Science.gov

Sample records for resolution electron paramagnetic

  1. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  2. High resolution electron paramagnetic resonance spectroscopy of septet pyridyl-2,4,6-trinitrene in solid argon: Fine-structure parameters of six electron-spin cluster

    NASA Astrophysics Data System (ADS)

    Misochko, E. Ya.; Akimov, A. V.; Chapyshev, S. V.

    2008-11-01

    The high resolution 9GHz electron paramagnetic resonance (EPR) spectrum of septet pyridyl-2,4,6-trinitrene was recorded after the photolysis of 2,4,6-triazido-3,5-dichloropyridine in solid argon matrix at 15K. Owing to the high resolution of the experimental EPR spectrum, the zero-field splitting parameters of the septet trinitrene were determined with a high accuracy: Ds=-0.1019±0.0004cm-1 and Es=0.00325±0.00015cm-1. All EPR transitions of the septet trinitrene were, for the first, unambiguously assigned based on the eigenfield calculations of the Zeeman energy levels. The spectrum of the septet trinitrene represents a new type of EPR spectra of septet spin states with nonzero zero-field splitting parameter Es. The nonvanishing parameter Es of the septet trinitrene arises due to magnetic nonequivalence of three triplet centers in the molecule and is manifested in the appearance in the spectrum of separate x and y transitions. The septet spin states of this type display at very low magnetic fields two intense z transitions since the ∣3Ds∣ energy gap between zero-field energy levels W±1 and W±2 fits the quantum of microwave irradiation of a 9GHz EPR spectrometer. Analysis of the magnetic parameters shows that semiempirical description of the fine-structure tensor for six electron-spin cluster in the septet trinitrene is appropriate for precise estimations of the parameter Ds but it is too crude to estimate small value of the parameter Es.

  3. Demonstrations on Paramagnetism with an Electronic Balance.

    ERIC Educational Resources Information Center

    Cortel, Adolf

    1998-01-01

    A paramagnetic substance is attracted by a magnetic field with a force proportional to its magnetic susceptibility which is related to the number of unpaired electrons in the atoms. Data are used to establish oxidation states and bonding properties. Describes a simple setup to demonstrate the paramagnetism of common inorganic compounds. (DKM)

  4. Multifrequency pulsed electron paramagnetic resonance on metalloproteins.

    PubMed

    Lyubenova, Sevdalina; Maly, Thorsten; Zwicker, Klaus; Brandt, Ulrich; Ludwig, Bernd; Prisner, Thomas

    2010-02-16

    Metalloproteins often contain metal centers that are paramagnetic in some functional state of the protein; hence electron paramagnetic resonance (EPR) spectroscopy can be a powerful tool for studying protein structure and function. Dipolar spectroscopy allows the determination of the dipole-dipole interactions between metal centers in protein complexes, revealing the structural arrangement of different paramagnetic centers at distances of up to 8 nm. Hyperfine spectroscopy can be used to measure the interaction between an unpaired electron spin and nuclear spins within a distance of 0.8 nm; it therefore permits the characterization of the local structure of the paramagnetic center's ligand sphere with very high precision. In this Account, we review our laboratory's recent applications of both dipolar and hyperfine pulsed EPR methods to metalloproteins. We used pulsed dipolar relaxation methods to investigate the complex of cytochrome c and cytochrome c oxidase, a noncovalent protein-protein complex involved in mitochondrial electron-transfer reactions. Hyperfine sublevel correlation spectroscopy (HYSCORE) was used to study the ligand sphere of iron-sulfur clusters in complex I of the mitochondrial respiratory chain and substrate binding to the molybdenum enzyme polysulfide reductase. These examples demonstrate the potential of the two techniques; however, they also highlight the difficulties of data interpretation when several paramagnetic species with overlapping spectra are present in the protein. In such cases, further approaches and data are very useful to enhance the information content. Relaxation filtered hyperfine spectroscopy (REFINE) can be used to separate the individual components of overlapping paramagnetic species on the basis of differences in their longitudinal relaxation rates; it is applicable to any kind of pulsed hyperfine or dipolar spectroscopy. Here, we show that the spectra of the iron-sulfur clusters in complex I can be separated by this

  5. Electron Paramagnetic Resonance Study of Pr

    SciTech Connect

    Tezuka, Keitaro; Hinatsu, Yukio

    2001-01-01

    Electron paramagnetic resonance (EPR) spectra of tetravalent praseodymium ions doped in the cubic perovskite compound BaHfO{sub 3} have been measured at 4.2 K. A very large hyperfine interaction with the {sup 141}Pr nucleus was observed in the spectrum of Pr{sup 4+}/ BaHfO{sub 3}. The results were analyzed based on the weak field approximation, and the g value (|g|=0.619) and a hyperfine coupling constant (A=0.0589 cm{sup {minus}1}) were obtained. The measured g value is much smaller than |-10/7|, which indicates that the crystal field effect on the behavior of a 4f electron is large. These g and A values were compared with the EPR results for other f{sup 1} ions in an octahedral crystal field.

  6. Microstrip resonators for electron paramagnetic resonance experiments.

    PubMed

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  7. Application of Electron Paramagnetic Resonance to Study of Gallstones

    NASA Astrophysics Data System (ADS)

    Kiselev, S. A.; Tsyro, L. V.; Afanasiev, D. A.; Unger, F. G.; Soloviev, M. M.

    2014-03-01

    We present the results of an electron paramagnetic resonance (EPR) study of mixed cholesterol gallstones. We have established that free radicals are distributed nonuniformly within the interior of the stone. The type and number of paramagnetic centers depend on the pigment content in the selected layer. We show that the parameters of the sextet lines in the EPR spectrum of the pigment are close to the parameters of lines in the spectrum of a brown pigment stone.

  8. Maximally spaced projection sequencing in electron paramagnetic resonance imaging

    PubMed Central

    Redler, Gage; Epel, Boris; Halpern, Howard J.

    2015-01-01

    Electron paramagnetic resonance imaging (EPRI) provides 3D images of absolute oxygen concentration (pO2) in vivo with excellent spatial and pO2 resolution. When investigating such physiologic parameters in living animals, the situation is inherently dynamic. Improvements in temporal resolution and experimental versatility are necessary to properly study such a system. Uniformly distributed projections result in efficient use of data for image reconstruction. This has dictated current methods such as equal-solid-angle (ESA) spacing of projections. However, acquisition sequencing must still be optimized to achieve uniformity throughout imaging. An object-independent method for uniform acquisition of projections, using the ESA uniform distribution for the final set of projections, is presented. Each successive projection maximizes the distance in the gradient space between itself and prior projections. This maximally spaced projection sequencing (MSPS) method improves image quality for intermediate images reconstructed from incomplete projection sets, enabling useful real-time reconstruction. This method also provides improved experimental versatility, reduced artifacts, and the ability to adjust temporal resolution post factum to best fit the data and its application. The MSPS method in EPRI provides the improvements necessary to more appropriately study a dynamic system. PMID:26185490

  9. Electron paramagnetic resonance studies in neutron-irradiated silicon

    NASA Astrophysics Data System (ADS)

    Corbett, James W.; Kleinhenz, Richard L.; En, Wu; Zhi-pu, You

    1982-08-01

    Electron paramagnetic resonance studies of neutron-irradiated silicon are surveyed, both as being of interest per se and as related to transmutation doping. The emerging panorama progressing from vacancy- and interstitial-related point defects to agglomerates visible in the electron microscope is described. Intrinsic and impurity-driven partial dissociation of defect complexes is discussed.

  10. Electron paramagnetic resonance of conduction-band electrons in silicon

    NASA Astrophysics Data System (ADS)

    Young, C. F.; Poindexter, E. H.; Gerardi, G. J.; Warren, W. L.; Keeble, D. J.

    1997-06-01

    The g value of conduction-band electrons in silicon was properly determined by using electron paramagnetic resonance. A linear empirical relationship was first found between the g values and the thermal ionization energies of several well-known group-V substitutional shallow donors in silicon. An extrapolation of the empirical relation to zero ionization energy predicted the g value of conduction-band (CB) electrons, gCB=1.9995, which is slightly but definitely different from that of conduction electrons in the donor-impurity band of degenerate n-type silicon; although both g values have been tacitly accepted to be identical for nearly four decades. The prediction was directly verified by measuring the g value of CB electrons created either by thermal emission from shallow donors in phosphorus-doped silicon at T=125 K and by above-band-gap optical excitation in high-purity p-type silicon at T=3.5 K; the measured g value in both experiments was precisely gCB=1.9995(1). The empirical relation is still not theoretically explained.

  11. In-situ electron paramagnetic resonance studies of paramagnetic point defects in superconducting microwave resonators

    NASA Astrophysics Data System (ADS)

    Zhang, Shengke; Kopas, Cameron; Wagner, Brian; Queen, Daniel; Newman, N.

    2016-09-01

    The physical nature and concentration of paramagnetic point defects in the dielectrics of superconducting planar microwave resonators have been determined using in-situ electron paramagnetic resonance spectroscopy. To perform this work, the quality factor of parallel plate and stripline resonators was measured as a function of the magnitude of a magnetic-field applied parallel to the electrode surfaces. YBa2Cu3O7-δ thin film electrodes proved to be a preferred choice over Nb and MgB2 because they are readily available and have a small surface resistance (Rs) up to high temperatures (˜77 K) and magnetic fields (i.e., <1 T). Stripline resonators with a widely used high performance microwave dielectric, Co2+-doped Ba(Zn1/3Nb2/3)O3, are shown to have losses dominated by d-electron spin-excitations in exchange-coupled Co2+ point-defect clusters, even in the absence of an applied magnetic field. A significant enhanced microwave loss in stripline and parallel plate resonators is found to correlate with the presence of paramagnetic Mn2+ dopants in Ba(Zn1/3Ta2/3)O3 ceramics and dangling bond states in amorphous Si thin films, although the identification of the dominant loss mechanism(s) in these dielectrics requires further investigation.

  12. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    ERIC Educational Resources Information Center

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  13. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    ERIC Educational Resources Information Center

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  14. Electron paramagnetic resonance study of ZnO varistor material.

    PubMed

    Baraki, Raschid; Zierep, Paul; Erdem, Emre; Weber, Stefan; Granzow, Torsten

    2014-03-19

    Matsuoka-type zinc oxide (ZnO) varistor material was synthesized using a conventional solid-state reaction method. X-band electron paramagnetic resonance (EPR) data revealed that Mn ions substitute in the ZnO lattice with a 2+ paramagnetic state. Co ions with either 3+ or 2+ oxidation states are only detectable at cryogenic temperatures. A Cr(3+) EPR signal was strongly suppressed or masked by a Mn(2+) signal. Photoluminescence and electrical results indicated that the varistor sample has fewer intrinsic defects and much higher resistivity as compared to undoped and metal-ion doped ZnO.

  15. A point about electron paramagnetic resonance detection of irradiated foodstuffs

    NASA Astrophysics Data System (ADS)

    Douifi, Leila; Raffi, Jacques; Stocker, Pierre; Dole, François

    1998-12-01

    This paper makes a point about the identification of irradiated foodstuffs by means of electron paramagnetic resonance (EPR) or electron spin resonance (ESR). EPR is the most accurate method for such routine applications since radicals are stabilised for a long time in all (or part of) foods that are in solid and dry states; consequently, EPR can be applied to meat and fish bones, fruit and relative products (from vegetal origin). More details are given for mollusc shells, such as oysters and mussels.

  16. Cut and paste RNA for nuclear magnetic resonance, paramagnetic resonance enhancement, and electron paramagnetic resonance structural studies.

    PubMed

    Duss, Olivier; Diarra Dit Konté, Nana; Allain, Frédéric H-T

    2015-01-01

    RNA is a crucial regulator involved in most molecular processes of life. Understanding its function at the molecular level requires high-resolution structural information. However, the dynamic nature of RNA complicates structure determination because crystallization is often not possible or can result in crystal-packing artifacts resulting in nonnative structures. To study RNA and its complexes in solution, we described an approach in which large multi-domain RNA or protein-RNA complex structures can be determined at high resolution from isolated domains determined by nuclear magnetic resonance (NMR) spectroscopy, and then constructing the entire macromolecular structure using electron paramagnetic resonance (EPR) long-range distance constraints. Every step in this structure determination approach requires different types of isotope or spin-labeled RNAs. Here, we present a simple modular RNA cut and paste approach including protocols to generate (1) small isotopically labeled RNAs (<10 nucleotides) for NMR structural studies, which cannot be obtained by standard protocols, (2) large segmentally isotope and/or spin-labeled RNAs for diamagnetic NMR and paramagnetic relaxation enhancement NMR, and (3) large spin-labeled RNAs for pulse EPR spectroscopy.

  17. Electron-paramagnetic resonance detection with software time locking.

    PubMed

    Aloisi, Giovanni; Mannini, Matteo; Caneschi, Andrea; Dolci, David; Carlà, Marcello

    2014-02-01

    A setup for electron paramagnetic resonance with narrow band digital detection is described. A low frequency reference tone is added to the radio frequency signal. This reference signal, after digital detection, is used to lock the resonance signal, even in the absence of hardware time locking among the radio frequency generator, the conversion local oscillators, and the sampling stage. Results obtained with 2,2-Diphenyl-1-Pycryl-Hydrazil are presented and discussed.

  18. Detection of nitric oxide by electron paramagnetic resonance spectroscopy.

    PubMed

    Hogg, Neil

    2010-07-15

    Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges of detecting this species by EPR are somewhat different from those of transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems.

  19. The role of spinning electrons in paramagnetic phenomena

    NASA Technical Reports Server (NTRS)

    Bose, D. M.

    1986-01-01

    An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagne elements is given.

  20. Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine

    2017-09-01

    Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.

  1. Luminescence, electron paramagnetic resonance, and optical properties of lunar material.

    PubMed

    Geake, J E; Dollfus, A; Garlick, G F; Lamb, W; Walker, C; Steigmann, G A; Titulaer, C

    1970-01-30

    Dust samples have been found to luminesce weakly under proton excitation, but not under ultraviolet. Damage, recovery, and heating effects have been investigated. Chips of breccia show luminescence, from white inclusions only, under ultraviolet and protons. Some rock chips show general luminescence, mainly from plagioclase. No natural or excited thermoluminescence has been found for dust or chips. The electron paramagnetic resonance spectrum shows the same broad Fe(3+) dipole resonance for dust and for some chips; other chips show no response. The polarization characteristics of dust are found to be identical to those of the Sea of Tranquillity, independently of proton damage. Chips show characteristics unlike any part of the lunar surface.

  2. Electron Paramagnetic Resonance Imaging and Spectroscopy of Polydopamine Radicals.

    PubMed

    Mrówczyński, Radosław; Coy, L Emerson; Scheibe, Błażej; Czechowski, Tomasz; Augustyniak-Jabłokow, Maria; Jurga, Stefan; Tadyszak, Krzysztof

    2015-08-13

    A thorough investigation of biomimetic polydopamine (PDA) by Electron Paramagnetic Resonance (EPR) is shown. In addition, temperature dependent spectroscopic EPR data are presented in the range 3.8-300 K. Small discrepancies in magnetic susceptibility behavior are observed between previously reported melanin samples. These variations were attributed to thermally acitivated processes. More importantly, EPR spatial-spatial 2D imaging of polydopamine radicals on a phantom is presented for the first time. In consequence, a new possible application of polydopamine as EPR imagining marker is addressed.

  3. Multifrequency electron paramagnetic resonance study on deproteinized human bone

    NASA Astrophysics Data System (ADS)

    Strzelczak, Grażyna; Sadło, Jarosław; Danilczuk, Marek; Stachowicz, Wacław; Callens, Freddy; Vanhaelewyn, Gauthier; Goovaerts, Etienne; Michalik, Jacek

    2007-08-01

    Irradiated samples of deproteinized powdered human bone ( femur) have been examined by electron paramagnetic resonance (EPR) spectroscopy in X, Q and W bands. In the bone powder sample only one type of CO 2- radical ion is stabilized in the hydroxyapatite structure in contrast to powdered human tooth enamel, a material also containing hydroxyapatite, widely used for EPR dosimetry and in which a few radicals are stable at room temperature. It is suggested that the use of deproteinized bone for EPR dosimetry could improve the accuracy of dose determination.

  4. Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Formanuik, Alasdair; Ariciu, Ana-Maria; Ortu, Fabrizio; Beekmeyer, Reece; Kerridge, Andrew; Tuna, Floriana; McInnes, Eric J. L.; Mills, David P.

    2017-06-01

    Our knowledge of actinide chemical bonds lags far behind our understanding of the bonding regimes of any other series of elements. This is a major issue given the technological as well as fundamental importance of f-block elements. Some key chemical differences between actinides and lanthanides—and between different actinides—can be ascribed to minor differences in covalency, that is, the degree to which electrons are shared between the f-block element and coordinated ligands. Yet there are almost no direct measures of such covalency for actinides. Here we report the first pulsed electron paramagnetic resonance spectra of actinide compounds. We apply the hyperfine sublevel correlation technique to quantify the electron-spin density at ligand nuclei (via the weak hyperfine interactions) in molecular thorium(III) and uranium(III) species and therefore the extent of covalency. Such information will be important in developing our understanding of the chemical bonding, and therefore the reactivity, of actinides.

  5. Electron paramagnetic resonance study of new paramagnetic centers in microcline-perthites from pegmatites

    NASA Astrophysics Data System (ADS)

    Matyash, I. V.; Bagmut, N. N.; Litovchenko, A. S.; Proshko, V. Ya.

    1982-08-01

    Four new types of paramagnetic centers — NH+ 3, N2-, Al-O-, E 1 — have been detected in microcline perthites from pegmatites in the Ukrainian Shield. Values are tabulated for their g and A tensors and limits of thermal stability determined. The NH+ 3 center substitutes the K+ ion. It occurs naturally in potash feldspars but is intensified by gamma or X-ray irradiation. It is regarded as a radiational development of the more general NH+ 4 ⇄ K+ isomorphism. It disappears after heating to temperatures higher than 470 K. The N2- center is an uncommon example of isomorphous substitution of a bridging oxygen, being located on a O D( m) site between T 2( o) and T 1( m) silicon sites. It is stable to 820 K. The hole center, Al-O-, has been detected on an O A(l) oxygen shared by T 1( o) and T 1( m) tetrahedra. It is stable to 590 K. The E 1 center in these alkali feldspars is similar to the E 1 center in quartz, being an electron trapped in an oxygen vacancy in the O B ( o) position. It is stable to 420 K. The NH+ 3, Al-O- and E 1 centers can be restored from temperatures above their stability limits by gamma radiation. Concentration of centers varies from sample to sample depending on conditions of formation and subsequent history of the minerals.

  6. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries.

    PubMed

    Sathiya, M; Leriche, J-B; Salager, E; Gourier, D; Tarascon, J-M; Vezin, H

    2015-02-09

    Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using Li2Ru0.75Sn0.25O3, a high-capacity (>270 mAh g(-1)) Li-rich layered oxide, as positive electrode. By monitoring operando the electron paramagnetic resonance signals of Ru(5+) and paramagnetic oxygen species, we unambiguously prove the formation of reversible (O2)(n-) species that contribute to their high capacity. In addition, we visualize by imaging with micrometric resolution the plating/stripping of Li at the negative electrode and highlight the zones of nucleation and growth of Ru(5+)/oxygen species at the positive electrode. This efficient way to locate 'electron'-related phenomena opens a new area in the field of battery characterization that should enable future breakthroughs in battery research.

  7. Electron paramagnetic resonance in Cu-doped ZnO

    NASA Astrophysics Data System (ADS)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  8. Egyptian limestone for gamma dosimetry: an electron paramagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Salama, E.

    2014-04-01

    The electron paramagnetic resonance (EPR) properties of limestone from a certain Egyptian site were investigated in order to propose an efficient and low-cost gamma dosimeter. Radiation-induced free radicals were of one type which was produced in the limestone samples at g=2.0066 after exposure to gamma radiation (60Co). EPR spectrum was recorded and analyzed. The microwave power saturation curve and the effect of changing modulation amplitude on peak-to- peak signal height were investigated. The response of limestone to different radiation doses (0.5-20 kGy) was studied. Except for the decrease in signal intensities during the first five hours following irradiation, over the period of two months fair stabilities of signal intensities were noticed. From the current results, it is possible to conclude that natural limestone may be a suitable material for radiation dosimetry in the range of irradiation processing.

  9. Magnetic nanoparticle imaging using multiple electron paramagnetic resonance activation sequences

    SciTech Connect

    Coene, A. Dupré, L.; Crevecoeur, G.

    2015-05-07

    Magnetic nanoparticles play an important role in several biomedical applications such as hyperthermia, drug targeting, and disease detection. To realize an effective working of these applications, the spatial distribution of the particles needs to be accurately known, in a non-invasive way. Electron Paramagnetic Resonance (EPR) is a promising and sensitive measurement technique for recovering these distributions. In the conventional approach, EPR is applied with a homogeneous magnetic field. In this paper, we employ different heterogeneous magnetic fields that allow to stabilize the solution of the associated inverse problem and to obtain localized spatial information. A comparison is made between the two approaches and our novel adaptation shows an average increase in reconstruction quality by 5% and is 12 times more robust towards noise. Furthermore, our approach allows to speed up the EPR measurements while still obtaining reconstructions with an improved accuracy and noise robustness compared to homogeneous EPR.

  10. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries

    PubMed Central

    Sathiya, M.; Leriche, J.-B.; Salager, E.; Gourier, D.; Tarascon, J.-M.; Vezin, H.

    2015-01-01

    Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using Li2Ru0.75Sn0.25O3, a high-capacity (>270 mAh g−1) Li-rich layered oxide, as positive electrode. By monitoring operando the electron paramagnetic resonance signals of Ru5+ and paramagnetic oxygen species, we unambiguously prove the formation of reversible (O2)n− species that contribute to their high capacity. In addition, we visualize by imaging with micrometric resolution the plating/stripping of Li at the negative electrode and highlight the zones of nucleation and growth of Ru5+/oxygen species at the positive electrode. This efficient way to locate ‘electron’-related phenomena opens a new area in the field of battery characterization that should enable future breakthroughs in battery research. PMID:25662295

  11. Electron Paramagnetic Resonance studies of x-ray irradiated Nafion

    NASA Astrophysics Data System (ADS)

    Fragoso, Juan; Usher, Timothy

    2007-03-01

    Fuel cells promise a bright future as power sources for a variety of electronic equipment as well as more power demanding elements. Nafion (DuPont's trademark of a sulfonated tetrafluorethylene polymer modified from Teflon) is the heart of Proton Exchange Membrane Fuel Cells (PEMFCs) as well as Direct Methanol Fuel Cells (DMFCs). Fuel cells are used to power electronic equipment on spacecraft, satellites and unpiloted high altitude aircraft, where ionizing radiation can be a concern. Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that is very sensitive to free radicals such as those produced by ionizing radiation therefore EPR can give us a window into the degradation of the Nafion membranes due to the ionizing radiation. Nafion samples were irradiated using a x-ray diffractometer with a copper target operating at 40kV and 55mA for at least 3hrs. X-Band EPR spectroscopy of the irradiated nafion reveals a peak at 3400G with a width of 10G, which decays over time, completely diminishing in a couple of weeks. Preliminary results from the polarization studies on the effects of ionizing radiation will also be presented.

  12. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    SciTech Connect

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J.; Seiler, A.; Bondarchuk, O.

    2014-08-01

    species with a density of approximately 5 × 10{sup 11} spins/cm{sup 2}, which is comparable to the limit obtained for the presently available UHV-EPR spectrometer operating at 10 GHz (X-band). Investigation of electron trapped centers in MgO(001) films shows that the increased resolution offered by the experiments at W-band allows to identify new paramagnetic species, that cannot be differentiated with the currently available methodology.

  13. Detection of electron paramagnetic resonance absorption using frequency modulation.

    PubMed

    Hirata, Hiroshi; Kuyama, Toshifumi; Ono, Mitsuhiro; Shimoyama, Yuhei

    2003-10-01

    A frequency modulation (FM) method was developed to measure electron paramagnetic resonance (EPR) absorption. The first-derivative spectrum of 1,1-diphenyl-2-picrylhydrazyl (DPPH) powder was measured with this FM method. Frequency modulation of up to 1.6 MHz (peak-to-peak) was achieved at a microwave carrier frequency of 1.1 GHz. This corresponds to a magnetic field modulation of 57microT (peak-to-peak) at 40.3 mT. By using a tunable microwave resonator and automatic control systems, we achieved a practical continuous-wave (CW) EPR spectrometer that incorporates the FM method. In the present experiments, the EPR signal intensity was proportional to the magnitude of frequency modulation. The background signal at the modulation frequency (1 kHz) for EPR detection was also proportional to the magnitude of frequency modulation. An automatic matching control (AMC) system reduced the amplitude of noise in microwave detection and improved the baseline stability. Distortion of the spectral lineshape was seen when the spectrometer settings were not appropriate, e.g., with a lack of the open-loop gain in automatic tuning control (ATC). FM is an alternative to field modulation when the side-effect of field modulation is detrimental for EPR detection. The present spectroscopic technique based on the FM scheme is useful for measuring the first derivative with respect to the microwave frequency in investigations of electron-spin-related phenomena.

  14. Electron paramagnetic resonance calculations for hydrogenated Si surfaces

    NASA Astrophysics Data System (ADS)

    Rohrmüller, M.; Schmidt, W. G.; Gerstmann, U.

    2017-03-01

    Electron paramagnetic resonance (EPR) signatures, more specifically the elements of the electronic g tensor, are calculated within density functional theory for hydrogenated Si(111), Si(001), Si(113), Si(114), Si (11 2 ¯) , and Si(110) surfaces. Thereby both perturbation theory and a more sophisticated Berry phase technique are applied. Specific defects on different surface orientations are shown to reproduce the resonances at g ¯=2.0043 and g ¯=2.0052 measured for hydrogenated microcrystalline silicon: The latter value is argued here to originate from regions with low hydrogen coverage; the resonance at g ¯=2.0043 is shown to appear in positions with dihydride environment, where an H atom is directly bound to the silicon dangling-bond atoms. A third group of EPR signals with considerably larger g ¯ values between 2.006 and 2.009 is predicted for highly symmetric dangling bonds resembling single dangling-bond defects in silicon bulk material. As the exact value depends strongly on local strain, this type of defect can explain a less intense signal with large g strain observed in microcrystalline as well as in amorphous material.

  15. 76 FR 67200 - Prospective Grant of Exclusive License: Electron Paramagnetic Resonance Devices and Systems for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of Exclusive License: Electron... of use limited to electron paramagnetic resonance devices and systems for oximetry. DATES:...

  16. Identification of irradiated cashew nut by electron paramagnetic resonance spectroscopy.

    PubMed

    Sanyal, Bhaskar; Sajilata, M G; Chatterjee, Suchandra; Singhal, Rekha S; Variyar, Prasad S; Kamat, M Y; Sharma, Arun

    2008-10-08

    Cashew nut samples were irradiated at gamma-radiation doses of 0.25, 0.5, 0.75, and 1 kGy, the permissible dose range for insect disinfestation of food commodities. A weak and short-lived triplet (g = 2.004 and hfcc = 30 G) along with an anisotropic signal (g perpendicular = 2.0069 and g parallel = 2.000) were produced immediately after irradiation. These signals were assigned to that of cellulose and CO 2 (-) radicals. However, the irradiated samples showed a dose-dependent increase of the central line (g = 2.0045 +/- 0.0002). The nature of the free radicals formed during conventional processing such as thermal treatment was investigated and showed an increase in intensity of the central line (g = 2.0045) similar to that of irradiation. Characteristics of the free radicals were studied by their relaxation and thermal behaviors. The present work explores the possibility to identify irradiated cashew nuts from nonirradiated ones by the thermal behaviors of the radicals beyond the period, when the characteristic electron paramagnetic resonance spectral lines of the cellulose free radicals have essentially disappeared. In addition, this study for the first time reports that relaxation behavior of the radicals could be a useful tool to distinguish between roasted and irradiated cashew nuts.

  17. Introduction to spin label electron paramagnetic resonance spectroscopy of proteins.

    PubMed

    Melanson, Michelle; Sood, Abha; Török, Fanni; Török, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The β93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess spin label is removed by gel-exclusion chromatography. Changes in the mobility of the reporter groups attached to the protein are monitored by EPR spectroscopy. While the spectral parameters of the rigidly attached 5-MSL provide information on the rotation of the whole spin labeled protein, MTSL bound by a more flexible linkage describes the local environment of the cysteine residue in the interior of the protein structure. Students can study the known crystal structure of hemoglobin in comparison to the results they obtain by analyzing the EPR spectra. Overall, the exercise introduces them to laboratory techniques such as protein labeling, gel filtration, EPR spectroscopy, as well as familiarizes them with the online Protein Data Bank as a research resource and PyMOL software as a structure visualization tool. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  18. Effects of water on fingernail electron paramagnetic resonance dosimetry

    PubMed Central

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-01-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation—these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. PMID:27342838

  19. Targeted-ROI imaging in electron paramagnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Pan, Xiaochuan; Xia, Dan; Halpern, Howard

    2007-07-01

    Electron paramagnetic resonance imaging (EPRI) is a technique that has been used for in vivo oxygen imaging of small animals. In continuous wave (CW) EPRI, the measurement can be interpreted as a sampled 4D Radon transform of the image function. The conventional filtered-backprojection (FBP) algorithm has been used widely for reconstructing images from full knowledge of the Radon transform acquired in CW EPRI. In practical applications of CW EPRI, one often is interested in information only in a region of interest (ROI) within the imaged subject. It is desirable to accurately reconstruct an ROI image only from partial knowledge of the Radon transform because acquisition of the partial data set can lead to considerable reduction of imaging time. The conventional FBP algorithm cannot, however, reconstruct accurate ROI images from partial knowledge of the Radon transform of even dimension. In this work, we describe two new algorithms, which are referred to as the backprojection filtration (BPF) and minimum-data filtered-backprojection (MDFBP) algorithms, for accurate ROI-image reconstruction from a partial Radon transform (or, truncated Radon transform) in CW EPRI. We have also performed numerical studies in the context of ROI-image reconstruction of a synthetic 2D image with density similar to that found in a small animal EPRI. This demonstrates both the inadequacy of the conventional FBP algorithm and the success of BPF and MDFBP algorithms in ROI reconstruction. The proposed ROI imaging approach promises a means to substantially reduce image acquisition time in CW EPRI.

  20. Uniform spinning sampling gradient electron paramagnetic resonance imaging.

    PubMed

    Johnson, David H; Ahmad, Rizwan; Liu, Yangping; Chen, Zhiyu; Samouilov, Alexandre; Zweier, Jay L

    2014-02-01

    To improve the quality and speed of electron paramagnetic resonance imaging (EPRI) acquisition by combining a uniform sampling distribution with spinning gradient acquisition. A uniform sampling distribution was derived for spinning gradient EPRI acquisition (uniform spinning sampling, USS) and compared to the existing (equilinear spinning sampling, ESS) acquisition strategy. Novel corrections were introduced to reduce artifacts in experimental data. Simulations demonstrated that USS puts an equal number of projections near each axis whereas ESS puts excessive projections at one axis, wasting acquisition time. Artifact corrections added to the magnetic gradient waveforms reduced noise and correlation between projections. USS images had higher SNR (85.9 ± 0.8 vs. 56.2 ± 0.8) and lower mean-squared error than ESS images. The quality of the USS images did not vary with the magnetic gradient orientation, in contrast to ESS images. The quality of rat heart images was improved using USS compared to that with ESS or traditional fast-scan acquisitions. A novel EPRI acquisition which combines spinning gradient acquisition with a uniform sampling distribution was developed. This USS spinning gradient acquisition offers superior SNR and reduced artifacts compared to prior methods enabling potential improvements in speed and quality of EPR imaging in biological applications. Copyright © 2013 Wiley Periodicals, Inc.

  1. Uniform Spinning Sampling Gradient Electron Paramagnetic Resonance Imaging

    PubMed Central

    Johnson, David H.; Ahmad, Rizwan; Liu, Yangping; Chen, Zhiyu; Samouilov, Alexandre; Zweier, Jay L.

    2014-01-01

    Purpose To improve the quality and speed of electron paramagnetic resonance imaging (EPRI) acquisition by combining a uniform sampling distribution with spinning gradient acquisition. Theory and Methods A uniform sampling distribution was derived for spinning gradient EPRI acquisition (Uniform Spinning Sampling, USS) and compared to the existing (Equilinear Spinning Sampling, ESS) acquisition strategy. Novel corrections were introduced to reduce artifacts in experimental data. Results Simulations demonstrated that USS puts an equal number of projections near each axis whereas ESS puts excessive projections at one axis, wasting acquisition time. Artifact corrections added to the magnetic gradient waveforms reduced noise and correlation between projections. USS images had higher SNR (85.9±0.8 vs. 56.2±0.8) and lower mean-squared error than ESS images. The quality of the USS images did not vary with the magnetic gradient orientation, in contrast to ESS images. The quality of rat heart images was improved using USS compared to that with ESS or traditional fast-scan acquisitions. Conclusion A novel EPRI acquisition which combines spinning gradient acquisition with a uniform sampling distribution was developed. This USS spinning gradient acquisition offers superior SNR and reduced artifacts compared to prior methods enabling potential improvements in speed and quality of EPR imaging in biological applications. PMID:23475830

  2. Electron paramagnetic resonance dosimetry: Methodology and material characterization

    NASA Astrophysics Data System (ADS)

    Hayes, Robert Bruce

    Electron Paramagnetic Resonance (EPR) methodologies for radiation dose reconstruction are investigated using various dosimeter materials. Specifically, methodologies were developed and used that were intended to improve the accuracy and precision of EPR dosimetric techniques, including combining specimen rotation during measurement, use of an internal manganese standard, instrument stabilization techniques and strict measurement protocols. Characterization and quantification of these improvements were preformed on three specific EPR dosimeter materials. The dosimeter materials investigated using these optimized EPR techniques were Walrus teeth, human tooth enamel and alanine dosimeters. Walrus teeth showed the least desirable properties for EPR dosimetry yielding large native signals and low sensitivity (EPR signal per unit dose). The methods for tooth enamel and alanine resulted in large improvements in precision and accuracy. The minimum detectable dose (MDD) found for alanine was approximately 30 mGy (three standard deviations from the measured zero dose value). This is a sensitivity improvement of 5 to 10 over other specialized techniques published in the literature that offer MDD's in the range of 150 mGy to 300 mGy. The accuracy of the method on tooth enamel was comparable to that typically reported in the literature although the measurement precision was increased by about 7. This improvement in measurement precision enables various applications including dose vs. depth profile analysis and a more nondestructive testing evaluation (where the whole sample need not be additively irradiated in order to calibrate its radiation response). A nondestructive evaluation of numerous samples showed that the method could reconstruct the same doses to within 10 mGy of those evaluated destructively. Doses used for this assessment were in the range of 100 to 250 mGy. The method had sufficient stability to measure tooth enamel samples exhibiting extreme anisotropy with a

  3. Electronic paramagnetic resonance power saturation of wooden samples

    NASA Astrophysics Data System (ADS)

    Brai, Maria; Longo, Anna; Maccotta, Antonella; Marrale, Maurizio

    2009-05-01

    The deterioration of wood used for artifacts of artistic interest involves the production of different free radicals from the macromolecules of the wooden matrix (cellulose, lignin, and hemicellulose). Among the techniques able to provide information about these free radicals, the contribution of electronic paramagnetic resonance (EPR) can be very valuable. In this paper, the study of EPR signals (with g ≈2) of both modern and ancient wooden taxa was undertaken in order to analyze some features of the free radicals in natural wood. In particular, we have studied the microwave power saturation behaviors of seasoned wooden samples from ten species, and we have found remarkable differences between softwoods and hardwoods. These differences can be correlated to dissimilarities in the relaxation times T1 and T2 attributable to the different microscopic structures of the two trees' categories. The method has been also applied to ancient woods belonging to works of art in order to assess the conservation state of these artifacts. The analysis of the saturation curves has been found to be sensitive to the wood decay state. Indeed the deterioration process of the wooden matrix involves a variation of the relaxation times; this could be ascribed to both possible structure modifications and to concentration increments of the free radicals inside ancient woods due to decay induced by natural (biological, chemical, and physical) agents. This analysis method seems to be promising for the characterization of the wooden decay state and, therefore, it could provide valuable diagnostic indications which are necessary for the restoration and conservation of many artifact of historical-artistic-archaeological interest.

  4. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance.

    PubMed

    Bourbin, M; Gourier, D; Derenne, S; Binet, L; Le Du, Y; Westall, F; Kremer, B; Gautret, P

    2013-02-01

    Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a "contamination-like" mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example).

  5. Dating Carbonaceous Matter in Archean Cherts by Electron Paramagnetic Resonance

    PubMed Central

    Bourbin, M.; Derenne, S.; Binet, L.; Le Du, Y.; Westall, F.; Kremer, B.; Gautret, P.

    2013-01-01

    Abstract Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a “contamination-like” mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example). Key Words: Kerogen—Sedimentary rocks

  6. Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance

    DTIC Science & Technology

    1997-12-01

    Armed Forces Rad I Research Institute Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance A...of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance Authored by Scientific Center of Radiation Medicine Academy of Medical...libraries associated with the U.S. Government’s Depository Library System. Preface On April 26, 1986, Reactor #4 at the Chernobyl Nuclear Power Plant near

  7. Exploring the electron transfer pathways in photosystem I by high-time-resolution electron paramagnetic resonance: observation of the B-side radical pair P700(+)A1B(-) in whole cells of the deuterated green alga Chlamydomonas reinhardtii at cryogenic temperatures.

    PubMed

    Berthold, Thomas; von Gromoff, Erika Donner; Santabarbara, Stefano; Stehle, Patricia; Link, Gerhard; Poluektov, Oleg G; Heathcote, Peter; Beck, Christoph F; Thurnauer, Marion C; Kothe, Gerd

    2012-03-28

    Crystallographic models of photosystem I (PS I) highlight a symmetrical arrangement of the electron transfer cofactors which are organized in two parallel branches (A, B) relative to a pseudo-C2 symmetry axis that is perpendicular to the membrane plane. Here, we explore the electron transfer pathways of PS I in whole cells of the deuterated green alga Chlamydomonas reinhardtii using high-time-resolution electron paramagnetic resonance (EPR) at cryogenic temperatures. Particular emphasis is given to quantum oscillations detectable in the tertiary radical pairs P700(+)A1A(-) and P700(+)A1B(-) of the electron transfer chain. Results are presented first for the deuterated site-directed mutant PsaA-M684H in which electron transfer beyond the primary electron acceptor A0A on the PsaA branch of electron transfer is impaired. Analysis of the quantum oscillations, observed in a two-dimensional Q-band (34 GHz) EPR experiment, provides the geometry of the B-side radical pair. The orientation of the g tensor of P700(+) in an external reference system is adapted from a time-resolved multifrequency EPR study of deuterated and 15N-substituted cyanobacteria (Link, G.; Berthold, T.; Bechtold, M.; Weidner, J.-U.; Ohmes, E.; Tang, J.; Poluektov, O.; Utschig, L.; Schlesselman, S. L.; Thurnauer, M. C.; Kothe, G. J. Am. Chem. Soc. 2001, 123, 4211-4222). Thus, we obtain the three-dimensional structure of the B-side radical pair following photoexcitation of PS I in its native membrane. The new structure describes the position and orientation of the reduced B-side quinone A1B(-) on a nanosecond time scale after light-induced charge separation. Furthermore, we present results for deuterated wild-type cells of C. reinhardtii demonstrating that both radical pairs P700(+)A1A(-) and P700(+)A1B(-) participate in the electron transfer process according to a mole ratio of 0.71/0.29 in favor of P700(+)A1A(-). A detailed comparison reveals different orientations of A1A(-) and A1B(-) in their

  8. Electron paramagnetic resonance study of two smectic A liquid crystals.

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Gelerinter, E.; Fishel, D. L.

    1972-01-01

    Study of the molecular ordering in two smectic A liquid crystals using vanadyl acetylacetonate as a paramagnetic probe. The average hyperfine splitting of the spectrum in the smectic A mesophase is measured as a function of the orientation relative to the dc magnetic field of the spectrometer after alignment of the molecules of the liquid crystal.

  9. Studying metal ion-protein interactions: electronic absorption, circular dichroism, and electron paramagnetic resonance.

    PubMed

    Quintanar, Liliana; Rivillas-Acevedo, Lina

    2013-01-01

    Metal ions play a wide range of important functional roles in biology, and they often serve as cofactors in enzymes. Some of the metal ions that are essential for life are strongly associated with proteins, forming obligate metalloproteins, while others may bind to proteins with relatively low affinity. The spectroscopic tools presented in this chapter are suitable to study metal ion-protein interactions. Metal sites in proteins are usually low symmetry centers that differentially absorb left and right circularly polarized light. The combination of electronic absorption and circular dichroism (CD) in the UV-visible region allows the characterization of electronic transitions associated with the metal-protein complex, yielding information on the geometry and nature of the metal-ligand interactions. For paramagnetic metal centers in proteins, electron paramagnetic resonance (EPR) is a powerful tool that provides information on the chemical environment around the unpaired electron(s), as it relates to the electronic structure and geometry of the metal-protein complex. EPR can also probe interactions between the electron spin and nuclear spins in the vicinity, yielding valuable information on some metal-ligand interactions. This chapter describes each spectroscopic technique and it provides the necessary information to design and implement the study of metal ion-protein interactions by electronic absorption, CD, and EPR.

  10. Towards Human Oxygen Images with Electron Paramagnetic Resonance Imaging

    PubMed Central

    Epel, Boris; Redler, Gage; Tormyshev, Victor; Halpern, Howard J.

    2016-01-01

    Electron paramagnetic resonance imaging (EPRI) has been used to noninvasively provide 3D images of absolute oxygen concentration (pO2) in small animals. These oxygen images are well resolved both spatially (∼1mm) and in pO2 (1-3 torr). EPRI preclinical images of pO2 have demonstrated extremely promising results for various applications investigating oxygen related physiologic and biologic processes as well as the dependence of various disease states on pO2, such as the role of hypoxia in cancer. Recent developments have been made that help to progress EPRI towards the eventual goal of human application. For example, a bimodal crossed-wire surface coil has been developed. Very preliminary tests demonstrated a 20 dB isolation between transmit and receive for this coil, with an anticipated additional 20dB achievable. This could potentially be used to image local pO2 in human subjects with superficial tumors with EPRI. Local excitation and detection will reduce the specific absorption rate limitations on images and eliminate any possible power deposition concerns. Additionally, a large 9 mT EPRI magnet has been constructed which can fit and provide static main and gradient fields for imaging local anatomy in an entire human. One potential obstacle that must be overcome in order to use EPRI to image humans is the approved use of the requisite EPRI spin probe imaging agent (trityl). While nontoxic, EPRI trityl spin probes have been injected intravenously when imaging small animals, which results in relatively high total body injection doses that would not be suitable for human imaging applications. Work has been done demonstrating the alternative use of intratumoral (IT) injections, which can reduce the amount of trityl required for imaging by a factor of 2000- relative to a whole body intravenous injection. The development of a large magnet that can accommodate human subjects, the design of a surface coil for imaging of superficial pO2, and the reduction of required

  11. Connecting lipoxygenase function to structure by electron paramagnetic resonance.

    PubMed

    Gaffney, Betty J

    2014-12-16

    CONSPECTUS: Lipoxygenase enzymes insert oxygen in a polyunsaturated lipid, yielding a hydroperoxide product. When the acyl chain is arachidonate, with three cis-pentadiene units, 12 positionally and stereochemically different products might result. The plant lipids, linoleate and linolenate, have, respectively, four and eight potential oxygen insertion sites. The puzzle of how specificity is achieved in these reactions grows as more and more protein structures confirm the conservation of a lipoxygenase protein fold in plants, animals, and bacteria. Lipoxygenases are large enough (60-100 kDa) that they provide a protein shell completely surrounding an active site cavity that has the shape of a long acyl chain and contains a catalytic metal (usually iron). This Account summarizes electron paramagnetic resonance (EPR) spectroscopic, and other, experiments designed to bridge the gap between lipid-lipoxygenase interactions in solution and crystal structures. Experiments with spin-labeled lipids give a picture of bound lipids tethered to protein by an acyl chain, but with a polar end emerging from the cavity to solvent exposure, where the headgroup is highly flexible. The location of a spin on the polar end of a lysolecithin was determined by pulsed, dipolar EPR measurements, by representing the protein structure as a five-point grid of spin-labels with coordinates derived from 10 distance determinations between spin pairs. Distances from the lipid spin to each grid site completed a six-point representation of the enzyme with a bound lipid. Insight into the dynamics that allow substrate/product to enter/exit the cavity was obtained with a different set of spin-labeled protein mutants. Once substrate enters the cavity, the rate-limiting step of catalysis involves redox cycling at the metal center. Here, a mononuclear iron cycles between ferric and ferrous (high-spin) forms. Two helices provide pairs of side-chain ligands to the iron, resulting in characteristic EPR

  12. Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging

    NASA Astrophysics Data System (ADS)

    Epel, Boris; Halpern, Howard J.

    2015-05-01

    Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage.

  13. Simultaneous electrochemical and electron paramagnetic resonance studies of carotenoids. Effect of electron donating and accepting substituents

    SciTech Connect

    Jeevarajan, A.S.; Khaled, M.; Kispert, L.D. )

    1994-08-11

    A series of substituted phenyl-7[prime]-apocarotenoids with varying electron donating and accepting substituents was examined by cyclic voltammogram (CV) and simultaneous electrochemical electron paramagnetic resonance (SEEPR). Carotenoids substituted with electron donating groups are more easily oxidized than those with electron accepting substituents. Comproportionation constants for the dication and the neutral species were measured by SEEPR techniques and by simulation of the CVs. The [Delta]H[sub pp] of the SEEPR spectrum of the cation radicals varies from 13.2 to 15.6 G, and the g factors are 2.0027 [+-] 0.0002. These EPR parameters suggest a polyene [pi]-cation radical structure. The CVs are calculated using DigiSim, a CV simulation program, and the proposed mechanism involves three electrode reactions and two homogeneous reactions. 24 refs., 3 figs., 2 tabs.

  14. A multifrequency high-field pulsed electron paramagnetic resonance/electron-nuclear double resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Morley, Gavin W.; Brunel, Louis-Claude; van Tol, Johan

    2008-06-01

    We describe a pulsed electron paramagnetic resonance spectrometer operating at several frequencies in the range of 110-336GHz. The microwave source at all frequencies consists of a multiplier chain starting from a solid state synthesizer in the 12-15GHz range. A fast p-i-n-switch at the base frequency creates the pulses. At all frequencies a Fabry-Pérot resonator is employed and the π /2 pulse length ranges from ˜100ns at 110GHzto˜600ns at 334GHz. Measurements of a single crystal containing dilute Mn2+ impurities at 12T illustrate the effects of large electron spin polarizations. The capabilities also allow for pulsed electron-nuclear double resonance (ENDOR) experiments as demonstrated by Mims ENDOR of K39 nuclei in Cr :K3NbO8.

  15. High field electron paramagnetic resonance characterization of electronic and structural environments for paramagnetic metal ions and organic free radicals in Deepwater Horizon oil spill tar balls.

    PubMed

    Ramachandran, Vasanth; van Tol, Johan; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G; Dalal, Naresh S

    2015-02-17

    In the first use of high-field electron paramagnetic resonance (EPR) spectroscopy to characterize paramagnetic metal-organic and free radical species from tar balls and weathered crude oil samples from the Gulf of Mexico (collected after the Deepwater Horizon oil spill) and an asphalt volcano sample collected off the coast of Santa Barbara, CA, we are able to identify for the first time the various paramagnetic species present in the native state of these samples and understand their molecular structures and bonding. The two tar ball and one asphalt volcano samples contain three distinct paramagnetic species: (i) an organic free radical, (ii) a [VO](2+) containing porphyrin, and (iii) a Mn(2+) containing complex. The organic free radical was found to have a disc-shaped or flat structure, based on its axially symmetric spectrum. The characteristic spectral features of the vanadyl species closely resemble those of pure vanadyl porphyrin; hence, its nuclear framework around the vanadyl ion must be similar to that of vanadyl octaethyl porphyrin (VOOEP). The Mn(2+) ion, essentially undetected by low-field EPR, yields a high-field EPR spectrum with well-resolved hyperfine features devoid of zero-field splitting, characteristic of tetrahedral or octahedral Mn-O bonding. Although the lower-field EPR signals from the organic free radicals in fossil fuel samples have been investigated over the last 5 decades, the observed signal was featureless. In contrast, high-field EPR (up to 240 GHz) reveals that the species is a disc-shaped hydrocarbon molecule in which the unpaired electron is extensively delocalized. We envisage that the measured g-value components will serve as a sensitive basis for electronic structure calculations. High-field electron nuclear double resonance experiments should provide an accurate picture of the spin density distribution for both the vanadyl-porphyrin and Mn(2+) complexes, as well as the organic free radical, and will be the focus of follow

  16. Three-dimensional electron paramagnetic resonance imaging technique for mapping porosity in ceramics

    SciTech Connect

    Kordas, G.; Kang, Y.H. )

    1991-04-01

    This paper reports on a three-dimensional (3D) electron paramagnetic resonance imaging (EPRI) method which was developed to probe the structure and size of pores in ceramic materials. The imaging device that was added to the EPR instrument consisted of a computer-controlled current source and magnetic field gradient. This add-on facility was tested using a well-defined diphenlpicrylhydrazzyl phantom sample. Pumice was then used to demonstrate the potential of the technique. This stone was immersed in a 0.5 mm {sup 15}N-substituted per-deutereted tempone water solution to fill the pores with spin labels. Images were reconstructed using a filtered back-projection technique. A two-dimensional (2D) imaging plane was constructed by collecting 33 projection planes over 180 {degrees}. A 3D image was derived from 22 planes each constructed by 22 projections. At present, the facility allows a resolution of 69 and 46 {mu}m for 2D and 3D imaging, respectively. Advancements of the imaging apparatus, software, and line width of the spin labels will be needed to enhance the resolution of this technique.

  17. Rapid Scan Electron Paramagnetic Resonance Opens New Avenues for Imaging Physiologically Important Parameters In Vivo.

    PubMed

    Biller, Joshua R; Mitchell, Deborah G; Tseytlin, Mark; Elajaili, Hanan; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2016-09-26

    We demonstrate a superior method of 2D spectral-spatial imaging of stable radical reporter molecules at 250 MHz using rapid-scan electron-paramagnetic-resonance (RS-EPR), which can provide quantitative information under in vivo conditions on oxygen concentration, pH, redox status and concentration of signaling molecules (i.e., OH(•), NO(•)). The RS-EPR technique has a higher sensitivity, improved spatial resolution (1 mm), and shorter acquisition time in comparison to the standard continuous wave (CW) technique. A variety of phantom configurations have been tested, with spatial resolution varying from 1 to 6 mm, and spectral width of the reporter molecules ranging from 16 µT (160 mG) to 5 mT (50 G). A cross-loop bimodal resonator decouples excitation and detection, reducing the noise, while the rapid scan effect allows more power to be input to the spin system before saturation, increasing the EPR signal. This leads to a substantially higher signal-to-noise ratio than in conventional CW EPR experiments.

  18. Electron paramagnetic resonance investigation of purified catalyst-free single-walled carbon nanotubes.

    PubMed

    Zaka, Mujtaba; Ito, Yasuhiro; Wang, Huiliang; Yan, Wenjing; Robertson, Alex; Wu, Yimin A; Rümmeli, Mark H; Staunton, David; Hashimoto, Takeshi; Morton, John J L; Ardavan, Arzhang; Briggs, G Andrew D; Warner, Jamie H

    2010-12-28

    Electron paramagnetic resonance of single-walled carbon nanotubes (SWCNTs) has been bedevilled by the presence of paramagnetic impurities. To address this, SWCNTs produced by laser ablation with a nonmagnetic PtRhRe catalyst were purified through a multiple step centrifugation process in order to remove amorphous carbon and catalyst impurities. Centrifugation of a SWCNT solution resulted in sedimentation of carbon nanotube bundles containing clusters of catalyst particles, while isolated nanotubes with reduced catalyst particle content remained in the supernatant. Further ultracentrifugation resulted in highly purified SWCNT samples with a narrow diameter distribution and almost no detectable catalyst particles. Electron paramagnetic resonance (EPR) signals were detected only for samples which contained catalyst particles, with the ultracentrifuged SWCNTs showing no EPR signal at X-band (9.4 GHz) and fields < 0.4 T.

  19. Accelerated electron paramagnetic resonance imaging using partial Fourier compressed sensing reconstruction.

    PubMed

    Chou, Chia-Chu; Chandramouli, Gadisetti V R; Shin, Taehoon; Devasahayam, Nallathamby; McMillan, Alan; Babadi, Behtash; Gullapalli, Rao; Krishna, Murali C; Zhuo, Jiachen

    2017-04-01

    Electron paramagnetic resonance (EPR) imaging has evolved as a promising tool to provide non-invasive assessment of tissue oxygenation levels. Due to the extremely short T2 relaxation time of electrons, single point imaging (SPI) is used in EPRI, limiting achievable spatial and temporal resolution. This presents a problem when attempting to measure changes in hypoxic state. In order to capture oxygen variation in hypoxic tissues and localize cycling hypoxia regions, an accelerated EPRI imaging method with minimal loss of information is needed. We present an image acceleration technique, partial Fourier compressed sensing (PFCS), that combines compressed sensing (CS) and partial Fourier reconstruction. PFCS augments the original CS equation using conjugate symmetry information for missing measurements. To further improve image quality in order to reconstruct low-resolution EPRI images, a projection onto convex sets (POCS)-based phase map and a spherical-sampling mask are used in the reconstruction process. The PFCS technique was used in phantoms and in vivo SCC7 tumor mice to evaluate image quality and accuracy in estimating O2 concentration. In both phantom and in vivo experiments, PFCS demonstrated the ability to reconstruct images more accurately with at least a 4-fold acceleration compared to traditional CS. Meanwhile, PFCS is able to better preserve the distinct spatial pattern in a phantom with a spatial resolution of 0.6mm. On phantoms containing Oxo63 solution with different oxygen concentrations, PFCS reconstructed linewidth maps that were discriminative of different O2 concentrations. Moreover, PFCS reconstruction of partially sampled data provided a better discrimination of hypoxic and oxygenated regions in a leg tumor compared to traditional CS reconstructed images. EPR images with an acceleration factor of four are feasible using PFCS with reasonable assessment of tissue oxygenation. The technique can greatly enhance EPR applications and improve our

  20. The Effect of Electronic Paramagnetism on Nuclear Magnetic Resonance Frequencies in Metals

    DOE R&D Accomplishments Database

    Townes, C. H.; Herring, C.; Knight, W. D.

    1950-09-22

    Observations on the shifts of nuclear resonances in metals ( Li{sup 7}, Na{sup 23}, Cu {sup 63}, Be{sup 9}, Pb{sup 207}, Al{sup 27}, and Ca{sup 69} ) due to free electron paramagnetism; comparison with theoretical values.

  1. Gamma-irradiated ExtraVit M nutritive supplement studied by electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Petrişor, Dina; Damian, Grigore; Simon, Simion

    2008-04-01

    An unirradiated and γ-irradiated nutritive supplement named ExtraVit M was studied by electron paramagnetic resonance (EPR) spectroscopy in order to detect stable paramagnetic species following improvement of hygienic quality by γ-radiation. Free radicals were induced by γ-radiation in the studied samples from low absorbed doses, showing a certain sensibility of these samples to the radiation treatment. The EPR spectrum of irradiated ExtraVit M is typical for drugs or nutritive supplements containing high levels of sugars, vitamin C and cellulose.

  2. Effects of Paramagnetism and Electron Correlations on the Electronic Structure of MnO: Ab Initio Study

    NASA Astrophysics Data System (ADS)

    Yoon, Sangmoon; Jin, Kyoungsuk; Kang, Seoung-Hun; Nam, Ki Tae; Kim, Miyoung; Kwon, Young-Kyun

    Manganese oxide nanoparticles have attracted a lot of attentions as a promising candidate for next-generation catalyst. Therefore, understanding the electronic structure of manganese oxide in room temperature is highly required for the rational design of catalysts. We study the effects of paramagnetism and electron correlations on the electronic structure of MnO using ab initio density functional theory. Spin configurations of paramagnetism are postulated as the ensemble average of various spin disorders. Each initial disordered spin configuration is randomly generated with two constraints on magnetic local moments. We first investigate the influence of magnetic ordering on the elctronic structure of MnO using noncollinear spin calculations and find that the magnetic disorders make valence band maximum more delocalized. Moreover, we examine the role of electron correlations in the electronic structure of paramagnetic MnO using DFT +U calculations. Strong electron correlations modify not only the size of band gap but also the magnitude of local moments as in the antiferromagnetic MnO. Besides, the initialized spin disorder remains almost unchanged as electron correlation get stronger. Furthermore, our results obtained by considering both strong electron correlation and paramagnetism confirm experimentally-observed oxygen K edge X-ray emission spectra [1] reflecting the feature of valence bands. [1] E. Z. Kurmaev et al., Phys. Rev. B. 77, 165127 (2008).

  3. Double electron-electron resonance measurements of diamond to determine T2 dependence on concentration of paramagnetic impurities

    NASA Astrophysics Data System (ADS)

    Stepanov, Viktor; Takahashi, Susumu

    A nitrogen-vacancy (NV) center in diamond is a promising candidate for investigation of fundamental sciences and applications to a nanoscale magnetic field sensing device because of unique properties of a NV center in diamond including capability to detect optically detected magnetic resonance (ODMR) signals from a single NV and initialize its spin state. Fundamental studies and applications of NV centers relay on coherent control of the NV centers that is limited by decoherence time (T2) and, as often observed, T2 is limited by paramagnetic impurity contents in diamond crystals. In this work, we will investigate T2 dependence on concentration of nitrogen impurities in type-Ib and type-IIa diamond crystals. For precise determination of the nitrogen concentration, we employ a home-built high-frequency electron spin resonance spectrometer which enables broadband double electron-electron resonance spectroscopy with high spectral resolution. This work is supported by the National Science Foundation (DMR-1508661) and the Searle scholars program.

  4. Electron Paramagnetic Resonance Imaging of the Spatial Distribution of Free Radicals in PMR-15 Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.

    1997-01-01

    Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron paramagnetic resonance imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of approximately 0.18 mm along a 2-mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2-mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 1-h cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.

  5. Electron Paramagnetic Resonance Imaging of the Spatial Distribution of Free Radicals in PMR-15 Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.

    1997-01-01

    Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron paramagnetic resonance imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of approximately 0.18 mm along a 2-mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2-mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 1-h cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.

  6. Electron Paramagnetic Resonance Imaging of the Spatial Distribution of Free Radicals in PMR-15 Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.

    1997-01-01

    Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron Paramagnetic Resonance Imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of about 0.18 mm along a 2 mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2 mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 one-hour cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.

  7. ELECTRON PARAMAGNETIC RESONANCE DOSIMETRY FOR A LARGE-SCALE RADIATION INCIDENT

    PubMed Central

    Swartz, Harold M.; Flood, Ann Barry; Williams, Benjamin B.; Dong, Ruhong; Swarts, Steven G.; He, Xiaoming; Grinberg, Oleg; Sidabras, Jason; Demidenko, Eugene; Gui, Jiang; Gladstone, David J.; Jarvis, Lesley A.; Kmiec, Maciej M.; Kobayashi, Kyo; Lesniewski, Piotr N.; Marsh, Stephen D.P.; Matthews, Thomas P.; Nicolalde, Roberto J.; Pennington, Patrick M.; Raynolds, Timothy; Salikhov, Ildar; Wilcox, Dean E.; Zaki, Bassem I.

    2013-01-01

    With possibilities for radiation terrorism and intensified concerns about nuclear accidents since the recent Fukushima Daiichi event, the potential exposure of large numbers of individuals to radiation that could lead to acute clinical effects has become a major concern. For the medical community to cope with such an event and avoid overwhelming the medical care system, it is essential to identify not only individuals who have received clinically significant exposures and need medical intervention but also those who do not need treatment. The ability of electron paramagnetic resonance to measure radiation-induced paramagnetic species, which persist in certain tissues (e.g., teeth, fingernails, toenails, bone, and hair), has led this technique to become a prominent method for screening significantly exposed individuals. Although the technical requirements needed to develop this method for effective application in a radiation event are daunting, remarkable progress has been made. In collaboration with General Electric, and through funding committed by the Biomedical Advanced Research and Development Authority, electron paramagnetic resonance tooth dosimetry of the upper incisors is being developed to become a Food and Drug Administration-approved and manufacturable device designed to carry out triage for a threshold dose of 2 Gy. Significant progress has also been made in the development of electron paramagnetic resonance nail dosimetry based on measurements of nails in situ under point-of-care conditions, and in the near future this may become a second field-ready technique. Based on recent progress in measurements of nail clippings, we anticipate that this technique may be implementable at remotely located laboratories to provide additional information when the measurements of dose on site need to be supplemented. We conclude that electron paramagnetic resonance dosimetry is likely to be a useful part of triage for a large-scale radiation incident. PMID:22850230

  8. Electron Paramagnetic Resonance of Single Magnetic Moment on a Surface

    PubMed Central

    Berggren, P.; Fransson, J.

    2016-01-01

    We address electron spin resonance of single magnetic moments in a tunnel junction using time-dependent electric fields and spin-polarized current. We show that the tunneling current directly depends on the local magnetic moment and that the frequency of the external electric field mixes with the characteristic Larmor frequency of the local spin. The importance of the spin-polarized current induced anisotropy fields acting on the local spin moment is, moreover, demonstrated. Our proposed model thus explains the absence of an electron spin resonance for a half integer spin, in contrast with the strong signal observed for an integer spin. PMID:27156935

  9. Tetrachloridocuprates(II)—Synthesis and Electron Paramagnetic Resonance (EPR) Spectroscopy

    PubMed Central

    Winter, Alette; Zabel, André; Strauch, Peter

    2012-01-01

    Ionic liquids (ILs) on the basis of metal containing anions and/or cations are of interest for a variety of technical applications e.g., synthesis of particles, magnetic or thermochromic materials. We present the synthesis and the results of electron paramagnetic resonance (EPR) spectroscopic analyses of a series of some new potential ionic liquids based on tetrachloridocuprates(II), [CuCl4]2−, with different sterically demanding cations: hexadecyltrimethylammonium 1, tetradecyltrimethylammonium 2, tetrabutylammonium 3 and benzyltriethylammonium 4. The cations in the new compounds were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. The EPR hyperfine structure was not resolved. This is due to the exchange broadening, resulting from still incomplete separation of the paramagnetic Cu(II) centers. Nevertheless, the principal values of the electron Zeemann tensor (g║ and g┴) of the complexes could be determined. Even though the solid substances show slightly different colors, the UV/Vis spectra are nearly identical, indicating structural changes of the tetrachloridocuprate moieties between solid state and solution. The complexes have a promising potential e.g., as high temperature ionic liquids, as precursors for the formation of copper chloride particles or as catalytic paramagnetic ionic liquids. PMID:22408411

  10. Electron paramagnetic resonance study of the nuclear spin dynamics in an AlAs quantum well

    NASA Astrophysics Data System (ADS)

    Shchepetilnikov, A. V.; Frolov, D. D.; Nefyodov, Yu. A.; Kukushkin, I. V.; Tiemann, L.; Reichl, C.; Dietsche, W.; Wegscheider, W.

    2016-12-01

    The nuclear spin dynamics in an asymmetrically doped 16-nm AlAs quantum well grown along the [001] direction has been studied experimentally using the time decay of the Overhauser shift of paramagnetic resonance of conduction electrons. The nonzero spin polarization of nuclei causing the initial observed Overhauser shift is due the relaxation of the nonequilibrium spin polarization of electrons into the nuclear subsystem near electron paramagnetic resonance owing to the hyperfine interaction. The measured relaxation time of nuclear spins near the unity filling factor is (530 ± 30) min at the temperature T = 0.5 K. This value exceeds the characteristic spin relaxation times of nuclei in GaAs/AlGaAs heterostructures by more than an order of magnitude. This fact indicates the decrease in the strength of the hyperfine interaction in the AlAs quantum well in comparison with GaAs/AlGaAs heterostructures.

