Science.gov

Sample records for resolution electron paramagnetic

  1. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  2. Demonstrations on Paramagnetism with an Electronic Balance.

    ERIC Educational Resources Information Center

    Cortel, Adolf

    1998-01-01

    A paramagnetic substance is attracted by a magnetic field with a force proportional to its magnetic susceptibility which is related to the number of unpaired electrons in the atoms. Data are used to establish oxidation states and bonding properties. Describes a simple setup to demonstrate the paramagnetism of common inorganic compounds. (DKM)

  3. Multifrequency pulsed electron paramagnetic resonance on metalloproteins.

    PubMed

    Lyubenova, Sevdalina; Maly, Thorsten; Zwicker, Klaus; Brandt, Ulrich; Ludwig, Bernd; Prisner, Thomas

    2010-02-16

    Metalloproteins often contain metal centers that are paramagnetic in some functional state of the protein; hence electron paramagnetic resonance (EPR) spectroscopy can be a powerful tool for studying protein structure and function. Dipolar spectroscopy allows the determination of the dipole-dipole interactions between metal centers in protein complexes, revealing the structural arrangement of different paramagnetic centers at distances of up to 8 nm. Hyperfine spectroscopy can be used to measure the interaction between an unpaired electron spin and nuclear spins within a distance of 0.8 nm; it therefore permits the characterization of the local structure of the paramagnetic center's ligand sphere with very high precision. In this Account, we review our laboratory's recent applications of both dipolar and hyperfine pulsed EPR methods to metalloproteins. We used pulsed dipolar relaxation methods to investigate the complex of cytochrome c and cytochrome c oxidase, a noncovalent protein-protein complex involved in mitochondrial electron-transfer reactions. Hyperfine sublevel correlation spectroscopy (HYSCORE) was used to study the ligand sphere of iron-sulfur clusters in complex I of the mitochondrial respiratory chain and substrate binding to the molybdenum enzyme polysulfide reductase. These examples demonstrate the potential of the two techniques; however, they also highlight the difficulties of data interpretation when several paramagnetic species with overlapping spectra are present in the protein. In such cases, further approaches and data are very useful to enhance the information content. Relaxation filtered hyperfine spectroscopy (REFINE) can be used to separate the individual components of overlapping paramagnetic species on the basis of differences in their longitudinal relaxation rates; it is applicable to any kind of pulsed hyperfine or dipolar spectroscopy. Here, we show that the spectra of the iron-sulfur clusters in complex I can be separated by this

  4. Structure of the P700(+ )A1(-) radical pair intermediate in photosystem I by high time resolution multifrequency electron paramagnetic resonance: analysis of quantum beat oscillations.

    PubMed

    Link, G; Berthold, T; Bechtold, M; Weidner, J U; Ohmes, E; Tang, J; Poluektov, O; Utschig, L; Schlesselman, S L; Thurnauer, M C; Kothe, G

    2001-05-01

    The geometry of the secondary radical pair P700(+)A1(-), in photosystem I (PSI) from the deuterated and 15N-substituted cyanobacterium Synechococcus lividus, has been determined by high time resolution electron paramagnetic resonance (EPR), performed at three different microwave frequencies. Structural information is extracted from light-induced quantum beats observed in the transverse magnetization of P700(+)A1(-) at early times after laser excitation. A computer analysis of the two-dimensional Q-band experiment provides the orientation of the various magnetic tensors of with respect to a magnetic reference frame. The orientation of the cofactors of the primary donor in the g-tensor system of is then evaluated by analyzing time-dependent X-band EPR spectra, extracted from a two-dimensional data set. Finally, the cofactor arrangement of P700(+)A1(-) in the photosynthetic membrane is deduced from angular-dependent W-band spectra, observed for a magnetically aligned sample. Thus, the orientation of the g-tensor of P700(+) with respect to a chlorophyll based reference system could be determined. The angle between the g1(z) axis and the chlorophyll plane normal is found to be 29 +/- 7 degrees, while the g1(y) axis lies in the chlorophyll plane. In addition, a complete structural model for the reduced quinone acceptor, A1(-), is evaluated. In this model, the quinone plane of is found to be inclined by 68 +/- 7 degrees relative to the membrane plane, while the P700(+)-A1(-) axis makes an angle of 35 +/- 6 degrees with the membrane normal. All of these values refer to the charge separated state, observed at low temperatures, where forward electron transfer to the iron-sulfur centers is partially blocked. Preliminary room temperature studies of P700(+)A1(-), employing X-band quantum beat oscillations, indicate a different orientation of A1(-) in its binding pocket. A comparison with crystallographic data provides information on the electron-transfer pathway in PSI. It

  5. Electron Paramagnetic Resonance Study of Pr

    SciTech Connect

    Tezuka, Keitaro; Hinatsu, Yukio

    2001-01-01

    Electron paramagnetic resonance (EPR) spectra of tetravalent praseodymium ions doped in the cubic perovskite compound BaHfO{sub 3} have been measured at 4.2 K. A very large hyperfine interaction with the {sup 141}Pr nucleus was observed in the spectrum of Pr{sup 4+}/ BaHfO{sub 3}. The results were analyzed based on the weak field approximation, and the g value (|g|=0.619) and a hyperfine coupling constant (A=0.0589 cm{sup {minus}1}) were obtained. The measured g value is much smaller than |-10/7|, which indicates that the crystal field effect on the behavior of a 4f electron is large. These g and A values were compared with the EPR results for other f{sup 1} ions in an octahedral crystal field.

  6. Free-electron laser-based pulsed electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Takahashi, Susumu; Sherwin, Mark S.; Ramian, Gerald; Brunel, Louis-Claude; van Tol, Johan

    2008-03-01

    High-power pulsed electron paramagnetic resonance (EPR) is extremely useful to study the ultrafast dynamics of spins. At present, most high-power pulsed EPR spectrometers operate near the X-band frequency of 9.5 GHz with kW-level power. A trend in the evolution of next generation pulsed EPR is for higher magnetic field and frequency, both for finer spectral and time resolution and because motional averaging becomes negligible. Since the linewidth of resonances studied by pulsed EPR tends to be extremely narrow, the source radiation also has to be stable and have narrow bandwidth. High-power pulsed EPR, using few-ns pulses to rapidly manipulate spins for spin-echo and related experiments, has been demonstrated at 95 GHz using kW- power Klystron-based sources. A bottleneck for higher frequency pulsed EPR spectroscopy is a lack of sources with high power and narrow bandwidth. The University of California Santa Barbara (UCSB) free-electron lasers (FEL) are potential sources for high-power pulsed EPR because they generate kW of power tunable from 120 GHz to 4.7 THz. We present the current status of the UCSB FEL-based 240 GHz pulsed EPR spectrometer.

  7. Electron paramagnetic resonance at dislocations in germanium

    SciTech Connect

    Pakulis, E.J.

    1982-06-01

    The first observation of the paramagnetic resonance of electrons at dislocations in germanium single crystals is reported. Under subband gap optical excitation, two sets of lines are detected: four lines about the <111> axes with g/sub perpendicular to/ = 0.34 and g/sub parallel/ = 1.94, and 24 lines with g/sub perpendicular to/ = 0.73 and g/sub parallel/ = 1.89 about <111> axes with the six-fold 1.2/sup 0/ distortion. This represents the first measurement of the disortion angle of a dislocation dangling bond. The possibility that the distortion results from a Peierls transition along the dislocation line is discussed.

  8. Electron paramagnetic resonance of several lunar rock samples

    NASA Technical Reports Server (NTRS)

    Marov, P. N.; Dubrov, Y. N.; Yermakov, A. N.

    1974-01-01

    The results are presented of investigating lunar rock samples returned by the Luna 16 automatic station, using electron paramagnetic resonance (EPR). The EPR technique makes it possible to detect paramagnetic centers and investigate their nature, with high sensitivity. Regolith (finely dispersed material) and five particles from it, 0.3 mm in size, consisting mostly of olivine, were investigated with EPR.

  9. Electron paramagnetic resonance of individual atoms on a surface.

    PubMed

    Baumann, Susanne; Paul, William; Choi, Taeyoung; Lutz, Christopher P; Ardavan, Arzhang; Heinrich, Andreas J

    2015-10-23

    We combined the high-energy resolution of conventional spin resonance (here ~10 nano-electron volts) with scanning tunneling microscopy to measure electron paramagnetic resonance of individual iron (Fe) atoms placed on a magnesium oxide film. We drove the spin resonance with an oscillating electric field (20 to 30 gigahertz) between tip and sample. The readout of the Fe atom's quantum state was performed by spin-polarized detection of the atomic-scale tunneling magnetoresistance. We determine an energy relaxation time of T1 ≈ 100 microseconds and a phase-coherence time of T2 ≈ 210 nanoseconds. The spin resonance signals of different Fe atoms differ by much more than their resonance linewidth; in a traditional ensemble measurement, this difference would appear as inhomogeneous broadening.

  10. Study of metalloproteins using continuous wave electron paramagnetic resonance (EPR).

    PubMed

    Gambarelli, Serge; Maurel, Vincent

    2014-01-01

    Electron paramagnetic resonance (EPR) is an invaluable tool when studying systems with paramagnetic centers. It is a sensitive spectroscopic method, which can be used with dilute samples in aqueous buffer solutions. Here, we describe the basic procedure for recording an X-band EPR spectrum of a metalloprotein sample at low temperature. We also discuss basic optimization techniques to provide spectra with a high signal to noise ratio and minimum distortion.

  11. Maximally spaced projection sequencing in electron paramagnetic resonance imaging

    PubMed Central

    Redler, Gage; Epel, Boris; Halpern, Howard J.

    2015-01-01

    Electron paramagnetic resonance imaging (EPRI) provides 3D images of absolute oxygen concentration (pO2) in vivo with excellent spatial and pO2 resolution. When investigating such physiologic parameters in living animals, the situation is inherently dynamic. Improvements in temporal resolution and experimental versatility are necessary to properly study such a system. Uniformly distributed projections result in efficient use of data for image reconstruction. This has dictated current methods such as equal-solid-angle (ESA) spacing of projections. However, acquisition sequencing must still be optimized to achieve uniformity throughout imaging. An object-independent method for uniform acquisition of projections, using the ESA uniform distribution for the final set of projections, is presented. Each successive projection maximizes the distance in the gradient space between itself and prior projections. This maximally spaced projection sequencing (MSPS) method improves image quality for intermediate images reconstructed from incomplete projection sets, enabling useful real-time reconstruction. This method also provides improved experimental versatility, reduced artifacts, and the ability to adjust temporal resolution post factum to best fit the data and its application. The MSPS method in EPRI provides the improvements necessary to more appropriately study a dynamic system. PMID:26185490

  12. In-situ electron paramagnetic resonance studies of paramagnetic point defects in superconducting microwave resonators

    NASA Astrophysics Data System (ADS)

    Zhang, Shengke; Kopas, Cameron; Wagner, Brian; Queen, Daniel; Newman, N.

    2016-09-01

    The physical nature and concentration of paramagnetic point defects in the dielectrics of superconducting planar microwave resonators have been determined using in-situ electron paramagnetic resonance spectroscopy. To perform this work, the quality factor of parallel plate and stripline resonators was measured as a function of the magnitude of a magnetic-field applied parallel to the electrode surfaces. YBa2Cu3O7-δ thin film electrodes proved to be a preferred choice over Nb and MgB2 because they are readily available and have a small surface resistance (Rs) up to high temperatures (˜77 K) and magnetic fields (i.e., <1 T). Stripline resonators with a widely used high performance microwave dielectric, Co2+-doped Ba(Zn1/3Nb2/3)O3, are shown to have losses dominated by d-electron spin-excitations in exchange-coupled Co2+ point-defect clusters, even in the absence of an applied magnetic field. A significant enhanced microwave loss in stripline and parallel plate resonators is found to correlate with the presence of paramagnetic Mn2+ dopants in Ba(Zn1/3Ta2/3)O3 ceramics and dangling bond states in amorphous Si thin films, although the identification of the dominant loss mechanism(s) in these dielectrics requires further investigation.

  13. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    ERIC Educational Resources Information Center

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  14. Single Acquisition Quantitative Single Point Electron Paramagnetic Resonance Imaging

    PubMed Central

    Jang, Hyungseok; Subramanian, Sankaran; Devasahayam, Nallathamby; Saito, Keita; Matsumoto, Shingo; Krishna, Murali C; McMillan, Alan B

    2013-01-01

    Purpose Electron paramagnetic resonance imaging (EPRI) has emerged as a promising non-invasive technology to dynamically image tissue oxygenation. Due to its extremely short spin-spin relaxation times, EPRI benefits from a single-point imaging (SPI) scheme where the entire FID signal is captured using pure phase encoding. However, direct T2*/pO2 quantification is inhibited due to constant magnitude gradients which result in time-decreasing FOV. Therefore, conventional acquisition techniques require repeated imaging experiments with differing gradient amplitudes (typically 3), which results in long acquisition time. Methods In this study, gridding was evaluated as a method to reconstruct images with equal FOV to enable direct T2*/pO2 quantification within a single imaging experiment. Additionally, an enhanced reconstruction technique that shares high spatial k-space regions throughout different phase encoding time delays was investigated (k-space extrapolation). Results The combined application of gridding and k-space extrapolation enables pixelwise quantification of T2* from a single acquisition with improved image quality across a wide range of phase encoding delay times. The calculated T2*/pO2 does not vary across this time range. Conclusion By utilizing gridding and k-space extrapolation, accurate T2*/pO2 quantification can be achieved within a single dataset to allow enhanced temporal resolution (by a factor of 3). PMID:23913515

  15. Cut and paste RNA for nuclear magnetic resonance, paramagnetic resonance enhancement, and electron paramagnetic resonance structural studies.

    PubMed

    Duss, Olivier; Diarra Dit Konté, Nana; Allain, Frédéric H-T

    2015-01-01

    RNA is a crucial regulator involved in most molecular processes of life. Understanding its function at the molecular level requires high-resolution structural information. However, the dynamic nature of RNA complicates structure determination because crystallization is often not possible or can result in crystal-packing artifacts resulting in nonnative structures. To study RNA and its complexes in solution, we described an approach in which large multi-domain RNA or protein-RNA complex structures can be determined at high resolution from isolated domains determined by nuclear magnetic resonance (NMR) spectroscopy, and then constructing the entire macromolecular structure using electron paramagnetic resonance (EPR) long-range distance constraints. Every step in this structure determination approach requires different types of isotope or spin-labeled RNAs. Here, we present a simple modular RNA cut and paste approach including protocols to generate (1) small isotopically labeled RNAs (<10 nucleotides) for NMR structural studies, which cannot be obtained by standard protocols, (2) large segmentally isotope and/or spin-labeled RNAs for diamagnetic NMR and paramagnetic relaxation enhancement NMR, and (3) large spin-labeled RNAs for pulse EPR spectroscopy.

