraction limit. In our proposed method, instead of detecting the light intensity value from the beam spot on the inspection surface, the light intensity distribution, which is formed with infinity corrected optical system, coming from the beam spot on the inspection surface is detected. In addition, nano scale shifts in the beam spot are applied for laser spot scanning using a conventional laser-scanning method in which the spots are shifted at about a 100 nm pitch. By detecting multiple light intensity distributions due to the nano scale shifts, a super-resolution image reconstruction with resolution beyond the diffraction limit can be expected. In order to verify the feasibility of the proposed method, several numerical simulations were carried out.

  9. Prognostic Value of 18F-FDG PET-CT in Nasopharyngeal Carcinoma: Is Dynamic Scanning Helpful?

    PubMed Central

    Huang, Bingsheng; Wong, Ching-Yee Oliver; Lai, Vincent; Kwong, Dora Lai-Wan; Khong, Pek-Lan

    2015-01-01

    Objectives. To evaluate the differences in prognostic values of static and dynamic PET-CT in nasopharyngeal carcinoma (NPC). Material and Methods. Forty-five patients who had static scan were recruited. Sixteen had dynamic scan. The primary lesions were delineated from standardized uptake value (SUV) maps from static scan and Ki maps from dynamic scan. The average follow-up lasted for 34 months. The patients who died or those with recurrence/residual disease were considered “poor outcome”; otherwise they were considered “good outcome.” Fisher's exact test and ROC analysis were used to evaluate the prognostic value of various factors. Results. Tumor volume thresholded by 40% of maximal SUV (VOLSUV40) significantly predicted treatment outcome (p = 0.024) in the whole cohort. In 16 patients with dynamic scan, all parameters by dynamic scan were insignificant in predicting the outcome. The combination of maximal SUV, maximal Ki, VOLSUV40, and VOLKi37 (the tumor volume thresholded by 37% maximal Ki) achieved the highest predicting accuracy for treatment outcome with sensitivity, specificity, and accuracy of 100% in these 16 patients; however this improvement compared to VOLSUV40 was insignificant. Conclusion. Tumor volume from static scan is useful in NPC prognosis. However, the role of dynamic scanning was not justified in this small cohort. PMID:26064927

  10. Super-resolution two-photon microscopy via scanning patterned illumination

    NASA Astrophysics Data System (ADS)

    Urban, Ben E.; Yi, Ji; Chen, Siyu; Dong, Biqin; Zhu, Yongling; DeVries, Steven H.; Backman, Vadim; Zhang, Hao F.

    2015-04-01

    We developed two-photon scanning patterned illumination microscopy (2P-SPIM) for super-resolution two-photon imaging. Our approach used a traditional two-photon microscopy setup with temporally modulated excitation to create patterned illumination fields. Combing nine different illuminations and structured illumination reconstruction, super-resolution imaging was achieved in two-photon microscopy. Using 2P-SPIM we achieved a lateral resolution of 141 nm, which represents an improvement by a factor of 1.9 over the corresponding diffraction limit. We further demonstrated super-resolution cellular imaging by 2P-SPIM to image actin cytoskeleton in mammalian cells and three-dimensional imaging in highly scattering retinal tissue.

  11. Complementary role of CT and In-111 leukocyte scans in the diagnosis of infected hematoma and thrombosis

    SciTech Connect

    Kim, E.E.; Pjura, G.A.; Floyd, W.; Raval, B.; Sandler, C.; Gobuty, A.H.

    1984-01-01

    Patients with traumatic hematomas or those with indwelling catheters who subsequently develop fever and sepsis without clinical localizing signs to indicate an inflammatory focus can present a diagnostic dilemma. Early diagnosis of an infected hematoma or thrombus is important to optimal management. CT can provide, exquisite delineation of anatomy identifying and localizing a post-traumatic fluid collection but cannot reliably distinguish hematoma from abscess in all cases. A thrombus at a catheter tip may be too small to be resolved; when identified, the question of infection again remains. In-111 leukocyte scanning provides a method for identifying or ruling out infection in these situations. The authors performed In-111 leukocyte scans on 15 patients with indwelling catheters. Five of these patients were febrile with positive blood cultures. In-111 leukocyte scans showed positive findings in 8 patients: 5 showed surgically confirmed infected hematomas in the abdomen (3 in the pelvis, 1 in a kidney, 1 in the splenic bed), and 3 showed infected thrombosis in catheter tips. The authors conclude that CT scanning and In-111 leukocyte scanning play complementary roles in the evaluation of traumatic hematomas and thrombosis, the former providing precise anatomic delineation and the latter providing evidence of inflammation.

  12. Top-level design and pilot analysis of low-end CT scanners based on linear scanning for developing countries.

    PubMed

    Liu, Fenglin; Yu, Hengyong; Cong, Wenxiang; Wang, Ge

    2014-01-01

    The goal is to develop new architectures for computed tomography (CT) which are at an ultra-low-cost for developing countries, especially in rural areas. The proposed general scheme is inspired by the recently developed compressive sensing and interior tomography techniques, where the data acquisition system targets a region of interest (ROI) to acquire limited and truncated data. Similar to linear tomosynthesis, the source and detector are translated in opposite directions but in contrast to conventional tomosynthesis, our proposal is for either ROI reconstruction with one or more localized linear scans or global reconstruction by combining multiple ROI reconstructions. In other words, the popular slip ring is replaced by a translation based setup, and the instrumentation cost is reduced by a relaxation of the imaging speed requirement. The various translational scanning modes are theoretically analyzed, and the scanning parameters are optimized. The numerical simulation results from different numbers of linear scans confirm the feasibility of the proposed scheme, and suggest two preferred low-end systems for horizontal and vertical patient positions respectively. Ultra-low-cost x-ray CT is feasible with our proposed combination of linear scanning, compressive sensing, and interior tomography. The proposed architecture can be tailored into permanent, movable, or reconfigurable systems as desirable. Advanced image registration and spectral imaging features can be included as well.

  13. Structure of CT584 from Chlamydia trachomatis refined to 3.05 Å resolution

    PubMed Central

    Barta, Michael L.; Hickey, John; Kemege, Kyle E.; Lovell, Scott; Battaile, Kevin P.; Hefty, P. Scott

    2013-01-01

    Chlamydia trachomatis is a major cause of various diseases, including blinding trachoma and pelvic inflammatory disease, and is the leading reported sexually transmitted bacterial infection worldwide. All pathogenic Chlamydiae spp. utilize a supramolecular syringe, or type III secretion system (T3SS), to inject proteins into their obligate host in order to propagate infection. Here, the structure of CT584, a T3SS-associated protein, that has been refined to a resolution of 3.05 Å is reported. The CT584 structure is a hexamer comprised of a trimer of dimers. The structure shares a high degree of similarity to the recently reported structure of an orthologous protein, Cpn0803, from Chlamydia pneumoniae, which highlights the highly conserved nature of this protein across these chlamydial species, despite different tissue tropism and disease pathology. PMID:24192348

  14. Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK

    SciTech Connect

    Haan, A. M. J. den Wijts, G. H. C. J.; Galli, F.; Oosterkamp, T. H.; Usenko, O.; Baarle, G. J. C. van; Zalm, D. J. van der

    2014-03-15

    Pulse tube refrigerators are becoming more common, because they are cost efficient and demand less handling than conventional (wet) refrigerators. However, a downside of a pulse tube system is the vibration level at the cold-head, which is in most designs several micrometers. We implemented vibration isolation techniques which significantly reduced vibration levels at the experiment. These optimizations were necessary for the vibration sensitive magnetic resonance force microscopy experiments at milli-kelvin temperatures for which the cryostat is intended. With these modifications we show atomic resolution scanning tunneling microscopy on graphite. This is promising for scanning probe microscopy applications at very low temperatures.

  15. [A case of head injury accompanied by minute hemorrhage-like artifacts created by multislice CT scans].

    PubMed

    Yanagawa, Youichi; Sakamoto, Toshihisa; Okada, Yoshiaki

    2004-11-01

    We demonstrated a head injury case accompanied by multiple small high-density artifacts in the middle of the brain created by multislice CT scanning, due to the malfunction of a detector involved in reconstruction of the mid images. We named these objects high-density spot artifacts. The high-density spot artifacts resemble minute hemorrhages which appear as diffuse axonal injuries. Radiologists and neurosurgeons should be familiar with this the existence of artifact.

  16. Do physical examination and CT-scan measures of femoral neck anteversion and tibial torsion relate to each other?

    PubMed

    Sangeux, Morgan; Mahy, Jessica; Graham, H Kerr

    2014-01-01

    Informed clinical decision making for femoral and/or tibial de-rotation osteotomies requires accurate measurement of patient function through gait analysis and anatomy through physical examination of bony torsions. Validity of gait analysis has been extensively studied; however, controversy remains regarding the accuracy of physical examination measurements of femoral and tibial torsion. Comparison between CT-scans and physical examination measurements of femoral neck anteversion (FNA) and external tibial torsion (ETT) were retrospectively obtained for 98 (FNA) and 64 (ETT) patients who attended a tertiary hospital for instrumented gait analysis between 2007 and 2010. The physical examination methods studied for femoral neck anteversion were the trochanteric prominence angle test (TPAT) and the maximum hip rotation arc midpoint (Arc midpoint) and for external tibial torsion the transmalleolar axis (TMA). Results showed that all physical examination measurements statistically differed to the CT-scans (bias(standard deviation): -2(14) for TPAT, -10(12) for Arc midpoint and -16(9) for TMA). Bland and Altman plots showed that method disagreements increased with increasing bony torsions in all cases but notably for TPAT. Regression analysis showed that only TMA and CT-scan measurement of external tibial torsion demonstrated good (R(2)=57%) correlation. Correlations for both TPAT (R(2)=14%) and Arc midpoint (R(2)=39%) with CT-scan measurements of FNA were limited. We conclude that physical examination should be considered as screening techniques rather than definitive measurement methods for FNA and ETT. Further research is required to develop more accurate measurement methods to accompany instrumented gait analysis.

  17. Evaluation of radiation dose of triple rule-out coronary angiography protocols with different scan length using 256-slice CT

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Jung; Lee, Jason J. S.; Chen, Liang-Kuang; Mok, Greta S. P.; Hsu, Shih-Ming; Wu, Tung-Hsin

    2011-10-01

    Triple rule-out coronary CT angiography (TRO-CTA) is a new approach for providing noninvasive visualization of coronary arteries with simultaneous evaluation of pulmonary arteries, thoracic aorta and other intrathoracic structures. The increasing use of TRO-CTA examination with longer scan length is associated with the concerns about radiation dose and their corresponding cancer risk. The purpose of this study is to evaluate organ dose and effective dose for the TRO-CTA examination with 2 scan lengths: TRO std and TRO ext, using 256-slice CT. TRO-CTA examinations were performed on a 256-slice CT scanner without ECG-based tube current modulation. Absorbed organ doses were measured using an anthropomorphic phantom and thermal-luminance dosimeters (TLDs). Effective dose was determined by taking a sum of the measured absorbed organ doses multiplied with the tissue weighting factor based on ICRP-103, and compared to that calculated using the dose-length product (DLP) method. We obtained high organ doses in the thyroid, esophagus, breast, heart and lung in both TRO-CTA protocols. Effective doses of the TRO std and TRO ext protocols with the phantom method were 26.37 and 42.49 mSv, while those with the DLP method were 19.68 and 38.96 mSv, respectively. Our quantitative dose information establishes a relationship between radiation dose and scanning length, and can provide a practical guidance to best clinical practice.

  18. Pore space connectivity and porosity using CT scans of tropical soils

    NASA Astrophysics Data System (ADS)

    Previatello da Silva, Livia; de Jong Van Lier, Quirijn

    2015-04-01

    Microtomography has been used in soil physics for characterization and allows non-destructive analysis with high-resolution, yielding a three-dimensional representation of pore space and fluid distribution. It also allows quantitative characterization of pore space, including pore size distribution, shape, connectivity, porosity, tortuosity, orientation, preferential pathways and is also possible predict the saturated hydraulic conductivity using Darcy's equation and a modified Poiseuille's equation. Connectivity of pore space is an important topological property of soil. Together with porosity and pore-size distribution, it governs transport of water, solutes and gases. In order to quantify and analyze pore space (quantifying connectivity of pores and porosity) of four tropical soils from Brazil with different texture and land use, undisturbed samples were collected in São Paulo State, Brazil, with PVC ring with 7.5 cm in height and diameter of 7.5 cm, depth of 10 - 30 cm from soil surface. Image acquisition was performed with a CT system Nikon XT H 225, with technical specifications of dual reflection-transmission target system including a 225 kV, 225 W high performance Xray source equipped with a reflection target with pot size of 3 μm combined with a nano-focus transmission module with a spot size of 1 μm. The images were acquired at specific energy level for each soil type, according to soil texture, and external copper filters were used in order to allow the attenuation of low frequency X-ray photons and passage of one monoenergetic beam. This step was performed aiming minimize artifacts such as beam hardening that may occur during the attenuation in the material interface with different densities within the same sample. Images were processed and analyzed using ImageJ/Fiji software. Retention curve (tension table and the pressure chamber methods), saturated hydraulic conductivity (constant head permeameter), granulometry, soil density and particle density

  19. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    SciTech Connect

    Pu, Jiantao; Jin, Chenwang Yu, Nan; Qian, Yongqiang; Guo, Youmin; Wang, Xiaohua; Meng, Xin

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concave loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.

  20. Interfractional Prostate Shifts: Review of 1870 Computed Tomography (CT) Scans Obtained During Image-Guided Radiotherapy Using CT-on-Rails for the Treatment of Prostate Cancer

    SciTech Connect

    Wong, James R. Gao Zhanrong; Uematsu, Minoru; Merrick, Scott; Machernis, Nolan P.; Chen, Timothy; Cheng, C.W.

    2008-12-01

    Purpose: To review 1870 CT scans of interfractional prostate shift obtained during image-guided radiotherapy. Methods and Materials: A total of 1870 pretreatment CT scans were acquired with CT-on-rails, and the corresponding shift data for 329 patients with prostate cancer were analyzed. Results: Of the 1870 scans reviewed, 44% required no setup adjustments in the anterior-posterior (AP) direction, 14% had shifts of 3-5 mm, 29% had shifts of 6-10 mm, and 13% had shifts of >10 mm. In the superior-inferior direction, 81% had no adjustments, 2% had shifts of 3-5 mm, 15% had shifts of 6-10 mm, and 2% had shifts of >10 mm. In the left-right direction, 65% had no adjustment, 13% had shifts of 3-5 mm, 17% had shifts of 6-10 mm, and 5% had shifts of >10 mm. Further analysis of the first 66 consecutive patients divided into three groups according to body mass index indicates that the shift in the AP direction for the overweight subgroup was statistically larger than those for the control and obese subgroups (p < 0.05). The interfractional shift in the lateral direction for the obese group (1 SD, 5.5 mm) was significantly larger than those for the overweight and control groups (4.1 and 2.9 mm, respectively) (p < 0.001). Conclusions: These data demonstrate that there is a significantly greater shift in the AP direction than in the lateral and superior-inferior directions for the entire patient group. Overweight and obese patient groups show a significant difference from the control group in terms of prostate shift.