  11. Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.

    PubMed

    Takahashi, S; Brunel, L-C; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

    2012-09-20

    Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that other techniques in structural biology have not been able to reveal. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance, EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 gigahertz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 teslas and below. Here we demonstrate that one-kilowatt pulses from a free-electron laser can power a pulsed EPR spectrometer at 240 gigahertz (8.5 teslas), providing transformative enhancements over the alternative, a state-of-the-art ∼30-milliwatt solid-state source. Our spectrometer can rotate spin-1/2 electrons through π/2 in only 6 nanoseconds (compared to 300 nanoseconds with the solid-state source). Fourier-transform EPR on nitrogen impurities in diamond demonstrates excitation and detection of EPR lines separated by about 200 megahertz. We measured decoherence times as short as 63 nanoseconds, in a frozen solution of nitroxide free-radicals at temperatures as high as 190 kelvin. Both free-electron lasers and the quasi-optical technology developed for the spectrometer are scalable to frequencies well in excess of one terahertz, opening the way to high-power pulsed EPR spectroscopy up to the highest static magnetic fields currently available.

  12. Structural, optical, electron paramagnetic, thermal and dielectric characterization of chalcopyrite.

    PubMed

    Prameena, B; Anbalagan, G; Gunasekaran, S; Ramkumaar, G R; Gowtham, B

    2014-03-25

    Chalcopyrite (CuFeS2) a variety of pyrite minerals was investigated through spectroscopic techniques and thermal analysis. The morphology and elemental analysis of the chalcopyrite have been done by high resolution SEM with EDAX. The lattice parameters were from the powder diffraction data (a=5.3003±0.0089 Å, c=10.3679±0.0289 Å; the volume of the unit cell=291.266 Å(3) with space group I42d (122)). The thermal decomposition behavior of chalcopyrite was studied by means of thermogravimetric analysis at three different heating rates 10, 15 and 20 °C/min. The values of effective activation energy (Ea), pre-exponential factor (ln A) for thermal decomposition have been measured at three different heating rates by employing Kissinger, Kim-Park and Flynn-Wall methods. Dielectric studies at different temperatures have also been carried out and it was found that both dielectric constant and dielectric loss decreases with the increase of frequency.

  13. Cysteine-Specific Cu2+ Chelating Tags Used as Paramagnetic Probes in Double Electron Electron Resonance

    PubMed Central

    Cunningham, Timothy F.; Shannon, Matthew D.; Putterman, Miriam R.; Arachchige, Rajith J.; Sengupta, Ishita; Gao, Min; Jaroniec, Christopher P.; Saxena, Sunil

    2015-01-01

    Double electron electron resonance (DEER) is an attractive technique that is utilized for gaining insight into protein structure and dynamics via nanometer-scale distance measurements. The most commonly used paramagnetic tag in these measurements is a nitroxide spin label, R1. Here, we present the application of two types of high-affinity Cu2+ chelating tags, based on the EDTA and cyclen metal-binding motifs as alternative X-band DEER probes, using the B1 immunoglobulin-binding domain of protein G (GB1) as a model system. Both types of tags have been incorporated into a variety of protein secondary structure environments and exhibit high spectral sensitivity. In particular, the cyclen-based tag displays distance distributions with comparable distribution widths and most probable distances within 1–3 Å when compared to homologous R1 distributions. The results display the viability of the cyclen tag as an alternative to the R1 side chain for X-band DEER distance measurements in proteins. PMID:25608028

  14. Electron paramagnetic resonance of natural and gamma-irradiated alunite and kaolin mineral powders

    NASA Astrophysics Data System (ADS)

    Koksal, F.; Koseoglu, R.; Saka, I.; Basaran, E.; Sener, F.

    2004-06-01

    Natural alunite and kaolin minerals obtained from West Anatolia were investigated by electron paramagnetic resonance (EPR) in natural and gamma-irradiated states at room temperature and at 113 K. The paramagnetic centres at ambient temperature in natural alunite were attributed to the (C) over dot H 2OH, (C) over dot O-3(-), (S) over dot O-2(-), (C) over dot O-2(-) and [AlO4 ](0) radicals. In natural kaolin, the paramagnetic centres were attributed to the (C) over dot O-3(-), (S) over dot O-2(-) (C) over dot O-2(-) and [AlO4](0) radicals. The gamma-irradiation does not produce any detectable effects on these radicals. At 113 K, the lines for (C) over dot H2OH could not be observed well, probably due to the anisotropic behaviour of the hyperfine interaction of the methylene protons, but the lines for [AlO4](0) centres were found to be perfectly observable at above 20 mW microwave power in both alunite and kaolin powders before and after gamma-irradiation. The EPR parameters of the observed paramagnetic centres were reported.

  15. Field-stepped direct detection electron paramagnetic resonance.

    PubMed

    Yu, Zhelin; Liu, Tengzhi; Elajaili, Hanan; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2015-09-01

    The widest scan that had been demonstrated previously for rapid scan EPR was a 155G sinusoidal scan. As the scan width increases, the voltage requirement across the resonating capacitor and scan coils increases dramatically and the background signal induced by the rapidly changing field increases. An alternate approach is needed to achieve wider scans. A field-stepped direct detection EPR method that is based on rapid-scan technology is now reported, and scan widths up to 6200G have been demonstrated. A linear scan frequency of 5.12kHz was generated with the scan driver described previously. The field was stepped at intervals of 0.01 to 1G, depending on the linewidths in the spectra. At each field data for triangular scans with widths up to 11.5G were acquired. Data from the triangular scans were combined by matching DC offsets for overlapping regions of successive scans. This approach has the following advantages relative to CW, several of which are similar to the advantages of rapid scan. (i) In CW if the modulation amplitude is too large, the signal is broadened. In direct detection field modulation is not used. (ii) In CW the small modulation amplitude detects only a small fraction of the signal amplitude. In direct detection each scan detects a larger fraction of the signal, which improves the signal-to-noise ratio. (iii) If the scan rate is fast enough to cause rapid scan oscillations, the slow scan spectrum can be recovered by deconvolution after the combination of segments. (iv) The data are acquired with quadrature detection, which permits phase correction in the post processing. (v) In the direct detection method the signal typically is oversampled in the field direction. The number of points to be averaged, thereby improving the signal-to-noise ratio, is determined in post processing based on the desired field resolution. A degased lithium phthalocyanine sample was used to demonstrate that the linear deconvolution procedure can be employed with field

  16. Lithium naphthalocyanine as a new molecular radical probe for electron paramagnetic resonance oximetry

    NASA Astrophysics Data System (ADS)

    Manivannan, Ayyakkannu; Yanagi, Hisao; Ilangovan, Govindasamy; Kuppusamy, Periannan

    2001-08-01

    A new lithium naphthalocyanine dye aggregate [Li 2Nc][LiNc] is reported as a potential electron paramagnetic resonance (EPR) oximetry probe for accurate measurement of oxygen concentration in biological systems. The Li 2Nc is diamagnetic; however, the LiNc molecule has an unpaired electron and hence is paramagnetic. The aggregate shows a strong and single line EPR signal that is non-saturating at normal EPR power levels. An oxygen-dependent peak-to-peak EPR spectral width ranging from 0.51 G (at pO 2: 0 mmHg) to 26.2 G (at pO 2: 760 mmHg) has been observed. The application of this probe has been demonstrated in the measurement of arterial and venous oxygen tensions in a rat.

  17. Electron paramagnetic resonance and FT-IR spectroscopic studies of glycine anhydride and betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Halim Başkan, M.; Kartal, Zeki; Aydın, Murat

    2015-12-01

    Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).

  18. Characterization of humic acids from tundra soils of northern Western Siberia by electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chukov, S. N.; Ejarque, E.; Abakumov, E. V.

    2017-01-01

    Humic acids from polar soils—cryozems (Cryosols), gleyezems (Gleysols), and peat soils (Histosols)—have been studied by electron paramagnetic resonance spectroscopy. First information was acquired on the content of free radicals in humic acids from polar soils for the northern regions of Western Siberia (Gydan Peninsula, Belyi Island). It was found that polar soils are characterized by higher contents of free radicals than other zonal soils. This is related to the lower degree of humification of organic matter and the enhanced hydromorphism under continuous permafrost conditions. The low degree of organic matter humification in the cryolithozone was confirmed by the increased content of free radicals as determined by electron paramagnetic resonance, which indicates a low biothermodynamic stability of organic matter.

  19. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  20. Effect of conduction electrons on the paramagnetic susceptibility of rare earth intermetallics

    SciTech Connect

    Zajac, S.; Pesek, F.

    1994-03-01

    The authors have calculated the paramagnetic susceptibility of rare earth intermetallics in the model of the crystal-field split 4F ions interacting with conduction electrons by exchange coupling. Using the thermodynamic perturbation theory they have derived analytical formulae for the susceptibility to the second order. They have developed scheme to simultaneously optimize fitting of crystal-field and coupling parameters to the experimental data.

  1. Determining residual impurities in sapphire by means of electron paramagnetic resonance and nuclear activation analysis

    NASA Astrophysics Data System (ADS)

    Bletskan, D. I.; Bratus', V. Ya.; Luk'yanchuk, A. R.; Maslyuk, V. T.; Parlag, O. A.

    2008-07-01

    Sapphire (α-Al2O3) single crystals grown using the Verneuil and Kyropoulos methods have been analyzed using electron paramagnetic resonance and γ-ray spectroscopy with 12-MeV bremsstrahlung excitation. It is established that uncontrolled impurities in the final sapphire single crystals grown by the Kyropoulos method in molybdenum-tungsten crucibles are supplied both from the initial materials and from the furnace and crucible materials

  2. Radiation Dosimetry Study in Dental Enamel of Human Tooth Using Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    De, Tania; Romanyukha, Alex; Pass, Barry; Misra, Prabhakar

    2009-07-01

    Electron paramagnetic resonance (EPR) dosimetry of tooth enamel is used for individual dose reconstruction following radiation accidents. The purpose of this study is to develop a rapid, minimally invasive technique of obtaining a sample of dental enamel small enough to not disturb the structure and functionality of a tooth and to improve the sensitivity of the spectral signals using X-band (9.4 GHz) and Q-band (34 GHz) EPR technique. In this study EPR measurements in X-band were performed on 100 mg isotropic powdered enamel samples and Q-band was performed on 4 mg, 1×1×3 mm enamel biopsy samples. All samples were obtained from discarded teeth collected during normal dental treatment. To study the variation of the Radiation-Induced Signal (RIS) at different orientations in the applied magnetic field, samples were placed in the resonance cavity for Q-band EPR. X-band EPR measurements were performed on 100 mg isotropic powdered enamel samples. In X-band spectra, the RIS is distinct from the "native" radiation-independent signal only for doses >0.5 Gy. Q-band, however, resolves the RIS and "native" signals and improves sensitivity by a factor of 20, enabling measurements in 2-4 mg tooth enamel samples, as compared to 100 mg for X-band. The estimated lower limit of Q-band dose measurement is 0.5 Gy. Q-band EPR enamel dosimetry results in greater sensitivity and smaller sample size through enhanced spectral resolution. Thus, this can be a valuable technique for population triage in the event of detonation of a radiation dispersal device ("dirty" bomb) or other radiation event with massive casualties. Further, the small 4 mg samples can be obtained by a minimally-invasive biopsy technique.

  3. Structure and dynamics in B12 enzyme catalysis revealed by electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Warncke, Kurt

    2009-03-01

    Challenges to the understanding of how protein structure and dynamics contribute to catalysis in enzymes, and the use of time-resolved electron paramagnetic resonance (EPR) spectroscopic techniques to address the challenges, are examined in the context of the coenzyme B12-dependent enzyme, ethanolamine ammonia-lyase (EAL), from Salmonella typhimurium. EAL conducts the homolytic cleavage of the coenzyme cobalt-carbon bond, intraprotein radical migration (5-6 å), and hydrogen atom transfers, which enable the core radical-mediated rearrangement reaction. Thermodynamic and activation parameters are measured in two experimental systems, which were developed to isolate sub-sequences from the multi-step catalytic cycle, as follows: (1) A dimethylsulfoxide (DMSO)/water cryosolvent system is used to prepare the kinetically-arrested enzyme/coenzyme/substrate ternary complex in fluid solution at 230 K.[1] Temperature-step initiated cobalt-carbon bond cleavage and radical pair separation to form the Co(II)-substrate radical pair are monitored by using time-resolved, full-spectrum EPR spectroscopy (234<=T<=250 K).[1] (2) The Co(II)-substrate radical pair is cryotrapped in frozen aqueous solution at T<150 K, and then promoted to react by a temperature step. The reaction of the substrate radical along the native pathway to form the diamagnetic bound products is monitored by using time-resolved, full-spectrum EPR spectroscopy (187<=T<=217 K).[2] High temporal resolution is achieved, because the reactions are dramatically slowed at the low temperatures, relative to the initiation and spectrum acquistion times. The results are combined with high resolution structures of the reactant centers, obtained by pulsed-EPR spectroscopies,[3] and the protein, obtained by structural proteomics[4] and EPR and electron spin echo envelope modulation (ESEEM) in combination with site directed mutagenesis,[5] to approach a molecular level description of protein contributions to catalysis in EAL. [4

  4. Electron paramagnetic resonance study of doped synthetic crystals of struvite and its zinc analogue

    NASA Astrophysics Data System (ADS)

    Chand, Prem; Agarwal, O. P.

    The electron paramagnetic resonance (EPR) technique has been used to study the Mn 2+ paramagnetic impurity complexes in synthetic struvite (MgNH 4PO 4β6H 2O) and the zinc isomorph (ZnNH 4PO 4β6H 2O). EPR of VO 2+ ion complexes in vanadyl doped crystals of the zinc isomorph of struvite has also been studied. Two differently oriented, but otherwise identical complexes of both Mn 2+ ion and VO 2+ ion are found in these crystals. The spin Hamiltonian parameters indicate a large orthorhombic distortion of the [Mn 2+(H 2O) 6] octahedra and an axial symmetry of the vanadyl complexes. The results indicate that in both manganese and vanadyl complexes, the metal ions have covalent bonding with the ligands.

  5. Monitoring Complex Formation by Relaxation-Induced Pulse Electron Paramagnetic Resonance Distance Measurements.

    PubMed

    Giannoulis, Angeliki; Oranges, Maria; Bode, Bela E

    2017-09-06

    Biomolecular complexes are often multimers fueling the demand for methods that allow unraveling their composition and geometric arrangement. Pulse electron paramagnetic resonance (EPR) spectroscopy is increasingly applied for retrieving geometric information on the nanometer scale. The emerging RIDME (relaxation-induced dipolar modulation enhancement) technique offers improved sensitivity in distance experiments involving metal centers (e.g. on metalloproteins or proteins labelled with metal ions). Here, a mixture of a spin labelled ligand with increasing amounts of paramagnetic Cu(II) ions allowed accurate quantification of ligand-metal binding in the model complex formed. The distance measurement was highly accurate and critical aspects for identifying multimerization could be identified. The potential to quantify binding in addition to the high-precision distance measurement will further increase the scope of EPR applications. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Paramagnetic defects induced by electron irradiation in barium hollandite ceramics for caesium storage.

    PubMed

    Aubin-Chevaldonnet, V; Gourier, D; Caurant, D; Esnouf, S; Charpentier, T; Costantini, J M

    2006-04-26

    We have studied by electron paramagnetic resonance the mechanism of defect production by electron irradiation in barium hollandite, a material used for immobilization of radioactive caesium. The irradiation conditions were the closest possible to those occurring in Cs storage waste forms. Three paramagnetic defects were observed, independently of the irradiation conditions. A hole centre (H centre) is attributed to a superoxide ion O(2)(-) originating from hole trapping by interstitial oxygen produced by electron irradiation. An electron centre (E(1) centre) is attributed to a Ti(3+) ion adjacent to the resulting oxygen vacancy. Another electron centre (E(2) centre) is attributed to a Ti(3+) ion in a cation site adjacent to an extra Ba(2+) ion in a neighbouring tunnel, originating from barium displacement by elastic collisions. Comparison of the effects of external irradiations by electrons with the β-decay of Cs in storage waste forms is discussed. It is concluded that the latter would be dominated by E(1) and H centres rather than E(2) centres.

  7. Paramagnetic Defects in Electron-Irradiated Yttria-Stabilized Zirconia: Effect of Yttria Content

    SciTech Connect

    Costantini, Jean-Marc; Beuneu, Francois; Morrison-Smith, Sarah; Devanathan, Ram; Weber, William J

    2011-01-01

    We have studied the effect of the yttria content on the paramagnetic centres in electron-irradiated yttria-stabilized zirconia (ZrO2: Y3+) or YSZ. Single crystals with 9.5 mol% or 18 mol% Y2O3 were irradiated with electrons of 1.0, 1.5, 2.0 and 2.5 MeV. The paramagnetic centre production was studied by X-band EPR spectroscopy. The same paramagnetic centres were identified for both chemical compositions, namely two electron centres, i.e. i) F+-type centres (involving singly ionized oxygen vacancies), and ii) so-called T centres (Zr3+ in a trigonal symmetry site), and hole-centres. A strong effect is observed on the production of hole-centres which are strongly enhanced when doubling the yttria content. However, no striking effect is found on the electron centres (except the enhancement of an extra line associated to the F+-type centres). It is concluded that hole-centres are produced by inelastic interactions, whereas F+-type centres are produced by elastic collisions with no effect of the yttria content on the defect production rate. In the latter case, the threshold displacement energy (Ed) of oxygen is estimated from the electron-energy dependence of the F+-type centre production rate, with no significant effect of the yttria content on Ed. An Ed value larger than 120 eV is found. Accordingly, classical molecular dynamics (MD) simulations with a Buckingham-type potential show that Ed values for Y and O are likely to be in excess of 200 eV. Due to the difficulty in displacing O or Y atoms, the radiation-induced defects may alternatively be a result of Zr atom displacements for Ed = 80 1 eV with subsequent defect re-arrangement.

  8. Paramagnetic defects in electron-irradiated yttria-stabilized zirconia: Effect of yttria content

    SciTech Connect

    Costantini, Jean-Marc; Beuneu, Francois; Morrison-Smith, Sarah E.; Devanathan, Ramaswami; Weber, William J.

    2011-12-20

    We have studied the effect of the yttria content on the paramagnetic centres in electron-irradiated yttria-stabilized zirconia (ZrO2: Y3+) or YSZ. Single crystals with 9.5 mol% or 18 mol% Y2O3 were irradiated with electrons of 1.0, 1.5, 2.0 and 2.5 MeV. The paramagnetic centre production was studied by X-band EPR spectroscopy. The same paramagnetic centres were identified for both chemical compositions, namely two electron centres, i.e. i) F+-type centres (involving singly ionized oxygen vacancies), and ii) so-called T centres (Zr3+ in a trigonal symmetry site), and hole-centres. A strong effect is observed on the production of hole-centres which are strongly enhanced when doubling the yttria content. However, no striking effect is found on the electron centres (except the enhancement of an extra line associated to the F+-type centres). It is concluded that hole-centres are produced by inelastic interactions, whereas F+-type centres are produced by elastic collisions with no effect of the yttria content on the defect production rate. In the latter case, the threshold displacement energy (Ed) of oxygen is estimated from the electron-energy dependence of the F+-type centre production rate, with no significant effect of the yttria content on Ed. An Ed value larger than 120 eV is found. Accordingly, classical molecular dynamics (MD) simulations with a Buckingham-type potential show that Ed values for Y and O are likely to be in excess of 200 eV. It is concluded that F+-type centres might be actually oxygen divacancies (F2+-type centres). Due to the difficulty in displacing O or Y atoms, the radiation-induced defects may alternatively be a result of Zr atom displacements for Ed = 80 ± 1 eV with subsequent defect re-arrangement.

  9. Principal component analysis enhances SNR for dynamic electron paramagnetic resonance oxygen imaging of cycling hypoxia in vivo.

    PubMed

    Redler, Gage; Epel, Boris; Halpern, Howard J

    2014-01-01

    Low oxygen concentration (hypoxia) in tumors strongly affects their malignant state and resistance to therapy. These effects may be more deleterious in regions undergoing cycling hypoxia. Electron paramagnetic resonance imaging (EPRI) has provided a noninvasive, quantitative imaging modality to investigate static pO2 in vivo. However, to image changing hypoxia, EPRI images with better temporal resolution may be required. The tradeoff between temporal resolution and signal-to-noise ratio (SNR) results in lower SNR for EPRI images with imaging time short enough to resolve cycling hypoxia. Principal component analysis allows for accelerated image acquisition with acceptable SNR by filtering noise in projection data, from which pO2 images are reconstructed. Principal component analysis is used as a denoising technique by including only low-order components to approximate the EPRI projection data. Simulated and experimental studies show that principal component analysis filtering increases SNR, particularly for small numbers of sub-volumes with changing pO2 , enabling an order of magnitude increase in temporal resolution with minimal deterioration in spatial resolution or image quality. The SNR necessary for dynamic EPRI studies with temporal resolution required to investigate cycling hypoxia and its physiological implications is enabled by principal component analysis filtering. Copyright © 2013 Wiley Periodicals, Inc.

  10. Exploring Structure, Dynamics, and Topology of Nitroxide Spin-Labeled Proteins Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Altenbach, Christian; López, Carlos J; Hideg, Kálmán; Hubbell, Wayne L

    2015-01-01

    Structural and dynamical characterization of proteins is of central importance in understanding the mechanisms underlying their biological functions. Site-directed spin labeling (SDSL) combined with continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy has shown the capability of providing this information with site-specific resolution under physiological conditions for proteins of any degree of complexity, including those associated with membranes. This chapter introduces methods commonly employed for SDSL and describes selected CW EPR-based methods that can be applied to (1) map secondary and tertiary protein structure, (2) determine membrane protein topology, (3) measure protein backbone flexibility, and (4) reveal the existence of conformational exchange at equilibrium. © 2015 Elsevier Inc. All rights reserved.

  11. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  12. Low temperature electron paramagnetic resonance anomalies in Fe-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Koksharov, Yu. A.; Gubin, S. P.; Kosobudsky, I. D.; Beltran, M.; Khodorkovsky, Y.; Tishin, A. M.

    2000-08-01

    A study of the electron paramagnetic resonance of Fe-based nanoparticles embedded in polyethylene matrix was performed as a function of temperature ranging from 3.5 to 500 K. Nanoparticles with a narrow size distribution were prepared by the high-velocity thermodestruction of iron-containing compounds. A temperature-driven transition from superparamagnetic to ferromagnetic resonance was observed for samples with different Fe content. The unusual behavior of the spectra at about 25 K is considered evidence of a spin-glass state in iron oxide nanoparticles.

  13. Nondestructive measurement of large objects with electron paramagnetic resonance: Pottery, sculpture, and jewel ornament

    NASA Astrophysics Data System (ADS)

    Ikeya, Motoji; Yamamoto, Masahiro; Ishii, Hiroshi

    1994-12-01

    A cylindicral cavity of TE111 mode with an aperture of 3 mm in diameter has been used to measure the electron paramagnetic resonance (EPR) spectrum of a large object placed over the aperture. EPR spectra of a precious fossil of a dinosaur tooth piece and a fossil bone of the Machikane Alligator were measured nondestructively in addition to a jadeite sculpture, a pearl and turquoise necklace, a large turmaline, a star ruby, and ceramic pottery. Thus, EPR can be a nondestructive tool to detect forgery and to test the authenticity in art as well as to allocate ancient objects in archaeological provenance study.

  14. Ordering of PCDTBT revealed by time-resolved electron paramagnetic resonance spectroscopy of its triplet excitons.

    PubMed

    Biskup, Till; Sommer, Michael; Rein, Stephan; Meyer, Deborah L; Kohlstädt, Markus; Würfel, Uli; Weber, Stefan

    2015-06-22

    Time-resolved electron paramagnetic resonance (TREPR) spectroscopy is shown to be a powerful tool to characterize triplet excitons of conjugated polymers. The resulting spectra are highly sensitive to the orientation of the molecule. In thin films cast on PET film, the molecules' orientation with respect to the surface plane can be determined, providing access to sample morphology on a microscopic scale. Surprisingly, the conjugated polymer investigated here, a promising material for organic photovoltaics, exhibits ordering even in bulk samples. Orientation effects may significantly influence the efficiency of solar cells, thus rendering proper control of sample morphology highly important.

  15. Electron paramagnetic resonance of Fe3+ in near-stoichiometric LiTaO3

    NASA Astrophysics Data System (ADS)

    Loyo-Menoyo, M.; Keeble, D. J.; Furukawa, Y.; Kitamura, K.

    2004-12-01

    Electron paramagnetic resonance (EPR) experiments on the dominant Fe3+ centre in near-stoichiometric LiTaO3 crystals grown by the double crucible Czochralski method are reported. A near complete roadmap of EPR positions was obtained, and transitions from two magnetically non-equivalent sites clearly resolved in the zx plane, perpendicular to the glide plane. This allowed accurate determination of C3 symmetry spin Hamiltonian parameters. Newman superposition model analyses of second and fourth order zero field splitting term parameters were performed to give further insight into the site of incorporation. The second order calculations provide evidence for Fe3+ substitution within the Li octahedron.

  16. Electron paramagnetic resonance oxygen imaging of a rabbit tumor using localized spin probe delivery.

    PubMed

    Epel, Boris; Haney, Chad R; Hleihel, Danielle; Wardrip, Craig; Barth, Eugene D; Halpern, Howard J

    2010-06-01

    Application of in vivo electron paramagnetic resonance (EPR) oxygen imaging (EPROI) to tumors larger than those of mice requires development of both instrumental and medical aspects of imaging. 250 MHz EPR oxygen imaging was performed using a loop-gap resonator with a volume exceeding 100 cm3. The paramagnetic spin probe was injected directly into the femoral artery feeding the rabbit leg/tumor. The authors present continuous wave and electron spin echo EPR oxygen images of a large size (4 cm) VX-2 tumor located on the leg of a New Zealand white rabbit. This study demonstrates the feasibility of continuous wave and electron spin echo oxygen imaging modalities for investigation of volumes of tumor and normal tissue relevant to large animals. The injection of the spin probe directly into the artery feeding a rabbit leg will allow one to reduce, by over one order of magnitude, the amount of spin probe used as compared to whole animal i.v. injection.

  17. Electron paramagnetic resonance study of ZnAl(2)S(4) spinel.

    PubMed

    Güner, S; Yıldız, F; Rameev, B; Aktaş, B

    2005-06-29

    Single crystals of ZnAl(2)S(4) spinel doped by paramagnetic Cr(3+) and Mn(2+) ions have been studied by the electron paramagnetic resonance (EPR) technique. The crystal field symmetry around the impurity ions has been determined from the angular behaviour of X-band EPR spectra. The anisotropic EPR signal of the Cr(3+) ions shows splitting into 31 narrow lines due to the super-hyperfine interaction between unpaired electron spins of the chromium centres and nuclear spins of six neighbouring Al(27) (I = 5/2) ions. It has been established that the Cr(3+) ions are located at the octahedral sites in the spinel structure, and the super-hyperfine interaction results from a weak covalent bounding with the Al atoms. The EPR signals of the Cr(3+) paramagnetic centres show no fine-structure splitting due to a perfectly cubic symmetry of the local crystal field in the octahedral sites of the ZnAl(2)S(4) spinel structure. A weak EPR signal consisting of six components has been ascribed to the transitions between hyperfine levels of the Mn(2+) (I = 5/2,S = 5/2) ions located at tetrahedral sites, while the fine-structure splitting of each component could be resolved only for special orientations of the sample in the external magnetic field. The parameters of the EPR signal of both chromium and manganese centres indicate that there is an essential covalence in the ZnAl(2)S(4) spinel crystal. Very narrow linewidths (∼2 Oe) of the Cr(3+) EPR signal components point to very high homogeneity and quality of the ZnAl(2)S(4) crystals.

  18. Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains.

    PubMed

    Subczynski, Witold K; Widomska, Justyna; Wisniewska, Anna; Kusumi, Akihiro

    2007-01-01

    The discrimination by oxygen transport (DOT) method is a dual-probe saturation-recovery electron paramagnetic resonance approach in which the observable parameter is the spin-lattice relaxation time (T1) of lipid spin labels, and the measured value is the bimolecular collision rate between molecular oxygen and the nitroxide moiety of spin labels. This method has proven to be extremely sensitive to changes in the local oxygen diffusion-concentration product (around the nitroxide moiety) because of the long T1 of lipid spin labels (1-10 micros) and also because molecular oxygen is a unique probe molecule. Molecular oxygen is paramagnetic, small, and has the appropriate level of hydrophobicity that allows it to partition into various supramolecular structures such as different membrane domains. When located in two different membrane domains, the spin label alone most often cannot differentiate between these domains, giving very similar (indistinguishable) conventional electron paramagnetic resonance spectra and similar T1 values. However, even small differences in lipid packing in these domains will affect oxygen partitioning and oxygen diffusion, which can be easily detected by observing the different T1s from spin labels in these two locations in the presence of molecular oxygen. The DOT method allows one not only to distinguish between the different domains, but also to obtain the value of the oxygen diffusion-concentration product in these domains, which is a useful physical characteristic of the organization of lipids in domains. Profiles of the oxygen diffusion-concentration product (the oxygen transport parameter) in coexisting domains can be obtained in situ without the need for the physical separation of the two domains. Furthermore, under optimal conditions, the exchange rate of spin-labeled molecules between the two domains could be measured.

  19. Bulk Quantum Computation with Pulsed Electron Paramagnetic Resonance: Simulations of Single-Qubit Error Correction Schemes

    NASA Astrophysics Data System (ADS)

    Ishmuratov, I. K.; Baibekov, E. I.

    2016-12-01

    We investigate the possibility to restore transient nutations of electron spin centers embedded in the solid using specific composite pulse sequences developed previously for the application in nuclear magnetic resonance spectroscopy. We treat two types of systematic errors simultaneously: (i) rotation angle errors related to the spatial distribution of microwave field amplitude in the sample volume, and (ii) off-resonance errors related to the spectral distribution of Larmor precession frequencies of the electron spin centers. Our direct simulations of the transient signal in erbium- and chromium-doped CaWO4 crystal samples with and without error corrections show that the application of the selected composite pulse sequences can substantially increase the lifetime of Rabi oscillations. Finally, we discuss the applicability limitations of the studied pulse sequences for the use in solid-state electron paramagnetic resonance spectroscopy.

  20. Spin Labeling and Characterization of Tau Fibrils Using Electron Paramagnetic Resonance (EPR).

    PubMed

    Meyer, Virginia; Margittai, Martin

    2016-01-01

    Template-assisted propagation of Tau fibrils is essential for the spreading of Tau pathology in Alzheimer's disease. In this process, small seeds of fibrils recruit Tau monomers onto their ends. The physical properties of the fibrils play an important role in their propagation. Here, we describe two different electron paramagnetic resonance (EPR) techniques that have provided crucial insights into the structure of Tau fibrils. Both techniques rely on the site-directed introduction of one or two spin labels into the protein monomer. Continuous-wave (CW) EPR provides information on which amino acid residues are contained in the fibril core and how they are stacked along the long fibril axis. Double electron-electron resonance (DEER) determines distances between two spin labels within a single protein and hence provides insights into their spatial arrangement in the fibril cross section. Because of the long distance range accessible to DEER (~2-5 nm) populations of distinct fibril conformers can be differentiated.

  1. Sensitivity and Resolution Enhanced Solid-state NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    PubMed Central

    PARTHASARATHY, SUDHAKAR; NISHIYAMA, YUSUKE; ISHII, YOSHITAKA

    2013-01-01

    CONSPECTUS Recent research in fast magic angle spinning (MAS) methods has drastically improved in the resolution and sensitivity for NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarizes recent and ongoing developments in this area by presenting 13C and 1H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of 20 kHz allows us to overcome major difficulties in 1H and 13C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (~ms/scan) using short 1H T1 values we can perform 1H SSNMR micro-analysis of paramagnetic systems in the μg scale with greatly improved sensitivity over that for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ~40 kHz can enhance the sensitivity and resolution of 13C biomolecular SSNMR measurements. Low-power 1H decoupling schemes under VFMAS offer excellent spectral resolution for 13C SSNMR by nominal 1H RF irradiation at ~10 kHz. By combining the VFMAS approach and enhanced 1H T1 relaxation by paramagnetic doping we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments for 13C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine 13C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary 13C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at 1H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and the ultra-high fields could allow for routine multi-dimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the prospects for studying bimolecules using 13

  2. Application of electron paramagnetic resonance spectroscopy for validation of the novel (AN+DN) solvent polarity scale.

    PubMed

    Malavolta, Luciana; Poletti, Erick F; Silva, Elias H; Schreier, Shirley; Nakaie, Clovis R

    2008-06-01

    Based on solvation studies of polymers, the sum (1:1) of the electron acceptor (AN) and electron donor (DN) values of solvents has been proposed as an alternative polarity scale. To test this, the electron paramagnetic resonance isotropic hyperfine splitting constant, a parameter known to be dependent on the polarity/proticity of the medium, was correlated with the (AN+DN) term using three paramagnetic probes. The linear regression coefficient calculated for 15 different solvents was approximately 0.9, quite similar to those of other well-known polarity parameters, attesting to the validity of the (AN+DN) term as a novel "two-parameter" solvent polarity scale.

  3. Electron paramagnetic studies of the copper and iron containing soluble ammonia monooxygenase from Nitrosomonas europaea.

    PubMed

    Gilch, Stefan; Meyer, Ortwin; Schmidt, Ingo

    2010-08-01

    Soluble ammonia monooxygenase (AMO) from Nitrosomonas europaea was purified to homogeneity and metals in the active sites of the enzyme (Cu, Fe) were analyzed by electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were obtained for a type 2 Cu(II) site with g(parallel) = 2.24, A(parallel) = 18.4 mT and g(perpendicular) = 2.057 as well as for heme and non heme iron present in purified soluble AMO from N. europaea. A second type 2 Cu(II) EPR signal with g(parallel) = 2.29, A(parallel) = 16.1 mT and g(perpendicular) = 2.03 appeared in the spectrum of the ferricyanide oxidized enzyme and was attributed to oxidation of cuprous sites. Comparison of EPR-detectable Cu(2+) with total copper determined by inductively coupled plasma-mass spectrometry (ICP-MS) suggests that there are six paramagnetic Cu(2+) and three diamagnetic Cu(1+) per heterotrimeric soluble AMO (two paramagnetic and one diamagnetic Cu per alphabetagamma-protomer). A trigonal EPR signal at g = 6.01, caused by a high-spin iron, indicative for cytochrome bound iron, and a rhombic signal at g = 4.31, characteristic of specifically bound Fe(3+) was detectable. The binding of nitric oxide in the presence of reductant resulted in a ferrous S = 3/2 signal, characteristic of a ferrous nitrosyl complex. Inactivation of soluble AMO with acetylene did neither diminish the ferrous signal nor the intensity of the Cu(2+)-EPR signal.

  4. Electron paramagnetic resonance study of Fe3+ in α-quartz: Hydrogen-compensated center

    NASA Astrophysics Data System (ADS)

    Mombourquette, M. J.; Minge, J.; Hantehzadeh, M. R.; Weil, J. A.; Halliburton, L. E.

    1989-03-01

    Electron paramagnetic resonance and proton electron-nuclear double-resonance studies of a hydrogen-compensated Fe3+ (S=(5/2) center in synthetic iron-doped α-quartz have been carried out at 20 and 15 K, respectively. The spin-Hamiltonian parameters were determined, allowing anisotropy of the g matrix as well as [g,D,A(1H)]-matrix noncoaxiality, and including high-spin terms of the form S4. Evaluation of the results gives strong evidence that the center (called S2 by some workers) consists of a Fe3+ ion occurring substitutionally at a Si4+ site, charge compensated by an interstitial hydrogen ion. The label [FeO4/H+]0 is proposed for the center.

  5. Electron Paramagnetic Resonance of Rhyolite and γ-Irradiated Trona Minerals

    NASA Astrophysics Data System (ADS)

    Köksal, F.; Köseoğlu, R.; Bașaran, E.

    2003-06-01

    Rhyolite from the "Yellow Stone of Nevșehir" and γ-irradiated trona from the Ankara Mine have been investigated by electron paramagnetic resonance at ambient temperature and at 113 K. Rhyolite was examined by X-ray powder diffraction and found to consist mainly of SiO2. Before γ-irradiation, the existing paramagnetic species in rhyolite were identified as ṖO42-, ĊH2OH, ĊO3-, ṠO2-, ĊO33-, and ĊO2- free radicals and Fe3+ at ambient temperature. At 113 K ṠO2- , ĊO33- , and ĊO2- radicals and Fe3+ were observed. The γ-irradiation produced neither new species nor detectable effects on these free radicals. The disappearance of some of the radicals at 113 K is attributed to the freezing of their motions. Before γ-irradiation, the trona mineral shows only Mn2+ lines, but after γ-irradiation it indicated the inducement of ĊO33- and ĊO2- radicals at ambient temperature, 113 K, in addition to the Mn2+ lines. The g and a values of the species were determined.

  6. Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol-capped gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Guerrero, E.; Muñoz-Márquez, M. A.; Fernández, A.; Crespo, P.; Hernando, A.; Lucena, R.; Conesa, J. C.

    2010-03-01

    In the last years, the number of studies performed by wholly independent research groups that confirm the permanent magnetism, first observed in our research lab, for thiol-capped Au nanoparticles (NPs) has rapidly increased. Throughout the years, the initial magnetometry studies have been completed with element-specific magnetization measurements based on, for example, the x-ray magnetic circular dichroism technique that have allowed the identification of gold as the magnetic moment carrier. In the research work here presented, we have focused our efforts in the evaluation of the magnetic behavior and iron impurities content in the synthesized samples by means of superconducting quantum interference device magnetometry and electron paramagnetic resonance spectrometry, respectively. As a result, hysteresis cycles typical of a ferromagnetic material have been measured from nominally iron-free gold NPs protected with thiol, phosphine, and chlorine ligands. It is also observed that for samples containing both, capped gold NPs and highly diluted iron concentrations, the magnetic behavior of the NPs is not affected by the presence of paramagnetic iron impurities. The hysteresis cycles reported for phosphine-chlorine-capped gold NPs confirm that the magnetic behavior is not exclusively for the metal-thiol system.

  7. Characterisation of β-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna

    2012-10-01

    β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  8. Electron Paramagnetic Resonance Characterization of Membrane Bound Iron-Sulfur Clusters and Aconitase in Plant Mitochondria

    PubMed Central

    Brouquisse, Renaud; Gaillard, Jacques; Douce, Roland

    1986-01-01

    Electron paramagnetic resonance (EPR) characteristics of the iron-sulfur clusters of potato tuber mitochondria have been examined in various subfractions of the mitochondria. We confirm that EPR signals comparable to those of the iron-sulfur proteins of mammalian mitochondria respiratory complexes are also present in plant mitochondria. Two distinct iron-sulfur centers paramagnetic in the oxidized state exhibit signals which differ in their detailed line shape and field position. One of these which is present in the inner membrane corresponds to center S.3. The EPR spectrum of the soluble fraction revealed the presence of another center with a low field maximum at g = 2.03 and is associated with aconitase. The EPR signal observed in the mitochondrial matrix from potato tuber and characteristic of 3Fe cluster is significantly changed in shape after addition of citrate and differs clearly from the spectrum of pig heart mitochondrial aconitase. The aconitase in plant mitochondria differs from that of mammalian mitochondria by several features. PMID:16664783

  9. Electron paramagnetic resonance studies of copper ion-exchanged ZSM-5

    SciTech Connect

    Larsen, S.C.; Aylor, A.; Bell, A.T.; Reimer, J.A. )

    1994-11-03

    Electron paramagnetic resonance (EPR) spectroscopy was utilized to probe the oxidation state and coordination environment of copper in ion-exchanged CuZSM-5. EPR spectra of hydrated samples were consistent with octahedral coordination. Square pyramidal and square-planar sites were identified in pretreated CuZSM-5 samples, and the relative concentration of square-pyramidal sites in these samples was linearly correlated with the copper-exchange level. The extent of autoreduction was monitored by EPR and it was determined that a substantial fraction (approximately 40-60%) of the copper was reduced and the reduction process was reversible in the presence of water. A mechanism for the autoreduction of copper is proposed that is consistent with the EPR results. Further, the reactivity of the proposed copper species was probed in reducing and oxidizing environments and in the presence of nitric oxide. The increase in EPR signal intensity that was observed after room-temperature NO exposure of pretreated and oxidized CuZSM-5 is attributed to the formation of copper nitrite and nitrate species. High-temperature in situ EPR experiments revealed that on the time scale of the EPR experiment, the paramagnetic copper environment did not change at elevated temperatures in the presence of nitric oxide. 39 refs., 13 figs., 3 tabs.

  10. Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule

    NASA Astrophysics Data System (ADS)

    Teeling-Smith, Richelle M.; Jung, Young Woo; Scozzaro, Nicolas; Cardellino, Jeremy; Rampersaud, Isaac; North, Justin A.; Šimon, Marek; Bhallamudi, Vidya P.; Rampersaud, Arfaan; Johnston-Halperin, Ezekiel; Poirier, Michael G.; Hammel, P. Chris

    2016-05-01

    A key limitation of electron paramagnetic resonance (EPR), an established and powerful tool for studying atomic-scale biomolecular structure and dynamics is its poor sensitivity, samples containing in excess of 10^12 labeled biomolecules are required in typical experiments. In contrast, single molecule measurements provide improved insights into heterogeneous behaviors that can be masked by ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. We report EPR measurements of a single labeled biomolecule that merge these two powerful techniques. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy (NV) centers, and optically detect the paramagnetic resonance of NV spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic time scale for reorientation of the nanodiamond probe is slow compared to the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond labeled DNA provides the foundation for the development of single molecule magnetic resonance studies of complex biomolecular systems.

  11. Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule.

    PubMed

    Teeling-Smith, Richelle M; Jung, Young Woo; Scozzaro, Nicolas; Cardellino, Jeremy; Rampersaud, Isaac; North, Justin A; Šimon, Marek; Bhallamudi, Vidya P; Rampersaud, Arfaan; Johnston-Halperin, Ezekiel; Poirier, Michael G; Hammel, P Chris

    2016-05-10

    Electron paramagnetic resonance (EPR), an established and powerful methodology for studying atomic-scale biomolecular structure and dynamics, typically requires in excess of 10(12) labeled biomolecules. Single-molecule measurements provide improved insights into heterogeneous behaviors that can be masked in ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. Here, we report EPR measurements of a single labeled biomolecule. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy centers, and optically detect the paramagnetic resonance of nitrogen-vacancy spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic timescale for reorientation of the nanodiamond probe is slow compared with the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond-labeled DNA provides the foundation for the development of single-molecule magnetic resonance studies of complex biomolecular systems.

  12. Distance measurements between paramagnetic centers and a planar object by matrix Mims electron nuclear double resonance

    NASA Astrophysics Data System (ADS)

    Zänker, Paul-Philipp; Jeschke, Gunnar; Goldfarb, Daniella

    2005-01-01

    Frequency-domain electron nuclear double resonance (ENDOR), two time-domain electron nuclear double resonance techniques, and electron spin echo envelope modulation spectroscopy are compared with respect to their merit in measurements of small hyperfine couplings to nuclei with intermediate gyromagnetic ratio such as 31P. The frequency-domain Mims ENDOR experiment is found to provide the most faithful line shapes. In the limit of long electron-nuclear distances of more than 0.5 nm, sensitivity of this experiment is optimized by matching the first interpulse delay to the transverse relaxation time of the electron spins. In the same limit, Mims ENDOR efficiency scales inversely with the sixth power of distance. Hyperfine splittings as small as 33 kHz can be detected, corresponding to an electron-31P distance of 1 nm. In systems, where a certain kind of nuclei is distributed in a plane, measurements of intermolecular hyperfine couplings can be analyzed in terms of a distance of closest approach of a paramagnetic center to that plane. By applying this technique to spin-labeled lipids in a fully hydrated lipid bilayer it is found that for a fraction of lipids, chain tilt angles can be 25° larger than the mean tilt angle of the lipid chains. This model of all-trans hydrocarbon chains with a broad distribution of tilt angles is also consistent with orientation selection effects in high-field ENDOR spectra.

  13. Distance measurements between paramagnetic centers and a planar object by matrix Mims electron nuclear double resonance.

    PubMed

    Zänker, Paul-Philipp; Jeschke, Gunnar; Goldfarb, Daniella

    2005-01-08

    Frequency-domain electron nuclear double resonance (ENDOR), two time-domain electron nuclear double resonance techniques, and electron spin echo envelope modulation spectroscopy are compared with respect to their merit in measurements of small hyperfine couplings to nuclei with intermediate gyromagnetic ratio such as 31P. The frequency-domain Mims ENDOR experiment is found to provide the most faithful line shapes. In the limit of long electron-nuclear distances of more than 0.5 nm, sensitivity of this experiment is optimized by matching the first interpulse delay to the transverse relaxation time of the electron spins. In the same limit, Mims ENDOR efficiency scales inversely with the sixth power of distance. Hyperfine splittings as small as 33 kHz can be detected, corresponding to an electron-31P distance of 1 nm. In systems, where a certain kind of nuclei is distributed in a plane, measurements of intermolecular hyperfine couplings can be analyzed in terms of a distance of closest approach of a paramagnetic center to that plane. By applying this technique to spin-labeled lipids in a fully hydrated lipid bilayer it is found that for a fraction of lipids, chain tilt angles can be 25 degrees larger than the mean tilt angle of the lipid chains. This model of all-trans hydrocarbon chains with a broad distribution of tilt angles is also consistent with orientation selection effects in high-field ENDOR spectra. 2005 American Institute of Physics.

  14. Time-resolved electron paramagnetic resonance of radical pair intermediates in cryptochromes

    NASA Astrophysics Data System (ADS)

    Biskup, Till

    2013-12-01

    Electron transfer plays a key role in many biological systems, including core complexes of photosynthesis and respiration. As this involves unpaired electron spins, electron paramagnetic resonance (EPR) is the method of choice to investigate such processes. Systems that show photo-induced charge separation and electron transfer are of particular interest, as here the processes can easily be synchronised to the experiment and therefore followed directly over its time course. One particular class of proteins, the cryptochromes, showing charge separation and in turn spin-correlated radical pairs upon excitation with blue light, have been investigated by time-resolved EPR spectroscopy in great detail and the results obtained so far are summarised in this contribution. Highlights include the first observation of spin-correlated radical pairs in these proteins, a fact with great impact on the proposed role as key part of a magnetic compass of migratory birds, as well as the assignment of the radical-pair partners and the unravelling of alternative and unexpected electron transfer pathways in these proteins, giving new insights into aspects of biological electron transfer itself.

  15. Characterizing the conformational dynamics of metal-free PsaA using molecular dynamics simulations and electron paramagnetic resonance spectroscopy.

    PubMed

    Deplazes, Evelyne; Begg, Stephanie L; van Wonderen, Jessica H; Campbell, Rebecca; Kobe, Bostjan; Paton, James C; MacMillan, Fraser; McDevitt, Christopher A; O'Mara, Megan L

    2015-12-01

    Prokaryotic metal-ion receptor proteins, or solute-binding proteins, facilitate the acquisition of metal ions from the extracellular environment. Pneumococcal surface antigen A (PsaA) is the primary Mn(2+)-recruiting protein of the human pathogen Streptococcus pneumoniae and is essential for its in vivo colonization and virulence. The recently reported high-resolution structures of metal-free and metal-bound PsaA have provided the first insights into the mechanism of PsaA-facilitated metal binding. However, the conformational dynamics of metal-free PsaA in solution remain unknown. Here, we use continuous wave electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations to study the relative flexibility of the structural domains in metal-free PsaA and its distribution of conformations in solution. The results show that the crystal structure of metal-free PsaA is a good representation of the dominant conformation in solution, but the protein also samples structurally distinct conformations that are not captured by the crystal structure. Further, these results suggest that the metal binding site is both larger and more solvent exposed than indicated by the metal-free crystal structure. Collectively, this study provides atomic-resolution insight into the conformational dynamics of PsaA prior to metal binding and lays the groundwork for future EPR and MD based studies of PsaA in solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ion exchange in alginate gels--dynamic behaviour revealed by electron paramagnetic resonance.

    PubMed

    Ionita, Gabriela; Ariciu, Ana Maria; Smith, David K; Chechik, Victor

    2015-12-14

    The formation of alginate gel from low molecular weight alginate and very low molecular weight alginate in the presence of divalent cations was investigated using Electron Paramagnetic Resonance (EPR) spectroscopy. The transition from sol to gel in the presence of divalent cations was monitored by the changes in the dynamics of spin labelled alginate. The immobilisation of the spin labelled alginate in the gel reflects the strength of interaction between the cation and alginate chain. Diffusion experiments showed that both the cation and alginate polyanion in the gel fibres can exchange with molecules in solution. In particular, we showed that dissolved alginate polyanions can replace alginates in the gel fibres, which can hence diffuse through the bulk of the gel. This illustrates the surprisingly highly dynamic nature of these gels and opens up the possibility of preparing multicomponent alginate gels via polyanion exchange process.

  17. Electron paramagnetic resonance spectroscopy in radiation research: Current status and perspectives

    PubMed Central

    Rana, Sudha; Chawla, Raman; Kumar, Raj; Singh, Shefali; Zheleva, Antoaneta; Dimitrova, Yanka; Gadjeva, Veselina; Arora, Rajesh; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Exposure to radiation leads to a number of health-related malfunctions. Ionizing radiation is more harmful than non-ionizing radiation, as it causes both direct and indirect effects. Irradiation with ionizing radiation results in free radical-induced oxidative stress. Free radical-mediated oxidative stress has been implicated in a plethora of diseased states, including cancer, arthritis, aging, Parkinson's disease, and so on. Electron Paramagnetic Resonance (EPR) spectroscopy has various applications to measure free radicals, in radiation research. Free radicals disintegrate immediately in aqueous environment. Free radicals can be detected indirectly by the EPR spin trapping technique in which these forms stabilize the radical adduct and produce characteristic EPR spectra for specific radicals. Ionizing radiation-induced free radicals in calcified tissues, for example, teeth, bone, and fingernail, can be detected directly by EPR spectroscopy, due to their extended stability. Various applications of EPR in radiation research studies are discussed in this review. PMID:21814437

  18. Dosimetric evaluation of sodium carbonate (Na2CO3) by electronic paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Ureña-Núñez, F.; Dávila Ballesteros, M. R.

    This work presents the possibility to use the electron paramagnetic resonance (EPR) signal of gamma-irradiated sodium carbonate for dosimetric purposes. The dosimeters were irradiated in a 60Co source. The process induced in sodium carbonate by gamma rays results in the formation of carboxil radical anions ./GRAD_A_327316_O_XML_IMAGES/GRAD_A_327316_O_ILM0001.gif . This way, the method is based on the evaluation of the EPR signal of these radical anions in the material. The aspects studied were peak-to-peak signal amplitude as a function of received dose, signal fading, signal repeatability, sample homogeneity, zero response and environmental effects. It has been concluded that sodium carbonate can be used as a sensitive material to gamma radiation.

  19. Age of an Indonesian Fossil Tooth Determined by Electron Paramagnetic Resonance

    SciTech Connect

    Bogard, JS

    2004-04-07

    The first fossil hominid tooth recovered during 1999 excavations from the Cisanca River region in West Java, Indonesia, was associated with a series of bovid teeth from a single individual that was recovered 190 cm beneath the hominid tooth. The age of the fossil bovid teeth was determined using electron paramagnetic resonance (EPR) analysis as part of an effort to bracket the age of the hominid tooth. The EPR-derived age of the bovid teeth is (5.16 {+-} 2.01) x 10{sup 5} years. However, the age estimate reported here is likely an underestimate of the actual age of deposition since evidence of heating was detected in the EPR spectra of the bovid teeth, and the heating may have caused a decrease in the intensity of EPR components on which the age calculation is based.

  20. Imaging of Nitroxides at 250 MHz using Rapid-Scan Electron Paramagnetic Resonance

    PubMed Central

    Biller, Joshua R.; Tseitlin, Mark; Quine, Richard W.; Rinard, George A.; Weismiller, Hilary A.; Elajaili, Hanan; Rosen, Gerald M.; Kao, Joseph P. Y.; Eaton, Sandra S.; Eaton, Gareth R.

    2014-01-01

    Projections for 2D spectral-spatial images were obtained by continuous wave and rapid-scan electron paramagnetic resonance using a bimodal cross-loop resonator at 251 MHz. The phantom consisted of three 4 mm tubes containing different 15N,2H-substituted nitroxides. Rapid-scan and continuous wave images were obtained with 5 min total acquisition times. For comparison, images also were obtained with 29 s acquisition time for rapid scan and 15 min for continuous wave. Relative to continuous wave projections obtained for the same data acquisition time, rapid-scan projections had significantly less low-frequency noise and substantially higher signal-to-noise at higher gradients. Because of the improved image quality for the same data acquisition time, linewidths could be determined more accurately from the rapid-scan images than from the continuous wave images. PMID:24650729

  1. Imaging of nitroxides at 250MHz using rapid-scan electron paramagnetic resonance.

    PubMed

    Biller, Joshua R; Tseitlin, Mark; Quine, Richard W; Rinard, George A; Weismiller, Hilary A; Elajaili, Hanan; Rosen, Gerald M; Kao, Joseph P Y; Eaton, Sandra S; Eaton, Gareth R

    2014-05-01

    Projections for 2D spectral-spatial images were obtained by continuous wave and rapid-scan electron paramagnetic resonance using a bimodal cross-loop resonator at 251MHz. The phantom consisted of three 4mm tubes containing different (15)N,(2)H-substituted nitroxides. Rapid-scan and continuous wave images were obtained with 5min total acquisition times. For comparison, images also were obtained with 29s acquisition time for rapid scan and 15min for continuous wave. Relative to continuous wave projections obtained for the same data acquisition time, rapid-scan projections had significantly less low-frequency noise and substantially higher signal-to-noise at higher gradients. Because of the improved image quality for the same data acquisition time, linewidths could be determined more accurately from the rapid-scan images than from the continuous wave images.

  2. Electron paramagnetic resonance dose response studies for neutron irradiated human teeth

    NASA Astrophysics Data System (ADS)

    Khan, Rao F. H.; Aslam; Rink, W. J.; Boreham, D. R.

    2004-10-01

    The dosimetric response of neutron irradiated human tooth enamel has been investigated using electron paramagnetic resonance (EPR) dosimetry. Continuous energy fast neutrons of mean energy less than 450 keV were produced from the McMaster University 3 MV K.N. Van de Graaff accelerator employing a thick lithium target via 7Li(p,n) 7Be interaction. Prior to its use for various experiments, the gamma dose contamination of the neutron beams was determined at the selected proton beam energies using the tissue-equivalent proportional counter (TEPC). The neutron sensitivity (/Gy-100 mg) of human tooth enamel remained constant for various mean neutron energies ranging from 167 to 450 keV. Similarly, the EPR signal intensity remained independent of the neutron dose rate variation from 0.5 to 2.4 Gy/h.

  3. High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.

    PubMed

    Akiel, R D; Stepanov, V; Takahashi, S

    2016-06-21

    Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

  4. Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Epel, Boris; Sundramoorthy, Subramanian V.; Krzykawska-Serda, Martyna; Maggio, Matthew C.; Tseytlin, Mark; Eaton, Gareth R.; Eaton, Sandra S.; Rosen, Gerald M.; Kao, Joseph P. Y.; Halpern, Howard J.

    2017-03-01

    Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with L-buthionine sulfoximine (BSO) markedly altered the kinetic images.

  5. Pulse-electron paramagnetic resonance of Cr3+ centers in SrTiO3

    NASA Astrophysics Data System (ADS)

    Azamat, D. V.; Dejneka, A.; Lančok, J.; Trepakov, V. A.; Jastrabik, L.; Badalyan, A. G.

    2013-05-01

    Electron paramagnetic resonance on chromium doped SrTiO3 samples grown using the Verneuil technique shows the presence of charge-compensated Cr3+-VO as one of the dominant chromium centers. The spin-lattice relaxation processes have been investigated in samples with both isotropic Cr3+ and Cr3+-VO centers in heavily doped SrTiO3. The relaxation of longitudinal magnetization was dominated by the sum of two exponentials with two time constants (i.e., a slow and a fast constant) at liquid-helium temperatures. The results of fitting the temperature variation of T1 suggest that the dominant exponential contribution is related to the spin-phonon relaxation time arising from the local phonon mode.

  6. Searching for biosignatures using electron paramagnetic resonance (EPR) analysis of manganese oxides.

    PubMed

    Kim, Soon Sam; Bargar, John R; Nealson, Kenneth H; Flood, Beverly E; Kirschvink, Joseph L; Raub, Timothy D; Tebo, Bradley M; Villalobos, Mario

    2011-10-01

    Manganese oxide (Mn oxide) minerals from bacterial sources produce electron paramagnetic resonance (EPR) spectral signatures that are mostly distinct from those of synthetic simulants and abiogenic mineral Mn oxides. Biogenic Mn oxides exhibit only narrow EPR spectral linewidths (∼500 G), whereas abiogenic Mn oxides produce spectral linewidths that are 2-6 times broader and range from 1200 to 3000 G. This distinction is consistent with X-ray structural observations that biogenic Mn oxides have abundant layer site vacancies and edge terminations and are mostly of single ionic species [i.e., Mn(IV)], all of which favor narrow EPR linewidths. In contrast, abiogenic Mn oxides have fewer lattice vacancies, larger particle sizes, and mixed ionic species [Mn(III) and Mn(IV)], which lead to the broader linewidths. These properties could be utilized in the search for extraterrestrial physicochemical biosignatures, for example, on Mars missions that include a miniature version of an EPR spectrometer.

  7. Temperature dependent electron paramagnetic resonance (EPR) of SrZrO3

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.; Pathak, Nimai; Ghosh, P. S.; Rajeshwari, B.; Natarajan, V.; Kadam, R. M.

    2015-10-01

    SrZrO3 (SZO), a distorted perovskite was synthesized using gel-combustion route employing citric acid as a fuel and ammonium nitrate as oxidizer followed by characterization using X-ray diffraction (XRD) and electron paramagnetic resonance (EPR). Purity of the sample is confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis. Broadening and shift of the resonance field position in EPR spectrum to the lower field was observed as the temperature is lowered; which is the characteristic of ferromagnetic resonance spectra. The value of Curie-Weiss temperature obtained for SZO particles is 8.7 K. The positive sign of the Curie-Weiss temperature indicates that some of the spins are ferromagnetically coupled in this sample. Theoretical investigation using density functional theory (DFT) calculation revealed that Vacancy at zirconium site contribute maximum to the magnetic moment.

  8. Growth Kinetics of the S Sub H Center on Magnesium Oxide Using Electron Paramagnetic Resonance

    NASA Technical Reports Server (NTRS)

    Jayne, J. P.

    1971-01-01

    Electron paramagnetic resonance spectroscopy was used to study the growth of S sub H centers on magnesium oxide powder which had hydrogen adsorbed on its surface. The centers were produced by ultraviolet radiation. The effects of both radiation intensity and hydrogen pressure were also studied. At constant hydrogen pressure and radiation dose, the initial S sub H center growth rate was found to be zero order. Beyond the initial region the growth rate deviated from zero order and finally approached saturation. The results are interpreted in terms of a model which assumes that the S sub H center is a hydrogen atom associated with a surface vacancy. Saturation appears to result from a limited supply of surface vacancies.

  9. Electron paramagnetic resonance (EPR) investigations of lichens - 1: effects of air pollution

    NASA Astrophysics Data System (ADS)

    Jezierski, Adam; Bylinska, Ewa; Seaward, Mark R. D.

    Electron paramagnetic resonance (EPR) investigations were carried out on more than 800 samples of lichens from Lower Silesia, southwest Poland. A statistically confirmed correlation between annual average concentration of sulphur dioxide in the atmosphere and concentration of semiquinone radicals in Hypogymnia physodes thalli was found. Similar results were obtained for Umbilicaria species from the Karkonosze Mountains. Distribution of semiquinone radicals in lichen thalli was also investigated. The action of nitrogen dioxide on Umbilicaria species resulted in the synthesis of iminoxy radicals in the thalli. The intensification of the semiquinone free radical production in lichen thalli from atmospherically polluted environments and the degradation of lichen acids to β-diketone compounds would appear to be parallel processes. The properties of the iminoxyls derived from β-diketones in the lichen matrix (anisotropic spectra at room temperature) and in organic solutions after extraction procedure were also examined by EPR.

  10. Thermoluminescence, fluorescence and electron paramagnetic resonance properties of synthetic hydrothermal scheelites

    NASA Astrophysics Data System (ADS)

    Caruba, R.; Iacconi, P.; Cottrant, J. F.; Calas, G.

    1983-05-01

    Hydrothermal scheelite was synthesized using Na2WO4 · 2 H2O mixed with CaCl2 · H2O, CaSO4 · 2 H2O or CaF2 at different temperatures (270 720° C) and 108 Pa. The morphology of the crystals depends on the starting products. The observed faces include the {112}, {114}, {011}, and {013} forms. Pure or REE doped scheelites were studied by thermoluminescence (TL), fluorescence and electron paramagnetic resonance (EPR). The main TL peaks are located near 88, 149, 216, 277, and 315 K. Results obtained with EPR or optical fluorescence have been correlated with TL measurements and show that the trivalent lanthanide elements substitute for calcium ions without site distortion. The differences in TL observed between Eu and the other doping elements are related to the greater stability of Eu2+ caused by X-irradiation.

  11. Effects of genistein and daidzein on erythrocyte membrane fluidity: an electron paramagnetic resonance study.

    PubMed

    Ajdzanović, Vladimir; Spasojević, Ivan; Filipović, Branko; Sosić-Jurjević, Branka; Sekulić, Milka; Milosević, Verica

    2010-04-01

    The maintenance of erythrocyte membrane fluidity at the physiological level is an important factor affecting the ability of erythrocytes to pass through blood vessels of small luminal diameter. Genistein and daidzein, which are used as alternative therapeutics in cardiovascular conditions, can be incorporated into the cell membrane and change its fluidity. The aim of this study was to examine the effects of genistein and daidzein on erythrocyte membrane fluidity at graded depths. We used electron paramagnetic resonance (EPR) spectroscopy and fatty acid spin probes (5-DS and 12-DS) where EPR spectra were dependent on fluidity. The results showed that genistein significantly (p < 0.05) decreased erythrocyte membrane fluidity near the hydrophilic surface, while daidzein significantly (p < 0.05) increased the same parameter in deeper regions of the membrane. These data suggest that the deep fluidizing effects of daidzein on erythrocyte membranes make it a better therapeutic choice than genistein in some cardiovascular conditions.

  12. Theoretical calculations of Electron Paramagnetic Resonance parameters of liquid phase Orotic acid radical

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ebru Karakaş; Dereli, Ömer

    2017-02-01

    To obtain liquid phase molecular structure, conformational analysis of Orotic acid was performed and six conformers were determined. For these conformations, eight possible radicals were modelled by using Density Functional Theory computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were performed using Becke's three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation functional of Density Functional Theory and 6-311++G(d,p) basis sets in p-dioxane solution. Because Orotic acid can be mutagenic in mammalian somatic cells and it is also mutagenic for bacteria and yeast, it has been studied.

  13. Free radical scavenging activity of erdosteine metabolite I investigated by electron paramagnetic resonance spectroscopy.

    PubMed

    Braga, Pier Carlo; Culici, Maria; Dal Sasso, Monica; Falchi, Mario; Spallino, Alessandra

    2010-01-01

    The aim of this study was to explore the antiradical activity of Met I (an active metabolite of erdosteine) containing a pharmacologically active sulphydryl group, by means of electron paramagnetic resonance (EPR) spectroscopy which has not previously been used to characterize the antiradical activity of Met I. The effects of concentrations of 20, 10, 5, 2.5, 1.25 and 0.625 microg/ml of Met I were tested against: (a) the Fenton reaction model system with EPR detection of HO.; (b) the KO2-crown ether system with EPR detection of O2-.; (c) the EPR assay based on the reduction of the Tempol radical, and (d) the EPR assay based on the reduction of Fremy's salt radical. Our findings show that the intensity of 4 different free radicals was significantly reduced in the presence of Met I, thus indicating the presence of a termination reaction between the free radicals and Met I.