  16. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite

    NASA Astrophysics Data System (ADS)

    Reddy, S. Lakshmi; Fayazuddin, Md.; Frost, Ray L.; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals.

  17. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite.

    PubMed

    Reddy, S Lakshmi; Fayazuddin, Md; Frost, Ray L; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals. PMID:17324611

  18. Anomaly of the rotational nonergodicity parameter of glass formers probed by high field electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Bercu, V.; Martinelli, M.; Massa, C. A.; Pardi, L. A.; Rössler, E. A.; Leporini, D.

    2008-08-01

    Exploiting the high angular resolution of high field electron paramagnetic resonance measured at 95, 190, and 285 GHz we determine the rotational nonergodicity parameter of different probe molecules in the glass former o-terphenyl and polybutadiene in a model-independent way. Our results clearly show a characteristic change in the temperature of the nonergodicity parameter proving a rather sharp dynamic crossover in both systems, in contrast to previous results from other techniques.

  19. General magnetic transition dipole moments for electron paramagnetic resonance.

    PubMed

    Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan

    2015-01-01

    We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities.

  20. Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.

  1. Electron paramagnetic resonance of nitroxide-doped magnetic fluids

    NASA Astrophysics Data System (ADS)

    Morais, P. C.; Alonso, A.; Silva, O.; Buske, N.

    2002-11-01

    Electron paramagnetic resonance was used to investigate surface-coated magnetite-based magnetic fluids doped with TEMPOL. Two magnetic fluid samples, having magnetite nanoparticles with average diameter of 94 Å and coated with different coating layers (lauric acid plus ethoxylated polyalcohol in one case and oleoylsarcosine in the other case), were doped with TEMPOL (6 mM and pH 7.4) and investigated as a function of the nanoparticle concentration. The resonance field and the resonance linewidth both scale linearly with the nanoparticle concentration.

  2. Electron paramagnetic resonance study of paramagnetic centers in carbon-fumed silica adsorbent

    SciTech Connect

    Savchenko, D. V.; Shanina, B. D.; Kalabukhova, E. N.; Sitnikov, A. A.; Lysenko, V. S.; Tertykh, V. A.

    2014-04-07

    Fumed silica A-300 was carbonized by means of pyrolysis of CH{sub 2}Cl{sub 2}. The obtained initial SiO{sub 2}:C nanopowders of black color, with an average diameter of 14–16 nm and carbon (C) concentration 7 wt. %, subjected to the oxidation and passivation treatment were studied by electron paramagnetic resonance (EPR) in the temperature range 4–400 K. Two EPR signals of Lorentzian lineshape with nearly equal g-factors and different linewidth were observed in the initial, oxidized, and passivated SiO{sub 2}:C nanopowders. The two-component EPR spectrum was explained by the presence of C in two electronic states. The intensive narrow EPR signal, which has a temperature-dependent intensity, linewidth, and resonance field position, was attributed to the carbon-related defect with non-localized electron hopping between neighboring C-dangling bonds. The striking effect is that the temperature dependence of the EPR linewidth demonstrates the motional narrowing of the EPR signal at very low temperatures from 4 K to 20 K, which is not typically for nonmetallic materials and was explained by the quantum character of C layer conductivity in the SiO{sub 2}:C. The observed peaks in the temperature dependence of the conduction electron EPR signal integral intensity in the high-temperature range 200–440 K was explained by the presence of the C nanodots at the surface of SiO{sub 2} nanoparticles and the ejection of electrons from the confinement energy levels of C quantum dot when the temperature becomes comparable to the confinement energy.

  3. Electron paramagnetic resonance in Cu-doped ZnO

    NASA Astrophysics Data System (ADS)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  4. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries

    PubMed Central

    Sathiya, M.; Leriche, J.-B.; Salager, E.; Gourier, D.; Tarascon, J.-M.; Vezin, H.

    2015-01-01

    Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using Li2Ru0.75Sn0.25O3, a high-capacity (>270 mAh g−1) Li-rich layered oxide, as positive electrode. By monitoring operando the electron paramagnetic resonance signals of Ru5+ and paramagnetic oxygen species, we unambiguously prove the formation of reversible (O2)n− species that contribute to their high capacity. In addition, we visualize by imaging with micrometric resolution the plating/stripping of Li at the negative electrode and highlight the zones of nucleation and growth of Ru5+/oxygen species at the positive electrode. This efficient way to locate ‘electron’-related phenomena opens a new area in the field of battery characterization that should enable future breakthroughs in battery research. PMID:25662295

  5. Magnetic nanoparticle imaging using multiple electron paramagnetic resonance activation sequences

    SciTech Connect

    Coene, A. Dupré, L.; Crevecoeur, G.

    2015-05-07

    Magnetic nanoparticles play an important role in several biomedical applications such as hyperthermia, drug targeting, and disease detection. To realize an effective working of these applications, the spatial distribution of the particles needs to be accurately known, in a non-invasive way. Electron Paramagnetic Resonance (EPR) is a promising and sensitive measurement technique for recovering these distributions. In the conventional approach, EPR is applied with a homogeneous magnetic field. In this paper, we employ different heterogeneous magnetic fields that allow to stabilize the solution of the associated inverse problem and to obtain localized spatial information. A comparison is made between the two approaches and our novel adaptation shows an average increase in reconstruction quality by 5% and is 12 times more robust towards noise. Furthermore, our approach allows to speed up the EPR measurements while still obtaining reconstructions with an improved accuracy and noise robustness compared to homogeneous EPR.

  6. Novel multisample dielectric resonators for electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Golovina, Iryna S.; Kolesnik, Sergiy P.; Geifman, Ilia N.; Belous, Anatoliy G.

    2010-04-01

    We have developed and tested two types of novel dielectric resonators for simultaneous recording of electron paramagnetic resonance (EPR) spectra from two to four samples. The resonator of the first type contains two holes, and the other resonator contains four holes for introduction of the samples. Also, the resonator structure includes a pair of gradient coils. Dielectric resonators made of materials with high dielectric constant with low losses can be inserted into the standard EPR cavity or waveguide in the maximum microwave magnetic field. Gradient coils are located outside the cavity (or waveguide) so that their axes are parallel to the static magnetic field. Computer simulations were made to obtain microwave characteristics of the resonators such as resonant frequency, sizes, and distribution of the fields. Spacing of the point samples and optimum value of the magnetic-field gradient have been chosen correctly. The designed resonators can be applied in express analysis using EPR technique, for instance.

  7. Electron Paramagnetic Resonance in II-Vi Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Gui-Lin

    This dissertation is devoted to investigation of the electron paramagnetic resonance (EPR) of Mn ^{++} ions in II-VI semiconductor heterostructures, in order to determine how EPR is affected by this layered environment and what new information can be extracted by this technique. We first introduce the concept of the effective spin, and we review the theoretical background of the spin Hamiltonian, for describing the ground state of a paramagnetic ion in a solid. The physical origin of the constituent terms in the spin Hamiltonion are discussed, and their characteristics described, for use at later stages in the thesis. We then analyze the effect on EPR of the potential exchange interaction between the localized d-electrons of the Mn^{++} ions and the band electrons. We predict that such exchange interaction can lead to significant changes in the g-factors of Mn ^{++} ions due to the spin polarization of band electrons, resulting in line shifts of EPR spectra. Although such shifts would be too small to be observed for Mn^{++} ions introduced into bulk semiconductors, we show that the shifts can be significantly larger for Mn^ {++} ions in quantum wells, superlattices, and similar heterostructures, due to the electron confinement effect. This effect of the potential exchange interaction on the EPR spectra of Mn^{++} ions leads us to propose to use the Mn ^{++} ions as built-in localized probes for mapping the wave functions of electronic states in II-VI semiconductor quantum wells and superlattices. We then consider the influence of internal strain on the EPR transitions of Mn^{++} in II-VI semiconductor heterostructures. Our analysis of the changes of the Mn^{++} fine structure indicates that EPR can be used to detect even minute amounts of strain (e.g., strain resulting from as little as 0.01% lattice mismatch can readily be measured). Accordingly, we demonstrate EPR to be an ultrasensitive and probably unique tool for small strain measurements in II

  8. Enhanced dynamic electron paramagnetic resonance imaging of in vivo physiology

    NASA Astrophysics Data System (ADS)

    Redler, Gage

    It is well established that low oxygen concentration (hypoxia) in tumors strongly affects their malignant state and resistance to therapy. The importance of tumor oxygenation status has led to increased interest in the development of robust oxygen imaging modalities. One such method is electron paramagnetic resonance imaging (EPRI). EPRI has provided a non-invasive, quantitative imaging modality with sensitivity deep in tissues, capable of investigating static oxygen concentration (pO2) in vivo and has helped to corroborate the correlation between chronic states of hypoxia and tumor malignancy. However, when studying the complicated physiology of a living animal, the situation tends to be inherently dynamic. It has been found that in certain tumor regions there may exist steady states of hypoxia, or chronic hypoxia, whereas in other regions there may exist transient states of hypoxia, or acute hypoxia. It has been postulated that the negative prognostic implications associated with hypoxic tumors may be amplified for acutely hypoxic tumors. However, controversial data and a current lack in methods with the capability to noninvasively image tumor pO2 in vivo with sufficient spatial, temporal, and pO 2 resolution preclude definitive conclusions on the relationships between the different forms of hypoxia and the differences in their clinical implications. A particularly promising oxygen imaging modality that can help to study both chronic and acute hypoxia and elucidate important physiological and clinical differences is rapid Dynamic EPRI. The focus of this work is the development of methods enabling Dynamic EPRI of in vivo physiology as well as its potential applications. This work describes methods which enhance various aspects of EPRI in order to establish a more robust Dynamic EPRI capable of noninvasively studying and quantifying acute hypoxia in vivo. These enhancements are achieved through improvements that span from methods for the acquisition of individual

  9. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Seiler, A.; Bondarchuk, O.; Hänsel-Ziegler, W.; Risse, T.; Freund, H.-J.

    2014-08-01

    species with a density of approximately 5 × 1011 spins/cm2, which is comparable to the limit obtained for the presently available UHV-EPR spectrometer operating at 10 GHz (X-band). Investigation of electron trapped centers in MgO(001) films shows that the increased resolution offered by the experiments at W-band allows to identify new paramagnetic species, that cannot be differentiated with the currently available methodology.

  10. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    SciTech Connect

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J.; Seiler, A.; Bondarchuk, O.

    2014-08-01

    species with a density of approximately 5 × 10{sup 11} spins/cm{sup 2}, which is comparable to the limit obtained for the presently available UHV-EPR spectrometer operating at 10 GHz (X-band). Investigation of electron trapped centers in MgO(001) films shows that the increased resolution offered by the experiments at W-band allows to identify new paramagnetic species, that cannot be differentiated with the currently available methodology.

  11. 76 FR 67200 - Prospective Grant of Exclusive License: Electron Paramagnetic Resonance Devices and Systems for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of Exclusive License: Electron... of use limited to electron paramagnetic resonance devices and systems for oximetry. DATES:...

  12. Reconstruction of images from radiofrequency electron paramagnetic resonance spectra.

    PubMed

    Smith, C M; Stevens, A D

    1994-12-01

    This paper discusses methods for obtaining image reconstructions from electron paramagnetic resonance (EPR) spectra which constitute object projections. An automatic baselining technique is described which treats each spectrum consistently; rotating the non-horizontal baselines which are caused by stray magnetic effects onto the horizontal axis. The convolved backprojection method is described for both two- and three-dimensional reconstruction and the effect of cut-off frequency on the reconstruction is illustrated. A slower, indirect, iterative method, which does a non-linear fit to the projection data, is shown to give a far smoother reconstructed image when the method of maximum entropy is used to determine the value of the final residual sum of squares. Although this requires more computing time than the convolved backprojection method, it is more flexible and overcomes the problem of numerical instability encountered in deconvolution. Images from phantom samples in vitro are discussed. The spectral data for these have been accumulated quickly and have a low signal-to-noise ratio. The results show that as few as 16 spectra can still be processed to give an image. Artifacts in the image due to a small number of projections using the convolved backprojection reconstruction method can be removed by applying a threshold, i.e. only plotting contours higher than a given value. These artifacts are not present in an image which has been reconstructed by the maximum entropy technique. At present these techniques are being applied directly to in vivo studies.

  13. Identification of irradiated cashew nut by electron paramagnetic resonance spectroscopy.

    PubMed

    Sanyal, Bhaskar; Sajilata, M G; Chatterjee, Suchandra; Singhal, Rekha S; Variyar, Prasad S; Kamat, M Y; Sharma, Arun

    2008-10-01

    Cashew nut samples were irradiated at gamma-radiation doses of 0.25, 0.5, 0.75, and 1 kGy, the permissible dose range for insect disinfestation of food commodities. A weak and short-lived triplet (g = 2.004 and hfcc = 30 G) along with an anisotropic signal (g perpendicular = 2.0069 and g parallel = 2.000) were produced immediately after irradiation. These signals were assigned to that of cellulose and CO 2 (-) radicals. However, the irradiated samples showed a dose-dependent increase of the central line (g = 2.0045 +/- 0.0002). The nature of the free radicals formed during conventional processing such as thermal treatment was investigated and showed an increase in intensity of the central line (g = 2.0045) similar to that of irradiation. Characteristics of the free radicals were studied by their relaxation and thermal behaviors. The present work explores the possibility to identify irradiated cashew nuts from nonirradiated ones by the thermal behaviors of the radicals beyond the period, when the characteristic electron paramagnetic resonance spectral lines of the cellulose free radicals have essentially disappeared. In addition, this study for the first time reports that relaxation behavior of the radicals could be a useful tool to distinguish between roasted and irradiated cashew nuts.

  14. Effects of water on fingernail electron paramagnetic resonance dosimetry

    PubMed Central

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-01-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation—these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. PMID:27342838

  15. A new electron paramagnetic resonance method to identify irradiated soybean.

    PubMed

    Sanyal, Bhaskar; Sharma, Arun

    2009-10-01

    Low-dose gamma irradiation causes minimal changes in food matrix making identification of radiation-processed foods a challenging task. In the present study, soybean samples were irradiated with commercially permitted gamma radiation dose in the 0.25 to 1.0 kGy range for insect disinfestations of food. Immediately after irradiation electron paramagnetic resonance (EPR) spectrum of the skin part of soybean showed a triplet signal (g = 2.0046, hyperfine coupling constant hfcc = 3.0 mT) superimposed on naturally present singlet. These signals were characterized as cellulose and phenoxyl radicals using EPR spectrum simulation technique. Kernel part of the samples exhibited a short-lived, radiation-induced singlet of carbon-centered radical superimposed on naturally present sextet signal of Mn2+. A detailed study on relaxation and thermal behavior of induced radicals in skin part was carried out using EPR spectroscopy. These findings revealed that progressive saturation and thermal characteristics of the induced radicals may be the most suitable parameters to distinguish soybean subjected to radiation dose as low as 0.25 kGy from thermally treated and nonirradiated samples, even after a prolonged period of storage.