  1. High-Resolution CT Imaging of Single Breast Cancer Microcalcifications In Vivo

    PubMed Central

    Inoue, Kazumasa; Liu, Fangbing; Hoppin, Jack; Lunsford, Elaine P.; Lackas, Christian; Hesterman, Jacob; Lenkinski, Robert E.; Fujii, Hirofumi; Frangioni, John V.

    2010-01-01

    Microcalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT) could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time. Using a commercial CT scanner, we systematically optimized acquisition and reconstruction parameters. Two ray-tracing image reconstruction algorithms were tested, a voxel-driven “fast” cone beam algorithm (FCBA) and a detector-driven “exact” cone beam algorithm (ECBA). By optimizing acquisition and reconstruction parameters, we were able to achieve a resolution of 104 µm full-width at half maximum (FWHM). At an optimal detector sampling frequency, ECBA provided a 28 µm (21%) FWHM improvement in resolution over FCBA. In vitro, we were able to image a single 300 µm by 100 µm hydroxyapatite crystal. In a syngeneic rat model of breast cancer, we were able to detect the genesis of a single microcalcification in vivo and follow its growth longitudinally over weeks. Taken together, this study provides an in vivo “gold standard” for the development of calcification-specific contrast agents and a model system for studying the mechanism of breast cancer microcalcification. PMID:21504703

  2. Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Yang, Sihua; Xing, Da

    2012-01-01

    An optical-resolution photoacoustic microscopy system was designed and fabricated by integration of a two-dimensional scanning galvanometer, an objective lens, an unfocused ultrasound transducer, and a sample stage. The lateral resolution of the system was measured to be ˜500 nm. Ex vivo erythrocytes were used to test the imaging capability of the system, and a single erythrocyte was mapped with high contrast. Furthermore, invivo blood vessels of a mouse ear were clearly shown, and the injured blood vessels were also monitored. The experimental results demonstrate that galvanometer-based photoacoustic microscopy holds clinical potential in detecting lesion of erythrocyte and blood vessel.

  3. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  4. Ga-68-DOTATOC: Feasibility of high throughput screening by small animal PET using a clinical high-resolution PET/CT scanner

    NASA Astrophysics Data System (ADS)

    Hofmann, Michael; Weitzel, Thilo; Krause, Thomas

    2006-12-01

    As radio peptide tracers have been developed in recent years for the high sensitive detection of neuroendocrine tumors, still the broad application of other peptides to breast and prostate cancer is missing. A rapid screening of new peptides can, in theory, be based on in vivo screening in animals by PET/CT. To test this hypothesis and to asses the minimum screening time needed per animal, we used the application of Ga-68-DOTATOC PET/CT in rats as test system. The Ga-68-DOTATOC yields in a hot spot imaging with minimal background. To delineate liver and spleen, we performed PET/CT of 10 animals on a SIEMENS Biograph 16 LSO HIGHREZ after intravenous injection of 1.5 MBq Ga-68-DOTATOC per animal. Animals were mounted in an '18 slot' holding device and scanned for a single-bed position. The emission times for the PET scan was varied from 1 to 20 min. The images were assessed first for "PET only" and afterwards in PET/CT fusion mode. The detection of the two organs was good at emission times down to 1 min in PET/CT fusion mode. In the "PET only" scans, the liver was clearly to be identified down to 1 min emission in all animals. But the spleen could only be delineated only by 1 min of emission in the PET/CT-fusion mode. In conclusion the screening of "hot spot" enriching peptides is feasible. "PET only" is in terms of delineation of small organs by far inferior to PET/CT fusion. If animal tumors are above a diameter of 10 mm small, animal PET/CT using clinical high resolution scanners will enable rapid screening. Even the determination of bio-distributions becomes feasible by using list mode tools. The time for the whole survey of 18 animals including anesthesia, preparation and mounting was approximately 20 min. By use of several holding devices mounted simultaneously, a survey time of less than 1 h for 180 animals can be expected.

  5. CT-scan prediction of thyroid cartilage invasion for early laryngeal squamous cell carcinoma.

    PubMed

    Hartl, Dana M; Landry, Guillaume; Bidault, François; Hans, Stéphane; Julieron, Morbize; Mamelle, Gérard; Janot, François; Brasnu, Daniel F

    2013-01-01

    Treatment choice for laryngeal cancer may be influenced by the diagnosis of thyroid cartilage invasion on preoperative computed tomography (CT). Our objective was to determine the predictive value of CT for thyroid cartilage invasion in early- to mid-stage laryngeal cancer. Retrospective study (1992-2008) of laryngeal squamous cell carcinoma treated with open partial laryngectomy and resection of at least part of the thyroid cartilage. Previous laser surgery, radiation therapy, chemotherapy and second primaries were excluded. CT prediction of thyroid cartilage invasion was determined by specialized radiologists. Tumor characteristics and pathologic thyroid cartilage invasion were compared to the radiologic assessment. 236 patients were treated by vertical (20 %), supracricoid (67 %) or supraglottic partial laryngectomy (13 %) for tumors staged cT1 (26 %), cT2 (55 %), and cT3 (19 %). The thyroid cartilage was invaded on pathology in 19 cases (8 %). CT's sensitivity was 10.5 %, specificity 94 %, positive predictive value 13 %, and negative predictive value 92 %. CT correctly predicted thyroid cartilage invasion in only two cases for an overall accuracy of 87 %. Among the false-positive CT's, tumors involving the anterior commissure were significantly over-represented (61.5 % vs. 27 %, p = .004). Tumors with decreased vocal fold (VF) mobility were significantly over-represented in the group of false-negatives (41 vs. 13 %, p = .0035). Preoperative CT was not effective in predicting thyroid cartilage invasion in these early- to mid-stage lesions, overestimating cartilage invasion for AC lesions and underestimating invasion for lesions with decreased VF mobility.

  6. Automatic segmentation of phase-correlated CT scans through nonrigid image registration using geometrically regularized free-form deformation

    SciTech Connect

    Shekhar, Raj; Lei, Peng; Castro-Pareja, Carlos R.; Plishker, William L.; D'Souza, Warren D.

    2007-07-15

    Conventional radiotherapy is planned using free-breathing computed tomography (CT), ignoring the motion and deformation of the anatomy from respiration. New breath-hold-synchronized, gated, and four-dimensional (4D) CT acquisition strategies are enabling radiotherapy planning utilizing a set of CT scans belonging to different phases of the breathing cycle. Such 4D treatment planning relies on the availability of tumor and organ contours in all phases. The current practice of manual segmentation is impractical for 4D CT, because it is time consuming and tedious. A viable solution is registration-based segmentation, through which contours provided by an expert for a particular phase are propagated to all other phases while accounting for phase-to-phase motion and anatomical deformation. Deformable image registration is central to this task, and a free-form deformation-based nonrigid image registration algorithm will be presented. Compared with the original algorithm, this version uses novel, computationally simpler geometric constraints to preserve the topology of the dense control-point grid used to represent free-form deformation and prevent tissue fold-over. Using mean squared difference as an image similarity criterion, the inhale phase is registered to the exhale phase of lung CT scans of five patients and of characteristically low-contrast abdominal CT scans of four patients. In addition, using expert contours for the inhale phase, the corresponding contours were automatically generated for the exhale phase. The accuracy of the segmentation (and hence deformable image registration) was judged by comparing automatically segmented contours with expert contours traced directly in the exhale phase scan using three metrics: volume overlap index, root mean square distance, and Hausdorff distance. The accuracy of the segmentation (in terms of radial distance mismatch) was approximately 2 mm in the thorax and 3 mm in the abdomen, which compares favorably to the

  7. Lung texture in serial thoracic CT scans: correlation with radiologist-defined severity of acute changes following radiation therapy

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Armato, Samuel G., III; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A.

    2014-09-01

    This study examines the correlation between the radiologist-defined severity of normal tissue damage following radiation therapy (RT) for lung cancer treatment and a set of mathematical descriptors of computed tomography (CT) scan texture (‘texture features’). A pre-therapy CT scan and a post-therapy CT scan were retrospectively collected under IRB approval for each of the 25 patients who underwent definitive RT (median dose: 66 Gy). Sixty regions of interest (ROIs) were automatically identified in the non-cancerous lung tissue of each post-therapy scan. A radiologist compared post-therapy scan ROIs with pre-therapy scans and categorized each as containing no abnormality, mild abnormality, moderate abnormality, or severe abnormality. Twenty texture features that characterize gray-level intensity, region morphology, and gray-level distribution were calculated in post-therapy scan ROIs and compared with anatomically matched ROIs in the pre-therapy scan. Linear regression and receiver operating characteristic (ROC) analysis were used to compare the percent feature value change (ΔFV) between ROIs at each category of visible radiation damage. Most ROIs contained no (65%) or mild abnormality (30%). ROIs with moderate (3%) or severe (2%) abnormalities were observed in 9 patients. For 19 of 20 features, ΔFV was significantly different among severity levels. For 12 features, significant differences were observed at every level. Compared with regions with no abnormalities, ΔFV for these 12 features increased, on average, by 1.5%, 12%, and 30%, respectively, for mild, moderate, and severe abnormalitites. Area under the ROC curve was largest when comparing ΔFV in the highest severity level with the remaining three categories (mean AUC across features: 0.84). In conclusion, 19 features that characterized the severity of radiologic changes from pre-therapy scans were identified. These features may be used in future studies to quantify acute normal lung tissue damage

  8. Effective one step-iterative fiducial marker-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Maier, Andreas; Berger, Martin; Fahrig, Rebecca

    2014-03-01

    We previously introduced three different fiducial marker-based correction methods (2D projection shifting, 2D projection warping, and 3D image warping) for patients' involuntary motion in the lower body during weight-bearing Carm CT scanning. The 3D warping method performed better than 2D methods since it could more accurately take into account the lower body motion in 3D. However, as the 3D warping method applies different rotational and translational movement to the reconstructed image for each projection frame, distance-related weightings were slightly twisted and thus result in overlaying background noise over the entire image. In order to suppress background noise and artifacts (e.g. metallic marker-caused streaks), the 3D warping method has been improved by incorporating bilateral filtering and a Landwebertype iteration in one step. A series of projection images of five healthy volunteers standing at various flexion angles were acquired using a C-arm cone-beam CT system with a flat panel. A horizontal scanning trajectory of the C-arm was calibrated to generate projection matrices. Using the projection matrices, the static reference marker coordinates in 3D were estimated and used for the improved 3D warping method. The improved 3D warping method effectively reduced background noise down below the noise level of 2D methods and also eliminated metal-generated streaks. Thus, improved visibility of soft tissue structures (e.g. fat and muscle) was achieved while maintaining sharp edges at bone-tissue interfaces. Any high resolution weight-bearing cone-beam CT system can apply this method for motion compensation.

  9. Estimation of radiation dose to patients from 18FDG whole body PET/CT investigations using dynamic PET scan protocol

    PubMed Central

    Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D’Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K.; Dwarakanath, Bilikere S.

    2015-01-01

    Background & objectives: There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Methods: Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. Results: The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. Interpretation & conclusions: The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and

  10. Profiling the Local Seebeck Coefficient with Nanometer Resolution Using Scanning Thermoelectric Microscopy (SThEM)

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Hsiang; Walrath, Jenna; Goldman, Rachel

    2013-03-01

    Thermoelectric (TE) devices offer a method of recovering waste heat through solid state conversion of heat to electricity. Nanostructured thermoelectric materials may provide the key to increased efficiencies, which are sensitive to the Seebeck coefficients (S) However, traditional bulk measurement techniques can only provide a spatially averaged measurement of S over the whole sample, which can hardly investigate the effects of nanostructures on S on the nanoscale. A novel technique known as scanning thermoelectric microscopy (SThEM) has recently been developed to measure induced thermal voltages with nanometer resolution In SThEM, an unheated scanning tunneling microscopy tip acts as a high-resolution voltmeter probe to measure the thermally-induced voltage, V, in a heated sample. Here we present a local S measurement using SThEM across an InGaAs P-N junction. The thermovoltage shows an abrupt change of sign within 10 nanometers, which reveals nanometer spatial resolution. We will discuss local S measurements of AlAs/GaAs superlattices (SLs) with various SL periods and compare the local S with scanning tunneling spectroscopy measurements, which will reveal how local electronic states influence thermoelectric properties. This material is based upon work primarily supported by DOE under grant No. DE-FG02-06 and ER46339 the Department of Energy under Award Number DE-PI0000012.

  11. High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, F.; Behrendt, A.; Muppa, S. K.; Metzendorf, S.; Riede, A.; Wulfmeyer, V.

    2014-11-01

    The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) is presented. The UHOH DIAL is equipped with an injection-seeded frequency-stabilized high-power Ti:sapphire laser operated at 818 nm with a repetition rate of 250 Hz. A scanning transceiver unit with a 80 cm primary mirror receives the atmospheric backscatter signals. The system is capable of water vapor measurements with temporal resolutions of a few seconds and a range resolution between 30 and 300 m at daytime. It allows to investigate surface-vegetation-atmosphere exchange processes with high resolution. In this paper, we present the design of the instrument and illustrate its performance with recent water vapor measurements taken in Stuttgart-Hohenheim and in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE). HOPE was located near research center Jülich, in western Germany, in spring 2013 as part of the project "High Definition of Clouds and Precipitation for advancing Climate Prediction" (HD(CP)2). Scanning measurements reveal the 3-dimensional structures of the water vapor field. The influence of uncertainties within the calculation of the absorption cross-section at wavelengths around 818 nm for the WV retrieval is discussed. Radiosonde intercomparisons show a very small bias between the instruments of only (-0.04 ± 0.11) g m-3 or (-1.0 ± 2.3) % in the height range of 0.5 to 3 km.