  14. An alternative method using microwave power saturate in fingernail/electron paramagnetic resonance dosimetry.

    PubMed

    Choi, Hoon; Park, Byeongryong; Choi, Muhyun; Lee, Byungil; Lee, Cheol Eui

    2014-06-01

    An alternative method for fingernail/electron paramagnetic resonance (EPR) dosimetry valid at low doses (0-3 Gy) is suggested in this paper. The method consisted of two steps. The first step involved dehydrating fingernail clippings to remove their water content by heating them at 70 °C for 72 h. As the water content in the fingernails decreased, the variability of the EPR signals improved. The second step involved measuring and fitting the EPR signals at successive microwave power levels. A newly derived value known as 'curvature', which was based on the conventional peak-to-peak amplitudes of the EPR signals, was applied for the dosimetry. This method could be used as an alternative method in cases of low-radiation exposure doses (<3 Gy) or where use of the conventional dosimetry method is not proper for a fingernail sample.

  15. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    PubMed Central

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and fluorescence results were in agreement and both paralleled enzymatic activity of papain with respect to both the variation in pH and denaturation. These results strongly suggest that SL-PMB and Acrylodan labels can be used to characterize the physical state of the active site of the enzyme. PMID:1657229

  16. Fluorescence properties and electron paramagnetic resonance studies of γ-irradiated Sm3+-doped oxyfluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Babu, B. Hari; Ravi Kanth Kumar, V. V.

    2012-11-01

    The permanent photoinduced valence manipulation of samarium doped oxyfluoroborate glasses as a function of γ-ray irradiation has been investigated using a steady-state fluorescence and electron paramagnetic resonance techniques. An increase in SrF2 content in the glass led to the red shift of the peaks in as prepared glass, while in irradiated glasses this led to the decrease in defect formation as well as increase in photoreduction of Sm3+ to Sm2+ ion. The energy transfer mechanism of induced permanent photoreduction of Sm3+ to Sm2+ ions in oxyfluoroborate glasses has been discussed. The decay analysis shows exponential behavior before irradiation and non-exponential behavior after irradiation. The energy transfer in irradiated glasses increases with the increase in SrF2 content in the glass and also with the irradiation dose.

  17. Characterization of radiation-induced damage in high performance polymers by electron paramagnetic resonance imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1992-01-01

    The potential for long-term human activity beyond the Earth's protective magnetosphere is limited in part by the lack of detailed information on the effectiveness and performance of existing structural materials to shield the crew and spacecraft from highly penetrating space radiations. The two radiations of greatest concern are high energy protons emitted during solar flares and galactic cosmic rays which are energetic ions ranging from protons to highly oxidized iron. Although the interactions of such high-energy radiations with matter are not completely understood at this time, the effects of the incident radiation are clearly expected to include the formation of paramagnetic spin centers via ionization and bond-scission reactions in the molecular matrices of structural materials. Since this type of radiation damage is readily characterized by Electron Paramagnetic Resonance (EPR) spectroscopy, the NASA Langley Research Center EPR system was repaired and brought on-line during the 1991 ASEE term. A major goal of the 1992 ASEE term was to adapt the existing core of the LaRC EPR system to meet the requirements for EPR Imaging--a powerful new technique which provides detailed information on the internal structure of materials by mapping the spatial distribution of unpaired spin density in bulk media. Major impetus for this adaptation arises from the fact that information derived from EPRI complements other methods such as scanning electron microscopy which primarily characterize surface phenomena. The modification of the EPR system has been initiated by the construction of specially designed, counterwound Helmholtz coils which will be mounted on the main EPR electromagnet. The specifications of the coils have been set to achieve a static linear magnetic field gradient of 10 gauss/mm/amp along the principal (Z) axis of the Zeeman field. Construction is also in progress of a paramagnetic standard in which the spin distribution is known in all three dimensions. This

  18. High-resolution electron microscope

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1977-01-01

    Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.

  19. Improvement of (31)P NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples.

    PubMed

    Ding, Shiming; Xu, Di; Li, Bin; Fan, Chengxin; Zhang, Chaosheng

    2010-04-01

    Solution (31)P nuclear magnetic resonance (NMR) spectroscopy is currently the main method for the characterization of phosphorus (P) forms in environment samples. However, identification and quantification of P compounds may be hampered by poor resolution of spectra caused by paramagnetic Fe and Mn. In this study, a novel technique was developed to improve spectral resolution by removing paramagnetic Fe and Mn from alkaline extracts via 8-hydroxyquinoline (8-HOQ) precipitation. Batch experiments showed that both Fe and Mn were effectively removed by the precipitation at pH 9.0, with the removal efficiencies of 83-91% for Fe and 67-78% for Mn from the extracts of five different environmental samples, while little effect was found on concentration of total P. The (31)P NMR analysis of a model P solution showed that addition of 8-HOQ and its precipitation with metal ions did not alter P forms. Further analyses of the five extracts with (31)P NMR spectroscopy demonstrated that the 8-HOQ precipitation was an ideal method compared with the present postextraction techniques, such as bicarbonate dithionate (BD), EDTA and Chelex-100 treatments, by improving spectral resolution to a large extent with no detrimental effects on P forms.

  20. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NASA Astrophysics Data System (ADS)

    Alling, B.; Körmann, F.; Grabowski, B.; Glensk, A.; Abrikosov, I. A.; Neugebauer, J.

    2016-06-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the present study we show that this assumption is not valid when the coupling between vibrations and magnetism is taken into account. At the γ -δ transition temperature (1662 K), the lattice distortions cause very similar magnetic moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic properties to understand paramagnetic Fe. Furthermore, they suggest that at the γ -δ transition temperature electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

  1. Temperature dependence on the electron paramagnetic resonance spectra of natural jasper from Taroko Gorge (Taiwan)

    NASA Astrophysics Data System (ADS)

    Hemantha Kumar, G. N.; Parthasarathy, G.; Chakradhar, R. P. S.; Rao, J. Lakshmana; Ratnakaram, Y. C.

    2010-04-01

    Structural properties of natural jasper from Taroko Gorge (Taiwan) have been investigated by means of powder X-ray diffraction, electron paramagnetic resonance (EPR) and Fourier transform infrared spectroscopic techniques. The EPR spectrum at room temperature exhibits a sharp resonance signal at g = 2.007 and two more resonance signals centered at g ≈ 4.3 and 14.0. The resonance signal at g = 2.007 has been attributed to the E' center and is related to a natural radiation-induced paramagnetic defect. Two more resonance signals centered at g ≈ 4.3 and 14.0 are characteristic of Fe3+ ions. The EPR spectra recorded at room temperature of jasper samples, heat-treated at temperatures ranging from 473 to 1,473 K exhibit marked temperature dependence. The resonance signal corresponding to E' center disappears at elevated temperatures. A broad, intense resonance signal centered at g ≈ 2.0 appears at elevated temperatures. This resonance signal is a characteristic of Fe3+ ions, which are present as hematite in the jasper sample. The intensity of the resonance signal becomes dominant at elevated temperatures at ≥873 K, masking g ≈ 4.3 and g ≈ 14.0 resonance signals. The EPR spectra of jasper heat-treated at 673 K have been recorded at temperatures between 123 and 296 K. The population of spin levels ( N) has been calculated for the broad g ≈ 2.0 resonance signal. It is found that N decreases with decreasing temperature. The linewidth (ΔH) of g ≈ 2.0 resonance signal of the heat-treated jasper is found to increase with decreasing temperature. This has been attributed to spin-spin interaction of the Fe3+ ions present in the form of hematite in the studied jasper sample.

  2. Ageing and thermal recovery of paramagnetic centers induced by electron irradiation in yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Costantini, J. M.; Beuneu, F.

    We have used electron spin resonance spectroscopy to study the defects induced in yttria-stabilized zirconia (YSZ) single crystals by 2.5-MeV electron irradiations. Two paramagnetic centers are produced: the first one with an axial <111> symmetry is similar to the trigonal Zr3+ electron center (T center) found after X-ray irradiation or thermo-chemical reduction, whereas the second one is a new oxygen hole center with an axial <100> symmetry different from the orthorhombic O- center induced by X-ray irradiation. At a fluence around 10(18) e/cm(2) , both centers are bleached out near 600 K, like the corresponding X-ray induced defects. At a fluence around 10(19) e/cm(2) , defects are much more stable, since complete thermal bleaching occurs near 1000 K. Accordingly, ageing of as-irradiated samples shows that high-dose defects at more stable than the low-dose ones.

  3. Electron paramagnetic resonance, magnetic and electrical properties of CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jnaneshwara, D. M.; Avadhani, D. N.; Daruka Prasad, B.; Nagabhushana, B. M.; Nagabhushana, H.; Sharma, S. C.; Shivakumara, C.; Rao, J. L.; Gopal, N. O.; Ke, Shyue-Chu; Chakradhar, R. P. S.

    2013-08-01

    CoFe2O4 nanoparticles were prepared by solution combustion method. The nanoparticle are characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). PXRD reveals single phase, cubic spinel structure with Fd3¯m (227) space group. SEM micrograph shows the particles are agglomerated and porous in nature. Electron paramagnetic resonance spectrum exhibits a broad resonance signal g=2.150 and is attributed to super exchange between Fe3+ and Co2+. Magnetization values of CoFe2O4 nanoparticle are lower when compared to the literature values of bulk samples. This can be attributed to the surface spin canting due to large surface-to-volume ratio for a nanoscale system. The variation of dielectric constant, dielectric loss, loss tangent and AC conductivity of as-synthesized nano CoFe2O4 particles at room temperature as a function of frequency has been studied. The magnetic and dielectric properties of the samples show that they are suitable for electronic and biomedical applications.

  4. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    SciTech Connect

    Kovács, A.; Duchamp, M.; Boothroyd, C. B.; Dunin-Borkowski, R. E.; Ney, A.; Ney, V.; Galindo, P. L.; Kaspar, T. C.; Chambers, S. A.

    2013-12-28

    We study planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al{sub 2}O{sub 3}), as well as the Co:ZnO/Al{sub 2}O{sub 3} interface, using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy. Co:ZnO samples that were deposited using pulsed laser deposition and reactive magnetron sputtering are both found to contain extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3–4 Co:ZnO layers next to the Al{sub 2}O{sub 3} substrate. The stacking fault density is in the range of 10{sup 17} cm{sup −3}. We also measure the local lattice distortions around the stacking faults. It is shown that despite the relatively high density of planar defects, lattice distortions, and small compositional variation, the Co:ZnO films retain paramagnetic properties.

  5. Determination of very rapid molecular rotation by using the central electron paramagnetic resonance line.

    PubMed

    Kurban, Mark R

    2013-02-21

    Picosecond rotational correlation times of perdeuterated tempone (PDT) are found in alkane and aromatic liquids by directly using the spectral width of the central electron paramagnetic resonance line. This is done by mathematically eliminating the nonsecular spectral density from the spectral parameter equations, thereby removing the need to assume a particular form for it. This is preferable to fitting a constant correction factor to the spectral density, because such a factor does not fit well in the low picosecond range. The electron-nuclear spin dipolar interaction between the probe and solvent is shown to be negligible for the very rapid rotation of PDT in these liquids at the temperatures of the study. The rotational correlation times obtained with the proposed method generally agree to within experimental uncertainty with those determined by using the traditional parameters. Using the middle line width offers greater precision and smoother trends. Previous work with the central line width is discussed, and past discrepancies are explained as possibly resulting from residual inhomogeneous broadening. The rotational correlation time almost forms a common curve across all of the solvents when plotted with respect to isothermal compressibility, which shows the high dependence of rotation on liquid free volume.

  6. Copper Environment in Artificial Metalloproteins Probed by Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Flores, Marco; Olson, Tien L; Wang, Dong; Edwardraja, Selvakumar; Shinde, Sandip; Williams, JoAnn C; Ghirlanda, Giovanna; Allen, James P

    2015-10-29

    The design of binding sites for divalent metals in artificial proteins is a productive platform for examining the characteristics of metal-ligand interactions. In this report, we investigate the spectroscopic properties of small peptides and four-helix bundles that bind Cu(II). Three small peptides, consisting of 15 amino acid residues, were designed to have two arms, each containing a metal-binding site comprised of different combinations of imidazole and carboxylate side chains. Two four-helix bundles each had a binding site for a central dinuclear metal cofactor, with one design incorporating additional potential metal ligands at two identical sites. The small peptides displayed pH-dependent, metal-induced changes in the circular dichroism spectra, consistent with large changes in the secondary structure upon metal binding, while the spectra of the four-helix bundles showed a predominant α-helix content but only small structural changes upon metal binding. Electron paramagnetic resonance spectra were measured at X-band revealing classic Cu(II) axial patterns with hyperfine coupling peaks for the small peptides and four-helix bundles exhibiting a range of values that were related to the specific chemical natures of the ligands. The variety of electronic structures allow us to define the distinctive environment of each metal-binding site in these artificial systems, including the designed additional binding sites in one of the four-helix bundles.

  7. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.

    2017-08-01

    Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.

  8. Electron Paramagnetic Resonance Study of a Photosynthetic Microbial Mat and Comparison with Archean Cherts

    NASA Astrophysics Data System (ADS)

    Bourbin, M.; Derenne, S.; Gourier, D.; Rouzaud, J.-N.; Gautret, P.; Westall, F.

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

  9. Electron paramagnetic resonance study of a photosynthetic microbial mat and comparison with Archean cherts.

    PubMed

    Bourbin, M; Derenne, S; Gourier, D; Rouzaud, J-N; Gautret, P; Westall, F

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

  10. Membrane-Sugar Interactions Probed by Pulsed Electron Paramagnetic Resonance of Spin Labels.

    PubMed

    Konov, Konstantin B; Leonov, Dmitry V; Isaev, Nikolay P; Fedotov, Kirill Yu; Voronkova, Violeta K; Dzuba, Sergei A

    2015-08-13

    Sugars can stabilize biological systems under extreme desiccation and freezing conditions. Hypothetical molecular mechanisms suggest that the stabilization effect may be determined either by specific interactions of sugars with biological molecules or by the influence of sugars on the solvating shell of the biomolecule. To explore membrane-sugar interactions, we applied electron spin echo envelope modulation (ESEEM) spectroscopy, a pulsed version of electron paramagnetic resonance (EPR), to phospholipid bilayers with spin-labeled lipids added and solvated by aqueous deuterated sucrose and trehalose solutions. The phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The spin-labeled lipids were 1,2-dipalmitoyl-sn-glycero-3-phospho(TEMPO)choline (T-PCSL), with spin-label TEMPO at the lipid polar headgroup. The deuterium ESEEM amplitude was calibrated using known concentrations of glassy deuterated sugar solvents. The data obtained indicated that the sugar concentration near the membrane surface obeyed a simple Langmuir model of monolayer adsorption, which assumes direct sugar-molecule bonding to the bilayer surface.

  11. High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry.

    PubMed

    Telser, Joshua; Krzystek, J; Ozarowski, Andrew

    2014-03-01

    This minireview describes high-frequency and high-field electron paramagnetic resonance (HFEPR) spectroscopy in the context of its application to bioinorganic chemistry, specifically to metalloproteins and model compounds. HFEPR is defined as frequencies above ~100 GHz (i.e., above W-band) and a resonant field reaching 25 T and above. The ability of HFEPR to provide high-resolution determination of g values of S = 1/2 is shown; however, the main aim of the minireview is to demonstrate how HFEPR can extract spin Hamiltonian parameters [zero-field splitting (zfs) and g values] for species with S > 1/2 with an accuracy and precision unrivalled by other physical methods. Background theory on the nature of zfs in S = 1, 3/2, 2, and 5/2 systems is presented, along with selected examples of HFEPR spectroscopy of each that are relevant to bioinorganic chemistry. The minireview also provides some suggestions of specific systems in bioinorganic chemistry where HFEPR could be rewardingly applied, in the hope of inspiring workers in this area.

  12. A solid state paramagnetic maser device driven by electron spin injection.

    PubMed

    Watts, S M; van Wees, B J

    2006-09-15

    In response to an external, microwave-frequency magnetic field, a paramagnetic medium will absorb energy from the field that drives the magnetization dynamics. Here we describe a new process by which an external spin-injection source, when combined with the microwave field spin pumping, can drive the paramagnetic medium from one that absorbs microwave energy to one that emits microwave energy. We derive a simple condition for the crossover from absorptive to emissive behavior. Based on this process, we propose a solid-state, paramagnetic device in which microwave amplification by stimulated emission of radiation is driven by spin injection.

  13. Stabilization of reactive nitroxides using invasomes to allow prolonged electron paramagnetic resonance measurements.

    PubMed

    Haag, S F; Taskoparan, B; Bittl, R; Teutloff, C; Wenzel, R; Fahr, A; Chen, M; Lademann, J; Schäfer-Korting, M; Meinke, M C

    2011-01-01

    The detection of the antioxidative capacity of the skin is of great practical relevance since free radicals are involved in many skin damaging processes, including aging and inflammation. The nitroxide TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxyl) in combination with electron paramagnetic resonance spectroscopy was found suitable for measuring the antioxidative capacity since its reaction with reducing agents is considerably fast. Yet, in order to achieve longer measurement times, e.g. in inflammatory skin diseases, the stabilizing effect of an invasome (ultraflexible vesicle/liposome) suspension with TEMPO was investigated ex vivo on porcine skin and in vivo on human skin. Invasomes increased the measurement time ex vivo 2-fold and the reduction was significantly slowed down in vivo, which is due to membrane-associated and therefore protected TEMPO. Furthermore, TEMPO accumulation in the membrane phase as well as the decreasing polarity of the ultimate surroundings of TEMPO during skin penetration explains the stabilizing effect. Thus, an invasome suspension with TEMPO exhibits stabilizing effects ex vivo and in vivo.

  14. Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses.

    PubMed

    Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M

    2010-03-01

    Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported.

  15. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging

    PubMed Central

    Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.

    2006-01-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552

  16. Sensor fusion of electron paramagnetic resonance and magnetorelaxometry data for quantitative magnetic nanoparticle imaging

    NASA Astrophysics Data System (ADS)

    Coene, A.; Leliaert, J.; Crevecoeur, G.; Dupré, L.

    2017-03-01

    Magnetorelaxometry (MRX) imaging and electron paramagnetic resonance (EPR) are two non-invasive techniques capable of recovering the magnetic nanoparticle (MNP) distribution. Both techniques solve an ill-posed inverse problem in order to find the spatial MNP distribution. A lot of research has been done on increasing the stability of these inverse problems with the main objective to improve the quality of MNP imaging. In this paper a proof of concept is presented in which the sensor data of both techniques is fused into EPR–MRX, with the intention to stabilize the inverse problem. First, both techniques are compared by reconstructing several phantoms with different sizes for various noise levels and calculating stability, sensitivity and reconstruction quality parameters for these cases. This study reveals that both techniques are sensitive to different information from the MNP distributions and generate complementary measurement data. As such, their merging might stabilize the inverse problem. In a next step we investigated how both techniques need to be combined to reduce their respective drawbacks, such as a high number of required measurements and reduced stability, and to improve MNP reconstructions. We were able to stabilize both techniques, increase reconstruction quality by an average of 5% and reduce measurement times by 88%. These improvements could make EPR–MRX a valuable and accurate technique in a clinical environment.

  17. Disulfide-Linked Dinitroxides for Monitoring Cellular Thiol Redox Status through Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Legenzov, Eric A; Sims, Stephen J; Dirda, Nathaniel D A; Rosen, Gerald M; Kao, Joseph P Y

    2015-12-01

    Intracellular thiol-disulfide redox balance is crucial to cell health, and may be a key determinant of a cancer's response to chemotherapy and radiation therapy. The ability to assess intracellular thiol-disulfide balance may thus be useful not only in predicting responsiveness of cancers to therapy, but in assessing predisposition to disease. Assays of thiols in biology have relied on colorimetry or fluorimetry, both of which require UV-visible photons, which do not penetrate the body. Low-frequency electron paramagnetic resonance imaging (EPRI) is an emerging magnetic imaging technique that uses radio waves, which penetrate the body well. Therefore, in combination with tailored imaging agents, EPRI affords the opportunity to image physiology within the body. In this study, we have prepared water-soluble and membrane-permeant disulfide-linked dinitroxides, at natural isotopic abundance, and with D,(15)N-substitution. Thiols such as glutathione cleave the disulfides, with simple bimolecular kinetics, to yield the monomeric nitroxide species, with distinctive changes in the EPR spectrum. Using the D,(15)N-substituted disulfide-dinitroxide and EPR spectroscopy, we have obtained quantitative estimates of accessible intracellular thiol in cultured human lymphocytes. Our estimates are in good agreement with published measurements. This suggests that in vivo EPRI of thiol-disulfide balance is feasible. Finally, we discuss the constraints on the design of probe molecules that would be useful for in vivo EPRI of thiol redox status.

  18. Magic-angle sample spinning electron paramagnetic resonance--instrumentation, performance, and limitations.

    PubMed

    Hessinger, D; Bauer, C; Hubrich, M; Jeschke, G; Spiess, H W

    2000-12-01

    An electron paramagnetic resonance (EPR) setup for line narrowing experiments with fast sample spinning at variable angles between the rotation axis and the static magnetic field is described and applied in the magic-angle sample spinning (MAS) EPR experiment at X-band frequencies (9.5 GHz). Sample spinning speeds up to 17 kHz at temperatures down to 200 K can be achieved with rotors of 4-mm outer and 2.5-mm inner diameter without severe losses in microwave amplitude compared to standard pulse EPR probeheads. A phase cycle is introduced that provides pure absorption MAS EPR spectra and allows one to distinguish between positive and negative frequency offsets (pseudo-quadrature detection). Possible broadening mechanisms in MAS EPR spectra are discussed. It is demonstrated both by theory and by experiment that the MAS EPR experiment requires excitation bandwidths that are comparable to the total spectral width, since otherwise destructive interference between contributions of spins with similar resonance offsets suppresses the signal. Experimental observations on the E(1) center in gamma-irradiated silica glass and on the SO(-)(3) radical in gamma-irradiated sulfamic acid are reported.

  19. Electron paramagnetic resonance and photochromism of N3V0 in diamond

    NASA Astrophysics Data System (ADS)

    Green, B. L.; Breeze, B. G.; E Newton, M.

    2017-06-01

    The defect in diamond formed by a vacancy surrounded by three nearest-neighbor nitrogen atoms and one carbon atom, {{\\text{N}}3}\\text{V} , is found in the vast majority of natural diamonds. Despite {{\\text{N}}3}{{\\text{V}}0} being the earliest electron paramagnetic resonance spectrum observed in diamond, to date no satisfactory simulation of the spectrum for an arbitrary magnetic field direction has been produced due to its complexity. In this work, {{\\text{N}}3}{{\\text{V}}0} is identified in {{}15}\\text{N} -doped synthetic diamond following irradiation and annealing. The {{}15}{{\\text{N}}3}{{\\text{V}}0} spin Hamiltonian parameters are directly determined and used to refine the parameters for {{}14}{{\\text{N}}3}{{\\text{V}}0} , enabling the latter to be accurately simulated and fitted for an arbitrary magnetic field direction. Study of {{}15}{{\\text{N}}3}{{\\text{V}}0} under excitation with green light indicates charge transfer between {{\\text{N}}3}\\text{V} and {{\\text{N}}\\text{s}} . It is argued that this charge transfer is facilitated by direct ionization of {{\\text{N}}3}{{\\text{V}}-} , an as-yet unobserved charge state of {{\\text{N}}3}\\text{V} .

  20. In vivo nitric oxide detection in the septic rat brain by electron paramagnetic resonance.

    PubMed

    Suzuki, Y; Fujii, S; Numagami, Y; Tominaga, T; Yoshimoto, T; Yoshimura, T

    1998-03-01

    To detect nitric oxide (NO) in the rat brain during lipopolysaccharide (LPS)-induced sepsis, electron paramagnetic resonance (EPR) was employed with the NO trapping technique, using an iron and N,N-diethyldithiocarbamate (DETC) complex. An X-band (about 9.5 GHz) EPR system detected a triplet signal (g = 2.038) derived from an NO-Fe-DETC complex being superimposed on the g(perpendicular) signal of Cu-DETC complex at liquid nitrogen temperature. The height of the triplet signal peaked seven hours after injection of 40 mg/kg of LPS, and over 25 x 10(4) U/kg of IFN-gamma enhanced the LPS-induced NO formation. Pretreatment with N(G)-monomethyl-L-arginine (NMMA), an NO synthase inhibitor, deleted only the triplet signal. A triplet signal (g(iso) = 2.040, aN = 1.28 mT) derived from the NO-Fe-DETC complex was also observed at ambient temperature. Then, a home-built 700 MHz EPR system was used to detect an NO signal in the septic rat brain in vivo. We successfully monitored the NO-Fe-DETC signal in the head region of a living rat under the condition that provided maximum height of the NO-Fe-DETC signal in the X-band EPR study. Pretreatment with NMMA again deleted the NO-Fe-DETC signal. This is the first EPR observation of endogenous NO in the brain of living rats.

  1. Orthogonal resonators for pulse in vivo electron paramagnetic imaging at 250 MHz

    PubMed Central

    Sundramoorthy, Subramanian V.; Epel, Boris; Halpern, Howard J.

    2014-01-01

    A 250 MHz bimodal resonator with a 19 mm internal diameter for in vivo pulse electron paramagnetic resonance (EPR) imaging is presented. Two separate coaxial cylindrical resonators inserted one into another were used for excitation and detection. The Alderman-Grant excitation resonator (AGR) showed the highest efficiency among all the excitation resonators tested. The magnetic field of AGR is confined to the volume of the detection resonator, which results in highly efficient use of the radio frequency power. A slotted inner single loop single gap resonator (SLSG LGR), coaxial to the AGR, was used for signal detection. The resulting bimodal resonator (AG/LGR) has two mutually orthogonal magnetic field modes; one of them has the magnetic field in the axial direction. The resonator built in our laboratory achieved 40dB isolation over 20 MHz bandwidth with quality factors of detection and excitation resonators of 36 and 11 respectively. Considerable improvement of the B1 homogeneity and EPR image quality in comparison with reflection loop-gap resonator of similar size and volume was observed. PMID:24530507

  2. Training Effects on ROS Production Determined by Electron Paramagnetic Resonance in Master Swimmers

    PubMed Central

    Mrakic-Sposta, Simona; Gussoni, Maristella; Porcelli, Simone; Pugliese, Lorenzo; Pavei, Gaspare; Bellistri, Giuseppe; Montorsi, Michela; Tacchini, Philippe; Vezzoli, Alessandra

    2015-01-01

    Acute exercise induces an increase in Reactive Oxygen Species (ROS) production dependent on exercise intensity with highest ROS amount generated by strenuous exercise. However, chronic repetition of exercise, that is, exercise training, may reduce exercise-induced oxidative stress. Aim of this study was to evaluate the effects of 6-weeks high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on ROS production and antioxidant capacity in sixteen master swimmers. Time course changes of ROS generation were assessed by Electron Paramagnetic Resonance in capillary blood by a microinvasive approach. An incremental arm-ergometer exercise (IE) until exhaustion was carried out at both before (PRE) and after (POST) training (Trg) period. A significant (P < 0.01) increase of ROS production from REST to the END of IE in PRE Trg (2.82 ± 0.66 versus 3.28 ± 0.66 µmol·min−1) was observed. HIDT increased peak oxygen consumption (36.1 ± 4.3 versus 40.6 ± 5.7 mL·kg−1·min−1 PRE and POST Trg, resp.) and the antioxidant capacity (+13%) while it significantly decreased the ROS production both at REST (−20%) and after IE (−25%). The observed link between ROS production, adaptive antioxidant defense mechanisms, and peak oxygen consumption provides new insight into the correlation between ROS response pathways and muscle metabolic function. PMID:25874024

  3. Analysis of saturation transfer electron paramagnetic resonance spectra in terms of amplitude and phase

    NASA Astrophysics Data System (ADS)

    Shimoyama, Y.; Watari, H.

    1986-04-01

    A systematic analysis of saturation transfer (ST) electron paramagnetic resonance spectroscopy was developed to separate an observed absorption signal either into an amplitude and a phase spectrum or into an in-phase and an ST spectrum. We established a phase reference procedure, replacing the low-power phase null method by a high-power phase maximum method. This is an extension of the finding that a peak-to-peak height and a single integration of the second harmonic absorption display vary sinusoidally as functions of the modulation phase [Y. Shimoyama and H. Watari, Appl. Spectrosc. 39, 170 (1985)]. Based on the sinusoidal variation in the peak-to-peak height, we found a phase shift at each magnetic field and could evaluate the amplitude and phase of a signal vector. The sinusoidal variation of the single integrated value allowed the absorption signal to be separated into an in-phase and an ST spectrum. The high-power phase maximum method provides a remedy of the phase setting problem in ST spectroscopy by which the in-phase signal can be detected at any microwave field.

  4. Menadione-induced cytotoxicity effects on human erythrocyte membranes studied by electron paramagnetic resonance.

    PubMed

    Trad, C H; Butterfield, D A

    1994-08-01

    Menadione (2-methyl-1,4-naphthoquinone) is cytotoxic to hepatocytes. In order to begin to investigate the changes in the physical state of membranes induced by this cytotoxic substance, electron paramagnetic resonance (EPR) spin-labeling techniques were used in conjunction with spin labels specific for cytoskeletal proteins, bilayer lipids, or cell-surface sialic acid or galactose to investigate erythrocyte membranes. We studied the molecular effects of oxidation of 200 microM menadione on the different membrane domains. The major findings are: (1) menadione increases protein-protein interactions (P < 0.001) of cytoskeletal proteins, (2) there is a slightly significant increase in the rotational motion of spin-labeled sialic acid (P < 0.05), while (3) the physical state of galactose residues was unaffected by menadione. Since glycophorin is coupled to the major cytoskeletal protein, spectrin, by protein 4.1, we suggest that menadione-induced oxidation could alter the conformation of protein 4.1. As a consequence, single or multiple sites of weakness could be induced leading to the alteration of the interactions of the cytoskeletal network and its anchoring domains in the membrane. These results are discussed with reference to possible mechanisms involved in the cytotoxic action of menadione.

  5. Electron Paramagnetic Resonance and Mössbauer Spectra of Iron Ions in Bizen Pottery

    NASA Astrophysics Data System (ADS)

    Matsuoka, Yuki; Ikeya, Motoji

    1995-11-01

    Electron paramagnetic resonance (EPR) and Mössbauer spectra of Japanese traditional Bizen pottery and its constituent clays have been measured to study the relationship between the color of pottery surface and the relevant states of iron ions ( Fe3+ and Fe2+). Hyperfine signals of Mn2+, presumably in carbonates, and a broad signal at g=2.0 similar to that of hematite ( Fe2O3) were observed for good-quality clay, while a signal at g>9 similar to that of magnetite ( Fe3O4) was observed for poor-quality clay. In pottery, the apparent g-factor of g=4.3 due to a large orthorhombic distortion E(Sx2-Sy2) and g=6 due to a large axial field DSz2 were observed in addition to the broad signal around g=2 due to oxidation of iron into Fe2O3. Subtle change of colors resulted in the change of EPR spectra. Mössbauer spectra indicatcd that almost all of the iron ions at the surface of pottery are strongly oxidized into Fe3+ when the pottery is fired in oxidizing atmosphere, while those inside the pottery and at the surface fired at reducing atmosphere are not strongly oxidized into Fe3+.

  6. Characterization of molecular mobility in seed tissues: an electron paramagnetic resonance spin probe study.

    PubMed Central

    Buitink, J; Hemminga, M A; Hoekstra, F A

    1999-01-01

    The relationship between molecular mobility (tauR) of the polar spin probe 3-carboxy-proxyl and water content and temperature was established in pea axes by electron paramagnetic resonance (EPR) and saturation transfer EPR. At room temperature, tauR increased during drying from 10(-11) s at 2.0 g water/g dry weight to 10(-4) s in the dry state. At water contents below 0.07 g water/g dry weight, tauR remained constant upon further drying. At the glass transition temperature, tauR was constant at approximately 10(-4) s for all water contents studied. Above Tg, isomobility lines were found that were approximately parallel to the Tg curve. The temperature dependence of tauR at all water contents studied followed Arrhenius behavior, with a break at Tg. Above Tg the activation energy for rotational motion was approximately 25 kJ/mol compared to 10 kJ/mol below Tg. The temperature dependence of tauR could also be described by the WLF equation, using constants deviating considerably from the universal constants. The temperature effect on tauR above Tg was much smaller in pea axes, as found previously for sugar and polymer glasses. Thus, although glasses are present in seeds, the melting of the glass by raising the temperature will cause only a moderate increase in molecular mobility in the cytoplasm as compared to a huge increase in amorphous sugars. PMID:10354457

  7. Multi-frequency electron paramagnetic resonance study of irradiated human finger phalanxes

    NASA Astrophysics Data System (ADS)

    Zdravkova, M.; Vanhaelewyn, G.; Callens, F.; Gallez, B.; Debuyst, R.

    2005-10-01

    Electron paramagnetic resonance (EPR) is often used in dosimetry using biological samples such as teeth and bones. It is generally assumed that the radicals, formed after irradiation, are similar in both tissues as the mineral part of bone and tooth is carbonated hydroxyapatite. However, there is a lack of experimental evidence to support this assumption. The aim of the present study was to contribute to that field by studying powder and block samples of human finger phalanxes that were irradiated and analyzed by multi-frequency EPR. The results obtained from bones are different from the ones obtained in enamel by several respects: the ordering of the apatite crystallites is much smaller in bone, complicating the assignment of the observed CO 2- radicals to a specific location, and one type of CO 33- radical was only found in enamel. Moreover, a major difference was found in the non-CO 2- and non-CO 33- signals. The elucidation of the nature of these native signals (in bone and tooth enamel) still represents a big challenge.

  8. High-frequency microstrip cross resonators for circular polarization electron paramagnetic resonance spectroscopy.

    PubMed

    Henderson, J J; Ramsey, C M; Quddusi, H M; del Barco, E

    2008-07-01

    In this article we discuss the design and implementation of a novel microstrip resonator which allows absolute control of the microwaves polarization degree for frequencies up to 30 GHz. The sensor is composed of two half-wavelength microstrip line resonators, designed to match the 50 Omega impedance of the lines on a high dielectric constant GaAs substrate. The line resonators cross each other perpendicularly through their centers, forming a cross. Microstrip feed lines are coupled through small gaps to three arms of the cross to connect the resonator to the excitation ports. The control of the relative magnitude and phase between the two microwave stimuli at the input ports of each line allows for tuning the degree and type of polarization of the microwave excitation at the center of the cross resonator. The third (output) port is used to measure the transmitted signal, which is crucial to work at low temperatures, where reflections along lengthy coaxial lines mask the signal reflected by the resonator. Electron paramagnetic resonance spectra recorded at low temperature in an S=5/2 molecular magnet system show that 82% fidelity circular polarization of the microwaves is achieved over the central area of the resonator.

  9. Detection and structural characterization of oxo-chromium(V)-sugar complexes by electron paramagnetic resonance.

    PubMed

    Sala, Luis F; González, Juan C; García, Silvia I; Frascaroli, María I; Van Doorslaer, Sabine

    2011-01-01

    This article describes the detection and characterization of oxo-Cr(V)-saccharide coordination compounds, produced during chromic oxidation of carbohydrates by Cr(VI) and Cr(V), using electron paramagnetic resonance (EPR) spectroscopy. After an introduction into the main importance of chromium (bio)chemistry, and more specifically the oxo-chromium(V)-sugar complexes, a general overview is given of the current state-of-the-art EPR techniques. The next step reviews which types of EPR spectroscopy are currently applied to oxo-Cr(V) complexes, and what information about these systems can be gained from such experiments. The advantages and pitfalls of the different approaches are discussed, and it is shown that the potential of high-field and pulsed EPR techniques is as yet still largely unexploited in the field of oxo-Cr(V) complexes. Subsequently, the discussion focuses on the analysis of oxo-Cr(V) complexes of different types of sugars and the implications of the results in terms of understanding chromium (bio)chemistry.

  10. A study of the antioxidant properties of beers using electron paramagnetic resonance.

    PubMed

    Polak, Justyna; Bartoszek, Mariola; Stanimirova, Ivana

    2013-12-01

    The antioxidant properties of various kinds of beers were investigated using electron paramagnetic resonance (EPR) spectroscopy. This was possible by measuring the changes in the intensity of the EPR spectrum that resulted from the interaction of the stable radical DPPH (1,1-diphenyl-2-picrylhydrazyl) with the antioxidants found in a beer sample. The antioxidant capacity was then presented in Trolox Equivalents, e.g. μM trolox in a beer sample of 100ml. The influence of the type, colour, the content of the extract and alcohol on the antioxidant activities of commercial beer samples was investigated using two-way hierarchical clustering and analysis of variance. The results showed that all of the beers investigated exhibit antioxidant properties. By performing an analysis of variance, it was found that the value of the antioxidant capacity significantly (0.05 level of significance) depends on the content of the extract and the colour of the beer. It seems that additives also influence the antioxidant properties to some extent, but neither the alcohol content nor the kind of fermentation affects the antioxidant properties of beer.

  11. Anthocyanin composition of wild Colombian fruits and antioxidant capacity measurement by electron paramagnetic resonance spectroscopy.

    PubMed

    Santacruz, Liliana; Carriazo, José G; Almanza, Ovidio; Osorio, Coralia

    2012-02-15

    The qualitative and quantitative anthocyanin composition of four wild tropical fruits from Colombia was studied. Compounds of "mora pequeña" ( Rubus megalococcus Focke.), "uva de árbol" ( Myrciaria aff. cauliflora O. Berg), coral, and motilón ( Hyeronima macrocarpa Mull. Arg.) fruits were separately extracted with methanol-acetic acid (95:5, v/v). The anthocyanin-rich extracts (AREs) were obtained by selective adsorption on Amberlite XAD-7. Each extract was analyzed by HPLC-PDA and HPLC-HRESI-MS(n) with LCMS-IT-TOF equipment in order to characterize the anthocyanin pigments and the coinjection in HPLC using standards allowed identifying the major constituents in each extract. The antioxidant activity was measured by electron paramagnetic resonance (EPR) and UV-vis spectroscopy, using ABTS and DPPH free radicals. The ARE of motilón ( H. macrocarpa Müll. Arg) exhibited the highest radical scavenging activity in comparison to the other extracts. A second-order kinetic model was followed in all of the cases. These results suggested that the studied fruits are promising not only as source of natural pigments but also as antioxidant materials for food industry.

  12. Laser cleaning of historical limestone buildings in Bordeaux appraisal using cathodoluminescence and electron paramagnetic resonance.

    PubMed

    Chapoulie, Rémy; Cazenave, Sandrine; Duttine, Mathieu

    2008-05-01

    Most historical buildings in Bordeaux city are made of limestone. This yellowish-white rock is rather porous and highly sensitive to pollution. As a consequence of local weathering conditions, these buildings present a dark appearance due to the development of a superficial dark grey to black crust. For the last decade, a campaign has been underway to clean these buildings. Eleven techniques of surface treatment have been used, including laser beam technology. As a contribution to the study of laser beam effects on stone buildings, two analytical methods have been used on clean versus unclean surfaces: Cathodoluminescence (CL) and Electron Paramagnetic Resonance (EPR), in addition to SEM-EDX and XRD. The black crust is composed of different types of particles: carbon porous micro-particles of industrial origin, atmospheric dust due to the erosion of soils and rocks, alumino-silicate particles from urban pollution; all these particles being cemented by gypsum. As far as heritage conservation is concerned, the laser surface treatment not only preserves the original patina of the stone, but also leaves surface smoothness unaltered. CL and EPR data confirm that lasers--with highly controlled parameters--only get rid of the black crust and, thus, reveal the underneath layer, the so-called patina. This patina shows no luminescence, whereas the limestone on which it has grown shows a bright orange emission of CL. This indicates CL to be a fast and easy way to provide a high quality control for the restoration of polluted ancient stones.

  13. Spin treatment-based approach for electronic transport in paramagnetic liquid transition metals

    NASA Astrophysics Data System (ADS)

    Grosdidier, B.; Ben Abdellah, A.; Bouziane, K.; Mujibur Rahman, S. M.; Gasser, J. G.

    2013-09-01

    A novel concept is proposed to calculate both the electrical resistivity and thermoelectric power (TEP) of liquid transition metals (Mn, Fe, Co and Ni) characterized by a paramagnetic state in the liquid phase. By contrast to a previous work (PRB64, 094202 (2001)), where the resistivity was calculated by treating separately the interactions between spin up and spin down using the Matthiessen rule, our current approach is based on two types of muffin tin potentials in the t-matrix, namely spin up and spin down. The resistivity is treated as the result of the interference of the two kinds of spin states of electrons including a cross-contribution. The calculated resistivity values agree reasonably well with the available experimental ones for all the metals considered. Moreover, the calculated TEP, as deduced from the slope of resistivity vs. energy, has been found to be positive for Mn and Fe but negative for Co and Ni. Besides that, this formalism for resistivity calculation may be generalized to a system that may exist in different atomic states. It is worth mentioning that this concept is analogous to the one used in the process of neutron scattering on a metal composed of multiple isotopes.

  14. Antioxidant activity in hepatopancreas of the shrimp (Pleoticus muelleri) by electron paramagnetic spin resonance spectrometry.

    PubMed

    Díaz, Ana C; Fernández Gimenez, Analía V; Mendiara, Sara N; Fenucci, Jorge L

    2004-05-19

    Free radical scavenging properties of hepatopancreas extracts of Pleoticus muelleri were evaluated by electron paramagnetic spin resonance spectrometry methods (EPR) against the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The present study was carried out to characterize different physiological stages of the shrimp under environmental and nutritional stress, evaluating the effect on growth, survival, and functional morphology of the hepatopancreas. Feeding trials were carried out on juveniles (1 g initial weight) held in aquaria. Each diet, with different concentrations of vitamins A and E, was tested in triplicate groups during 25 days. The control groups were fed with fresh squid mantle and with a vitamin-free diet. For all of the diets, the extracts exhibited strong DPPH radical scavenging activity, suggesting that the tissue is a powerful natural antioxidant. Individuals fed with different concentrations of vitamin E showed the strongest effect on the DPPH radicals, reducing the DPPH radicals to 50%, after an incubation period of 3 min. In contrast, the extracts of control animals, fed with squid mantle, had the weakest antioxidant activity (4%). These data indicated that the presence of vitamin E in the diet can provide immediate protection against free radicals.

  15. Characterization of molecular mobility in seed tissues: an electron paramagnetic resonance spin probe study.

    PubMed

    Buitink, J; Hemminga, M A; Hoekstra, F A

    1999-06-01

    The relationship between molecular mobility (tauR) of the polar spin probe 3-carboxy-proxyl and water content and temperature was established in pea axes by electron paramagnetic resonance (EPR) and saturation transfer EPR. At room temperature, tauR increased during drying from 10(-11) s at 2.0 g water/g dry weight to 10(-4) s in the dry state. At water contents below 0.07 g water/g dry weight, tauR remained constant upon further drying. At the glass transition temperature, tauR was constant at approximately 10(-4) s for all water contents studied. Above Tg, isomobility lines were found that were approximately parallel to the Tg curve. The temperature dependence of tauR at all water contents studied followed Arrhenius behavior, with a break at Tg. Above Tg the activation energy for rotational motion was approximately 25 kJ/mol compared to 10 kJ/mol below Tg. The temperature dependence of tauR could also be described by the WLF equation, using constants deviating considerably from the universal constants. The temperature effect on tauR above Tg was much smaller in pea axes, as found previously for sugar and polymer glasses. Thus, although glasses are present in seeds, the melting of the glass by raising the temperature will cause only a moderate increase in molecular mobility in the cytoplasm as compared to a huge increase in amorphous sugars.

  16. Interaction of gum arabic with fatty acid studied using electron paramagnetic resonance.

    PubMed

    Fang, Yapeng; Al-Assaf, Saphwan; Phillips, Glyn O; Nishinari, Katsuyoshi; Williams, Peter A

    2010-05-10

    Electron paramagnetic resonance (EPR) is here used to study the interaction between gum arabic and a fatty acid. The EPR spectra of 5-doxyl stearic acid (5-DSA), a spin-labeled fatty acid analog, displayed increasingly anisotropic line features upon addition of gum arabic, indicating a strong immobilization of the nitroxyl moiety when the fatty acid is bound to gum arabic. To understand the nature of the interaction, EPR measurements were carried out at different pHs and using two fractions of gum arabic separated by hydrophobic interaction chromatography (HIC). 5-DSA bound favorably to the hydrophobic fraction, which contains mainly glycoprotein, and a small amount of high molecular weight arabinogalactan protein (AGP). Binding occurred to a less extent to the hydrophilic fraction, which contains essentially arabinogalactan (AG). Such a hydrophobic binding mechanism is further supported by a sharp drop in the binding when pH is raised above the pK(a) value of 5-DSA (approximately pH 5). This is because the ionization of carboxylic groups would lead to increased polarity and hydrophilicity of the fatty acid. A secondary effect involving the formation of ionic hydrogen bonds between carboxylic groups in fatty acid and lysine residues in gum arabic might also contribute. This is consistent with the reduction in binding ability when the pH was elevated above the pK(a) value of lysine residue (approximately pH 10). The biological significance of these findings is considered.

  17. Evaluation of sub-microsecond recovery resonators for In Vivo Electron Paramagnetic Resonance Imaging

    PubMed Central

    F, Hyodo; S, Subramanian; N, Devasahayam; R, Murugesan; K, Matsumoto; JB, Mitchell; MC, Krishna

    2008-01-01

    Time-domain (TD) electron paramagnetic resonance (EPR) imaging at 300 MHz for in vivo applications requires resonators with recovery times less than 1 microsecond after pulsed excitation to reliably capture the rapidly decaying free induction decay (FID). In this study, we tested the suitability of the Litz foil coil resonator (LCR), commonly used in MRI, for in vivo EPR/EPRI applications in the TD mode and compared with parallel coil resonator (PCR). In TD mode, the sensitivity of LCR was lower than that of the PCR. However, in continuous wave (CW) mode, the LCR showed better sensitivity. The RF homogeneity was similar in both the resonators. The axis of the RF magnetic field is transverse to the cylindrical axis of the LCR, making the resonator and the magnet co-axial. Therefore, the loading of animals, and placing of the anesthesia nose cone and temperature monitors was more convenient in the LCR compared to the PCR whose axis is perpendicular to the magnet axis. PMID:18042414

  18. Electron Paramagnetic Resonance: a tool for in situ detection, imaging and dating of biosignatures in primitive organic matter

    NASA Astrophysics Data System (ADS)

    Gourier, D.; Binet, L.; Vezin, H.

    2012-04-01

    Electron Paramagnetic Resonance (EPR) spectroscopy and imaging are based on the interaction of a microwave electromagnetic field (typically in the GHz range) with electron spins in presence of an external magnetic field. Contrary to UV-visible and Infrared light, microwave radiation can penetrate in most non conducting materials, so that EPR is sensitive to the bulk (and not to the surface) of samples. All the paramagnetic defects, impurities, point defects in the mineral matrix, radicals in carbonaceous matter of an ancient rock can be detected by this technique. As the most ancient traces of life, as old as 3.5 Gy, are recorded as carbonaceous microstructures in siliceous sedimentary structures (cherts), the radical defects of these microstructures can be probed in situ without sample preparation. By using continuous-wave EPR, the fossilized carbonaceous matter can be mapped at the sub-millimeter scale (EPR imaging)[1], and can be dated with respect to the host rock (evolution of the EPR lineshape)[2]. Thus this method could be used for contamination detection (endolithic bacteria, infiltration etc…). By using pulsed-EPR spectroscopy (instead of continuous wave), nuclear magnetic transitions of elements in and around radicals can be detected with a high resolution and sensitivity. We show that specific nuclear transitions for hydrogen (1H and 2D) and 13C (and other nuclei such as 29Si and 31P) can be identified in extraterrestrial carbonaceous matter (meteorites) and in Precambrian and younger cherts. These pulsed techniques provide molecular scale biosignatures for primitive life detection and internal probes to study the history of organic matter in the early solar system [3,4]. Paramagnetic biosignatures are not limited to the organic component of cherts. Specific EPR biosignatures of metal ions can be detected in biominerals such as MnO2 [5] or in molecular V4+ complexes [6]. EPR is thus a potential technique for the search of primitive life on Earth and

  19. Pulse radiolysis of alkanes: A time-resolved electron paramagnetic resonance study

    SciTech Connect

    Shkrob, I.A.; Trifunac, A.D.

    1994-02-14

    Time-resolved spin-echo-detected electron paramagnetic resonance (EPR) was applied to examine short-lived alkyl radicals formed in pulse radiolysis of liquid alkanes. It was found that the ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation is temperature-independent and is ca. 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the fast ion molecule reactions involving radical cations are a significant route of radical generation. The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals are emissively polarized in spur reactions. this initial polarization rapidly increases with shortening of the aliphatic chain. Another finding is that a long-chain structure of these radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. Effects of phenolic and alkene additives in radiolysis of n-alkanes are examined. It is demonstrated that phenoxy radicals are produced in dissociative capture of electrons and alkane holes. Another route is a reaction of phenols with free hydrogen atoms. A rapid transfer of singlet correlation from the geminate radical ion pairs is responsible for unusual polarization patterns in the phenoxy and cyclohexadienyl radicals. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. 56 refs.

  20. Electron Energy Structure and Electron Paramagnetic Resonance of Binuclear Niobium Molecules in Li-Nb Phosphate Glass Dielectrics

    NASA Astrophysics Data System (ADS)

    Arrington-Peet, Sabrina

    2005-03-01

    Electron paramagnetic resonance (EPR) spectra of Nb4+ ions in lithium-niobium phosphate glass insulators with different composition of oxide components have been studied. The EPR data reveal formation of triplet Nb binuclear complex in Li-Nb glass dielectric. Equilibrium atomic geometries of a model molecule (OH)3-Nb-O-Nb-(OH)3 embedded into Li-Nb phosphate glass are determined by molecular dynamics. The total energy and electron energy structure of the system have been studied by first principles generalized gradient approximation (GGA) method within density functional theory (DFT). Molecular geometry in substantially distorted as a result of external potential of the glass. Total energy analysis of the (OH)3-Nb-O-Nb-(OH)3 molecule embedded into Li-Nb phosphate glass indicates appearance of two non-equivalent atomic geometries with the oxygen atom in --Nb-O-Nb- fragment shifted from its undisturbed symmetrical position. Predicted modifications of electron energy structure of the system are discussed in comparison with measured EPR data.

  1. Electron paramagnetic resonance studies of electron and hole traps related to optical damage in KTiOPO(4)

    NASA Astrophysics Data System (ADS)

    Setzler, Scott Douglas

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) studies have been performed on flux-grown and hydrothermal-grown potassium titanyl phosphate (KTiOPOsb4, or KTP) crystals. Four radiation-induced tapped-electron centers have been identified and a complete angular dependence analysis has provided spin-Hamiltonian parameters for each center. Either near-band-edge laser light (355-nm third-harmonic output from a Nd:YAG laser) or 60-kV x-rays can be used to produce the defects. These electron traps are perturbed Tisp{3+} ions, where the perturbation acts to stabilize the electron. Hyperfine parameters have been used to deduce that protons (in the form of OH-ions) act to stabilize the electron in hydrothermal material, while the stabilization in flux material probably comes from divalent impurities and oxygen vacancies. The thermal stability of the centers varies from 150 K to 300 K. The principal g values have been used to confirm that the titanium centers have related optical absorption bands in the visible region. Preliminary transient absorption experiments have been developed to measure the lifetime of the induced absorption. It is postulated that these centers can be formed during normal device operation and are closely related to the "gray-track" effect. Additional analysis has also been performed on the previously identified radiation-induced trapped-hole center (Edwards et. al., Phys. Rev. B 48, 6884 (1993)). The g values and hyperfine parameters are revised though the defect model remains unchanged.

  2. Rapid scan electron paramagnetic resonance at 1.0 GHz of defect centers in γ-irradiated organic solids.

    PubMed

    Shi, Yilin; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2016-02-01

    The radicals in six (60)Co γ-irradiated solids: malonic acid, glycylglycine, 2,6 di-t-butyl 4-methyl phenol, L-alanine, dimethyl malonic acid, and 2-amino isobutyric acid, were studied by rapid scan electron paramagnetic resonance at L-band (1.04 GHz) using a customized Bruker Elexsys spectrometer and a locally-designed dielectric resonator. Sinusoidal scans with widths up to 18.2 mT were generated with the recently described coil driver and Litz wire coils. Power saturation curves showed that the rapid scan signals saturated at higher powers than did conventional continuous wave signals. The rapid scan data were deconvolved and background subtracted to obtain absorption spectra. For the same data acquisition time the signal-to-noise for the absorption spectra obtained in rapid scans were 23 to 37 times higher than for first-derivative spectra obtained by conventional continuous wave electron paramagnetic resonance.

  3. Rapid scan electron paramagnetic resonance at 1.0 GHz of defect centers in γ-irradiated organic solids

    PubMed Central

    Shi, Yilin; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2016-01-01

    The radicals in six 60Co γ-irradiated solids: malonic acid, glycylglycine, 2,6 di-t-butyl 4-methyl phenol, L-alanine, dimethyl malonic acid, and 2-amino isobutyric acid, were studied by rapid scan electron paramagnetic resonance at L-band (1.04 GHz) using a customized Bruker Elexsys spectrometer and a locally-designed dielectric resonator. Sinusoidal scans with widths up to 18.2 mT were generated with the recently described coil driver and Litz wire coils. Power saturation curves showed that the rapid scan signals saturated at higher powers than did conventional continuous wave signals. The rapid scan data were deconvolved and background subtracted to obtain absorption spectra. For the same data acquisition time the signal-to-noise for the absorption spectra obtained in rapid scans were 23 to 37 times higher than for first-derivative spectra obtained by conventional continuous wave electron paramagnetic resonance. PMID:26834505

  4. A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry.

    PubMed

    Meenakshisundaram, Guruguhan; Pandian, Ramasamy P; Eteshola, Edward; Lee, Stephen C; Kuppusamy, Periannan

    2010-03-01

    Lithium naphthalocyanine (LiNc) is a microcrystalline EPR oximetry probe with high sensitivity to oxygen [R.P. Pandian, M. Dolgos, C. Marginean, P.M. Woodward, P.C. Hammel, P.T. Manoharan, P. Kuppusamy, Molecular packing and magnetic properties of lithium naphthalocyanine crystal: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen J. Mater. Chem. 19 (2009) 4138-4147]. However, direct implantation of the crystals in the tissue for in vivo oxygen measurements may be hindered by concerns associated with their direct contact with the tissue/cells and loss of EPR signal due to particle migration in the tissue. In order to address these concerns, we have developed encapsulations (chips) of LiNc microcrystals in polydimethyl siloxane (PDMS), an oxygen-permeable, bioinert polymer. Oximetry evaluation of the fabricated chips revealed that the oxygen sensitivity of the crystals was unaffected by encapsulation in PDMS. Chips were stable against sterilization procedures or treatment with common biological oxidoreductants. In vivo oxygen measurements established the ability of the chips to provide reliable and repeated measurements of tissue oxygenation. This study establishes PDMS-encapsulated LiNc as a potential probe for long-term and repeated measurements of tissue oxygenation. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  5. Advanced Paramagnetic Resonance Spectroscopies of Iron-Sulfur Proteins: Electron Nuclear Double Resonance (ENDOR) and Electron Spin Echo Envelope Modulation (ESEEM)

    PubMed Central

    Cutsail, George E.; Telser, Joshua; Hoffman, Brian M.

    2015-01-01

    The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of Nature’s widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. PMID:25686535

  6. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes.

    PubMed

    Cangiotti, Michela; Battistelli, Michela; Salucci, Sara; Falcieri, Elisabetta; Mattioli, Michele; Giordani, Matteo; Ottaviani, Maria Francesca

    2017-01-01

    Different asbestiform zeolite fibers of the erionite (termed GF1 and MD8, demonstrated carcinogenic) and offretite (termed BV12, suspected carcinogenic) families were investigated by analyzing the electron paramagnetic resonance (EPR) spectra of selected surfactant spin probes and transmission electron microscopy (TEM) images in the presence of model membranes-cetyltrimethylammonium (CTAB) micelles, egg-lecithin liposomes, and dimyristoylphosphatidylcholine (DMPC) liposomes. This was undertaken to obtain information on interactions occurring at a molecular level between fibers and membranes which correlate with entrance of fibers into the membrane model or location of the fibers at the external or internal membrane interfaces. For CTAB micelles, all fibers were able to enter the micelles, but the hair-like structure and chemical surface characteristics of GF1 modified the micelle structure toward a bilayer-like organization, while MD8 and BV12, being shorter fibers and with a high density of surface interacting groups, partially destroyed the micelles. For liposomes, GF1 fibers partially penetrated the core solution, but DMPC liposomes showed increasing rigidity and organization of the bilayer. Conversely, for MD8 and BV12, the fibers did not cross the membrane demonstrating a smaller membrane structure perturbation. Scolecite fibers (termed SC1), used for comparison, presented poor interactions with the model membranes. The carcinogenicity of the zeolites, as postulated in the series SC1

  7. Electron paramagnetic resonance and high temperature susceptibility measurements in cesium hexabromide

    NASA Astrophysics Data System (ADS)

    Terzioglu, Cabir

    2000-10-01

    To our knowledge the research reported here represents the first attempt to understand the 4f electronic structure in CeB6 using EPR. We report extensive temperature and angular dependent EPR measurements on a single crystal of CeB6 in the paramagnetic phase from 4 to 300 K at 35, 95, and a few measurements at 220 GHz. The 35 GHz measurements were performed at LSU and the 95 and 220 GHz measurements were performed at the National High Magnetic Field Laboratory, Tallahassee, FL. These experiments were made using a standard microwave frequency-locked spectrometer and magnetic field modulation. The measurements are supplemented by temperature and field dependent DC measurements of the sample magnetization. From the EPR line shapes, g-value and spin-lattice relaxation time (T1) were extracted. The EPR results for CeB6 showed one absorption peak at the magnetic field corresponding to temperature independent g-value of g = 1.98 and T1 = 6.35*10 -11 seconds at room temperature. The g factor for this transition is independent of temperature between 4 and 300 K, depends on magnetic field (measurement frequency) in a non-monotonic manner, and depends slightly on crystal orientation with respect to the applied field direction in the [100] plane. The line width of the EPR spectra decreased and the relaxation time increased with increasing temperature because of exchange narrowing. Similar measurements were performed on ferromagnetic EuB6 and g values and spin-lattice relaxation times were extracted.

  8. Application of Electron Paramagnetic Resonance (EPR) Oximetry to Monitor Oxygen in Wounds in Diabetic Models

    PubMed Central

    Desmet, Céline M.; Lafosse, Aurore; Vériter, Sophie; Porporato, Paolo E.; Sonveaux, Pierre; Dufrane, Denis; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    A lack of oxygen is classically described as a major cause of impaired wound healing in diabetic patients. Even if the role of oxygen in the wound healing process is well recognized, measurement of oxygen levels in a wound remains challenging. The purpose of the present study was to assess the value of electron paramagnetic resonance (EPR) oximetry to monitor pO2 in wounds during the healing process in diabetic mouse models. Kinetics of wound closure were carried out in streptozotocin (STZ)-treated and db/db mice. The pO2 was followed repeatedly during the healing process by 1 GHz EPR spectroscopy with lithium phthalocyanine (LiPc) crystals used as oxygen sensor in two different wound models: a full-thickness excisional skin wound and a pedicled skin flap. Wound closure kinetics were dramatically slower in 12-week-old db/db compared to control (db/+) mice, whereas kinetics were not statistically different in STZ-treated compared to control mice. At the center of excisional wounds, measurements were highly influenced by atmospheric oxygen early in the healing process. In pedicled flaps, hypoxia was observed early after wounding. While reoxygenation occurred over time in db/+ mice, hypoxia was prolonged in the diabetic db/db model. This observation was consistent with impaired healing and microangiopathies observed using intravital microscopy. In conclusion, EPR oximetry using LiPc crystals as the oxygen sensor is an appropriate technique to follow wound oxygenation in acute and chronic wounds, in normal and diabetic animals. Nevertheless, the technique is limited for measurements in pedicled skin flaps and cannot be applied to excisional wounds in which diffusion of atmospheric oxygen significantly affects the measurements. PMID:26659378

  9. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using electron paramagnetic resonance spectroscopy.

    PubMed

    Gopalan, V; Kühne, H; Biswas, R; Li, H; Brudvig, G W; Altman, S

    1999-02-09

    Ribonuclease P (RNase P) is a catalytic ribonucleoprotein (RNP) essential for tRNA biosynthesis. In Escherichia coli, this RNP complex is composed of a catalytic RNA subunit, M1 RNA, and a protein cofactor, C5 protein. Using the sulfhydryl-specific reagent (1-oxyl-2,2,5, 5-tetramethyl-Delta3-pyrroline-3-methyl)methanethiosulfonate (MTSL), we have introduced a nitroxide spin label individually at six genetically engineered cysteine residues (i.e., positions 16, 21, 44, 54, 66, and 106) and the native cysteine residue (i.e., position 113) in C5 protein. The spin label covalently attached to any protein is sensitive to structural changes in its microenvironment. Therefore, we expected that if the spin label introduced at a particular position in C5 protein was present at the RNA-protein interface, the electron paramagnetic resonance (EPR) spectrum of the spin label would be altered upon binding of the spin-labeled C5 protein to M1 RNA. The EPR spectra observed with the various MTSL-modified mutant derivatives of C5 protein indicate that the spin label attached to the protein at positions 16, 44, 54, 66, and 113 is immobilized to varying degrees upon addition of M1 RNA but not in the presence of a catalytically inactive, deletion derivative of M1 RNA. In contrast, the spin label attached to position 21 displays an increased mobility upon binding to M1 RNA. The results from this EPR spectroscopy-based approach together with those from earlier studies identify residues in C5 protein which are proximal to M1 RNA in the RNase P holoenzyme complex.

  10. Motion of subfragment-1 in myosin and its supramolecular complexes: saturation transfer electron paramagnetic resonance.

    PubMed Central

    Thomas, D D; Seidel, J C; Hyde, J S; Gergely, J

    1975-01-01

    Molecular dynamics in spin-labeled muscle proteins was studied with a recently developed electron paramagnetic resonance (EPR) technique, saturation transfer spectroscopy, which is uniquely sensitive to rotational motion in the range of 10(-7)-10(-3) sec. Rotational correlation time (tau2) were determined for a spin label analog of iodoacetamide bound to the subfragment-1 (S-1) region of myosin under a variety of conditions likely to shed light on the molecular mechanism of muscle contraction. Results show that (a) the spin labels are rigidly bound to the isolated S-1 (tau2 = 2 x 10(-7) sec) and can be used to estimate values of tau2 for the S-1 region of the myosin molecule; (b) in solutions of intact myosin, S-1 has considerable mobility relative to the rest of the myosin molecule, the value of tau2 for the S-1 segment of myosin being less than twice that for isolated S-1, while the molecular weights differ by a factor of 4 to 5; (c) in myosin filaments, tau2 increases by a factor of only about 10, suggesting motion of the S-1 regions independent of the backbone of the myosin filament, but slower than that in a single molecule; (d) addition of F-actin to solutions of myosin or S-1 increases tau2 by a factor of nearly 10(3), indicating strong immobilization of S-1 upon binding to actin. Saturation transfer spectroscopy promises to provide an extremely useful tool for the study of the motions of the crossbridges and thin filaments in reconstituted systems and in glycerinated muscle fibers. PMID:168572

  11. Electron paramagnetic resonance studies on conformation states and metal ion exchange properties of vanadium bromoperoxidase

    SciTech Connect

    de Boer, E.; Boon, K.; Wever, R.