  16. The continuous wave electron paramagnetic resonance experiment revisited

    NASA Astrophysics Data System (ADS)

    Kälin, Moritz; Gromov, Igor; Schweiger, Arthur

    2003-02-01

    When the modulation frequency used in continuous wave electron paramagnetic resonance (cw EPR) spectroscopy exceeds the linewidth, modulation sidebands appear in the spectrum. It is shown theoretically and experimentally that these sidebands are actually multiple photon transitions, σ ++ k×π, where one microwave (mw) σ + photon is absorbed from the mw radiation field and an arbitrary number k of radio frequency (rf) π photons are absorbed from or emitted to the modulation rf field. Furthermore, it is demonstrated that both the derivative shape of the lines in standard cw EPR spectra and the distortions due to overmodulation are caused by the unresolved sideband pattern of these lines. The single-photon transition does not even give a contribution to the first-harmonic cw EPR signal. Multiple photon transitions are described semiclassically in a toggling frame and their existence is proven using second quantization. With the toggling frame approach and perturbation theory an effective Hamiltonian for an arbitrary sideband transition is derived. Based on the effective Hamiltonians an expression for the steady-state density operator in the singly rotating frame is derived, completely describing all sidebands in all modulation frequency harmonics of the cw EPR signal. The relative intensities of the sidebands are found to depend in a very sensitive way on the actual rf amplitude and the saturation of single sidebands is shown to depend strongly on the effective field amplitude of the multiple photon transitions. By comparison with the analogous solutions for frequency-modulation EPR it is shown that the field-modulation and the frequency-modulation technique are not equivalent. The experimental data fully verify the theoretical predictions with respect to intensities and lineshapes.

  17. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance.

    PubMed

    Bourbin, M; Gourier, D; Derenne, S; Binet, L; Le Du, Y; Westall, F; Kremer, B; Gautret, P

    2013-02-01

    Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a "contamination-like" mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example).

  18. Dating Carbonaceous Matter in Archean Cherts by Electron Paramagnetic Resonance

    PubMed Central

    Bourbin, M.; Derenne, S.; Binet, L.; Le Du, Y.; Westall, F.; Kremer, B.; Gautret, P.

    2013-01-01

    Abstract Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a “contamination-like” mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example). Key Words: Kerogen—Sedimentary rocks

  19. Electron paramagnetic resonance dosimetry: Methodology and material characterization

    NASA Astrophysics Data System (ADS)

    Hayes, Robert Bruce

    Electron Paramagnetic Resonance (EPR) methodologies for radiation dose reconstruction are investigated using various dosimeter materials. Specifically, methodologies were developed and used that were intended to improve the accuracy and precision of EPR dosimetric techniques, including combining specimen rotation during measurement, use of an internal manganese standard, instrument stabilization techniques and strict measurement protocols. Characterization and quantification of these improvements were preformed on three specific EPR dosimeter materials. The dosimeter materials investigated using these optimized EPR techniques were Walrus teeth, human tooth enamel and alanine dosimeters. Walrus teeth showed the least desirable properties for EPR dosimetry yielding large native signals and low sensitivity (EPR signal per unit dose). The methods for tooth enamel and alanine resulted in large improvements in precision and accuracy. The minimum detectable dose (MDD) found for alanine was approximately 30 mGy (three standard deviations from the measured zero dose value). This is a sensitivity improvement of 5 to 10 over other specialized techniques published in the literature that offer MDD's in the range of 150 mGy to 300 mGy. The accuracy of the method on tooth enamel was comparable to that typically reported in the literature although the measurement precision was increased by about 7. This improvement in measurement precision enables various applications including dose vs. depth profile analysis and a more nondestructive testing evaluation (where the whole sample need not be additively irradiated in order to calibrate its radiation response). A nondestructive evaluation of numerous samples showed that the method could reconstruct the same doses to within 10 mGy of those evaluated destructively. Doses used for this assessment were in the range of 100 to 250 mGy. The method had sufficient stability to measure tooth enamel samples exhibiting extreme anisotropy with a

  20. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance.

    PubMed

    Bourbin, M; Gourier, D; Derenne, S; Binet, L; Le Du, Y; Westall, F; Kremer, B; Gautret, P

    2013-02-01

    Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a "contamination-like" mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example). PMID:23397956

  1. Using Electron Paramagnetic Resonance Spectroscopy To Facilitate Problem Solving in Pharmaceutical Research and Development.

    PubMed

    Mangion, Ian; Liu, Yizhou; Reibarkh, Mikhail; Williamson, R Thomas; Welch, Christopher J

    2016-08-19

    As new chemical methodologies driven by single-electron chemistry emerge, process and analytical chemists must develop approaches to rapidly solve problems in this nontraditional arena. Electron paramagnetic resonance spectroscopy has been long known as a preferred technique for the study of paramagnetic species. However, it is only recently finding application in contemporary pharmaceutical development, both to study reactions and to track the presence of undesired impurities. Several case studies are presented here to illustrate its utility in modern pharmaceutical development efforts.

  2. Electron paramagnetic resonance study of two smectic A liquid crystals.

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Gelerinter, E.; Fishel, D. L.

    1972-01-01

    Study of the molecular ordering in two smectic A liquid crystals using vanadyl acetylacetonate as a paramagnetic probe. The average hyperfine splitting of the spectrum in the smectic A mesophase is measured as a function of the orientation relative to the dc magnetic field of the spectrometer after alignment of the molecules of the liquid crystal.

  3. Site directed spin labelling and pulsed dipolar electron paramagnetic resonance (double electron electron resonance) of force activation in muscle

    NASA Astrophysics Data System (ADS)

    Fajer, Piotr G.

    2005-05-01

    The recent development of site specific spin labelling and advances in pulsed electron paramagnetic resonance (EPR) have established spin labelling as a viable structural biology technique. Specific protein sites or whole domains can be selectively targeted for spin labelling by cysteine mutagenesis. The secondary structure of the proteins is determined from the trends in EPR signals of labels attached to consecutive residues. Solvent accessibility or label mobility display periodicities along the labelled polypeptide chain that are characteristic of β-strands (periodicity of 2 residues) or α-helices (3.6 residues). Low-resolution 3D structure of proteins is determined from the distance restraints. Two spin labels placed within 60-70 Å of each other create a local dipolar field experienced by the other spin labels. The strength of this field is related to the interspin distance, {\\propto } r^{-3 } . The dipolar field can be measured by the broadening of the EPR lines for the short distances (8-20 Å) or for the longer distances (17-70 Å) by the pulsed EPR methods, double electron-electron resonance (DEER) and double quantum coherence (DQC). A brief review of the methodology and its applications to the multisubunit muscle protein troponin is presented below.

  4. Towards Human Oxygen Images with Electron Paramagnetic Resonance Imaging.

    PubMed

    Epel, Boris; Redler, Gage; Tormyshev, Victor; Halpern, Howard J

    2016-01-01

    Electron paramagnetic resonance imaging (EPRI) has been used to noninvasively provide 3D images of absolute oxygen concentration (pO2) in small animals. These oxygen images are well resolved both spatially (~1 mm) and in pO2 (1-3 mmHg). EPRI preclinical images of pO2 have demonstrated extremely promising results for various applications investigating oxygen related physiologic and biologic processes as well as the dependence of various disease states on pO2, such as the role of hypoxia in cancer. Recent developments have been made that help to progress EPRI towards the eventual goal of human application. For example, a bimodal crossed-wire surface coil has been developed. Very preliminary tests demonstrated a 20 dB isolation between transmit and receive for this coil, with an anticipated additional 20 dB achievable. This could potentially be used to image local pO2 in human subjects with superficial tumors with EPRI. Local excitation and detection will reduce the specific absorption rate limitations on images and eliminate any possible power deposition concerns. Additionally, a large 9 mT EPRI magnet has been constructed which can fit and provide static main and gradient fields for imaging local anatomy in an entire human. One potential obstacle that must be overcome in order to use EPRI to image humans is the approved use of the requisite EPRI spin probe imaging agent (trityl). While nontoxic, EPRI trityl spin probes have been injected intravenously when imaging small animals, and require relatively high total body injection doses that would not be suitable for human imaging applications. Work has been done demonstrating the alternative use of intratumoral (IT) injections, which can reduce the amount of trityl required for imaging by a factor of 2000- relative to a whole body intravenous injection. The development of a large magnet that can accommodate human subjects, the design of a surface coil for imaging of superficial pO2, and the reduction of required spin

  5. Towards Human Oxygen Images with Electron Paramagnetic Resonance Imaging

    PubMed Central

    Epel, Boris; Redler, Gage; Tormyshev, Victor; Halpern, Howard J.

    2016-01-01

    Electron paramagnetic resonance imaging (EPRI) has been used to noninvasively provide 3D images of absolute oxygen concentration (pO2) in small animals. These oxygen images are well resolved both spatially (∼1mm) and in pO2 (1-3 torr). EPRI preclinical images of pO2 have demonstrated extremely promising results for various applications investigating oxygen related physiologic and biologic processes as well as the dependence of various disease states on pO2, such as the role of hypoxia in cancer. Recent developments have been made that help to progress EPRI towards the eventual goal of human application. For example, a bimodal crossed-wire surface coil has been developed. Very preliminary tests demonstrated a 20 dB isolation between transmit and receive for this coil, with an anticipated additional 20dB achievable. This could potentially be used to image local pO2 in human subjects with superficial tumors with EPRI. Local excitation and detection will reduce the specific absorption rate limitations on images and eliminate any possible power deposition concerns. Additionally, a large 9 mT EPRI magnet has been constructed which can fit and provide static main and gradient fields for imaging local anatomy in an entire human. One potential obstacle that must be overcome in order to use EPRI to image humans is the approved use of the requisite EPRI spin probe imaging agent (trityl). While nontoxic, EPRI trityl spin probes have been injected intravenously when imaging small animals, which results in relatively high total body injection doses that would not be suitable for human imaging applications. Work has been done demonstrating the alternative use of intratumoral (IT) injections, which can reduce the amount of trityl required for imaging by a factor of 2000- relative to a whole body intravenous injection. The development of a large magnet that can accommodate human subjects, the design of a surface coil for imaging of superficial pO2, and the reduction of required

  6. Electron paramagnetic resonance in human fingernails: the sponge model implication.

    PubMed

    Reyes, R A; Romanyukha, A; Trompier, F; Mitchell, C A; Clairand, I; De, T; Benevides, L A; Swartz, H M

    2008-11-01

    The most significant problem of electron paramagnetic resonance (EPR) fingernail dosimetry is the presence of two signals of non-radiation origin that overlap the radiation-induced signal (RIS), making it almost impossible to perform dose measurements below 5 Gy. Historically, these two non-radiation components were named mechanically induced signal (MIS) and background signal (BKS). In order to investigate them in detail, three different methods of MIS and BKS mutual isolation have been developed and implemented. After applying these methods, it is shown here that fingernail tissue, after cut, can be modeled as a deformed sponge, where the MIS and BKS are associated with the stress from elastic and plastic deformations, respectively. A sponge has a unique mechanism of mechanical stress absorption, which is necessary for fingernails in order to perform its everyday function of protecting the fingertips from hits and trauma. Like a sponge, fingernails are also known to be an effective water absorber. When a sponge is saturated with water, it tends to restore to its original shape, and when it loses water, it becomes deformed again. The same happens to fingernail tissue. It is proposed that the MIS and BKS signals of mechanical origin be named MIS1 and MIS2 for MISs 1 and 2, respectively. Our suggested interpretation of the mechanical deformation in fingernails gives also a way to distinguish between the MIS and RIS. The results obtained show that the MIS in irradiated fingernails can be almost completely eliminated without a significant change to the RIS by soaking the sample for 10 min in water. The proposed method to measure porosity (the fraction of void space in spongy material) of the fingernails gave values of 0.46-0.48 for three of the studied samples. Existing results of fingernail dosimetry have been obtained on mechanically stressed samples and are not related to the "real" in vivo dosimetric properties of fingernails. A preliminary study of these

  7. Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging

    NASA Astrophysics Data System (ADS)

    Epel, Boris; Halpern, Howard J.

    2015-05-01

    Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage.

  8. Stationary and high-frequency pulsed electron paramagnetic resonance of a calcified atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Abdul'Yanov, V. A.; Galiullina, L. F.; Galyavich, A. S.; Izotov, V. G.; Mamin, G. V.; Orlinskii, S. B.; Rodionov, A. A.; Salakhov, M. Kh.; Silkin, N. I.; Sitdikova, L. M.; Khairullin, R. N.; Chelyshev, Yu. A.

    2008-09-01

    New possibilities of applying high-frequency electron paramagnetic resonance in medicine are demonstrated on an example of the investigation of a calcified atherosclerotic plaque. After the irradiation of the atherosclerotic plaque by x rays, a new type of paramagnetic centers—organomineral radicals—is detected. The spectral and relaxation characteristics of these radicals depend on the calcification degree of the atherosclerotic plaque and can be used for diagnostics.

  9. Pulsed electron paramagnetic resonance experiments identify the paramagnetic intermediates in the pyruvate ferredoxin oxidoreductase catalytic cycle.

    PubMed

    Astashkin, Andrei V; Seravalli, Javier; Mansoorabadi, Steven O; Reed, George H; Ragsdale, Stephen W

    2006-03-29

    Pyruvate ferredoxin oxidoreductase (PFOR) is central to the anaerobic metabolism of many bacteria and amitochondriate eukaryotes. PFOR contains thiamine pyrophosphate (TPP) and three [4Fe-4S] clusters, which link pyruvate oxidation to reduction of ferredoxin. In the PFOR reaction, TPP reacts with pyruvate to form lactyl-TPP, which undergoes decarboxylation to form a hydroxyethyl-TPP (HE-TPP) intermediate. One electron is then transferred from HE-TPP to one of the three [4Fe-4S] clusters to form an HE-TPP radical and a [4Fe-4S]1+ intermediate. Pulsed EPR methods have been used to measure the distance between the HE-TPP radical and the [4Fe-4S]1+ cluster to which it is coupled. Computational analysis including the PFOR crystal structure and the spin distribution in the HE-TPP radical and in the reduced [4Fe-4S] cluster demonstrates that the distance between the HE-TPP radical and the medial cluster B matches the experimentally determined dipolar interaction, while one of the other two clusters is too close and the other is too far away. These results clearly demonstrate that it is the medial cluster (cluster B) that is reduced. Thus, rapid electron transfer occurs through the electron-transfer chain, which leaves an oxidized proximal cluster poised to accept an electron from the HE-TPP radical in the subsequent reaction step. PMID:16551078

  10. Three-dimensional electron paramagnetic resonance imaging technique for mapping porosity in ceramics

    SciTech Connect

    Kordas, G.; Kang, Y.H. )

    1991-04-01

    This paper reports on a three-dimensional (3D) electron paramagnetic resonance imaging (EPRI) method which was developed to probe the structure and size of pores in ceramic materials. The imaging device that was added to the EPR instrument consisted of a computer-controlled current source and magnetic field gradient. This add-on facility was tested using a well-defined diphenlpicrylhydrazzyl phantom sample. Pumice was then used to demonstrate the potential of the technique. This stone was immersed in a 0.5 mm {sup 15}N-substituted per-deutereted tempone water solution to fill the pores with spin labels. Images were reconstructed using a filtered back-projection technique. A two-dimensional (2D) imaging plane was constructed by collecting 33 projection planes over 180 {degrees}. A 3D image was derived from 22 planes each constructed by 22 projections. At present, the facility allows a resolution of 69 and 46 {mu}m for 2D and 3D imaging, respectively. Advancements of the imaging apparatus, software, and line width of the spin labels will be needed to enhance the resolution of this technique.