  12. Sub-pixel analysis to support graphic security after scanning at low resolution

    NASA Astrophysics Data System (ADS)

    Haas, Bertrand; Cordery, Robert; Gou, Hongmei; Decker, Steve

    2006-02-01

    Whether in the domain of audio, video or finance, our world tends to become increasingly digital. However, for diverse reasons, the transition from analog to digital is often much extended in time, and proceeds by long steps (and sometimes never completes). One such step is the conversion of information on analog media to digital information. We focus in this paper on the conversion (scanning) of printed documents to digital images. Analog media have the advantage over digital channels that they can harbor much imperceptible information that can be used for fraud detection and forensic purposes. But this secondary information usually fails to be retrieved during the conversion step. This is particularly relevant since the Check-21 act (Check Clearing for the 21st Century act) became effective in 2004 and allows images of checks to be handled by banks as usual paper checks. We use here this situation of check scanning as our primary benchmark for graphic security features after scanning. We will first present a quick review of the most common graphic security features currently found on checks, with their specific purpose, qualities and disadvantages, and we demonstrate their poor survivability after scanning in the average scanning conditions expected from the Check-21 Act. We will then present a novel method of measurement of distances between and rotations of line elements in a scanned image: Based on an appropriate print model, we refine direct measurements to an accuracy beyond the size of a scanning pixel, so we can then determine expected distances, periodicity, sharpness and print quality of known characters, symbols and other graphic elements in a document image. Finally we will apply our method to fraud detection of documents after gray-scale scanning at 300dpi resolution. We show in particular that alterations on legitimate checks or copies of checks can be successfully detected by measuring with sub-pixel accuracy the irregularities inherently introduced

  13. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    NASA Astrophysics Data System (ADS)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  14. SU-E-CAMPUS-J-06: The Impact of CT-Scan Energy On Range Uncertainty in Proton Therapy Planning

    SciTech Connect

    Grantham, K; Li, H; Zhao, T; Klein, E

    2014-06-15

    Purpose: To investigate the impact of tube potential (kVp) on the CTnumber (HU) to proton stopping power ratio (PSPR) conversion table; the range uncertainty and the dosimetric change introduced by a mismatch in kVp between the CT and the HU to PSPR table used to calculate dose are analyzed. Methods: A CIRS CT-ED phantom was scanned with a Philips Brilliance 64-slice scanner under 90kVp and 120kVp tube potentials. Two HU to PSPR curves were then created. Using Eclipse (Varian) a treatment plan was created for a single beam in a water phantom (HU=0) passing through a wedge-shaped heterogeneity (HU=1488). The dose was recalculated by changing only the HU to PSPR table used in the dose calculation. The change in range (the distal 90% isodose line) relative to a distal structure was recorded as a function of heterogeneity thickness in the beam. To show the dosimetric impact of a mismatch in kVp between the CT and the HU to PSPR table, we repeated this procedure using a clinical plan comparing DVH data. Results: The HU to PSPR tables diverge for low-density bone and higher density structures. In the phantom plan, the divergence of the tables results in a change in range of ~1mm per cm of bone in the beam path for the HU used. For the clinical plan, a mismatch in kVp showed a 28% increase in mean dose to the brainstem along with a 10% increase in maximum dose to the brainstem center. Conclusion: A mismatch in kVp between the CT and the HU to PSPR table can introduce significant uncertainty in the proton beam range. For dense bone, the measured range uncertainty is about 1mm per cm of bone in the beam. CT-scan energy verification should be employed, particularly when high-density media is in the proton beam path.

  15. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning.

    PubMed

    Tang, Xiangyang; Hsieh, Jiang; Nilsen, Roy A; Dutta, Sandeep; Samsonov, Dmitry; Hagiwara, Akira

    2006-02-21

    Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 degrees) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK

  16. Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Shicheng, Zhang; Tong, Zhou; Xiang, Zhou; Tiankui, Guo

    2016-01-01

    Multistage fracturing of the horizontal well is recognized as the main stimulation technology for shale gas development. The hydraulic fracture geometry and stimulated reservoir volume (SRV) is interpreted by using the microseismic mapping technology. In this paper, we used a computerized tomography (CT) scanning technique to reveal the fracture geometry created in natural bedding-developed shale (cubic block of 30 cm × 30 cm × 30 cm) by laboratory fracturing. Experimental results show that partially opened bedding planes are helpful in increasing fracture complexity in shale. However, they tend to dominate fracture patterns for vertical stress difference Δ σ v ≤ 6 MPa, which decreases the vertical fracture number, resulting in the minimum SRV. A uniformly distributed complex fracture network requires the induced hydraulic fractures that can connect the pre-existing fractures as well as pulverize the continuum rock mass. In typical shale with a narrow (<0.05 mm) and closed natural fracture system, it is likely to create complex fracture for horizontal stress difference Δ σ h ≤ 6 MPa and simple transverse fracture for Δ σ h ≥ 9 MPa. However, high naturally fractured shale with a wide open natural fracture system (>0.1 mm) does not agree with the rule that low Δ σ h is favorable for uniformly creating a complex fracture network in zone. In such case, a moderate Δ σ h from 3 to 6 MPa is favorable for both the growth of new hydraulic fractures and the activation of a natural fracture system. Shale bedding, natural fracture, and geostress are objective formation conditions that we cannot change; we can only maximize the fracture complexity by controlling the engineering design for fluid viscosity, flow rate, and well completion type. Variable flow rate fracturing with low-viscosity slickwater fluid of 2.5 mPa s was proved to be an effective treatment to improve the connectivity of induced hydraulic fracture with pre-existing fractures. Moreover, the

  17. Synthesis and electroplating of high resolution insulated carbon nanotube scanning probes for imaging in liquid solutions

    PubMed Central

    Roberts, N.A.; Noh, J.H.; Lassiter, M.G.; Guo, S.; Kalinin, S.V.; Rack, P.D.

    2012-01-01

    High resolution and isolated scanning probe microscopy (SPM) is in demand for continued development of energy storage and conversion systems involving chemical reactions at the nanoscale as well as an improved understanding of biological systems. Carbon nanotubes (CNTs) have large aspect ratios and, if leveraged properly, can be used to develop high resolution SPM probes. Isolation of SPM probes can be achieved by deposited a dielectric film and selectively etching at the apex of the probe. In this paper the fabrication of a high resolution and isolated SPM tip is demonstrated using electron beam induced etching of a dielectric film deposited onto an SPM tip with an attached CNT at the apex. PMID:22433664

  18. Multi-modal CT scanning in the evaluation of cerebrovascular disease patients

    PubMed Central

    Anzidei, Michele; Piga, Mario; Ciolina, Federica; Mannelli, Lorenzo; Catalano, Carlo; Suri, Jasjit S.; Raz, Eytan

    2014-01-01

    Ischemic stroke currently represents one of the leading causes of severe disability and mortality in the Western World. Until now, angiography was the most used imaging technique for the detection of the extra-cranial and intracranial vessel pathology. Currently, however, non-invasive imaging tool like ultrasound (US), magnetic resonance (MR) and computed tomography (CT) have proven capable of offering a detailed analysis of the vascular system. CT in particular represents an advanced system to explore the pathology of carotid arteries and intracranial vessels and also offers tools like CT perfusion (CTP) that provides valuable information of the brain’s vascular physiology by increasing the stroke diagnostic. In this review, our purpose is to discuss stroke risk prediction and detection using CT. PMID:25009794

  19. High-resolution sagittal and coronal reformatted CT images of the larynx

    SciTech Connect

    Silverman, P.M.; Johnson, G.A.; Korobkin, M.

    1983-04-01

    Computed tomography has become the major technique for evaluation of patients with laryngeal corcinoma and trauma to the larynx. The routine examination usually consists of 5 mm contiguous selection through the larynx in quiet respiration. Reformatted images obtained from these sections have not been of clinical value, in part because of the poor resolution of these images. In the past, thin-section scanning (1.5 mm collimation) has been impractical because of the significant time required to scan the entire larynx. By using the technique of rapid sequential scanning with automated table incrementation this logistic difficulty can be overcome, and the total thin-section examination may be performed in less than 9 min. Sophisticated computer software allows rapid reformatting of transaxial images in sagittal and coronal planes. This report illustates the normal and abnormal appearance of the larynx on coronal and sagittal reformatted images and compares reformatted images using the routine technique to those using the thin-section technique.

  20. SU-E-I-60: The Correct Selection of Pitch and Rotation Time for Optimal CT Scanning : The Big Misconception

    SciTech Connect

    Ranallo, F; Szczykutowicz, T

    2014-06-01

    Purpose: To provide correct guidance in the proper selection of pitch and rotation time for optimal CT imaging with multi-slice scanners. Methods: There exists a widespread misconception concerning the role of pitch in patient dose with modern multi-slice scanners, particularly with the use of mA modulation techniques. We investigated the relationship of pitch and rotation time to image quality, dose, and scan duration, with CT scanners from different manufacturers in a way that clarifies this misconception. This source of this misconception may concern the role of pitch in single slice CT scanners. Results: We found that the image noise and dose are generally independent of the selected effective mAs (mA*time/ pitch) with manual mA technique settings and are generally independent of the selected pitch and /or rotation time with automatic mA modulation techniques. However we did find that on certain scanners the use of a pitch just above 0.5 provided images of equal image noise at a lower dose compared to the use of a pitch just below 1.0. Conclusion: The misconception that the use of a lower pitch over-irradiates patients by wasting dose is clearly false. The use of a lower pitch provides images of equal or better image quality at the same patient dose, whether using manual mA or automatic mA modulation techniques. By decreasing the pitch and the rotation times by equal amounts, both helical and patient motion artifacts can be reduced without affecting the exam time. The use of lower helical pitch also allows better scanning of larger patients by allowing a greater scan effective mAs, if the exam time can be extended. The one caution with the use of low pitch is not related to patient dose, but to the length of the scan time if the rotation time is not set short enough. Partial Research funding from GE HealthCare.

  1. A computerized scheme for localization of vertebral bodies on body CT scans

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuro; Chen, Huayue; Miyamoto, Kei; Zhou, Xiangrong; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2011-03-01

    The multidetector row computed tomography (MDCT) method has the potential to be used for quantitative analysis of osteoporosis with higher accuracy and precision than that provided by conventional two-dimensional methods. It is desirable to develop a computer-assisted scheme for analyzing vertebral geometry using body CT images. The aim of this study was to design a computerized scheme for the localization of vertebral bodies on body CT images. Our new scheme involves the following steps: (i) Re-formation of CT images on the basis of the center line of the spinal canal to visually remove the spinal curvature, (ii) use of information on the position of the ribs relative to the vertebral bodies, (iii) the construction of a simple model on the basis of the contour of the vertebral bodies on CT sections, and (iv) the localization of individual vertebral bodies by using a template matching technique. The proposed scheme was applied to 104 CT cases, and its performance was assessed using the Hausdorff distance. The average Hausdorff distance of T2-L5 was 4.3 mm when learning models with 100 samples were used. On the other hand, the average Hausdorff distance with 10 samples was 5.1 mm. The results of our assessments confirmed that the proposed scheme could provide the location of individual vertebral bodies. Therefore, the proposed scheme may be useful in designing a computer-based application that analyzes vertebral geometry on body CT images.

  2. Variation of patient imaging doses with scanning parameters for linac-integrated kilovoltage cone beam CT.

    PubMed

    Liao, Xiongfei; Wang, Yunlai; Lang, Jinyi; Wang, Pei; Li, Jie; Ge, Ruigang; Yang, Jack

    2015-01-01

    To evaluate the Elekta kilovoltage CBCT doses and the associated technical protocols with patient dosimetry estimation. Image guidance technique with cone-beam CT (CBCT) in radiation oncology on a daily basis can deliver a significant dose to the patient. To evaluate the patient dose from LINAC-integrated kV cone beam CT imaging in image-guided radiotherapy. CT dose index (CTDI) were measured with PTW TM30009 CT ion chamber in air, in head phantom and body phantom, respectively; with different combinations of tube voltage, current, exposure time per frame, collimator and gantry rotation range. Dose length products (DLP) were subsequently calculated to account for volume integration effects. The CTDI and DLP were also compared to AcQSim™ simulator CT for routine clinical protocols. Both CTDIair and CTDIw depended quadratically on the voltage, while linearly on milliampere x seconds (mAs) settings. It was shown that CTDIw and DLP had very close relationship with the collimator settings and the gantry rotation ranges. Normalized CTDIw for Elekta XVI™ CBCT was lower than that of ACQSim simulator CT owing to its pulsed radiation output characteristics. CTDIw can be used to assess the patient dose in CBCT due to its simplicity for measurement and reproducibility. Regular measurement should be performed in QA & QC program. Optimal image parameters should be chosen to reduce patient dose during CBCT. PMID:26405932

  3. Computer tomographic imaging and anatomic correlation of the human brain: A comparative atlas of thin CT-scan sections and correlated neuro-anatomic preparations

    SciTech Connect

    Plets, C.; Baert, A.L.; Nijs, G.L.; Wilms, G.

    1986-01-01

    It is of the greatest importance to the radiologist, the neurologist and the neurosurgeon to be able to localize topographically a pathological brain process on the CT scan as precisely as possible. For that purpose, the identification of as many anatomical structures as possible on the CT scan image are necessary and indispensable. In this atlas a great number of detailed anatomical data on frontal horizontal CT scan sections, each being only 2 mm thick, are indicated, e.g. the cortical gyri, the basal ganglia, details of the white matter, extracranial muscles and blood vessels, parts of the base and the vault of the skull, etc. The very precise topographical description of the numerous CT scan images was realized by the author by confrontation of these images with the corresponding anatomical sections of the same brain specimen, performed by an original technique.

  4. Bone vascularization and bone micro-architecture characterizations according to the μCT resolution

    NASA Astrophysics Data System (ADS)

    Crauste, E.; Autrusseau, F.; Guédon, Jp.; Pilet, P.; Amouriq, Y.; Weiss, P.; Giumelli, B.

    2015-03-01

    Trabecular bone and its micro-architecture are of prime importance for health. Changes of bone micro-architecture are linked to different pathological situations like osteoporosis and begin now to be understood. In a previous paper [12], we started to investigate the relationships between bone and vessels and proposed some indices of characterization for the vessels issued from those used for the bone. Our main objective in this paper is to qualify the classical values used for bone as well as those we proposed for vessels according to different acquisition parameters and for several thresholding methods used to separate bone vessels and background. This study is also based on vessels perfusion by a contrast agent (barium sulfate mixed with gelatin) before euthanasia on rats. Femurs and tibias as well as mandibles were removed after rat's death and were imaged by microCT (Skyscan 1272, Bruker, Belgium) with a resolution ranging from 18 to 3μm. The so obtained images were analyzed with various softwares (NRecon Reconstruction, CtAn, and CtVox from Bruker) in order to calculate bone and vessels micro-architecture parameters (density of bone/blood within the volume), and to know if the results both for bone and vascular micro-architecture are constant along the chosen pixel resolution. The result is clearly negative. We found a very different characterization both for bone and vessels with the 3μm acquisition. Tibia and mandibles bones were also used to show results that can be visually assessed. The largest portions of the vascular tree are orthogonal to the obtained slices of the bone. Therefore, the contrast agent appears as cylinders of various sizes.