    1988-03-08

    An electron paramagnetic resonance (EPR) study was carried out to examine structural aspects of vanadium-containing bromoperoxidase from the brown seaweed Ascophyllum nodosum. At high pH, the reduced form of bromoperoxidase showed an apparently axially symmetric EPR signal with 16 hyperfine lines. When the pH was lowered, a new EPR spectrum was formed. When EPR spectra of the reduced enzyme were recorded in the pH range from 4.2 to 8.4, it appeared that these changes were linked to a functional group with an apparent pK/sub a/ of about 5.4. In D/sub 2/O this value for the pK/sub a/ was 5.3. It is suggested that these effects arise from protonation of histidine or aspartate/glutamate residues near the metal ion. The values for the isotropic hyperfine coupling constant of the reduced enzyme at both high and low pH are also consistent with a ligand field containing nitrogen and/or oxygen donor atoms. When reduced bromoperoxidase was dissolved in D/sub 2/O or H/sub 2//sup 17/O instead of H/sub 2//sup 16/O, vanadium (IV) hyperfine line widths were markedly affected, demonstrating that water is a ligand of the metal ion. Together with previous work these findings suggest that vanadium (IV) is not involved in catalytic turnover and confirm the model in which the vanadium (V) ion of the native enzyme only serves to bind both hydrogen peroxide and bromide. After excess vanadate was added to a homogeneous preparation of purified bromoperoxidase, the extent of vanadium bound to the protein increased from 0.5 to 1.1, with a concomitant enhancement of enzymic activity. Finally, it is demonstrated that both vanadate (VO/sub 4//sup 3 -/) and molybdate (MoO/sub 4//sup 2 -/) compete for the same site on apobromoperoxidase.

  12. Electron Paramagnetic Resonance Study of Structural Changes in the O Photointermediate of Bacteriorhodopsin

    PubMed Central

    Chen, Deliang; Wang, Jennifer M.; Lanyi, Janos K.

    2007-01-01

    The structural changes of bacteriorhodopsin during its photochemical cycle, as revealed by crystal structures of trapped intermediates, have provided insights to the proton translocation mechanism. Because accumulation of the last photointermediate, O, appears to be hindered by lattice forces in the crystals, the only information about the structure of this state is from suggested analogies with the determined structures of the non-illuminated D85S mutant and wild type bacteriorhodopsin at low pH. We used electron paramagnetic resonance spectroscopy of site-directed spin labels at the extracellular protein surface in membranes to test these models. Spin-spin dipolar interactions in the authentic O state compared to the non-illuminated state revealed that the distance between helices C and F increases by ca. 4 Å, there is no distance change between helices D and F, and the distance between helix D and helix B of the adjacent monomer increases. Further, the mobility changes of single labels indicate that helices E and F move outward from the proton channel at the center of the protein, and helix D tilts inward. The overall pattern of movements suggests that the model at acid pH is a better representation of the O state than D85S. However, the mobility analysis of spin-labels on the B-C interhelical loop indicates that the anti-parallel β-sheet maintains its ordered secondary structure in O, instead of the predicted disorder in the two structural models. During decay of the O state, the last step of the photocycle, a proton is transferred from Asp85 to proton release complex in the extracellular proton channel. The structural changes in O suggest the need of large conformational changes to drive the Arg82 side-chain back to its initial orientation towards Asp85, and to rearrange the numerous water molecules in this region in order to conduct the proton away from Asp85. PMID:17196982

  13. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    SciTech Connect

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  14. Optimal dielectric and cavity configurations for improving the efficiency of electron paramagnetic resonance probes

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-08-01

    An electron paramagnetic resonance (EPR) spectrometer’s lambda efficiency parameter (Λ) is one of the most important parameters that govern its sensitivity. It is studied for an EPR probe consisting of a dielectric resonator (DR) in a cavity (CV). Expressions for Λ are derived in terms of the probe’s individual DR and CV components, Λ1 and Λ2 respectively. Two important cases are considered. In the first, a probe consisting of a CV is improved by incorporating a DR. The sensitivity enhancement depends on the relative rather than the absolute values of the individual components. This renders the analysis general. The optimal configuration occurs when the CV and DR modes are nearly degenerate. This configuration guarantees that the probe can be easily coupled to the microwave bridge while maintaining a large Λ. It is shown that for a lossy CV with a small quality factor Q2, one chooses a DR that has the highest filling factor, η1, regardless of its Λ1 and Q1. On the other hand, if the CV has a large Q2, the optimum DR is the one which has the highest Λ1. This is regardless of its η1 and relative dielectric constant, ɛr. When the quality factors of both the CV and DR are comparable, the lambda efficiency is reduced by a factor of √{2}. Thus the signal intensity for an unsaturated sample is cut in half. The second case is the design of an optimum shield to house a DR. Besides preventing radiation leakage, it is shown that for a high loss DR, the shield can actually boost Λ above the DR value. This can also be very helpful for relatively low efficiency dielectrics as well as lossy samples, such as polar liquids.

  15. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    PubMed Central

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A.

    2012-01-01

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation. PMID:22473321

  16. Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites.

    PubMed

    Desmet, Céline M; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria; Dong, Ruhong; Kmiec, Maciej M; Kobayashi, Kyo; Rychert, Kevin; Beun, Sébastien; Leprince, Julian G; Leloup, Gaëtane; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24 h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not

  17. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    PubMed Central

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-01-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown. PMID:25362434

  18. Electron paramagnetic resonance method for the quantitative assay of ketoconazole in pharmaceutical preparations.

    PubMed

    Morsy, Mohamed A; Sultan, Salah M; Dafalla, Hatim

    2009-08-15

    In this study, electron paramagnetic resonance (EPR) is used, for the first time, as an analytical tool for the quantitative assay of ketoconazole (KTZ) in drug formulations. The drug was successfully characterized by the prominent signals by two radical species produced as a result of its oxidation with 400 microg/mL cerium(IV) in 0.10 mol dm(-3) sulfuric acid. The EPR signal of the reaction mixture was measured in eight capillary tubes housed in a 4 mm EPR sample tube. The radical stability was investigated by obtaining multi-EPR scans of each KTZ sample solution at time intervals of 2.5 min of the reaction mixing time. The plot of the disappearance of the radical species show that the disappearance is apparently of zero order. The zero-time intercept of the EPR signal amplitude, which should be proportional to the initial radical concentration, is linear in the sample concentration in the range between 100 and 400 microg/mL, with a correlation coefficient, r, of 0.999. The detection limit was determined to be 11.7 +/- 2.5 microg/mL. The method newly adopted was fully validated following the United States Pharmacopeia (USP) monograph protocol in both the generic and the proprietary forms. The method is very accurate, such that we were able to measure the concentration at confidence levels of 99.9%. The method was also found to be suitable for the assay of KTZ in its tablet and cream pharmaceutical preparations, as no interferences were encountered from excipients of the proprietary drugs. High specificity, simplicity, and rapidity are the merits of the present method compared to the previously reported methods.

  19. Characterization of iron, manganese, and copper synthetic hydroxyapatites by electron paramagnetic resonance spectroscopy.

    PubMed

    Sutter, B; Wasowicz, T; Howard, T; Hossner, L R; Ming, D W

    2002-01-01

    The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.

  20. In Situ Monitoring of Diffusion of Guest Molecules in Porous Media Using Electron Paramagnetic Resonance Imaging.

    PubMed

    Spitzbarth, Martin; Lemke, Tobias; Drescher, Malte

    2016-09-02

    A method is demonstrated to monitor macroscopic translational diffusion using electron paramagnetic resonance (EPR) imaging. A host-guest system with nitroxide spin probe 3-(2-Iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (IPSL) as a guest inside the periodic mesoporous organosilica (PMO) aerogel UKON1-GEL as a host and ethanol as a solvent is used as an example to describe the protocol. Data is shown from a previous publication, where the protocol has been applied to both IPSL and Tris(8-carboxy-2,2,6,6-perdeutero-tetramethyl-benzo[1,2-d:4,5-d']bis(1,3)dithiole) methyl (Trityl) as guest molecules and UKON1-GEL and SILICA-GEL as host systems. A method is shown to prepare aerogel samples that cannot be synthesized directly in the sample tube for measurement due to a size change during synthesis. The aerogel is attached to sample tubes using heat shrink tubing and a pressure cooker to reach the necessary temperature without evaporating the solvent in the process. The method does not assume a clearly defined initial distribution of guest molecules at the start of the measurement. Instead, it requires a reservoir on top of the aerogel and experimentally determines the influx rate during data analysis. The diffusion is monitored continually over a period of 20 hr by recording the 1d spin density profile within the sample. The spectrometer settings for the imaging experiment are described quantitatively. Data analysis software is provided to take the resonator sensitivity profile into account and to numerically solve the diffusion equation. The software determines the macroscopic translational diffusion coefficient by least square minimization of the difference between the experiment and the numerical solution of the diffusion equation.

  1. Characterization of iron, manganese, and copper synthetic hydroxyapatites by electron paramagnetic resonance spectroscopy

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Wasowicz, T.; Howard, T.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.

  2. Optimal dielectric and cavity configurations for improving the efficiency of electron paramagnetic resonance probes.

    PubMed

    Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M

    2014-08-01

    An electron paramagnetic resonance (EPR) spectrometer's lambda efficiency parameter (Λ) is one of the most important parameters that govern its sensitivity. It is studied for an EPR probe consisting of a dielectric resonator (DR) in a cavity (CV). Expressions for Λ are derived in terms of the probe's individual DR and CV components, Λ1 and Λ2 respectively. Two important cases are considered. In the first, a probe consisting of a CV is improved by incorporating a DR. The sensitivity enhancement depends on the relative rather than the absolute values of the individual components. This renders the analysis general. The optimal configuration occurs when the CV and DR modes are nearly degenerate. This configuration guarantees that the probe can be easily coupled to the microwave bridge while maintaining a large Λ. It is shown that for a lossy CV with a small quality factor Q2, one chooses a DR that has the highest filling factor, η1, regardless of its Λ1 and Q1. On the other hand, if the CV has a large Q2, the optimum DR is the one which has the highest Λ1. This is regardless of its η1 and relative dielectric constant, ɛr. When the quality factors of both the CV and DR are comparable, the lambda efficiency is reduced by a factor of 2. Thus the signal intensity for an unsaturated sample is cut in half. The second case is the design of an optimum shield to house a DR. Besides preventing radiation leakage, it is shown that for a high loss DR, the shield can actually boost Λ above the DR value. This can also be very helpful for relatively low efficiency dielectrics as well as lossy samples, such as polar liquids.

  3. Electron paramagnetic resonance study of structural changes in the O photointermediate of bacteriorhodopsin.

    PubMed

    Chen, Deliang; Wang, Jennifer M; Lanyi, Janos K

    2007-02-23

    The structural changes of bacteriorhodopsin during its photochemical cycle, as revealed by crystal structures of trapped intermediates, have provided insights to the proton translocation mechanism. Because accumulation of the last photointermediate, O, appears to be hindered by lattice forces in the crystals, the only information about the structure of this state is from suggested analogies with the determined structures of the non-illuminated D85S mutant and wild-type bacteriorhodopsin at low pH. We used electron paramagnetic resonance spectroscopy of site-directed spin labels at the extracellular protein surface in membranes to test these models. Spin-spin dipolar interactions in the authentic O state compared to the non-illuminated state revealed that the distance between helices C and F increases by ca 4 Angstroms, there is no distance change between helices D and F, and the distance between helix D and helix B of the adjacent monomer increases. Further, the mobility changes of single labels indicate that helices E and F move outward from the proton channel at the center of the protein, and helix D tilts inward. The overall pattern of movements suggests that the model at acid pH is a better representation of the O state than D85S. However, the mobility analysis of spin-labels on the B-C interhelical loop indicates that the antiparallel beta-sheet maintains its ordered secondary structure in O, instead of the predicted disorder in the two structural models. During decay of the O state, the last step of the photocycle, a proton is transferred from Asp85 to proton release complex in the extracellular proton channel. The structural changes in O suggest the need of large conformational changes to drive the Arg82 side-chain back to its initial orientation towards Asp85, and to rearrange the numerous water molecules in this region in order to conduct the proton away from Asp85.

  4. Electron paramagnetic resonance spectroscopic study of copper hopping in doped bis(L-histidinato)cadmium dihydrate.

    PubMed

    Colaneri, Michael J; Vitali, Jacqueline; Kirschbaum, Kristin

    2013-04-25

    Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(L-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: -260, -190, -37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson's theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature-dependent conversion between two species with a critical temperature T(c) ≈ 160 K. The species below T(c) hops between the two low temperature site patterns, and the one above T(c) represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites ν(h4) = 4.5 × 10(8) s(-1) and between the low and high temperature states ν(h2) = 1.7 × 10(8) s(-1) at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE4 = 389 cm(-1) and ΔE2 = 656 cm(-1) between the two low temperature sites and between the low and high temperature states, respectively.

  5. Characterization of iron, manganese, and copper synthetic hydroxyapatites by electron paramagnetic resonance spectroscopy

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Wasowicz, T.; Howard, T.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.

  6. Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites

    PubMed Central

    Desmet, Céline M.; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria; Dong, Ruhong; Kmiec, Maciej M.; Kobayashi, Kyo; Rychert, Kevin; Beun, Sébastien; Leprince, Julian G.; Leloup, Gaëtane; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not

  7. The sensitivity of saturation transfer electron paramagnetic resonance spectra to restricted amplitude uniaxial rotational diffusion.

    PubMed

    Hustedt, E J; Beth, A H

    2001-12-01

    Computational methods have been developed to model the effects of constrained or restricted amplitude uniaxial rotational diffusion (URD) on saturation transfer electron paramagnetic resonance (ST-EPR) signals observed from nitroxide spin labels. These methods, which have been developed to model the global rotational motion of intrinsic membrane proteins that can interact with the cytoskeleton or other peripheral proteins, are an extension of previous work that described computationally efficient algorithms for calculating ST-EPR spectra for unconstrained URD (Hustedt and Beth, 1995, Biophys. J. 69:1409-1423). Calculations are presented that demonstrate the dependence of the ST-EPR signal (V'(2)) on the width (Delta) of a square-well potential as a function of the microwave frequency, the correlation time for URD, and the orientation of the spin-label with respect to the URD axis. At a correlation time of 10 micros, the V'(2) signal is very sensitive to Delta in the range from 0 to 60 degrees, marginally sensitive from 60 degrees to 90 degrees, and insensitive beyond 90 degrees. Sensitivity to Delta depends on the correlation time for URD with higher sensitivity to large values of Delta at the shorter correlation times, on the microwave frequency, and on the orientation of the spin-label relative to the URD axis. The computational algorithm has been incorporated into a global nonlinear least-squares analysis approach, based upon the Marquardt-Levenberg method (Blackman et al., 2001, Biophys. J. 81:3363-3376). This has permitted determination of the correlation time for URD and the width of the square-well potential by automated fitting of experimental ST-EPR data sets obtained from a spin-labeled membrane protein and provided a new automated method for analysis of data obtained from any system that exhibits restricted amplitude URD.

  8. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    PubMed

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  9. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    NASA Astrophysics Data System (ADS)

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  10. `Rapidly Appearing' molybdenum electron-paramagnetic-resonance signals from reduced xanthine oxidase

    PubMed Central

    Bray, R. C.; Vänngård, T.

    1969-01-01

    Further electron-paramagnetic-resonance studies relating to the role of molybdenum in the enzymic mechanisms of xanthine oxidase were carried out. The classification of the various molybdenum signals obtained on reducing the enzyme is briefly discussed. The group of `Rapidly appearing' signals, which are obtained with all substrates within the turnover time and which show interaction with exchangeable protons, were studied in detail. Signals with salicylaldehyde, purine and xanthine in H2O and in 95% D2O were examined at 9 and 35GHz and interpreted with the help of computer simulation. Molybdenum atoms in a number of different chemical environments are involved, each substrate giving rise to two superimposed spectra with slightly different parameters; g values and proton splittings were determined. The spectrum with salicylaldehyde is believed to represent the reduced enzyme alone not in the form of a complex with substrate and its two constituents are believed to represent the two molybdenum atoms bonded slightly differently within the enzyme molecule. With purine and xanthine the spectra are thought to represent complexes of reduced enzyme with substrate molecules. With xanthine one signal-giving species shows coupling to two equivalent protons, whereas in all the other species observed two non-equivalent protons are involved. The origin of the protons is discussed in the light of the direct hydrogen-transfer mechanism implicated earlier for the enzyme. It is concluded that the proton derived from the substrate is located at least 3å from the molybdenum atom with which it interacts. PMID:4310055

  11. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    SciTech Connect

    Kovacs, Andras; Ney, A.; Duchamp, Martial; Ney, V.; Boothroyd, Chris; Galindo, Pedro L.; Kaspar, Tiffany C.; Chambers, Scott A.; Dunin-Borkowski, Rafal

    2013-12-23

    We have studied planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al2O3) and the Co:ZnO/Al2O3 interface structure at atomic resolution using aberration-corrected transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). Comparing Co:ZnO samples deposited by pulsed laser deposition and reactive magnetron sputtering, both exhibit extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3-4 Co:ZnO layers at the interface.. In addition, we have measured the local strain which reveals the lattice distortion around the stacking faults.

  12. A new structural model of Alzheimer's Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling

    PubMed Central

    Gu, Lei; Tran, Joyce; Jiang, Lin; Guo, Zhefeng

    2016-01-01

    Brain deposition of Aβ in the form of amyloid plaques is a pathological hallmark of Alzheimer's disease. There are two major species of Aβ in the brain: Aβ42 and Aβ40. Although Aβ40 is several-fold more abundant than Aβ42 in soluble form, Aβ42 is the major component of amyloid plaques. Structural knowledge of Aβ42 fibrils is important both for understanding the process of Aβ aggregation and for designing fibril-targeting drugs. Here we report site-specific structural information of Aβ42 fibrils at 22 residue positions based on electron paramagnetic resonance data. In combination with structure prediction program Rosetta, we modeled Aβ42 fibril structure at atomic resolution. Our Aβ42 fibril model consists of four parallel in-register β-sheets: βN (residues ~7-13), β1 (residues ~17-20), β2 (residues ~32-36), and βC (residues 39-41). The region of β1-loop-β2 in Aβ42 fibrils adopts similar structure as that in Aβ40 fibrils. This is consistent with our cross seeding data that Aβ42 fibril seeds shortened the lag phase of Aβ40 fibrillization. On the other hand, Aβ42 fibrils contain a C-terminal β-arc-β motif with a special turn, termed “arc”, at residues 37-38, which is absent in Aβ40 fibrils. Our results can explain both the higher aggregation propensity of Aβ42 and the importance of Aβ42 to Aβ40 ratio in the pathogenesis of Alzheimer's disease. PMID:26827680

  13. Photodynamic treatment of the RIF-1 tumor with verteporfin with online monitoring of tissue oxygen using electron paramagnetic resonance oximetry

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; O'Hara, Julia A.; Liu, Ke J.; Hasan, Tayyaba; Swartz, Harold

    1999-06-01

    In this study, treatment of the RIF-1 tumor was examined with photodynamic therapy using Verteprofin (formerly benzoporphyrin derivative, BPD). The effects of two different optical dose rates were examined, with no detectable difference in the tumor regrowth time. Oxygen consumption during PDT could reliably be monitored with electron paramagnetic resonance (EPR) oximetry using an implanted paramagnetic material within the tumor. A reduction of the tumor pO2 was detected in the animals that were followed after treatment, suggesting that there was a compromise to the tumor vasculature that persisted throughout the measurements. At high total doses some of the tumors did not regrow. Altogether these results are indicative of the tumor destruction being caused by destruction of the blood vessels from the treatment.

  14. Synthesis and characterization of a combined fluorescence, phosphorescence, and electron paramagnetic resonance probe

    NASA Astrophysics Data System (ADS)

    Beth, Albert H.; Cobb, Charles E.; Beechem, Joseph M.

    1992-04-01

    A spin-labeled derivative of eosin was chemically synthesized from 5-aminoeosin and the nitroxide spin label 2,2,5,5-tetramethylpyrrolin-1-oxyl-3-carboxylic acid. Following determination of the chemical identity of the spin-labeled eosin (5-SLE) by FAB mass spectroscopy, its optical and magnetic resonance spectroscopic properties were characterized in aqueous solution and compared to a diamagnetic eosin derivative, 5-acetamido eosin (5- AcE). The visible light absorption maximum of 5-SLE was 518 nm, the same as for 5-AcE. The fluorescence quantum yield of 5-SLE was only reduced by approximately 10% relative to 5-AcE, and the fluorescence lifetime was marginally reduced relative to 5-AcE. The phosphorescence lifetime and yield for 5-SLE were very similar to those for 5-AcE. The phosphorescence yield of 5-SLE bound noncovalently to BSA was reduced by approximately 60% relative to 5-AcE, and the phosphorescence lifetime reduced from approximately 2.4 msec (5-AcE) to 1.6 msec (5-SLE). Reduction of the nitroxide moiety of the 5-SLE with sodium ascorbate resulted in minimal changes in the fluorescence and phosphorescence quantum yields and lifetimes. This indicated that the unpaired electron of the nitroxide spin label did not seriously affect the optical spectroscopic characteristics of the spin-labeled eosin molecule. The quantum yields and lifetimes of 5-SLE were still quite acceptable for time- resolved fluorescence and phosphorescence studies. The electron paramagnetic resonance (EPR) spectrum of 5-SLE in aqueous solution has a lineshape consistent with a molecule the size of 5-SLE undergoing rapid rotational reorientation. When bound to BSA, the EPR spectrum of 5-SLE was broadened to a near slow motion limit for EPR, as expected for the relatively slowly rotating protein-5-SLE complex. Time-resolved phosphorescence anisotropy and saturation transfer EPR (ST-EPR) experiments with samples of 5-SLE bound to BSA in solutions of varying glycerol concentrations at 2

  15. Room Temperature Single-Spin Tunneling Force Microscopy for Characterization of Paramagnetic Defects in Electronic Materials

    DTIC Science & Technology

    2014-04-08

    atomic   scale  spatial  resolution,  using  tunneling   force   microscopy .  To achieve this goal, an electron must spontaneously shuttle back and...trap states imaged by Dynamic  Tunneling   Force   Microscopy  line  scans .  Previous evidence for trap states created by AFM probe tip voltage pulses involved...Payne, K. Ambal, C. Boehme and C.C. Williams, “A concept for room temperature single‐ spin  tunneling   force   microscopy  with  atomic  resolution,” to be

  16. Scaling craters in carbonates: Electron paramagnetic resonance analysis of shock damage

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1994-01-01

    Carbonate samples from the 8.9-Mt nuclear (near-surface explosion) crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron paramagnetic resonance (EPR). Samples from below the OAK apparent crater floor were obtained from six boreholes, as well as ejecta recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to the spectra of Solenhofen and Kaibab limestone, which had been skocked to known pressures. Analysis of the OAK Crater borehole samples has identified a thin zone of allocthonous highly shocked (10-13 GPa) carbonate material underneath the apparent crater floor. This approx. 5- to 15-m-thick zone occurs at a maximum depth of approx. 125 m below current seafloor at the borehole, sited at the initial position of the OAK explosive, and decreases in depth towards the apparent crater edge. Because this zone of allocthonous shocked rock delineates deformed rock below, and a breccia of mobilized sand and collapse debris above, it appears to outline the transient crater. The transient crater volume inferred in this way is found to by 3.2 +/- 0.2 times 10(exp 6)cu m, which is in good agreement with a volume of 5.3 times 10(exp 6)cu m inferred from gravity scaling of laboratory experiments. A layer of highly shocked material is also found near the surface outside the crater. The latter material could represent a fallout ejecta layer. The ejecta boulders recovered from the present crater floor experienced a range of shock pressures from approx. 0 to 15 GPa with the more heavily shocked samples all occurring between radii of 360 and approx. 600 m. Moreover, the fossil content, lithology and Sr isotopic composition all demonstrate that the initial position of the bulk of the heavily shocked rock ejecta sampled was originally near surface rock at initial depths in the 32 to 45-m depth (below sea level) range. The EPR technique is also sensitive to

  17. The permeability of human cementum in vitro measured by electron paramagnetic resonance.

    PubMed

    Petelin, M; Skaleric, U; Cevc, P; Schara, M

    1999-03-01

    The structure and permeability of cementum are changed during the course of periodontal disease. In this study, the transport of water-soluble, spin-labelled molecules through cementum was studied by electron paramagnetic resonance (EPR). Cementum samples cut from different parts of the root were classified into four different groups: (A) samples exposed to the oral environment, (B) samples exposed to the periodontal-pocket environment; (C) samples cut from periodontally involved teeth but not exposed to saliva or periodontal pocket and (D) samples from sound young teeth extracted for orthodontic reasons. In order to obtain undamaged cementum, a dentine layer was left on each sample. Two methods were used to measure the diffusion coefficients of spin-labelled molecules in cementum dentine samples. First, the method of one-dimensional EPR imaging (EPRI) was used to evaluate the penetration of spin-labelled molecules into the cementum/dentine structure. Second, the diaphragm-cell method was used to determine the diffusion coefficients of the labelled molecules through the cementum under steady-state conditions. The results indicate that the interface between cementum and dentine is a barrier to diffusion. A set of diffusion (D) and partition (K) coefficients to describe the molecular transport in cementum, barrier and dentine was generated from the experimental data of both methods. For cementum (c), the barrier (b) and dentine (d) these coefficients were: Dc= 10(-8)cm2/s, Db= 10(-10)cm2/s, Dd= 10(-6)cm2/s and K=0.1. For the particular periodontally involved and uninvolved teeth the value of the rate-limiting barrier was DbA= 0.3 +/- 0.03 x 10(-10)cm2/s, DbB= 1 +/-0.3 x 10(-10)cm2/s, DbC= 0.3 +/- 0.03 x 10(-10)cm2/s, DbD= 0.4 +/- 0.05 x 10(-10)cm2/s. The largest diffusion flux across the dental hard tissue was found in the samples that had been exposed to the pocket environment (3.1 +/- 0.2) x 10(-9)cm2/s (p < 0.01), which coincided with the permeability calculated

  18. Scaling craters in carbonates: Electron paramagnetic resonance analysis of shock damage

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1994-01-01

    Carbonate samples from the 8.9-Mt nuclear (near-surface explosion) crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron paramagnetic resonance (EPR). Samples from below the OAK apparent crater floor were obtained from six boreholes, as well as ejecta recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to the spectra of Solenhofen and Kaibab limestone, which had been skocked to known pressures. Analysis of the OAK Crater borehole samples has identified a thin zone of allocthonous highly shocked (10-13 GPa) carbonate material underneath the apparent crater floor. This approx. 5- to 15-m-thick zone occurs at a maximum depth of approx. 125 m below current seafloor at the borehole, sited at the initial position of the OAK explosive, and decreases in depth towards the apparent crater edge. Because this zone of allocthonous shocked rock delineates deformed rock below, and a breccia of mobilized sand and collapse debris above, it appears to outline the transient crater. The transient crater volume inferred in this way is found to by 3.2 +/- 0.2 times 10(exp 6)cu m, which is in good agreement with a volume of 5.3 times 10(exp 6)cu m inferred from gravity scaling of laboratory experiments. A layer of highly shocked material is also found near the surface outside the crater. The latter material could represent a fallout ejecta layer. The ejecta boulders recovered from the present crater floor experienced a range of shock pressures from approx. 0 to 15 GPa with the more heavily shocked samples all occurring between radii of 360 and approx. 600 m. Moreover, the fossil content, lithology and Sr isotopic composition all demonstrate that the initial position of the bulk of the heavily shocked rock ejecta sampled was originally near surface rock at initial depths in the 32 to 45-m depth (below sea level) range. The EPR technique is also sensitive to

  19. Dielectric microwave resonators in TE011 cavities for electron paramagnetic resonance spectroscopy

    PubMed Central

    Mett, Richard R.; Sidabras, Jason W.; Golovina, Iryna S.; Hyde, James S.

    2008-01-01

    The coupled system of the microwave cylindrical TE011 cavity and the TE01δ dielectric modes has been analyzed in order to determine the maximum achievable resonator efficiency parameter of a dielectric inserted into a cavity, and whether this value can exceed that of a dedicated TE01δ mode dielectric resonator. The frequency, Q value, and resonator efficiency parameter Λ for each mode of the coupled system were calculated as the size of the dielectric was varied. Other output parameters include the relative field magnitudes and phases. Two modes are found: one with fields in the dielectric parallel to the fields in the cavity center and the other with antiparallel fields. Results closely match those from a computer program that solves Maxwell’s equations by finite element methods. Depending on the relative natural resonance frequencies of the cavity and dielectric, one mode has a higher Q value and correspondingly lower Λ than the other. The mode with the higher Q value is preferentially excited by a coupling iris or loop in or near the cavity wall. However, depending on the frequency separation between modes, either can be excited in this way. A relatively narrow optimum is found for the size of the insert that produces maximum signal for both modes simultaneously. It occurs when the self-resonance frequencies of the two resonators are nearly equal. The maximum signal is almost the same as that of the dedicated TE01δ mode dielectric resonator alone, Λ≅40 G∕W1∕2 at X-band for a KTaO3 crystal. The cavity is analogous to the second stage of a two-stage coupler. In general, there is no electron paramagnetic resonance (EPR) signal benefit by use of a second stage. However, there is a benefit of convenience. A properly designed sample-mounted resonator inserted into a cavity can give EPR signals as large as what one would expect from the dielectric resonator alone. PMID:19044441

  20. Biophysical Characterisation of Globins and Multi-Heme Cytochromes Using Electron Paramagnetic Resonance and Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Desmet, Filip

    Heme proteins of different families were investigated in this work, using a combination of pulsed and continuous-wave electron paramagnetic resonance (EPR) spectroscopy, optical absorption spectroscopy, resonance Raman spectroscopy and laser flash photolysis. The first class of proteins that were investigated, were the globins. The globin-domain of the globin-coupled sensor of the bacterium Geobacter sulfurreducens was studied in detail using different pulsed EPR techniques (HYSCORE and Mims ENDOR). The results of this pulsed EPR study are compared with the results of the optical investigation and the crystal structure of the protein. The second globin, which was studied, is the Protoglobin of Methanosarcina acetivorans, various mutants of this protein were studied using laser flash photolysis and Raman spectroscopy to unravel the link between this protein's unusual structure and its ligand-binding kinetics. In addition to this, the CN -bound form of this protein was investigated using EPR and the influence of the strong deformation of the heme on the unusual low gz values is discussed. Finally, the neuroglobins of three species of fishes, Danio rerio, Dissostichus mawsoni and Chaenocephalus aceratus are studied. The influence of the presence or absence of two cysteine residues in the C-D and D-region of the protein on the EPR spectrum, and the possible formation of a disulfide bond is studied. The second group of proteins that were studied in this thesis belong to the family of the cytochromes. First the Mouse tumor suppressor cytochrome b561 was studied, the results of a Raman and EPR investigation are compared to the Human orthologue of the protein. Secondly, the tonoplast cytochrome b561 of Arabidopsis was investigated in its natural form and in two double-mutant forms, in which the heme at the extravesicular side was removed. The results of this investigation are then compared with two models in literature that predict the localisation of the hemes in this

  1. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids.

    PubMed

    Páli, Tibor; Kóta, Zoltán

    2013-01-01

    Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or

  2. Sources of signals in electron paramagnetic resonance radiation biodosimetry in bone

    NASA Astrophysics Data System (ADS)

    Melanson, Mark Allen

    1999-10-01

    Electron paramagnetic resonance dosimetry, or EPR, is a useful biomarker of radiation absorbed dose in bone and teeth because the tissue itself serves as the dosimeter, with each sample being self-calibrated in terms of its response. In actual cases of retrospective dose assessment, comparisons between EPR and traditional dosimetric methods have revealed both significant underestimations and overestimations of dose on the part of EPR. While radiation induced EPR signals in bone crystal eventually stabilize, the composite signal initially fades after dosing (IK85). Irradiation of the crystal structure of bone produces multiple signals, some stable and some transient. It is hypothesized that one of these unstable signals is responsible for the immediate fading of the radiation induced crystalline signal, thereby causing the widely observed deviations in dose estimations between EPR and other, well established dosimetric methods. To test this hypothesis, both untreated bone and bone treated with diethylenetriamine, a solvent used to deproteinate bone, were studied. Repeated measurements of the radiation induced signal in both untreated and deproteinated bone showed a partial fading of the primary signal used in EPR bone dosimetry. Spectral algebra identified the source of this instability to be the decay of an interfering signal in the bone crystal, also radiation induced, that overlaps the signal of interest. This work has produced four major results: (1)Sample preparation and treatment can generate extraneous signals that interfere with the proper measurement of the radiation induced EPR signal. (2)The interfering signal from another transient, radiogenic radical in hydroxyapatite, CO 33-, affects accurate measurement of the primary signal used in dosimetry, CO2-, causing underestimations at low doses and overestimations at high doses. A model devised to explain how this interfering signal actually distorts the dose estimation process was consistent with data

  3. Electron Paramagnetic Resonance and Electron-Nuclear Double Resonance Characterization of Point Defects in Titanium dioxide Crystals

    NASA Astrophysics Data System (ADS)

    Brant, Adam

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to characterize several point defects in titanium dioxide (TiO2) single crystals in the rutile phase. A defect reported in 1961 by P. F. Chester called the “A Center” is assigned to a neutral hydrogen donor. Many researchers believe that the model for this S = 1/2 defect is an interstitial titanium ion (Ti3+) and that Ti3+ interstitials are the most dominant shallow donor in TiO 2. I show that the model for the A center is a neutral hydrogen donor and suggest that the Ti3+ interstitial model is not the most prevalent shallow donor defect in TiO2. Substitutional Cu2+ defects that are unintentionally introduced to TiO2 (rutile) during growth are characterized and assigned to a Cu2+ ion with an adjacent oxygen vacancy. Exact matrix diagonalization is used here to compute accurate values for the nuclear quadrupole parameter. The reduced intensity of the Cu2+ EPR signal when the sample is illuminated with 442 nm laser light as well as the appearance of photoinduced EPR signals due to singly and doubly ionized oxygen vacancies provide evidence that the Cu2+ defect has an adjacent oxygen vacancy. Interstitial lithium ions (Li+) adjacent to Ti 3+ ions and substitutional Fe3+ defects (Fe 3+ - Li+) are also characterized. These defects were introduced to the rutile crystal by heating at 450 °C in LiOH powder for times on the order of several hours. Principal values and principal axis directions of the g matrix are calculated for the interstitial Li+ ion adjacent to a Ti3+ ion and photoinduced effects of the Fe 3+ - Li+ defect are examined.

  4. On the Electron Paramagnetic Resonance Studies in Mixed Alkali Borate Glasses

    SciTech Connect

    Padmaja, G.; Reddy, T. Goverdhan; Kistaiah, P.

    2011-10-20

    Mixed alkali effect in oxide based glasses is one of the current research activity and studies on the behavior of spectroscopic parameters in these systems are quite important to understand the basic nature of this phenomenon. EPR studies of mixed alkali glasses Li{sub 2}O-K{sub 2}O-ZnO-B{sub 2}O{sub 3} doped with Fe{sup 3+} and Mn{sup 2+} were carried out at room temperature. The EPR spectra show typical resonances of d{sup 5} system (Fe{sup 3+} and Mn{sup 2+}) in all the measured glass specimens. Evaluated hyperfine constant, number of paramagnetic centers and paramagnetic susceptibility values show deviation from the linearity with the progressive substitution of the Li ion with K in glass network.

  5. Electron Paramagnetic Resonance of Cu2+ Doped Na2 HAsO4·7H2O Single Crystals

    NASA Astrophysics Data System (ADS)

    Köksal, F.; Kartal, İ.; Gençten, A.

    1998-09-01

    The electron paramagnetic resonance spectra of Cu2+ doped Na2HAsO4 ·7H2O single crystals were studied at room temperature. The results indicate the substitutional entrance of Cu2+ in two magnetically inequivalent Na+ sites. Charge compensation is supposed to be fulfilled by proton vacancies. The spin Hamiltonian parameters were determined. The ground state for Cu2+ seems to indicate the dominance of the dz² orbital and therefore a compression of the distorted octahedron along its C4v axis.

  6. Al-doped MgB{sub 2} materials studied using electron paramagnetic resonance and Raman spectroscopy

    SciTech Connect

    Bateni, Ali; Somer, Mehmet E-mail: msomer@ku.edu.tr; Erdem, Emre E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan

    2016-05-16

    Undoped and aluminum (Al) doped magnesium diboride (MgB{sub 2}) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB{sub 2}. Above a certain level of Al doping, enhanced conductive properties of MgB{sub 2} disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  7. Electron paramagnetic resonance study of 14N and 19F superhyperfine interaction in VO 2+ doped propylenediammonium hexafluorozirconate

    NASA Astrophysics Data System (ADS)

    Lakshmi^Kasturi, T.; Krishnan, V. G.

    1998-05-01

    Electron paramagnetic resonance spectra have been recorded at X-band frequencies at room temperature on VO 2+ molecular ion in propylenediammonium hexafluorozirconate, [H 3N(CH 2) 3NH 3]ZrF 6, single crystals. The superhyperfine structure caused by 14N and 19F has been clearly observed in the spectra. The two sets of spectra observed are related to each other by the symmetry operations of the host crystals and represent vanadyl ion at two magnetically distinguishable interstitial sites in the unit cell.

  8. Electron Paramagnetic Resonance and Electron-Nuclear Double Resonance Studies of the Reactions of Cryogenerated Hydroperoxoferric–Hemoprotein Intermediates

    PubMed Central

    2015-01-01

    The fleeting ferric peroxo and hydroperoxo intermediates of dioxygen activation by hemoproteins can be readily trapped and characterized during cryoradiolytic reduction of ferrous hemoprotein–O2 complexes at 77 K. Previous cryoannealing studies suggested that the relaxation of cryogenerated hydroperoxoferric intermediates of myoglobin (Mb), hemoglobin, and horseradish peroxidase (HRP), either trapped directly at 77 K or generated by cryoannealing of a trapped peroxo-ferric state, proceeds through dissociation of bound H2O2 and formation of the ferric heme without formation of the ferryl porphyrin π-cation radical intermediate, compound I (Cpd I). Herein we have reinvestigated the mechanism of decays of the cryogenerated hydroperoxyferric intermediates of α- and β-chains of human hemoglobin, HRP, and chloroperoxidase (CPO). The latter two proteins are well-known to form spectroscopically detectable quasistable Cpds I. Peroxoferric intermediates are trapped during 77 K cryoreduction of oxy Mb, α-chains, and β-chains of human hemoglobin and CPO. They convert into hydroperoxoferric intermediates during annealing at temperatures above 160 K. The hydroperoxoferric intermediate of HRP is trapped directly at 77 K. All studied hydroperoxoferric intermediates decay with measurable rates at temperatures above 170 K with appreciable solvent kinetic isotope effects. The hydroperoxoferric intermediate of β-chains converts to the S = 3/2 Cpd I, which in turn decays to an electron paramagnetic resonance (EPR)-silent product at temperature above 220 K. For all the other hemoproteins studied, cryoannealing of the hydroperoxo intermediate directly yields an EPR-silent majority product. In each case, a second follow-up 77 K γ-irradiation of the annealed samples yields low-spin EPR signals characteristic of cryoreduced ferrylheme (compound II, Cpd II). This indicates that in general the hydroperoxoferric intermediates relax to Cpd I during cryoanealing at low temperatures, but

  9. Cathodoluminescence, laser ablasion inductively coupled plasma mass spectrometry, electron probe microanalysis and electron paramagnetic resonance analyses of natural sphalerite

    USGS Publications Warehouse

    Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.

    2008-01-01

    Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (<10 ppm) and Ag (<1 ppm), and they are enriched in Tl (1-30 ppm) and Pb (80-1500 ppm). Strong green CL is produced by sphalerite from the Balmat-Edwards district. Amber, lime-green and red-orange sphalerite produced weak orange-red CL at room temperatures, with several emission bands centred at 490, 580, 630, 680, 745, with ??max at 630 nm being the strongest. These emission bands are well correlated with trace quantities of Sn, In, Cu and Mn activators. Sphalerite from the famous Ogdensburg and Franklin mines exhibited brilliant deep blue and orange CL colours and the blue CL may be related to Se. Cathodoluminescence behaviour of sphalerite serves to characterise ore

  10. Electron Paramagnetic Resonance Characterization of Tetrahydrobiopterin Radical Formation in Bacterial Nitric Oxide Synthase Compared to Mammalian Nitric Oxide Synthase

    PubMed Central

    Brunel, Albane; Santolini, Jérôme; Dorlet, Pierre

    2012-01-01

    H4B is an essential catalytic cofactor of the mNOSs. It acts as an electron donor and activates the ferrous heme-oxygen complex intermediate during Arg oxidation (first step) and NOHA oxidation (second step) leading to nitric oxide and citrulline as final products. However, its role as a proton donor is still debated. Furthermore, its exact involvement has never been explored for other NOSs such as NOS-like proteins from bacteria. This article proposes a comparative study of the role of H4B between iNOS and bsNOS. In this work, we have used freeze-quench to stop the arginine and NOHA oxidation reactions and trap reaction intermediates. We have characterized these intermediates using multifrequency electron paramagnetic resonance. For the first time, to our knowledge, we report a radical formation for a nonmammalian NOS. The results indicate that bsNOS, like iNOS, has the capacity to generate a pterin radical during Arg oxidation. Our current electron paramagnetic resonance data suggest that this radical is protonated indicating that H4B may not transfer any proton. In the 2nd step, the radical trapped for iNOS is also suggested to be protonated as in the 1st step, whereas it was not possible to trap a radical for the bsNOS 2nd step. Our data highlight potential differences for the catalytic mechanism of NOHA oxidation between mammalian and bacterial NOSs. PMID:22828337

  11. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    PubMed

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  12. Photoactivation of the flavin cofactor in Xenopus laevis (6 - 4) photolyase: Observation of a transient tyrosyl radical by time-resolved electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Weber, Stefan; Kay, Christopher W. M.; Mögling, Heike; Möbius, Klaus; Hitomi, Kenichi; Todo, Takeshi

    2002-02-01

    The light-induced electron transfer reaction of flavin cofactor photoactivation in Xenopus laevis (6-4) photolyase has been studied by continuous-wave and time-resolved electron paramagnetic resonance spectroscopy. When the photoactivation is initiated from the fully oxidized form of the flavin, a neutral flavin radical is observed as a long-lived paramagnetic intermediate of two consecutive single-electron reductions under participation of redox-active amino acid residues. By time-resolved electron paramagnetic resonance, a spin-polarized transient radical-pair signal was detected that shows remarkable differences to the signals observed in the related cyclobutane pyrimidine dimer photolyase enzyme. In (6-4) photolyase, a neutral tyrosine radical has been identified as the final electron donor, on the basis of the characteristic line width, hyperfine splitting pattern, and resonance magnetic field position of the tyrosine resonances of the transient radical pair.

  13. Domain structure in biphenyl incommensurate phase II observed by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Véron, A.; Emery, J.; Spiesser, M.

    1994-11-01

    The domain structure in incommensurate phase II of single biphenyl crystal has been observed by investigations of the optically excited states of the Electronic Paramagnetic Resonance (E.P.R.) deuterated naphthalene molecular probes which substitute biphenyl molecules. Our results confirm that this phase is a 1q bi-domain one. The analysis of the spectra obtained in X band (9.5 GHz) experiments, in relation with the spin Hamiltonian parameter properties permits us to show that the E.P.R. probe rotates around a direction perpendicular to its long axis while the biphenyl molecule undergoes a twist movement around this axis. They also account for a regime which is like a “ multi-soliton " regime while the modulation is a plane wave one in the pure single crystal. The two molecules of the high temperature cell do not exactly experience the saure displacement field in the incommensurate phase and consequently the two domains can be distinguished. The spin Hamiltonian parameters which characterize the E.P.R. probes have been determined in the incommensurate phase II of biphenyl. La structure en domaines de la phase II du biphényle est mise en évidence par les investigations dans les états photo-excités des molécules de naphtalène deutéré, utilisées comme sondes de Résonance Paramagnétique Electronique, se substituant de manière diluée dans le mono-cristal de biphényle. Ceci confirme que cette phase est 1q bi-domaine. L'analyse des spectres obtenus dans des expériences en bande X (9.5 GHz) en relation avec les propriétés de l'hamiltonien de spin permet de montrer que la sonde moléculaire tourne autour d'une direction perpendiculaire à son grand axe alors que la molécule de biphényle subit un mouvement de twist autour de cet axe. Les résultats montrent que ces sondes rendent compte d'un régime qui est comme un régime “ multi-solitons " alors que la modulation est plane dans le cristal pur. Les deux molécules sondes de la cellule

  14. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Wassall, Cynthia D.

    The endothelium is a single layer of cells lining the arteries and is involved in many physiological reactions which are responsible for vascular tone. Free radicals are important participants in these chemical reactions in the endothelium. Here we quantify free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic resonance (EPR). In all of the experiments in this thesis, we use a novel EPR spin trapping technique that has been developed for tissue segments. EPR spin trapping is often considered the 'gold standard' in reactive oxygen species (ROS) detection because of its sensitivity and non-invasive nature. In all experiments, tissue was placed in physiological saline solution with 190-mM PBN (N-tert -butyl-α-phenylnitrone), 10% by volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for between 30 minutes up to 2 hours at 37°C while gently being stirred. Tissue and supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis. In our experiments, the EPR spectra were normalized with respect to tissue volume. Conducting experiments at liquid nitrogen temperature leads to some experimental advantages. The freezing of the spin adducts renders them stable over a longer period, which allows ample time to analyze tissue samples for ROS. The dielectric constant of ice is greatly reduced over its liquid counterpart; this property of water enables larger sample volumes to be inserted into the EPR cavity without overloading it and leads to enhanced signal detection. Due to Maxwell-Boltzmann statistics, the population difference goes up as the temperature goes down, so this phenomenon enhances the signal intensity as well. With the 'gold standard' assertion in mind, we investigated whether slicing tissue to assay ROS that is commonly used in fluorescence experiments will show more free radical generation than tissue of a similar volume that remains unsliced. Sliced tissue exhibited a 76

  15. Development and validation of an ex vivo electron paramagnetic resonance fingernail biodosimetric method.

    PubMed

    He, Xiaoming; Swarts, Steven G; Demidenko, Eugene; Flood, Ann B; Grinberg, Oleg; Gui, Jiang; Mariani, Michael; Marsh, Stephen D; Ruuge, Andres E; Sidabras, Jason W; Tipikin, Dmitry; Wilcox, Dean E; Swartz, Harold M

    2014-06-01

    There is an imperative need to develop methods that can rapidly and accurately determine individual exposure to radiation for screening (triage) populations and guiding medical treatment in an emergency response to a large-scale radiological/nuclear event. To this end, a number of methods that rely on dose-dependent chemical and/or physical alterations in biomaterials or biological responses are in various stages of development. One such method, ex vivo electron paramagnetic resonance (EPR) nail dosimetry using human nail clippings, is a physical biodosimetry technique that takes advantage of a stable radiation-induced signal (RIS) in the keratin matrix of fingernails and toenails. This dosimetry method has the advantages of ubiquitous availability of the dosimetric material, easy and non-invasive sampling, and the potential for immediate and rapid dose assessment. The major challenge for ex vivo EPR nail dosimetry is the overlap of mechanically induced signals and the RIS. The difficulties of analysing the mixed EPR spectra of a clipped irradiated nail were addressed in the work described here. The following key factors lead to successful spectral analysis and dose assessment in ex vivo EPR nail dosimetry: (1) obtaining a thorough understanding of the chemical nature, the decay behaviour, and the microwave power dependence of the EPR signals, as well as the influence of variation in temperature, humidity, water content, and O₂ level; (2) control of the variability among individual samples to achieve consistent shape and kinetics of the EPR spectra; (3) use of correlations between the multiple spectral components; and (4) use of optimised modelling and fitting of the EPR spectra to improve the accuracy and precision of the dose estimates derived from the nail spectra. In the work described here, two large clipped nail datasets were used to test the procedures and the spectral fitting model of the results obtained with it. A 15-donor nail set with 90 nail samples

  16. Cryogen-free superconducting magnet system for multifrequency electron paramagnetic resonance up to 12.1 T

    NASA Astrophysics Data System (ADS)

    Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny

    2006-03-01

    Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.

  17. Comparison of electron paramagnetic resonance methods to determine distances between spin labels on human carbonic anhydrase II.

    PubMed Central

    Persson, M; Harbridge, J R; Hammarström, P; Mitri, R; Mårtensson, L G; Carlsson, U; Eaton, G R; Eaton, S S

    2001-01-01

    Four doubly spin-labeled variants of human carbonic anhydrase II and corresponding singly labeled variants were prepared by site-directed spin labeling. The distances between the spin labels were obtained from continuous-wave electron paramagnetic resonance spectra by analysis of the relative intensity of the half-field transition, Fourier deconvolution of line-shape broadening, and computer simulation of line-shape changes. Distances also were determined by four-pulse double electron-electron resonance. For each variant, at least two methods were applicable and reasonable agreement between methods was obtained. Distances ranged from 7 to 24 A. The doubly spin-labeled samples contained some singly labeled protein due to incomplete labeling. The sensitivity of each of the distance determination methods to the non-interacting component was compared. PMID:11371461

  18. The use of the anisotropy of magnetic remanence in the resolution of the anisotropy of magnetic susceptibility into its ferromagnetic and paramagnetic components

    NASA Astrophysics Data System (ADS)

    Hrouda, František

    2002-04-01

    The anisotropy of magnetic susceptibility (AMS) is often controlled by both ferromagnetic (sensu lato) and paramagnetic minerals. The anisotropy of magnetic remanence (AMR) is solely controlled by ferromagnetic minerals. Jelı´nek (Trav. Geophys. 37 (1993)) introduced a tensor derived from the isothermal AMR whose normalized form equals the normalized susceptibility tensor provided that the ferromagnetic fraction is represented by multi-domain magnetite. The present paper shows the close correlation between these tensors for a collection of strongly magnetic specimens containing multi-domain magnetite. In addition, acceptable correlation between the tensors was also found for a collection of specimens containing single-domain magnetite. A new method is developed for the AMS resolution into ferromagnetic and paramagnetic components using the AMR. Some examples are presented of this resolution in mafic microgranular enclaves in granodiorite and in gneisses of the KTB borehole.

  19. Slow-Motion Theory of Nuclear Spin Relaxation in Paramagnetic Low-Symmetry Complexes: A Generalization to High Electron Spin

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Kowalewski, J.

    2000-10-01

    The slow-motion theory of nuclear spin relaxation in paramagnetic low-symmetry complexes is generalized to comprise arbitrary values of S. We describe the effects of rhombic symmetry in the static zero-field splitting (ZFS) and allow the principal axis system of the static ZFS tensor to deviate from the molecule-fixed frame of the nuclear-electron dipole-dipole tensor. We show nuclear magnetic relaxation dispersion (NMRD) profiles for different illustrative cases, ranging from within the Redfield limit into the slow-motion regime with respect to the electron spin dynamics. We focus on S = 3/2 and compare the effects of symmetry-breaking properties on the paramagnetic relaxation enhancement (PRE) in this case with that of S = 1, which we have treated in a previous paper. We also discuss cases of S = 2, 5/2, 3, and 7/2. One of the main objectives of this investigation, together with the previous papers, is to provide a set of standard calculations using the general slow-motion theory, against which simplified models may be tested.

  20. Annealing of paramagnetic centres in electron- and ion-irradiated yttria-stabilized zirconia: effect of yttria content

    SciTech Connect

    Costantini, Jean-Marc; Beuneu, Francois; Weber, William J

    2014-01-01

    We have studied the effect of the yttria content on the recovery of paramagnetic centres in electron-irradiated yttria-stabilized zirconia (ZrO2: Y3+). Single crystals with 9.5 mol% or 18 mol% Y2O3 were irradiated with electrons of 1.0, 1.5, 2.0 and 2.5 MeV. Paramagnetic centre thermal annealing was studied by X-band EPR spectroscopy. Hole-centres are found to be annealed more quickly, or at a lower temperature, for 18 mol% than for 9.5 mol% Y2O3. At long annealing times, a non-zero asymptotic behaviour is observed in the isothermal annealing curves of hole-centres and F+-type centres between 300 and 500 K. The normalized asymptotic concentration of both defects has a maximum value of about 0.5 for annealing temperatures near 375 K, below the onset of the (isochronal) recovery stage, regardless of the yttria content. Such an uncommon behaviour is analyzed on the basis of either kinetic rate equations of charge transfer or equilibria between point defects with different charge states.

  1. In Vivo Electron Paramagnetic Resonance Tooth Dosimetry: Dependence of Radiation-Induced Signal Amplitude on the Enamel Thickness and Surface Area of Ex Vivo Human Teeth.

    PubMed

    Umakoshi, Michitaka; Yamaguchi, Ichiro; Hirata, Hiroshi; Kunugita, Naoki; Williams, Benjamin B; Swartz, Harold M; Miyake, Minoru

    2017-10-01

    In vivo L-band electron paramagnetic resonance tooth dosimetry is a newly developed and very promising method for retrospective biodosimetry in individuals who may have been exposed to significant levels of ionizing radiation. The present study aimed to determine the relationships among enamel thickness, enamel area, and measured electron paramagnetic resonance signal amplitude with a view to improve the quantitative accuracy of the dosimetry technique. Ten isolated incisors were irradiated using well-characterized doses, and their radiation-induced electron paramagnetic resonance signals were measured. Following the measurements, the enamel thickness and area of each tooth were measured using micro-focus computed tomography. Linear regression showed that the enamel area at each measurement position significantly affected the radiation-induced electron paramagnetic resonance signal amplitude (p < 0.001). Simulation data agreed well with this result. These results indicate that it is essential to properly consider enamel thickness and area when interpreting electron paramagnetic resonance tooth dosimetry measurements to optimize the accuracy of dose estimation.

  2. Applications of electron paramagnetic resonance spectroscopy to study interactions of iron proteins in cells with nitric oxide

    NASA Astrophysics Data System (ADS)

    Cammack, R.; Shergill, J. K.; Ananda Inalsingh, V.; Hughes, Martin N.

    1998-12-01

    Nitric oxide and species derived from it have a wide range of biological functions. Some applications of electron paramagnetic resonance (EPR) spectroscopy are reviewed, for observing nitrosyl species in biological systems. Nitrite has long been used as a food preservative owing to its bacteriostatic effect on spoilage bacteria. Nitrosyl complexes such as sodium nitroprusside, which are added experimentally as NO-generators, themselves produce paramagnetic nitrosyl species, which may be seen by EPR. We have used this to observe the effects of nitroprusside on clostridial cells. After growth in the presence of sublethal concentrations of nitroprusside, the cells show they have been converted into other, presumably less toxic, nitrosyl complexes such as (RS) 2Fe(NO) 2. Nitric oxide is cytotoxic, partly due to its effects on mitochondria. This is exploited in the destruction of cancer cells by the immune system. The targets include iron-sulfur proteins. It appears that species derived from nitric oxide such as peroxynitrite may be responsible. Addition of peroxynitrite to mitochondria led to depletion of the EPR-detectable iron-sulfur clusters. Paramagnetic complexes are formed in vivo from hemoglobin, in conditions such as experimental endotoxic shock. This has been used to follow the course of production of NO by macrophages. We have examined the effects of suppression of NO synthase using biopterin antagonists. Another method is to use an injected NO-trapping agent, Fe-diethyldithiocarbamate (Fe-DETC) to detect accumulated NO by EPR. In this way we have observed the effects of depletion of serum arginine by arginase. In brains from victims of Parkinson's disease, a nitrosyl species, identified as nitrosyl hemoglobin, has been observed in substantia nigra. This is an indication for the involvement of nitric oxide or a derived species in the damage to this organ.

  3. Metal pollutants in Indian continental coastal marine sediment along a 3700km transect: An electron paramagnetic resonance spectroscopic study.

    PubMed

    Alagarsamy, R; Hoon, S R

    2017-09-01

    We report the analysis and geographical distribution of anthropogenically impacted marine surficial sediments along a 3700km transect around the continental shelf of India. Sediments have been studied using a mixed analytical approach; high sensitivity electron paramagnetic resonance (EPR), chemical analysis and environmental magnetism. Indian coastal marine deposits are heavily influenced by monsoon rains flushing sediment of geological and anthropogenic origin out of the subcontinental river systems. That is, climatic, hydro-, geo- and anthropogenic spheres couple strongly to determine the nature of Indian coastal sediments. Enrichment of Ni, Cu and Cr is observed in shelf sediments along both east and west coasts associated with industrialised activities in major urban areas. In the Gulf of Cambay and the Krishna and Visakhapatnam deltaic regions, levels of Ni and Cr pollutants (≥80 and ≥120ppm respectively) are observed, sufficient to cause at least medium adverse biological effects in the marine ecosystem. In these areas sediment EPR spectra differ in characteristic from those of less impacted ones. Modelling enables deconvolution of EPR spectra. In conjunction with environmental magnetism techniques, EPR has been used to characterise species composition in coastal depositional environments. Paramagnetic species can be identified and their relative concentrations determined. EPR g-values provide information about the chemical and magnetic environment of metals. We observe g-values of up to 5.5 and large g-shifts indicative of the presences of a number of para and ferrimagnetic impurities in the sediments. EPR has enabled the characterisation of species composition in coastal depositional environments, yielding marine sediment environmental 'fingerprints'. The approach demonstrates the potential of EPR spectroscopy in the mapping and evaluation of the concentration and chemical speciation in paramagnetic metals in sediments from marine shelf environments

  4. Atomic resolution 3D electron diffraction microscopy

    SciTech Connect

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O'Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  5. Electron paramagnetic resonance and photoluminescence investigation of europium local structure in oxyfluoride glass ceramics containing SrF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Antuzevics, A.; Kemere, M.; Krieke, G.; Ignatans, R.

    2017-10-01

    Different compositions of europium doped aluminosilicate oxyfluoride glass ceramics prepared in air atmosphere have been studied by electron paramagnetic resonance (EPR) and optical spectroscopy methods. X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements show presence of homogenously distributed SrF2 nanocrystals after the heat treatment of the precursor glass. Efficient Eu3+ incorporation in the high symmetry environment of glass ceramics is observed from the photoluminescence spectra. EPR spectra indicate Eu3+ → Eu2+ reduction upon precipitation of crystalline phases in the glass matrix. For composition abundant with Eu2+ in the glassy state such behaviour is not detected. Local structure around europium ions is discussed based on differences in chemical compositions.

  6. Giant Paramagnetism-Induced Valley Polarization of Electrons in Charge-Tunable Monolayer MoSe2

    NASA Astrophysics Data System (ADS)

    Back, Patrick; Sidler, Meinrad; Cotlet, Ovidiu; Srivastava, Ajit; Takemura, Naotomo; Kroner, Martin; Imamoǧlu, Atac

    2017-06-01

    For applications exploiting the valley pseudospin degree of freedom in transition metal dichalcogenide monolayers, efficient preparation of electrons or holes in a single valley is essential. Here, we show that a magnetic field of 7 T leads to a near-complete valley polarization of electrons in a MoSe2 monolayer with a density 1.6 ×1 012 cm-2 ; in the absence of exchange interactions favoring single-valley occupancy, a similar degree of valley polarization would have required a pseudospin g factor of 38. To investigate the magnetic response, we use polarization resolved photoluminescence as well as resonant reflection measurements. In the latter, we observe gate voltage dependent transfer of oscillator strength from the exciton to the attractive Fermi polaron: stark differences in the spectrum of the two light helicities provide a confirmation of valley polarization. Our findings suggest an interaction induced giant paramagnetic response of MoSe2, which paves the way for valleytronics applications.

  7. Electron-paramagnetic-resonance study of the isolated arsenic antisite in electron irradiated GaAs and its relation to the EL2 center

    SciTech Connect

    Rong, F.C.; Buchwald, W.R.; Harmatz, M.; Poindexter, E.H. ); Warren, W.L. )

    1991-10-28

    Arsenic antisites produced in GaAs by room-temperature electron irradiation (RTEI) are examined by electron paramagnetic resonance (EPR). For the first time, this RTEI antisite, which has been believed to be the isolated antisite, is found to be metastable. The most efficient photon energy for photoquenching is found to be approximately 1.15 eV, which is very close to that observed for the well-known EL2 center in undoped semi-insulating GaAs. However, the thermal recovery temperature is about 200--250 K, much higher than that for the EL2 center.

  8. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    PubMed

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  9. Exploring the Radical Nature of a Carbon Surface by Electron Paramagnetic Resonance and a Calibrated Gas Flow

    PubMed Central

    Green, Uri; Shenberger, Yulia; Aizenshtat, Zeev; Cohen, Haim; Ruthstein, Sharon

    2014-01-01

    While the first Electron Paramagnetic Resonance (EPR) studies regarding the effects of oxidation on the structure and stability of carbon radicals date back to the early 1980s the focus of these early papers primarily characterized the changes to the structures under extremely harsh conditions (pH or temperature)1-3. It is also known that paramagnetic molecular oxygen undergoes a Heisenberg spin exchange interaction with stable radicals that extremely broadens the EPR signal4-6. Recently, we reported interesting results where this interaction of molecular oxygen with a certain part of the existing stable radical structure can be reversibly affected simply by flowing a diamagnetic gas through the carbon samples at STP7. As flows of He, CO2, and N2 had a similar effect these interactions occur at the surface area of the macropore system. This manuscript highlights the experimental techniques, work-up, and analysis towards affecting the existing stable radical nature in the carbon structures. It is hoped that it will help towards further development and understanding of these interactions in the community at large. PMID:24796382

  10. High-frequency (95 GHz) electron paramagnetic resonance study of the photoinduced charge transfer in conjugated polymer-fullerene composites

    NASA Astrophysics Data System (ADS)

    Ceuster, J. De; Goovaerts, E.; Bouwen, A.; Hummelen, J. C.; Dyakonov, V.

    2001-11-01

    Light-induced electron paramagnetic resonance (LEPR) measurements are reported in composites of poly(2-methoxy-5-(3-,7-dimethyloctyloxy)-1,4-phenylenevinylene) (MDMO-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), a soluble derivative of C60. Under illumination of the sample, two paramagnetic species are formed due to photoinduced charge transfer between conjugated polymer and fullerene. One is the positive polaron P+ on the polymer backbone and the other is the radical anion on the methanofullerene. Using high-frequency (95 GHz) LEPR it was possible to separate these two contributions to the spectrum on the basis of their g factors, and moreover to resolve the g anisotropy for both radicals. The positive polaron on the conjugated polymer chain possesses axial symmetry with g values g||=2.0034(1) and g⊥=2.0024(1). EPR on low doped polymer gave extra proof for the assignment to the positive polaron. The negatively charged methanofullerene has a lower, rhombic symmetry with gx=2.0003(1), gy=2.0001(1), and gz=1.9982(1). Different spin-lattice relaxation of both species gives rise to a rapid passage effect for the positive polaron spectrum.

  11. Two-dimensional electron paramagnetic resonance spectroscopy of nitroxides: Elucidation of restricted molecular motions in glassy solids

    NASA Astrophysics Data System (ADS)

    Dubinskii, Alexander A.; Maresch, Günter G.; Spiess, Hans-Wolfgang

    1994-02-01

    The combination of concepts of two-dimensional (2D) spectroscopy with the well-known field step electron-electron double resonance (ELDOR) method offers a practical route to recording 2D ELDOR spectra covering the full spectral range needed for electron paramagnetic resonance (EPR) of nitroxide spin labels in the solid state. The 2D ELDOR pattern provides information about molecular reorientation measured in real time, the anisotropies of electron phase, and electron spin-lattice relaxation as well as nuclear spin-lattice relaxation all of which are connected with the detailed geometry of the molecular reorientation. Thus, in 2D ELDOR the same electron spin probes the motional behavior over a wide range of correlation times from 10-4 to 10-12 s. An efficient algorithm for simulating 2D ELDOR spectra is derived, based on analytical solutions of the spin relaxation behavior for small-angle fluctuations and offers a means of quantitatively analyzing experimental data. As an example, the motion of nitroxide spin labels in a liquid-crystalline side-group polymer well below its glass transition is determined as a β-relaxation process with a mean angular amplitude of 5° and a distribution of correlation times with a mean correlation time of 0.9×10-10 s and a width of 2.5 decades.