  11. Exploring Structure, Dynamics, and Topology of Nitroxide Spin-Labeled Proteins Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Altenbach, Christian; López, Carlos J; Hideg, Kálmán; Hubbell, Wayne L

    2015-01-01

    Structural and dynamical characterization of proteins is of central importance in understanding the mechanisms underlying their biological functions. Site-directed spin labeling (SDSL) combined with continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy has shown the capability of providing this information with site-specific resolution under physiological conditions for proteins of any degree of complexity, including those associated with membranes. This chapter introduces methods commonly employed for SDSL and describes selected CW EPR-based methods that can be applied to (1) map secondary and tertiary protein structure, (2) determine membrane protein topology, (3) measure protein backbone flexibility, and (4) reveal the existence of conformational exchange at equilibrium. PMID:26477248

  12. The Effect of Electronic Paramagnetism on Nuclear Magnetic Resonance Frequencies in Metals

    DOE R&D Accomplishments Database

    Townes, C. H.; Herring, C.; Knight, W. D.

    1950-09-22

    Observations on the shifts of nuclear resonances in metals ( Li{sup 7}, Na{sup 23}, Cu {sup 63}, Be{sup 9}, Pb{sup 207}, Al{sup 27}, and Ca{sup 69} ) due to free electron paramagnetism; comparison with theoretical values.

  13. [Electron paramagnetic resonance study of blood of anemic patients with urological cancer].

    PubMed

    Ibragimova, M I; Chushnikov, V N; Moiseev, V N; Petukhov, V Iu; Zheglov, E P; Cherepnev, G V

    2013-01-01

    Changes in Fe(3+)-transferrin (Fe(3+)-Tf) and Cu(2+)-ceruloplasmin (Cu(2+)-Cp) concentrations in venous blood sampled from anemic patients with urinary bladder and kidney cancer in I-IV stages were investigated using electron paramagnetic resonance spectroscopy. It was established that at malignancy-associated anemia the paramagnetic Fe3+ ion concentration in transferrin is below a norm, while in anemic non-oncology patients the Tf iron saturation is normal. Moreover, in patients with malignancy-associated anemia the Cu(2+)-Cp average value is nearly twice as large as that for healthy volunteers (confidence probability P). It was shown that simultaneous EPR measuring of paramagnetic centers (such as Fe(3+)-Tf and Cu(2+)-Cp) in blood of anemic patients can be used as a biomarker for urological cancer diagnosis even at early stages of the growth of a malignant tumor.

  14. Electron Paramagnetic Resonance Imaging of the Spatial Distribution of Free Radicals in PMR-15 Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.

    1997-01-01

    Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron Paramagnetic Resonance Imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of about 0.18 mm along a 2 mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2 mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 one-hour cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.

  15. Electron Paramagnetic Resonance Imaging of the Spatial Distribution of Free Radicals in PMR-15 Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.

    1997-01-01

    Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron paramagnetic resonance imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of approximately 0.18 mm along a 2-mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2-mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 1-h cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.

  16. ELECTRON PARAMAGNETIC RESONANCE DOSIMETRY FOR A LARGE-SCALE RADIATION INCIDENT

    PubMed Central

    Swartz, Harold M.; Flood, Ann Barry; Williams, Benjamin B.; Dong, Ruhong; Swarts, Steven G.; He, Xiaoming; Grinberg, Oleg; Sidabras, Jason; Demidenko, Eugene; Gui, Jiang; Gladstone, David J.; Jarvis, Lesley A.; Kmiec, Maciej M.; Kobayashi, Kyo; Lesniewski, Piotr N.; Marsh, Stephen D.P.; Matthews, Thomas P.; Nicolalde, Roberto J.; Pennington, Patrick M.; Raynolds, Timothy; Salikhov, Ildar; Wilcox, Dean E.; Zaki, Bassem I.

    2013-01-01

    With possibilities for radiation terrorism and intensified concerns about nuclear accidents since the recent Fukushima Daiichi event, the potential exposure of large numbers of individuals to radiation that could lead to acute clinical effects has become a major concern. For the medical community to cope with such an event and avoid overwhelming the medical care system, it is essential to identify not only individuals who have received clinically significant exposures and need medical intervention but also those who do not need treatment. The ability of electron paramagnetic resonance to measure radiation-induced paramagnetic species, which persist in certain tissues (e.g., teeth, fingernails, toenails, bone, and hair), has led this technique to become a prominent method for screening significantly exposed individuals. Although the technical requirements needed to develop this method for effective application in a radiation event are daunting, remarkable progress has been made. In collaboration with General Electric, and through funding committed by the Biomedical Advanced Research and Development Authority, electron paramagnetic resonance tooth dosimetry of the upper incisors is being developed to become a Food and Drug Administration-approved and manufacturable device designed to carry out triage for a threshold dose of 2 Gy. Significant progress has also been made in the development of electron paramagnetic resonance nail dosimetry based on measurements of nails in situ under point-of-care conditions, and in the near future this may become a second field-ready technique. Based on recent progress in measurements of nail clippings, we anticipate that this technique may be implementable at remotely located laboratories to provide additional information when the measurements of dose on site need to be supplemented. We conclude that electron paramagnetic resonance dosimetry is likely to be a useful part of triage for a large-scale radiation incident. PMID:22850230

  17. Electron Paramagnetic Resonance of Single Magnetic Moment on a Surface

    PubMed Central

    Berggren, P.; Fransson, J.

    2016-01-01

    We address electron spin resonance of single magnetic moments in a tunnel junction using time-dependent electric fields and spin-polarized current. We show that the tunneling current directly depends on the local magnetic moment and that the frequency of the external electric field mixes with the characteristic Larmor frequency of the local spin. The importance of the spin-polarized current induced anisotropy fields acting on the local spin moment is, moreover, demonstrated. Our proposed model thus explains the absence of an electron spin resonance for a half integer spin, in contrast with the strong signal observed for an integer spin. PMID:27156935

  18. Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.

    PubMed

    Takahashi, S; Brunel, L-C; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

    2012-09-20

    Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that other techniques in structural biology have not been able to reveal. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance, EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 gigahertz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 teslas and below. Here we demonstrate that one-kilowatt pulses from a free-electron laser can power a pulsed EPR spectrometer at 240 gigahertz (8.5 teslas), providing transformative enhancements over the alternative, a state-of-the-art ∼30-milliwatt solid-state source. Our spectrometer can rotate spin-1/2 electrons through π/2 in only 6 nanoseconds (compared to 300 nanoseconds with the solid-state source). Fourier-transform EPR on nitrogen impurities in diamond demonstrates excitation and detection of EPR lines separated by about 200 megahertz. We measured decoherence times as short as 63 nanoseconds, in a frozen solution of nitroxide free-radicals at temperatures as high as 190 kelvin. Both free-electron lasers and the quasi-optical technology developed for the spectrometer are scalable to frequencies well in excess of one terahertz, opening the way to high-power pulsed EPR spectroscopy up to the highest static magnetic fields currently available. PMID:22996555

  19. Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.

    PubMed

    Takahashi, S; Brunel, L-C; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

    2012-09-20

    Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that other techniques in structural biology have not been able to reveal. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance, EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 gigahertz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 teslas and below. Here we demonstrate that one-kilowatt pulses from a free-electron laser can power a pulsed EPR spectrometer at 240 gigahertz (8.5 teslas), providing transformative enhancements over the alternative, a state-of-the-art ∼30-milliwatt solid-state source. Our spectrometer can rotate spin-1/2 electrons through π/2 in only 6 nanoseconds (compared to 300 nanoseconds with the solid-state source). Fourier-transform EPR on nitrogen impurities in diamond demonstrates excitation and detection of EPR lines separated by about 200 megahertz. We measured decoherence times as short as 63 nanoseconds, in a frozen solution of nitroxide free-radicals at temperatures as high as 190 kelvin. Both free-electron lasers and the quasi-optical technology developed for the spectrometer are scalable to frequencies well in excess of one terahertz, opening the way to high-power pulsed EPR spectroscopy up to the highest static magnetic fields currently available.

  20. Structural, optical, electron paramagnetic, thermal and dielectric characterization of chalcopyrite

    NASA Astrophysics Data System (ADS)

    Prameena, B.; Anbalagan, G.; Gunasekaran, S.; Ramkumaar, G. R.; Gowtham, B.

    2014-03-01

    Chalcopyrite (CuFeS2) a variety of pyrite minerals was investigated through spectroscopic techniques and thermal analysis. The morphology and elemental analysis of the chalcopyrite have been done by high resolution SEM with EDAX. The lattice parameters were from the powder diffraction data (a = 5.3003 ± 0.0089 Å, c = 10.3679 ± 0.0289 Å; the volume of the unit cell = 291.266 Å3 with space group I42d (1 2 2)). The thermal decomposition behavior of chalcopyrite was studied by means of thermogravimetric analysis at three different heating rates 10, 15 and 20 °C/min. The values of effective activation energy (Ea), pre-exponential factor (ln A) for thermal decomposition have been measured at three different heating rates by employing Kissinger, Kim-Park and Flynn-Wall methods. Dielectric studies at different temperatures have also been carried out and it was found that both dielectric constant and dielectric loss decreases with the increase of frequency.

  1. Structural, optical, electron paramagnetic, thermal and dielectric characterization of chalcopyrite.

    PubMed

    Prameena, B; Anbalagan, G; Gunasekaran, S; Ramkumaar, G R; Gowtham, B

    2014-03-25

    Chalcopyrite (CuFeS2) a variety of pyrite minerals was investigated through spectroscopic techniques and thermal analysis. The morphology and elemental analysis of the chalcopyrite have been done by high resolution SEM with EDAX. The lattice parameters were from the powder diffraction data (a=5.3003±0.0089 Å, c=10.3679±0.0289 Å; the volume of the unit cell=291.266 Å(3) with space group I42d (122)). The thermal decomposition behavior of chalcopyrite was studied by means of thermogravimetric analysis at three different heating rates 10, 15 and 20 °C/min. The values of effective activation energy (Ea), pre-exponential factor (ln A) for thermal decomposition have been measured at three different heating rates by employing Kissinger, Kim-Park and Flynn-Wall methods. Dielectric studies at different temperatures have also been carried out and it was found that both dielectric constant and dielectric loss decreases with the increase of frequency.

  2. Electron paramagnetic resonance of natural and gamma-irradiated alunite and kaolin mineral powders

    NASA Astrophysics Data System (ADS)

    Koksal, F.; Koseoglu, R.; Saka, I.; Basaran, E.; Sener, F.

    2004-06-01

    Natural alunite and kaolin minerals obtained from West Anatolia were investigated by electron paramagnetic resonance (EPR) in natural and gamma-irradiated states at room temperature and at 113 K. The paramagnetic centres at ambient temperature in natural alunite were attributed to the (C) over dot H 2OH, (C) over dot O-3(-), (S) over dot O-2(-), (C) over dot O-2(-) and [AlO4 ](0) radicals. In natural kaolin, the paramagnetic centres were attributed to the (C) over dot O-3(-), (S) over dot O-2(-) (C) over dot O-2(-) and [AlO4](0) radicals. The gamma-irradiation does not produce any detectable effects on these radicals. At 113 K, the lines for (C) over dot H2OH could not be observed well, probably due to the anisotropic behaviour of the hyperfine interaction of the methylene protons, but the lines for [AlO4](0) centres were found to be perfectly observable at above 20 mW microwave power in both alunite and kaolin powders before and after gamma-irradiation. The EPR parameters of the observed paramagnetic centres were reported.

  3. Optical and paramagnetic properties of synthetic diamond crystals irradiated with electrons and annealed

    SciTech Connect

    Poklonski, N. A. Gusakov, G. A.; Bayev, V. G. Lapchuk, N. M.

    2009-05-15

    The optical and paramagnetic properties of single crystals of synthetic diamond grown by the temperature-gradient method in high-pressure apparatuses with the systems of catalytic solvents (Co, Fe) and (Ni, Fe) are studied at room temperature. The optical absorption spectra (in the wavelength range {lambda} = 400-800 nm) and the spectra of electron spin resonance are registered for the initial diamond crystals, the crystals irradiated with 6 MeV electrons (the fluence 1.5 x 10{sup 18} cm{sup -2}), and the irradiated diamonds subjected to isochronous thermal annealing in vacuum (for 60 min). It is shown that, with such treatment, the diamond crystals synthesized with different metal catalysts (Co or Ni) exhibit similar optical properties, but different paramagnetic properties. The data obtained by infrared spectroscopy and electron spin resonance spectroscopy are coincident for radiation defects and different for nitrogen centers (the P1 centers and exchange-coupled pairs of nitrogen atoms). The spectra of the electron spin resonance of the samples annealed at temperatures below 1273 K (in the case of the Co-containing catalyst) and 1073 K (in the case of Ni-containing catalyst) exhibited broad lines produced by residual impurities of the catalyst metal and were accompanied by a distortion of the spectrum of paramagnetic nitrogen in the form of a tilt of the ESR spectra with respect to the zero line.

  4. Electron paramagnetic resonance and FT-IR spectroscopic studies of glycine anhydride and betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Halim Başkan, M.; Kartal, Zeki; Aydın, Murat

    2015-12-01

    Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).

  5. Field-stepped direct detection electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Yu, Zhelin; Liu, Tengzhi; Elajaili, Hanan; Rinard, George A.; Eaton, Sandra S.; Eaton, Gareth R.