  5. SCAN+

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  6. High-resolution, high-throughput imaging with a multibeam scanning electron microscope

    PubMed Central

    EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D

    2015-01-01

    Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873

  7. Contrast Enhancement of MicroCT Scans to Aid 3D Modelling of Carbon Fibre Fabric Composites

    NASA Astrophysics Data System (ADS)

    Djukic, Luke P.; Pearce, Garth M.; Herszberg, Israel; Bannister, Michael K.; Mollenhauer, David H.

    2013-12-01

    This paper presents a methodology for volume capture and rendering of plain weave and multi-layer fabric meso-architectures within a consolidated, cured laminate. Micro X-ray Computed Tomography (MicroCT) is an excellent tool for the non-destructive visualisation of material microstructures however the contrast between tows and resin is poor for carbon fibre composites. Firstly, this paper demonstrates techniques to improve the contrast of the microCT images by introducing higher density materials such as gold, iodine and glass into the fabric. Two approaches were demonstrated to be effective for enhancing the differentiation between the tows in the reconstructed microCT visualisations. Secondly, a method of generating three-dimensional volume models of woven composites using microCT scan data is discussed. The process of generating a model is explained from initial manufacture with the aid of an example plain weave fabric. These methods are to be used in the finite element modelling of three-dimensional fabric preforms in future work.

  8. Application of the Semi-Empirical Force-Limiting Approach for the CoNNeCT SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Staab, Lucas D.; McNelis, Mark E.; Akers, James C.; Suarez, Vicente J.; Jones, Trevor M.

    2012-01-01

    The semi-empirical force-limiting vibration method was developed and implemented for payload testing to limit the structural impedance mismatch (high force) that occurs during shaker vibration testing. The method has since been extended for use in analytical models. The Space Communications and Navigation Testbed (SCAN Testbed), known at NASA as, the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT), project utilized force-limiting testing and analysis following the semi-empirical approach. This paper presents the steps in performing a force-limiting analysis and then compares the results to test data recovered during the CoNNeCT force-limiting random vibration qualification test that took place at NASA Glenn Research Center (GRC) in the Structural Dynamics Laboratory (SDL) December 19, 2010 to January 7, 2011. A compilation of lessons learned and considerations for future force-limiting tests is also included.

  9. Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants.

    PubMed

    Castro, Alfonso; Rey, Alberto; Boveda, Carmen; Arcay, Bernardino; Sanjurjo, Pedro

    2016-01-01

    The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium).

  10. Application of the Semi-Empirical Force-Limiting Approach for the CoNNeCT SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Staab, Lucas; McNelis, Mark; Jones, Trevor; Suarez, Vicente; Akers, James

    2011-01-01

    The semi-empirical force-limited vibration method was developed and implemented for payload testing to limit the structural impedance mismatch (high force) that occurs during shaker vibration testing. The method has since been extended for use in analytical models. The Space Communications and Navigation Testbed (SCAN Testbed), known at NASA Glenn Research Center (GRC) as, the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) project utilized force-limited testing and analysis following the semi-empirical approach. This presentation presents the steps in performing a force-limited analysis and then compares the results to test data recovered during the CoNNeCT force-limited random vibration qualification test that took place at NASA Glenn Research Center (GRC) in the Structural Dynamics Laboratory (SDL) December 19, 2010 - January 7, 2011. A compilation of lessons learned and considerations for future force-limited tests is also included.

  11. Construction of Abdominal Probabilistic Atlases and Their Value in Segmentation of Normal Organs in Abdominal CT Scans

    NASA Astrophysics Data System (ADS)

    Park, Hyunjin; Hero, Alfred; Bland, Peyton; Kessler, Marc; Seo, Jongbum; Meyer, Charles

    A good abdominal probabilistic atlas can provide important information to guide segmentation and registration applications in the abdomen. Here we build and test probabilistic atlases using 24 abdominal CT scans with available expert manual segmentations. Atlases are built by picking a target and mapping other training scans onto that target and then summing the results into one probabilistic atlas. We improve our previous abdominal atlas by 1) choosing a least biased target as determined by a statistical tool, i.e. multidimensional scaling operating on bending energy, 2) using a better set of control points to model the deformation, and 3) using higher information content CT scans with visible internal liver structures. One atlas is built in the least biased target space and two atlases are built in other target spaces for performance comparisons. The value of an atlas is assessed based on the resulting segmentations; whichever atlas yields the best segmentation performance is considered the better atlas. We consider two segmentation methods of abdominal volumes after registration with the probabilistic atlas: 1) simple segmentation by atlas thresholding and 2) application of a Bayesian maximum a posteriori method. Using jackknifing we measure the atlas-augmented segmentation performance with respect to manual expert segmentation and show that the atlas built in the least biased target space yields better segmentation performance than atlases built in other target spaces.

  12. The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens.

    PubMed

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-06-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as a function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as a function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens.

  13. Scanning electron microscopic analysis of skin resolution as an aid in identifying trauma in forensic investigations.

    PubMed

    Rawson, R B; Starich, G H; Rawson, R D

    2000-09-01

    The forensic investigator is frequently confronted with cases that present with wounds and blunt force trauma. Presently, the forensic investigator depends upon previous experience and further investigative deduction of the crime scene to analyze these injuries. Although not readily apparent to the naked eye, many skin tissue injuries can be visualized with scanning electron microscopy (SEM). This study was designed to establish skin trauma resolution using SEM in various skin preparations. Tissue trauma was induced on leather, preserved skin, fresh skin, and living skin using dies of varying thread size. Calibrated pressure forces in pounds per square inch (psi) were applied and impressions made using vinyl polysiloxane. Positive replicas of the tissues were prepared for SEM using isocyanate resin. After sputter coating the cast with 35 nm of gold-palladium, electron micrographs were generated using a Jeol JSM-5310LV scanning electron microscope. To establish resolution, thread widths of 52, 104, and 208 threads per inch (tpi) and trauma forces of 150, 200, and 250 psi were used to produce the impressions. Microgrooves that were identified on the die threads were analyzed. The optimum pressure for resolution studies was 150 psi using the 52 tpi die on the leather sample (4.67 +/- 0.88 microm, p = 0.046 and 0.025, respectively, by ANOVA). The resolution was compared to that of leather using preserved, fresh, and living skin. The resolution in preserved and fresh skin was less than for leather (9.00 +/- 1.73 and 10.5 +/- 4.5 versus 4.67 +/- 0.88 microm, p = 0.09 and p = 0.20, respectively). Living skin resolution was 3 microm at 52 tpi and 100 psi. Various implements of blunt force trauma were also examined using the leather sample. Time after trauma resolution was examined at 0 (3 microm), 5 (6 microm), 10 (8 microm), and 20 (9 microm) min in living tissue. A comparison between the microgrooves on the die replicas and the tissue trauma impressions revealed striking

  14. Evaluation of exposure dose reduction in multislice CT coronary angiography (MS-CTA) with prospective ECG-gated helical scan

    NASA Astrophysics Data System (ADS)

    Ota, Takamasa; Tsuyuki, Masaharu; Okumura, Miwa; Sano, Tomonari; Kondo, Takeshi; Takase, Shinichi

    2008-03-01

    A novel low-dose ECG-gated helical scan method to investigate coronary artery diseases was developed. This method uses a high pitch for scanning (based on the patient's heart rate) and X-rays are generated only during the optimal cardiac phases. The dose reduction was obtained using a two-level approach: 1) To use a 64-slice CT scanner (Aquilion, Toshiba, Otawara, Tochigi, Japan) with a scan speed of 0.35 s/rot. to helically scan the heart at a high pitch based on the patient's heart rate. By changing the pitch from the conventional 0.175 to 0.271 for a heart rate of 60 bpm, the exposure dose was reduced to 65%. 2) To employ tube current gating that predicts the timing of optimal cardiac phases from the previous cardiac cycle and generates X-rays only during the required cardiac phases. The combination of high speed scanning with a high pitch and appropriate X-ray generation only in the cardiac phases from 60% to 90% allows the exposure dose to be reduced to 5.6 mSv for patients with a heart rate lower than 65 bpm. This is a dose reduction of approximately 70% compared to the conventional scanning method recommended by the manufacturer when segmental reconstruction is considered. This low-dose protocol seamlessly allows for wide scan ranges (e.g., aortic dissection) with the benefits of ECG-gated helical scanning: smooth continuity for longitudinal direction and utilization of data from all cardiac cycles.

  15. Intracranial lesions shown by CT scans in 259 cases of first alcohol-related seizures.

    PubMed

    Earnest, M P; Feldman, H; Marx, J A; Harris, J A; Biletch, M; Sullivan, L P

    1988-10-01

    We obtained CTs in 259 patients with a first alcohol-related convulsion. Each subject had generalized convulsions, recent abstinence from alcohol abuse, and no obvious etiology for seizures other than alcohol withdrawal. Patients with only focal seizures, major head injury, coma, or a severe toxic-metabolic disorder were excluded. We recorded history and signs of minor head injury, presence of headache, level of consciousness, neurologic signs, routine medical examination findings, and subsequent clinical course. Sixteen patients (6.2%) had intracranial lesions on CT. Eight had subdural hematomas or hygromas, two had vascular malformations, two had neurocysticercosis, and one each showed a Berry aneurysm, possible tumor, skull fracture with subarachnoid hemorrhage, and probable cerebral infarction. In ten cases (3.9%), clinical management was altered because of the CT result. History or signs of minor head trauma, headache, level of consciousness, or focal neurologic signs did not significantly correlate with CT abnormality.

  16. Unraveling the hydrodynamics of split root water uptake experiments using CT scanned root architectures and three dimensional flow simulations

    PubMed Central

    Koebernick, Nicolai; Huber, Katrin; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry; Vetterlein, Doris

    2015-01-01

    Split root experiments have the potential to disentangle water transport in roots and soil, enabling the investigation of the water uptake pattern of a root system. Interpretation of the experimental data assumes that water flow between the split soil compartments does not occur. Another approach to investigate root water uptake is by numerical simulations combining soil and root water flow depending on the parameterization and description of the root system. Our aim is to demonstrate the synergisms that emerge from combining split root experiments with simulations. We show how growing root architectures derived from temporally repeated X-ray CT scanning can be implemented in numerical soil-plant models. Faba beans were grown with and without split layers and exposed to a single drought period during which plant and soil water status were measured. Root architectures were reconstructed from CT scans and used in the model R-SWMS (root-soil water movement and solute transport) to simulate water potentials in soil and roots in 3D as well as water uptake by growing roots in different depths. CT scans revealed that root development was considerably lower with split layers compared to without. This coincided with a reduction of transpiration, stomatal conductance and shoot growth. Simulated predawn water potentials were lower in the presence of split layers. Simulations showed that this was related to an increased resistance to vertical water flow in the soil by the split layers. Comparison between measured and simulated soil water potentials proved that the split layers were not perfectly isolating and that redistribution of water from the lower, wetter compartments to the drier upper compartments took place, thus water losses were not equal to the root water uptake from those compartments. Still, the layers increased the resistance to vertical flow which resulted in lower simulated collar water potentials that led to reduced stomatal conductance and growth. PMID

  17. Skeletal idiopathic osteosclerosis helps to perform personal identification of unknown decedents: A novel contribution from anatomical variants through CT scan.

    PubMed

    De Angelis, D; Gibelli, D; Palazzo, E; Sconfienza, L; Obertova, Z; Cattaneo, C

    2016-07-01

    Personal identification consists of the comparison of ante-mortem information from a missing person with post-mortem data obtained from an unidentified corpse. Such procedure is based on the assessment of individualizing features which may help in providing a conclusive identification between ante-mortem and post-mortem material. Anatomical variants may provide important clues to correctly identify human remains. Areas of idiopathic osteosclerosis (IO), or dense bone islands (DBIs) characterized by radiopaque areas of dense, trabeculated, non-inflamed vital bone represent one of these, potentially individualizing, anatomical features. This study presents a case where the finding of DBI was crucial for a positive identification through CT-scan. A decomposed body was found in an apartment in June 2014 in advanced decomposition and no dental records were available to perform a comparison for positive identification. Genetic tests were not applicable because of the lack of relatives in a direct line. The analysis of the only ante-mortem documentation, a CT-scan to the deceased dating back to August 2009, showed the presence of three DBIs within the trabecular bone of the proximal portion of the right femur. The same bony district was removed from the corpse during the autopsy and analysed by CT-scan, which verified the presence of the same features. Forensic practitioners should therefore be aware of the great importance of anatomical bone variants, such as dense bone islands for identification purposes, and the importance of advanced radiological technique for addressing the individualizing potential of such variants. We propose that anatomical variants of the human skeleton should be considered as being "primary identification characteristics" similar to dental status, fingerprints and DNA. PMID:27320398

  18. Skeletal idiopathic osteosclerosis helps to perform personal identification of unknown decedents: A novel contribution from anatomical variants through CT scan.

    PubMed

    De Angelis, D; Gibelli, D; Palazzo, E; Sconfienza, L; Obertova, Z; Cattaneo, C

    2016-07-01

    Personal identification consists of the comparison of ante-mortem information from a missing person with post-mortem data obtained from an unidentified corpse. Such procedure is based on the assessment of individualizing features which may help in providing a conclusive identification between ante-mortem and post-mortem material. Anatomical variants may provide important clues to correctly identify human remains. Areas of idiopathic osteosclerosis (IO), or dense bone islands (DBIs) characterized by radiopaque areas of dense, trabeculated, non-inflamed vital bone represent one of these, potentially individualizing, anatomical features. This study presents a case where the finding of DBI was crucial for a positive identification through CT-scan. A decomposed body was found in an apartment in June 2014 in advanced decomposition and no dental records were available to perform a comparison for positive identification. Genetic tests were not applicable because of the lack of relatives in a direct line. The analysis of the only ante-mortem documentation, a CT-scan to the deceased dating back to August 2009, showed the presence of three DBIs within the trabecular bone of the proximal portion of the right femur. The same bony district was removed from the corpse during the autopsy and analysed by CT-scan, which verified the presence of the same features. Forensic practitioners should therefore be aware of the great importance of anatomical bone variants, such as dense bone islands for identification purposes, and the importance of advanced radiological technique for addressing the individualizing potential of such variants. We propose that anatomical variants of the human skeleton should be considered as being "primary identification characteristics" similar to dental status, fingerprints and DNA.