  12. Time-Resolved Electron Paramagnetic Resonance and Theoretical Investigations of Metal-Free Room-Temperature Triplet Emitters.

    PubMed

    Matsuoka, Hideto; Retegan, Marius; Schmitt, Lisa; Höger, Sigurd; Neese, Frank; Schiemann, Olav

    2017-09-20

    Utilization of triplets is important for preparing organic light-emitting diodes with high efficiency. Very recently, both electrophosphorescence and electrofluorescence could be observed at room temperature for thienyl-substituted phenazines without any heavy metals ( Ratzke et al. J. Phys. Chem. Lett. , 2016 , 7 , 4802 ). It was found that the phosphorescence efficiency depends on the orientation of fused thiophenes. In this work, the thienyl-substituted phenazines are investigated in more detail by time-resolved electron paramagnetic resonance (EPR) and quantum chemical calculations. Spin dynamics, zero-field splitting constants, and electron-spin structures of the excited triplet states for the metal-free room-temperature triplet emitters are correlated with phosphorescence efficiency. Complete active space self-consistent field (CASSCF) calculations clearly show that the electron spin density distributions of the first excited triplet states are strongly affected by the molecular geometry. For the phosphorescent molecules, the electron spins are localized on the phenazine unit, in which the sulfur atom of the fused thiophene points upward. The electron spins are delocalized onto the thiophene unit just by changing the orientation of the fused thiophenes from upward to downward, resulting in the suppression of phosphorescence. Time-resolved EPR measurements and time-dependent density functional theory (TD-DFT) calculations demonstrate that the electron spins delocalized onto the thiophene unit lead to the acceleration of nonradiative decays, in conjunction with the narrowing of the singlet-triplet energy gap.

  13. Electron paramagnetic resonance of Nb-doped BaTiO3 ceramics with positive temperature coefficient of resistivity

    NASA Astrophysics Data System (ADS)

    Jida, Shin'suke; Miki, Toshikatsu

    1996-11-01

    Paramagnetic centers in Nb-doped BaTiO3 ceramics are measured at 77-500 K by electron paramagnetic resonance (EPR) for investigating the role of the centers on the well-known positive temperature coefficient of resistivity (PTCR) effect (PTCR at the Curie temperature). EPR detects four signals; an anisotropically broad singlet signal at g=2.005, a sextet signal due to Mn2+, a Cr3+ signal, and a Ti3+ signal. The former two signals arise in the rhombohedral and cubic phases, but disappear in the tetragonal and orthorhombic phases. The Cr3+ signal appears in all of the phases, while the Ti3+ signal is detected only at low temperatures. The singlet signal also arises in undoped, barium-deficient BaTiO3 ceramics, therefore the signal is attributable to barium-vacancy-associated centers rather than Nb4+ ions or Fe3+ ions proposed by several authors. In this article, we propose that the singlet signal is due to vacancy-pairs of VBa-F+ type, i.e., the vacancy pair of VBa-VO capturing one electron. The electrical resistivity data show a polaronic character of low-temperature conduction and a high resistivity jump around the Curie temperature. The low-temperature polaronic conduction is explained in terms of electron-hopping between Ti4+ and Ti3+ ions. The resistivity jump at the Curie temperature occurs along with the EPR intensity increase of the singlet signal, the Mn2+ signal and the Cr3+ signal. We conclude that the PTCR of Nb-doped BaTiO3 ceramics is strongly associated with the trap activation of the VBa-VO vacancy-pairs and manganese centers at the tetragonal-to-cubic transition.

  14. Influence of Ring-Expanded N-Heterocyclic Carbenes on the Structures of Half-Sandwich Ni(I) Complexes: An X-ray, Electron Paramagnetic Resonance (EPR), and Electron Nuclear Double Resonance (ENDOR) Study.

    PubMed

    Pelties, Stefan; Carter, Emma; Folli, Andrea; Mahon, Mary F; Murphy, Damien M; Whittlesey, Michael K; Wolf, Robert

    2016-11-07

    Potassium graphite reduction of the half-sandwich Ni(II) ring-expanded diamino/diamidocarbene complexes CpNi(RE-NHC)Br gave the Ni(I) derivatives CpNi(RE-NHC) (where RE-NHC = 6-Mes (1), 7-Mes (2), 6-MesDAC (3)) in yields of 40%-50%. The electronic structures of paramagnetic 1-3 were investigated by CW X-/Q-band electron paramagnetic resonance (EPR) and Q-band (1)H electron nuclear double resonance (ENDOR) spectroscopy. While small variations in the g-values were observed between the diaminocarbene complexes 1 and 2, pronounced changes in the g-values were detected between the almost isostructural species (1) and diamidocarbene species (3). These results highlight the sensitivity of the EPR g-tensor to changes in the electronic structure of the Ni(I) centers generated by incorporation of heteroatom substituents onto the backbone ring positions. Variable-temperature EPR analysis also revealed the presence of a second Ni(I) site in 3. The experimental g-values for these two Ni(I) sites detected by EPR in frozen solutions of 3 are consistent with resolution on the EPR time scale of the disordered components evident in the X-ray crystallographically determined structure and the corresponding density functional theory (DFT)-calculated g-tensor. Q-band (1)H ENDOR measurements revealed a small amount of unpaired electron spin density on the Cp rings, consistent with the calculated SOMO of complexes 1-3. The magnitude of the (1)H A values for 3 were also notably larger, compared to 1 and 2, again highlighting the influence of the diamidocarbene on the electronic properties of 3.

  15. Selective insertion of oxygen and selenium into an electron-precise paramagnetic selenium-manganese carbonyl cluster [Se(6)Mn(6)(CO)(18)](4-).

    PubMed

    Shieh, Minghuey; Ho, Chia-Hua; Sheu, Wen-Shyan; Chen, Horng-Wen

    2010-03-31

    The facile synthesis of a novel electron-precise paramagnetic hexamanganese carbonyl selenide cluster [Se(6)Mn(6)(CO)(18)](4-) (1) was discovered, which demonstrates contrasting reactivity toward O(2) and Se(8) under markedly mild conditions to afford the O- and Se-inserted clusters [Se(6)Mn(6)(CO)(18)(O)](4-) (2) and [Se(10)Mn(6)(CO)(18)](4-) (3), respectively. Clusters 1-3 represent the first examples of electron-precise paramagnetic main-group transition metal carbonyl clusters, and their formation and bonding properties are further elucidated by theoretical calculations.

  16. Site selective substitution Pt for Ti in KTiOPO{sub 4}:Ga crystals revealed by electron paramagnetic resonance

    SciTech Connect

    Grachev, V.; Meyer, M.; Jorgensen, J.; Malovichko, G.; Hunt, A. W.

    2014-07-28

    Electron Paramagnetic Resonance at low temperatures has been used to characterize potassium titanyl phosphate (KTiOPO{sub 4}) single crystals grown by different techniques. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Platinum impurities act as electron traps in KTiOPO{sub 4} creating Pt{sup 3+} centers. Two different Pt{sup 3+} centers were observed, Pt(A) and Pt(D). The Pt(A) centers are dominant in undoped samples, whereas Pt(D)—in Ga-doped KTP crystals. Superhyperfine structure registered for Pt(D) centers was attributed to interactions of platinum electrons with {sup 39}K and two {sup 31}P nuclei in their surroundings. In both Pt(A) and Pt(D) centers, Pt{sup 3+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions. The site selective substitution can be controlled by the Ga-doping.

  17. Superoxide Anion Radical Production in the Tardigrade Paramacrobiotus richtersi, the First Electron Paramagnetic Resonance Spin-Trapping Study.

    PubMed

    Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos

    2015-01-01

    Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical.

  18. Fluorescence properties and electron paramagnetic resonance studies of {gamma}-irradiated Sm{sup 3+}-doped oxyfluoroborate glasses

    SciTech Connect

    Babu, B. Hari; Ravi Kanth Kumar, V. V.

    2012-11-01

    The permanent photoinduced valence manipulation of samarium doped oxyfluoroborate glasses as a function of {gamma}-ray irradiation has been investigated using a steady-state fluorescence and electron paramagnetic resonance techniques. An increase in SrF{sub 2} content in the glass led to the red shift of the peaks in as prepared glass, while in irradiated glasses this led to the decrease in defect formation as well as increase in photoreduction of Sm{sup 3+} to Sm{sup 2+} ion. The energy transfer mechanism of induced permanent photoreduction of Sm{sup 3+} to Sm{sup 2+} ions in oxyfluoroborate glasses has been discussed. The decay analysis shows exponential behavior before irradiation and non-exponential behavior after irradiation. The energy transfer in irradiated glasses increases with the increase in SrF{sub 2} content in the glass and also with the irradiation dose.

  19. In vivo pO2 imaging of tumors: Oxymetry with very low frequency Electron Paramagnetic Resonance

    PubMed Central

    Epel, Boris; Halpern, Howard J.

    2016-01-01

    For over a century it has been known that tumor hypoxia, regions of a tumor with low levels of oxygenation, are important contributors to tumor resistance to radiation therapy and failure of radiation treatment of cancer. Recently, using novel pulse electron paramagnetic resonance (EPR) oxygen imaging, near absolute images of the partial pressure of oxygen (pO2) in tumors of living animals have been obtained. We discuss here the means by which EPR signals can be obtained in living tissues and tumors. We review development of EPR methods to image the pO2 in tumors and the potential for the pO2 image acquisition in human subjects. PMID:26477263

  20. Electron paramagnetic resonance studies of Cu 2+ ion in Tetraaqua-di(nicotinamide)Ni(II)-saccharinates single crystals

    NASA Astrophysics Data System (ADS)

    Yerli, Y.; Kazan, S.; Yalçın, O.; Aktaş, B.

    2006-06-01

    X-band (˜9.8 GHz) electron paramagnetic resonance (EPR) measurement at ambient temperature in three mutually perpendicular planes have been carried out on a single crystal of Cu 2+ doped mixed ligand complex of Ni(II) with saccharin and nicotinamide [Ni(Nic) 2(H 2O) 4](sac) 2. The angular dependent spectra showed that the Cu 2+ ion enters Ni 2+ sites in the lattice and distorted local environment of Ni 2+ site. The principal g and A values, covalency parameter ( α' 2), mixing coefficients ( α and β) and Fermi contact term ( K) have been evaluated from the EPR analysis. The ground-state wave function of the Cu 2+ ion has been constructed using the α' 2, α and β values. The nature of the distortion present in the lattice is obtained from the values of the mixing coefficients.

  1. Electron paramagnetic resonance spectral study of [Mn(acs)2(2-pic)2(H2O)2] single crystals

    NASA Astrophysics Data System (ADS)

    Kocakoç, Mehpeyker; Tapramaz, Recep

    2016-03-01

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn+2 ion complex with mixed ligand, [Mn(acs)2(2-pic)2(H2O)2], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that the complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.

  2. X-Band Rapid-Scan Electron Paramagnetic Resonance of Radiation-Induced Defects in Tooth Enamel

    PubMed Central

    Yu, Zhelin; Romanyukha, Alexander; Eaton, Sandra S.; Eaton, Gareth R.

    2015-01-01

    X-band rapid-scan electron paramagnetic resonance (EPR) spectra from tooth enamel samples irradiated with doses of 0.5, 1 and 10 Gy had substantially improved signal-to-noise relative to conventional continuous wave EPR. The radiation-induced signal in 60 mg of a tooth enamel sample irradiated with a 0.5 Gy dose was readily characterized in spectra recorded with 34 min data acquisition times. The coefficient of variance of the calculated dose for a 1 Gy irradiated sample, based on simulation of the first-derivative spectra for three replicates as the sum of native and radiation-induced signals, was 3.9% for continuous wave and 0.4% for rapid scan. PMID:26207683

  3. Characterisation of the PQQ cofactor radical in quinoprotein ethanol dehydrogenase of Pseudomonas aeruginosa by electron paramagnetic resonance spectroscopy.

    PubMed

    Kay, Christopher W M; Mennenga, Bina; Görisch, Helmut; Bittl, Robert

    2004-04-23

    The binding pocket of the pyrroloquinoline quinone (PQQ) cofactor in quinoprotein alcohol dehydrogenases contains a characteristic disulphide ring formed by two adjacent cysteine residues. To analyse the function of this unusual structural motif we have investigated the wild-type and a double cysteine:alanine mutant of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa by electron paramagnetic resonance (EPR) spectroscopy. Thus, we have obtained the principal values for the full rhombic g-tensor of the PQQ semiquinone radical by high-field (94 GHz) EPR necessary for a discrimination of radical species in dehydrogenases containing PQQ together with other redox-active cofactors. Our results show that the characteristic disulphide ring is no prerequisite for the formation of the functionally important semiquinone form of PQQ.

  4. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    SciTech Connect

    Bateni, Ali; Somer, Mehmet E-mail: msomer@ku.edu.tr; Erdem, Emre E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  5. Theoretical and electron paramagnetic resonance studies of hyperfine interaction in nitrogen doped 4H and 6H SiC

    SciTech Connect

    Szász, K.; Gali, A.

    2014-02-21

    Motivated by recent experimental findings on the hyperfine signal of nitrogen donor (N{sub C}) in 4 H and 6 H SiC, we calculate the hyperfine tensors within the framework of density functional theory. We find that there is negligible hyperfine coupling with {sup 29}Si isotopes when N{sub C} resides at h site both in 4 H and 6 H SiC. We observe measurable hyperfine coupling to a single {sup 29}Si at k site in 4 H SiC and k{sub 1} site in 6 H SiC. Our calculations unravel that such {sup 29}Si hyperfine coupling does not occur at k{sub 2} site in 6 H SiC. Our findings are well corroborated by our new electron paramagnetic resonance studies in nitrogen doped 6 H SiC.

  6. Effect of electron scavengers on the formation of paramagnetic species upon radiolysis of polystyrene and its low-molecular-weight analogs

    SciTech Connect

    Zezin, A.A.; Fel`dman, V.I.; Sukhov, F.F.

    1995-05-01

    The effect of electron scavengers on the composition and the yields of paramagnetic species upon the radiolysis of polystyrene was examined. Various mechanisms of the reactions of radical cations (holes) in low-molecular-weight aromatic hydrocarbons and polystyrene are discussed. The dimeric radical cations were found to be trapped in polystyrene and benzene irradiated in the presence of electron scavengers at 77 K. The yield of paramagnetic species was shown to increase markedly in the presence of small amounts (<1%) of chloroform of benzyl chloride. The results obtained show that the ionic processes make a large contribution to the formation of paramagnetic species. It is concluded that the radiation resistance of polystyrene is due not only to its chemical structure, but to the association of phenyl rings in the solid polymer.

  7. Exploring intrinsically disordered proteins using site-directed spin labeling electron paramagnetic resonance spectroscopy

    PubMed Central

    Le Breton, Nolwenn; Martinho, Marlène; Mileo, Elisabetta; Etienne, Emilien; Gerbaud, Guillaume; Guigliarelli, Bruno; Belle, Valérie

    2015-01-01

    Proteins are highly variable biological systems, not only in their structures but also in their dynamics. The most extreme example of dynamics is encountered within the family of Intrinsically Disordered Proteins (IDPs), which are proteins lacking a well-defined 3D structure under physiological conditions. Among the biophysical techniques well-suited to study such highly flexible proteins, Site-Directed Spin Labeling combined with EPR spectroscopy (SDSL-EPR) is one of the most powerful, being able to reveal, at the residue level, structural transitions such as folding events. SDSL-EPR is based on selective grafting of a paramagnetic label on the protein under study and is limited neither by the size nor by the complexity of the system. The objective of this mini-review is to describe the basic strategy of SDSL-EPR and to illustrate how it can be successfully applied to characterize the structural behavior of IDPs. Recent developments aimed at enlarging the panoply of SDSL-EPR approaches are presented in particular newly synthesized spin labels that allow the limitations of the classical ones to be overcome. The potentialities of these new spin labels will be demonstrated on different examples of IDPs. PMID:26042221

  8. Comparative identification of irradiated herbs by the methods of electron paramagnetic resonance and thermoluminescence

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Gancheva, V.; Radicheva, M.; Hristova, B.; Guelev, M.; Penchev, O.

    1998-12-01

    Non irradiated and γ-irradiated dry herbs savoury ( Savoury), wild thyme ( Thymus serpollorium) and marjoram ( Origanum) with absorbed dose of 8 kGy have been investigated by the methods of elecrtron paramagnetic resonance (EPR) and thermoluminescence (TL). Non-irradiated herbs exhibit only one weak siglet EPR signal whereas in irradiated samples its intensity increase and in addition two satelite lines are recorded. This triplet EPR spectrum is attributed to cellulose free radical generated by irradiation. It has been found that upon keeping the samples under the normal stock conditions the life-time of the cellulose free radical in the examined samples is ˜60-80 days. Thus the conclusion has been made that the presence of the EPR signal of cellulose free radical is unambiguous indication that the sample under study has been irradiated but its absence can not be considered as the opposite evidence. In the case when EPR signal was absent the method of TL has been used to give the final decision about the previous radiation treatment of the sample.

  9. Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium-niobium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Rakhimov, R. R.; Turney, V. J.; Jones, D. E.; Dobryakov, S. N.; Borisov, Yu. A.; Prokof'ev, A. I.; Aleksandrov, A. I.

    2003-04-01

    Electron paramagnetic resonance (EPR) spectra of Nb4+ ions in Li2O-Nb2O5-P2O5 glasses with different composition of oxide components have been investigated. The EPR spectrum shape analysis of Nb4+ (electron configuration 4d1, electron spin S=1/2) reveals the formation of triplet niobium binuclear complex (total electron spin S=1) in glasses. The amount of Nb4+ ions in glasses reversibly changes with temperature and is explained via the mechanism of electron hopping between niobium ions in clusters. The dependence of the amount of Nb4+ ions upon Li2O content has a maximal character, which implies that small amounts of Li+ ions stabilize the Nb4+ pairs, but cause their disproportionation at higher concentrations of Li+ ions in the glass. Quantum mechanical analysis of electronic and spin states of binuclear niobium clusters has been performed on model binuclear complexes, (HO)3Nb-O-Nb(OH)3, [(HO)3Nb-O-Nb(OH)3]Li+, and [(HO)3Nb-O-Nb(OH)3](Li+)2 that exhibit the reversible disproportionation reaction Nb4+-O-Nb4+⇔Nb3+-O-Nb5+. Triplet states of these complexes (total electron spin S=1) have lower energies than singlet states (S=0), and Li+ ions stabilize the binuclear niobium complex. We have found that electron spin densities on niobium ions change depending upon the shift of the bridging oxygen atom. Application of this theoretical modeling to the analysis of the experimental EPR spectrum in Li2O-Nb2O5-P2O5 glass concludes noncentrosymmetric structure of binuclear niobium complex with ˜0.1 Å offset of the bridging oxygen atom towards one Nb atom.

  10. The g-tensor of the flavin cofactor in (6-4) photolyase: a 360 GHz/12.8 T electron paramagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Schnegg, A.; Kay, C. W. M.; Schleicher, E.; Hitomi, K.; Todo, T.; Möbius, K.; Weber, S.

    2006-05-01

    The g-tensor of the neutral radical form of the flavin adenine dinucleotide cofactor FADH• of (6-4) photolyase from Xenopus laevis has been determined by very high-magnetic-field/high-microwave-frequency electron-paramagnetic resonance (EPR) performed at 360 GHz/12.8 T. Due to the high spectral resolution the anisotropy of the g-tensor could be fully resolved in the frozen-solution continuous-wave EPR spectrum. By least square fittings of spectral simulations to experimental data, the principal values of the g-tensor have been established: gX = 2.00433(5), gY = 2.00368(5), gZ = 2.00218(7). A comparison of very high-field EPR data and proton and deuteron electron-nuclear double resonance measurements yielded precise information concerning the orientation of the g-tensor with respect to the molecular frame. This data allowed a comparison to be made between the principal values of the g-tensors of the FADH• cofactors of photolyases involved in the repair of two different DNA lesions: the cyclobutane pyrimidine dimer (CPD) and the (6-4) photoproduct. It was found that gX and gZ are similar in both enzymes, whereas the gY component is slightly larger in (6-4) photolyase. This result clearly shows the sensitivity of the g-tensor to subtle differences in the protein environment experienced by the flavin.

  11. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    SciTech Connect

    Pham, Chuyen V.; Krueger, Michael E-mail: emre.erdem@physchem.uni-freiburg.de; Eck, Michael; Weber, Stefan; Erdem, Emre E-mail: emre.erdem@physchem.uni-freiburg.de

    2014-03-31

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g = 2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  12. Image Resolution in Scanning Transmission Electron Microscopy

    SciTech Connect

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  13. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  14. Pulse saturation recovery, pulse ELDOR, and free induction decay electron paramagnetic resonance detection using time-locked subsampling

    NASA Astrophysics Data System (ADS)

    Froncisz, W.; Camenisch, Theodore G.; Ratke, Joseph J.; Hyde, James S.

    2001-03-01

    Time locked subsampling (TLSS) in electron paramagnetic resonance (EPR) involves the steps of (i) translation of the signal from a microwave carrier to an intermediate frequency (IF) carrier where the (IF) offset between the signal oscillator and local oscillator frequencies is synthesized, (ii) sampling the IF carrier four times in an odd number of cycles, say 4 in 3, where the analog-to-digital (A/D) converter is driven by a frequency synthesizer that has the same clock input as the IF synthesizer, (iii) signal averaging as required for adequate signal to noise, (iv) separating the even and odd digitized words into two separate signal channels, which correspond to signals in phase and in quadrature with respect to the IF carrier, i.e., I and Q, and (v) detecting the envelope of I and also of Q by changing the signs of alternate words in each of the two channels. TLSS detection has been demonstrated in three forms of pulse EPR spectroscopy at X band: saturation recovery, pulse electron-electron double resonance, and free induction decay. The IF was 187.5 MHz, the A/D converter frequency was 250 MHz, the overall bandwidth was 125 MHz, and the bandwidths for the separate I and Q channels were each 62.5 MHz. Experiments were conducted on nitroxide radical spin labels. The work was directed towards development of methodology to monitor bimolecular collisions of oxygen with spin labels in a context of site-directed spin labeling.

  15. New roles of flavoproteins in molecular cell biology: blue-light active flavoproteins studied by electron paramagnetic resonance.

    PubMed

    Schleicher, Erik; Bittl, Robert; Weber, Stefan

    2009-08-01

    Exploring enzymatic mechanisms at a molecular level is one of the major challenges in modern biophysics. Based on enzyme structure data, as obtained by X-ray crystallography or NMR spectroscopy, one can suggest how substrates and products bind for catalysis. However, from the 3D structure alone it is very rarely possible to identify how intermediates are formed and how they are interconverted. Molecular spectroscopy can provide such information and thus supplement our knowledge on the specific enzymatic reaction under consideration. In the case of enzymatic processes in which paramagnetic molecules play a role, EPR and related methods such as electron-nuclear double resonance (ENDOR) are powerful techniques to unravel important details, e.g. the electronic structure or the protonation state of the intermediate(s) carrying (the) unpaired electron spin(s). Here, we review recent EPR/ENDOR studies of blue-light active flavoproteins with emphasis on photolyases that catalyze the enzymatic repair of UV damaged DNA, and on cryptochrome blue-light photoreceptors that act in several species as central components of the circadian clock.

  16. Electron spin resonance spectroscopy of small ensemble paramagnetic spins using a single nitrogen-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Abeywardana, Chathuranga; Stepanov, Viktor; Cho, Franklin H.; Takahashi, Susumu

    2016-09-01

    A nitrogen-vacancy (NV) center in diamond is a promising sensor for nanoscale magnetic sensing. Here, we report on electron spin resonance (ESR) spectroscopy using a single NV center in diamond. First, using a 230 GHz ESR spectrometer, we performed ensemble ESR of a type-Ib sample crystal and identified a substitutional single nitrogen impurity as a major paramagnetic center in the sample crystal. Then, we carried out free-induction decay and spin echo measurements of the single NV center to study static and dynamic properties of nanoscale bath spins surrounding the NV center. We also measured ESR spectrum of the bath spins using double electron-electron resonance spectroscopy with the single NV center. The spectrum analysis of the NV-based ESR measurement identified that the detected spins are the nitrogen impurity spins. The experiment was also performed with several other single NV centers in the diamond sample and demonstrated that the properties of the bath spins are unique to the NV centers indicating the probe of spins in the microscopic volume using NV-based ESR. Finally, we discussed the number of spins detected by the NV-based ESR spectroscopy. By comparing the experimental result with simulation, we estimated the number of the detected spins to be ≤50 spins.

  17. Stochastic Liouville equation treatment of the electron paramagnetic resonance line shape of an S-state ion in solution.

    PubMed

    Borel, Alain; Clarkson, R B; Belford, R Linn

    2007-02-07

    The current approaches used for the analysis of electron paramagnetic resonance spectra of Gd3+ complexes suffer from a number of drawbacks. Even the elaborate model of [Rast et al., J. Chem. Phys. 113, 8724 (2000)] where the electron spin relaxation is explained by the modulation of the zero-field splitting (ZFS), by molecular tumbling (the so called static contribution), and deformations (transient contribution), is only readily applicable within the validity range of the Redfield theory [Advances in Magnetic Resonance, edited by J.-S. Waugh (Academic, New York, 1965), Vol. 1, p. 1], that is, when the ZFS is small compared to the Zeeman energy and the rotational and vibrational modulations are fast compared to the relaxation time. Spin labels (nitroxides and transition metal complexes) have been studied for years in systems that violate these conditions. The theoretical framework commonly used in such studies is the stochastic Liouville equation (SLE). The authors shall show how the physical model of Rast et al. can be cast into the SLE formalism, paying special attention to the specific problems introduced by the [Uhlenbeck and Ornstein, Phys. Rev. 36, 823 (1930)] process used to model the transient ZFS. The resulting equations are very general and valid for arbitrary correlation times, magnetic field strength, electron spin S, or symmetry. The authors demonstrate the equivalence of the SLE approach with the Redfield approximation for two well-known Gd3+ complexes.

  18. Electron paramagnetic resonance studies of gamma-irradiated DL-alanine ethyl ester hydrochloride, L-theanine and L-glutamic acid dimethyl ester hydrochloride

    NASA Astrophysics Data System (ADS)

    Başkan, M. Halim; Aydın, Murat

    2013-08-01

    The electron paramagnetic resonance (EPR) of gamma irradiated powders of DL-alanine ethyl ester hydrochloride, L-theanine and L-glutamic acid dimethyl ester hydrochloride were investigated at room temperature. The observed paramagnetic species were attributed to the CH3ĊHCOOC2H5, -CH2ĊHCOOH and -CH2ĊHCOOCH3 radicals, respectively. Hyperfine structure constants and g-values were determined for these three radicals. Some spectroscopic properties and suggestions concerning the possible structure of the radicals were also discussed.

  19. Electron paramagnetic resonance studies of gamma-irradiated DL-alanine ethyl ester hydrochloride, L-theanine and L-glutamic acid dimethyl ester hydrochloride.

    PubMed

    Başkan, M Halim; Aydın, Murat

    2013-08-01

    The electron paramagnetic resonance (EPR) of gamma irradiated powders of DL-alanine ethyl ester hydrochloride, L-theanine and L-glutamic acid dimethyl ester hydrochloride were investigated at room temperature. The observed paramagnetic species were attributed to the CH3ĊHCOOC2H5, -CH2ĊHCOOH and -CH2ĊHCOOCH3 radicals, respectively. Hyperfine structure constants and g-values were determined for these three radicals. Some spectroscopic properties and suggestions concerning the possible structure of the radicals were also discussed. Copyright © 2013. Published by Elsevier B.V.

  20. Scanning Transmission Electron Microscopy at High Resolution

    PubMed Central

    Wall, J.; Langmore, J.; Isaacson, M.; Crewe, A. V.

    1974-01-01

    We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 Å resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 Å is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver. Images PMID:4521050

  1. The effect of spin polarization on zero field splitting parameters in paramagnetic pi-electron molecules.

    PubMed

    van Gastel, Maurice

    2009-09-28

    Spin polarization effects play an important role in the theory of isotropic hyperfine interactions for aromatic protons. The spin polarization gives rise to significant isotropic proton hyperfine interactions--spin-dependent one-electron properties--smaller than 0 MHz and the effect has been theoretically described [H. M. McConnell and D. B. J. Chesnut, Chem. Phys. 28, 107 (1958)]. The influence of spin polarization on the zero field splitting parameters, which are spin-dependent two-electron properties, has not been clearly identified yet. A phenomenological equation is proposed here for the contribution of spin polarization to the zero field splitting parameter D in analogy to McConnell's equation for hyperfine interactions. The presence of the effect is demonstrated in a series of calculations on polyacenes in the triplet state and turns out to be responsible for up to 50% of the D parameter in the case of naphthalene! It is found that spin-unrestricted single-determinant methods, including the widely used density functional theory methods, do not accurately reproduce the two-electron reduced electron density required for the evaluation of two-electron spin-dependent properties. For the accurate calculation of zero field splitting parameters by quantum chemical methods, it thus seems necessary to resort to correlated ab initio methods which do not give rise to spin contamination and which do provide an accurate description of the two-electron reduced electron density.

  2. Fast dynamic electron paramagnetic resonance (EPR) oxygen imaging using low-rank tensors

    NASA Astrophysics Data System (ADS)

    Christodoulou, Anthony G.; Redler, Gage; Clifford, Bryan; Liang, Zhi-Pei; Halpern, Howard J.; Epel, Boris

    2016-09-01

    Hypoxic tumors are resistant to radiotherapy, motivating the development of tools to image local oxygen concentrations. It is generally believed that stable or chronic hypoxia is the source of resistance, but more recent work suggests a role for transient hypoxia. Conventional EPR imaging (EPRI) is capable of imaging tissue pO2in vivo, with high pO2 resolution and 1 mm spatial resolution but low imaging speed (10 min temporal resolution for T1-based pO2 mapping), which makes it difficult to investigate the oxygen changes, e.g., transient hypoxia. Here we describe a new imaging method which accelerates dynamic EPR oxygen imaging, allowing 3D imaging at 2 frames per minute, fast enough to image transient hypoxia at the "speed limit" of observed pO2 change. The method centers on a low-rank tensor model that decouples the tradeoff between imaging speed, spatial coverage/resolution, and number of inversion times (pO2 accuracy). We present a specialized sparse sampling strategy and image reconstruction algorithm for use with this model. The quality and utility of the method is demonstrated in simulations and in vivo experiments in tumor bearing mice.

  3. Characterization of calcium-binding sites in the kidney stone inhibitor glycoprotein nephrocalcin with vanadyl ions: electron paramagnetic resonance and electron nuclear double resonance spectroscopy.

    PubMed Central

    Mustafi, D; Nakagawa, Y

    1994-01-01

    Nephrocalcin (NC) is a calcium-binding glycoprotein of 14,000 molecular weight. It inhibits the growth of calcium oxalate monohydrate crystals in renal tubules. The NC used in this study was isolated from bovine kidney tissue and purified with the use of DEAE-cellulose chromatography into four isoforms, designated as fractions A-D. They differ primarily according to the content of phosphate and gamma-carboxy-glutamic acid. Fractions A and B are strong inhibitors of the growth of calcium oxalate monohydrate crystal, whereas fractions C and D inhibit crystal growth weakly. Fraction A, with the highest Ca(2+)-binding affinity, was characterized with respect to its metal-binding sites by using the vanadyl ion (VO2+) as a paramagnetic probe in electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopic studies. By EPR spectrometric titration, it was shown that fraction A of NC bound VO2+ with a stoichiometry of metal:protein binding of 4:1. Also, the binding of VO2+ to NC was shown to be competitive with Ca2+. Only protein residues were detected by proton ENDOR as ligands, and these ligands bound with complete exclusion of solvent from the inner coordination sphere of the metal ion. This type of metal-binding environment, as derived from VO(2+)-reconstituted NC, differs significantly from the binding sites in other Ca(2+)-binding proteins. PMID:7972057

  4. Electron-nuclear spin dynamics of Ga2 + paramagnetic centers probed by spin-dependent recombination: A master equation approach

    NASA Astrophysics Data System (ADS)

    Ibarra-Sierra, V. G.; Sandoval-Santana, J. C.; Azaizia, S.; Carrère, H.; Bakaleinikov, L. A.; Kalevich, V. K.; Ivchenko, E. L.; Marie, X.; Amand, T.; Balocchi, A.; Kunold, A.

    2017-05-01

    Similar to nitrogen-vacancy centers in diamond and impurity atoms in silicon, interstitial gallium deep paramagnetic centers in GaAsN have been proven to have useful characteristics for the development of spintronic devices. Among other interesting properties, under circularly polarized light, gallium centers act as spin filters that dynamically polarize free and bound electrons reaching record spin polarizations (close to 100%). Furthermore, the recent observation of the amplification of the spin filtering effect under a Faraday configuration magnetic field has suggested that the hyperfine interaction that couples bound electrons and nuclei permits the optical manipulation of the nuclear spin polarization. Even though the mechanisms behind the nuclear spin polarization in gallium centers are fairly well understood, the origin of nuclear spin relaxation and the formation of an Overhauser-like magnetic field remain elusive. In this work we develop a model based on the master equation approach to describe the evolution of electronic and nuclear spin polarizations of gallium centers interacting with free electrons and holes. Our results are in good agreement with existing experimental observations. In particular, we are able to reproduce the amplification of the spin filtering effect under a circularly polarized excitation in a Faraday configuration magnetic field. In regard to the nuclear spin relaxation, the roles of nuclear dipolar and quadrupolar interactions are discussed. Our findings show that, besides the hyperfine interaction, the spin relaxation mechanisms are key to understand the amplification of the spin filtering effect and the appearance of the Overhauser-like magnetic field. To gain a deeper insight in the interplay of the hyperfine interaction and the relaxation mechanisms, we have also performed calculations in the pulsed excitation regime. Our model's results allow us to propose an experimental protocol based on time-resolved spectroscopy. It

  5. Design and implementation of an FPGA-based timing pulse programmer for pulsed-electron paramagnetic resonance applications.

    PubMed

    Sun, Li; Savory, Joshua J; Warncke, Kurt

    2013-08-01

    The design, construction and implementation of a field-programmable gate array (FPGA) -based pulse programmer for pulsed-electron paramagnetic resonance (EPR) experiments is described. The FPGA pulse programmer offers advantages in design flexibility and cost over previous pulse programmers, that are based on commercial digital delay generators, logic pattern generators, and application-specific integrated circuit (ASIC) designs. The FPGA pulse progammer features a novel transition-based algorithm and command protocol, that is optimized for the timing structure required for most pulsed magnetic resonance experiments. The algorithm was implemented by using a Spartan-6 FPGA (Xilinx), which provides an easily accessible and cost effective solution for FPGA interfacing. An auxiliary board was designed for the FPGA-instrument interface, which buffers the FPGA outputs for increased power consumption and capacitive load requirements. Device specifications include: Nanosecond pulse formation (transition edge rise/fall times, ≤3 ns), low jitter (≤150 ps), large number of channels (16 implemented; 48 available), and long pulse duration (no limit). The hardware and software for the device were designed for facile reconfiguration to match user experimental requirements and constraints. Operation of the device is demonstrated and benchmarked by applications to 1-D electron spin echo envelope modulation (ESEEM) and 2-D hyperfine sublevel correlation (HYSCORE) experiments. The FPGA approach is transferrable to applications in nuclear magnetic resonance (NMR; magnetic resonance imaging, MRI), and to pulse perturbation and detection bandwidths in spectroscopies up through the optical range.

  6. Design and implementation of an FPGA-based timing pulse programmer for pulsed-electron paramagnetic resonance applications

    PubMed Central

    Sun, Li; Savory, Joshua J.; Warncke, Kurt

    2014-01-01

    The design, construction and implementation of a field-programmable gate array (FPGA) -based pulse programmer for pulsed-electron paramagnetic resonance (EPR) experiments is described. The FPGA pulse programmer offers advantages in design flexibility and cost over previous pulse programmers, that are based on commercial digital delay generators, logic pattern generators, and application-specific integrated circuit (ASIC) designs. The FPGA pulse progammer features a novel transition-based algorithm and command protocol, that is optimized for the timing structure required for most pulsed magnetic resonance experiments. The algorithm was implemented by using a Spartan-6 FPGA (Xilinx), which provides an easily accessible and cost effective solution for FPGA interfacing. An auxiliary board was designed for the FPGA-instrument interface, which buffers the FPGA outputs for increased power consumption and capacitive load requirements. Device specifications include: Nanosecond pulse formation (transition edge rise/fall times, ≤3 ns), low jitter (≤150 ps), large number of channels (16 implemented; 48 available), and long pulse duration (no limit). The hardware and software for the device were designed for facile reconfiguration to match user experimental requirements and constraints. Operation of the device is demonstrated and benchmarked by applications to 1-D electron spin echo envelope modulation (ESEEM) and 2-D hyperfine sublevel correlation (HYSCORE) experiments. The FPGA approach is transferrable to applications in nuclear magnetic resonance (NMR; magnetic resonance imaging, MRI), and to pulse perturbation and detection bandwidths in spectroscopies up through the optical range. PMID:25076864

  7. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    Yap, Yung Szen; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2015-06-01

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

  8. One and Two Dimensional Pulsed Electron Paramagnetic Resonance Studies of in vivo Vanadyl Coordination in Rat Kidney

    PubMed Central

    Liboiron, Barry D.; Thompson, Katherine H.; Vera, Erika; Yuen, Violet G.; McNeill, John H.

    2003-01-01

    The biological fate of a chelated vanadium source is investigated by/n vivo spectroscopic methods to elucidate the chemical form in which the metal ion is accumulated. A pulsed electron paramagnetic resonance study of vanadyl ions in kidney tissue, taken from rats previously treated with bis(ethylmaltolato)oxovanadium(IV) (BEOV) in drinking water, is presented. A combined approach using stimulated echo (3-pulse) electron spin echo envelope modulation (ESEEM) and the two dimensional 4-pulse hyperfine sublevel correlation (HYSCORE) spectroscopies has shown that at least some of the VO2+ ions are involved in the coordination with nitrogen-containing ligands. From the experimental spectra, a 4N hyperfine coupling constant of 4.9 MHz and a quadrupole coupling constant of 0.6 + 0.04 MHz were determined, consistent with amine coordination of the vanadyl ions. Study of VO-histidine model complexes allowed for a determination of the percentage of nitrogen-coordinated VO2+ ions in the tissue sample that is found nitrogen-coordinated. By taking into account the bidentate nature of histidine coordination to VO2+ ions, a more accurate determination of this value is reported. The biological fate of chelated versus free (i.e. salts) vanadyl ion sources has been deduced by comparison to earlier reports. In contrast to its superior pharmacological efficacy over VOSO4, BEOV shares a remarkably similar biological fate after uptake into kidney tissue. PMID:18365044

  9. Mechanism for formation of the lightstruck flavor in beer revealed by time-resolved electron paramagnetic resonance.

    PubMed

    Burns, C S; Heyerick, A; De Keukeleire, D; Forbes, M D

    2001-11-05

    Time-resolved electron paramagnetic resonance (TREPR) data collected during the photodegradation of iso-a-acids (isohumulones), the principal bittering agents from hops in beer, are presented and discussed, and, from the data, the photophysics leading to free-radical production as the primary step in the photodecomposition of iso-alpha-acids towards the development of "skunky" beer are explained. During laser flash photolysis of iso-alpha-acids at 308 nm in toluene/methylcyclohexane (1:1), TREPR spectra exhibit net emissive signals that are strongly spin polarized by the triplet mechanism of chemically induced electron spin polarization. From two potential photochemically active sites, the TREPR data show that although the first site, an enolized beta-triketone, is the primary light-absorbing chromophore, an uphill intramolecular triplet energy transfer process leads to Norrish type I alpha-cleavage at a second site, an alpha-hydroxycarbonyl. The energy transfer mechanism is supported by additional TREPR experiments with chemically modified hop compounds. Structural parameters (hyperfine coupling constants, g factors, line widths) for the observed free radicals, obtained from computer simulations, are presented and discussed.

  10. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    SciTech Connect

    Yap, Yung Szen; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2015-06-15

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

  11. Polynuclear water-soluble dinitrosyl iron complexes with cysteine or glutathione ligands: electron paramagnetic resonance and optical studies.

    PubMed

    Vanin, Anatoly F; Poltorakov, Alexander P; Mikoyan, Vasak D; Kubrina, Lyudmila N; Burbaev, Dosymzhan S

    2010-09-15

    Electron paramagnetic resonance and optical spectrophotometric studies have demonstrated that low-molecular dinitrosyl iron complexes (DNICs) with cysteine or glutathione exist in aqueous solutions in the form of paramagnetic mononuclear (capital EM, Cyrillic-DNICs) and diamagnetic binuclear complexes (B-DNICs). The latter represent Roussin's red salt esters and can be prepared by treatment of aqueous solutions of Fe(2+) and thiols (small er, Cyrilliccapital EN, Cyrillic 7.4) with gaseous nitric oxide (NO) at the thiol:Fe(2+) ratio 1:1. capital EM, Cyrillic-DNICs are synthesized under identical conditions at the thiol:Fe(2+) ratios above 20 and produce an EPR signal with an electronic configuration {Fe(NO)(2)}(7) at g(aver.)=2.03. At neutral pH, aqueous solutions contain both M-DNICs and B-DNICs (the content of the latter makes up to 50% of the total DNIC pool). The concentration of B-DNICs decreases with a rise in pH; at small er, Cyrilliccapital EN, Cyrillic 9-10, the solutions contain predominantly M-DNICs. The addition of thiol excess to aqueous solutions of B-DNICs synthesized at the thiol:Fe(2+) ratio 1:2 results in their conversion into capital EM, Cyrillic-DNICs, the total amount of iron incorporated into M-DNICs not exceeding 50% of the total iron pool in B-DNICs. Air bubbling of cys-capital EM, Cyrillic-DNIC solutions results in cysteine oxidation-controlled conversion of capital EM, Cyrillic-DNICs first into cys-B-DNICs and then into the EPR-silent compound capital HA, Cyrillic able to generate a strong absorption band at 278 nm. In the presence of glutathione or cysteine excess, compound capital HA, Cyrillic is converted into B-DNIC/M-DNIC and is completely decomposed under effect of the Fe(2+) chelator small o, Cyrillic-phenanthroline or N-methyl-d-glucamine dithiocarbamate (MGD). Moreover, MGD initiates the synthesis of paramagnetic mononitrosyl iron complexes with MGD. It is hypothesized that compound capital HA, Cyrillic represents a polynuclear

  12. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  13. Structure of radical cations of saturated heterocyclic compounds with two heteroatoms as studied by electron paramagnetic resonance, electron-nuclear double resonance, and density functional theory calculations.

    PubMed

    Nuzhdin, Kirill B; Nesterov, Sergej V; Tyurin, Daniil A; Feldman, Vladimir I; Wei, Liu; Lund, Anders

    2005-07-21

    The radical cations of piperazine, morpholine, thiomorpholine, and thioxane were investigated by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy in a solid Freon matrix. Optimized geometry and magnetic parameters of the radical cations were calculated using a density functional theory (DFT)/Perdew-Burke-Ernzerhof (PBE) method. Both experimental and theoretical results suggest that all the studied species adopt chair (or distorted chair) conformations. No evidence for the boat conformers with intramolecular sigma-bonding between heteroatoms were obtained. In the cases of morpholine and thioxane, the oxygen atoms are characterized by relatively small spin populations, whereas a major part of spin density is located at N and S atoms, respectively. The thiomorpholine radical cation exhibits nearly equal spin population of N and S atoms. In most cases (except for thioxane), the calculated magnetic parameters agree with the experimental data reasonably well.

  14. Electron paramagnetic resonance characterization of defects in monoclinic HfO{sub 2} and ZrO{sub 2} powders

    SciTech Connect

    Wright, Sandra; Barklie, R. C.

    2009-11-15

    Electron paramagnetic resonance (EPR) measurements have been made at X-band and room temperature on monoclinic HfO{sub 2} and ZrO{sub 2} powders from several suppliers. They reveal the presence of eight main paramagnetic centers H1, H2, H3, H4, and Z1, Z2, Z3, and Z4. H1 and Z1 are analogous as H4 and Z4 and H2 and Z2 are similar as H3 and Z3. H1 and Z1 have axial symmetry with g{sub ||}electron g value. H1 is found in all, and Z1 in all but one, of the samples in their as-received state but with a wide range of concentrations. However, annealing the samples in air up to 900 deg. C reduces the volume concentration range and the areal concentrations all become of order 10{sup 11} cm{sup -2}. Irradiation with gamma-rays does not affect their concentration. The Z1 centers are found to be the same as those previously observed in ZrO{sub 2} powders that were attributed to Zr{sup 3+} ions in coordinatively unsaturated (cus) sites at and/or near the surface. Our results are consistent with this model for Z1 and with an analogous model of cus Hf{sup 3+} for H1. H4 and Z4 are centers of isotropic symmetry with g values that are both within +-0.0004 of 2.0027; they are produced in all HfO{sub 2} and ZrO{sub 2} samples, respectively, that are heated in vacuum at >=300 deg. C. Their concentration reaches a maximum of order 10{sup 17} cm{sup -3} or 10{sup 12} cm{sup -2} in the range of 550-750 deg. C. They are also most likely to be mainly at and/or near the surface and to involve an electron trapped in an oxygen vacancy cluster. The EPR spectra of H2 and Z2 are consistent with those of S=1/2 centers of orthorhombic symmetry with principal g values about equal to or just less than g{sub e} suggesting that they are trapped electron centers. The electrons produced by gamma-irradiation are trapped at precursors to H2 but are easily detrapped. Z2 centers also appear to be shallow electron traps. Their identity is uncertain

  15. Electron paramagnetic resonance of the N2V- defect in 15N -doped synthetic diamond

    NASA Astrophysics Data System (ADS)

    Green, B. L.; Dale, M. W.; Newton, M. E.; Fisher, D.

    2015-10-01

    Nitrogen is the dominant impurity in the majority of natural and synthetic diamonds, and the family of nitrogen vacancy-type (NnV ) defects are crucial in our understanding of defect dynamics in these diamonds. A significant gap is the lack of positive identification of N2V- , the dominant charge state of N2V in diamond that contains a significant concentration of electron donors. In this paper, we employ isotopically-enriched diamond to identify the EPR spectrum associated with 15N2V- and use the derived spin Hamiltonian parameters to identify 14N2V- in a natural isotopic abundance sample. The electronic wave function of the N2V- ground state and previous lack of identification is discussed. The N2V- EPR spectrum intensity is shown to correlate with the H2 optical absorption over an order of magnitude in concentration.

  16. Use of Fe(3+) ion probe to study the stability of urea-intercalated kaolinite by electron paramagnetic resonance.

    PubMed

    Budziak Fukamachi, Cristiane Regina; Wypych, Fernando; Mangrich, Antonio Salvio

    2007-09-15

    The effect of mechanical and chemical activation in processes of urea intercalation in the interlayer spacing of kaolinite and the effect of varying the temperature of the intercalation product between 100 and 200 degrees C were studied using Fe(3+) ions as a probe in electron paramagnetic resonance (EPR) spectroscopy. Other techniques were also used to characterize the samples. Monitoring the heating of urea-intercalated kaolinite, FTIR, and XRD revealed that the product obtained was stable up to a temperature of 150-160 degrees C. The EPR data indicated that the intercalation process promoted an approximation and increase of the magnetic interactions among the Fe(3+) ions. The DRUV-vis analysis of the product before heating showed an absorption band at 680 nm that was absent in the raw kaolinite. This band was attributed to the transition A(1)6-->T(2)4(G4) in the adjacent Fe(3+) ions, intensified by magnetic coupling among these ions. We suggest that intercalated urea forms hydrogen bonds between the carbonyl's oxygen and the hydroxyls bound to the Fe(3+) ions of the kaolinite structure. This would cause the approximation of the Fe(3+) ions, maximizing magnetic couplings and intensifying concentrated centers of Fe(3+), as was visible by EPR spectroscopy.

  17. One-dimensional quantum antiferromagnetism in the p -orbital CsO2 compound revealed by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Knaflič, Tilen; Klanjšek, Martin; Sans, Annette; Adler, Peter; Jansen, Martin; Felser, Claudia; Arčon, Denis

    2015-05-01

    Recently, it was proposed that the orbital ordering of πx,y * molecular orbitals in the superoxide CsO2 compound leads to the formation of spin-1/2 chains below the structural phase transition occurring at Ts 1=61 K on cooling. Here we report a detailed X -band electron paramagnetic resonance (EPR) study of this phase in CsO2 powder. The EPR signal appears as a broad line below Ts 1, which is replaced by the antiferromagnetic resonance below the Néel temperature TN=8.3 K . The temperature dependence of the EPR linewidth between Ts 1 and TN agrees with the predictions for the one-dimensional Heisenberg antiferromagnetic chain of S =1 /2 spins in the presence of symmetric anisotropic exchange interaction. Complementary analysis of the EPR line shape, linewidth, and the signal intensity within the Tomonaga-Luttinger liquid (TLL) framework allows for a determination of the TLL exponent K =0.48 . Present EPR data thus fully comply with the quantum antiferromagnetic state of spin-1/2 chains in the orbitally ordered phase of CsO2, which is therefore a unique p -orbital system where such a state could be studied.

  18. Spin-label electron paramagnetic resonance studies on the interaction of avidin with dimyristoyl-phosphatidylglycerol membranes.

    PubMed

    Swamy, M J; Marsh, D

    2001-08-06

    The interaction of avidin--a basic protein from hen egg-white--with dimyristoyl-phosphatidylglycerol membranes was investigated by spin-label electron paramagnetic resonance spectroscopy. Phosphatidylcholines, bearing the nitroxide spin label at different positions along the sn-2 acyl chain of the lipid were used to investigate the effect of protein binding on the lipid chain-melting phase transition and acyl chain dynamics. Binding of the protein at saturating levels results in abolition of the chain-melting phase transition of the lipid and accompanying perturbation of the lipid acyl chain mobility. In the fluid phase region, the outer hyperfine splitting increases for all phosphatidylcholine spin-label positional isomers, indicating that the chain mobility is decreased by binding avidin. However, there was no evidence for direct interaction of the protein with the lipid acyl chains, clearly indicating that the protein does not penetrate the hydrophobic interior of the membrane. Selectivity experiments with different spin-labelled lipid probes indicate that avidin exhibits a preference for negatively charged lipid species, although all spin-labelled lipid species indirectly sense the protein binding. The interaction with negatively charged lipids is relevant to the use of avidin in applications such as the ultrastructural localization of biotinylated lipids in histochemical studies.

  19. Investigation of some parameters influencing the sensitivity of human tooth enamel to gamma radiation using electron paramagnetic resonance.

    PubMed

    El-Faramawy, Nabil

    2008-05-01

    Electron paramagnetic resonance (EPR) has been successfully used as a physical technique for gamma radiation dose reconstruction using calcified tissues. To minimize potential discrepancies between EPR readings in future studies, the effects of cavity response factor, tooth position and donor gender on the estimated gamma radiation dose were studied. It was found that the EPR response per sample mass used for assessment of doses in teeth outside of the 70-100 mg range should be corrected by a factor which is a function of the sample mass. In the EPR measurements, the difference in sensitivity of different tooth positions to gamma-radiation was taken into consideration. It was determined that among all the pre-molars and molars tooth positions, the relative standard deviation of sensitivity was 6.5%, with the wisdom teeth and the first molars having the highest and lowest sensitivity to gamma-radiation, respectively. The current results reveal no effect of the donor gender on the sensitivity to gamma-radiation.

  20. A quantitative method to monitor reactive oxygen species production by electron paramagnetic resonance in physiological and pathological conditions.

    PubMed

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the "instantaneous" presence of ROS returning absolute concentration levels that correlate with "a posteriori" assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R (2) = 0.95), plasma (R (2) = 0.82), and erythrocytes (R (2) = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001-0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials.

  1. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations.

    PubMed

    Severino, Joyce Ferreira; Goodman, Bernard A; Kay, Christopher W M; Stolze, Klaus; Tunega, Daniel; Reichenauer, Thomas G; Pirker, Katharina F

    2009-04-15

    Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and (-)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O(2)(-)) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O(2)(-) oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O(2)(-) oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.

  2. Evaluation of synergistic antioxidant potential of complex mixtures using oxygen radical absorbance capacity (ORAC) and electron paramagnetic resonance (EPR).

    PubMed

    Parker, Tory L; Miller, Samantha A; Myers, Lauren E; Miguez, Fernando E; Engeseth, Nicki J

    2010-01-13

    Previous research has demonstrated that certain combinations of compounds result in a decrease in toxic or pro-oxidative effects, previously noted when compounds were administered singly. Thus, there is a need to study many complex interactions further. Two in vitro techniques [electron paramagnetic resonance (EPR) and oxygen radical absorbance capacity (ORAC) assays] were used in this study to assess pro- and antioxidant capacity and synergistic potential of various compounds. Rutin, p-coumaric acid, abscisic acid, ascorbic acid, and a sugar solution were evaluated individually at various concentrations and in all 26 possible combinations at concentrations found in certain foods (honey or papaya), both before and after simulated digestion. EPR results indicated sugar-containing combinations provided significantly higher antioxidant capacity; those combinations containing sugars and ascorbic acid demonstrated synergistic potential. The ORAC assay suggested additive effects, with some combinations having synergistic potential, although fewer combinations were significantly synergistic after digestion. Finally, ascorbic acid, caffeic acid, quercetin, and urate were evaluated at serum-achievable levels. EPR analysis did not demonstrate additive or synergistic potential, although ORAC analysis did, principally in combinations containing ascorbic acid.

  3. Two-state transition between molten globule and unfolded states of acetylcholinesterase as monitored by electron paramagnetic resonance spectroscopy.

    PubMed Central

    Kreimer, D I; Szosenfogel, R; Goldfarb, D; Silman, I; Weiner, L

    1994-01-01

    Cys-231 of Torpedo californica acetylcholinesterase (EC 3.1.1.7) was selectively labeled with the mercury derivative of a stable nitroxyl radical. In 1.5 M guanidinium chloride, this conjugate exists in a molten globule state (MG), whereas in 5 M denaturant, it is in an unfolded state (U). The transition between the two states is reversible. In the MG, the label is highly immobilized, whereas in the U, it is almost freely rotating. The clearly distinct electron paramagnetic resonance (EPR) spectra of the two states permits the study of this transition. Upon elevating the guanidinium chloride concentration, a decrease in the EPR signal of the MG occurs concomitantly with an increase in the U signal, the total intensity of the EPR spectra remaining constant. This behavior is characteristic of a two-state transition. The thermodynamic characteristics of this transition (delta G0 and m), whether estimated directly from the EPR data or from both CD and fluorescence data analyzed by assuming a two-state scheme, are in good agreement. PMID:7991597

  4. Transmembrane signal transduction in archaeal phototaxis: the sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy.

    PubMed

    Klare, Johann P; Bordignon, Enrica; Engelhard, Martin; Steinhoff, Heinz-Jürgen

    2011-09-01

    Archaeal photoreceptors, together with their cognate transducer proteins, mediate phototaxis by regulating cell motility through two-component signal transduction pathways. This sensory pathway is closely related to the bacterial chemotactic system, which has been studied in detail during the past 40 years. Structural and functional studies applying site-directed spin labelling and electron paramagnetic resonance spectroscopy on the sensory rhodopsin II/transducer (NpSRII/NpHtrII) complex of Natronomonas pharaonis have yielded insights into the structure, the mechanisms of signal perception, the signal transduction across the membrane and provided information about the subsequent information transfer within the transducer protein towards the components of the intracellular signalling pathway. Here, we provide an overview about the findings of the last decade, which, combined with the wealth of data from research on the Escherichia coli chemotaxis system, served to understand the basic principles microorganisms use to adapt to their environment. We document the time course of a signal being perceived at the membrane, transferred across the membrane and, for the first time, how this signal modulates the dynamic properties of a HAMP domain, a ubiquitous signal transduction module found in various protein classes. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. An electron paramagnetic resonance method for measuring the affinity of a spin-labeled analog of cholesterol for phospholipids.

    PubMed

    Williams, Justin A; Wassall, Cynthia D; Kemple, Marvin D; Wassall, Stephen R

    2013-09-01

    Cholesterol (chol)-lipid interactions are thought to play an intrinsic role in determining lateral organization within cellular membranes. Steric compatibility of the rigid steroid moiety for ordered saturated chains contributes to the high affinity that holds chol and sphingomyelin together in lipid rafts whereas, conversely, poor affinity of the sterol for highly disordered polyunsaturated fatty acids (PUFAs) is hypothesized to drive the formation of PUFA-containing phospholipid domains depleted in chol. Here, we describe a novel method using electron paramagnetic resonance (EPR) to measure the relative affinity of chol for different phospholipids. We monitor the partitioning of 3β-doxyl-5α-cholestane (chlstn), a spin-labeled analog of chol, between large unilamellar vesicles (LUVs) and cyclodextrin (mβCD) through analysis of EPR spectra. Because the shape of the EPR spectrum for chlstn is sensitive to the very different tumbling rates of the two environments, the ratio of the population of chlstn in LUVs and mβCD can be determined directly from spectra. Partition coefficients (K(B)(A)) between lipids derived from our results for chlstn agree with values obtained for chol and confirm that decreased affinity for the sterol accompanies increasing acyl chain unsaturation. The virtue of this EPR method is that it provides a measure of chol binding that is quick, employs a commercially available probe and avoids the necessity for physical separation of LUVs and mβCD.

  6. Increased Electron Paramagnetic Resonance Signal Correlates with Mitochondrial Dysfunction and Oxidative Stress in an Alzheimer’s Disease Mouse Brain

    PubMed Central

    Fang, Du; Zhang, Zhihua; Li, Hang; Yu, Qing; Douglas, Justin T.; Bratasz, Anna; Kuppusamy, Periannan; Yan, Shirley ShiDu

    2016-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized clinically by cognitive decline and memory loss. The pathological features are amyloid-β peptide (Aβ) plaques and intracellular neurofibrillary tangles. Many studies have suggested that oxidative damage induced by reactive oxygen species (ROS) is an important mechanism for AD progression. Our recent study demonstrated that oxidative stress could further impair mitochondrial function. In the present study, we adopted a transgenic mouse model of AD (mAPP, overexpressing AβPP/Aβ in neurons) and performed redox measurements using in vivo electron paramagnetic resonance (EPR) imaging with methoxycarbamyl-proxyl (MCP) as a redox-sensitive probe for studying oxidative stress in an early stage of pathology in a transgenic AD mouse model. Through assessing oxidative stress, mitochondrial function and cognitive behaviors of mAPP mice at the age of 8–9 months, we found that oxidative stress and mitochondrial dysfunction appeared in the early onset of AD. Increased ROS levels were associated with defects of mitochondrial and cognitive dysfunction. Notably, the in vivo EPR method offers a unique way of assessing tissue oxidative stress in living animals under noninvasive conditions, and thus holds a potential for early diagnosis and monitoring the progression of AD. PMID:26890765

  7. Naringenin Ameliorates Doxorubicin Toxicity and Hypoxic Condition in Dalton's Lymphoma Ascites Tumor Mouse Model: Evidence from Electron Paramagnetic Resonance Imaging.

    PubMed

    Kathiresan, Venkatesan; Subburaman, Swathika; Krishna, Arun Venkatesh; Natarajan, Mathivanan; Rathinasamy, Gandhidasan; Ganesan, Kumaresan; Ramachandran, Murugesan

    2016-01-01

    Doxorubicin (DOX) is a well-known cytotoxic agent used extensively as a chemotherapeutic drug to eradicate a wide variety of human cancers. Reactive oxygen species (ROS)-mediated oxidative stress during DOX treatment can induce cardiac, renal, and hepatic toxicities, which can constrain its use as a potential cytotoxic agent. The present work investigates the antioxidant potential of naringenin (NAR) against DOXinduced toxicities of a Dalton's lymphoma ascites (DLA) tumor-bearing mouse model. Mice were randomized into four groups: a negative control, positive control, DOX (2.5 mg/kg) treated, and DOX (2.5 mg/kg) + NAR (50 mg/kg/d) treated. DOX administration significantly altered the levels of functional markers in blood and antioxidant enzymes in kidney, heart, lung, liver, spleen, and tumor tissues. These changes in antioxidant enzymes and successive lipid peroxidation were prevented by NAR supplementation, resulting in decreases in the risk of toxicity due to DOX therapy. Histopathology results and electron paramagnetic resonance imaging (EPRI) of the tumor microenvironment confirmed this evidence. Using EPRI, pharmacokinetics of the nitroxide, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3-CP) was monitored intratumorally before and after chemotherapy. EPRI of the DOX + NAR-treated mouse model showed reduced tumor size with significant modification of the hypoxic condition inside the tumor microenvironment. Consequently, these findings suggest that NAR treatment significantly reduces DOX-induced toxicity and the hypoxic condition in a DLA tumor-bearing mouse model.

  8. Retrospective assessment of radiation exposure using biological dosimetry: chromosome painting, electron paramagnetic resonance and the glycophorin a mutation assay.

    PubMed

    Kleinerman, R A; Romanyukha, A A; Schauer, D A; Tucker, J D

    2006-07-01

    Biological monitoring of dose can contribute important, independent estimates of cumulative radiation exposure in epidemiological studies, especially in studies in which the physical dosimetry is lacking. Three biodosimeters that have been used in epidemiological studies to estimate past radiation exposure from external sources will be highlighted: chromosome painting or FISH (fluorescence in situ hybridization), the glycophorin A somatic mutation assay (GPA), and electron paramagnetic resonance (EPR) with teeth. All three biodosimeters have been applied to A-bomb survivors, Chernobyl clean-up workers, and radiation workers. Each biodosimeter has unique advantages and limitations depending upon the level and type of radiation exposure. Chromosome painting has been the most widely applied biodosimeter in epidemiological studies of past radiation exposure, and results of these studies provide evidence that dose-related translocations persist for decades. EPR tooth dosimetry has been used to validate dose models of acute and chronic radiation exposure, although the present requirement of extracted teeth has been a disadvantage. GPA has been correlated with physically based radiation dose after high-dose, acute exposures but not after low-dose, chronic exposures. Interindividual variability appears to be a limitation for both chromosome painting and GPA. Both of these techniques can be used to estimate the level of past radiation exposure to a population, whereas EPR can provide individual dose estimates of past exposure. This paper will review each of these three biodosimeters and compare their application in selected epidemiological studies.

  9. Electron paramagnetic resonance investigation on modulatory effect of benidipine on membrane fluidity of erythrocytes in essential hypertension.

    PubMed

    Tsuda, Kazushi

    2008-03-01

    It has been shown that benidipine, a long-lasting calcium (Ca) channel blocker, may exert its protective effect against vascular disorders by increasing nitric oxide (NO) production. The purpose of the present study was to investigate whether orally administered benidipine might influence the membrane function in patients with essential hypertension. We measured the membrane fluidity of erythrocytes by using an electron paramagnetic resonance (EPR) and spin-labeling method. In the preliminary study using erythrocytes obtained from healthy volunteers, benidipine decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS in the EPR spectra in vitro. The finding indicated that benidipine increased the membrane fluidity and improved the microviscosity of erythrocytes. In addition, it was demonstrated that the effect of benidipine on membrane fluidity of erythrocytes was significantly potentiated by the NO-substrate, L-arginine. In the separate series of the study, we observed that orally administered benidipine for 4 weeks significantly increased the membrane fluidity of erythrocytes with a concomitant increase in plasma NO metabolite levels in hypertensive subjects. The results of the present study demonstrated that benidipine might increase the membrane fluidity and improve the microviscosity of erythrocytes both in vitro and in vivo, to some extent, by the NO-dependent mechanism. Furthermore, it is strongly suggested that orally administered benidipine might have a beneficial effect on the rheologic behavior of erythrocytes and the improvement of the microcirculation in hypertensive subjects.

  10. Axially uniform magnetic field-modulation excitation for electron paramagnetic resonance in rectangular and cylindrical cavities by slot cutting

    NASA Astrophysics Data System (ADS)

    Sidabras, Jason W.; Richie, James E.; Hyde, James S.