    2015-09-01

    The widest scan that had been demonstrated previously for rapid scan EPR was a 155 G sinusoidal scan. As the scan width increases, the voltage requirement across the resonating capacitor and scan coils increases dramatically and the background signal induced by the rapidly changing field increases. An alternate approach is needed to achieve wider scans. A field-stepped direct detection EPR method that is based on rapid-scan technology is now reported, and scan widths up to 6200 G have been demonstrated. A linear scan frequency of 5.12 kHz was generated with the scan driver described previously. The field was stepped at intervals of 0.01 to 1 G, depending on the linewidths in the spectra. At each field data for triangular scans with widths up to 11.5 G were acquired. Data from the triangular scans were combined by matching DC offsets for overlapping regions of successive scans. This approach has the following advantages relative to CW, several of which are similar to the advantages of rapid scan. (i) In CW if the modulation amplitude is too large, the signal is broadened. In direct detection field modulation is not used. (ii) In CW the small modulation amplitude detects only a small fraction of the signal amplitude. In direct detection each scan detects a larger fraction of the signal, which improves the signal-to-noise ratio. (iii) If the scan rate is fast enough to cause rapid scan oscillations, the slow scan spectrum can be recovered by deconvolution after the combination of segments. (iv) The data are acquired with quadrature detection, which permits phase correction in the post processing. (v) In the direct detection method the signal typically is oversampled in the field direction. The number of points to be averaged, thereby improving the signal-to-noise ratio, is determined in post processing based on the desired field resolution. A degased lithium phthalocyanine sample was used to demonstrate that the linear deconvolution procedure can be employed with

  6. Field-stepped direct detection electron paramagnetic resonance.

    PubMed

    Yu, Zhelin; Liu, Tengzhi; Elajaili, Hanan; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2015-09-01

    The widest scan that had been demonstrated previously for rapid scan EPR was a 155G sinusoidal scan. As the scan width increases, the voltage requirement across the resonating capacitor and scan coils increases dramatically and the background signal induced by the rapidly changing field increases. An alternate approach is needed to achieve wider scans. A field-stepped direct detection EPR method that is based on rapid-scan technology is now reported, and scan widths up to 6200G have been demonstrated. A linear scan frequency of 5.12kHz was generated with the scan driver described previously. The field was stepped at intervals of 0.01 to 1G, depending on the linewidths in the spectra. At each field data for triangular scans with widths up to 11.5G were acquired. Data from the triangular scans were combined by matching DC offsets for overlapping regions of successive scans. This approach has the following advantages relative to CW, several of which are similar to the advantages of rapid scan. (i) In CW if the modulation amplitude is too large, the signal is broadened. In direct detection field modulation is not used. (ii) In CW the small modulation amplitude detects only a small fraction of the signal amplitude. In direct detection each scan detects a larger fraction of the signal, which improves the signal-to-noise ratio. (iii) If the scan rate is fast enough to cause rapid scan oscillations, the slow scan spectrum can be recovered by deconvolution after the combination of segments. (iv) The data are acquired with quadrature detection, which permits phase correction in the post processing. (v) In the direct detection method the signal typically is oversampled in the field direction. The number of points to be averaged, thereby improving the signal-to-noise ratio, is determined in post processing based on the desired field resolution. A degased lithium phthalocyanine sample was used to demonstrate that the linear deconvolution procedure can be employed with field

  7. Biodosimetry: chromosome aberration in lymphocytes and electron paramagnetic resonance in tooth enamel from atomic bomb survivors.

    PubMed

    Nakamura, N; Miyazawa, C; Akiyama, M; Sawada, S; Awa, A A

    1996-01-01

    One hundred enamel samples isolated from extracted teeth donated by atomic bomb survivors were subjected to free radical measurement by means of electron paramagnetic resonance (ESR). Results comparing ESR with the chromosome aberration frequency in lymphocytes of the tooth donors, and with the physically estimated DS86 dose suggested that ESR data correlated more closely with chromosome data than with the estimated DS86 doses, probably because DS86 may depend on erroneous memory in some cases.

  8. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  9. Electron Paramagnetic Resonance Resolves Effects of Oxidative Stress on Muscle Proteins

    PubMed Central

    Moen, Rebecca J.; Klein, Jennifer C.; Thomas, David D.

    2014-01-01

    We have used site-directed spin labeling and electron paramagnetic resonance (EPR) to explore the effects of oxidation on muscle function, with particular focus on the actin-myosin interaction. EPR measurements show that aging or oxidative modification cause a decrease in the fraction of myosins in the strong-binding state, which can be traced to the actin-binding cleft of the myosin catalytic domain. PMID:24188980

  10. Crystallization and electron paramagnetic resonance characterization of the complex of photosystem I with its natural electron acceptor ferredoxin.

    PubMed Central

    Fromme, Petra; Bottin, Hervé; Krauss, Norbert; Sétif, Pierre

    2002-01-01

    The formation of a transient complex between photosystem I and ferredoxin is involved in the process of ferredoxin photoreduction in oxygenic photosynthetic organisms. Reduced ferredoxin is an essential redox intermediate involved in many assimilatory processes and is necessary for the reduction of NADP(+) to NADPH. Single crystals from a complex of photosystem I with ferredoxin were grown using PEG 400 and CaCl(2) as precipitation agents. The crystals diffract x-rays to a resolution of 7-8 A. The space group was determined to be orthorhombic with the unit cell dimensions a = 194 A, b = 208 A, and c = 354 A. The crystals contain photosystem I and ferredoxin in a 1:1 ratio. Electron paramagnetic resonance (EPR) measurements on these crystals are reported, where EPR signals of the three [4Fe-4S] clusters F(A), F(B), F(X), and the [2Fe-2S] cluster of ferredoxin were detected. From the EPR spectra observed at three particular orientations of the crystal in the magnetic field, the full orientation pattern of the F g-tensor was simulated. This simulation is consistent with the presence of 12 magnetically inequivalent F clusters per unit cell with the C(3) axis of the PSI trimers oriented at (23 degrees, 72 degrees, 77 degrees ) to the unit cell axes. PMID:12324399

  11. Radiation Dosimetry Study in Dental Enamel of Human Tooth Using Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    De, Tania; Romanyukha, Alex; Pass, Barry; Misra, Prabhakar

    2009-07-01

    Electron paramagnetic resonance (EPR) dosimetry of tooth enamel is used for individual dose reconstruction following radiation accidents. The purpose of this study is to develop a rapid, minimally invasive technique of obtaining a sample of dental enamel small enough to not disturb the structure and functionality of a tooth and to improve the sensitivity of the spectral signals using X-band (9.4 GHz) and Q-band (34 GHz) EPR technique. In this study EPR measurements in X-band were performed on 100 mg isotropic powdered enamel samples and Q-band was performed on 4 mg, 1×1×3 mm enamel biopsy samples. All samples were obtained from discarded teeth collected during normal dental treatment. To study the variation of the Radiation-Induced Signal (RIS) at different orientations in the applied magnetic field, samples were placed in the resonance cavity for Q-band EPR. X-band EPR measurements were performed on 100 mg isotropic powdered enamel samples. In X-band spectra, the RIS is distinct from the "native" radiation-independent signal only for doses >0.5 Gy. Q-band, however, resolves the RIS and "native" signals and improves sensitivity by a factor of 20, enabling measurements in 2-4 mg tooth enamel samples, as compared to 100 mg for X-band. The estimated lower limit of Q-band dose measurement is 0.5 Gy. Q-band EPR enamel dosimetry results in greater sensitivity and smaller sample size through enhanced spectral resolution. Thus, this can be a valuable technique for population triage in the event of detonation of a radiation dispersal device ("dirty" bomb) or other radiation event with massive casualties. Further, the small 4 mg samples can be obtained by a minimally-invasive biopsy technique.

  12. Magnetic field dependence of spin-forbidden electronic excitations reflects the Haldane or paramagnetic ground state

    NASA Astrophysics Data System (ADS)

    Long, V. C.; Montague, J. R.; Kozen, A. C.; Wei, X.; Landry, B. R.; Pearson, K. R.; Turnbull, M. M.; Landee, C. P.

    2007-03-01

    We compare the zero-field and magnetic field-dependent optical spectra of the Haldane chain compound NENB (Ni[en]2NO2BF4; en = C2N2H8) and the paramagnetic compound, Ni(en) 3(ClO4)2,H2O. Due to similar electronic coordination of Ni^2+, the two materials show similar zero-field d-d electronic transitions, including a spin-forbidden (SF) transition at 1.58 eV, overlapping a broad spin-allowed band at 1.45 eV. The relatively greater intensity of the SF band in the Haldane compound suggests activation by a spin exchange mechanism, whereas a spin-orbit coupling origin is likely in the paramagnet. A second narrower SF spin flip transition appears in NENB at 1.66 eV. In both compounds, the SF excitations are sensitive to applied field H. In NENB, the SF intensity is suppressed by H, consistent with behavior of spin exchange-activated bands. In Ni(en)3(ClO4)-2,H2O, the SF field sensitivity appears to combine an energy shift and intensity decrease. Details of the H dependence reflect the magnetic ground state of the material: the field sensitivity commences only above HC 10 T, in the Haldane compound, whereas the field-induced modifications begin immediately at H = 0 T in the paramagnet.

  13. Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems.

    PubMed Central

    Liu, K J; Gast, P; Moussavi, M; Norby, S W; Vahidi, N; Walczak, T; Wu, M; Swartz, H M

    1993-01-01

    Lithium phthalocyanine (LiPc) is a prototype of another generation of synthetic, metallic-organic, paramagnetic crystallites that appear very useful for in vitro and in vivo electron paramagnetic resonance oximetry. The peak-to-peak line width of the electron paramagnetic resonance spectrum of LiPc is a linear function of the partial pressure of oxygen (pO2); this linear relation is independent of the medium surrounding the LiPc. It has an extremely exchange-narrowed spectrum (peak-to-peak line width = 14 mG in the absence of O2). Physicochemically LiPc is very stable; its response to pO2 does not change with conditions and environments (e.g., pH, temperature, redox conditions) likely to occur in viable biological systems. These characteristics provide the sensitivity, accuracy, and range to measure physiologically and pathologically pertinent O2 tensions (0.1-50 mmHg; 1 mmHg = 133 Pa). The application of LiPc in biological systems is demonstrated in measurements of pO2 in vivo in the heart, brain, and kidney of rats. PMID:8390665

  14. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research.

    PubMed

    Danhier, Pierre; Gallez, Bernard

    2015-01-01

    The purpose of this paper is to describe some of the areas where electron paramagnetic resonance (EPR) has provided unique information to MRI developments. The field of application mainly encompasses the EPR characterization of MRI paramagnetic contrast agents (gadolinium and manganese chelates, nitroxides) and superparamagnetic agents (iron oxide particles). The combined use of MRI and EPR has also been used to qualify or disqualify sources of contrast in MRI. Illustrative examples are presented with attempts to qualify oxygen sensitive contrast (i.e. T1 - and T2 *-based methods), redox status or melanin content in tissues. Other areas are likely to benefit from the combined EPR/MRI approach, namely cell tracking studies. Finally, the combination of EPR and MRI studies on the same models provides invaluable data regarding tissue oxygenation, hemodynamics and energetics. Our description will be illustrative rather than exhaustive to give to the readers a flavour of 'what EPR can do for MRI'.

  15. Temperature dependence of Q-band electron paramagnetic resonance spectra of nitrosyl heme proteins.

    PubMed Central

    Flores, M; Wajnberg, E; Bemski, G

    1997-01-01

    The Q-band (35 GHz) electron paramagnetic resonance (EPR) spectra of nitrosyl hemoglobin (HbNO) and nitrosyl myoglobin (MbNO) were studied as a function of temperature between 19 K and 200 K. The spectra of both heme proteins show two classes of variations as a function of temperature. The first one has previously been associated with the existence of two paramagnetic species, one with rhombic and the other with axial symmetry. The second one manifests itself in changes in the g-factors and linewidths of each species. These changes are correlated with the conformational substates model and associate the variations of g-values with changes in the angle of the N(his)-Fe-N(NO) bond in the rhombic species and with changes in the distance between Fe and N of the proximal (F8) histidine in the axial species. PMID:9414233

  16. Paramagnetic defects induced by electron irradiation in barium hollandite ceramics for caesium storage.

    PubMed

    Aubin-Chevaldonnet, V; Gourier, D; Caurant, D; Esnouf, S; Charpentier, T; Costantini, J M

    2006-04-26

    We have studied by electron paramagnetic resonance the mechanism of defect production by electron irradiation in barium hollandite, a material used for immobilization of radioactive caesium. The irradiation conditions were the closest possible to those occurring in Cs storage waste forms. Three paramagnetic defects were observed, independently of the irradiation conditions. A hole centre (H centre) is attributed to a superoxide ion O(2)(-) originating from hole trapping by interstitial oxygen produced by electron irradiation. An electron centre (E(1) centre) is attributed to a Ti(3+) ion adjacent to the resulting oxygen vacancy. Another electron centre (E(2) centre) is attributed to a Ti(3+) ion in a cation site adjacent to an extra Ba(2+) ion in a neighbouring tunnel, originating from barium displacement by elastic collisions. Comparison of the effects of external irradiations by electrons with the β-decay of Cs in storage waste forms is discussed. It is concluded that the latter would be dominated by E(1) and H centres rather than E(2) centres. PMID:21690754

  17. Electron paramagnetic resonance as an effective method for a characterization of functionalized iron oxide

    NASA Astrophysics Data System (ADS)

    Dobosz, Bernadeta; Krzyminiewski, Ryszard; Schroeder, Grzegorz; Kurczewska, Joanna

    2014-05-01

    Iron(II, III) oxide magnetic nanoparticles (NPs) have been coated with (3-Chloropropyl) trimethoxysilane and subsequently functionalized with 4-Amino-2,2,6,6-tetramethylpiperidine-N-oxyl and Amoxicillin. Finally, the functionalized iron oxide NPs have been coated with natural polymer, chitosan, in order to prevent NPs agglomeration in aqueous environment. The product was characterized by Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). It was studied by the electron paramagnetic resonance method and the parameters describing the magnetic properties of the investigated nanoparticles, such as g-factor and line width, were calculated.

  18. Electron microscopy at atomic resolution

    SciTech Connect

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40/sup 0/ biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals.

  19. Study of ultrasonic attenuation in f-electron systems in the paramagnetic limit of Coulomb interaction

    SciTech Connect

    Shadangi, Asit Ku.; Rout, G. C.

    2015-05-15

    We report here a microscopic model study of ultrasonic attenuation in f-electron systems based on Periodic Anderson Model in which Coulomb interaction is considered within a mean-field approximation for a weak interaction. The Phonon is coupled to the conduction band and f-electrons. The phonon Green's function is calculated by Zubarev's technique of the Green's function method. The temperature dependent ultrasonic attenuation co-efficient is calculated from the imaginary part of the phonon self-energy in the dynamic and long wave length limit. The f-electron occupation number is calculated self-consistently in paramagnetic limit of Coulomb interaction. The effect of the Coulomb interaction on ultrasonic attenuation is studied by varying the phonon coupling parameters to the conduction and f-electrons, hybridization strength, the position of f-level and the Coulomb interaction Strength. Results are discussed on the basis of experimental results.

  20. Electron paramagnetic resonance and low-field microwave absorption in the manganese-gallium oxide

    NASA Astrophysics Data System (ADS)

    Montiel, H.; Alvarez, G.; Conde-Gallardo, A.; Zamorano, R.