  19. Assessment of the uncertainty budget and image resolution of terrestrial laser scans of geomorphic surfaces

    NASA Astrophysics Data System (ADS)

    Shilpakar, Prabin

    Terrestrial Laser Scanner (TLS) images provide assessment of geomorphic surfaces at a centimeter scale, but for quantitative analysis require understanding of the uncertainty budget and the limit of image resolution. We conducted two experiments to assess contributions of instrumental, georeferencing, and surface modeling methods to the uncertainty budget and to establish the relation between reference network uncertainty and the repeatability and resolution of imaged natural surfaces. A combination of Riegl LMS-Z620 and LPM-800HA instruments were used to image fault scarps and erosional ravines in Panamint Valley and the San Gabriel Mountains of California, respectively. In both experiments, a control network of reflectors was surveyed using a Total Station (TS) and georeferenced with the Global Navigation Satellite System (GNSS) in Real Time Kinematic (RTK) and Static (S) modes in the first and second experiment, respectively. For successive scans, we tested the impact of using a fixed network of control reflectors and scan positions versus using variable scan positions in a fixed reflector network and variable scan and reflector network configurations. The geometry of the reflector network in both experiments was established using a TS to within +/- 0.005 m and in addition to +/- 0.006 m using S-GNSS occupations during second experiment. TLS repeatability in a local frame is +/- 0.028 m, with uncertainty increasing to +/- 0.032 m and +/- 0.038 m using S-GNSS and RTK-GNSS, respectively. Point-cloud interpolation, where vegetation effects were mitigated, contributed +/- 0.01 m to the total error budget. We document that the combined uncertainty for the reference network and surface interpolation represents the repeatability of an imaged natural surface.

  20. Radiation-induced osteosarcoma might mimic metastatic bone lesions: a case with bone scan and FDG PET/CT imaging.

    PubMed

    Koyama, Masamichi; Koizumi, Mitsuru; Umayahara, Kenji; Takeshima, Nobuhiro; Takahashi, Shunji

    2015-05-01

    We report on a 53-year-old woman with osteosarcoma of the skull who underwent radiation therapy for metastatic brain tumor. She had a history of uterine endometrial cancer treated with chemotherapy and surgery 9 years previously. FDG PET/CT for surveillance showed nodular accumulation at the right suprainguinal region and very avid accumulation at the left side of the occipital bone. Bone scan showed increased accumulation at the same portion of the occipital bone. The occipital tumor was surgically removed and diagnosed as radiation-induced osteosarcoma.

  1. Chemical imaging of single catalyst particles with scanning μ-XANES-CT and μ-XRF-CT.

    PubMed

    Price, S W T; Ignatyev, K; Geraki, K; Basham, M; Filik, J; Vo, N T; Witte, P T; Beale, A M; Mosselmans, J F W

    2015-01-01

    The physicochemical state of a catalyst is a key factor in determining both activity and selectivity; however these materials are often not structurally or compositionally homogeneous. Here we report on the 3-dimensional imaging of an industrial catalyst, Mo-promoted colloidal Pt supported on carbon. The distribution of both the active Pt species and Mo promoter have been mapped over a single particle of catalyst using microfocus X-ray fluorescence computed tomography. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure revealed a mixed local coordination environment, including the presence of both metallic Pt clusters and Pt chloride species, but also no direct interaction between the catalyst and Mo promoter. We also report on the benefits of scanning μ-XANES computed tomography for chemical imaging, allowing for 2- and 3-dimensional mapping of the local electronic and geometric environment, in this instance for both the Pt catalyst and Mo promoter throughout the catalyst particle.

  2. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber

    PubMed Central

    Papadopoulos, Ioannis N.; Farahi, Salma; Moser, Christophe; Psaltis, Demetri

    2013-01-01

    We propose and experimentally demonstrate an ultra-thin rigid endoscope (450 μm diameter) based on a passive multimode optical fiber. We use digital phase conjugation to overcome the modal scrambling of the fiber to tightly focus and scan the laser light at its distal end. By exploiting the maximum number of modes available, sub-micron resolution, high quality fluorescence images of neuronal cells were acquired. The imaging system is evaluated in terms of fluorescence collection efficiency, resolution and field of view. The small diameter of the proposed endoscope, along with its high quality images offer an opportunity for minimally invasive medical endoscopic imaging and diagnosis based on cellular phenotype via direct tissue penetration. PMID:23411747

  3. Multi-dimensional dopant profiling with atomic resolution by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Lequn

    Due to the random nature of ion implantation, dopant diffusion, and other processes involved in the doping of silicon devices, the dopant density in shallow junctions and short channels is subject to stochastic variations, which translate directly into variations in device behavior. Dopant profilers with nanometer scale or even atomic scale resolution are needed to properly measure these dopant fluctuations. This thesis presents a new approach for two- and three-dimensional dopant profiling with atomic resolution on the Si(100) surface by scanning tunneling microscopy (STM). The lack of surface states within the band gap of the perfect Si(100)2x1:H surface opens the way to STM studies of dopant distributions in Si(100). STM topographic images, dI/dV images and current image tunneling spectroscopy (CITS) were acquired across the lateral PN junctions of Si devices. Two-dimensional dopant (carrier) profiles were extracted from CITS data with 5A resolution. Moreover, the N and P type dopant induced features were observed in filled state and empty state STM images. The donor (Arsenic) induced feature appears as a protrusion in both the filled and empty state images, while the acceptor (Boron) induced feature appears as a hillock in the filled state image and a depression in the empty state image. The bias dependence, depth dependence and dopant concentration dependence of the dopant induced features were investigated in detail. Based on scattering theory, the numerical calculation was performed to achieve a fundamental understanding of dopant induced features, and the calculation results were in qualitative agreement with the experimental observations. The potential application of this study for 3D dopant profiling with atomic resolution on both P and N type samples is discussed, and the optimal scanning conditions are also suggested. This work reveals the real physical picture of randomly distributed dopants and may be useful to verify and calibrate TCAD simulators.

  4. 1975 Memorial Award Paper. Image generation and display techniques for CT scan data. Thin transverse and reconstructed coronal and sagittal planes.

    PubMed

    Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J

    1975-01-01

    The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.

  5. Motion artifacts occurring at the lung/diaphragm interface using 4D CT attenuation correction of 4D PET scans.

    PubMed

    Killoran, Joseph H; Gerbaudo, Victor H; Mamede, Marcelo; Ionascu, Dan; Park, Sang-June; Berbeco, Ross

    2011-11-15

    For PET/CT, fast CT acquisition time can lead to errors in attenuation correction, particularly at the lung/diaphragm interface. Gated 4D PET can reduce motion artifacts, though residual artifacts may persist depending on the CT dataset used for attenuation correction. We performed phantom studies to evaluate 4D PET images of targets near a density interface using three different methods for attenuation correction: a single 3D CT (3D CTAC), an averaged 4D CT (CINE CTAC), and a fully phase matched 4D CT (4D CTAC). A phantom was designed with two density regions corresponding to diaphragm and lung. An 8 mL sphere phantom loaded with 18F-FDG was used to represent a lung tumor and background FDG included at an 8:1 ratio. Motion patterns of sin(x) and sin4(x) were used for dynamic studies. Image data was acquired using a GE Discovery DVCT-PET/CT scanner. Attenuation correction methods were compared based on normalized recovery coefficient (NRC), as well as a novel quantity "fixed activity volume" (FAV) introduced in our report. Image metrics were compared to those determined from a 3D PET scan with no motion present (3D STATIC). Values of FAV and NRC showed significant variation over the motion cycle when corrected by 3D CTAC images. 4D CTAC- and CINE CTAC-corrected PET images reduced these motion artifacts. The amount of artifact reduction is greater when the target is surrounded by lower density material and when motion was based on sin4(x). 4D CTAC reduced artifacts more than CINE CTAC for most scenarios. For a target surrounded by water equivalent material, there was no advantage to 4D CTAC over CINE CTAC when using the sin(x) motion pattern. Attenuation correction using both 4D CTAC or CINE CTAC can reduce motion artifacts in regions that include a tissue interface such as the lung/diaphragm border. 4D CTAC is more effective than CINE CTAC at reducing artifacts in some, but not all, scenarios.

  6. Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy.

    PubMed

    Kennedy, Eamonn; Nelson, Edward M; Tanaka, Tetsuya; Damiano, John; Timp, Gregory

    2016-02-23

    It is now possible to visualize at nanometer resolution the infection of a living biological cell with virus without compromising cell viability using scanning transmission electron microscopy (STEM). To provide contrast while preserving viability, Escherichia coli and P1 bacteriophages were first positively stained with a very low concentration of uranyl acetate in minimal phosphate medium and then imaged with low-dose STEM in a microfluidic liquid flow cell. Under these conditions, it was established that the median lethal dose of electrons required to kill half the tested population was LD50 = 30 e(-)/nm(2), which coincides with the disruption of a wet biological membrane, according to prior reports. Consistent with the lateral resolution and high-contrast signal-to-noise ratio (SNR) inferred from Monte Carlo simulations, images of the E. coli membrane, flagella, and the bacteriophages were acquired with 5 nm resolution, but the cumulative dose exceeded LD50. On the other hand, with a cumulative dose below LD50 (and lower SNR), it was still possible to visualize the infection of E. coli by P1, showing the insertion of viral DNA within 3 s, with 5 nm resolution.

  7. Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy.

    PubMed

    Kennedy, Eamonn; Nelson, Edward M; Tanaka, Tetsuya; Damiano, John; Timp, Gregory

    2016-02-23

    It is now possible to visualize at nanometer resolution the infection of a living biological cell with virus without compromising cell viability using scanning transmission electron microscopy (STEM). To provide contrast while preserving viability, Escherichia coli and P1 bacteriophages were first positively stained with a very low concentration of uranyl acetate in minimal phosphate medium and then imaged with low-dose STEM in a microfluidic liquid flow cell. Under these conditions, it was established that the median lethal dose of electrons required to kill half the tested population was LD50 = 30 e(-)/nm(2), which coincides with the disruption of a wet biological membrane, according to prior reports. Consistent with the lateral resolution and high-contrast signal-to-noise ratio (SNR) inferred from Monte Carlo simulations, images of the E. coli membrane, flagella, and the bacteriophages were acquired with 5 nm resolution, but the cumulative dose exceeded LD50. On the other hand, with a cumulative dose below LD50 (and lower SNR), it was still possible to visualize the infection of E. coli by P1, showing the insertion of viral DNA within 3 s, with 5 nm resolution. PMID:26811950

  8. A Novel Scanning Near-Field Microwave Microscope Capable of High Resolution Loss Imaging

    NASA Astrophysics Data System (ADS)

    Imtiaz, Atif; Anlage, Steven

    2004-03-01

    To study novel physics in condensed matter and materials science, experimental techniques need to be pushed to the limit of better sensitivity and higher spatial resolution. Classical techniques of probing the high frequency electrical properties of materials are limited in resolution to the wavelength of the incident electromagnetic wave. We report here a novel near-field microscope that is capable of operation at radio and microwave frequencies[1]. These experiments are performed with a version of the near-field microwave microscope that has integrated STM-feedback for distance control. When used in the scanning capacitance mode this instrument has a spatial resolution of 2.5 nm. Our objective is to image materials contrast at microwave frequencies and improve the spatial resolution in local loss imaging. We will present evidence of sheet resistance contrast in a Boron-doped Silicon samples on sub-micron length scales. We will present quantitative analysis of the data in light of transmission line and lumped element models of the microscope that we have developed. The microscope is an attractive platform for measuring local losses and local nonlinear properties of a rich variety of condensed matter systems, such as correlated-electron systems. [1] Atif Imtiaz and Steven M. Anlage, "A novel STM-assisted microwave microscope with capacitance and loss imaging capability", Ultramicroscopy 94, 209-216 (2003).

  9. Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France

    PubMed Central

    Journy, N; Rehel, J-L; Ducou Le Pointe, H; Lee, C; Brisse, H; Chateil, J-F; Caer-Lorho, S; Laurier, D; Bernier, M-O

    2015-01-01

    Background: Recent epidemiological results suggested an increase of cancer risk after receiving computed tomography (CT) scans in childhood or adolescence. Their interpretation is questioned due to the lack of information about the reasons for examination. Our objective was to estimate the cancer risk related to childhood CT scans, and examine how cancer-predisposing factors (PFs) affect assessment of the radiation-related risk. Methods: The cohort included 67 274 children who had a first scan before the age of 10 years from 2000 to 2010 in 23 French departments. Cumulative X-rays doses were estimated from radiology protocols. Cancer incidence was retrieved through the national registry of childhood cancers; PF from discharge diagnoses. Results: During a mean follow-up of 4 years, 27 cases of tumours of the central nervous system, 25 of leukaemia and 21 of lymphoma were diagnosed; 32% of them among children with PF. Specific patterns of CT exposures were observed according to PFs. Adjustment for PF reduced the excess risk estimates related to cumulative doses from CT scans. No significant excess risk was observed in relation to CT exposures. Conclusions: This study suggests that the indication for examinations, whether suspected cancer or PF management, should be considered to avoid overestimation of the cancer risks associated with CT scans. PMID:25314057

  10. [Bone scanning with sodium 18F-fluoride PET and PET/CT. German guideline Version 1.0.].

    PubMed

    Hellwig, D; Krause, B-J; Schirrmeister, H; Freesmeyer, M

    2010-01-01

    In nuclear medicine, bone scanning is based on the principle of scintigraphy using bone-seeking radiopharmaceuticals which accumulate in sites of increased bone formation. From a historical point of view, (18)F-fluoride was one of the first osteotropic tracers which was replaced by (99m)Tc-labelled polyphosphonates. With the development of modern PET equipment the superior diagnostic performance of (18)F-fluoride PET for the detection and characterization of osseous lesions was proven in comparison to conventional bone scanning. Recently, its importance as a substitute of conventional skeletal scintigraphy increased in a time with limited availability of (99)Mo/(99m)Tc. To ensure health care during this period, (18)F-fluoride PET currently became part of common outpatient care. This guideline comprehends recommendations on indications, protocols, interpretation and reporting of (18)F-fluoride PET and PET/CT. PMID:20838734

  11. Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique

    SciTech Connect

    Wang Jiahui; Engelmann, Roger; Li Qiang

    2007-12-15

    Accurate segmentation of pulmonary nodules in computed tomography (CT) is an important and difficult task for computer-aided diagnosis of lung cancer. Therefore, the authors developed a novel automated method for accurate segmentation of nodules in three-dimensional (3D) CT. First, a volume of interest (VOI) was determined at the location of a nodule. To simplify nodule segmentation, the 3D VOI was transformed into a two-dimensional (2D) image by use of a key 'spiral-scanning' technique, in which a number of radial lines originating from the center of the VOI spirally scanned the VOI from the 'north pole' to the 'south pole'. The voxels scanned by the radial lines provided a transformed 2D image. Because the surface of a nodule in the 3D image became a curve in the transformed 2D image, the spiral-scanning technique considerably simplified the segmentation method and enabled reliable segmentation results to be obtained. A dynamic programming technique was employed to delineate the 'optimal' outline of a nodule in the 2D image, which corresponded to the surface of the nodule in the 3D image. The optimal outline was then transformed back into 3D image space to provide the surface of the nodule. An overlap between nodule regions provided by computer and by the radiologists was employed as a performance metric for evaluating the segmentation method. The database included two Lung Imaging Database Consortium (LIDC) data sets that contained 23 and 86 CT scans, respectively, with 23 and 73 nodules that were 3 mm or larger in diameter. For the two data sets, six and four radiologists manually delineated the outlines of the nodules as reference standards in a performance evaluation for nodule segmentation. The segmentation method was trained on the first and was tested on the second LIDC data sets. The mean overlap values were 66% and 64% for the nodules in the first and second LIDC data sets, respectively, which represented a higher performance level than those of two

  12. Automated bone removal in CT angiography: Comparison of methods based on single energy and dual energy scans

    SciTech Connect

    Straten, Marcel van; Schaap, Michiel; Dijkshoorn, Marcel L.; Greuter, Marcel J.; Lugt, Aad van der; Krestin, Gabriel P.; Niessen, Wiro J.