    2017-01-01

    In continuous-wave (CW) Electron Paramagnetic Resonance (EPR) a low-frequency time-harmonic magnetic field, called field modulation, is applied parallel to the static magnetic field and incident on the sample. Varying amplitude of the field modulation incident on the sample has consequences on spectral line-shape and line-height over the axis of the sample. Here we present a method of coupling magnetic field into the cavity using slots perpendicular to the sample axis where the slot depths are designed in such a way to produce an axially uniform magnetic field along the sample. Previous literature typically assumes a uniform cross-section and axial excitation due to the wavelength of the field modulation being much larger than the cavity. Through numerical analysis and insights obtained from the eigenfunction expansion of dyadic Green's functions, it is shown that evanescent standing-wave modes with complex cross-sections are formed within the cavity. From this analysis, a W-band (94 GHz) cylindrical cavity is designed where modulation slots are optimized to present a uniform 100 kHz field modulation over the length of the sample.

  11. Axially uniform magnetic field-modulation excitation for electron paramagnetic resonance in rectangular and cylindrical cavities by slot cutting.

    PubMed

    Sidabras, Jason W; Richie, James E; Hyde, James S

    2017-01-01

    In continuous-wave (CW) Electron Paramagnetic Resonance (EPR) a low-frequency time-harmonic magnetic field, called field modulation, is applied parallel to the static magnetic field and incident on the sample. Varying amplitude of the field modulation incident on the sample has consequences on spectral line-shape and line-height over the axis of the sample. Here we present a method of coupling magnetic field into the cavity using slots perpendicular to the sample axis where the slot depths are designed in such a way to produce an axially uniform magnetic field along the sample. Previous literature typically assumes a uniform cross-section and axial excitation due to the wavelength of the field modulation being much larger than the cavity. Through numerical analysis and insights obtained from the eigenfunction expansion of dyadic Green's functions, it is shown that evanescent standing-wave modes with complex cross-sections are formed within the cavity. From this analysis, a W-band (94GHz) cylindrical cavity is designed where modulation slots are optimized to present a uniform 100kHz field modulation over the length of the sample. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mn(II) Binding and Subsequent Oxidation by the Multicopper Oxidase MnxG Investigated by Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Tao, Lizhi; Stich, Troy A; Butterfield, Cristina N; Romano, Christine A; Spiro, Thomas G; Tebo, Bradley M; Casey, William H; Britt, R David

    2015-08-26

    The dynamics of manganese solid formation (as MnOx) by the multicopper oxidase (MCO)-containing Mnx protein complex were examined by electron paramagnetic resonance (EPR) spectroscopy. Continuous-wave (CW) EPR spectra of samples of Mnx, prepared in atmosphere and then reacted with Mn(II) for times ranging from 7 to 600 s, indicate rapid oxidation of the substrate manganese (with two-phase pseudo-first-order kinetics modeled using rate coefficients of: k(1obs) = 0.205 ± 0.001 s(-1) and k(2obs) = 0.019 ± 0.001 s(-1)). This process occurs on approximately the same time scale as in vitro solid MnOx formation when there is a large excess of Mn(II). We also found CW and pulse EPR spectroscopic evidence for at least three classes of Mn(II)-containing species in the reaction mixtures: (i) aqueous Mn(II), (ii) a specifically bound mononuclear Mn(II) ion coordinated to the Mnx complex by one nitrogenous ligand, and (iii) a weakly exchange-coupled dimeric Mn(II) species. These findings provide new insights into the molecular mechanism of manganese mineralization.

  13. Electron paramagnetic resonance of [(CH3)3NH]CuCl3.2H2O

    NASA Astrophysics Data System (ADS)

    Ritter, Mark B.; Drumheller, John E.; Kite, Terence M.; Snively, Leslie O.; Emerson, Kenneth

    1983-11-01

    The electron paramagnetic resonance of [(CH3)3NH]CuCl3.2H2O has been studied in the temperature range of 4 K to room temperature. This compound is known to behave magnetically as a spin- 1/2 , one-dimensional Heisenberg ferromagnetic with ordering below 1K. In the high-temperature regime the EPR data show a rich angular dependence of the linewidths as the magnetic field is rotated away from the chain. The data were analyzed in manner similar to that used by McGregor and Soos, who used the Blume-Hubbard result for spin dynamics and extracted exchange anisotropies in one dimension. For adequate fit, we reduced the symmetry of symmetric anisotropic exchange to orthorhombic and included the antisymmetric exchange. Isotropic symmetric, dipolar, anisotropic symmetric, and antisymmetric exchange therefore were included with the room temperature results of J0=0.8 K, Dd=0.058 K, De=0.032 K, and d=0.043 K, respectively, and further show about a 12% XY character to the exchange. These results are reasonably consistent with the previous results on this compound. Splitting of the EPR lines indicate that there are two inequivalent chains along the needle axis. Data to 4 K indicate no significant changes in the angle dependence but an anomalous monotonic broadening of the linewidths is observed as temperature is lowered.

  14. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    PubMed

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  15. Probing the donor side of photosystem II in spinach chloroplasts and algae using electron paramagnetic resonance

    SciTech Connect

    Boska, M.D.

    1985-11-01

    this work concerns electron transfer reactions in photosystem II (PS II). Investigations carried out in this work examine the redox reaction rates in PS II using EPR. In Tris-washed PS II preparations from spinach, it is observed that the oxidation kinetics of S II/sub f/, the EPR signal formed by Z/sup +/ after deactivation of oxygen evolution, mirror the reduction kinetics of P680/sup +/ seen by EPR in samples poised at a variety of pH's. These data agree with previous data on the optically measured reduction kinetics of P680/sup +/. The oxidation kinetics of S II/sub vf/, the EPR transient seen from Z/sup +/ in samples active in O/sub 2/ evolving samples, were instrument limited (t/sub 1/2/ less than 4 ..mu..s) and thus could not be directly measured. These results taken together support a model where Z donates electrons directly to P680/sup +/. The examination of the oxidation and reduction kinetics of S II in monovalent and divalent salt-washed PS II preparations from spinach correlated most of the change of Z oxidation and re-reduction kinetics seen upon Tris-treatment with the loss of a 33 kDa polypeptide associated with the donor side of PS II. These data coupled with observations of stead-state light-induced amplitude changes in S II give evidence for the existance of an electron carrier between the water-splitting enzyme and Z. Observation of S II amplitude and kinetics in highly resolved PS II protein complexes from Synechoccus sp., consisting of either a 5 polypeptide PS II core complex (E-1) or a 4 polypeptide PS II core complex (CP2b), localize Z and P680 within the 4 polypeptide complex. 187 refs., 17 figs., 7 tabs.

  16. Electrochemical and electron paramagnetic resonance studies of a carotenoid cation radicals and dications: Effect of deuteration

    SciTech Connect

    Khaled, M.; Hadjipetrou, A.; Kispert, L. )

    1990-06-14

    The oxidation process involving the transfer of two electrons for {beta}-carotene is confirmed by bulk electrolysis in a CH{sub 2}Cl{sub 2} solvent and the observation of {Delta}E = 42 mV from cyclic voltammetric measurements. A similar process is also found to occur for {beta}-apo-8{prime}-carotenal and canthaxanthin. An additional cathodic peak between 0.2 0.5 relative to SCE is shown to be dependent on the initial formation of dications followed by the loss of H{sup +} as evidenced by a large isotope effect and most likely due to the reduction of a carotenoid cation. EPR evidence exists for the formation of radical cations by the reaction of diffusing carotenoid dictations with neutral carotenoids. The rate of formation is consistent with the differences in the diffusion coefficients of the carotenoids deduced by chronocoulometric measurements, being fastest for canthaxanthin.

  17. Biologic dosimetry for nuclear environments by electron paramagnetic resonance (EPR) methods. Conference paper

    SciTech Connect

    McCreery, M.J.; Swenberg, C.E.; Basso, M.J.; Conklin, J.J.; Hsieh, J.

    1982-06-18

    A number of stable and unstable free radicals are produced by exposure of calcified tissues to ionizing radiation. Identification of the exact molecular nature of these radicals and their kinetic annealing properties awaits further investigation. However, the high stability and the dose-response characteristics of the signal at g = 2.0023 make it very promising for use in biologic dosimetry. A 10-25 mg sample of enamel is enough to determine absorbed dose from 10-10 to the 7th power rads of gamma, X-ray, and accelerated electron exposures. This sample, which is no more than a chip from the ridge of a human tooth, does not expose the living portion of the tooth and so is relatively noninvasive. Investigations to establish a standard method for this procedure and to evaluate neutron dose is in progress. Although the procedures outlined here are relatively noninvasive, this technique affords other approaches that are even less invasive. Unlike optical methods, the sample for EPR analysis does not have to be transparent. It is not even necessary to suspend the sample as a fine powder. As long as the bone or tooth sample is within the dimensional limits of the tuned EPR cavity, it can be analyzed intact. This fact makes in vivo analysis feasible. We are currently making attempts to enlarge the EPR cavity with modification of the corresponding electronic components so that a finger can be analyzed. If this approach is successful, the expedient evaluation of large numbers of casualties might be possible by a method that is noninvasive and nondestructive.

  18. Pulsed Electron Paramagnetic Resonance Study of Domain Docking in Neuronal Nitric Oxide Synthase: The Calmodulin and Output State Perspective

    PubMed Central

    2015-01-01

    The binding of calmodulin (CaM) to neuronal nitric oxide synthase (nNOS) enables formation of the output state of nNOS for nitric oxide production. Essential to NOS function is the geometry and dynamics of CaM docking to the NOS oxygenase domain, but little is known about these details. In the present work, the domain docking in a CaM-bound oxygenase/FMN (oxyFMN) construct of nNOS was investigated using the relaxation-induced dipolar modulation enhancement (RIDME) technique, which is a pulsed electron paramagnetic resonance technique sensitive to the magnetic dipole interaction between the electron spins. A cysteine was introduced at position 110 of CaM, after which a nitroxide spin label was attached at the position. The RIDME study of the magnetic dipole interaction between the spin label and the ferric heme centers in the oxygenase domain of nNOS revealed that, with increasing [Ca2+], the concentration of nNOS·CaM complexes increases and reaches a maximum at [Ca2+]/[CaM] ≥ 4. The RIDME kinetics of CaM-bound nNOS represented monotonous decays without well-defined oscillations. The analysis of these kinetics based on the structural models for the open and docked states has shown that only about 15 ± 3% of the CaM-bound nNOS is in the docked state at any given time, while the remaining 85 ± 3% of the protein is in the open conformations characterized by a wide distribution of distances between the bound CaM and the oxygenase domain. The results of this investigation are consistent with a model that the Ca2+–CaM interaction causes CaM docking with the oxygenase domain. The low population of the docked state indicates that the CaM-controlled docking between the FMN and heme domains is highly dynamic. PMID:25046446

  19. Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy.

    PubMed

    Kadam, R M; Rajeswari, B; Sengupta, Arijit; Achary, S N; Kshirsagar, R J; Natarajan, V

    2015-02-25

    A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P4(2)/mnm, a=4.5946(1) Å, c=2.9597(1) Å, V=62.48(1) (Å)(3), Z=2; anatase: space group I4(1)/amd, 3.7848(2) Å, 9.5098(11) Å, V=136.22(2) (Å)(3), Z=4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V(4+), Cr(3+), Mn(4+) and Fe(3+) species. EPR studies revealed the presence of transition metal ions V(4+)(d(1)), Cr(3+)(d(3)), Mn(4+)(d(3)) and Fe(3+)(d(5)) at Ti(4+) sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s>1) suggesting that the transition metal ions substitute the Ti(4+) in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S=3/2 and 5/2) are discussed.

  20. On-chip integration of high-frequency electron paramagnetic resonance spectroscopy and Hall-effect magnetometry.

    PubMed

    Quddusi, H M; Ramsey, C M; Gonzalez-Pons, J C; Henderson, J J; del Barco, E; de Loubens, G; Kent, A D

    2008-07-01

    A sensor that integrates high-sensitivity micro-Hall effect magnetometry and high-frequency electron paramagnetic resonance spectroscopy capabilities on a single semiconductor chip is presented. The Hall-effect magnetometer (HEM) was fabricated from a two-dimensional electron gas GaAsAlGaAs heterostructure in the form of a cross, with a 50 x 50 microm2 sensing area. A high-frequency microstrip resonator is coupled with two small gaps to a transmission line with a 50 Omega impedance. Different resonator lengths are used to obtain quasi-TEM fundamental resonant modes in the frequency range 10-30 GHz. The resonator is positioned on top of the active area of the HEM, where the magnetic field of the fundamental mode is largest, thus optimizing the conversion of microwave power into magnetic field at the sample position. The two gaps coupling the resonator and transmission lines are engineered differently--the gap to the microwave source is designed to optimize the loaded quality factor of the resonator (Q

  1. Binding of manganese(II) to a tertiary stabilized hammerhead ribozyme as studied by electron paramagnetic resonance spectroscopy

    PubMed Central

    KISSELEVA, NATALIA; KHVOROVA, ANASTASIA; WESTHOF, ERIC; SCHIEMANN, OLAV

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to study the binding of MnII ions to a tertiary stabilized hammer-head ribozyme (tsHHRz) and to compare it with the binding to the minimal hammerhead ribozyme (mHHRz). Continuous wave EPR measurements show that the tsHHRz possesses a single high-affinity MnII binding site with a KD of ≤10 nM at an NaCl concentration of 0.1 M. This dissociation constant is at least two orders of magnitude smaller than the KD determined previously for the single high-affinity MnII site in the mHHRz. In addition, whereas the high-affinity MnII is displaced from the mHHRz upon binding of the aminoglycoside antibiotic neomycin B, it is not from the tsHHRz. Despite these pronounced differences in binding, a comparison between the electron spin echo envelope modulation and hyperfine sublevel correlation spectra of the minimal and tertiary stabilized HHRz demonstrates that the structure of both binding sites is very similar. This suggests that the MnII is located in both ribozymes between the bases A9 and G10.1 of the sheared G · A tandem base pair, as shown previously and in detail for the mHHRz. Thus, the much stronger MnII binding in the tsHHRz is attributed to the interaction between the two external loops, which locks in the RNA fold, trapping the MnII in the tightly bound conformation, whereas the absence of long-range loop–loop interactions in the mHHRz leads to more dynamical and open conformations, decreasing MnII binding. PMID:15611296

  2. Photoluminescence, thermally stimulated luminescence and electron paramagnetic resonance investigations of Tb{sup 3+} doped SrBPO{sub 5}

    SciTech Connect

    Kumar, Mithlesh; Seshagiri, T.K.; Kadam, R.M.; Godbole, S.V.

    2011-09-15

    Graphical abstract: EPR spectra of BOHC's in 2 kGy {gamma}-irradiated SrBPO{sub 5}:Tb sample using Receiver Gain RG = 4 x 10{sup 4}, Modulation Amplitude MA = 0.25 G, Microwave power setting 6.3 mW: (A) un-annealed sample recorded at 300 K, (B) un-annealed sample recorded at 100 K and (C) sample annealed at 550 K for 10 min and recorded at 100 K. Highlights: {yields} PL studies on Tb doped SrBPO{sub 5} phosphor have shown emission due to Tb{sup 3+} associated with {sup 5}D{sub 3} {yields} {sup 7}F{sub J} and {sup 5}D{sub 4} {yields} {sup 7}F{sub J} (J = 3, 4, 5 and 6) transitions. {yields} The EPR studies on {gamma}-irradiated samples revealed formation of three types of boron oxygen hole trapped centres viz., BOHC{sub 1}, BOHC{sub 2} and BOHC{sub 3} and an electron trapped centre. {yields} The TSL peak at 475 K was associated with the thermal destruction of BOHC{sub 2}. -- Abstract: Trap level spectroscopic studies were carried out on {gamma}-irradiated Tb (1 mole%) doped SrBPO{sub 5} were carried out using photoluminescence (PL), thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) techniques. The incorporation of Tb in the 3+ oxidation state was ascertained from PL studies. Life time for Tb{sup 3+} emission corresponding to the intense transition {sup 5}D{sub 4} {yields} {sup 7}F{sub 5} at 543 nm was determined. The spectral characteristics of the TSL glows have shown that Tb{sup 3+} ions act as the emission center for the glow peak at 475 K. The trap parameters of the glow peak were determined. EPR investigations at room temperature/77 K revealed the stabilization of three boron oxygen hole trapped centers (BOHC's) and oxygen centered radicals such as O{sup -} and O{sub 2}{sup -} and trapped electrons in room temperature {gamma}-irradiated samples. TSL glow peak at 475 K was found to be associated with recombination of electron released from trapped electron center and the BOHC{sub 2} center.

  3. Effect of Rabi splitting on the low-temperature electron paramagnetic resonance signal of anthracite

    NASA Astrophysics Data System (ADS)

    Fedaruk, Ryhor; Strzelczyk, Roman; Tadyszak, Krzysztof; Markevich, Siarhei A.; Augustyniak-Jabłokow, Maria Aldona

    2017-01-01

    Specific distortions of the EPR signal of bulk anthracite are observed at low temperatures. They are accompanied by variations in the microwave oscillator frequency and are explained by the manifestation of the Rabi splitting due to the strong coupling between electron spins and the cavity, combined with the use of an automatic frequency-control (AFC) system. EPR signals are recorded at negligible saturation in the temperature range of 4-300 K with use of the AFC system to keep the oscillator frequency locked to the resonant frequency of the TM110 cylinder cavity loaded with the sample. For the sample with a mass of 3.6 mg the line distortions are observed below 50 K and increase with temperature lowering. The oscillator frequency variations are used to estimate the coupling strength as well as the number of spins in the sample. It is shown that the spin-cavity coupling strength is inversely proportional to temperature and can be used for the absolute determination of the number of spins in a sample. Our results indicate that at low temperatures even 1016 spins of the anthracite sample, with a mass of about 0.5 mg, can distort the EPR line.

  4. Electron Paramagnetic Resonance Characterization of Dioxygen-Bridged Cobalt Dimers with Relevance to Water Oxidation.

    PubMed

    Stich, Troy A; McAlpin, J Gregory; Wall, Ryan M; Rigsby, Matthew L; Britt, R David

    2016-12-19

    A variety of metal oxides can catalyze the oxidation of water to molecular oxygen when polarized by a sufficiently high electrochemical potential. Minimizing the overpotential and increasing the rate of the oxygen-evolving reaction (OER) are key goals in making such materials a component of viable energy storage devices. However, the structural factors that imbue the metal oxides with their catalytic power are difficult to assess as these solids contain many distinct metal-ion sites, have a varying amount of defect sites within the lattice, and can be composed of multiple phases. In the present study, we determined the magnetic properties for a series of dimeric cobalt complexes in which the two metal centers are bridged by a dioxygen moiety. Our spectroscopically validated electronic structure description indicates that each species is best described as two Co(III) ions that are bound to a μ-η(1)η(1) superoxide ligand. Intriguingly, we found evidence that the two compounds that possess oxygen-evolving activity coordinate the superoxide ion in an unusual, nonplanar fashion. It appears as if the intermediately long Co···Co distance of 3.9 Å is responsible for the unusual superoxide binding geometry. This structural factor may be an important element in the design of solid-state OER catalysts.

  5. Electron paramagnetic resonance method for the determination of orientation in the amorphous regions of polymers

    SciTech Connect

    Shimada, S.; Williams, F.

    1980-11-01

    An elongated film of polyethylene was cut into narrow strips which were stacked together and placed in sample tubes. Samples were prepared with the stretching of the film stack being either parallel or perpendicular to the axis of the sample tube. Tetrafluoroethylene (C/sub 2/F/sub 4/) was condensed into the tube at -196/sup 0/C from a storage bulb. The amount of C/sub 2/F/sub 4/ transferred into the tube was ca 10 mol% of the ethylene units in the polyethylene sample, generating a pressure of ca 5 atm in the sealed tube at room temperature. The samples were stored for 1 week at ambient temperature, then irradiated at -196/sup 0/C with /sup 60/Co gamma rays for a total dose of 1 Mrd. Electron spin resonance measurements were conducted on the irradiated samples at 80K and higher temperatures. The spectra indicate that the preferred orientation of the C-C symmetry axis of C/sub 2/F/sub 4//sup -/ is perpendicular to the stretching direction in the polymer and, therefore, perpendicular to the polymer main chain. The anisotropy shown can be considered to reflect the degree of order in the amorphous regions. Results for computer simulated spectra show correlation with experimental values. 10 references, 3 figures.

  6. Electron-paramagnetic-resonance parameters of molybdenum(V) in sulphite oxidase from chicken liver.

    PubMed Central

    Lamy, M T; Gutteridge, S; Bary, R C

    1980-01-01

    A study has been made of e.p.r. signals due to Mo(V) in reduced sulphite oxidase (EC 1.8.3.1) from chicken liver. Reduction by SO3(2-), or photochemically in the presence of a deazaflavin derivative, produces spectra indistinguishable from one another. Three types of spectra from the enzyme were distingusihed and shown to correspond to single chemical species, since they could be simulated at both 9 and 35 GHz by using the same parameters. These were the low-pH form of the enzyme, with gav. 1.9805, the high-pH form, with gav. 1.9681 and a phosphate complex, with gav. 1.9741. The low-H form shows interaction with a single exchangeable proton, with A(1H)av. (hyperfine coupling constant) = 0.98 mT, probably in the form of an MoOH group. Parameters of the signals are compared with those for signals from xanthine oxidase and nitrate reductase. The signal from the phosphate complex of sulphite oxidase in unique among anion complexes of Mo-containing enzymes in showing no hyperfine coupling to protons. There is no evidence for additional weakly coupled protons or nitrogen nuclei in the sulphite oxidase signals. The possibility is considered that the enzymic mechanism involves abstraction of a proton and two electrons from HSO3- by a Mo = O group in the enzyme. PMID:6249254

  7. Electron paramagnetic resonance study of free radicals in γ-irradiated L-glutamine and L-glutamine-t-butyl ester hydrochloride

    NASA Astrophysics Data System (ADS)

    Yeşim Dicle, Işık; Osmanğolu, Şemsettin; İpek, Nazenin

    2015-01-01

    Electron paramagnetic resonance (EPR) spectra of γ-irradiated single crystals of l-glutamine (LG) and l-glutamine-t-butyl ester hydrochloride (LGBESHCI) powders were studied and analyzed for different orientations of the crystals in the magnetic field, after γ-irradiation. The spectra were observed to be independent of temperature down to 130 K. The hyperfine interaction tensors for one α proton and two β protons of radical have been determined at 295 K. An analysis of the EPR of γ-irradiated single crystals of LG and LGBESHCI powders shows that the paramagnetic species produced by the radiation damage is CH2ĊH. The g values of the radical and the hyperfine structure constants of the free electron with nearby protons and 14N nucleus were determined. The results were found to be in good agreement with the existing literature data.

  8. Application of electron paramagnetic resonance spectroscopy to comparative examination of different groups of free radicals in thermal injuries treated with propolis and silver sulphadiazine.

    PubMed

    Olczyk, Pawel; Ramos, Pawel; Bernas, Marcin; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara

    2013-01-01

    Different groups of free radicals expressed in burn wounds treated with propolis and silver sulphadiazine were examined. The thermal effect forms major types of free radicals in a wound because of the breaking of chemical bonds. Free radicals, located in the heated skin, were tested after 21 days of treating by these two substances. The aim of this work was to find the method for determination of types and concentrations of different groups of free radicals in wound after high temperature impact during burning. The effects of the therapy by propolis and silver sulphadiazine on free radicals were studied. Since the chemical methods of free radicals studies are destructive, the usefulness of the electron paramagnetic resonance spectroscopy was tested in this work. The electron paramagnetic resonance spectra measured with the microwave power of 2.2 mW were numerically fitted by theoretical curves of Gaussian and Lorentzian shapes. The experimental electron paramagnetic resonance spectra of tissue samples are best fitted by the sum of one Gauss and two Lorentz lines. An innovatory numerical procedure of spectroscopic skin analysis was presented. It is very useful in the alternative medicine studies.

  9. Role of leptin as antioxidant in obstructive sleep apnea: an in vitro study using electron paramagnetic resonance method.

    PubMed

    Macrea, Madalina; Martin, Thomas; Zagrean, Leon; Jia, Zhenquan; Misra, Hara

    2013-03-01

    As in obstructive sleep apnea (OSA), the chronic cycles of hypoxia and reoxygenation are thought to be conducive of oxidative stress (OS) with generation of reactive oxygen species, identifying effective mechanisms of protection against oxidant-mediated tissue damage becomes of outmost importance. Leptin's role had been recently extended into that of participant to OS; while its exact role in this process is yet to be defined, elevated leptin levels correlate significantly with several indices of OSA disease severity such as nocturnal hypoxemia, possibly acting as a counteractive mechanism against the chronic intermittent hypoxia-related OS and serving as a marker of future risk of atherosclerotic disease. We therefore investigated leptin's antioxidant mechanism on superoxide (O (2) (-•) ) anions using spectrophotometry and electron paramagnetic resonance (EPR). The O (2) (-•) was generated by oxidation of xanthine (XAN) by xanthine oxidase (XO) in the presence of spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide with various concentrations of leptin (0.001, 0.01, 0.1, and 1 mg/ml) and without leptin. Signal intensity between 3,440 and 3,540 G was expressed as standard means ± SD. The activity of leptin on XO was determined by monitoring the conversion of XAN to uric acid at 293 nm using a Beckman DU 800 UV-visible spectrophotometer. Leptin added to aqueous solutions at 0.1 and 1 mg/ml concentrations was associated with a statistically significant decrease in the EPR signal due to leptin's direct scavenging activity towards the O (2) (-•) . Leptin is an antioxidant agent of possible use as a marker of OS and future risk of atherosclerotic disease in OSA.

  10. Antioxidant activity of Calendula officinalis extract: inhibitory effects on chemiluminescence of human neutrophil bursts and electron paramagnetic resonance spectroscopy.

    PubMed

    Braga, Pier Carlo; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra; Falchi, Mario; Bertelli, Aldo; Morelli, Roberto; Lo Scalzo, Roberto

    2009-01-01

    There is growing interest in natural chemical compounds from aromatic, spicy, medicinal and other plants with antioxidant properties in order to find new sources of compounds inactivating free radicals generated by metabolic pathways within body tissue and cells, mainly polymorphonuclear leukocytes (PMNs) whose overregulated recruitment and activation generate a large amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS), leading to an imbalance of redox homeostasis and oxidative stress. The aim of this study was to examine whether a propylene glycol extract of Calendula officinalis interferes with ROS and RNS during the PMN respiratory bursts, and to establish the lowest concentration at which it still exerts antioxidant activity by means of luminol-amplified chemiluminescence. Electron paramagnetic resonance (EPR) spectroscopy was also used in order to confirm the activity of the C. officinalis extract. The C. officinalis extract exerted its anti-ROS and anti-RNS activity in a concentration-dependent manner, with significant effects being observed at even very low concentrations: 0.20 microg/ml without L-arginine, 0.10 microg/ml when L-arginine was added to the test with phorbol 12-myristate 13-acetate and 0.05 microg/ml when it was added to the test with N-formyl-methionyl-leucyl-phenylalanine. The EPR study confirmed these findings, 0.20 microg/ml being the lowest concentration of C. officinalis extract that significantly reduced 2,2-diphenyl-1-picrylhydrazyl. These findings are interesting for improving the antioxidant network and restoring the redox balance in human cells with plant-derived molecules as well as extending the possibility of antagonizing the oxidative stress generated in living organisms when the balance is in favor of free radicals as a result of the depletion of cell antioxidants. Copyright 2009 S. Karger AG, Basel.

  11. Measuring "free" iron levels in Caenorhabditis elegans using low-temperature Fe(III) electron paramagnetic resonance spectroscopy.

    PubMed

    Pate, Kira T; Rangel, Natalie A; Fraser, Brian; Clement, Matthew H S; Srinivasan, Chandra

    2006-11-15

    Oxidative stress, caused by free radicals within the body, has been associated with the process of aging and many human diseases. Because free radicals, in particular superoxide, are difficult to measure, an alternative indirect method for measuring oxidative stress levels has been used successfully in Escherichia coli and yeast. This method is based on a proposed connection between elevated superoxide levels and release of iron from solvent-exposed [4Fe-4S] enzyme clusters that eventually leads to an increase in hydroxyl radical production. In past studies using bacteria and yeast, a positive correlation was found between superoxide production or oxidative stress due to superoxide within the organism and electron paramagnetic resonance (EPR) detectable "free" iron levels. In the current study, we have developed a reliable and efficient method for measuring "free" iron levels in Caenorhabditis elegans using low-temperature Fe(III) EPR at g=4.3. This method uses synchronized worm cultures grown on plates that are homogenized and treated with desferrioxamine, an Fe(III) chelator, prior to packing the EPR tube. Homogenization was found not to alter "free" iron levels, whereas desferrioxamine treatment significantly raised these levels, indicating the presence of both Fe(II) and Fe(III) in the "free" iron pool. The correlation between free radical levels and the observed "free" iron levels was examined by using heat stress and paraquat treatment. The intensity of the Fe(III) EPR signal, and thus the concentration of the "free" iron pool, varied with the treatments that altered radical levels without changing the total iron levels. This study provides the groundwork needed to uncover the correlation among oxidative stress, "free" iron levels, and longevity in C. elegans.

  12. In vivo tumour extracellular pH monitoring using electron paramagnetic resonance: the effect of X-ray irradiation.

    PubMed

    Goodwin, Jonathan; Yachi, Katsuya; Nagane, Masaki; Yasui, Hironobu; Miyake, Yusuke; Inanami, Osamu; Bobko, Andrey A; Khramtsov, Valery V; Hirata, Hiroshi

    2014-04-01

    The in vivo quantification of extracellular pH (pHe ) in tumours may provide a useful biomarker for tumour cell metabolism. In this study, we assessed the viability of continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy with a pH-sensitive nitroxide for the measurement of extracellular tumour pH in a mouse model. CW-EPR spectroscopy (750 MHz) of C3H HeJ mice hind leg squamous cell tumour was performed after intravenous tail vein injection of pH-sensitive nitroxide (R-SG, 2-(4-((2-(4-amino-4-carboxybutanamido)-3-(carboxymethylamino)-3-oxoproylthio)methyl)phenyl)-4-pyrrolidino-2,5,5-triethyl-2,5-dihydro-1Н-imidazol-1-oxyl) during stages of normal tumour growth and in response to a single 10-Gy dose of X-ray irradiation. An inverse relationship was observed between tumour volume and pHe value, whereby, during normal tumour growth, a constant reduction in pHe was observed. This relationship was disrupted by X-ray irradiation and, from 2-3 days post-exposure, a transitory increase in pHe was observed. In this study, we demonstrated the viability of CW-EPR spectroscopy using R-SG nitroxide to obtain high-sensitivity pH measurements in a mouse tumour model with an accuracy of <0.1 pH units. In addition, the measured changes in pHe in response to X-ray irradiation suggest that this may offer a useful method for the assessment of the physiological change in response to existing and novel cancer therapies. Copyright © 2014 John Wiley & Sons, Ltd.

  13. 2-Chlorophenol induced hydroxyl radical production in mitochondria in Carassius auratus and oxidative stress--an electron paramagnetic resonance study.

    PubMed

    Luo, Yi; Sui, Yun-xia; Wang, Xiao-rong; Tian, Yuan

    2008-04-01

    In our previous study, electron paramagnetic resonance (EPR) evidence of reactive oxygen species (ROS) production in Carassius auratus following 2-chlorophenol (2-CP) administration was provided. To further investigate the potential pathway of ROS production, liver mitochondria of C. auratus was isolated and incubated with 2-CP for 30 min. An EPR analysis indicated ROS was produced, and intensities of ROS increased with increasing concentrations of 2-CP. The ROS was then assigned OH by comparing with Fenton reaction. Either catalase or superoxide dismutase, extinguished OH completely in the mitochondria mixture. These facts suggested that O2(.-) and H2O2 contributed to the formation of OH in mitochondria in C. auratus stressed by 2-CP. Combining previous references and our own data, it is reasonable to suggest that 2-CP is first oxidized by H2O2 present in vivo to form phenoxyl radical under the catalytic action of cellular peroxidase (1); phenoxyl radical oxidizes mitochondria NADH to NAD in the presence of NADH (2); NAD reacts with oxygen in vivo to produce O2(.-) (3); O2(.-) is spontaneously dismutated by SOD to form H2O2 and O2, which creates a renewable supply of H2O2 as the initiators of the chain reactions until NADH is consumed (4); simultaneously with reaction (4), O2(.-) reacts with H2O2 to form OH radical via the Haber-Weiss reaction (5). A strong negative correlation (r=-0.9278, p<0.01) between glutathione (GSH) pool and OH production was observed after fish were i.p. injected with 2-CP (250 mg kg(-1)), indicating the depletion of GSH caused by OH.

  14. An Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(L-histidinato)cadmium Dihydrate

    PubMed Central

    Colaneri, Michael J.; Vitali, Jacqueline; Kirschbaum, Kristin

    2013-01-01

    Electron Paramagnetic Resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal; bis(L-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, − 190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature dependent conversion between two species with a critical temperature Tc ≈ 160 K. The species below Tc hops between the two low temperature site patterns, and the one above Tc represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites νh4 = 4.5 × 108 s−1 and between the low and high temperature states νh2 = 1.7 × 108 s−1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE4 = 389 cm−1 and ΔE2 = 656 cm−1 between the two low temperature sites, and between the low and high temperature states, respectively. PMID:23530765

  15. Models for Copper Dynamic Behavior in Doped Cadmium dl-Histidine Crystals: Electron Paramagnetic Resonance and Crystallographic Analysis.

    PubMed

    Colaneri, Michael J; Teat, Simon J; Vitali, Jacqueline

    2015-11-12

    Electron paramagnetic resonance and crystallographic studies of copper-doped cadmium dl-histidine, abbreviated as CdDLHis, were undertaken to gain further understanding on the relationship between site structure and dynamic behavior in biological model complexes. X-ray diffraction measurements determined the crystal structure of CdDLHis at 100 and 298 K. CdDLHis crystallizes in the monoclinic space group P21/c with two cadmium complexes per asymmetric unit. In each complex, the Cd is hexacoordinated to two histidine molecules. Both histidines are l in one complex and d in the other. Additionally, each complex contains multiple waters of varying disorder. Single crystal EPR spectroscopic splitting (g) and copper hyperfine (A(Cu)) tensors at room temperature (principal values: g = 2.249, 2.089, 2.050; A(Cu) = -453, -30.5, -0.08 MHz) were determined from rotational experiments. Alignments of the tensor directions with the host structure were used to position the copper unpaired dx(2)-y(2) orbital in an approximate plane made by four proposed ligand atoms: the N-imidazole and N-amino of one histidine, and the N-amino and O-carboxyl of the other. Each complex has two such planes related by noncrystallographic symmetry, which make an angle of 65° and have a 1.56 Å distance between their midpoints. These findings are consistent with three interpretations that can adequately explain previous temperature-dependent EPR powder spectra of this system: (1) a local structural distortion (static strain) at the copper site has a temperature dependence significant enough to affect the EPR pattern, (2) the copper can hop between the two sites in each complex at high temperature, and (3) there exists a dynamic Jahn-Teller effect involving the copper ligands.

  16. In Vivo Formation of Electron Paramagnetic Resonance-Detectable Nitric Oxide and of Nitrotyrosine Is Not Impaired during Murine Leishmaniasis

    PubMed Central

    Giorgio, Selma; Linares, Edlaine; Ischiropoulos, Harry; Von Zuben, Fernando José; Yamada, Aureo; Augusto, Ohara

    1998-01-01

    Recent studies have provided evidence for a dual role of nitric oxide (NO) during murine leishmaniasis. To explore this problem, we monitored the formation of NO and its derived oxidants during the course of Leishmania amazonensis infection in tissues of susceptible (BALB/c) and relatively resistant (C57BL/6) mice. NO production was detected directly by low-temperature electron paramagnetic resonance spectra of animal tissues. Both mouse strains presented detectable levels of hemoglobin nitrosyl (HbNO) complexes and of heme nitrosyl and iron-dithiol-dinitrosyl complexes in the blood and footpad lesions, respectively. Estimation of the nitrosyl complex levels demonstrated that most of the NO is synthesized in the footpad lesions. In agreement, immunohistochemical analysis of the lesions demonstrated the presence of nitrotyrosine in proteins of macrophage vacuoles and parasites. Since macrophages lack myeloperoxidase, peroxynitrite is likely to be the nitrating NO metabolite produced during the infection. The levels of HbNO complexes in the blood reflected changes occurring during the infection such as those in parasite burden and lesion size. The maximum levels of HbNO complexes detected in the blood of susceptible mice were higher than those of C57BL/6 mice but occurred at late stages of infection and were accompanied by the presence of bacteria in the cutaneous lesions. The results indicate that the local production of NO is an important mechanism for the elimination of parasites if it occurs before the parasite burden becomes too high. From then on, elevated production of NO and derived oxidants aggravates the inflammatory process with the occurrence of a hypoxic environment that may favor secondary infections. PMID:9453645

  17. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument.

    PubMed

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  18. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    NASA Astrophysics Data System (ADS)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  19. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    PubMed Central

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-01-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (~2–90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the “DNP power curve”, i.e. the microwave (MW) power dependence of DNP enhancement, the “DNP spectrum”, i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 – 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the

  20. Ultra-high resolution electron microscopy.

    PubMed

    Oxley, Mark P; Lupini, Andrew R; Pennycook, Stephen J

    2017-02-01

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka's formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  1. Ultra-high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2017-02-01

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  2. Ultra-high resolution electron microscopy

    DOE PAGES

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed tomore » describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.« less

  3. Ultra-high resolution electron microscopy

    SciTech Connect

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  4. Electron paramagnetic resonance, scanning electron microscopy with energy dispersion X-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays.

    PubMed

    Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura

    2005-12-01

    The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.

  5. Time-Resolved Electron Paramagnetic Resonance Study of Photoinduced Electron Transfer in Pd Porphyrin-Quinone and Zn Porphyrin-Quinone Dyads with a Cyclohexylene Spacer.

    PubMed

    Perchanova, Maya; Kurreck, Harry; Berg, Alexander

    2015-07-23

    Peculiarities of the light induced intramolecular electron transfer processes in two ensembles where Pd porphyrin and Zn porphyrin donors with similar peripheral substituents are covalently linked via cyclohexylene spacer with a quinone acceptor, were studied by time-resolved electron paramagnetic resonance spectroscopy in different phases of the magnetically oriented nematic liquid crystal E-7. In the photoexcited PdP-Q the net absorptive signal was observed and ascribed to the thermally equilibrated spectrum of (3)*(PdP(•+)-Q(•-)). In ZnP-Q photoinduced intramolecular electron transfer was also found. It was demonstrated that the multiplet spectrum of the charge-separated state (3)*(ZnP(•+)-Q(•-)) consists of two signals with different widths and decay times. The signals were assigned to two spin-polarized triplets of the radical pairs formed in "stretched" and "folded" ensemble conformers, corresponding to different configurations of the cyclohexylene spacer. These findings were discussed in terms of differences in the properties of the porphyrin metal cores, macrocycle peripheral substituents and geometry of the donor-acceptor cyclohexylene spacer.

  6. The local environment of Cr3+ impurities in normal and x-rays irradiated carbon doped ruby: An electron paramagnetic resonance (EPR) study

    NASA Astrophysics Data System (ADS)

    Kazan, S.; Açıkgöz, M.; Yalçın, O.

    2015-01-01

    Local environment of substitutional paramagnetic point defect (impurity) in normal and x-ray irradiated commercially available α-Al2O3:C samples (commercial product of Landauer, Inc.) has been studied by using the electron paramagnetic resonance (EPR) technique at room temperature. In both samples the EPR spectra showed strongly angular dependent behavior. The zero-field splitting (ZFS) parameters (ZFSPs) have been determined for substitutional Cr3+ centers. The observed additional EPR signals for x-ray irradiated sample were attributed to another center with different spin Hamiltonian (SH) parameters. In addition to the experimental findings, the ZFSPs and the local structure of the Cr3+ ions were theoretically determined using superposition model (SPM) calculations.

  7. Electron paramagnetic resonance crystallography of 17O-enriched oxycobaltomyoglobin: Stereoelectronic structure of the cobalt dioxygen system

    PubMed Central

    Dickinson, L. Charles; Chien, James C. W.

    1980-01-01

    An electron paramagnetic resonance crystallographic study was made on oxycobaltomyoglobin with the dioxygen ligand enriched to 19.1% in 17O. There are two spectroscopically distinct cobalt dioxygen species. The less abundant species, II (40%), has nonequivalent oxygen atoms with superhyperfine tensors OAα = (5, -67.5, 22.4)G and OAβ = (5.4, -83.3, 30.3)G. Together with the previously reported 59Co hyperfine tensor [Chien, J. C. W. & Dickinson, L. C. (1972) Proc. Natl. Acad. Sci. USA 69, 2783-2787], the orbital spin densities are found to be Oα(pη) = 0.48, Oα(pζ) = -0.11, Oβ(pη) = 0.74, Oβ(pζ) = -0.16, Co(dxz) = -0.01, Co(dyz) = 0.06 for a total electron density of 1.01. The O—O axis is directed toward His-E7, suggesting a possible hydrogen bonding interaction which may contribute to the nonequivalency of the oxygen atoms; its projection approximately bisects N1—Fe—N2. The z axis of the CoA tensor is tilted at an angle of 28° from the heme normal, resulting in a Co—O—O angle of 120°. The more abundant species, I (60%), has equivalent oxygen atoms with OAγ = (12, -72.5, 20)G and orbital spin densities of Oγ(pη) = 0.54, Oγ(pζ) = -0.05, Co(dxz) = -0.02, Co(dyz) = 0.09 for a total spin density of 1.10. Although the direction cosines for this molecule cannot be precisely determined, the projection of its O—O axis approximately bisects N2—Fe—N3 and is parallel to the imidazole ring of His-F8. Increase of temperature changes g, CoA, and OA values, with the largest effect seen with OA. This temperature dependence indicates averaging of the two bond structures which are stabilized at 77 K. PMID:6246485

  8. Electron spin resonance investigations of mitochondrial electron transport in Neurospora crassa. Characterization of paramagnetic intermediates in a standard strain.

    PubMed

    Warden, J T; Edwards, D L

    1976-12-11

    1. Submitochondrial particles from Neurospora strain inl-89601 have been analyzed by electron spin resonance spectroscopy (ESR). Numerous signals due to iron-sulfur proteins are observed at low temperatures. Analysis of these ESR signals at various temperatures allows the assignment of resonances to iron-sulfur centers 1-5 that have been described in other organisms. There are no discrepancies between the signals seen in Neurospora and those described in other organisms and it is likely that Neurospora mitochondria contain the same iron-sulfur centers that are observed elsewhere. 2. NADPH and NADH act to reduce the iron-sulfur centers of respiratory complex I. 3. The drug pyrrolnitrin [3-chloro-4-(2'-nitro-3'-chlorphenyl)pyrrole] is an effective inhibitor of both NADH-supported and succinate-supported electron transport in Neurospora. 4. Analysis of pyrrolnitrin inhibition curves, respiration studies, ESR spectra, and the steady-state level of reduction of cytochrome b in the presence and absence of the drug shows that pyrrolnitrin acts to inhibit electron transport in Neurospora mitochondria at multiple sites in the region between ubiquinone and cytochrome b.

  9. Relaxation filtered hyperfine (REFINE) spectroscopy: a novel tool for studying overlapping biological electron paramagnetic resonance signals applied to mitochondrial complex I.

    PubMed

    Maly, Thorsten; MacMillan, Fraser; Zwicker, Klaus; Kashani-Poor, Noushin; Brandt, Ulrich; Prisner, Thomas F

    2004-04-06

    A simple strategy to separate overlapping electron paramagnetic resonance (EPR) signals in biological systems is presented. Pulsed EPR methods (inversion- and saturation-recovery) allow the determination of the T(1) spin-lattice relaxation times of paramagnetic centers. T(1) may vary by several orders of magnitude depending on the species under investigation. These variations can be employed to study selectively individual species from a spectrum that results from an overlap of two species using an inversion-recovery filtered (IRf) pulsed EPR technique. The feasibility of such an IRf field-swept technique is demonstrated on model compounds (alpha,gamma-bisphenylene-beta-phenylallyl-benzolate, BDPA, and 2,2,6,6-tetramethyl-piperidine-1-oxyl, TEMPO) and a simple strategy for the successful analysis of such mixtures is presented. Complex I is a multisubunit membrane protein of the respiratory chain containing several iron-sulfur (FeS) centers, which are observable with EPR spectroscopy. It is not possible to investigate the functionally important FeS cluster N2 separately because this EPR signal always overlaps with the other FeS signals. This cluster can be studied selectively using the IRf field-swept technique and its EPR spectrum is in excellent agreement with previous cw-EPR data from the literature. In addition, the possibility to separate the hyperfine spectra of two spectrally overlapping paramagnetic species is demonstrated by applying this relaxation filter together with hyperfine spectroscopy (REFINE). For the first time, the application of this filter to a three-pulse electron spin-echo envelope modulation (ESEEM) pulse sequence is demonstrated to selectively observe hyperfine spectra on a system containing two paramagnetic species. Finally, REFINE is used to assign the observed nitrogen modulation in complex I to an individual iron-sulfur cluster.

  10. Effects of MnO doping on the electronic properties of zinc oxide: 406 GHz electron paramagnetic resonance spectroscopy and Newman superposition model analysis

    SciTech Connect

    Yüksel Price, Berat E-mail: muhammed.acikgoz@eng.bahcesehir.edu.tr Hardal, Gökhan; Açıkgöz, Muhammed E-mail: muhammed.acikgoz@eng.bahcesehir.edu.tr; Repp, Sergej; Erdem, Emre E-mail: muhammed.acikgoz@eng.bahcesehir.edu.tr

    2015-11-07

    MnO-doped ZnO ceramics have been synthesized through the conventional ceramic processing route. Mn{sup 2+} ions have been incorporated into the ZnO lattice within the limits of solid solubility. By using X-band-frequency and high-field electron paramagnetic resonance (EPR), we have resolved some of the main electronic transitions for the S = 5/2, I = 5/2 high-spin system and have determined accurately the EPR spin-Hamiltonian parameters. By combining data from crystallographic X-ray diffraction and EPR with the semi-empirical Newman superposition model, we have found the local configurational position of Mn{sup 2+} and have confirmed the symmetry of the lattice. The results presented in this contribution indicate that Mn ions substitute at Zn sites in ZnO. The effect of Mn{sup 2+} ions on the intrinsic defects becomes remarkable, thus the vacancy related intrinsic defect signals cannot be visible in the EPR spectrum. MnO doping affects the band gap energy of ZnO system which was confirmed via UV-Vis spectroscopy.

  11. The structure and electronic state of photoexcited fullerene linked with a nitroxide radical based on an analysis of a two-dimensional electron paramagnetic resonance nutation spectrum

    NASA Astrophysics Data System (ADS)

    Mizuochi, Norikazu; Ohba, Yasunori; Yamauchi, Seigo

    1999-08-01

    An electron paramagnetic resonance (EPR) study of 3,4-fulleropyrrolidine-2-spiro-4'[2',2',6',6'-tetramethyl]piperidine-1'-oxyl (1) was performed on the photoexcited quartet state in toluene glass. The spectrum of the |S,Ms>=|3/2,±3/2>⇔|3/2,±1/2> transitions was observed selectively by using a two-dimensional (2D) nutation method and analyzed with a spectral simulation in a randomly oriented system. A position of the nitroxide moiety was determined with respect to the zero-field splitting (zfs) axes of excited triplet fullerene (3C60) by taking into account of the dipolar-dipolar interaction between the radical and 3C60, the hyperfine coupling, the anisotropic g-value of the nitroxide radical, and the zfs of the 3C60 moiety. It was found that none of the zfs axes of the 3C60 moiety coincide with the local C2 axis of the molecule which is defined by the position of addition. A symmetry of the electronic structure in 3C60 is discussed on the basis of the result.

  12. Electron paramagnetic resonance of the excited triplet state of metal-free and metal-substituted cytochrome c.

    PubMed Central

    Angiolillo, P J; Vanderkooi, J M

    1995-01-01

    The photoactivated metastable triplate states of the porphyrin (free-base, i.e., metal-free) zinc and tin derivatives of horse cytochrome c were investigated using electron paramagnetic resonance. Zero-field splitting parameters, line shape, and Jahn-Teller distortion in the temperature range 3.8-150 K are discussed in terms of porphyrin-protein interactions. The zero-field splitting parameters D for the free-base, Zn and Sn derivatives are 465 x 10(-4), 342 x 10(-4) and 353 x 10(-4) cm-1, respectively, and are temperature invariant over the temperature ranges studied. AN E value at 4 K of 73 x 10(-4) cm-1 was obtained for Zn cytochrome c, larger than any previously found for Zn porphyrins derivatives of hemeproteins, showing that the heme site of cytochrome c imposes an asymmetric field. Though the E value for Zn cytochrome c is large, the geometry of the site appears quite constrained, as indicated by a spectral line shape showing a single species. Intersystem crossing occurred predominantly to the T2 > zero-field spin sublevel. EPR line shape changes with respect to temperature of Zn cyt c are interpreted in terms of vibronic coupling, and a maximum Jahn-Teller crystal-field splitting of approximately 180 cm-1 is obtained. Sn cytochrome c in comparison with the Zn protein exhibits a photoactivated triplet line shape that is less well resolved in the X-Y region. The magnitude of E value is approximately 60 x 10(-4) cm-1 at 4 K; its value rapidly tends toward zero with increasing temperature, from which a value for the Jahn-Teller crystal-field splitting of > or = 40 cm-1 is estimated. In contrast to those for the metal cytochromes, the magnitude of E value for the free-base derivative was essentially zero at all temperatures studied. This finding is discussed as a consequence of an excited-state tautomerization process that occurs even at 4 K. PMID:7647253

  13. Synthesis of Ba1-xKxBiO3 ceramic specimens: Electron paramagnetic resonance and microwave absorption

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.; Andronenko, Serguei I.; Andronenko, Rosa R.; Mezentseva, Larisa P.

    1996-04-01

    Ba1-xKxBiO3 ceramic samples were synthesized with many initial relative amounts of reagents. Chemical analysis was used to determine the final concentration x¯ in the synthesized samples. It was found that only four values of x¯=0.13, 0.25, 0.4, 0.5 with Δx¯=+/-0.03 were possible. Electron-paramagnetic resonance (EPR) and microwave-absorption investigations of the synthesized ceramic specimens were carried out in the temperature range 4-100 K. In the two nonsuperconducting specimens characterized by the smaller concentrations x¯=0.13, 0.25 the same two EPR lines at g=2.09 and g=4.25 were observed, whose intensities increased sharply below 40 K with decreasing temperature, likely due to the phase Ba0.875K0.125BiO3. A least-squares fitting of the intensity of the line at g=4.25 for the sample with x¯=0.13 with (1/T)exp(-Jp/T), yielded the value of the exchange constant Jp=2.3+/-0.5 K, confirming that this line is indeed due to a transition within the energy levels belonging to the excited triplet state of hole pairs localized on the oxygen ions. Low-field microwave absorption and x-ray diffraction by the superconducting specimens characterized by the higher concentrations x¯=0.4, 0.5 indicate that these samples consist of two different superconducting phases: one, with x=0.375, possessing Tc=28 K, and the other with x=0.5, possessing Tc=16 K. Four possible configurations of the solid solutions Ba1-xKxBiO3 wherein one, two, three, and four K+ ions substitute for the same number of Ba2+ ions, with well-defined positions of K+ ions in the unit cell, have been presently proposed.

  14. Cerebral Oxygenation in Awake Rats during Acclimation and Deacclimation to Hypoxia: An In Vivo Electron Paramagnetic Resonance Study

    PubMed Central

    Khan, Mohammad N.; Hou, Huagang G.; Merlis, Jennifer; Abajian, Michelle A.; Demidenko, Eugene; Grinberg, Oleg Y.; Swartz, Harold M.

    2011-01-01

    Abstract Dunn, J. F., N. Khan, H. G. Hou, J. Merlis, M. A. Abajian, E. Demidenko, O.Y. Grinberg, and H. M. Swartz. Cerebral oxygenation in awake rats during acclimation and deacclimation to hypoxia: an in vivo EPR study. High Alt. Med. Biol. 12:71–77, 2011.— Exposure to high altitude or hypobaric hypoxia results in a series of metabolic, physiologic, and genetic changes that serve to acclimate the brain to hypoxia. Tissue Po2 (Pto2) is a sensitive index of the balance between oxygen delivery and utilization and can be considered to represent the summation of such factors as cerebral blood flow, capillary density, hematocrit, arterial Po2, and metabolic rate. As such, it can be used as a marker of the extent of acclimation. We developed a method using electron paramagnetic resonance (EPR) to measure Pto2 in unanesthetized subjects with a chronically implanted sensor. EPR was used to measure rat cortical tissue Pto2 in awake rats during acute hypoxia and over a time course of acclimation and deacclimation to hypobaric hypoxia. This was done to simulate the effects on brain Pto2 of traveling to altitude for a limited period. Acute reduction of inspired O2 to 10% caused a decline from 26.7 ± 2.2 to 13.0 ± 1.5 mmHg (mean ± SD). Addition of 10% CO2 to animals breathing 10% O2 returned Pto2 to values measured while breathing 21% O2, indicating that hypercapnia can reverse the effects of acute hypoxia. Pto2 in animals acclimated to 10% O2 was similar to that measured preacclimation when breathing 21% O2. Using a novel, individualized statistical model, it was shown that the T1/2 of the Pto2 response during exposure to chronic hypoxia was approximately 2 days. This indicates a capacity for rapid adaptation to hypoxia. When subjects were returned to normoxia, there was a transient hyperoxygenation, followed by a return to lower values with a T1/2 of deacclimation of 1.5 to 3 days. These data indicate that exposure to hypoxia results in significant

  15. SU-C-BRD-05: Non-Invasive in Vivo Biodosimetry in Radiotherapy Patients Using Electron Paramagnetic Resonance (EPR) Spectroscopy

    SciTech Connect

    Bahar, N; Roberts, K; Stabile, F; Mongillo, N; Decker, RD; Wilson, LD; Husain, Z; Contessa, J; Carlson, DJ; Williams, BB; Flood, AB; Swartz, HM

    2015-06-15

    Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence of radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and delivered

  16. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  17. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  18. Electronic signal regulator for constant resolution inelastic electron tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Seman, T. R.; Mallik, R. R.

    1999-06-01

    A relatively simple and inexpensive ac signal regulator is described which facilitates constant resolution inelastic electron tunneling spectroscopy (IETS). Constant resolution is achieved by maintaining an approximately constant ac modulation voltage across IET junctions during spectral scans. The regulator circuit is based upon a field-effect transistor optoisolator with appropriate feedback control acting as a voltage comparator. It is modular in design and can easily be added in the signal path of existing IET spectrometers. A complete schematic diagram of the circuit is provided as well as a discussion on the theory of operation. IET spectra obtained from tunnel junctions with various degrees of nonlinear conductance-voltage behavior are presented with, and without, the circuit. Analysis of these spectra shows that the regulator increases the spectrometer's signal-to-noise ratio, produces no distortion and, in the case of severely nonlinear junctions, reveals spectral features at mid to high bias, which are otherwise difficult or impossible to detect. Additionally, the regulator offers approximately an order of magnitude increase in data acquisition rate over software algorithms for maintaining constant resolution via IEEE-488 control of spectrometer instrumentation. Our results suggest that such a modular analog regulator would be a valuable addition to IET spectrometers, especially for workers wishing to investigate severely nonlinear IET junctions.

  19. Electron correlation in Pauli paramagnetic Cr2AlC, Cr2GaC and Cr2GeC

    NASA Astrophysics Data System (ADS)

    Liu, Zhongsheng; Takao, Kenta; Waki, Takeshi; Tabata, Yoshikazu; Nakamura, Hiroyuki

    2017-06-01

    Cr2AlC, Cr2GaC, and Cr2GeC are classical MAX phase compounds, for which successful synthesis of bulk equilibrium phases has been reported in an early stage. Although it has been established that they are Pauli paramagnetic down to the lowest temperature, the extent of the exchange enhancement depends on the A element (A = Al, Ga, and Ge). We discuss the nature of electron correlation by analyzing low-temperature resistivity, specific heat, and susceptibility in terms of the Kadowaki-Woods and Wilson ratios.

  20. Improved apparatus for trapped radical and other studies down to 1.5 K. [microwave cavity cryogenic equipment for electron paramagnetic resonance experiments

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Sugawara, K.

    1978-01-01

    A Dewar system and associated equipment for electron paramagnetic resonance (EPR) studies of trapped free radicals and other optical or irradiation experiments are described. The apparatus is capable of reaching a temperature of 1.5 K and transporting on the order of 20 W per K temperature gradient; its principal advantages are for use at pumped cryogen temperatures and for experiments with large heat inputs. Two versions of the apparatus are discussed, one of which is designed for EPR in a rectangular cavity operating in a TE(102) mode and another in which EPR is performed in a cylindrical microwave cavity.

  1. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, Second Edition (John A. Weil and James R. Bolton)

    NASA Astrophysics Data System (ADS)

    Williams, Ffrancon

    2009-01-01

    The detection of electron magnetic resonance by Zavoiskii in the mid 1940s (1) ushered in a golden age of physical and chemical applications. Perhaps no single book did more to stimulate this development of EPR spectroscopy than the classic text by Wertz and Bolton (2) , which appeared in 1972. A revised version, with John A. Weil added as a co-author, was published by Wiley in 1994. This 2007 text is formally described as the second edition of the 1994 version. Wertz died shortly after the publication of the 1994 edition leaving Weil and Bolton as authors. In noting that the senior author (JAW) takes most of the responsibility for the content of this 2007 version, the Preface refers to it at one point as the "third edition", which of course is precisely how older readers will regard it. The main thrust of the book is decidedly on the physical aspects of EPR, so that it nicely complements the more chemical emphasis provided in the recent comprehensive text by Gerson and Hüber (3) . As the authors remark, the 2007 edition does not differ dramatically from the 1994 version. The titles of the 13 chapters remain the same except for chapter 11, which now refers to the "Noncontinuous" instead of the "Time-Dependent" Excitation of Spins. Recent developments are generally accommodated by a few extra pages in each chapter. Thus, chapter 1 on Basic Principles of Paramagnetic Resonance has been expanded from 31 to 36 pages to introduce the topics of parallel-field EPR, time-resolved EPR, "computerology", and EPR imaging. Chapter 2 on Magnetic Interactions is essentially unchanged while chapter 3 on Isotropic Hyperfine Effects has been expanded to include new sections on Deviations from the Simple Multinomial Scheme (3.7) and Some Interesting π-Type Free Radicals (3.9). Section 3.9 provides a useful corrective to the notion that the EPR method can detect and characterize almost any type of radical species. This welcome touch of realism is nicely illustrated by mentioning

  2. Is the photon paramagnetic?

    SciTech Connect

    Perez Rojas, H.; Querts, E. Rodriguez

    2009-05-01

    A photon exhibits a tiny anomalous magnetic moment {mu}{sub {gamma}} due to its interaction with an external constant magnetic field in vacuum through the virtual electron-positron background. It is paramagnetic ({mu}{sub {gamma}}>0) in the whole region of transparency, i.e., below the first threshold energy for pair creation, and has a maximum near this threshold. The photon magnetic moment is different for eigenmodes polarized along and perpendicular to the magnetic field. Explicit expressions are given for {mu}{sub {gamma}} for the cases of photon energies smaller than and closer to the first pair creation threshold. The region beyond the first threshold is briefly discussed.

  3. Molecular Origin of Electron Paramagnetic Resonance Line Shapes on [beta]-Barrel Membrane Proteins: The Local Solvation Environment Modulates Spin-Label Configuration

    SciTech Connect

    Freed, Daniel M.; Khan, Ali K.; Horanyi, Peter S.; Cafiso, David S.

    2012-01-20

    In this work, electron paramagnetic resonance (EPR) spectroscopy and X-ray crystallography were used to examine the origins of EPR line shapes from spin-labels at the protein-lipid interface on the {beta}-barrel membrane protein BtuB. Two atomic-resolution structures were obtained for the methanethiosulfonate spin-label derivatized to cysteines on the membrane-facing surface of BtuB. At one of these sites, position 156, the label side chain resides in a pocket formed by neighboring residues; however, it extends from the protein surface and yields a single-component EPR spectrum in the crystal that results primarily from fast rotation about the fourth and fifth bonds linking the spin-label to the protein backbone. In lipid bilayers, site 156 yields a multicomponent spectrum resulting from different rotameric states of the labeled side chain. Moreover, changes in the lipid environment, such as variations in bilayer thickness, modulate the EPR spectrum by modulating label rotamer populations. At a second site, position 371, the labeled side chain interacts with a pocket on the protein surface, leading to a highly immobilized single-component EPR spectrum that is not sensitive to hydrocarbon thickness. This spectrum is similar to that seen at other sites that are deep in the hydrocarbon, such as position 170. This work indicates that the rotameric states of spin-labels on exposed hydrocarbon sites are sensitive to the environment at the protein-hydrocarbon interface, and that this environment may modulate weak interactions between the labeled side chain and the protein surface. In the case of BtuB, lipid acyl chain packing is not symmetric around the {beta}-barrel, and EPR spectra from labeled hydrocarbon-facing sites in BtuB may reflect this asymmetry. In addition to facilitating the interpretation of EPR spectra of membrane proteins, these results have important implications for the use of long-range distance restraints in protein structure refinement that are

  4. Electron paramagnetic resonance studies of a viscous nematic liquid crystal: Evidence counter to a second-order phase change

    NASA Technical Reports Server (NTRS)

    Shutt, W. E.; Gelerinter, E.; Fryburg, G. C.; Sheley, C. F.

    1972-01-01

    The ordering in a viscous, nematic, liquid crystal was studied using vanadyl acetyl acetonate and several nitroxides as paramagnetic probes. The ordering curve for VAAC at both K-band and X-band shows a slope discontinuity at a reduced temperature of 0.85. This discontinuity is caused by the tumbling time of the VAAC becoming comparable with the hyperfine splitting. The slope discontinuity is not present in the ordering curves of the nitroxides. The results are taken as evidence counter to the presence of a second-order phase transition.

  5. Fusinite: A coal-derived EPR probe for O[sub 2]. Mechanism and application in vivo and in vitro. [EPR (electron paramagnetic resonance)

    SciTech Connect

    Vahidi, N.

    1993-01-01

    Fusinite, an inertinite coal maceral, exhibits a symmetric and exchange-narrowed electron paramagnetic resonance (EPR) line (g = 2.00276), with a first derivative peak-to-peak linewidth ([Delta]B) which is reversibly broaded by molecular O[sub 2]. To explain the mechanism of this type of broadening, pulse and multifrequency EPR measurements (0.25-250 GHz) were carried out in conjunction with O[sub 2] adsorption isotherm studies. The data suggest that, at ambient temperatures, homogeneous broadening of the EPR line of fusinite probably occurs by the exchange modulation of a group of delocalized unpaired electrons at the surface of fusinite by physical adsorbed O[sub 2]. At temperatures below 260[degrees] K, dipole-dipole mechanism begin to contribute more to the broadening of this component. The possibility of two different classes of sites for interaction with O[sub 2] is discussed. The extent of broadening per unit concentration of molecular oxygen is unusually large. This paramagnetic property of fusinite, combined with its very table physiochemical properties and low toxicity, is of utility for the measurement of the concentration of oxygen or [O[sub 2

  6. Effects of thermal annealing on the radiation produced electron paramagnetic resonance spectra of bovine and equine tooth enamel: Fossil and modern

    NASA Astrophysics Data System (ADS)

    Weeks, Robert A.; Bogard, James S.; Elam, J. Michael; Weinand, Daniel C.; Kramer, Andrew

    2003-06-01

    The concentration of stable radiation-induced paramagnetic states in fossil teeth can be used as a measure of sample age. Temperature excursions >100 °C, however, can cause the paramagnetic state clock to differ from the actual postmortem time. We have heated irradiated enamel from both fossilized bovid and modern equine (MEQ) teeth for 30 min in 50 °C increments from 100 to 300 °C, measuring the electron paramagnetic resonance (EPR) spectrum after each anneal, to investigate such effects. Samples were irradiated again after the last anneal, with doses of 300-1200 Gy from 60Co photons, and measured. Two unirradiated MEQ samples were also annealed for 30 min at 300 °C, one in an evacuated EPR tube and the other in a tube open to the atmosphere, and subsequently irradiated. The data showed that hyperfine components attributed to the alanine radical were not detected in the irradiated MEQ sample until after the anneals. The spectrum of the MEQ sample heated in air and then irradiated was similar to that of the heat treated fossil sample. We conclude that the hyperfine components are due to sample heating to temperatures/times >100 °C/30 min and that similarities between fossil and MEQ spectra after the 300 °C/30 min MEQ anneal are also due to sample heating. We conclude that the presence of the hyperfine components in spectra of fossil tooth enamel indicate that such thermal events occurred either at the time of death, or during the postmortem history.