    2015-07-01

    Microwave absorption measurements in MnGa2O4 powders are carried out at X-band (8.8-9.8 GHz) in 92-296 K temperature range. For all temperatures, the electron paramagnetic resonance (EPR) spectra show a single broad line due to Mn2+ ions. Temperature dependence of the EPR parameters: the peak-to-peak linewidth (ΔHpp), the integrated intensity (IEPR) and the g-factor, suggests the presence of magnetic fluctuations that precede to antiferromagnetic ordering at low temperature. Additionally, the low-field microwave absorption (LFMA) is used to give further information on this material, giving also evidence of these magnetic fluctuations.

  1. Degradation of edible oil during food processing by ultrasound: electron paramagnetic resonance, physicochemical, and sensory appreciation.

    PubMed

    Pingret, Daniella; Durand, Grégory; Fabiano-Tixier, Anne-Sylvie; Rockenbauer, Antal; Ginies, Christian; Chemat, Farid

    2012-08-01

    During ultrasound processing of lipid-containing food, some off-flavors can be detected, which can incite depreciation by consumers. The impacts of ultrasound treatment on sunflower oil using two different ultrasound horns (titanium and pyrex) were evaluated. An electron paramagnetic resonance study was performed to identify and quantify the formed radicals, along with the assessment of classical physicochemical parameters such as peroxide value, acid value, anisidine value, conjugated dienes, polar compounds, water content, polymer quantification, fatty acid composition, and volatiles profile. The study shows an increase of formed radicals in sonicated oils, as well as the modification of physicochemical parameters evidencing an oxidation of treated oils. PMID:22804736

  2. Use of alanine-silicone pellets for electron paramagnetic resonance gamma dosimetry

    SciTech Connect

    Flores, J.; Galindo, S. )

    1991-03-01

    Silicone is proposed as an alternative binding substance in the production of D-L alanine pellets used in electron paramagnetic resonance (EPR) dosimetry of gamma rays. The dosimeters are manufactured at room temperature, making the production simple. Examination by EPR silicone-alanine pellets irradiated with 60Co gamma rays in the dose range 10 to 10(6) Gy shows that the proposed silicone binder does not affect typical alanine dose-response curves. Thermal stability of the pellets below 40 degrees C is good, but their pre-dose EPR signal amplitude is slightly higher than for nonirradiated alanine.

  3. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  4. Single-ion anisotropy in the gadolinium pyrochlores studied by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Glazkov, V. N.; Zhitomirsky, M. E.; Smirnov, A. I.; Krug von Nidda, H.-A.; Loidl, A.; Marin, C.; Sanchez, J.-P.

    2005-07-01

    The electron paramagnetic resonance is used to measure the single-ion anisotropy of Gd3+ ions in the pyrochlore structure of (Y1-xGdx)2Ti2O7 . A rather strong easy-plane-type anisotropy is found. The anisotropy constant D is comparable to the exchange integral J in the prototype Gd2Ti2O7 , D≃0.75J , and exceeds the dipolar energy scale. Physical implications of an easy-plane anisotropy for a pyrochlore antiferromagnet are considered. We calculate the magnetization curves at T=0 and discuss phase transitions in a magnetic field.

  5. Nondestructive measurement of large objects with electron paramagnetic resonance: Pottery, sculpture, and jewel ornament

    NASA Astrophysics Data System (ADS)

    Ikeya, Motoji; Yamamoto, Masahiro; Ishii, Hiroshi

    1994-12-01

    A cylindicral cavity of TE111 mode with an aperture of 3 mm in diameter has been used to measure the electron paramagnetic resonance (EPR) spectrum of a large object placed over the aperture. EPR spectra of a precious fossil of a dinosaur tooth piece and a fossil bone of the Machikane Alligator were measured nondestructively in addition to a jadeite sculpture, a pearl and turquoise necklace, a large turmaline, a star ruby, and ceramic pottery. Thus, EPR can be a nondestructive tool to detect forgery and to test the authenticity in art as well as to allocate ancient objects in archaeological provenance study.

  6. Bulk Quantum Computation with Pulsed Electron Paramagnetic Resonance: Simulations of Single-Qubit Error Correction Schemes

    NASA Astrophysics Data System (ADS)

    Ishmuratov, I. K.; Baibekov, E. I.

    2015-12-01

    We investigate the possibility to restore transient nutations of electron spin centers embedded in the solid using specific composite pulse sequences developed previously for the application in nuclear magnetic resonance spectroscopy. We treat two types of systematic errors simultaneously: (i) rotation angle errors related to the spatial distribution of microwave field amplitude in the sample volume, and (ii) off-resonance errors related to the spectral distribution of Larmor precession frequencies of the electron spin centers. Our direct simulations of the transient signal in erbium- and chromium-doped CaWO4 crystal samples with and without error corrections show that the application of the selected composite pulse sequences can substantially increase the lifetime of Rabi oscillations. Finally, we discuss the applicability limitations of the studied pulse sequences for the use in solid-state electron paramagnetic resonance spectroscopy.

  7. Study of the effects of hydroxyapatite nanocrystal codoping by pulsed electron paramagnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Gafurov, M. R.; Biktagirov, T. B.; Mamin, G. V.; Shurtakova, D. V.; Klimashina, E. S.; Putlyaev, V. I.; Orlinskii, S. B.

    2016-03-01

    The effect of codoping of hydroxyapatite (HAP) nanocrystals with average sizes of 35 ± 15 nm during "wet" synthesis by CO 3 2- carbonate anions and Mn2+ cations on relaxation characteristics (for the times of electron spin-spin relaxation) of the NO 3 2- nitrate radical anion has been studied. By the example of HAP, it has been demonstrated that the electron paramagnetic resonance (EPR) is an efficient method for studying anion-cation (co)doping of nanoscale particles. It has been shown experimentally and by quantummechanical calculations that simultaneous introduction of several ions can be energetically more favorable than their separate inclusion. Possible codoping models have been proposed, and their energy parameters have been calculated.

  8. Electrochemical electron paramagnetic resonance utilizing loop gap resonators and micro-electrochemical cells.

    PubMed

    Tamski, Mika A; Macpherson, Julie V; Unwin, Patrick R; Newton, Mark E

    2015-09-28

    A miniaturised electrochemical cell design for Electron Paramagnetic Resonance (EPR) studies is reported. The cell incorporates a Loop Gap Resonator (LGR) for EPR investigation of electrochemically generated radicals in aqueous (and other large dielectric loss) samples and achieves accurate potential control for electrochemistry by using micro-wires as working electrodes. The electrochemical behaviour of the cell is analysed with COMSOL finite element models and the EPR sensitivity compared to a commercial TE011 cavity resonator using 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) as a reference. The electrochemical EPR performance is demonstrated using the reduction of methyl viologen as a redox probe in both water and acetonitrile. The data reported herein suggest that sub-micromolar concentrations of radical species can be detected in aqueous samples with accurate potential control, and that subtle solution processes coupled to electron transfer, such as comproportionation reactions, can be studied quantitatively using EPR. PMID:26291423

  9. Electrochemical electron paramagnetic resonance utilizing loop gap resonators and micro-electrochemical cells.

    PubMed

    Tamski, Mika A; Macpherson, Julie V; Unwin, Patrick R; Newton, Mark E

    2015-09-28

    A miniaturised electrochemical cell design for Electron Paramagnetic Resonance (EPR) studies is reported. The cell incorporates a Loop Gap Resonator (LGR) for EPR investigation of electrochemically generated radicals in aqueous (and other large dielectric loss) samples and achieves accurate potential control for electrochemistry by using micro-wires as working electrodes. The electrochemical behaviour of the cell is analysed with COMSOL finite element models and the EPR sensitivity compared to a commercial TE011 cavity resonator using 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) as a reference. The electrochemical EPR performance is demonstrated using the reduction of methyl viologen as a redox probe in both water and acetonitrile. The data reported herein suggest that sub-micromolar concentrations of radical species can be detected in aqueous samples with accurate potential control, and that subtle solution processes coupled to electron transfer, such as comproportionation reactions, can be studied quantitatively using EPR.

  10. Application of electron paramagnetic resonance (EPR) spectroscopy and imaging in drug delivery research - chances and challenges.

    PubMed

    Kempe, Sabine; Metz, Hendrik; Mäder, Karsten

    2010-01-01

    Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful technique to study chemical species with unpaired electrons. Since its discovery in 1944, it has been widely used in a number of research fields such as physics, chemistry, biology and material and food science. This review is focused on its application in drug delivery research. EPR permits the direct measurement of microviscosity and micropolarity inside drug delivery systems (DDS), the detection of microacidity, phase transitions and the characterization of colloidal drug carriers. Additional information about the spatial distribution can be obtained by EPR imaging. The chances and also the challenges of in vitro and in vivo EPR spectroscopy and imaging in the field of drug delivery are discussed.

  11. Electron paramagnetic resonance study of 3,4,5-trimethoxytetraphenyl porphyrinoxovanadium (IV) complex.

    PubMed

    Sharma, Swati; Kumar, Anil; Chand, Prem; Sharma, B K; Sarkar, Sabyasachi

    2006-03-01

    3,4,5-Trimetoxytetraphenylporphyrinoxovanadium (IV) complex (3,4,5-TMVOTPP) was synthesized by a new one pot synthetic method. The complex was studied in the form of single crystal, powder (polycrystalline state), solution and frozen solution (glassy state) by electron paramagnetic resonance (EPR) between room temperature (RT) and liquid nitrogen temperature (LNT). Interestingly a well-resolved octet in the EPR spectrum at RT is observed in the pure paramagnetic state of the crystal. This observation is attributed to a greatly reduced dipolar interaction between paramagnetic vanadyl ions due to the large size of the molecule and the resultant stacking in the crystalline state. The line width of the EPR signals in single crystal at RT is approximately 3.3 mT which is more than the usual line width in diluted paramagnets ( approximately 1.5 mT) and is attributed to some kind of broadening effect akin to slow motion broadening. The line width in solvents is more than the crystal value but decreases appreciably at low temperatures. The decrease in line width at low temperature is attributed to the increase in spin-lattice-relaxation time and quenching of RT broadening motion. Only one octet is observed in the crystal EPR spectra which suggests only one formula unit per unit cell or a parallel/antiparallel ordering of V=O vectors in case the formula units per unit cell are more than one. This result needs verification by a detailed X-ray investigation. The crystalline field symmetry around the V(4+) metal ion is revealed to be axial by the observed angular dependence of the EPR spectrum and the powder EPR spectrum. No super hyperfine splitting of the hyperfine lines of the vanadyl ion is observed in solid state or diluted glass up to liquid nitrogen temperature. This suggests an expected weak in-plane pi-bonding with ligands. The spin Hamiltonian parameters for vanadyl ion in crystal, powder, diluted solutions and frozen glasses are evaluated and discussed.

  12. Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins.

    PubMed Central

    Steinhoff, H J; Hubbell, W L

    1996-01-01

    We present a method to simulate electron paramagnetic resonance spectra of spin-labeled proteins that explicitly includes the protein structure in the vicinity of the attached spin label. The method is applied to a spin-labeled polyleucine alpha-helix trimer. From short (6 ns) stochastic dynamics simulations of this trimer, an effective potential energy function is calculated. Interaction with secondary and tertiary structures determine the reorientational motion of the spin label side chains. After reduction to a single particle problem, long stochastic dynamic trajectories (700 ns) of the spin label side-chain reorientation are calculated from which the Lamor frequency trajectory and subsequently the electron paramagnetic resonance spectrum is determined. The simulated spectra agree well with experimental electron paramagnetic resonance spectra of bacteriorhodopsin mutants with spin labels in similar secondary and tertiary environments as in the polyleucine. Images FIGURE 1 PMID:8889196

  13. Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol-capped gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Guerrero, E.; Muñoz-Márquez, M. A.; Fernández, A.; Crespo, P.; Hernando, A.; Lucena, R.; Conesa, J. C.

    2010-03-01

    In the last years, the number of studies performed by wholly independent research groups that confirm the permanent magnetism, first observed in our research lab, for thiol-capped Au nanoparticles (NPs) has rapidly increased. Throughout the years, the initial magnetometry studies have been completed with element-specific magnetization measurements based on, for example, the x-ray magnetic circular dichroism technique that have allowed the identification of gold as the magnetic moment carrier. In the research work here presented, we have focused our efforts in the evaluation of the magnetic behavior and iron impurities content in the synthesized samples by means of superconducting quantum interference device magnetometry and electron paramagnetic resonance spectrometry, respectively. As a result, hysteresis cycles typical of a ferromagnetic material have been measured from nominally iron-free gold NPs protected with thiol, phosphine, and chlorine ligands. It is also observed that for samples containing both, capped gold NPs and highly diluted iron concentrations, the magnetic behavior of the NPs is not affected by the presence of paramagnetic iron impurities. The hysteresis cycles reported for phosphine-chlorine-capped gold NPs confirm that the magnetic behavior is not exclusively for the metal-thiol system.

  14. Electron paramagnetic resonance (EPR) spectroscopy characterization of wheat grains from plants of different water stress tolerance.

    PubMed

    Łabanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bednarska, Elżbieta; Dłubacz, Aleksandra; Hartikainen, Helina

    2012-09-01

    Grains of five genotypes of wheat (four Polish and one Finnish), differing in their tolerance to drought stress were chosen for this investigation. Electron paramagnetic resonance spectroscopy allowed observation of transition metal ions (Mn, Fe, Cu) and different types of stable radicals, including semiquinone centers, present in seed coats, as well as several types of carbohydrate radicals found mainly in the inner parts of grains. The content of paramagnetic metal centers was higher in sensitive genotypes (Radunia, Raweta) than in tolerant ones (Parabola, Nawra), whereas the Finnish genotype (Manu) exhibited intermediate amounts. Similarly, the concentrations of both types of radicals, carbohydrates and semiquinone were significantly higher in the grains originating from more sensitive wheat genotypes. The nature of carbohydrate radicals and their concentrations were confronted with the kinds and amounts of sugars found by the biochemical analyses and microscopy observations. It is suggested that some long lived radicals (semiquinone and starch radicals) occurring in grains could be indicators of stress resistance of wheat plants.

  15. Identification of the deep level defects in AlN single crystals by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Soltamov, V. A.; Ilyin, I. V.; Soltamova, A. A.; Mokhov, E. N.; Baranov, P. G.

    2010-06-01

    Electron paramagnetic resonance (EPR) at 9.4 and 35 GHz were studied on two types of AlN single crystals, grown by a sublimation sandwich method. These investigations revealed the presence of transition metals impurities in the first sample: Fe2+ (S =2) and some paramagnetic centers with S =3/2, we suggest Cr3+ or Ni3+ as the possible candidates. The EPR spectra of Fe2+ were observed up to the room temperature. After sample illumination at 5 K with light (wavelength shorter 700 nm) strong EPR signal with a g factor of shallow donors (SDs) and slightly anisotropic linewidth appears. This light-induced EPR signal, once excited at low temperature, still persists after switching off the light and is about constant up to 30 K then it drops quickly. SDs show a negative correlation energy U and oxygen in the N position (ON) is the most probable model. EPR spectra of deep-donor center which was assumed to be the nitrogen vacancy VN have been observed in the second sample. The x-ray irradiation leads to considerable enhancement of deep donor's (VN) signals intensity. The annealing resulted in recombination thermoluminescence and the deep donor (VN) energy level was estimated to be about 0.5 eV. The models of shallow (ON) and deep (VN) donor centers were supported by comprehensive hyperfine structure analysis.