    2011-11-15

    Purpose: To evaluate dual energy based methods for bone removal in computed tomography angiography (CTA) images and compare these with single energy based methods that use an additional, nonenhanced, CT scan. Methods: Four different bone removal methods were applied to CT scans of an anthropomorphic thorax phantom, acquired with a second generation dual source CT scanner. The methods differed by the way information on the presence of bone was obtained (either by using an additional, nonenhanced scan or by scanning with two tube voltages at the same time) and by the way the bone was removed from the CTA images (either by masking or subtracting the bone). The phantom contained parts which mimic vessels of various diameters in direct contact with bone. Both a quantitative and qualitative analysis of image quality after bone removal was performed. Image quality was quantified by the contrast-to-noise ratio (CNR) normalized to the square root of the dose (CNRD). At locations where vessels touch bone, the quality of the bone removal and the vessel preservation were visually assessed. The dual energy based methods were assessed with and without the addition of a 0.4 mm tin filter to the high voltage x-ray tube filtration. For each bone removal method, the dose required to obtain a certain CNR after bone removal was compared with the dose of a reference scan with the same CNR but without automated bone removal. The CNRD value of the reference scan was maximized by choosing the lowest tube voltage available. Results: All methods removed the bone completely. CNRD values were higher for the masking based methods than for the subtraction based methods. Single energy based methods had a higher CNRD value than the corresponding dual energy based methods. For the subtraction based dual energy method, tin filtration improved the CNRD value with approximately 50%. For the masking based dual energy method, it was easier to differentiate between iodine and bone when tin filtration

  13. High-Resolution SPECT-CT/MR Molecular Imaging of Angiogenesis in the Vx2 Model

    PubMed Central

    Lijowski, Michal; Caruthers, Shelton; Hu, Grace; Zhang, Huiying; Scott, Michael J.; Williams, Todd; Erpelding, Todd; Schmieder, Anne H.; Kiefer, Garry; Gulyas, Gyongyi; Athey, Phillip S.; Gaffney, Patrick J.; Wickline, Samuel A.; Lanza, Gregory M.

    2009-01-01

    Background The use of antiangiogenic therapy in conjunction with traditional chemotherapy is becoming increasingly in cancer management, but the optimal benefit of these targeted pharmaceuticals has been limited to a subset of the population treated. Improved imaging probes that permit sensitive detection and high-resolution characterization of tumor angiogenesis could improve patient risk-benefit stratification. Objectives The overarching objective of these experiments was to develop a dual modality αvβ3-targeted nanoparticle molecular imaging agent that affords sensitive nuclear detection in conjunction with high-resolution MR characterization of tumor angiogenesis. Materials and Methods In part 1, New Zealand white rabbits (n = 21) bearing 14d Vx2 tumor received either αvβ3-targeted 99mTc nanoparticles at doses of 11, 22, or 44 MBq/kg, nontargeted 99mTc nanoparticles at 22 MBq/kg, or αvβ3-targeted 99mTc nanoparticles (22 MBq/kg) competitively inhibited with unlabeled αvβ3-nanoparticles. All animals were imaged dynamically over 2 hours with a planar camera using a pinhole collimator. In part 2, the effectiveness of αvβ3-targeted 99mTc nanoparticles in the Vx2 rabbit model was demonstrated using clinical SPECT-CT imaging techniques. Next, MR functionality was incorporated into αvβ3-targeted 99mTc nanoparticles by inclusion of lipophilic gadolinium chelates into the outer phospholipid layer, and the concept of high sensitivity – high-resolution detection and characterization of tumor angiogenesis was shown using sequential SPECT-CT and MR molecular imaging with 3D neovascular mapping. Results αvβ3-Targeted 99mTc nanoparticles at 22 MBq/kg produced the highest tumor-to-muscle contrast ratio (8.56 ± 0.13, TMR) versus the 11MBq/kg (7.32 ± 0.12) and 44 MBq/kg (6.55 ± 0.07) doses, (P < 0.05). TMR of nontargeted particles at 22.2 MBq/kg (5.48 ± 0.09) was less (P < 0.05) than the equivalent dosage of αvβ3-targeted 99mTc nanoparticles. Competitively

  14. Trabecular bone class mapping across resolutions: translating methods from HR-pQCT to clinical CT

    NASA Astrophysics Data System (ADS)

    Valentinitsch, Alexander; Fischer, Lukas; Patsch, Janina M.; Bauer, Jan; Kainberger, Franz; Langs, Georg; DiFranco, Matthew

    2015-03-01

    Quantitative assessment of 3D bone microarchitecture in high-resolution peripheral quantitative computed tomography (HR-pQCT) has shown promise in fracture risk assessment and biomechanics, but is limited to the distal radius and tibia. Trabecular microarchitecture classes (TMACs), based on voxel-wise clustering texture and structure tensor features in HRpQCT, is extended in this paper to quantify trabecular bone classes in clinical multi-detector CT (MDCT) images. Our comparison of TMACs in 12 cadaver radii imaged using both HRpQCT and MDCT yields a mean Dice score of up to 0.717+/-0.40 and visually concordant bone quality maps. Further work to develop clinically viable bone quantitative imaging using HR-pQCT validation could have a significant impact on overall bone health assessment.

  15. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    SciTech Connect

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong; Kim, Insoo; Han, Bumsoo

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  16. High-resolution raster scan optoacoustic mesoscopy of genetically modified drosophila pupae

    NASA Astrophysics Data System (ADS)

    Omar, Murad; Gateau, Jérôme; Ntziachristos, Vasilis

    2014-03-01

    Optoacoutic mesoscopy aims to bridge the gap between optoacoustic microscopy and optoacoustic tomography. We have developed a setup for optoacoustic mesoscopy where we use a high frequency, high numerical aperture spherically focused ultrasound transducer, with a wide bandwidth of 25-125 MHz. The excitation is performed using a diode laser capable of >500 μJ/pulse, 1.8ns pulse width, 1.4 kHz pulse repetition rate, at 515 nm. The system is capable to penetrate more than 5 mm with a resolution of 7 μm axially and 30 μm transversally. Using high-speed stages and scanning the transducer in a quasi-continuous mode, a field of view of 2×2 mm2 is scanned in less than 2 minutes. The system is suitable for imaging biological samples that have a diameter of 1-5 mm; zebrafish, drosophila melanogaster, and thin biological samples such as the mouse ear and mouse extremities. We have used our mesoscopic setup to generate 3- dimensional images of genetically modified drosophila fly, and drosophila pupae expressing GFP from the wings, high resolution images were generated in both cases, in the fly we can see the wings, the legs, the eyes, and the shape of the body. In the pupae the outline of the pupae, the spiracles at both ends and a strong signal corresponding to the location of the future wings are observed.

  17. Image formation, resolution, and height measurement in scanning ion conductance microscopy

    SciTech Connect

    Rheinlaender, Johannes; Schaeffer, Tilman E.

    2009-05-01

    Scanning ion conductance microscopy (SICM) is an emerging tool for the noncontact investigation of biological samples such as live cells. It uses an ion current through the opening of a tapered nanopipette filled with an electrolyte for topography measurements. Despite its successful application to numerous systems no systematic investigation of the image formation process has yet been performed. Here, we use finite element modeling to investigate how the scanning ion conductance microscope images small particles on a planar surface, providing a fundamental characterization of the imaging process. We find that a small particle appears with a height that is only a fraction of its actual height. This has significant consequences for the quantitative interpretation of SICM images. Furthermore, small and low particles are imaged as rings in certain cases. This can cause small, closely spaced particles to appear with a lateral orientation that is rotated by 90 deg. Considering both real space and spatial frequency space we find that a reasonable and useful definition of lateral resolution of SICM is the smallest distance at which two small particles can clearly be resolved from each other in an image. We find that this resolution is approximately equal to three times the inner radius of the pipette tip opening.

  18. High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard

    2016-06-01

    The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.

  19. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. PMID:27009182

  20. A pulmonary chondromatous hamartoma resembling multiple metastases in the (18)F-FDG PET/CT scan.

    PubMed

    Li, Li; Jiang, Chong; Tian, Rong

    2016-01-01

    Multiple pulmonary hamartomas (PH) occur rarely, are mostly seen in females, and are usually leiomyomatous hamartomas. Here, we report an extremely rare case of a 30 years old male patient diagnosed as multiple pulmonary chondromatous hamartomas. He was admitted on May 2015 to our hospital for a 3 months history of cough. Multiple nodules in the right lung were detected on chest X-rays during a routine checkup 9 months ago and in a subsequent chest computed tomography (CT). However, he abandoned medical follow-up because he was asymptomatic. Nine months later, rare and atypical CT findings with progression were observed during this visit so that pulmonary metastases from an unknown primary tumor was suspected. Positron emission tomography/computed tomography (PET/CT) scan showed mild fluorine-18 fluorodeoxyglucose ((18)F-FDG) uptake in the lesions and no abnormal foci in any other part of his body. A posterolateral thoracotomy was performed. Pathologic features were consistent with those of pulmonary chondromatous hamartomas. PMID:27331216

  1. A novel spherical shell filter for reducing false positives in automatic detection of pulmonary nodules in thoracic CT scans

    NASA Astrophysics Data System (ADS)

    van de Leemput, Sil; Dorssers, Frank; Ehteshami Bejnordi, Babak

    2015-03-01

    Early detection of pulmonary nodules is crucial for improving prognosis of patients with lung cancer. Computer-aided detection of lung nodules in thoracic computed tomography (CT) scans has a great potential to enhance the performance of the radiologist in detecting nodules. In this paper we present a computer-aided lung nodule detection system for computed tomography (CT) scans that works in three steps. The system first segments the lung using thresholding and hole filling. From this segmentation the system extracts candidate nodules using Laplacian of Gaussian. To reject false positives among the detected candidate nodules, multiple established features are calculated. We propose a novel feature based on a spherical shell filter, which is specifically designed to distinguish between vascular structures and nodular structures. The performance of the proposed CAD system was evaluated by partaking in the ANODE09 challenge, which presents a platform for comparing automatic nodule detection programs. The results from the challenge show that our CAD system ranks third among the submitted works, demonstrating the efficacy of our proposed CAD system. The results also show that our proposed spherical shell filter in combination with conventional features can significantly reduce the number of false positives from the detected candidate nodules.

  2. Automated segmentation of the thyroid gland on thoracic CT scans by multiatlas label fusion and random forest classification.

    PubMed

    Narayanan, Divya; Liu, Jiamin; Kim, Lauren; Chang, Kevin W; Lu, Le; Yao, Jianhua; Turkbey, Evrim B; Summers, Ronald M

    2015-10-01

    The thyroid is an endocrine gland that regulates metabolism. Thyroid image analysis plays an important role in both diagnostic radiology and radiation oncology treatment planning. Low tissue contrast of the thyroid relative to surrounding anatomic structures makes manual segmentation of this organ challenging. This work proposes a fully automated system for thyroid segmentation on CT imaging. Following initial thyroid segmentation with multiatlas joint label fusion, a random forest (RF) algorithm was applied. Multiatlas label fusion transfers labels from labeled atlases and warps them to target images using deformable registration. A consensus atlas solution was formed based on optimal weighting of atlases and similarity to a given target image. Following the initial segmentation, a trained RF classifier employed voxel scanning to assign class-conditional probabilities to the voxels in the target image. Thyroid voxels were categorized with positive labels and nonthyroid voxels were categorized with negative labels. Our method was evaluated on CT scans from 66 patients, 6 of which served as atlases for multiatlas label fusion. The system with independent multiatlas label fusion method and RF classifier achieved average dice similarity coefficients of [Formula: see text] and [Formula: see text], respectively. The system with sequential multiatlas label fusion followed by RF correction increased the dice similarity coefficient to [Formula: see text] and improved the segmentation accuracy.

  3. [Epidemiological aspects of stroke in CT-scan department of the Point-G Hospital in Bamako, Mali].

    PubMed

    Keita, A D; Toure, M; Diawara, A; Coulibaly, Y; Doumbia, S; Kane, M; Doumbia, D; Sidibe, S; Traore, I

    2005-11-01

    The purpose of this prospective study conducted between January 2000 and December 2001 was to identify tomodensitometric aspects of stroke. The relationship between lesion type (hemorrhagic, ischemic, and transient ischemic) and prognosis was assessed. Axial sections were made through the posterior fossa (5 mm at 5mm intervals) and subtentorial region (10 mm at 10 mm intervals). The Virchow plan was used as the reference for sections. The chi square test was used to evaluate the correlation between lesion type and prognosis. A total of 159 stroke patients with a mean age of 44.5 years were enrolled during the study period. There were 90 men (56.6%) and 69 women (43.3%). In 118 patients (74.2%), CT scans showed cerebral abnormalities including ischemic lesions in 71 (44.6%) and hemorrhagic lesions in 47 (29.6%). Overall mortality was 45.7% (54/118). Hemorrhagic lesions were fatal in 51.1% (24/47) of cases and ischemic lesions in 35.2% (25/71). Transitory ischemic accidents were fatal in 0.12% of cases (5/41). This study demonstrates that CT scan is an important tool for stroke management by identifying the type and location of lesions.

  4. CT scanning analysis of Megantereon whitei (Carnivora, Machairodontinae) from Monte Argentario (Early Pleistocene, central Italy): evidence of atavistic teeth

    NASA Astrophysics Data System (ADS)

    Iurino, Dawid Adam; Sardella, Raffaele

    2014-12-01

    CT scanning analysis applied to vertebrate palaeontology is providing an increasing number of data of great interest. This method can be used in many branches of palaeontology such as the investigation of all the fossilized elements in a hard matrix and the hidden structures in the bones. A large number of pathologies are "hidden", completely or partially invisible on the external surface of the bones because their development took place within the bones. However, the study of these diseases and abnormalities plays a crucial role in our understanding of evolutionary and adaptive processes of extinct taxa. The analysis of a partial skeleton of the sabre-toothed felid Megantereon whitei from the Early Pleistocene karst filling deposits of Monte Argentario (Tuscany, Italy) has been carried out. The CT scanning analysis put in evidence the presence of supernumerary teeth (P2) and the absence of P3 in the mandible. The occurrence of P2 can be considered as an evidence of atavism. Such an archaic feature is recorded for the first time in Megantereon.