  7. Electronic and magnetic properties of the paramagnetic Twenty electron Fe(O) sandwich [C6(CH3)6]2 Fe from Mössbauer measurements and molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Mariot, J. P.; Michaud, P.; Lauer, S.; Astruc, D.; Trautwein, A. X.; Varret, F.

    1983-10-01

    A Mössbauer study of the title paramagnetic Fe(O) complex was carried out from 4.2 K to 250 K. The electric field gradient (EFG) tensor was found to be temperature independent in accordance with the well isolated nature of state3A2g. Measurements in an applied magnetic field of 6 T confirmed the paramagnetic nature (S=1) of the complex and showed the EFG tensor to be negative. From the thermal variation of the hyperfine field we determined the spin hamiltonian constant D=14 K and find the g-value to be close to the free electron value. Semi-empirical molecular orbital (MO) calculations were carried out with a modelized molecule of D6h symmetry; results are in good agreement with the experimental values (for both the electronic and magnetic properties).

  8. Magic angle spinning NMR of paramagnetic proteins.

    PubMed

    Knight, Michael J; Felli, Isabella C; Pierattelli, Roberta; Emsley, Lyndon; Pintacuda, Guido

    2013-09-17

    Metal ions are ubiquitous in biochemical and cellular processes. Since many metal ions are paramagnetic due to the presence of unpaired electrons, paramagnetic molecules are an important class of targets for research in structural biology and related fields. Today, NMR spectroscopy plays a central role in the investigation of the structure and chemical properties of paramagnetic metalloproteins, linking the observed paramagnetic phenomena directly to electronic and molecular structure. A major step forward in the study of proteins by solid-state NMR came with the advent of ultrafast magic angle spinning (MAS) and the ability to use (1)H detection. Combined, these techniques have allowed investigators to observe nuclei that previously were invisible in highly paramagnetic metalloproteins. In addition, these techniques have enabled quantitative site-specific measurement of a variety of long-range paramagnetic effects. Instead of limiting solid-state NMR studies of biological systems, paramagnetism provides an information-rich phenomenon that can be exploited in these studies. This Account emphasizes state-of-the-art methods and applications of solid-state NMR in paramagnetic systems in biological chemistry. In particular, we discuss the use of ultrafast MAS and (1)H-detection in perdeuterated paramagnetic metalloproteins. Current methodology allows us to determine the structure and dynamics of metalloenzymes, and, as an example, we describe solid-state NMR studies of microcrystalline superoxide dismutase, a 32 kDa dimer. Data were acquired with remarkably short times, and these experiments required only a few milligrams of sample.

  9. Dose-dependent high-resolution electron ptychography

    SciTech Connect

    D'Alfonso, A. J.; Allen, L. J.; Sawada, H.; Kirkland, A. I.

    2016-02-07

    Recent reports of electron ptychography at atomic resolution have ushered in a new era of coherent diffractive imaging in the context of electron microscopy. We report and discuss electron ptychography under variable electron dose conditions, exploring the prospects of an approach which has considerable potential for imaging where low dose is needed.

  10. Investigation on origin of Z{sub 1/2} center in SiC by deep level transient spectroscopy and electron paramagnetic resonance

    SciTech Connect

    Kawahara, Koutarou; Suda, Jun; Kimoto, Tsunenobu; Thang Trinh, Xuan; Tien Son, Nguyen; Janzen, Erik

    2013-03-18

    The Z{sub 1/2} center in n-type 4H-SiC epilayers-a dominant deep level limiting the carrier lifetime-has been investigated. Using capacitance versus voltage (C-V) measurements and deep level transient spectroscopy (DLTS), we show that the Z{sub 1/2} center is responsible for the carrier compensation in n-type 4H-SiC epilayers irradiated by low-energy (250 keV) electrons. The concentration of the Z{sub 1/2} defect obtained by C-V and DLTS correlates well with that of the carbon vacancy (V{sub C}) determined by electron paramagnetic resonance, suggesting that the Z{sub 1/2} deep level originates from V{sub C}.

  11. Resolution of the Electron Microscope at the Atomic Scale

    SciTech Connect

    O'Keefe, Dr. Michael; Allard Jr, Lawrence Frederick; Blom, Dr. Douglas

    2013-01-01

    The importance of atomic-resolution electron microscopy as a tool for structure analysis lies in its ability to produce images in which each peak corresponds to the position of an atom (or atomic column) within the specimen. Being able to distinguish between atoms (or columns) that appear close together when projected in the chosen viewing direction depends on the resolution of the microscope. Knowledge of the resolution of any particular electron microscope is crucial to judge if its resolution is appropriate for the specimen. In addition, resolution quality will determine the precision of measured atom positions.

  12. Formation of carbon nanodots with different spin states in mechanically processed mixtures of ZnO with carbon nanoparticles: an electron paramagnetic resonance study.

    PubMed

    Kakazey, M; Vlasova, M; Gómez-Vidales, V; Ángeles-Pascual, A; Basiuk, V A

    2017-02-01

    Mixtures of zinc oxide with carbon nanoparticles, ZnO + xC (x = 0.1%, 1% and 3% by weight), were subjected to mechanical processing (MP) in a hermetically sealed grinding chamber. Using electron paramagnetic resonance (EPR) spectroscopy, we monitored the evolution of spin centers in CNPs. While the initial CNPs were EPR silent, their short-duration MP (tMP) gave rise to emergence of low-intensity carbon signal. Increasing the sample temperature at tMP > 9 min induced CNP oxidation, which lead to a dramatic increase in the intensity of C signal. The oxidation process also manifested itself in the appearance of a photoluminescence (PL) band at ∼2.8 eV, which is characteristic for carbon nanodots with an average size of ∼2.7 nm. A limited amount of oxygen in the grinding chamber lead to different ways of carbon nanodot oxidation, depending on carbon content in the samples, which in turn influenced the characteristics of C EPR signals observed. The number of spins calculated per one CNP (NSOP) was found to depend on carbon content in ZnO + xC samples. Based on a detailed analysis of EPR spectral lines, we suggest the existence of a broad variety of relaxation mechanisms for forming C paramagnetic centers.

  13. Fermi surface symmetry and evolution of the electronic structure across the paramagnetic-helimagnetic transition in MnSi/Si(111)

    NASA Astrophysics Data System (ADS)

    Nicolaou, Alessandro; Gatti, Matteo; Magnano, Elena; Le Fèvre, Patrick; Bondino, Federica; Bertran, François; Tejeda, Antonio; Sauvage-Simkin, Michèle; Vlad, Alina; Garreau, Yves; Coati, Alessandro; Guérin, Nicolas; Parmigiani, Fulvio; Taleb-Ibrahimi, Amina

    2015-08-01

    MnSi has been extensively studied for five decades; nonetheless detailed information on the Fermi surface (FS) symmetry is still lacking. This missed information prevents a comprehensive understanding of the nature of the magnetic interaction in this material. Here, by performing angle-resolved photoemission spectroscopy on high-quality MnSi films epitaxially grown on Si(111), we unveil the FS symmetry and the evolution of the electronic structure across the paramagnetic-helimagnetic transition at TC˜40 K , along with the appearance of sharp quasiparticle emission below TC. The shape of the resulting FS is found to fulfill robust nesting effects. These effects can be at the origin of strong magnetic fluctuations not accounted for by the state-of-the-art quasiparticle self-consistent GW approximation. From this perspective, the unforeseen quasiparticle damping detected in the paramagnetic phase and relaxing only below TC, along with the persistence of the d -band splitting well above TC, at odds with a simple Stoner model for itinerant magnetism, opens the search for exotic magnetic interactions favored by FS nesting and affecting the quasiparticle lifetime.

  14. Heterogeneous Ordered-Disordered Structure of the Mesodomain in Frozen Sucrose-Water Solutions Revealed by Multiple Electron Paramagnetic Resonance Spectroscopies

    PubMed Central

    Chen, Hanlin; Sun, Li; Warncke, Kurt

    2013-01-01

    The microscopic structure of frozen aqueous sucrose solutions, over concentrations of 0–75% (w/v), is characterized by using multiple continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopic and relaxation techniques and the paramagnetic spin probe, TEMPOL. The temperature dependence of the TEMPOL EPR lineshape anisotropy reveals a mobility transition, specified at 205 K in pure water and 255 ±5 K for >1% (w/v) added sucrose. The transition temperature is >>Tg, where Tg is the homogeneous water glass transition temperature, which shows that TEMPOL resides in the mesoscopic domain (mesodomain) at water-ice crystallite boundaries, and that the mesodomain sucrose concentrations are comparable at >1% (w/v) added sucrose. Electron spin echo envelope modulation (ESEEM) spectroscopy of TEMPOL-2H2-sucrose hyperfine interactions also indicates comparable sucrose concentrations in mesodomains at >1% (w/v) added sucrose. Electron spin echo (ESE) – detected longitudinal and phase memory relaxation times (T1 and TM, respectively) at 6 K indicate a general trend of increased mesodomain volume with added sucrose, in three stages: 1-15, 20-50, and >50% (w/v). The calibrated TEMPOL concentrations indicate that the mesodomain volume is less than the predicted maximally freeze-concentrated value [80 (w/w); 120% (w/v)], with transitions at 15-20% and 50% (w/v) starting sucrose. An ordered sucrose hydrate phase, which excludes TEMPOL, and a disordered, amorphous sucrose-water glass phase, in which TEMPOL resides, are proposed to compose a heterogeneous mesodomain. The results show that the ratio of ordered and disordered volume fractions in the mesodomain is exquisitely sensitive to the starting sucrose concentration. PMID:23464733

  15. Magnetic interactions between a [4Fe-4S]1+ cluster and a flavin mononucleotide radical in the enzyme trimethylamine dehydrogenase: A high-field electron paramagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Fournel, Andre; Gambarelli, Serge; Guigliarelli, Bruno; More, Claude; Asso, Marcel; Chouteau, Gerard; Hille, Russ; Bertrand, Patrick

    1998-12-01

    Trimethylamine dehydrogenase is a bacterial enzyme which contains two redox centers: a flavin mononucleotide (FMN) group which constitutes the active site and a [4Fe-4S]1+,2+ cluster which transfers the electrons provided by the FMN to an electron-transferring flavoprotein. According to the x-ray crystal structure, the center-to-center distance is equal to 12 Å and the nearest atoms of the two centers are separated by a 4 Å gap. Although this arrangement does not appear especially favorable for mediating strong magnetic interactions, a triplet state electron paramagnetic resonance (EPR) spectrum arising from the intercenter magnetic coupling is observed at X band (9 GHz) when the enzyme is reduced by its substrate. In earlier work, the temperature dependence of this spectrum and its analysis based on a triplet state spin Hamiltonian were used to propose the range (0.8-100 cm-1) for the parameter J0 of the isotropic interaction J0SA.SB, but neither the magnitude of J0 nor its sign could be further specified [R. C. Stevenson, W. R. Dunham, R. H. Sands, T. P. Singer, and H. Beinert, Biochim. Biophys. Acta 869, 81 (1986)]. In the present work, we have studied the interaction EPR spectrum in the range 9-340 GHz. Numerical simulations based on a spin Hamiltonian describing a system of two S=1/2 interacting spins allowed us to determine the full set of parameters describing the magnetic interactions between the FMN radical and the [4Fe-4S]1+ cluster. In particular, our study demonstrates that the coupling is antiferromagnetic with J0=+0.72 cm-1. Although this value corresponds to the lower limit of the range proposed previously, it still appears markedly larger than those measured in biological systems in which a similar arrangement of two paramagnetic centers is found.

  16. A paramagnetic molecular voltmeter

    NASA Astrophysics Data System (ADS)

    Surek, Jack T.; Thomas, David D.

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal ( R1) and transverse ( R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the p K shift of the reacted cysteine.

  17. A Paramagnetic Molecular Voltmeter

    PubMed Central

    Surek, Jack T.; Thomas, David D.

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  18. Image resolution and sensitivity in an environmental transmission electron microscope.

    PubMed

    Jinschek, J R; Helveg, S

    2012-11-01

    An environmental transmission electron microscope provides unique means for the atomic-scale exploration of nanomaterials during the exposure to a reactive gas environment. Here we examine conditions to obtain such in situ observations in the high-resolution transmission electron microscopy (HRTEM) mode with an image resolution of 0.10nm. This HRTEM image resolution threshold is mapped out under different gas conditions, including gas types and pressures, and under different electron optical settings, including electron beam energies, doses and dose-rates. The 0.10nm resolution is retainable for H(2) at 1-10mbar. Even for N(2), the 0.10nm resolution threshold is reached up to at least 10mbar. The optimal imaging conditions are determined by the electron beam energy and the dose-rate as well as an image signal-to-noise (S/N) ratio that is consistent with Rose's criterion of S/N≥5. A discussion on the electron-gas interactions responsible for gas-induced resolution deterioration is given based on interplay with complementary electron diffraction (ED), scanning transmission electron microscopy (STEM) as well as electron energy loss spectroscopy (EELS) data.

  19. Electron paramagnetic resonance spectral study of [Mn(acs){sub 2}(2–pic){sub 2}(H{sub 2}O){sub 2}] single crystals

    SciTech Connect

    Kocakoç, Mehpeyker; Tapramaz, Recep

    2016-03-25

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn{sup +2} ion complex with mixed ligand, [Mn(acs){sub 2}(2-pic){sub 2}(H{sub 2}O){sub 2}], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that the complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.

  20. Optical and electron paramagnetic resonance studies of hydrogenated amorphous carbon (a-C:H) thin films formed by direct ion beam deposition method

    NASA Astrophysics Data System (ADS)

    Silinskas, M.; Grigonis, A.; Dikcius, G.; Manikowski, H.

    2001-04-01

    The diamond-like carbon films, deposited by direct ion beam deposition method using mixture of C6H14 and H2 with and without silicon presence, have been investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, IR-visible-UV transmission, and electron paramagnetic resonance techniques. The D and G line widths and peak positions, integrated intensity ratio (ID/IG) in Raman spectra indicate these films being amorphous, mixture of sp2 and sp3 bonds. It has been found that a-C:H films formed while increasing substrate temperature and deposition ion energy tend to be graphite-like. Increasing of hydrogen content in gas mixture made these films more polymer-like with low content of dangling bonds. Traces of silicon increase sp3/sp2 ratio. The DLC films on silicon are able to greatly reduce IR reflection.

  1. Electron paramagnetic resonance, optical spectra and DC conductivity studies of vanadyl doped Bi2O3 center dot BaO center dot B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Gahlot, P. S.; Seth, V. P.; Agarwal, A.; Khasa, S.; Chand, P.

    2003-09-01

    Glasses with composition xBi(2)O(3) . (0.30 - x)BaO . 0.70B(2)O(3) have been prepared in the range (0.00 less than or equal to x less than or equal to 0.15) containing 2.0 mol% of V2O5. Electron paramagnetic resonance (EPR), optical transmission and absorption spectra and DC conductivity of these glasses have been studied. The spin Hamiltonian parameters (SHP) of VO2+ ions, dipolar hyperfine coupling parameter P, Fermi contact interaction parameter K, and molecular orbital coefficients (alpha(2) and gamma(2)) have been calculated. The SHP are related with the theoretical optical basicity, Lambda(th). The position of the absorption edge and the values of the optical band gap have also been reported. The effect of addition of Bi2O3 on the DC conductivity has also been studied.

  2. From a paramagnetic, mononuclear supersulfidonickel(II) complex to a diamagnetic dimer with a four-sulfur two-electron bond.

    PubMed

    Yao, Shenglai; Milsmann, Carsten; Bill, Eckhard; Wieghardt, Karl; Driess, Matthias

    2008-10-15

    The first isolable "side-on" supersulfidonickel(II) complex 1(1) with the elusive S2-. ligand has been synthesized by facile oxidation of the corresponding nickel(I) precursor [LNi] with elemental sulfur. Remarkably, paramagnetic 1(1) associates voluntarily to give the diamagnetic dimer 1(2) with a four-sulfur two-electron bond as proven by X-ray diffraction analysis, spectroscopic measurements (1H NMR, EPR, SQUID), and DFT calculations. Gentle sulfur transfer of 1(1) to Ph3P or its reaction with [LNi] affords solely the genuine disulfide complex 3 having a Ni2(mu-mu2:mu2-S2) core.

  3. Electron paramagnetic resonance and ultraviolet/visible study of compounds I and II in the horseradish peroxidase-H 2O 2-silk fiber reaction system

    NASA Astrophysics Data System (ADS)

    Oliva, C.; Freddi, G.; Repetto, S.; D'Ambrosio, A.

    2003-06-01

    The enzymatic oxidation of silk with H2O2 in the presence of horseradish peroxidase (HRP) has been investigated. Two intermediate complexes have been observed during this reaction. Both can be attributed to Fe4+ ions axially bonded to an oxygen atom and to a porphyrin radical (Prad ). In the most unstable of them, indicated as compound II, the chemical bond between [FeIVO]2+ and Prad was weaker than in the other, indicated as compound I. The former compound disappeared within 1 h of the reaction, at difference with the latter, traces of which were observed even after 3 weeks with dried samples. However, the chemical bond between [FeIVO]2+ and Prad in compound I weakened during the sample ageing. All these phenomena have been enlightened by electron paramagnetic resonance (EPR) and spectrophotometric ultraviolet/visible (UV/Vis) measurements.

  4. Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface. An electron paramagnetic resonance (EPR) spin label study.

    PubMed

    Cassera, M B; Silber, A M; Gennaro, A M

    2002-10-16

    The purpose of this work is to analyze the effects of cholesterol modulation on acyl chain ordering in the membrane of human erythrocytes as a function of depth from the surface. Partial cholesterol depletion was achieved by incubation of erythrocytes with liposomes containing saturated phospholipids, or with methyl-beta-cyclodextrin (MbetaCD). Cholesterol enrichment was achieved by incubation with liposomes formed by phospholipids/cholesterol, or with the complex MbetaCD/cholesterol. Acyl chain order was studied with electron paramagnetic resonance spectroscopy (EPR) using spin labels that sense the lipid bilayer at different depths. It is shown that the increase in cholesterol stiffens acyl chains but decreases the interaction among lipid headgroups, while cholesterol depletion causes the opposite behavior. It is likely that the observed cholesterol effects are related to those stabilizing the cholesterol-rich detergent-insoluble membrane domains (rafts), recently shown to exist in erythrocytes.

  5. Hyperbolic decay of photo-created Sb2+ ions in Sn2P2S6:Sb crystals detected with electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Basun, S. A.; Halliburton, L. E.; Evans, D. R.

    2017-01-01

    In this paper, we employed a method that overcomes the known limitations of electron paramagnetic resonance (EPR) to monitor charge trap dynamics over a broad temperature range not normally accessible due to the lifetime broadening of the EPR lines at higher temperatures. This was achieved by measuring the decay of the EPR intensity after thermal annealing by rapid cycling back to low temperatures for the EPR measurement. This technique was used to experimentally demonstrate interesting physics in the form of a direct measurement of the hyperbolic decay 1/(1+t) of a charge trap population, which previously was only considered theoretically. The nontrivial effects of bimolecular recombination are demonstrated in the Sn2S2P6:Sb crystals, providing an explanation of the optical sensitization process observed in photorefractive Sn2P2S6:Sb used for dynamic holography.

  6. Application of electron paramagnetic resonance imaging to the characterization of the Ultem(R) exposed to 1 MeV electrons. Correlation of radical density data to tiger code calculations

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1994-01-01

    A major long-term goal of the Materials Division at the NASA Langley Research Center is the characterization of new high-performance materials that have potential applications in the aircraft industry, and in space. The materials used for space applications are often subjected to a harsh and potentially damaging radiation environment. The present study constitutes the application of a novel technique to obtain reliable data for ascertaining the molecular basis for the resilience and durability of materials that have been exposed to simulated space radiations. The radiations of greatest concern are energetic electrons and protons, as well as galactic cosmic rays. Presently, the effects of such radiation on matter are not understood in their entirety. It is clear however, that electron radiation causes ionization and homolytic bond rupture, resulting in the formation of paramagnetic spin centers in the polymer matrices of the structural materials. Since the detection and structure elucidation of paramagnetic species are most readily accomplished using Electron Paramagnetic Resonance (EPR) Spectroscopy, the NASA LaRC EPR system was brought back on-line during the 1991 ASEE term. The subsequent 1992 ASEE term was devoted to the adaptation of the EPR core system to meet the requirements for EPR Imaging (EPRI), which provides detailed information on the spatial distribution of paramagnetic species in bulk media. The present (1994) ASEE term was devoted to the calibration of this EPR Imaging system, as well as to the application of this technology to study the effects of electron irradiation on Ultem(exp R), a high performance polymer which is a candidate for applications in aerospace. The Ultem was exposed to a dose of 2.4 x 10(exp 9) Rads (1-MeV energy/electron) at the LaRC electron accelerator facility. Subsequently, the exposed specimens were stored in liquid nitrogen, until immediately prior to analyses by EPRI. The intensity and dimensions of the EPR Images that

  7. Prospects for Electron Imaging with Ultrafast Time Resolution

    SciTech Connect

    Armstrong, M R; Reed, B W; Torralva, B R; Browning, N D

    2007-01-26

    Many pivotal aspects of material science, biomechanics, and chemistry would benefit from nanometer imaging with ultrafast time resolution. Here we demonstrate the feasibility of short-pulse electron imaging with t10 nanometer/10 picosecond spatio-temporal resolution, sufficient to characterize phenomena that propagate at the speed of sound in materials (1-10 kilometer/second) without smearing. We outline resolution-degrading effects that occur at high current density followed by strategies to mitigate these effects. Finally, we present a model electron imaging system that achieves 10 nanometer/10 picosecond spatio-temporal resolution.

  8. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  9. Native and induced triplet nitrogen-vacancy centers in nano- and micro-diamonds: Half-field electron paramagnetic resonance fingerprint

    SciTech Connect

    Shames, A. I.; Osipov, V. Yu.; Vul’, A. Ya.; Bardeleben, H.-J. von

    2014-02-10

    Multiple frequency electron paramagnetic resonance (EPR) study of small (4–25 nm) nanodiamonds obtained by various dynamic synthesis techniques reveals systematic presence in the half-field (HF) region a distinctive doublet fingerprint consisting of resolved g{sub HF1} = 4.26 and g{sub HF2} = 4.00 signals. This feature is attributed to “forbidden” ΔM{sub S} = 2 transitions in EPR spectra of two native paramagnetic centers of triplet (S = 1) origin designated as TR1 and TR2, characterized by zero field splitting values D{sub 1} = 0.0950 ± 0.002 cm{sup −1} and D{sub 2} = 0.030 ± 0.005 cm{sup −1}. Nanodiamonds of ∼50 nm particle size, obtained by crushing of Ib type nitrogen rich synthetic diamonds, show only HF TR2 signal whereas the same sample undergone high energy (20 MeV) electron irradiation and thermal annealing demonstrates rise of HF TR1 signal. The same HF TR1 signals appear in the process of fabrication of fluorescent nanodiamonds from micron-size synthetic diamond precursors. Results obtained allow unambiguous attribution of the half-field TR1 EPR signals with g{sub HF1} = 4.26, observed in nano- and micron-diamond powders, to triplet negatively charged nitrogen-vacancy centers. These signals are proposed as reliable and convenient fingerprints in both qualitative and quantitative study of fluorescent nano- and micron-diamonds.

  10. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy

    PubMed Central

    Righi, Valeria; Constantinou, Caterina; Mintzopoulos, Dionyssios; Khan, Nadeem; Mupparaju, S. P.; Rahme, Laurence G.; Swartz, Harold M.; Szeto, Hazel H.; Tompkins, Ronald G.; Tzika, A. Aria

    2013-01-01

    Burn injury causes a major systemic catabolic response that is associated with mitochondrial dysfunction in skeletal muscle. We investigated the effects of the mitochondria-targeted peptide antioxidant Szeto-Schiller 31 (SS-31) on skeletal muscle in a mouse burn model using in vivo phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy to noninvasively measure high-energy phosphate levels; mitochondrial aconitase activity measurements that directly correlate with TCA cycle flux, as measured by gas chromatography mass spectrometry (GC-MS); and electron paramagnetic resonance (EPR) to assess oxidative stress. At 6 h postburn, the oxidative ATP synthesis rate was increased 5-fold in burned mice given a single dose of SS-31 relative to untreated burned mice (P=0.002). Furthermore, SS-31 administration in burned animals decreased mitochondrial aconitase activity back to control levels. EPR revealed a recovery in redox status of the SS-31-treated burn group compared to the untreated burn group (P<0.05). Our multidisciplinary convergent results suggest that SS-31 promotes recovery of mitochondrial function after burn injury by increasing ATP synthesis rate, improving mitochondrial redox status, and restoring mitochondrial coupling. These findings suggest use of noninvasive in vivo NMR and complementary EPR offers an approach to monitor the effectiveness of mitochondrial protective agents in alleviating burn injury symptoms.—Righi, V., Constantinou, C., Mintzopoulos, D., Khan, N., Mupparaju, S. P., Rahme, L. G., Swartz, H. M., Szeto, H. H., Tompkins, R. G., and Tzika, A. A. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy. PMID:23482635

  11. Electronic structure description of a [Co(III)3Co(IV)O4] cluster: a model for the paramagnetic intermediate in cobalt-catalyzed water oxidation.

    PubMed

    McAlpin, J Gregory; Stich, Troy A; Ohlin, C André; Surendranath, Yogesh; Nocera, Daniel G; Casey, William H; Britt, R David

    2011-10-05

    Multifrequency electron paramagnetic resonace (EPR) spectroscopy and electronic structure calculations were performed on [Co(4)O(4)(C(5)H(5)N)(4)(CH(3)CO(2))(4)](+) (1(+)), a cobalt tetramer with total electron spin S = 1/2 and formal cobalt oxidation states III, III, III, and IV. The cuboidal arrangement of its cobalt and oxygen atoms is similar to that of proposed structures for the molecular cobaltate clusters of the cobalt-phosphate (Co-Pi) water-oxidizing catalyst. The Davies electron-nuclear double resonance (ENDOR) spectrum is well-modeled using a single class of hyperfine-coupled (59)Co nuclei with a modestly strong interaction (principal elements of the hyperfine tensor are equal to [-20(±2), 77(±1), -5(±15)] MHz). Mims (1)H ENDOR spectra of 1(+) with selectively deuterated pyridine ligands confirm that the amount of unpaired spin on the cobalt-bonding partner is significantly reduced from unity. Multifrequency (14)N ESEEM spectra (acquired at 9.5 and 34.0 GHz) indicate that four nearly equivalent nitrogen nuclei are coupled to the electron spin. Cumulatively, our EPR spectroscopic findings indicate that the unpaired spin is delocalized almost equally across the eight core atoms, a finding corroborated by results from DFT calculations. Each octahedrally coordinated cobalt ion is forced into a low-spin electron configuration by the anionic oxo and carboxylato ligands, and a fractional electron hole is localized on each metal center in a Co 3d(xz,yz)-based molecular orbital for this essentially [Co(+3.125)(4)O(4)] system. Comparing the EPR spectrum of 1(+) with that of the catalyst film allows us to draw conclusions about the electronic structure of this water-oxidation catalyst.

  12. The Involvement of Respiration in Free Radical Processes during Loss of Desiccation Tolerance in Germinating Zea mays L. (An Electron Paramagnetic Resonance Study).

    PubMed

    Leprince, O.; Atherton, N. M.; Deltour, R.; Hendry, GAF.

    1994-04-01

    When germinating Zea mays L. seeds are rapidly desiccated, free radical-mediated lipid peroxidation and phospholipid de-esterification is accompanied by a desiccation-induced buildup of a stable free radical associated with rapid loss of desiccation tolerance. Comparison of the electron paramagnetic resonance and electron nuclear double resonance properties of this radical with those of the radical in dried, desiccation-intolerant moss showed that the two were identical. At the subcellular level, the radical was associated with the hydrophilic fraction resulting from lipid extraction. Isolated mitochondria subjected to drying were also found to accumulate an identical radical in vitro. When increasing concentrations of cyanide were used, a significant positive correlation was shown between rates of respiration and the accumulation of the radical in desiccation-intolerant tissues. Another positive correlation was found when rates of O2 uptake by radicles at different stages of germination were plotted against free radical content following desiccation. This indicates that free radical production is closely linked to respiration in a process likely to involve the desiccation-induced impairment of the mitochondrial electron transport chain to form thermodynamically favorable conditions to induce accumulation of a stable free radical and peroxidized lipids. Modulation of respiration using a range of inhibitors resulted in broadly similar modulation of the buildup of the stable free radical. One site of radical generation was likely to be the NADH dehydrogenase of complex I and probably as a direct consequence of desiccation-impaired electron flow at or close to the ubiquinone pool.

  13. Effects of the Electronic Spin-Orbit Interaction on the Anomalous Asymmetric Scattering of the Spin-Polarized 4He+ Beam with Paramagnetic Target Materials

    NASA Astrophysics Data System (ADS)

    Sakai, Osamu; Suzuki, Taku T.

    2017-06-01

    The scattering of the electron-spin-polarized 4He+ beam on paramagnetic materials has an anomalously large asymmetric scattering component (ASC) around 5%, which is 104 of that expected from the spin-orbit coupling (SOC) for the potential of the target nucleus. In addition, the ASC of some materials (for example, Au and Pt) changes sign near the scattering angle (θ) of 90° unlike the result predicted by using the potential scattering theory. When the 4He+ approaches the target, virtual electron-transfer (ET) excitations between them occur. The effects of the SOC of electrons (SOEs) on the target atom in the ET intermediate state are studied within the frame of the lowest-order perturbation theory about the ET process. The ASC is caused through the combination of the quantum development of electron orbital states under the SOEs and the He nucleus motion in the intermediate state because the preferred orbital states for the ET depend on the position of the He nucleus. It is shown by a numerical calculation that the present process has the possibility of producing the ASC with a magnitude of around 0.1. In the present process, the ASC shows a θ dependence of cos θ sin θ, which changes sign at θ = 90° when the excited orbital in the ET state has the d-character like the Au and Pt cases.

  14. Electron-paramagnetic-resonance scattering rates in metallic RbC60 and CsC60

    NASA Astrophysics Data System (ADS)

    Rahmer, J.; Grupp, A.; Mehring, M.

    2001-12-01

    We derive conduction-electron scattering rates in the metallic polymer phase of RbC60 and CsC60 from the investigation of the temperature-dependent conduction electron-spin-resonance linewidth at X- (9 GHz) and W-band (94 GHz) frequencies by applying the Elliott theory. We obtain scattering rates that favor an essentially isotropic electronic structure of the polymer phase.

  15. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    SciTech Connect

    Shames, Alexander I.; Bounioux, Celine; Katz, Eugene A.; Yerushalmi-Rozen, Rachel; Zussman, Eyal

    2012-03-12

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  16. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    NASA Astrophysics Data System (ADS)

    Shames, Alexander I.; Bounioux, Céline; Katz, Eugene A.; Yerushalmi-Rozen, Rachel; Zussman, Eyal

    2012-03-01

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  17. The impact of adsorption on the localization of spins in graphene oxide and reduced graphene oxide, observed with electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Kempiński, Mateusz; Florczak, Patryk; Jurga, Stefan; Śliwińska-Bartkowiak, Małgorzata; Kempiński, Wojciech

    2017-08-01

    We report the observations of electronic properties of graphene oxide and reduced graphene oxide, performed with electron paramagnetic resonance technique in a broad temperature range. Both materials were examined in pure form and saturated with air, helium, and heavy water molecules. We show that spin localization strongly depends on the type and amount of molecules adsorbed at the graphene layer edges (and possible in-plane defects). Physical and chemical states of edges play crucial role in electrical transport within graphene-based materials, with hopping as the leading mechanism of charge carrier transport. Presented results are a good basis to understand the electronic properties of other carbon structures made of graphene-like building blocks. Most active carbons show some degree of functionalization and are known of having good adsorptive properties; thus, controlling both phenomena is important for many applications. Sample treatment with temperature, vacuum, and various adsorbents allowed for the observation of a possible metal-insulator transition and sorption pumping effects. The influence of adsorption on the localization phenomena in graphene would be very important if to consider the graphene-based material as possible candidates for the future spintronics that works in ambient conditions.

  18. PARAMAGNETIC RELAXATION IN CRYSTALS.

    DTIC Science & Technology

    CRYSTALS, PARAMAGNETIC RESONANCE, RELAXATION TIME , CRYSTAL DEFECTS, QUARTZ, GLASS, STRAIN(MECHANICS), TEMPERATURE, NUCLEAR SPINS, HYDROGEN, CALCIUM COMPOUNDS, FLUORIDES, COLOR CENTERS, PHONONS, OXYGEN.

  19. Problem Resolution through Electronic Mail: A Five-Step Model.

    ERIC Educational Resources Information Center

    Grandgenett, Neal; Grandgenett, Don

    2001-01-01

    Discusses the use of electronic mail within the general resolution and management of administrative problems and emphasizes the need for careful attention to problem definition and clarity of language. Presents a research-based five-step model for the effective use of electronic mail based on experiences at the University of Nebraska at Omaha.…

  20. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  1. Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap

    NASA Astrophysics Data System (ADS)

    Golden, E. M.; Basun, S. A.; Evans, D. R.; Grabar, A. A.; Stoika, I. M.; Giles, N. C.; Halliburton, L. E.

    2016-10-01

    Electron paramagnetic resonance (EPR) is used to identify the singly ionized charge state of the Sn vacancy ( VSn - ) in single crystals of Sn2P2S6 (often referred to as SPS). These vacancies, acting as a hole trap, are expected to be important participants in the photorefractive effect observed in undoped SPS crystals. In as-grown crystals, the Sn vacancies are doubly ionized ( VSn 2 - ) with no unpaired spins. They are then converted to a stable EPR-active state when an electron is removed (i.e., a hole is trapped) during an illumination below 100 K with 633 nm laser light. The resulting EPR spectrum has g-matrix principal values of 2.0079, 2.0231, and 1.9717. There are resolved hyperfine interactions with two P neighbors and one Sn neighbor. The isotropic portions of these hyperfine matrices are 167 and 79 MHz for the two 31P neighbors and 8504 MHz for the one Sn neighbor (this latter value is the average for 117Sn and 119Sn). These VSn - vacancies are shallow acceptors with the hole occupying a diffuse wave function that overlaps the neighboring Sn2+ ion and (P2S6)4- anionic unit. Using a general-order kinetics approach, an analysis of isothermal decay curves of the VSn - EPR spectrum in the 107-115 K region gives an activation energy of 283 meV.

  2. Role of chloride ion in hydroxyl radical production in photosystem II under heat stress: electron paramagnetic resonance spin-trapping study.

    PubMed

    Yadav, Deepak Kumar; Pospíšil, Pavel

    2012-06-01

    Hydroxyl radical (HO•) production in photosystem II (PSII) was studied by electron paramagnetic resonance (EPR) spin-trapping technique. It is demonstrated here that the exposure of PSII membranes to heat stress (40 °C) results in HO• formation, as monitored by the formation of EMPO-OH adduct EPR signal. The presence of different exogenous halides significantly suppressed the EMPO-OH adduct EPR signal in PSII membranes under heat stress. The addition of exogenous acetate and blocker of chloride channel suppressed the EMPO-OH adduct EPR signal, whereas the blocker of calcium channel did not affect the EMPO-OH adduct EPR signal. Heat-induced hydrogen peroxide (H₂O₂) production was studied by amplex red fluorescent assay. The presence of exogenous halides, acetate and chloride blocker showed the suppression of H₂O₂ production in PSII membranes under heat stress. Based on our results, it is proposed that the formation of HO• under heat stress is linked to uncontrolled accessibility of water to the water-splitting manganese complex caused by the release of chloride ion on the electron donor side of PSII. Uncontrolled water accessibility to the water-splitting manganese complex causes the formation of H₂O₂ due to improper water oxidation, which leads to the formation of HO• via the Fenton reaction under heat stress.

  3. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  4. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    NASA Astrophysics Data System (ADS)

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2012-08-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8-80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss, due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented, and distances of 18-30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER.

  5. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    PubMed Central

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  6. Electron Paramagnetic Resonance and Fluorescence In Situ Hybridization-Based Investigations of Individual Doses for Persons Living at Metlino in the Upper Reaches of the Techa River

    SciTech Connect

    Degteva, M. O.; Anspaugh, L. R.; Akleyev, A V.; Jacob, Peter; Ivanov, Denis V.; Wieser, Albrecht; Vorobiova, M I.; Shishkina, Elena A.; Shved, Valentina A.; Vozilova, Alexandra; Bayankin, Sergey N.; Napier, Bruce A.

    2005-02-01

    Waterborne releases to the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to persons living downstream; the most contaminated village was Metlino, about 7 km from the site of release. Internal and external doses have been estimated for these residents using the Techa River Dosimetry System-2000 (TRDS-2000); the primary purpose is to support epidemiological studies of the members of the Extended Techa River Cohort. Efforts to validate the calculations of external and internal dose are considered essential. One validation study of the TRDS-2000 system has been performed by the comparison of calculated doses to quartz from bricks in old buildings at Metlino with those measured by luminescence dosimetry. Two additional methods of validation considered here are electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. For electron paramagnetic resonance, 36 measurements on 26 teeth from 16 donors from Metlino were made at the GSF-National Research Center for Environment and Health (16 measurements) and the Institute of Metal Physics (20 measurements); the correlation among measurements made at the two laboratories has been found to be 0.99. Background measurements were also made on 218 teeth (63 molars, 128 premolars, and 27 incisors). Fluorescence in situ hybridization measurements were made for 31 residents of Metlino. These measurements were handicapped by the analysis of a limited number of cells; for several individuals no stable translocations were observed. Fluorescence in situ hybridization measurements were also made for 39 individuals believed to be unexposed. The EPR- and FISH-based estimates agreed well for permanent residents of Metlino: 0.67 +/- 0.21 Gy and 0.48 +/- 0.18 Gy (mean +/- standard error of the mean), respectively. Results of the two experimental methods also agreed well

  7. Electron paramagnetic resonance and fluorescence in situ hybridization-based investigations of individual doses for persons living at Metlino in the upper reaches of the Techa River.

    PubMed

    Degteva, Marina O; Anspaugh, Lynn R; Akleyev, Alexander V; Jacob, Peter; Ivanov, Denis V; Wieser, Albrecht; Vorobiova, Marina I; Shishkina, Elena A; Shved, Valentina A; Vozilova, Alexandra; Bayankin, Sergey N; Napier, Bruce A

    2005-02-01

    Waterborne releases to the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to persons living downstream; the most contaminated village was Metlino, about 7 km from the site of release. Internal and external doses have been estimated for these residents using the Techa River Dosimetry System-2000 (TRDS-2000); the primary purpose is to support epidemiological studies of the members of the Extended Techa River Cohort. Efforts to validate the calculations of external and internal dose are considered essential. One validation study of the TRDS-2000 system has been performed by the comparison of calculated doses to quartz from bricks in old buildings at Metlino with those measured by luminescence dosimetry. Two additional methods of validation considered here are electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. For electron paramagnetic resonance, 36 measurements on 26 teeth from 16 donors from Metlino were made at the GSF-National Research Center for Environment and Health (16 measurements) and the Institute of Metal Physics (20 measurements); the correlation among measurements made at the two laboratories has been found to be 0.99. Background measurements were also made on 218 teeth (63 molars, 128 premolars, and 27 incisors). Fluorescence in situ hybridization measurements were made for 31 residents of Metlino. These measurements were handicapped by the analysis of a limited number of cells; for several individuals no stable translocations were observed. Fluorescence in situ hybridization measurements were also made for 39 individuals believed to be unexposed. The EPR- and FISH-based estimates agreed well for permanent residents of Metlino: 0.67 +/- 0.21 Gy and 0.48 +/- 0.18 Gy (mean +/- standard error of the mean), respectively. Results of the two experimental methods also agreed well

  8. High-resolution transmission electron microscopy: the ultimate nanoanalytical technique.

    PubMed

    Thomas, John Meurig; Midgley, Paul A

    2004-06-07

    To be able to determine the elemental composition and morphology of individual nanoparticles consisting of no more than a dozen or so atoms that weigh a few zeptograms (10(-21) g) is but one of the attainments of modern electron microscopy. With slightly larger specimens (embracing a few unit cells of the structure) their symmetry, crystallographic phase, unit-cell dimension, chemical composition and often the valence state (from parallel electron spectroscopic measurements) of the constituent atoms may also be determined using a scanning beam of electrons of ca. 0.5 nm diameter. Nowadays electron crystallography, which treats the digital data of electron diffraction (ED) and high-resolution transmission electron microscope (HRTEM) images of minute (ca. 10(-18)g) specimens in a quantitatively rigorous manner, solves hitherto unknown structures just as X-ray diffraction does with bulk single crystals. In addition, electron tomography (see cover photograph and its animation) enables a three-dimensional picture of the internal structure of minute objects, such as nanocatalysts in a single pore, as well as structural faults such as micro-fissures, to be constructed with a resolution of 1 nm from an angular series of two-dimensional (projected) images. Very recently (since this article was first written) a new meaning has been given to electron crystallography as a result of the spatio-temporal resolution of surface phenomena achieved on a femtosecond timescale.

  9. Optimization of monochromated TEM for ultimate resolution imaging and ultrahigh resolution electron energy loss spectroscopy.

    PubMed

    Lopatin, Sergei; Cheng, Bin; Liu, Wei-Ting; Tsai, Meng-Lin; He, Jr-Hau; Chuvilin, Andrey

    2017-09-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. High-resolution electron microscopy of advanced materials

    SciTech Connect

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  11. Introduction to high-resolution cryo-electron microscopy.

    PubMed

    Czarnocki-Cieciura, Mariusz; Nowotny, Marcin

    2016-01-01

    For many years two techniques have dominated structural biology - X-ray crystallography and NMR spectroscopy. Traditional cryo-electron microscopy of biological macromolecules produced macromolecular reconstructions at resolution limited to 6-10 Å. Recent development of transmission electron microscopes, in particular the development of direct electron detectors, and continuous improvements in the available software, have led to the "resolution revolution" in cryo-EM. It is now possible to routinely obtain near-atomic-resolution 3D maps of intact biological macromolecules as small as ~100 kDa. Thus, cryo-EM is now becoming the method of choice for structural analysis of many complex assemblies that are unsuitable for structure determination by other methods.

  12. The theory and practice of high resolution scanning electron microscopy

    SciTech Connect

    Joy, D.C. Oak Ridge National Lab., TN )

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  13. Redox Levels of a closo-Osmaborane: A Density Functional Theory, Electron Paramagnetic Resonance and Electrochemical Study.

    PubMed

    Simonov, Alexandr N; Boas, John F; Skidmore, Melissa A; Forsyth, Craig M; Mashkina, Elena; Bown, Mark; Bond, Alan M

    2015-05-04

    A closo-type 11-vertex osmaborane [1-(η(6)-pcym)-1-OsB10H10] (pcym = para-cymene) has been synthesized and characterized by single-crystal X-ray diffraction and elemental analysis, as well as by (11)B and (1)H NMR, UV-visible, and mass spectrometry. The redox chemistry has been probed by dc and Fourier transformed ac voltammetry and bulk reductive electrolysis in CH3CN (0.10 M (n-Bu)4NPF6) and by voltammetry in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (Pyrr1,4-NTf2), which allows the oxidative chemistry of the osmaborane to be studied. A single-crystal X-ray diffraction analysis has shown that [1-(η(6)-pcym)-1-OsB10H10] is isostructural with other metallaborane compounds of this type. In CH3CN (0.10 M (n-Bu)4NPF6), [1-(η(6)-pcym)-1-OsB10H10] undergoes two well-resolved one-electron reduction processes with reversible potentials separated by ca. 0.63-0.64 V. Analysis based on a comparison of experimental and simulated ac voltammetric data shows that the heterogeneous electron transfer rate constant (k(0)) for the first reduction process is larger than that for the second step at GC, Pt, and Au electrodes. k(0) values for both processes are also larger at GC than metal electrodes and depend on the electrode pretreatment, implying that reductions involve specific interaction with the electrode surface. EPR spectra derived from the product formed by one-electron reduction of [1-(η(6)-pcym)-1-OsB10H10] in CH3CN (0.10 M (n-Bu)4NPF6) and electron orbital data derived from the DFT calculations are used to establish that the formal oxidation state of the metal center of the original unreduced compound is Os(II). On this basis it is concluded that the metal atom in [1-(η(6)-pcym)-1-OsB10H10] and related metallaboranes makes a 3-orbital 2-electron contribution to the borane cluster. Oxidation of [1-(η(6)-pcym)-1-OsB10H10] coupled to fast chemical transformation was observed at 1.6 V vs ferrocene(0/+) in Pyrr1,4-NTf2. A reaction

  14. Substitution mechanisms and location of Co2+ ions in congruent and stoichiometric lithium niobate crystals derived from electron paramagnetic resonance data

    NASA Astrophysics Data System (ADS)

    Grachev, V. G.; Hansen, K.; Meyer, M.; Kokanyan, E. P.; Malovichko, G. I.

    2017-03-01

    Electron paramagnetic resonance (EPR) spectra and their angular dependencies were measured for Co2+ trace impurities in stoichiometric samples of lithium niobate doped with rhodium. It was found that Co2+ substitutes for Li+ in the dominant axial center (CoLi) and that the principal substitution mechanism in stoichiometric lithium niobate is 4Co2+ ↔ 3Li+  +  Nb5+. The four Co2+ ions can occupy the nearest possible cation sites by occupying a Nb site and its three nearest-neighbor Li sites, creating a trigonal pyramid with C3 symmetry, as well as non-neighboring sites (e.g. a CoNb-CoLi pair at the nearest sites on the C3 axis with two nearby isolated single Co2+ ions substituted for Li+). In congruent crystals and samples with Li content enriched by vapor transport equilibrium treatment the excess charge of the Co2+ centers is compensated by lithium vacancies located rather far from the Co2+ ions for the dominant axial center or in the nearest neighborhood for low-symmetry satellite centers (the Co2+ ↔ 2Li+ substitution mechanism). The use of exact numerical diagonalization of the spin-Hamiltonian matrices explains all the details of the EPR spectra and gives a value for hyperfine interaction A || that is several times smaller than that obtained using perturbation formulae. The refined values of A and g-tensor components can be used as reliable cornerstones for ab initio and cluster calculations.

  15. Characterization of structural changes in vimentin bearing an epidermolysis bullosa simplex-like mutation using site-directed spin labeling and electron paramagnetic resonance.

    PubMed

    Hess, John F; Budamagunta, Madhu S; FitzGerald, Paul G; Voss, John C

    2005-01-21

    Mutations in intermediate filament protein genes are responsible for a number of inherited genetic diseases including skin blistering diseases, corneal opacities, and neurological degenerations. Mutation of the arginine (Arg) residue of the highly conserved LNDR motif has been shown to be causative in inherited disorders in at least four different intermediate filament (IF) proteins found in skin, cornea, and the central nervous system. Thus this residue appears to be broadly important to IF assembly and/or function. While the genetic basis for these diseases has been clearly defined, the inability to determine crystal structure for IFs has precluded a determination of how these mutations affect assembly/structure/function of IFs. To investigate the impact of mutation at this site in IFs, we have mutated the LNDR to LNDS in vimentin, a Type III intermediate filament protein, and have examined the impact of this change on assembly using electron paramagnetic resonance. Compared with wild type vimentin, the mutant shows normal formation of the coiled coil dimer, with a slight reduction in the stability of the dimer in rod domain 1. Probing the dimer-dimer interactions shows the formation of normal dimer centered on residue 191 but a failure of dimerization at residue 348 in rod domain 2. These data point toward a specific stage of assembly at which a common disease-causing mutation in IF proteins interrupts assembly.

  16. Dose-dependent vitamin C uptake and radical scavenging activity in human skin measured with in vivo electron paramagnetic resonance spectroscopy.

    PubMed

    Lauer, Anna-Christina; Groth, Norbert; Haag, Stefan F; Darvin, Maxim E; Lademann, Jürgen; Meinke, Martina C

    2013-01-01

    Vitamin C is a potent radical scavenger and a physiological part of the antioxidant system in human skin. The aim of this study was to measure changes in the radical-scavenging activity of human skin in vivo due to supplementation with different doses of vitamin C and at different time points. Therefore, 33 volunteers were supplemented with vitamin C or placebo for 4 weeks. The skin radical-scavenging activity was measured with electron paramagnetic resonance spectroscopy. After 4 weeks, the intake of 100 mg vitamin C/day resulted in a significant increase in the radical-scavenging activity by 22%. Intake of 180 mg/day even resulted in a significant increase of 37%. No changes were found in the placebo group. A part of the study population was additionally measured after 2 weeks: in this group radical scavenging had already reached maximal activity after 2 weeks. In conclusion, orally administered vitamin C increases the radical-scavenging activity of the skin. The effect occurs fast and is enhanced with higher doses of vitamin C.

  17. Association of resistin with impaired membrane fluidity of red blood cells in hypertensive and normotensive men: an electron paramagnetic resonance study.

    PubMed

    Tsuda, Kazushi

    2016-10-01

    Abnormalities in physical properties of the cell membranes may strongly be linked to hypertension. Recent evidence indicates that resistin may actively participate in the pathophysiology of insulin resistance, diabetes mellitus, hypertension and other circulatory disorders. The present study was undertaken to investigate the possible relationships among plasma resistin, oxidative stress and membrane fluidity (a reciprocal value of membrane microviscosity) in hypertension. We measured the membrane fluidity of red blood cells (RBCs) in hypertensive and normotensive men using an electron paramagnetic resonance (EPR) and spin-labeling method. The order parameter (S) for the spin-label agents (5-nitroxide stearate) in EPR spectra of red blood cell (RBC) membranes was significantly higher in hypertensive men than in normotensive men, indicating that membrane fluidity was decreased in hypertension. Plasma resistin levels were correlated with systolic blood pressure and 8-iso-prostaglandin F2α levels (an index of oxidative stress). Furthermore, the order parameter (S) of RBCs significantly correlated with plasma resistin and plasma 8-isoPG F2α, suggesting that reduced membrane fluidity of RBCs might be associated with hyperresistinemia and increased oxidative stress. Multivariate regression analysis showed that, after adjustment for confounding factors, plasma resistin might be an independent determinant of membrane fluidity of RBCs. The EPR study suggests that resistin might have a close correlation with impaired rheologic behavior of RBCs and microcirculatory dysfunction in hypertension, at least in part, via an oxidative stress-dependent mechanism.

  18. New opportunities of the application of natural herb and spice extracts in plant oils: application of electron paramagnetic resonance in examining the oxidative stability.

    PubMed

    Kozłowska, Mariola; Szterk, Arkadiusz; Zawada, Katarzyna; Ząbkowski, Tomasz

    2012-09-01

    The aim of this study was to establish the applicability of natural water-ethanol extracts of herbs and spices in increasing the oxidative stability of plant oils and in the production of novel food. Different concentrations (0, 100, 300, 500, and 700 ppm) of spice extracts and butylated hydroxyanisole (BHA) (100 ppm) were added to the studied oils. The antioxidant activity of spice extracts was determined with electron paramagnetic resonance (EPR) spectroscopy using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. The study showed that the extracts significantly increased the oxidative stability of the examined oils when compared to one of the strongest synthetic antioxidants--BHA. The applied simple production technology and addition of herb and spice extracts to plant oils enabled enhancement of their oxidative stability. The extracts are an alternative to the oils aromatized with an addition of fresh herbs, spices, and vegetables because it did not generate additional flavors thus enabling the maintenance of the characteristic ones. Moreover, it will increase the intake of natural substances in human diet, which are known to possess anticarcinogenic properties.

  19. Investigation of the local structure of Cu2+ ions doped in alkali lead tetraborate glasses by their electron paramagnetic resonance and optical spectra

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Chen, Zhi

    2014-06-01

    The local structure of the Cu2+ centers in alkali lead tetraborate glasses was theoretically studied based on the optical spectra data and high-order perturbation formulas of the spin Hamiltonian parameters (electron paramagnetic resonance g factors g∥, g⊥ and hyperfine structure constants A∥, A⊥) for a 3d9 ion in a tetragonally elongated octahedron. In these formulas, the relative axial elongation of the ligand O2- octahedron around the Cu2+ due to the Jahn-Teller effect is taken into account by considering the contributions to the g factors from the tetragonal distortion which is characterized by the tetragonal crystal-field parameters Ds and Dt. From the calculations, the ligand O2- octahedral around Cu2+ is determined to suffer about 19.2% relative elongation along the C4 axis of the alkali lead tetraborate glass system, and a negative sign for A∥ and a positive sign for A⊥ for these Cu2+ centers are suggested in the discussion.

  20. Analysis of gamma-irradiated melon, pumpkin, and sunflower seeds by electron paramagnetic resonance spectroscopy and gas chromatography-mass spectrometry.

    PubMed

    Sin, Della W M; Wong, Yiu Chung; Yao, Wai Yin

    2006-09-20

    Seeds of melon (Citrullus lanatus var. sp.), pumpkin (Cucurbita moschata), and sunflower (Heliantus annus) were gamma-irradiated at 1, 3, 5, and 10 kGy and analyzed by electron paramagnetic resonance (EPR) and gas chromatography-mass spectrometry (GC-MS) according to EN1787:2000 and EN1785:2003, respectively. Distinguishable triplet signals due to the presence of induced cellulose radicals were found at 2.0010-2.0047 g in the EPR spectra. The gamma-irradiated radiolytic markers of 2-dodecylcyclobutanone (2-DCB) and 2-tetradecylcyclobutanone (2-TCB) were identified in all irradiated seed samples. Both the free radicals and the alkylcyclobutanones were found to increase with irradiation dose. In general, linear relationships between the amount of radicals and irradiation dosage could be established. Studies at an ambient temperature (20-25 degrees C) in a humidity-controlled environment showed a complete disappearance of the cellulosic peaks for irradiated samples upon 60 days of storage. Such instability behavior was considered to render the usefulness of using EPR alone in the determination of irradiated seed samples. On the other hand, 2-DCB and 2-TCB were also found to decompose rapidly (>85% loss after 120 days of storage), but the radiolytic markers remained quantifiable after 120 days of postirradiation storage. These results suggest that GC-MS is a versatile and complimentary technique for the confirmation of irradiation treatment to seeds.

  1. Physical, Optical and Electron paramagnetic resonance studies of PbBr2-PbO-B2O3 glasses containing Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md

    2016-09-01

    The glasses with the composition PbBr2-PbO-B2O3 glasses containing Cu2+ ions were prepared by melt quenching technique. X-ray diffractograms revealed the amorphous nature of the glasses. Density and molar volume were determined. Density is found to decrease while the molar volume increases with increase of PbBr2 content. The optical absorption spectra exhibited a broad band corresponding to the d- d transition of Cu2+ ion. From optical absorption spectra Eopt and Urbach energies were determined. Electron Paramagnetic Resonance (EPR) studies were carried out by introducing Cu2+ as the spin probe. Glasses containing transition metal(TM) ions such as Cu2+ give the information about the structure and the site symmetry around the TM ions. EPR spectra of all the glass samples were recorded at X-band frequencies. From the EPR spectra spin-Hamiltonian parameters were evaluated. It was observed that g∥ >g±>ge (2.0023) and A∥>A±. From this values it is concluded that the ground state of Cu2+ is dx2-y2 (2B1g) and the site symmetry around Cu2+ ion is tetragonally distorted octahedral. From the EPR and Optical data bonding coefficients were evaluated. The in plane o-bonding(α2) is moderately ionic while out of plane 7t-bonding(β2) and in plane 7t-bonding(β1 2) are ionic nature

  2. Doubly resonant Raman electron paramagnetic transitions of Cr{sup 3+} in ruby (Al{sub 2}O{sub 3}:Cr{sup 3+}).

    SciTech Connect

    Lu, X.; Venugopalan, S.; Kim, H.; Grimsditch, M.; Rodriguez, S.; Ramdas, A. K.; Materials Science Division; Purdue Univ.; State Univ. of New York at Binghamton; Sogang Univ.

    2009-06-01

    We report the Raman electron paramagnetic resonance (EPR) of Cr{sup 3+} in ruby (Al{sub 2}O{sub 3}:Cr{sup 3+}) in the {sup 4}A{sub 2} (ground) and E{sup -} (excited) states of its well-known R{sub 1} emission line. Using tunable dye laser excitation within the range of the Zeeman components of R{sub 1}, we observe highly selective doubly resonant enhancements of the Raman EPR lines. The double resonances confirm the assignments of the Raman EPR lines, and they underscore the simultaneous occurrence of both 'in resonance' and 'out resonance' as visualized in the Kramers-Heisenberg quantum-mechanical picture of inelastic light scattering. The g factors of the {sup 4}A{sub 2} and E{sup -} states are consistent with the observed magnetic field dependence of the Raman EPR shifts. Through the interplay of Raman effect and the sharp Zeeman components of R{sub 1}, the results provide clear insights into the underlying microscopic mechanism of these resonant Raman EPR spectra of ruby.

  3. Temperature-Dependent Electron Paramagnetic Resonance Studies of Docosahexaenoic Acid and Gamma Linolenic Acid Effects on Phospholipid Membranes With and Without Cholesterol

    NASA Astrophysics Data System (ADS)

    Yonar, D.; Horasanb, N.; Sünnetçioğlu, M. Maral

    2016-07-01

    Free docosahexaenoic acid (DHAn-3) and gamma linolenic acid (GLAn-6) effects on dimyristoyl phosphatidylcholine (DMPC) membranes were studied as a function of temperature by electron paramagnetic resonance (EPR) spectroscopy. 5- and 16-doxyl stearic acid (5-, 16-DS) spin labels were utilized to obtain information from the interfacial and alkyl chain region, respectively. In the studied temperature range, the presence of DHAn-3 or GLAn-6 caused decreases in maximum hyperfi ne splitting values and correlation times of DMPC membranes. Both in the interfacial region and depths of membrane, changes were more pronounced for DHAn-3 in pure DMPC. In the presence of cholesterol (CH), DHAn-3 and GLAn-6 effects were similar and more pronounced in the depths of the membrane. The changes in the structure and dynamics of samples were obtained from simulations of spectra, which indicated some changes in the number of spectral components by incorporation of DHAn-3 and GLAn-6. In the interfacial region and below the main phase transition temperature of DMPC, there was an increase in heterogeneity. For temperatures above the phase transition, a more homogeneous environment for spin label was obtained in the presence of fatty acids.

  4. 13C Nuclear Magnetic Resonance and Electron Paramagnetic Spectroscopic Comparison of Hydrophobic Acid, Transphilic Acid, and Reverse Osmosis May 2012 Isolates of Organic Matter from the Suwannee River

    PubMed Central

    Nwosu, Ugwumsinachi G.; Cook, Robert L.

    2015-01-01

    Abstract Dissolved organic matter (DOM) is found in most natural waters at concentrations low enough to make DOM isolation methodologies critical to full analytical characterization and preservation. During the last few decades, two major protocols have been developed for the extraction of DOM isolates from natural waters. These methods utilize XAD resins and reverse osmosis (RO). In this work, the hydrophobic acid (May 2012 HPOA) and transphilic acid (May 2012 TPIA) isolates from XAD-8 and XAD-4 resins, respectively, were compared with the RO (May 2012 RO) natural organic matter isolate of the Suwannee River water using 13C nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. 13C NMR analysis showed that the May 2012 RO isolate could be viewed as a hybrid of the more hydrophobic May 2012 HPOA isolate and more hydrophilic May 2012 TPIA isolate. The May 2012 HPOA isolate is shown to be higher in alkyl and aromatic moieties, while the May 2012 TPIA isolate is higher in O-alkyl moieties. EPR analysis revealed that the May 2012 TPIA and, in particular, May 2012 HPOA isolates had higher radical concentrations than the May 2012 RO isolate. It is postulated that some of the radical concentrations came from the use of base during the isolation procedures, especially in the XAD method. PMID:25565761

  5. (13)C Nuclear Magnetic Resonance and Electron Paramagnetic Spectroscopic Comparison of Hydrophobic Acid, Transphilic Acid, and Reverse Osmosis May 2012 Isolates of Organic Matter from the Suwannee River.

    PubMed

    Nwosu, Ugwumsinachi G; Cook, Robert L

    2015-01-01

    Dissolved organic matter (DOM) is found in most natural waters at concentrations low enough to make DOM isolation methodologies critical to full analytical characterization and preservation. During the last few decades, two major protocols have been developed for the extraction of DOM isolates from natural waters. These methods utilize XAD resins and reverse osmosis (RO). In this work, the hydrophobic acid (May 2012 HPOA) and transphilic acid (May 2012 TPIA) isolates from XAD-8 and XAD-4 resins, respectively, were compared with the RO (May 2012 RO) natural organic matter isolate of the Suwannee River water using (13)C nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. (13)C NMR analysis showed that the May 2012 RO isolate could be viewed as a hybrid of the more hydrophobic May 2012 HPOA isolate and more hydrophilic May 2012 TPIA isolate. The May 2012 HPOA isolate is shown to be higher in alkyl and aromatic moieties, while the May 2012 TPIA isolate is higher in O-alkyl moieties. EPR analysis revealed that the May 2012 TPIA and, in particular, May 2012 HPOA isolates had higher radical concentrations than the May 2012 RO isolate. It is postulated that some of the radical concentrations came from the use of base during the isolation procedures, especially in the XAD method.

  6. Changes in apparent pH on freezing aqueous buffer solutions and their relevance to biochemical electron-paramagnetic-resonance spectroscopy.

    PubMed Central

    Williams-Smith, D L; Bray, R C; Barber, M J; Tsopanakis, A D; Vincent, S P

    1977-01-01

    Changes in apparent pH occurring during fast freezing of aqueous buffer solutions and cooling to -196 degrees C were studied by various semiquantitative methods, including simple visual measurements of colour changes with pH indicators, as well as measurements of pH-dependent changes in the e.p.r. (electron paramagnetic resonance) spectra of solutions of three different metalloenzymes. It is concluded that apparent pH changes of up to about 3pH units may occur under particular conditions. Such changes were independent of the time taken to freeze the samples, when this was varied from about 3ms t0 20s, but were affected by the presence of some proteins in solution. Recommendations on the buffers that should be used to avoid such apparent pH changes in e.p.r. spectroscopy and other low-temperature biochemical work are made. Phosphate and pyrophosphate buffers, which gave large decreases (2-3 pH units), and Tris, which under some conditions gave increases of about the same magnitude, are to be avoided. Certain zwitterionic buffers such as Bicine [NN-bis-(2-hydroxyethyl)glycine] are satisfactory. Apparent pH effects were found to depend on buffer and protein concentration. It is therefore recommended that as a prelude to future detailed low-temperature biochemical work, appropriate tests with an indicator system should be performed. PMID:23760

  7. Ferrimagnetism and magnetic phase separation in Nd1-xYxMnO3 studied by magnetization and high frequency electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Yadav, Ruchika; Adiga, Shilpa; Rao, S. S.; van Tol, Johan; Elizabeth, Suja

    2015-01-01

    Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd1-xYxMnO3, for x=0.1-0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO3. Magnetization studies reveal a phase transition of the Mn-sublattice below T N Mn ≈ 80 K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x < 0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd1-xYxMnO3 can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation.