  16. Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications.

    PubMed

    Gallez, Bernard; Baudelet, Christine; Jordan, Bénédicte F

    2004-08-01

    This review paper attempts to provide an overview of the principles and techniques that are often termed electron paramagnetic resonance (EPR) oximetry. The paper discusses the potential of such methods and illustrates they have been successfully applied to measure oxygen tension, an essential parameter of the tumor microenvironment. To help the reader understand the motivation for carrying out these measurements, the importance of tumor hypoxia is first discussed: the basic issues of why a tumor is hypoxic, why these hypoxic microenvironments promote processes driving malignant progression and why hypoxia dramatically influences the response of tumors to cytotoxic treatments will be explained. The different methods that have been used to estimate the oxygenation in tumors will be reviewed. To introduce the basics of EPR oximetry, the specificity of in vivo EPR will be discussed by comparing this technique with NMR and MRI. The different types of paramagnetic oxygen sensors will be presented, as well as the methods for recording the information (EPR spectroscopy, EPR imaging, dynamic nuclear polarization). Several applications of EPR for characterizing tumor oxygenation will be illustrated, with a special emphasis on pharmacological interventions that modulate the tumor microenvironment. Finally, the challenges for transposing the method into the clinic will also be discussed. PMID:15366026

  17. Time-resolved electron paramagnetic resonance of radical pair intermediates in cryptochromes

    NASA Astrophysics Data System (ADS)

    Biskup, Till

    2013-12-01

    Electron transfer plays a key role in many biological systems, including core complexes of photosynthesis and respiration. As this involves unpaired electron spins, electron paramagnetic resonance (EPR) is the method of choice to investigate such processes. Systems that show photo-induced charge separation and electron transfer are of particular interest, as here the processes can easily be synchronised to the experiment and therefore followed directly over its time course. One particular class of proteins, the cryptochromes, showing charge separation and in turn spin-correlated radical pairs upon excitation with blue light, have been investigated by time-resolved EPR spectroscopy in great detail and the results obtained so far are summarised in this contribution. Highlights include the first observation of spin-correlated radical pairs in these proteins, a fact with great impact on the proposed role as key part of a magnetic compass of migratory birds, as well as the assignment of the radical-pair partners and the unravelling of alternative and unexpected electron transfer pathways in these proteins, giving new insights into aspects of biological electron transfer itself.

  18. Improvement of (31)P NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples.

    PubMed

    Ding, Shiming; Xu, Di; Li, Bin; Fan, Chengxin; Zhang, Chaosheng

    2010-04-01

    Solution (31)P nuclear magnetic resonance (NMR) spectroscopy is currently the main method for the characterization of phosphorus (P) forms in environment samples. However, identification and quantification of P compounds may be hampered by poor resolution of spectra caused by paramagnetic Fe and Mn. In this study, a novel technique was developed to improve spectral resolution by removing paramagnetic Fe and Mn from alkaline extracts via 8-hydroxyquinoline (8-HOQ) precipitation. Batch experiments showed that both Fe and Mn were effectively removed by the precipitation at pH 9.0, with the removal efficiencies of 83-91% for Fe and 67-78% for Mn from the extracts of five different environmental samples, while little effect was found on concentration of total P. The (31)P NMR analysis of a model P solution showed that addition of 8-HOQ and its precipitation with metal ions did not alter P forms. Further analyses of the five extracts with (31)P NMR spectroscopy demonstrated that the 8-HOQ precipitation was an ideal method compared with the present postextraction techniques, such as bicarbonate dithionate (BD), EDTA and Chelex-100 treatments, by improving spectral resolution to a large extent with no detrimental effects on P forms. PMID:20201571

  19. Location of Trapped Electron Centers in the Bulk of Epitaxial MgO(001) Films Grown on Mo(001) Using in situ W-band Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Cornu, Damien; Rocker, Jan; Gonchar, Anastasia; Risse, Thomas; Freund, Hans-Joachim

    2016-07-01

    We present the first in situ W-band (94-GHz) electron paramagnetic resonance (EPR) study of a trapped electron center in thin MgO(001) films. The improved resolution of the high-field EPR experiments proves that the signal originate from a well-defined species present in the bulk of the films, whose projection of the principal g-tensor components onto the (001) plane are oriented along the [110] direction of the MgO lattice. Based on a comparison between the structural properties of the films, knowledge of the ability of bulk defects to trap electrons, and the properties of the EPR signal, it is possible to propose that the paramagnetic species are located at the origin of a screw dislocation in the bulk of the film.

  20. Electron Paramagnetic Resonance and DTA Investigation of Cr3+ in Tris(guanidinium) Hexafluoroaluminate Single Crystals

    NASA Astrophysics Data System (ADS)

    Lakshmi Kasturi, T.; Krishnan, V. G.

    1998-05-01

    Electron Paramagnetic Resonance (EPR) studies of Cr 3+ in single crystals of tris(guanidinium) hexafluoroaluminate, [C(NH2)3]3 AlF6 , have been carried out in the X-band region. A temperature dependent study of the zero-field splitting parameter D in the range 77-398 K shows the presence of a phase transition, which is supported by Differential Thermal Analysis. In addition, 19F superhyperfine struc-ture has been observed in the 9.3% naturally abundant 53Cr isotope hyperfine structure. D shows a large decrease with increasing temperature. The phase transition brings about a chemical inequivalence in the two chemically equivalent but magnetically inequivalent room temperature (CrF6)3- species. Compar-ison is made with the alums AlCl3 • 6H20, as well as other guanidinium aluminum salts.

  1. Nanostructured lipid carriers as nitroxide depot system measured by electron paramagnetic resonance spectroscopy.

    PubMed

    Haag, S F; Chen, M; Peters, D; Keck, C M; Taskoparan, B; Fahr, A; Teutloff, C; Bittl, R; Lademann, J; Schäfer-Korting, M; Meinke, M C

    2011-12-15

    Various nanometer scaled transport systems are used in pharmaceutics and cosmetics to increase penetration or storage of actives. Nanostructured lipid carriers (NLCs) are efficient drug delivery systems for dermatological applications. Electron paramagnetic resonance (EPR) spectroscopy was used for the determination of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) distribution within the carrier and to investigate the dynamics of skin penetration. Results of ex vivo penetration of porcine skin and in vivo data - forearm of human volunteers - are compared and discussed to previously obtained results with invasomes under comparable conditions. W-band measurements show 35% of TEMPO associated with the lipid compartments of the NLC. Application of TEMPO loaded NLC to skin ex vivo increases the observation time by 12min showing a stabilisation of the nitroxide radical. Moreover, stabilisation is also seen with data generated in vivo. Thus, same as invasomes NLCs are a suitable slow release depot system. PMID:22001533

  2. Effect of surfactants on human stratum corneum: electron paramagnetic resonance study.

    PubMed

    Mizushima, J; Kawasaki, Y; Tabohashi, T; Kitano, T; Sakamoto, K; Kawashima, M; Cooke, R; Maibach, H I

    2000-03-20

    Electron paramagnetic resonance (EPR) spectra of nitroxide spin probes are useful for studying biological membranes and chemical-membrane interactions. Recently, we established a stripping method to remove stratum corneum (SC) for this purpose. To assess this stripping method with EPR and correlate with standard methods, we quantified the irritant effects of three types of surfactants by measurements of visual score and transepidermal water loss (TEWL), SC hydration and chromametry and studied EPR spectra measurements of surfactant-treated cadaver SC (C-SC) and stripped off SC (S-SC) on patch tested sites. 5-Doxyl stearic acid was the spin label. The order parameter S obtained from the spectra of S-SC correlated with those of C-SC and TEWL values. The results suggest that this method is capable of evaluating the fluidity of SC and correlates with the above bioengineering parameters.

  3. Radical scavenging of white tea and its flavonoid constituents by electron paramagnetic resonance (EPR) spectroscopy.

    PubMed

    Azman, Nurul A M; Peiró, Sara; Fajarí, Lluís; Julià, Luis; Almajano, Maria Pilar

    2014-06-25

    White tea (WT) presents high levels of catechins, which are known to reduce oxidative stress. WT is the least processed tea, unfermented and prepared only from very young tea leaves. The subject of this paper is the use of the spin trap method and electron paramagnetic resonance (EPR) spectroscopy as the analytical tool to measure, for the first time, the radical scavenging activity of WT and its major catechin components, epicatechin (EC), epicatechin-3-gallate (ECG), epigallocatechin (EGC), and epigallocatechin-3-gallate (EGCG), against the methoxy radical, using ferulic acid as antioxidant pattern. The antioxidant activity has been measured by the decrease of the intensity of the spectral bands of the adduct DMPO-OCH3 in the EPR with the amount of antioxidant in the reactive mixture. Tea leaves and buds were extracted with waterless methanol. It has been proved that tea compounds with more antiradical activity against methoxy radical are those with the gallate group, EGCG and ECG. PMID:24885813

  4. Optically detected electron paramagnetic resonance by microwave modulated magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Börger, Birgit; Bingham, Stephen J.; Gutschank, Jörg; Schweika, Marc Oliver; Suter, Dieter; Thomson, Andrew J.

    1999-11-01

    Electron paramagnetic resonance (EPR) can be detected optically, with a laser beam propagating perpendicular to the static magnetic field. As in conventional EPR, excitation uses a resonant microwave field. The detection process can be interpreted as coherent Raman scattering or as a modulation of the laser beam by the circular dichroism of the sample oscillating at the microwave frequency. The latter model suggests that the signal should show the same dependence on the optical wavelength as the MCD signal. We check this for two different samples [cytochrome c-551, a metalloprotein, and ruby (Cr3+:Al2O3)]. In both cases, the observed wavelength dependence is almost identical to that of the MCD signal. A quantitative estimate of the amplitude of the optically detected EPR signal from the MCD also shows good agreement with the experimental results.

  5. Electron paramagnetic resonance spectroscopy of fast neutron-generated defects in GaAs

    NASA Astrophysics Data System (ADS)

    Goltzene, A.; Meyer, B.; Schwab, C.; Greenbaum, S. G.; Wagner, R. J.; Kennedy, T. A.

    1984-12-01

    A series of fast neutron-irradiated GaAs samples (neutron fluence range of 2×1015-2.5×1017 cm-2) has been investigated by electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra at 9 GHz exhibit a broad (˜1 kG) Lorentzian singlet at g≊2.09 superimposed on the AsGa quadruplet. The singlet intensity scales linearly with neutron fluence as does that of the quadruplet. The presence of this new defect has not been reported in as-grown GaAs known to have large concentrations of AsGa defects. EPR measurements at 35, 159, and 337 GHz indicate that the singlet linewidth increases with the microwave frequency.

  6. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy: Spin-Trapping with Iron-Dithiocarbamates.

    PubMed

    Maia, Luisa B; Moura, José J G

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is the ideal methodology to identify radicals (detection and characterization of molecular structure) and to study their kinetics, in both simple and complex biological systems. The very low concentration and short life-time of NO and of many other radicals do not favor its direct detection and spin-traps are needed to produce a new and persistent radical that can be subsequently detected by EPR spectroscopy.In this chapter, we present the basic concepts of EPR spectroscopy and of some spin-trapping methodologies to study NO. The "strengths and weaknesses" of iron-dithiocarbamates utilization, the NO traps of choice for the authors, are thoroughly discussed and a detailed description of the method to quantify the NO formation by molybdoenzymes is provided. PMID:27094413

  7. Electron paramagnetic resonance studies of the tungsten-containing formate dehydrogenase from Clostridium thermoaceticum.

    PubMed

    Deaton, J C; Solomon, E I; Watt, G D; Wetherbee, P J; Durfor, C N

    1987-12-16

    The redox centers in the tungsten-containing formate dehydrogenase from Clostridium thermoaceticum were examined by potentiometric titration and electron paramagnetic resonance spectroscopy. At low temperature two overlapping iron-sulfur signals which correlated with enzymatic activity were observed with formal potentials near -400 mV vs. SHE. Based on their temperature dependences, one signal is assigned to a reduced Fe2S2 cluster and one to a reduced Fe4S4 cluster. Quantitation of signal intensity suggests two Fe2S2 and two Fe4S4 clusters per formate dehydrogenase molecule. Another signal (g = 2.101, 1.980, 1.950) present in low concentrations at more negative potentials was observable up to 200 degrees K and is not attributed to any iron-sulfur cluster. The possible origin of this signal is analyzed using ligand field theory, and the redox behavior is considered with respect to possible ligation at the active site. PMID:2827642

  8. Effects of genistein and daidzein on erythrocyte membrane fluidity: an electron paramagnetic resonance study.

    PubMed

    Ajdzanović, Vladimir; Spasojević, Ivan; Filipović, Branko; Sosić-Jurjević, Branka; Sekulić, Milka; Milosević, Verica

    2010-04-01

    The maintenance of erythrocyte membrane fluidity at the physiological level is an important factor affecting the ability of erythrocytes to pass through blood vessels of small luminal diameter. Genistein and daidzein, which are used as alternative therapeutics in cardiovascular conditions, can be incorporated into the cell membrane and change its fluidity. The aim of this study was to examine the effects of genistein and daidzein on erythrocyte membrane fluidity at graded depths. We used electron paramagnetic resonance (EPR) spectroscopy and fatty acid spin probes (5-DS and 12-DS) where EPR spectra were dependent on fluidity. The results showed that genistein significantly (p < 0.05) decreased erythrocyte membrane fluidity near the hydrophilic surface, while daidzein significantly (p < 0.05) increased the same parameter in deeper regions of the membrane. These data suggest that the deep fluidizing effects of daidzein on erythrocyte membranes make it a better therapeutic choice than genistein in some cardiovascular conditions.

  9. The negative effect of soy extract on erythrocyte membrane fluidity: an electron paramagnetic resonance study.

    PubMed

    Ajdžanović, Vladimir; Spasojević, Ivan; Sošić-Jurjević, Branka; Filipović, Branko; Trifunović, Svetlana; Sekulić, Milka; Milošević, Verica

    2011-02-01

    A decrease of erythrocyte membrane fluidity can contribute to the pathophysiology of hypertension. Soy products, which are used as alternative therapeutics in some cardiovascular conditions, contain various isoflavones (genistein, daidzein, and their glucosides, genistin and daidzin), which can incorporate cellular membrane and change its fluidity. The aim of this study was to examine the effects of soy extract (which generally corresponds to the soy products of isoflavone composition) on erythrocyte membrane fluidity at graded depths. We used electron paramagnetic resonance spectroscopy and fatty acid spin probes (5-DS and 12-DS), the spectra of which are dependent on membrane fluidity. After being treated with soy extract, erythrocytes showed a significant (P = 0.016) decrease of membrane fluidity near the hydrophilic surface, while there were no significant changes of fluidity in deeper hydrophobic membrane regions. These results suggest that soy products containing high levels of genistein and isoflavone glucosides may not be suitable for use in hypertension because they decrease erythrocyte membrane fluidity.