  5. CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones.

    PubMed

    Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M

    2007-06-01

    The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex.

  6. CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones.

    PubMed

    Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M

    2007-06-01

    The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex. PMID:17420106

  7. Anatomical database generation for radiation transport modeling from computed tomography (CT) scan data

    SciTech Connect

    Margle, S.M.; Tinnel, E.P.; Till, L.E.; Eckerman, K.F.; Durfee, R.C.

    1989-01-01

    Geometric models of the anatomy are used routinely in calculations of the radiation dose in organs and tissues of the body. Development of such models has been hampered by lack of detailed anatomical information on children, and models themselves have been limited to quadratic conic sections. This summary reviews the development of an image processing workstation used to extract anatomical information from routine diagnostic CT procedure. A standard IBM PC/AT microcomputer has been augmented with an automatically loading 9-track magnetic tape drive, an 8-bit 1024 {times} 1024 pixel graphics adapter/monitor/film recording package, a mouse/trackball assembly, dual 20 MB removable cartridge media, a 72 MB disk drive, and a printer. Software utilized by the workstation includes a Geographic Information System (modified for manipulation of CT images), CAD software, imaging software, and various modules to ease data transfer among the software packages. 5 refs., 3 figs.

  8. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK

    NASA Astrophysics Data System (ADS)

    Khotkevych, V. V.; Milošević, M. V.; Bending, S. J.

    2008-12-01

    We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial H3e-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6×6×7 mm3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields ⩾10 mG/Hz1/2. The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.

  9. Differentiation of the ILO boundary chest roentgenograph (0/1 to 1/0) in asbestosis by high-resolution computed tomography scan, alveolitis, and respiratory impairment.

    PubMed

    Harkin, T J; McGuinness, G; Goldring, R; Cohen, H; Parker, J E; Crane, M; Naidich, D P; Rom, W N

    1996-01-01

    High-resolution computed tomography (HRCT) scans have been advocated as providing greater sensitivity in detecting parenchymal opacities in asbestos-exposed individuals, especially in the presence of pleural fibrosis, and having excellent inter- and intraobserver reader interpretation. We compared the 1980 International Labor Organization (ILO) International Classification of the Radiographs of the Pneumoconioses for asbestosis with the high-resolution CT scan using a grid scoring system to better differentiate normal versus abnormal in the ILO boundary 0/1 to 1/0 chest roentgenograph. We studied 37 asbestos-exposed individuals using the ILO classification, HRCT grid scores, respiratory symptom questionnaires, pulmonary function tests, and bronchoalveolar lavage. We used Pearson correlation coefficients to evaluate the linear relationship between outcome variables and each roentgenographic method. The normal HRCT scan proved to be an excellent predictor of "normality," with pulmonary function values close to 100% for forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), total lung capacity (TLC), and carbon monoxide diffusing capacity (DLCO) and no increase in BAL inflammatory cells. Concordant HRCT/ILO abnormalities were associated with reduced FEV1/FVC ratio, reduced diffusing capacity, and alveolitis consistent with a definition of asbestosis. In our study, the ILO classification and HRCT grid scores were both excellent modalities for the assessment of asbestosis and its association with impaired physiology and alveolitis, with their combined use providing statistical associations with alveolitis and reduced diffusing capacity.

  10. Morphological Changes Along a Dike Landside Slope Sampled by 4d High Resolution Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Herrero-Huertaa, Mónica; Lindenbergh, Roderik; Ponsioen, Luc; van Damme, Myron

    2016-06-01

    Emergence of light detection and ranging (LiDAR) technology provides new tools for geomorphologic studies improving spatial and temporal resolution of data sampling hydrogeological instability phenomena. Specifically, terrestrial laser scanning (TLS) collects high resolution 3D point clouds allowing more accurate monitoring of erosion rates and processes, and thus, quantify the geomorphologic change on vertical landforms like dike landside slopes. Even so, TLS captures observations rapidly and automatically but unselectively. In this research, we demonstrate the potential of TLS for morphological change detection, profile creation and time series analysis in an emergency simulation for characterizing and monitoring slope movements in a dike. The experiment was performed near Schellebelle (Belgium) in November 2015, using a Leica Scan Station C10. Wave overtopping and overflow over a dike were simulated whereby the loading conditions were incrementally increased and 14 successful scans were performed. The aim of the present study is to analyse short-term morphological dynamic processes and the spatial distribution of erosion and deposition areas along a dike landside slope. As a result, we are able to quantify the eroded material coming from the impact on the terrain induced by wave overtopping which caused the dike failure in a few minutes in normal storm scenarios (Q = 25 l/s/m) as 1.24 m3. As this shows that the amount of erosion is measurable using close range techniques; the amount and rate of erosion could be monitored to predict dike collapse in emergency situation. The results confirm the feasibility of the proposed methodology, providing scalability to a comprehensive analysis over a large extension of a dike (tens of meters).

  11. Simultaneous high-resolution scanning Bragg contrast and ptychographic imaging of a single solar cell nanowire

    PubMed Central

    Wallentin, Jesper; Wilke, Robin N.; Osterhoff, Markus; Salditt, Tim

    2015-01-01

    Simultaneous scanning Bragg contrast and small-angle ptychographic imaging of a single solar cell nanowire are demonstrated, using a nanofocused hard X-ray beam and two detectors. The 2.5 µm-long nanowire consists of a single-crystal InP core of 190 nm diameter, coated with amorphous SiO2 and polycrystalline indium tin oxide. The nanowire was selected and aligned in real space using the small-angle scattering of the 140 × 210 nm X-ray beam. The orientation of the nanowire, as observed in small-angle scattering, was used to find the correct rotation for the Bragg condition. After alignment in real space and rotation, high-resolution (50 nm step) raster scans were performed to simultaneously measure the distribution of small-angle scattering and Bragg diffraction in the nanowire. Ptychographic reconstruction of the coherent small-angle scattering was used to achieve sub-beam spatial resolution. The small-angle scattering images, which are sensitive to the shape and the electron density of all parts of the nanowire, showed a homogeneous profile along the nanowire axis except at the thicker head region. In contrast, the scanning Bragg diffraction microscopy, which probes only the single-crystal InP core, revealed bending and crystalline inhomogeneity. Both systematic and non-systematic real-space movement of the nanowire were observed as it was rotated, which would have been difficult to reveal only from the Bragg scattering. These results demonstrate the advantages of simultaneously collecting and analyzing the small-angle scattering in Bragg diffraction experiments. PMID:26664342

  12. Panel Reviews Benefits and Harms of CT Scans for Lung Cancer Screening | Division of Cancer Prevention

    Cancer.gov

    A panel of experts has reviewed the evidence regarding the benefits and harms of screening for lung cancer with low-dose computed tomography (CT) and concluded that the technology may benefit some individuals at high risk for lung cancer. But the panel cautioned that many questions remain about the potential harms of screening and how to translate screening into clinical practice. |

  13. Renal Sympathetic Denervation by CT-scan-Guided Periarterial Ethanol Injection in Sheep

    SciTech Connect

    Firouznia, Kavous Hosseininasab, Sayed jaber; Amanpour, Saeid; Haj-Mirzaian, Arya; Miri, Roza; Muhammadnejad, Ahad; Muhammadnejad, Samad; Jalali, Amir H.; Ahmadi, Farrokhlagha; Rokni-Yazdi, Hadi

    2015-08-15

    BackgroundRenal nerves are a recent target in the treatment of hypertension. Renal sympathetic denervation (RSD) is currently performed using catheter-based radiofrequency ablation (RFA) and because this method has limitations, percutaneous magnetic resonance (MR)-guided periarterial ethanol injection is a suggested alternative. However, few studies have been conducted on the effectiveness of percutaneous ethanol injection for RSD.AimTo evaluate the feasibility, efficacy, and complications of computed tomography (CT)-guided periarterial ethanol injection.MethodsEthanol (10 ml, 99.6 %) was injected around the right renal artery in six sheep under CT guidance with the left kidney serving as a control. Before and after the intervention, the sheep underwent MR imaging studies and the serum creatinine level was measured. One month after the intervention, the sheep were euthanized and norepinephrine (NE) concentration in the renal parenchyma was measured to evaluate the efficacy of the procedure. The treated tissues were also examined histopathologically to evaluate vascular, parenchymal, and neural injury.ResultsThe right kidney parenchymal NE concentration decreased significantly compared with the left kidney after intervention (average reduction: 40 %, P = 0.0016). Histologic examination revealed apparent denervation with no other vascular or parenchymal injuries observed in the histological and imaging studies.ConclusionEffective and feasible RSD was achieved using CT-guided periarterial ethanol injection. This technique may be a potential alternative to catheter-based RFA in the treatment of hypertension.

  14. MO-C-18C-01: Radiation Risks at Level of Few CT Scans: How Real?- Science to Practice

    SciTech Connect

    Rehani, M; Samei, E; Morgan, W; Goske, M; Shore, R

    2014-06-15

    There are controversies surrounding radiation effects in human population in the range of radiation doses encountered by patients resulting from one to several CT scans. While it is understandable why the effects from low levels of diagnostic radiation are controversial, the situation is complicated by the media which may distort the known facts. There is need to understand the state of science regarding low-level radiation effects and also to understand how to communicate the potential risk with patients, the public and media. This session will seek to come to a consensus in order to speak with one voice to the media and the public. This session will review radiation effects known so far from a variety of exposed groups since the nuclear holocaust, provide clarification where effects are certain and where they are not, at what level extrapolation is the only way and at what level there is weak but agreeable acceptance. We will depict where and why there is agreement among organizations responsible for studying radiation effects, and how to deal with situations where effects are uncertain. Specific focus on radiation effects in children will be provided.Finally, the session will attempt to bridge the communication gap from the science to how to be an effective communicator with patients, parents, and media about ionizing radiation. Learning Objectives: To have a clear understanding about certainties and uncertainties of radiation effects at the level of a few CT scans To understand the results and limitations from 3 major pediatric CT scientific studies on childhood exposures published recently. To understand successful strategies used in risk communication.

  15. 3D stereophotogrammetric image superimposition onto 3D CT scan images: the future of orthognathic surgery. A pilot study.

    PubMed

    Khambay, Balvinder; Nebel, Jean-Christophe; Bowman, Janet; Walker, Fraser; Hadley, Donald M; Ayoub, Ashraf

    2002-01-01

    The aim of this study was to register and assess the accuracy of the superimposition method of a 3-dimensional (3D) soft tissue stereophotogrammetric image (C3D image) and a 3D image of the underlying skeletal tissue acquired by 3D spiral computerized tomography (CT). The study was conducted on a model head, in which an intact human skull was embedded with an overlying latex mask that reproduced anatomic features of a human face. Ten artificial radiopaque landmarks were secured to the surface of the latex mask. A stereophotogrammetric image of the mask and a 3D spiral CT image of the model head were captured. The C3D image and the CT images were registered for superimposition by 3 different methods: Procrustes superimposition using artificial landmarks, Procrustes analysis using anatomic landmarks, and partial Procrustes analysis using anatomic landmarks and then registration completion by HICP (a modified Iterative Closest Point algorithm) using a specified region of both images. The results showed that Procrustes superimposition using the artificial landmarks produced an error of superimposition on the order of 10 mm. Procrustes analysis using anatomic landmarks produced an error in the order of 2 mm. Partial Procrustes analysis using anatomic landmarks followed by HICP produced a superimposition accuracy of between 1.25 and 1.5 mm. It was concluded that a stereophotogrammetric and a 3D spiral CT scan image can be superimposed with an accuracy of between 1.25 and 1.5 mm using partial Procrustes analysis based on anatomic landmarks and then registration completion by HICP.

  16. An accurate scatter measurement and correction technique for cone beam breast CT imaging using scanning sampled measurement (SSM)technique

    NASA Astrophysics Data System (ADS)

    Liu, Xinming; Shaw, Chris C.; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C.; Kappadath, S. Cheenu

    2006-03-01

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images. Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  17. A comparison of the psychological burden of PET/MRI and PET/CT scans and association to initial state anxiety and previous imaging experiences

    PubMed Central

    Neriman, D; Hoath, J; Millner, L; Endozo, R; Azzopardi, G; O'Meara, C; Bomanji, J; Groves, A M

    2015-01-01

    Objective: To investigate the level of psychological burden experienced by patients undergoing positron emission tomography (PET)/MRI scanning compared with PET/CT. Methods: 100 adult patients referred for PET/CT and underwent PET/MRI scanning were eligible. Initial state, psychological burden of PET/CT and PET/MRI, scan satisfaction and preference were assessed using a purpose-designed questionnaire, comprising 61 five-point Likert scale questions and a three-point tick box question indicating preference between PET/CT and PET/MRI. State anxiety was assessed using the state portion of the State Trait Anxiety Inventory. Wilcoxon signed-rank tests compared psychological burden experienced by participants following PET/CT and PET/MRI scan. Results: A greater level of psychological burden was experienced by patients during PET/MRI than PET/CT p ≤ 0.001, consistent with patients' preference for PET/CT over PET/MRI (p = 0.013). There was a significant relationship between PET/CT psychological burden and initial state (r = 0.386, p ≤ 0.001). No significant relationship was identified between Initial state and psychological burden of PET MRI (r = −0.089; p = 217). There was a significant relationship between psychological burden of PET/CT and PET/MRI (r = 0.354; p = 0.001). Conclusion: Patients' experience increased psychological burden during PET/MRI compared with PET/CT. Previous scanning experiences and patients' interactions prior to and during PET/MRI improved patient satisfaction. Interventions could be implemented to improve imaging outcome. Advances in knowledge: This study provides evidence for the increased psychological burden of PET/MRI compared with PET/CT, and that people prefer the PET/CT procedure. We have shown that the patients who expressed a preference for PET/MRI demonstrated significantly lower psychological burden for that procedure than those that preferred PET/CT, which indicates that the benefit of reduced

  18. Value of fourth and subsequent post-therapy follow-up 18F-FDG PET/CT scans in patients with breast cancer

    PubMed Central

    Taghipour, Mehdi; Sheikhbahaei, Sara; Trahan, Tyler J.; Subramaniam, Rathan M.