  8. Electron-paramagnetic-resonance spectroscopy studies of iron-sulphur centres of submitochondrial particles from iron- and sulphur-deficient. Candida utilis.

    PubMed Central

    Gray, T A; Garland, P B; Lowe, D J; Garland, P B

    1975-01-01

    1. Measurements were made at 12 degrees K of the electron-paramagnetic-resonance (e.p.r.) spectra of submitochondrial particles from Candida utilis cells grown under conditions that alter the amount of the mitochondrial NADH dehydrogenase (EC 1.6.99.3). 2. Iron-limited growth decreases the extent of iron-sulphur e.p.r. signals to undetectable values that are less than 1 percent of those normally found with glycerol-limited growth. 3. Small but significant signals attributable to the NADH dehydrogenase were detected in submitochondrial particles from sulphate-limited cells. 4. Measurements made on submitochondrial particles prepared from these and other phenotypically modified cells lead us to conclude that the presence of low-temperature e.p.r.-detectable iron-sulphur centres attributable to the NADH dehydrogenase are necessary but not sufficient for the coupling of ATP synthesis to the NADH dehydrogenase reaction in the mitochondrial membrane of C. utilis. 6. The amplitude of the g=2.01 signal observed in non-reduced submitochondrial particles is approximately tenfold diminished by iron limitation but not significantly altered by sulphate limitation. PMID:167715

  9. A calcium channel blocker, benidipine, improves cell membrane fluidity in human subjects via a nitric oxide-dependent mechanism. An electron paramagnetic resonance investigation.

    PubMed

    Tsuda, Kazushi; Nishio, Ichiro

    2004-12-01

    Recent studies have revealed that benidipine, a long-acting dihydropyridine-type of calcium (Ca) channel blocker, may exert its protective effect against vascular disorders by increasing nitric oxide (NO) production. The purpose of the present study was to investigate the effects of benidipine and NO on the membrane function in human subjects. We measured the membrane fluidity of erythrocytes by using an electron paramagnetic resonance (EPR) and spin-labeling method. Benidipine decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(o)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in normotensive volunteers. The finding indicated that benidipine increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of benidipine was significantly potentiated by the NO donor, S-nitroso-n-acetylpenicillamine, and by the cyclic guanosine 3', 5'-monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by benidipine was counteracted by the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester and asymmetric dimethyl-L-arginine. These results demonstrated that benidipine increased the membrane fluidity of erythrocytes, at least in part, via the NO- and cGMP-dependent mechanism. Furthermore, the data strongly suggest that benidipine might have a beneficial effect on the rheologic behavior of erythrocytes and the improvement of the microcirculation in humans.

  10. Electron paramagnetic resonance study of hydrogen peroxide/ascorbic acid ratio as initiator redox pair in the inulin-gallic acid molecular grafting reaction.

    PubMed

    Arizmendi-Cotero, Daniel; Gómez-Espinosa, Rosa María; Dublán García, Octavio; Gómez-Vidales, Virginia; Dominguez-Lopez, Aurelio

    2016-01-20

    Gallic acid (GA) was grafted onto inulin using the free radicals method, generated by the hydrogen peroxide/ascorbic acid (H2O2/AA) redox pair. Molar ratios of H2O2/AA at 9, 20, 39 and 49 were evaluated by Electron Paramagnetic Resonance in order to find the effect of the oxidation of the inulin and the efficiency in the inulin-gallic acid grafting (IGA). The highest concentration of the inulin macro-radical was obtained with H2O2/AA molar ratios of 20 and 49 with the removal of a hydrogen atom from a methyl group of the inulin fructose monomers. The highest grafting ratio (30.4 mg GA eq/g IGA) was obtained at 9 M of H2O2/AA. UV-Vis, FT-IR-ATR and XDR results confirmed a successful IGA grafting. The efficiency of the grafting reaction depends on the concentration of the macro-radical, it depends on the molar ratio of H2O2/AA, being affected by simultaneous reactions between components of the mixture (H2O2, AA, inulin, GA and eventually atmospheric oxygen) as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Electron paramagnetic resonance measurements of free radicals in the intact beating heart: a technique for detection and characterization of free radicals in whole biological tissues.

    PubMed Central

    Zweier, J L; Kuppusamy, P

    1988-01-01

    Free radicals have been hypothesized to be important mediators of disease in a variety of organs and tissues. Electron paramagnetic resonance (EPR) spectroscopy can be applied to directly measure free radicals; however, it has not been possible to measure important biological radicals in situ because conventional spectrometer designs are not suitable for the performance of measurements on whole organs or tissues. We report the development of an EPR spectrometer designed for optimum performance in measuring free radicals in intact biological organs or tissues. This spectrometer consists of a 1- to 2-GHz microwave bridge with the source locked to the resonant frequency of a recessed gap loop-gap resonator. With this spectrometer, radical concentrations as low as 0.4 microM can be measured. Isolated beating hearts were studied in which simultaneous real time measurements of free radicals and cardiac contractile function were performed. This in vivo EPR technique was applied to study the kinetics of free radical uptake and metabolism in normally perfused and globally ischemic hearts. In addition, we show that this technique can be used to noninvasively measure tissue oxygen consumption. Thus, it is demonstrated that EPR spectroscopy can be applied to directly measure in vivo free radical metabolism and tissue oxygen consumption. This technique offers great promise in the study of in vivo free radical generation and the effects of this radical generation on whole biological tissues. PMID:2840672

  12. Electron Paramagnetic Resonance Evidence for a C3′ Sugar Radical in Crystalline d(CTCTCGAGAG) X-Irradiated at 4 K

    PubMed Central

    Debije, Michael G.; Bernhard, William A.

    2008-01-01

    A neutral sugar radical formed by the net loss of hydrogen from C3′ has been identified in crystalline DNA X-irradiated at 4 K. Crystals of duplex d(CTCTCGAGAG), known to be of B conformation, were studied using electron paramagnetic resonance (EPR) spectroscopy. The C3′ radical was identified by using information from dose saturation, power saturation, thermal annealing, and spectrum simulation. The yield of the C3′ radical, G(C3′), is 0.03 ± 0.01 μmol/J, and its concentration does not appear to saturate up to at least 100 kGy. In the region in which total radical concentration increases linearly with dose, the C3′ radical makes up about 4.5% of the total radical population trapped in the oligodeoxynucleotide crystal at 4 K. Based on free base release measured in other oligodeoxynucleotides, we suggest that in d(CTCTCGAGAG) the C3′ radical is responsible for about one-third of the strand breakage events. PMID:11302765

  13. Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure.

    PubMed Central

    Steinhoff, H J; Radzwill, N; Thevis, W; Lenz, V; Brandenburg, D; Antson, A; Dodson, G; Wollmer, A

    1997-01-01

    A method was developed to determine the interspin distances of two or more nitroxide spin labels attached to specific sites in proteins. This method was applied to different conformations of spin-labeled insulins. The electron paramagnetic resonance (EPR) line broadening due to dipolar interaction is determined by fitting simulated EPR powder spectra to experimental data, measured at temperatures below 200 K to freeze the protein motion. The experimental spectra are composed of species with different relative nitroxide orientations and interspin distances because of the flexibility of the spin label side chain and the variety of conformational substates of proteins in frozen solution. Values for the average interspin distance and for the distance distribution width can be determined from the characteristics of the dipolar broadened line shape. The resulting interspin distances determined for crystallized insulins in the R6 and T6 structure agree nicely with structural data obtained by x-ray crystallography and by modeling of the spin-labeled samples. The EPR experiments reveal slight differences between crystal and frozen solution structures of the B-chain amino termini in the R6 and T6 states of hexameric insulins. The study of interspin distances between attached spin labels can be applied to obtain structural information on proteins under conditions where other methods like two-dimensional nuclear magnetic resonance spectroscopy or x-ray crystallography are not applicable. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 8 PMID:9414239

  14. Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy.

    PubMed

    Saeidpour, S; Lohan, S B; Anske, M; Unbehauen, M; Fleige, E; Haag, R; Meinke, M C; Bittl, R; Teutloff, C

    2016-10-15

    The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown.

  15. Evaluation of oxidative stress in the brain of a transgenic mouse model of Alzheimer disease by in vivo electron paramagnetic resonance imaging.

    PubMed

    Matsumura, Akihiro; Emoto, Miho C; Suzuki, Syuuichirou; Iwahara, Naotoshi; Hisahara, Shin; Kawamata, Jun; Suzuki, Hiromi; Yamauchi, Ayano; Sato-Akaba, Hideo; Fujii, Hirotada G; Shimohama, Shun

    2015-08-01

    Alzheimer disease (AD) is a neurodegenerative disease clinically characterized by progressive cognitive dysfunction. Deposition of amyloid-β (Aβ) peptides is the most important pathophysiological hallmark of AD. Oxidative stress induced by reactive oxygen species is prominent in AD, and several reports suggest the relationship between a change in redox status and AD pathology containing progressive Aβ deposition, the activation of glial cells, and mitochondrial dysfunction. Therefore, we performed immunohistochemical analysis using a transgenic mouse model of AD (APdE9) and evaluated the activity of superoxide dismutase in brain tissue homogenates of APdE9 mice in vitro. Together with those analyses, in vivo changes in redox status with age in both wild-type (WT) and APdE9 mouse brains were measured noninvasively by three-dimensional electron paramagnetic resonance (EPR) imaging using nitroxide (3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy) as a redox-sensitive probe. Both methods found similar changes in redox status with age, and in particular a significant change in redox status in the hippocampus was observed noninvasively by EPR imaging between APdE9 mice and age-matched WT mice from 9 to 18 months of age. EPR imaging clearly visualized the accelerated change in redox status of APdE9 mouse brain compared with WT. The evaluation of the redox status in the brain of AD model rodents by EPR imaging should be useful for diagnostic study of AD.

  16. The lead acceptor in p-type natural 2H-polytype MoS2 crystals evidenced by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Iacovo, S.; Stesmans, A.; Houssa, M.; Afanas'ev, V. V.

    2017-03-01

    A low-temperature (T  =  1.5-8 K) electron paramagnetic resonance study of p-type 2H-polytype natural MoS2 crystals reveals a previously unreported anisotropic signal of corresponding defect density (spin S  =  ½) ~5  ×  1014 cm-3. For the applied magnetic field B//c-axis, the response is comprised of a single central asymmetric Zeeman peak at zero-crossing g  =  2.102(1), amid a symmetrically positioned hyperfine doublet of splitting 6.6(2) G. Field angular observations reveal a two-branch g pattern, indicative of a defect of lower than axial symmetry, likely orthorhombic (C 2v). Based on the signal specifics, it is ascribed to a system of decoupled Pb impurities substituting for Mo, the defect operating as an acceptor, with estimated thermal activation energy  >10 meV. Supporting theoretical anticipation, the results pinpoint the conduct of the Pb impurity in layered MoS2.

  17. Determination of the metallic/semiconducting ratio in bulk single-wall carbon nanotube samples by cobalt porphyrin probe electron paramagnetic resonance spectroscopy.

    PubMed

    Cambré, Sofie; Wenseleers, Wim; Goovaerts, Etienne; Resasco, Daniel E

    2010-11-23

    A simple and quantitative, self-calibrating spectroscopic technique for the determination of the ratio of metallic to semiconducting single-wall carbon nanotubes (SWCNTs) in a bulk sample is presented. The technique is based on the measurement of the electron paramagnetic resonance (EPR) spectrum of the SWCNT sample to which cobalt(II)octaethylporphyrin (CoOEP) probe molecules have been added. This yields signals from both CoOEP molecules on metallic and on semiconducting tubes, which are easily distinguished and accurately characterized in this work. By applying this technique to a variety of SWCNT samples produced by different synthesis methods, it is shown that these signals for metallic and semiconducting tubes are independent of other factors such as tube length, defect density, and diameter, allowing the intensities of both signals for arbitrary samples to be retrieved by a straightforward least-squares regression. The technique is self-calibrating in that the EPR intensity can be directly related to the number of spins (number of CoOEP probe molecules), and as the adsorption of the CoOEP molecules is itself found to be unbiased toward metallic or semiconducting tubes, the measured intensities can be directly related to the mass percentage of metallic and semiconducting tubes in the bulk SWCNT sample. With the use of this method it was found that for some samples the metallic/semiconducting ratios strongly differed from the usual 1:2 ratio.

  18. Microstructure evaluation of dermally applicable liquid crystals as a function of water content and temperature: Can electron paramagnetic resonance provide complementary data?

    PubMed

    Matjaž, Mirjam Gosenca; Mravljak, Janez; Rogač, Marija Bešter; Šentjurc, Marjeta; Gašperlin, Mirjana; Pobirk, Alenka Zvonar

    2017-05-18

    Insight into the microstructure of lyotropic liquid crystals (LCs) is of crucial importance for development of novel dermal delivery systems. Our aim was to evaluate the phase behaviour of dermally applicable LCs composed of isopropyl myristate/Tween 80/lecithin/water, along the dilution line, where phase transitions are predominantly driven by increased water content. Additionally, identification of LC temperature dependence is of great importance for skin application. Selected LCs were evaluated using electron paramagnetic resonance (EPR) plus conventionally used methods of polarization microscopy, small-angle X-ray scattering, differential scanning calorimetry, and rheological measurements. Depending on water content, LCs formed diverse microstructures, from (pseudo)hexagonal (LC1) and lamellar (LC2-LC7) liquid crystalline phases that possibly co-exist with rod-like micelles (LC4-LC7), to a transitional micellar phase (LC8). Furthermore, the LCs microstructure remained unaltered within the tested temperature range. EPR was shown to detect microstructural transitions of LCs and to provide complementary data to other techniques. These data thus confirm the applicability of EPR as a complementary technique for better understanding of LC microstructural transitions that are expected to contribute greatly to studies oriented towards the drug release characteristics from such systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A Study of Mechanochemical Doping of Fluoride Crystals with a Fluorite Structure by Er3+ Ions via Electron Paramagnetic Resonance Spectra

    NASA Astrophysics Data System (ADS)

    Irisova, I. A.; Rodionov, A. A.; Tayurskii, D. A.; Yusupov, R. V.

    2014-05-01

    Using electron paramagnetic resonance (EPR) spectroscopy, we have shown that, upon mecha- noactivated doping of powders of compounds CaF2, SrF2, and BaF2 with Er3+ ions, impurity centers of single erbium ions with cubic symmetry are formed. Investigations of dependences of EPR spectra intensities on the particle size show that the process of mechanochemical doping with Er3+ ions proceeds differently for CaF2, SrF2, and BaF2 host matrices. In the case of CaF2, impurity centers are localized in a very thin near-surface layer of CaF2 particles, in SrF2, the impurity is distributed over the volume of particles, while, in BaF2, there is a layer of a finite thickness for which the probability of doping in the course of mechanosynthesis is very small and the impurity of the rare-earth element is localized in the core of large particles. These data can be explained assuming that the result of mechanosynthesis of particles of fluorides with a fluorite structure doped with Er3+ ions at room temperature is governed by two processes—mechanoactivated diffusion of rare-earth ions into particles and segregation of impurity ions at grain boundaries. In this case, the typical scales for compounds CaF2, SrF2, and BaF2 considerably differ from each other.

  20. High-resolution threshold photoelectron spectroscopy by electron attachment

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; Chutjian, A.

    1976-01-01

    A new technique for measuring high-resolution threshold photoelectron spectra of atoms, molecules, and radicals is described. It involves photoionization of a gaseous species, attachment of the threshold, or nearly zero electron to some trapping molecule (here SF6 or CFCl3), and mass detection of the attachment product (SF6/-/ or Cl/-/ respectively). This technique of threshold photoelectron spectroscopy by electron attachment was used to measure the spectra of argon and xenon at 11 meV (FWHM) resolution, and was also applied to CFCl3.

  1. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics

    NASA Astrophysics Data System (ADS)

    Hassan, M. Th.; Baskin, J. S.; Liao, B.; Zewail, A. H.

    2017-07-01

    Ultrafast electron microscopy (UEM) has been demonstrated as an effective table-top technique for imaging the temporally evolving dynamics of matter with a subparticle spatial resolution on the timescale of atomic motion. However, imaging the faster motion of electron dynamics in real time has remained beyond reach. Here we demonstrate more than an order of magnitude (16 times) enhancement in the typical temporal resolution of UEM by generating isolated ∼30 fs electron pulses, accelerated at 200 keV, via the optical-gating approach, with sufficient intensity to probe efficiently the electronic dynamics of matter. Moreover, we investigate the feasibility of attosecond optical gating to generate isolated subfemtosecond electron pulses and attain the desired temporal resolution in electron microscopy to establish 'attomicroscopy' to allow the imaging of electron motion in the act.

  2. Subcellular localization and paramagnetic properties of signals observed in Krebs II ascites cells by electron spin resonance spectroscopy

    SciTech Connect

    Lloveras, J.; Vincensini, P.; Ribbes, G.; Record, M.; Ferre, G.; Douste-Blazy, L.; Pescia, J.

    1980-04-01

    Subcellular fractions of Krebs II ascites cells were examined by Electron Spin Resonance spectroscopy. Three signals were observed: (1) one at g = 2.005 associated with organic free radicals; (2) another at g = 2.01 formed by three peaks with a hyperfine splitting of 16 G; and (3) a third at g = 2.03, observed only in the particulate fraction 40,000 x g (30 min) and in the cytosol. This latter signal, of endogenous origin, seems similar to the one which is assigned in the literature to dinitrosyl-non-hem-iron complexes, and the role of such complexes in the carcinogenic process is often emphasized. Therefore, Krebs II ascites cells appear to be a useful model for investigating the endogenous 2.03 complex in relation to its localization and nature.

  3. Solvated alkali atoms and electron-transfer paramagnetic ion pairs: Some common trends from computer simulation studies

    NASA Astrophysics Data System (ADS)

    Fois, Ettore S.; Gamba, Aldo

    1994-06-01

    Quantum molecular dynamics simulations have been performed for an alkali atom (sodium) diluted in a model dipolar fluid, at various solvent densities, and for the sodium/pyrazine ion pair in the same liquid. The excitonic state proposed by Logan, i.e., an hybrid s/p dipolar atom, is found to be the ground state of the solvated sodium. The Na atomic dipole increases with solvent density. The dipole moment of the Na/pyrazine pair increases with solvent density as well: In this case the Na self-excitation is replaced by electron transfer from Na to pyrazine resulting in a larger dipole moment stabilized by the solvent. Our results compare favorably with available experimental data.

  4. Bond-order wave phase of the extended Hubbard model: Electronic solitons, paramagnetism, and coupling to Peierls and Holstein phonons

    NASA Astrophysics Data System (ADS)

    Kumar, Manoranjan; Soos, Zoltán G.

    2010-10-01

    The bond-order wave (BOW) phase of the extended Hubbard model (EHM) in one dimension (1D) is characterized at intermediate correlation U=4t by exact treatment of N -site systems. Linear coupling to lattice (Peierls) phonons and molecular (Holstein) vibrations are treated in the adiabatic approximation. The molar magnetic susceptibility χM(T) is obtained directly up to N=10 . The goal is to find the consequences of a doubly degenerate ground state (gs) and finite magnetic gap Em in a regular array. Degenerate gs with broken inversion symmetry are constructed for finite N for a range of V near the charge-density-wave boundary at V≈2.18t where Em≈0.5t is large. The electronic amplitude B(V) of the BOW in the regular array is shown to mimic a tight-binding band with small effective dimerization δeff . Electronic spin and charge solitons are elementary excitations of the BOW phase and also resemble topological solitons with small δeff . Strong infrared intensity of coupled molecular vibrations in dimerized 1D systems is shown to extend to the regular BOW phase while its temperature dependence is related to spin solitons. The Peierls instability to dimerization has novel aspects for degenerate gs and substantial Em that suppresses thermal excitations. Finite Em implies exponentially small χM(T) at low temperature followed by an almost linear increase with T . The EHM with U=4t is representative of intermediate correlations in quasi-1D systems such as conjugated polymers or organic ion-radical and charge-transfer salts. The vibronic and thermal properties of correlated models with BOW phases are needed to identify possible physical realizations.

  5. Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory

    NASA Astrophysics Data System (ADS)

    Neese, Frank

    2001-12-01

    A method for calculating the EPR g-tensor based on coupled perturbed Hartree-Fock (HF) and density functional theory (DFT) is presented. The one-electron molecular orbitals of a spin- unrestricted Slater determinant are calculated up to first order in the applied magnetic field. The g-tensor is evaluated as a mixed second derivative property with respect to the applied field and the electron magnetic moment. Thus, spin-polarization and spin-orbit coupling are simultaneously included in the calculation. The treatment focuses on orbitally nondegenerate molecules but is valid for a general ground state spin S and, for the first time, it is possible to include hybrid density functionals in the treatment. The relativistic mass and diamagnetic gauge corrections are also considered. An implementation of the theory is described. Extensive numerical calculations for a series of small molecules are reported with the Hartree-Fock (HF) method, the local density approximation (LSD), the generalized gradient approximation (GGA) and hybrid density functionals such as B3LYP and PBE0 and large Gaussian basis sets. Detailed comparison with available ab initio and DFT calculations are made. The results indicate that the hybrid functionals offer little or no improvement over the GGA functionals for small radicals made of light atoms. For transition metal complexes the situation is different. The hybrid functionals give, on average, better results than the GGA functionals but significant disagreement between theoretical and experimental g-shifts still remain. Overall, the results indicate that the present method is among the most accurate so far developed models for the prediction of g values.

  6. Copper Decoration of Carbon Nanotubes and High Resolution Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Probst, Camille

    A new process of decorating carbon nanotubes with copper was developed for the fabrication of nanocomposite aluminum-nanotubes. The process consists of three stages: oxidation, activation and electroless copper plating on the nanotubes. The oxidation step was required to create chemical function on the nanotubes, essential for the activation step. Then, catalytic nanoparticles of tin-palladium were deposited on the tubes. Finally, during the electroless copper plating, copper particles with a size between 20 and 60 nm were uniformly deposited on the nanotubes surface. The reproducibility of the process was shown by using another type of carbon nanotube. The fabrication of nanocomposites aluminum-nanotubes was tested by aluminum vacuum infiltration. Although the infiltration of carbon nanotubes did not produce the expected results, an interesting electron microscopy sample was discovered during the process development: the activated carbon nanotubes. Secondly, scanning transmitted electron microscopy (STEM) imaging in SEM was analysed. The images were obtained with a new detector on the field emission scanning electron microscope (Hitachi S-4700). Various parameters were analysed with the use of two different samples: the activated carbon nanotubes (previously obtained) and gold-palladium nanodeposits. Influences of working distance, accelerating voltage or sample used on the spatial resolution of images obtained with SMART (Scanning Microscope Assessment and Resolution Testing) were analysed. An optimum working distance for the best spatial resolution related to the sample analysed was found for the imaging in STEM mode. Finally, relation between probe size and spatial resolution of backscattered electrons (BSE) images was studied. An image synthesis method was developed to generate the BSE images from backscattered electrons coefficients obtained with CASINO software. Spatial resolution of images was determined using SMART. The analysis shown that using a probe

  7. Ultrahigh-Resolution Scanning Transmission Electron Microscopy with Sub-Angstrom-Sized Electron Beams

    SciTech Connect

    Abe, E.; Pennycook, Stephen J

    2005-01-01

    The scanning transmission electron microscope (STEM) with an annular dark-field (ADF) detector provides atomic-resolution incoherent images, whose resolution is dominated, to a good approximation, by the size of convergent electron beams. Improving a spherical aberration of microscope objective lenses has been successful in converging the beam into sub-angstrom scale, promising a remarkably higher resolution for STEM. Here we describe the performance of aberration-corrected 300kV-STEM-the world-best STEM available today. The results clearly demonstrate that a sub-angstrom resolution has been indeed achieved for not only simple structures but also structurally complex systems (quasicrystals).

  8. Investigation of Phenols Activity in Early Stage Oxidation of Edible Oils by Electron Paramagnetic Resonance and (19)F NMR Spectroscopies Using Novel Lipid Vanadium Complexes As Radical Initiators.

    PubMed

    Drouza, Chryssoula; Dieronitou, Anthi; Hadjiadamou, Ioanna; Stylianou, Marios

    2017-06-21

    A novel dynamic method for the investigation of the phenols activity in early stage oxidation of edible oils based on the formation of α-tocopheryl radicals initiated by oil-soluble vanadium complexes is developed. Two new vanadium complexes in oxidation states V and IV were synthesized by reacting 2,2'-((2-hydroxyoctadecyl)azanediyl)bis(ethan-1-ol) (C18DEA) with [VO(acac)2] and 1-(bis(pyridin-2-ylmethyl)amino)octadecan-2-ol (C18DPA) with VOCl2. Addition of a solution of either complex in edible oils resulted in the formation of α-tocopheryl radical, which was monitored by electron paramagnetic resonance (EPR) spectroscopy. The intensity of the α-tocopheryl signal in the EPR spectra was measured versus time. It was found that the profile of the intensity of the α-tocopheryl signal versus time depends on the type of oil, the phenolic content, and the storage time of the oil. The time interval until the occurrence of maximum peak intensity be reached (tm), the height of the maximum intensity, and the rate of the quenching of the α-tocopheryl radical were used for the investigation of the mechanism of the edible oils oxidation. (19)F NMR of the (19)F labeled phenolic compounds (through trifluoroacetate esters) and radical trap experiments showed that the vanadium complexes in edible oil activate the one electron reduction of dioxygen to superperoxide radical. Superperoxide reacts with the lipids to form alkoperoxyl and alkoxyl lipid radicals, and all these radicals react with the phenols contained in oils.

  9. Sub-ångstrom resolution using aberration corrected electron optics

    NASA Astrophysics Data System (ADS)

    Batson, P. E.; Dellby, N.; Krivanek, O. L.

    2002-08-01

    Following the invention of electron optics during the 1930s, lens aberrations have limited the achievable spatial resolution to about 50 times the wavelength of the imaging electrons. This situation is similar to that faced by Leeuwenhoek in the seventeenth century, whose work to improve the quality of glass lenses led directly to his discovery of the ubiquitous ``animalcules'' in canal water, the first hints of the cellular basis of life. The electron optical aberration problem was well understood from the start, but more than 60 years elapsed before a practical correction scheme for electron microscopy was demonstrated, and even then the remaining chromatic aberrations still limited the resolution. We report here the implementation of a computer-controlled aberration correction system in a scanning transmission electron microscope, which is less sensitive to chromatic aberration. Using this approach, we achieve an electron probe smaller than 1Å. This performance, about 20 times the electron wavelength at 120keV energy, allows dynamic imaging of single atoms, clusters of a few atoms, and single atomic layer `rafts' of atoms coexisting with Au islands on a carbon substrate. This technique should also allow atomic column imaging of semiconductors, for detection of single dopant atoms, using an electron beam with energy below the damage threshold for silicon.

  10. Following lithiation fronts in paramagnetic electrodes with in situ magnetic resonance spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Tang, Mingxue; Sarou-Kanian, Vincent; Melin, Philippe; Leriche, Jean-Bernard; Ménétrier, Michel; Tarascon, Jean-Marie; Deschamps, Michaël; Salager, Elodie

    2016-11-01

    Li-ion batteries are invaluable for portable electronics and vehicle electrification. A better knowledge of compositional variations within the electrodes during battery operation is, however, still needed to keep improving their performance. Although essential in the medical field, magnetic resonance imaging of solid paramagnetic battery materials is challenging due to the short lifetime of their signals. Here we develop the scanning image-selected in situ spectroscopy approach, using the strongest commercially available magnetic field gradient. We demonstrate the 7Li magnetic resonance spectroscopic image of a 5 mm-diameter operating battery with a resolution of 100 μm. The time-resolved image-spectra enable the visualization in situ of the displacement of lithiation fronts inside thick paramagnetic electrodes during battery operation. Such observations are critical to identify the key limiting parameters for high-capacity and fast-cycling batteries. This non-invasive technique also offers opportunities to study devices containing paramagnetic materials while operating.

  11. Human enamel structure studied by high resolution electron microscopy

    SciTech Connect

    Wen, S.L. )

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references.

  12. Atomic resolution imaging of graphene by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Robertson, Alex W.; Warner, Jamie H.

    2013-05-01

    The atomic structure of a material influences its electronic, chemical, magnetic and mechanical properties. Characterising carbon nanomaterials, such as fullerenes, nanotubes and graphene, at the atomic level is challenging due to their chemical reactivity and low atomic mass. Transmission electron microscopy and scanning probe microscopy are two of the leading methods for imaging graphene at the atomic level. Here, we report on recent advances in atomic resolution imaging of graphene using aberration-corrected high resolution transmission electron microscopy and how it has revealed many of the structural deviations from the pristine monolayer form. Structures in graphene such as vacancy defects, edges, grain boundaries, linear chains, impurity dopants, layer number, layer stacking and bond rotations are explored.

  13. Effect of TiO2 on electron paramagnetic resonance, optical transmission and dc conductivity of vanadyl doped sodium borate glasses.

    PubMed

    Agarwal, A; Seth, V P; Gahlot, P; Goyal, D R; Arora, M; Gupta, S K

    2004-11-01

    Glass systems with composition xTiO2.(30 - x)Na2O.70B2O3 (series I) and xTiO2.(70 - x)B2O3.30Na2O (series II) containing 2 mol% V2O5 have been prepared (0 < or = x < or = 7, mol%) by normal melt-quenching. The electron paramagnetic resonance (EPR) spectra of VO2+ ions have been recorded in the X-band (approximately 9.13 GHz) at room temperature. Spin Hamiltonian parameters, gparallel, gperpendicular, Aparallel, Aperpendicular, the dipolar hyperfine coupling parameter (P) and the Fermi contact interaction parameter (K) have been calculated. The increase in Deltagparallel/Deltagperpendicular with increase in TiO2 content in series I shows that the octahedral symmetry of V4+O6 complex is reduced, whereas in series II the octahedral symmetry is improved with increase in x. The decrease in P, in both the series, indicates that the 3dxy orbit expands with increase in mol% of TiO2. The molecular orbital coefficients, alpha2 and gamma2 have been calculated by recording the optical transmission spectra in the range 500-850 nm. alpha2 and gamma2 increase with increase in x in both the series, which indicates that, the covalency of the vanadium oxygen bonds decreases. The dc conductivity sigma, decreases and activation energy, W increases with increase in TiO2:Na2O ratio whereas with increase in TiO2:B2O3 ratio the variation in sigma and W is within experimental error.

  14. Head and rod 1 interactions in vimentin: identification of contact sites, structure, and changes with phosphorylation using site-directed spin labeling and electron paramagnetic resonance.

    PubMed

    Aziz, Atya; Hess, John F; Budamagunta, Madhu S; FitzGerald, Paul G; Voss, John C

    2009-03-13

    We have used site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) to identify residues 17 and 137 as sites of interaction between the head domain and rod domain 1A of the intermediate filament protein vimentin. This interaction was maximal when compared with the spin labels placed at up- and downstream positions in both head and rod regions, indicating that residues 17 and 137 were the closest point of interaction in this region. SDSL EPR characterization of residues 120-145, which includes the site of head contact with rod 1A, reveals that this region exhibits the heptad repeat pattern indicative of alpha-helical coiled-coil structure, but that this heptad repeat pattern begins to decay near residue 139, suggesting a transition out of coiled-coil structure. By monitoring the spectra of spin labels placed at the 17 and 137 residues during in vitro assembly, we show that 17-137 interaction occurs early in the assembly process. We also explored the effect of phosphorylation on the 17-137 interaction and found that phosphorylation-induced changes affected the head-head interaction (17-17) in the dimer, without significantly influencing the rod-rod (137-137) and head-rod (17-137) interactions in the dimer. These data provide the first direct evidence for, and location of, head-rod interactions in assembled intermediate filaments, as well as direct evidence of coiled-coil structure in rod 1A. Finally, the data identify changes in the structure in this region following in vitro phosphorylation.

  15. Rapid kinetics of insertion and accessibility of spin-labeled phospholipid analogs in lipid membranes: a stopped-flow electron paramagnetic resonance approach.

    PubMed Central

    Marx, U; Lassmann, G; Wimalasena, K; Müller, P; Herrmann, A

    1997-01-01

    Spin-labeled phospholipid analogs have been employed to probe the transbilayer distribution of endogenous phospholipids in various membrane systems. To determine the transmembrane distribution of the spin-labeled analogs, the analogs are usually inserted into the membrane of interest and subsequently the amount of analog in the outer membrane leaflet is determined either by chemical reduction with ascorbate or by back-exchange to bovine serum albumin (BSA). For accurate determination of the transbilayer distribution of analogs, both the kinetics of incorporation and those of accessibility of analogs to ascorbate or BSA have to be fast in comparison to their transbilayer movement. By means of stopped-flow electron paramagnetic resonance (EPR) spectroscopy, we have studied the kinetics of incorporation of the spin-labeled phosphatidylcholine (PC) analog 1-palmitoyl-2-(4-doxylpentanoyl)-sn-glycero-3-phosphocholine (SL-PC) and of its accessibility to chemical reduction and to back-exchange at room temperature. Incorporation of SL-PC into the outer leaflet of egg phosphatidylcholine (EPC) and red cell ghost membranes was essentially completed within 5 s. Ninety percent of the SL-PC molecules located in the outer membrane leaflet of those membranes were extracted by BSA within 15 s. All exterior-facing SL-PC molecules were reduced by ascorbate in a pseudo-first-order reaction within 60 s in EPC membranes and within 90 s in red cell ghost membranes. The rate of the reduction process could be enhanced by approximately 30-fold when 6-O-phenyl-ascorbic acid was used instead of ascorbate as the reducing agent. The results are discussed in light of assaying rapid transbilayer movement of spin-labeled analogs in biological membranes. PMID:9284331

  16. Fluorescence and electron paramagnetic resonance studies of norfloxacin and N-donor mixed-ligand ternary copper(II) complexes: Stability and interaction with SDS micelles.

    PubMed

    Vignoli Muniz, Gabriel S; Incio, Jimmy Llontop; Alves, Odivaldo C; Krambrock, Klaus; Teixeira, Letícia R; Louro, Sonia R W

    2017-08-05

    The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Diclofenac-Choline Antioxidant Activity Investigated by means of Luminol Amplified Chemiluminescence of Human Neutrophil Bursts and Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Braga, P C; Lattuada, N; Greco, V; Sibilia, V; Falchi, M; Bianchi, T; Dal Sasso, M

    2015-05-01

    A new diclofenac salt called diclofenac-choline (DC) has recently been proposed for the symptomatic treatment of oropharyngeal inflammatory processes and pain because its greater water solubility allows the use of high concentrations, which are useful when the contact time between the drug and the oropharyngeal mucosa is brief, as in the case of mouthwashes or spray formulations. The antioxidant activity of DC has not yet been investigated, and so the aim was to use luminol-amplified-chemiluminescence (LACL) to verify whether various concentrations of DC (1.48, 0.74 and 0.37 mg/mL for incubation times of 2, 4 and 8 min) interfere with oxygen and nitrogen radicals during the course of human neutrophils respiratory bursts; electron paramagnetic resonance (EPR) spectroscopy was used to investigate its direct antiradical (scavenger) activity. The EPR findings showed that DC has concentration-dependent scavenging activity against the ABTS, the DPPH, and the hydroxyl radicals, but no activity on superoxide anion, as has been previously reported in the case of other NSAIDs. LACL revealed an inhibitory effect that was statistically significant after only 2 min of incubation, and similar after 4 and 8 min. The effects on the peroxynitrite radical paralleled those observed in the previous test. High concentrations and short incubation times showed that there is no interference on PMN viability, and so the inhibitory findings must be attributed to the effect of the drug. The anti-inflammatory effects of DC cannot be attributed solely to the inhibition of prostaglandin synthesis, but its effects on free radicals and neutrophil bursts suggest that they may contribute to its final therapeutic effect. © Georg Thieme Verlag KG Stuttgart · New York.

  18. The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge.

    PubMed

    Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M; Myers, William K; Liu, Fei; Earle, Keith A; Freed, Jack H; Scholes, Charles P

    2012-10-30

    Electron paramagnetic resonance (EPR) at 236.6 and 9.5 GHz probed the tumbling of nitroxide spin probes in the lower stem, in the upper loop, and near the bulge of mini c TAR DNA. High-frequency 236.6 GHz EPR, not previously applied to spin-labeled oligonucleotides, was notably sensitive to fast, anisotropic, hindered local rotational motion of the spin probe, occurring approximately about the NO nitroxide axis. Labels attached to the 2'-aminocytidine sugar in the mini c TAR DNA showed such anisotropic motion, which was faster in the lower stem, a region previously thought to be partially melted. More flexible labels attached to phosphorothioates at the end of the lower stem tumbled isotropically in mini c TAR DNA, mini TAR RNA, and ψ(3) RNA, but at 5 °C, the motion became more anisotropic for the labeled RNAs, implying more order within the RNA lower stems. As observed by 9.5 GHz EPR, the slowing of nanosecond motions of large segments of the oligonucleotide was enhanced by increasing the ratio of the nucleocapsid protein NCp7 to mini c TAR DNA from 0 to 2. The slowing was most significant at labels in the loop and near the bulge. At a 4:1 ratio of NCp7 to mini c TAR DNA, all labels reported tumbling times of >5 ns, indicating a condensation of NCp7 and TAR DNA. At the 4:1 ratio, pulse dipolar EPR spectroscopy of bilabels attached near the 3' and 5' termini showed evidence of an NCp7-induced increase in the 3'-5' end-to-end distance distribution and a partially melted stem.

  19. Electron-paramagnetic-resonance investigations of /sup 243/Cm/sup 3 +/ and /sup 244/Cm/sup 3 +/ in LuPO/sub 4/ single crystals

    SciTech Connect

    Abraham, M.M.; Boatner, L.A.

    1982-08-01

    The actinide isotopes /sup 243/Cm and /sup 244/Cm have been incorporated as dilute trivalent impurities in single crystals of lutetium orthophosphate. Electron-paramagnetic-resonance (EPR) spectra of both isotopes were observed at approx.9 GHz and T = 4.2 K, and a positive identification of the Cm/sup 3 +/ resonance was made from the six-line hyperfine pattern characteristic of the I = 5/2 nuclear spin of /sup 243/Cm. The host LuPO/sub 4/ crystal is a tetragonal-symmetry system and the axial Cm/sup 3 +/ g values were determined to be g/sub parallel/ = 7.98(1) and g/sub perpendicular/ = 4.096(4). These values could not be fit to a doublet wave function of the form ..cap alpha..Vertical Bar +- 7/2>+..beta..Vertical Barminus-or-plus1/2> to give a consistent value for the Lande g factor. They could, however, be fit to an excited-state doublet wave function of the form ..cap alpha..Vertical Bar +- 5/2>+..beta..Vertical Barminus-or-plus3/2> to yield a consistent Lande factor of 1.921. The identification of the observed spectra as arising from an excited state was confirmed by the observation that lowering the temperature reduced the intensity of the EPR signals. These results show that the sign of the dominant axial crystal-field term for the 5f/sup 7/ Cm/sup 3 +/ ion in LuPO/sub 4/ is negative and that a predominantly Vertical Bar +- 7/2> state is the ground state.

  20. Hydrogen interstitial in H-ion implanted ZnO bulk single crystals: Evaluation by elastic recoil detection analysis and electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Kaida, T.; Kamioka, K.; Nishimura, T.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2015-12-01

    The origins of low resistivity in H ion-implanted ZnO bulk single crystals are evaluated by elastic recoil detection analysis (ERDA), electron paramagnetic resonance (EPR), and Van der Pauw methods. The H-ion implantation (peak concentration: 5.0 × 1015 cm-2) into ZnO is performed using a 500 keV implanter. The maximum of the concentration of the implanted H estimated by a TRIM simulation is at 3600 nm in depth. The resistivity decreases from ∼103 Ω cm for un implanted ZnO to 6.5 Ω cm for as-implanted, 2.3 × 10-1 Ω cm for 200 °C annealed, and 3.2 × 10-1 Ω cm for 400 °C annealed samples. The ERDA measurements can evaluate the concentration of hydrogens which move to the vicinity of the surface (surface to 300 nm or 100 nm) because of the diffusion by the annealing at 200 °C and 400 °C. The hydrogen concentration near the surface estimated using the 2.0 MeV helium beam is ∼3.8 × 1013 cm-2 for annealed samples. From EPR measurements, the oxygen vacancy of +charge state (Vo+) is observed in as-implanted samples. The Vo+ related signal (g = 1.96) observed under no illumination disappears after successive illumination with a red LED and appears again with a blue light illumination. The activation energy of as-implanted, 200 °C annealed, and 400 °C annealed samples estimated from the temperature dependence of carrier concentration lies between 29 meV and 23 meV, suggesting the existence of H interstitial as a shallow donor level.

  1. Blood free Radicals Concentration Determined by Electron Paramagnetic Resonance Spectroscopy and Delayed Cerebral Ischemia Occurrence in Patients with Aneurysmal Subarachnoid Hemorrhage.

    PubMed

    Ewelina, Grzywna; Krzysztof, Stachura; Marek, Moskala; Krzysztof, Kruczala

    2017-09-25

    Pathophysiology of delayed cerebral ischemia and cerebral vasospasm following aneurysmal subarachnoid hemorrhage is still poorly recognized, however free radicals are postulated as one of the crucial players. This study was designed to scrutinize whether the concentration of free radicals in the peripheral venous blood is related to the occurrence of delayed cerebral ischemia associated with cerebral vasospasm. Twenty-four aneurysmal subarachnoid hemorrhage patients and seven patients with unruptured intracranial aneurysm (control group) have been studied. Free radicals in patients' blood have been detected by the electron paramagnetic resonance (CMH.HCl spin probe, 150 K, ELEXSYS E500 spectrometer) on admission and at least 72 h from disease onset. Delayed cerebral ischemia monitoring was performed by daily neurological follow-up and transcranial color coded Doppler. Delayed cerebral ischemia observed in six aneurysmal subarachnoid hemorrhage patients was accompanied by cerebral vasospasm in all six cases. No statistically significant difference in average free radicals concentration between controls and study subgroups was noticed on admission (p = .3; Kruskal-Wallis test). After 72 h free radicals concentration in delayed cerebral ischemia patients (3.19 ± 1.52 mmol/l) differed significantly from the concentration in aneurysmal subarachnoid hemorrhage patients without delayed cerebral ischemia (0.65 ± 0.37 mmol/l) (p = .012; Mann-Whitney test). These findings are consistent with our assumptions and seem to confirm the role of free radicals in delayed cerebral ischemia development. Preliminary results presented above are promising and we need perform further investigation to establish whether blood free radicals concentration may serve as the biomarker of delayed cerebral ischemia associated with cerebral vasospasm.

  2. Structural and dynamic study of the tetramerization region of non-erythroid alpha-spectrin: a frayed helix revealed by site-directed spin labeling electron paramagnetic resonance.

    PubMed

    Li, Qufei; Fung, L W-M

    2009-01-13

    The N-terminal region of alpha-spectrin is responsible for its association with beta-spectrin in a heterodimer, forming functional tetramers. Non-erythroid alpha-spectrin (alphaII-spectrin) has a significantly higher association affinity for beta-spectrin than the homologous erythroid alpha-spectrin (alphaI-spectrin). We have previously determined the solution structure of the N-terminal region of alphaI-spectrin by NMR methods, but currently no structural information is available for alphaII-spectrin. We have used cysteine scanning, spin labeling electron paramagnetic resonance (EPR), and isothermal titration calorimetry (ITC) methods to study the tetramerization region of alphaII-spectrin. EPR data clearly show that, in alphaII-spectrin, the first nine N-terminal residues were unstructured, followed by an irregular helix (helix C'), frayed at the N-terminal end, but rigid at the C-terminal end, which merges into the putative triple-helical structural domain. The region corresponding to the important unstructured junction region linking helix C' to the first structural domain in alphaI-spectrin was clearly structured. On the basis of the published model for aligning helices A', B', and C', important interactions among residues in helix C' of alphaI- and alphaII-spectrin and helices A' and B' of betaI- and betaII-spectrin are identified, suggesting similar coiled coil helical bundling for spectrin I and II in forming tetramers. The differences in affinity are likely due to the differences in the conformation of the junction regions. Equilibrium dissociation constants of spin-labeled alphaII and betaI complexes from ITC measurements indicate that residues 15, 19, 37, and 40 are functionally important residues in alphaII-spectrin. Interestingly, all four corresponding homologous residues in alphaI-spectrin (residues 24, 28, 46, and 49) have been reported to be clinically significant residues involved in hematological diseases.

  3. Brain redox imaging in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy by using in vivo electron paramagnetic resonance and a nitroxide imaging probe.

    PubMed

    Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G

    2015-11-03

    Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy.

  4. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase.

    PubMed Central

    Barber, M J; Bray, R C; Lowe, D J; Coughlan, M P

    1976-01-01

    Studies by e.p.r. (electron-paramagnetic-resonance) spectroscopy and by stopped-flow spectrophotometry on turkey liver xanthine dehydrogenase revealed strong similarities to as well as important differences from the Veillonella alcalescens xanthine dehydrogenase and milk xanthine oxidase. The turkey enzyme is contaminated by up to three non-functional forms, giving molybdenum e.p.r. signals designated Resting I, Resting II and Slow. Slow and to a lesser extent Resting I signals are like those from the Veillonella enzyme, whereas Resting II is very like a resting signal described by K. V. Rajagopolan, P. Handler, G. Palmer & H. Beinert (1968) (J. Biol. Chem. 243, 3784-3796) for aldehyde oxidase. Another non-functional form that gives the Inhibited signal is produced on treatment of the enzyme with formaldehyde. Stopped-flow measurements at 450 nm show that, as for the milk enzyme, reduction by xanthine is rate-limiting in enzyme turnover. The active enzyme gives rise to Very Rapid and Rapid molybdenum(V) e.p.r. signals, as well as to an FADH signal. That these signals are almost indistinguishable from those of the milk enzyme, confirms the similarities between the active sites. There are two types of iron-sulphur centres that give signals like those in the milk enzyme, though with slightly different parameters. Quantitative reduction titration of the functional enzyme with xanthine revealed two important differences between the turkey and the milk enzymes. First, the turkey enzyme FADH/FADH2 system has a redox potential sufficiently low that xanthine is incapable of reducing the flavin completely. This finding presumably explains the very low oxidase activity. Secondly, whereas the Fe/S II chromophore in the milk enzyme has a relatively high redox potential, for the turkey enzyme the value of this potential is lower and similar to that of its Fe/S I chromophore. Images Fig. 8. PMID:179533

  5. Membrane Docking of the Synaptotagmin 7 C2A Domain: Electron Paramagnetic Resonance Measurements Show Contributions from Two Membrane Binding Loops.

    PubMed

    Osterberg, J Ryan; Chon, Nara Lee; Boo, Arthur; Maynard, Favinn A; Lin, Hai; Knight, Jefferson D

    2015-09-22

    The synaptotagmin (Syt) family of proteins plays an important role in vesicle docking and fusion during Ca(2+)-induced exocytosis in a wide variety of cell types. Its role as a Ca(2+) sensor derives primarily from its two C2 domains, C2A and C2B, which insert into anionic lipid membranes upon binding Ca(2+). Syt isoforms 1 and 7 differ significantly in their Ca(2+) sensitivity; the C2A domain from Syt7 binds Ca(2+) and membranes much more tightly than the C2A domain from Syt1, at least in part because of greater contributions from the hydrophobic effect. While the structure and membrane activity of Syt1 have been extensively studied, the structural origins of differences between Syt1 and Syt7 are unknown. This study used site-directed spin labeling and electron paramagnetic resonance spectroscopy to determine depth parameters for the Syt7 C2A domain, for comparison to analogous previous measurements with the Syt1 C2A domain. In a novel approach, the membrane docking geometry of both Syt1 and Syt7 C2A was modeled by mapping depth parameters onto multiple molecular dynamics-simulated structures of the Ca(2+)-bound protein. The models reveal membrane penetration of Ca(2+) binding loops 1 (CBL1) and 3 (CBL3), and membrane binding is more sensitive to mutations in CBL3. On average, Syt7 C2A inserts more deeply into the membrane than Syt1 C2A, although depths vary among the different structural models. This observation provides a partial structural explanation for the hydrophobically driven membrane docking of Syt7 C2A.

  6. Copper doping of ZnO crystals by transmutation of {sup 64}Zn to {sup 65}Cu: An electron paramagnetic resonance and gamma spectroscopy study

    SciTech Connect

    Recker, M. C.; McClory, J. W. Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-06-28

    Transmutation of {sup 64}Zn to {sup 65}Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the {sup 65}Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of {sup 64}Zn nuclei to {sup 65}Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu{sup 2+} ions (where {sup 63}Cu and {sup 65}Cu hyperfine lines are easily resolved). A spectrum from isolated Cu{sup 2+} (3d{sup 9}) ions acquired after the neutron irradiation showed only hyperfine lines from {sup 65}Cu nuclei. The absence of {sup 63}Cu lines in this Cu{sup 2+} spectrum left no doubt that the observed {sup 65}Cu signals were due to transmuted {sup 65}Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu{sup +}-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu{sup +}-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  7. On the molecular and submolecular structure of the semiquinone cations of alloxazines and isoalloxazines as revealed by electron-paramagnetic-resonance spectroscopy.

    PubMed

    Müller, F; Grande, H J; Harding, L J; Dunham, W R; Visser, A J; Reinders, J H; Hemmerich, P; Ehrenberg, A

    1981-05-01

    The thermodynamically stable and, therefore, analytically most important alloxazine and isoalloxazine radical cations have been studied in detail by electron paramagnetic resonance (EPR) spectroscopy. Isotopic and chemical substitutions have been made as in earlier studies with the less stable neutral and anionic species. The experimental spectra have been calculated with the aid of a more sophisticated computer-simulation program than previously used. Excellent fits were obtained only when all of the following atoms were taken into account in the hyperfine coupling scheme: N-5 H, N-10 H or CH3, C-6 H, C-7 H, C-8 H or CH3 and C-9 H. An additional but small coupling constant was required for the fit. This latter coupling constant is assigned to the nitrogen atom(s) of the pyrimidine subnucleus of (iso)alloxazine radical cations. The EPR-active proton is attached to N-5 as we also found for the neutral flavosemiquinone. The alloxazine and isoalloxazine radical cations exhibit an identical hyperfine coupling scheme but differ especially in the pyrazine nucleus with respect to the spin density distribution. This suggests that the geometrical structure of the two kinds of radicals is somewhat different. The highest spin density is, however, located at N-5 of (iso)alloxazine as has been found for the other flavosemiquinone species. The hyperfine coupling constants are interpreted in terms of spin densities and comparison is made with the most recently available quantum chemical calculations. All monomeric flavosemiquinone species are compared with each other and their differences in the submolecular structure are discussed briefly.

  8. Resonance Raman, electron paramagnetic resonance, and density functional theory calculations of a phenolate-bound iron porphyrin complex: electrostatic versus covalent contribution to bonding.

    PubMed

    Das, Pradip Kumar; Dey, Abhishek

    2014-07-21

    Resonance Raman (rR), electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations of a phenolate-bound iron porphyrin complex are reported. The complex is found to exist in a five-coordinate high-spin state in a noncoordinating solvent and in a six-coordinate low-spin state in a coordinating solvent. The vibrations originating from the iron phenolate-bound chromophores reproduced those reported for heme tyrosine active sites in nature. The EPR parameters and iron-pyrrole (Fe-Npyr) vibrations of phenolate, thiolate, and imidazole ligated iron porphyrin complexes indicate that the phenolate axial ligand acts as a π anisotropic ligand, which is more covalent than a neutral imidazole ligand but less covalent than a thiolate axial ligand. While the Fe(III/II) potential of the phenolate compound in a noncoordinating solvent is 500 mV more negative than that of the imidazole-bound complex, it is also 110 mV more negative than that of the thiolate-bound complex. DFT calculations reproduce the geometry and vibrational frequencies and show that while both phenolate and thiolate axial ligands bear π and σ interaction with the ferric center, the former is significantly less covalent than the thiolate. The higher covalency of the thiolate ligand is responsible for the lower Fe-Npyr vibration and higher V/λ (from EPR) of the thiolate-bound complexes relative to those of the phenolate-bound complex, whereas the greater electrostatic stabilization of the Fe(III)-OPh bond is responsible for lowering the Fe(III/II) E° of the phenolate-bound complex relative to that of the thiolate-bound complex in a medium having a reasonable dielectric constant.

  9. An electron paramagnetic resonance spectroscopy investigation of the retention mechanisms of Mn and Cu in the nanopore channels of three zeolite minerals

    SciTech Connect

    Ferreira, Daniel R.; Schulthess, Cristian P.; Amonette, James E.; Walter, Eric D.

    2012-12-01

    The adsorption mechanisms of divalent cations in zeolite nanopore channels can vary as a function of their pore dimensions. The nanopore inner-sphere enhancement (NISE) theory predicts that ions may dehydrate inside small nanopore channels in order to adsorb more closely to the mineral surface if the nanopore channel is sufficiently small. The results of an electron paramagnetic resonance (EPR) spectroscopy study of Mn and Cu adsorption on the zeolite minerals zeolite Y (large nanopores), ZSM-5 (intermediate nanopores), and mordenite (small nanopores) are presented. The Cu and Mn cations both adsorbed via an outer-sphere mechanism on zeolite Y based on the similarity between the adsorbed spectra and the aqueous spectra. Conversely, Mn and Cu adsorbed via an inner-sphere mechanism on mordenite based on spectrum asymmetry and peak broadening of the adsorbed spectra. However, Mn adsorbed via an outer-sphere mechanism on ZSM-5, whereas Cu adsorbed on ZSM-5 shows a high degree of surface interaction that indicates that it is adsorbed closer to the mineral surface. Evidence of dehydration and immobility was more readily evident in the spectrum of mordenite than ZSM-5, indicating that Cu was not as close to the surface on ZSM-5 as it was when adsorbed on mordenite. Divalent Mn cations are strongly hydrated and are held strongly only in zeolites with small nanopore channels. Divalent Cu cations are also strongly hydrated, but can dehydrate more easily, presumably due to the Jahn-Teller effect, and are held strongly in zeolites with medium sized nanopore channels or smaller.

  10. Thermally activated spin fluctuations in stoichiometric LiCoO2 clarified by electron paramagnetic resonance and muon-spin rotation and relaxation measurements

    NASA Astrophysics Data System (ADS)

    Mukai, Kazuhiko; Aoki, Yoshifumi; Andreica, Daniel; Amato, Alex; Watanabe, Isao; Giblin, Sean R.; Sugiyama, Jun

    2014-03-01

    Lithium cobalt dioxide (LiCoO2) belongs to a family of layered CoO2-based materials and has considerable interests in both fundamental physics and technological applications in lithium-ion batteries. We report the results of structural, electrochemical, magnetic susceptibility (χ), electron paramagnetic resonance (EPR), and muon-spin rotation and relaxation (μSR) measurements on powder Lix0CoO2 samples, where the nominal Li/Co ratios (x0) were 0.95, 1.00, 1.02, 1.05, and 1.10, respectively. Structural, electrochemical, and χ measurements suggested that the sample with x0 = 1.02 is very close to single stoichiometric LiCoO2 (ST-LCO) phase and that the Co ions in the x0 = 1.02 sample are in a nonmagnetic low-spin state with S = 0 (t2g6). However, both EPR and μSR revealed that the x0 = 1.02 (ST-LCO) sample includes a large amount of nonordered magnetic phase in the temperature (T) range between 100 and 500 K. The volume fraction of such magnetic phase was found to be ˜45 vol% at 300 K by μSR, indicating an intrinsic bulk feature for ST-LCO. In fact, structural and photoelectron spectroscopic analyses clearly excluded the possibility that the nonordered magnetism is caused by impurities, defects, or surfaces. Because EPR and μSR sense static and dynamic nature of local magnetic environments, we concluded that Co spins in ST-LCO are fluctuating in the EPR and μSR time-windows. We also proposed possible origins of such nonordered magnetism, that is, a spin-state transition and charge disproportionation.

  11. Manganese binding properties of human calprotectin under conditions of high and low calcium: X-ray crystallographic and advanced electron paramagnetic resonance spectroscopic analysis.

    PubMed

    Gagnon, Derek M; Brophy, Megan Brunjes; Bowman, Sarah E J; Stich, Troy A; Drennan, Catherine L; Britt, R David; Nolan, Elizabeth M

    2015-03-04

    The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron-nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed (15)N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin.

  12. Spatial resolution and information transfer in scanning transmission electron microscopy.

    PubMed

    Peng, Yiping; Oxley, Mark P; Lupini, Andrew R; Chisholm, Matthew F; Pennycook, Stephen J

    2008-02-01

    The relation between image resolution and information transfer is explored. It is shown that the existence of higher frequency transfer in the image is just a necessary but not sufficient condition for the achievement of higher resolution. Adopting a two-point resolution criterion, we suggest that a 10% contrast level between two features in an image should be used as a practical definition of resolution. In the context of scanning transmission electron microscopy, it is shown that the channeling effect does not have a direct connection with image resolution because sharp channeling peaks do not move with the scanning probe. Through a quantitative comparison between experimental image and simulation, a Fourier-space approach is proposed to estimate defocus and sample thickness. The effective atom size in Z-contrast imaging depends on the annular detector's inner angle. Therefore, an optimum angle exists for the highest resolution as a trade-off between reduced atom size and reduced signal with limited information transfer due to noise.

  13. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber

    SciTech Connect

    Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin; Muller, David A.

    2016-07-25

    Abstract

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.

  14. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  15. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE PAGES

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang; ...

    2017-05-25

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the method andmore » numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  16. Optical circular deflector with attosecond resolution for ultrashort electron beam

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang; Ding, Yuantao; Huang, Zhirong

    2017-05-01

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode (TEM0 1* ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the method and numerical results with reasonable parameters are both presented. It is shown that the temporal resolution can reach up to ˜100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.

  17. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane

    PubMed

    Cornish; Wood; Windle

    1999-11-01

    The physical characteristics of rubber particles from the four rubber (cis-1,4-polyisoprene) producing species Euphorbia lactiflua Phil., Ficus elastica Roxb., Hevea brasiliensis Mull. Arg., and Parthenium argentatum Gray, were investigated using transmission electron microscopy (TEM) and electron-paramagnetic-resonance (EPR) spin labeling spectroscopy. Transmission electron microscopy showed the rubber particles to be composed of a spherical, homogeneous, core of rubber enclosed by a contiguous, electron-dense, single-track surface layer. The biochemical composition of the surface layer and its single-track TEM suggested that a monolayer biomembrane was the surface structure most compatible with the hydrophobic rubber core. The EPR spectra for a series of positional isomers of doxyl stearic acid, used to label the surface layer of the rubber particles, exhibited flexibility gradients and evidence for lipid-protein interactions for all four rubber particle types that is consistent with a biomembrane-like surface. The EPR spectra confirmed that the surface biomembrane is a monolayer. Thus, rubber particles appear similar to oil bodies in their basic architecture. The EPR spectra also provided information on protein location and degree of biomembrane penetration that correlated with the known properties of the rubber-particle-bound proteins. The monolayer biomembrane serves as an interface between the hydrophobic rubber interior and the aqueous cytosol and prevents aggregation of the particles. An unexpected observation for the probes in pure polyisoprene was evidence of an intrinsic flexibility gradient associated with the stearic acid molecule itself.

  18. Determination of g-tensors of low-symmetry Nd{sup 3+} centers in LiNbO{sub 3} by rectification of angular dependence of electron paramagnetic resonance spectra

    SciTech Connect

    Grachev, V. Malovichko, G.; Munro, M.; Kokanyan, E.

    2015-07-28

    Two procedures for facilitation of line tracing and deciphering of complicated spectra of electron paramagnetic resonance (EPR) were developed: a correction of microwave frequencies for every orientation of external magnetic field on the base of known values of g-tensor components for a reference paramagnetic center and followed rectification of measured angular dependences using plots of effective deviation of g{sup 2}-factors of observed lines from effective g{sup 2}-factors of the reference center versus angles or squared cosines of angles describing magnetic field orientations. Their application to EPR spectra of nearly stoichiometric lithium niobate crystals doped with neodymium allowed identifying two axial and six different low-symmetry Nd{sup 3+} centers, to determine all components of their g-tensors, and to propose common divacancy models for a whole family of Nd{sup 3+} centers.

  19. High-resolution observation by double-biprism electron holography

    SciTech Connect

    Harada, Ken; Tonomura, Akira; Matsuda, Tsuyoshi; Akashi, Tetsuya; Togawa, Yoshihiko

    2004-12-01

    High-resolution electron holography has been achieved by using a double-biprism interferometer implemented on a 1 MV field emission electron microscope. The interferometer was installed behind the first magnifying lens to narrow carrier fringes and thus enabled complete separation of sideband Fourier spectrum from center band in reconstruction process. Holograms of Au fine particles and single-crystalline thin films with the finest fringe spacing of 4.2 pm were recorded and reconstructed. The overall holography system including the reconstruction process performed well for holograms in which carrier fringes had a spacing of around 10 pm. High-resolution lattice images of the amplitude and phase were clearly reconstructed without mixing of the center band and sideband information. Additionally, entire holograms were recorded without Fresnel fringes normally generated by the filament electrode of the biprism, and the holograms were thus reconstructed without the artifacts caused by Fresnel fringes.

  20. Electron microscopy of gold nanoparticles at atomic resolution

    PubMed Central

    Azubel, Maia; Koivisto, Jaakko; Malola, Sami; Bushnell, David; Hura, Greg L.; Koh, Ai Leen; Tsunoyama, Hironori; Tsukuda, Tatsuya; Pettersson, Mika; Häkkinen, Hannu; Kornberg, Roger D.

    2014-01-01

    Structure determination of gold nanoparticles (AuNPs) is necessary for understanding their physical and chemical properties, and only one AuNP larger than 1 nm in diameter, an Au102NP, has been solved to atomic resolution. Whereas the Au102NP structure was determined by X-ray crystallography, other large AuNPs have proved refractory to this approach. Here we report the structure determination of an Au68NP at atomic resolution by aberration-corrected transmission electron microscopy (AC-TEM), performed with the use of a minimal electron dose, an approach that should prove applicable to metal NPs in general. The structure of the Au68NP was supported by small angle X-ray scattering (SAXS) and by comparison of observed infrared (IR) absorption spectra with calculations by density functional theory (DFT). PMID:25146285

  1. Nanoparticle imaging. Electron microscopy of gold nanoparticles at atomic resolution.

    PubMed

    Azubel, Maia; Koivisto, Jaakko; Malola, Sami; Bushnell, David; Hura, Greg L; Koh, Ai Leen; Tsunoyama, Hironori; Tsukuda, Tatsuya; Pettersson, Mika; Häkkinen, Hannu; Kornberg, Roger D

    2014-08-22

    Structure determination of gold nanoparticles (AuNPs) is necessary for understanding their physical and chemical properties, but only one AuNP larger than 1 nanometer in diameter [a 102-gold atom NP (Au102NP)] has been solved to atomic resolution. Whereas the Au102NP structure was determined by x-ray crystallography, other large AuNPs have proved refractory to this approach. Here, we report the structure determination of a Au68NP at atomic resolution by aberration-corrected transmission electron microscopy, performed with the use of a minimal electron dose, an approach that should prove applicable to metal NPs in general. The structure of the Au68NP was supported by small-angle x-ray scattering and by comparison of observed infrared absorption spectra with calculations by density functional theory.

  2. Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

    SciTech Connect

    Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark; Iverson, Richard H.; Krejcik, Patrick; Lincoln, Melissa; Siemann, Robert H.; Walz, Dieter; Clayton, Chris E.; Huang, Chengkun; Lu, Wei; Deng, Suzhi; Oz, Erdem; /Southern California U.

    2005-06-22

    In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function of the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.

  3. Data processing for atomic resolution electron energy loss spectroscopy.

    PubMed

    Cueva, Paul; Hovden, Robert; Mundy, Julia A; Xin, Huolin L; Muller, David A

    2012-08-01

    The high beam current and subangstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopy (EELS) mapping with atomic resolution. These spectral maps are often dose limited and spatially oversampled, leading to low counts/c