    2016-01-01

    Objective To evaluate the accuracy and value of the fourth and subsequent post-therapy follow-up fluorine-18 fluorodeoxyglucose (18F-FDG) PET/computed tomography (CT) scans in the clinical assessment of breast cancer patients. Materials and methods Ninety-two female patients, with a total of 426 fourth and subsequent follow-up PET/CT scans, were retrospectively included. Patients were followed for a median of 23.7 months (range, 0.7–124.4) from the fourth follow-up PET/CT. The diagnostic accuracy of PET/CT, its impact on clinical assessment, patients’ management, and survival outcome were established. Result Of the 426 follow-up PET/CT scans, 264 (62%) were interpreted as positive and 162 (38%) were interpreted as negative. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the fourth and subsequent follow-up PET/CT scans were 97.7, 98.1, 98.8, 96.3, and 97.9%, respectively. Fourth and subsequent follow-up PET/CT were useful in excluding a tumor in 13.4% (39/292) of patients with a clinical suspicion of recurrence and identifying suspected recurrence in 10.5% (14/134) of patients without previous clinical suspicion. A change in management was noted in 6.7% (9/134) of scan times when the scans were performed without previous clinical suspicion of recurrence or therapy response and was 27.7% (81/292) when the scans were performed with clinical suspicion. Overall survival differed significantly between patients with all negative follow-up scans (n = 23) and those who had at least one positive follow-up scan (n = 69) (hazard ratio of 4.65, P < 0.001). Conclusion The fourth and subsequent PET/CT scans performed after the completion of primary treatment led to a change in management in 27.7% of patients when the scans were performed with clinical suspicion and only in 6.7% of patients when performed without clinical suspicion or context. PMID:27110955

  19. High-Resolution Secondary Electron Microscopy and Scanning Reflection Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jingyue

    1990-01-01

    High resolution secondary electron microscopy (HRSEM) utilizes the low energy electrons emitted from the sample to form images of the surface. By using a very small incident electron probe subnanometer resolution images of solid surfaces can be obtained by collecting secondary electrons. Surfaces of both electron beam transparent samples and bulk samples can be investigated by high resolution secondary electron (SE) imaging technique. The emission of secondary electrons is determined by three different processes: (1) the generation of secondary electrons inside the sample; (2) the transport of the excited electrons to the vacuum-sample interface and (3) the escape of secondary electrons over the surface potential barrier into vacuum. The total yield of the emitted secondary electrons is sensitive to sample surface conditions. Surface electronic and geometric modifications will influence the total yield of secondary electrons. The contrast in a SE image is determined by the change of the total SE yield. Therefore the knowledge of the origin of SE emission is essential for interpreting the experimental high resolution secondary electron images. The first part of this dissertation is to discuss the origins of the collected secondary electrons, to develop the theory of surface imaging by secondary electrons and to investigate the contrast mechanisms of high resolution SE images. By combining HRSEM with secondary electron spectroscopy information about the surface topographic and, to some extent, surface electronic structures can be obtained. Experimental results obtained in the ultra-high vacuum (UHV) scanning transmission electron microscope have yielded fruitful information about the electron emission processes. Scanning reflection electron microscopy (SREM) utilizes the high energy electrons reflected from a bulk crystal to form images of the crystal surface. At glancing incident angle specularlly Bragg diffracted beam satisfying surface resonance conditions can

  20. Pediatric minor head trauma: do cranial CT scans change the therapeutic approach?

    PubMed Central

    Andrade, Felipe P; Montoro, Roberto; Oliveira, Renan; Loures, Gabriela; Flessak, Luana; Gross, Roberta; Donnabella, Camille; Puchnick, Andrea; Suzuki, Lisa; Regacini, Rodrigo

    2016-01-01

    OBJECTIVES: 1) To verify clinical signs correlated with appropriate cranial computed tomography scan indications and changes in the therapeutic approach in pediatric minor head trauma scenarios. 2) To estimate the radiation exposure of computed tomography scans with low dose protocols in the context of trauma and the additional associated risk. METHODS: Investigators reviewed the medical records of all children with minor head trauma, which was defined as a Glasgow coma scale ≥13 at the time of admission to the emergency room, who underwent computed tomography scans during the years of 2013 and 2014. A change in the therapeutic approach was defined as a neurosurgical intervention performed within 30 days, hospitalization, >12 hours of observation, or neuro-specialist evaluation. RESULTS: Of the 1006 children evaluated, 101 showed some abnormality on head computed tomography scans, including 49 who were hospitalized, 16 who remained under observation and 36 who were dismissed. No patient underwent neurosurgery. No statistically significant relationship was observed between patient age, time between trauma and admission, or signs/symptoms related to trauma and abnormal imaging results. A statistically significant relationship between abnormal image results and a fall higher than 1.0 meter was observed (p=0.044). The mean effective dose was 2.0 mSv (0.1 to 6.8 mSv), corresponding to an estimated additional cancer risk of 0.05%. CONCLUSION: A computed tomography scan after minor head injury in pediatric patients did not show clinically relevant abnormalities that could lead to neurosurgical indications. Patients who fell more than 1.0 m were more likely to have changes in imaging tests, although these changes did not require neurosurgical intervention; therefore, the use of computed tomography scans may be questioned in this group. The results support the trend of more careful indications for cranial computed tomography scans for children with minor head trauma. PMID

  1. Confocal scanning laser ophthalmoscopic imaging resolution of secondary retinal effects induced by laser radiation

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Lund, David J.; Stuck, Bruce E.; Zuclich, Joseph A.; Elliot, Rowe; Schuschereba, Steven T.; Gagliano, Donald A.; Belkin, M.; Glickman, Randolph D.

    1996-02-01

    We have evaluated secondary laser induced retinal effects in non-human primates with a Rodenstock confocal scanning laser ophthalmoscope. A small eye animal model, the Garter snake, was employed to evaluate confocal numerical aperture effects in imaging laser retinal damage in small eyes vs. large eyes. Results demonstrate that the confocal image resolution in the Rhesus monkey eye is sufficient to differentiate deep retinal scar formation from retinal nerve fiber layer (NFL) damage and to estimate the depth of the NFL damage. The best comparison with histological depth was obtained for the snake retina, yielding a ratio close to 1:1 compared to 2:1 for the Rhesus. Resolution in the Garter snake allows imaging the photoreceptor matrix and therefore, evaluation of the interrelationship between the primary damage site (posterior retina), the photoreceptor matrix, and secondary sites in the anterior retina such as the NFL and the epiretinal vascular system. Alterations in both the retinal NFL and epiretinal blood flow rate were observed within several minutes post Argon laser exposure. Unique aspects of the snake eye such as high tissue transparency and inherently high contrast cellular structures, contribute to the confocal image quality. Such factors may be nearly comparable in primate eyes suggesting that depth of resolution can be improved by smaller confocal apertures and more sensitive signal processing techniques.

  2. Fundamental aspects of resolution and precision in vertical scanning white-light interferometry

    NASA Astrophysics Data System (ADS)

    Lehmann, Peter; Tereschenko, Stanislav; Xie, Weichang

    2016-06-01

    We discuss the height and lateral resolution that can be achieved in vertical scanning white-light interferometry (SWLI). With respect to interferometric height resolution, phase-shifting interferometry (PSI) is assumed to provide the highest accuracy. However, if the noise dependence of SWLI phase evaluation and PSI algorithms is considered, SWLI measurements can be shown to be more precise. With respect to lateral resolution, the determination of the coherence peak position of SWLI signals seems to lead to better results compared to phase based-interferometric measurements. This can be attributed to the well-known batwing effect. Since batwing is a nonlinear effect applying nonlinear filters, e.g. a median filter, it reduces them significantly. If filtering is applied prior to the fringe order determination and phase evaluation, the number of artefacts known as ghost steps can be eliminated without changing the modulus of the phase. Finally, we discuss the dependence of measured height values on surface slope. We show that in interference microscopy there are additional limitations which are more rigid compared to the maximum surface slope angle resulting from the numerical aperture of the objective lens. As a consequence, the measurement precision breaks down at slope changes of steeper flanks even if the modulation depth of the interference signals is still good enough for signal analysis.

  3. High-resolution spin-polarized scanning electron microscopy (spin SEM).

    PubMed

    Kohashi, Teruo; Konoto, Makoto; Koike, Kazuyuki

    2010-01-01

    We have developed spin-polarized scanning electron microscopy (spin SEM) with a 5-nm resolution. The secondary electron optics is very important, as it needs to transfer a sufficient number of secondary electrons to the spin polarimeter, due to the low efficiency of the polarimeter. The optics was designed using a three-dimensional (3D) simulation program of the secondary electron trajectories, and it achieves highly efficient collection and transport of the secondary electrons even though the distance between the sample and the objective lens exit of the electron gun remains short. Moreover, the designed optics enables us to obtain clear SEM images in the spin SEM measurement and to precisely adjust the probe beam shape. These functions lead to images with high spatial resolution and sufficient signal-to-noise (S/N) ratios. This optics has been installed in an ultra-high vacuum (UHV) spin SEM chamber with a Schottky-type electron gun for the probe electron beam. We observed recorded bits on a perpendicular magnetic recording medium and visualized small irregularities in the bit shapes around the track edges and bit boundaries. The high resolution of 5 nm was demonstrated by observing the smallest domain composed by a single grain in the recording medium. PMID:19840986

  4. High-resolution CT analysis of facial struts in trauma: 1. Osseous and soft-tissue complications

    SciTech Connect

    Gentry, L.R.; Manor, W.F.; Turski, P.A.; Strother, C.M.

    1983-03-01

    In six cadavers, high-resolution thin-section computed tomography (CT) was used to evaluate the sequelae of experimentally produced facial trauma. As confirmed by pluridirectional tomography, CT was an effective imaging method for the detection and classification of facial fractures. The ability of CT to simultaneously depict both osseous and soft-tissue structures expands the role that diagnostic radiology can play in the evaluation of the traumatized face. A method of evaluation is presented in which the face is geometrically conceptualized as a series of triplanar (horizontal, sagittal, and coronal) osseous struts. Sequential, systematic assessment of each strut for fracture and its adjacent soft tissue for injury can facilitate evaluation of the traumatized face. Using this approach the osseous and soft-tissue complications arising from experimentally produced trauma are reviewed and illustrated with CT.

  5. Study of CT-based positron range correction in high resolution 3D PET imaging

    NASA Astrophysics Data System (ADS)

    Cal-González, J.; Herraiz, J. L.; España, S.; Vicente, E.; Herranz, E.; Desco, M.; Vaquero, J. J.; Udías, J. M.

    2011-08-01

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  6. Target delineation for radiosurgery of a small brain arteriovenous malformation using high-resolution contrast-enhanced cone beam CT

    PubMed Central

    van der Bom, Imramsjah M J; Gounis, Matthew J; Ding, Linda; Kühn, Anna Luisa; Goff, David; Puri, Ajit S; Wakhloo, Ajay K

    2013-01-01

    Three years following endovascular embolization of a 3 mm ruptured arteriovenous malformation (AVM) of the left superior colliculus in a 42-year-old man, digital subtraction angiography showed continuous regrowth of the lesion. Thin-slice MRI acquired for treatment planning did not show the AVM nidus. The patient was brought back to the angiography suite for high-resolution contrast-enhanced cone beam CT (VasoCT) acquired using an angiographic c-arm system. The lesion and nidus were visualized with VasoCT. MRI, CT and VasoCT data were transferred to radiation planning software and mutually co-registered. The nidus was annotated for radiation on VasoCT data by an experienced neurointerventional radiologist and a dose/treatment plan was completed. Due to image registration, the treatment area could be directly adopted into the MRI and CT data. The AVM was completely obliterated 10 months following completion of the radiosurgery treatment. PMID:23946527

  7. Adaptive patch-based POCS approach for super resolution reconstruction of 4D-CT lung data.

    PubMed

    Wang, Tingting; Cao, Lei; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2015-08-01

    Image enhancement of lung four-dimensional computed tomography (4D-CT) data is highly important because image resolution remains a crucial point in lung cancer radiotherapy. In this paper, we proposed a method for lung 4D-CT super resolution (SR) by using an adaptive-patch-based projection onto convex sets (POCS) approach, which is in contrast with the global POCS SR algorithm, to recover fine details with lesser artifacts in images. The main contribution of this patch-based approach is that the interfering local structure from other phases can be rejected by employing a similar patch adaptive selection strategy. The effectiveness of our approach is demonstrated through experiments on simulated images and real lung 4D-CT datasets. A comparison with previously published SR reconstruction methods highlights the favorable characteristics of the proposed method.

  8. Adaptive patch-based POCS approach for super resolution reconstruction of 4D-CT lung data

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Cao, Lei; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2015-08-01

    Image enhancement of lung four-dimensional computed tomography (4D-CT) data is highly important because image resolution remains a crucial point in lung cancer radiotherapy. In this paper, we proposed a method for lung 4D-CT super resolution (SR) by using an adaptive-patch-based projection onto convex sets (POCS) approach, which is in contrast with the global POCS SR algorithm, to recover fine details with lesser artifacts in images. The main contribution of this patch-based approach is that the interfering local structure from other phases can be rejected by employing a similar patch adaptive selection strategy. The effectiveness of our approach is demonstrated through experiments on simulated images and real lung 4D-CT datasets. A comparison with previously published SR reconstruction methods highlights the favorable characteristics of the proposed method.

  9. Limited value of CT brain scans in the staging of small cell lung cancer

    SciTech Connect

    Johnson, D.H.; Windham, W.W.; Allen, J.H.; Greco, F.A.

    1983-01-01

    Computed tomography of the brain was performed as part of the initial staging evaluation of 84 patients with small cell lung cancer. Brain scans indicative of metastatic disease were obtained in 12 (14%) patients, two of whom had no neurologic signs or symptoms. One of these had no other extrathoracic disease. Brainscans without evidence of metastatic disease were obtained in 72 patients, 58 (80.5%) of whom had no signs or symptoms suggestive of metastatic intracranial disease. In the 14 patients with neurologic symptoms but negative computed tomographic scans, other explanations than brain metastases were found. It was concluded that head scanning is a sensitive and accurate method of detecting central nervous system metastases in patients with small cell lung cancer. However, head computed tomography should not be included as part of the initial staging evaluation of the neurologically asymptomatic patients. In only one of 60 such patients did the brain scan change the initial clinical staging, which included chest films, liver and bone scans, and bone marrow biopsy.

  10. Validation of the 4D NCAT simulation tools for use in high-resolution x-ray CT research

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Mahesh, Mahadevappa; Beck, T.; Frey, E. C.; Tsui, B. M. W.

    2005-04-01

    We validate the computer-based simulation tools developed in our laboratory for use in high-resolution CT research. The 4D NURBS-based cardiac-torso (NCAT) phantom was developed to provide a realistic and flexible model of the human anatomy and physiology. Unlike current phantoms in CT, the 4D NCAT has the advantage, due to its design, that its organ shapes can be changed to realistically model anatomical variations and patient motion. To efficiently simulate high-resolution CT images, we developed a unique analytic projection algorithm (including scatter and quantum nois