  10. A novel probe head for high-field, high-frequency electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Annino, G.; Cassettari, M.; Longo, I.; Martinelli, M.; Van Bentum, P. J. M.; Van der Horst, E.

    1999-03-01

    A probe head especially useful for electron paramagnetic resonance (EPR) spectrometers working at high field—high frequency is presented. The probe head is based on the whispering gallery mode dielectric resonators that proved very effective in the ultrahigh frequency range. The excitation network uses a properly shaped dielectric waveguide sharing its external field pattern with the field of the resonators. Very simple resonators made with polyethylene in both single and doubly stacked disk configurations are used. The experimental characterization by a submillimeter network analyzer shows for the resonances studied in a wide range of frequencies up to ≈400 GHz high loaded merit factor QL values and good coupling factors. Resonators also maintain their general characteristics when large quantities of low loss samples for EPR measurements are properly inserted. Preliminary EPR spectra of diphenylpicrylhyldrazyl at 7 and 10 T obtained with the novel apparatus are finally presented.

  11. Study of free radicals in gamma irradiated cellulose of cultural heritage materials using Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    Kodama, Yasko; Rodrigues, Orlando, Jr.; Garcia, Rafael Henrique Lazzari; Santos, Paulo de Souza; Vasquez, Pablo A. S.

    2016-07-01

    Main subject of this article was to study room temperature stable radicals in Co-60 gamma irradiated contemporary paper using Electron Paramagnetic Resonance spectrometer (EPR). XRD was used to study the effect of ionizing radiation on the morphology of book paper. SEM images presented regions with cellulose fibers and regions with particles agglomeration on the cellulose fibers. Those agglomerations were rich in calcium, observed by EDS. XRD analysis confirmed presence of calcium carbonate diffraction peaks. The main objective of this study was to propose a method using conventional kinetics chemical reactions for the observed radical formed by ionizing radiation. Therefore, further analyses were made to study the half-life and the kinetics of the free radical created. This method can be suitably applied to study radicals on cultural heritage objects.

  12. Electron paramagnetic resonance spectroscopy in radiation research: Current status and perspectives

    PubMed Central

    Rana, Sudha; Chawla, Raman; Kumar, Raj; Singh, Shefali; Zheleva, Antoaneta; Dimitrova, Yanka; Gadjeva, Veselina; Arora, Rajesh; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Exposure to radiation leads to a number of health-related malfunctions. Ionizing radiation is more harmful than non-ionizing radiation, as it causes both direct and indirect effects. Irradiation with ionizing radiation results in free radical-induced oxidative stress. Free radical-mediated oxidative stress has been implicated in a plethora of diseased states, including cancer, arthritis, aging, Parkinson's disease, and so on. Electron Paramagnetic Resonance (EPR) spectroscopy has various applications to measure free radicals, in radiation research. Free radicals disintegrate immediately in aqueous environment. Free radicals can be detected indirectly by the EPR spin trapping technique in which these forms stabilize the radical adduct and produce characteristic EPR spectra for specific radicals. Ionizing radiation-induced free radicals in calcified tissues, for example, teeth, bone, and fingernail, can be detected directly by EPR spectroscopy, due to their extended stability. Various applications of EPR in radiation research studies are discussed in this review. PMID:21814437

  13. New experimental limit on the electric dipole moment of the electron in a paramagnetic insulator

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Liu, C.-Y.; Lamoreaux, S. K.; Visser, G.; Kunkler, B.; Matlashov, A. N.; Long, J. C.; Reddy, T. G.

    2015-05-01

    We report results of an experimental search for the intrinsic electric dipole moment of the electron (eEDM) using a solid-state technique. The experiment employs a paramagnetic, insulating gadolinium gallium garnet (GGG) that has a large magnetic response at low temperatures. The presence of the eEDM would lead to a small but nonzero magnetization as the GGG sample is subjected to a strong electric field. We search for the resulting Stark-induced magnetization with a sensitive magnetometer. Recent progress on the suppression of several sources of background allows the experiment to run free of spurious signals at the level of the statistical uncertainties. We report our first limit on the eEDM of (-5.57 ±7.98 ±0.12 )×10-25 e cm with 5 days of data averaging.

  14. Imaging of Nitroxides at 250 MHz using Rapid-Scan Electron Paramagnetic Resonance

    PubMed Central

    Biller, Joshua R.; Tseitlin, Mark; Quine, Richard W.; Rinard, George A.; Weismiller, Hilary A.; Elajaili, Hanan; Rosen, Gerald M.; Kao, Joseph P. Y.; Eaton, Sandra S.; Eaton, Gareth R.

    2014-01-01

    Projections for 2D spectral-spatial images were obtained by continuous wave and rapid-scan electron paramagnetic resonance using a bimodal cross-loop resonator at 251 MHz. The phantom consisted of three 4 mm tubes containing different 15N,2H-substituted nitroxides. Rapid-scan and continuous wave images were obtained with 5 min total acquisition times. For comparison, images also were obtained with 29 s acquisition time for rapid scan and 15 min for continuous wave. Relative to continuous wave projections obtained for the same data acquisition time, rapid-scan projections had significantly less low-frequency noise and substantially higher signal-to-noise at higher gradients. Because of the improved image quality for the same data acquisition time, linewidths could be determined more accurately from the rapid-scan images than from the continuous wave images. PMID:24650729

  15. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    PubMed Central

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and fluorescence results were in agreement and both paralleled enzymatic activity of papain with respect to both the variation in pH and denaturation. These results strongly suggest that SL-PMB and Acrylodan labels can be used to characterize the physical state of the active site of the enzyme. PMID:1657229

  16. Searching for biosignatures using electron paramagnetic resonance (EPR) analysis of manganese oxides.

    PubMed

    Kim, Soon Sam; Bargar, John R; Nealson, Kenneth H; Flood, Beverly E; Kirschvink, Joseph L; Raub, Timothy D; Tebo, Bradley M; Villalobos, Mario

    2011-10-01

    Manganese oxide (Mn oxide) minerals from bacterial sources produce electron paramagnetic resonance (EPR) spectral signatures that are mostly distinct from those of synthetic simulants and abiogenic mineral Mn oxides. Biogenic Mn oxides exhibit only narrow EPR spectral linewidths (∼500 G), whereas abiogenic Mn oxides produce spectral linewidths that are 2-6 times broader and range from 1200 to 3000 G. This distinction is consistent with X-ray structural observations that biogenic Mn oxides have abundant layer site vacancies and edge terminations and are mostly of single ionic species [i.e., Mn(IV)], all of which favor narrow EPR linewidths. In contrast, abiogenic Mn oxides have fewer lattice vacancies, larger particle sizes, and mixed ionic species [Mn(III) and Mn(IV)], which lead to the broader linewidths. These properties could be utilized in the search for extraterrestrial physicochemical biosignatures, for example, on Mars missions that include a miniature version of an EPR spectrometer.

  17. A new pulse width reduction technique for pulsed electron paramagnetic resonance spectroscopy.

    PubMed

    Ohba, Yasunori; Nakazawa, Shigeaki; Kazama, Shunji; Mizuta, Yukio

    2008-03-01

    We present a new technique for a microwave pulse modulator that generates a short microwave pulse of approximately 1ns for use in an electron paramagnetic resonance (EPR) spectrometer. A quadruple-frequency multiplier that generates a signal of 16-20GHz from an input of 4-5GHz was employed to reduce the rise and fall times of the pulse prepared by a PIN diode switch. We examined the transient response characteristics of a commercial frequency multiplier and found that the device can function as a multiplier for pulsed signal even though it was designed for continuous wave operation. We applied the technique to a Ku band pulsed EPR spectrometer and successfully observed a spin echo signal with a broad excitation bandwidth of approximately 1.6mT using 80 degrees pulses of 1.5ns. PMID:18248828

  18. Age of an Indonesian Fossil Tooth Determined by Electron Paramagnetic Resonance

    SciTech Connect

    Bogard, JS

    2004-04-07

    The first fossil hominid tooth recovered during 1999 excavations from the Cisanca River region in West Java, Indonesia, was associated with a series of bovid teeth from a single individual that was recovered 190 cm beneath the hominid tooth. The age of the fossil bovid teeth was determined using electron paramagnetic resonance (EPR) analysis as part of an effort to bracket the age of the hominid tooth. The EPR-derived age of the bovid teeth is (5.16 {+-} 2.01) x 10{sup 5} years. However, the age estimate reported here is likely an underestimate of the actual age of deposition since evidence of heating was detected in the EPR spectra of the bovid teeth, and the heating may have caused a decrease in the intensity of EPR components on which the age calculation is based.

  19. Characterization of radiation-induced damage in high performance polymers by electron paramagnetic resonance imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1992-01-01

    The potential for long-term human activity beyond the Earth's protective magnetosphere is limited in part by the lack of detailed information on the effectiveness and performance of existing structural materials to shield the crew and spacecraft from highly penetrating space radiations. The two radiations of greatest concern are high energy protons emitted during solar flares and galactic cosmic rays which are energetic ions ranging from protons to highly oxidized iron. Although the interactions of such high-energy radiations with matter are not completely understood at this time, the effects of the incident radiation are clearly expected to include the formation of paramagnetic spin centers via ionization and bond-scission reactions in the molecular matrices of structural materials. Since this type of radiation damage is readily characterized by Electron Paramagnetic Resonance (EPR) spectroscopy, the NASA Langley Research Center EPR system was repaired and brought on-line during the 1991 ASEE term. A major goal of the 1992 ASEE term was to adapt the existing core of the LaRC EPR system to meet the requirements for EPR Imaging--a powerful new technique which provides detailed information on the internal structure of materials by mapping the spatial distribution of unpaired spin density in bulk media. Major impetus for this adaptation arises from the fact that information derived from EPRI complements other methods such as scanning electron microscopy which primarily characterize surface phenomena. The modification of the EPR system has been initiated by the construction of specially designed, counterwound Helmholtz coils which will be mounted on the main EPR electromagnet. The specifications of the coils have been set to achieve a static linear magnetic field gradient of 10 gauss/mm/amp along the principal (Z) axis of the Zeeman field. Construction is also in progress of a paramagnetic standard in which the spin distribution is known in all three dimensions. This

  20. The effect of implanting boron on the optical absorption and electron paramagnetic resonance spectra of silica

    NASA Astrophysics Data System (ADS)

    Magruder, R. H.; Stesmans, A.; Weeks, R. A.; Weller, R. A.

    2008-09-01

    Silica samples (type III, Corning 7940) were implanted with B using multiple energies to produce a layer ˜600 nm thick in which the concentration of B ranged from 0.034 to 2.04 at. %. Optical absorption spectra were measured from 1.8 to 6.5 eV. Electron paramagnetic resonance (EPR) measurements were generally made at ˜20.3 and 33 GHz for sample temperatures ranging from 77 to 100 K. Based on the EPR spectra three types of defects, namely, Eγ', the E'-type 73 G split doublet (E73'), and the peroxyradical (POR) were identified. No oxygen-associated hole centers (OHCs) nor specific B-associated paramagnetic defects were detected, not even at the largest B concentration of 2.04 at. %. Unlike previous assignments, there was no correlation between the 4.83 eV optical absorption band and the observed PORs. From these results, we infer that in addition to POR, there is at least one additional Si-related state absorbing in the 4.8-4.9 eV range that is likely diamagnetic. The 5.85 eV optical absorption band is found to be due to the Eγ' and E73' centers, with, in average, quite similar oscillator strengths inferred as before. Both the optical absorption and the electron spin resonance data can be satisfactorily explained without the need for specific B-associated defect site (s). As no OHCs are detected by ESR, these do not seem to make a detectable contribution to the optical spectra.

  1. A Spectrometer for Dynamic Nuclear Polarization and Electron Paramagnetic Resonance at High Frequencies

    NASA Astrophysics Data System (ADS)

    Becerra, L. R.; Gerfen, G. J.; Bellew, B. F.; Bryant, J. A.; Hall, D. A.; Inati, S. J.; Weber, R. T.; Un, S.; Prisner, T. F.; McDermott, A. E.; Fishbein, K. W.; Kreischer, K. E.; Temkin, R. J.; Singel, D. J.; Griffin, R. G.

    A high-frequency dynamic nuclear polarization (DNP)/electron paramagnetic resonance spectrometer operating at 211 MHz for 1H and 140 GHz for g= 2 paramagnetic centers (5 T static field) is described. The salient feature of the instrument is a cyclotron-resonance maser (gyrotron) which generates high-frequency, high-power microwave radiation. This gyrotron, which under conventional operation produces millisecond pulses at kilowatt powers, has been adapted to operate at ˜100 W for 1 to 20 s pulses and in the continuous wave mode at the 10 W power level. Experiments combining DNP with magic-angle spinning (MAS) nuclear magnetic resonance were performed on samples consisting of 2% by weight of the free radical BDPA doped into polystyrene. Room-temperature DNP enhancement factors of 10 for 1H and 40 for 13C were obtained in the NMR-MAS spectra. Static DNP NMR has also been performed on samples containing nitroxides dissolved in water:glycerol solvent mixtures. Enhancements of approximately 200 have been obtained for low-temperature (14 K) 1H NMR. A pulsed/CW EPR spectrometer operating at 140 GHz has been developed in conjunction with the DNP spectrometer. Microwave sources include Gunn-diode oscillators which provide low-power (20 mW) radiation, and the gyrotron, which has been used to deliver higher power levels in pulsed experiments. Results using this spectrometer are presented for continuous-wave and echo-detected EPR, electron spin-echo-envelope modulation (ESEEM), and Fourier-transform EPR.

  2. Zero-field signal in the electron paramagnetic resonance spectrum of Mn{sup +2} in silicate glasses

    SciTech Connect

    Rakhimov, Rakhim R.; Jones, David E.

    2000-07-22

    A 9.4-9.8 GHz electron paramagnetic resonance (EPR) study of Mn{sup +2}-doped Na{sub 2}O-CaO-MgO-SiO{sub 2} glasses has revealed a nonresonant microwave magneto-absorption near zero magnetic field in addition to normal paramagnetic absorption due to Mn{sup +2} ions, electron spin S=5/2. The low-field response has an opposite phase relative to paramagnetic signal and is independent of the mutual orientation of the magnetic field of the microwave H{sub 1} and static magnetic field H. In contrast, the paramagnetic signal is different for perpendicular H{sub 1}(perpendicular sign)H and parallel H{sub 1}(parallel sign)H polarization of the microwave field, which is attributed to enhancement of forbidden magnetic dipolar transitions and suppression of the allowed transitions for parallel polarization. The low-field response is described in terms of microwave dielectric losses that derive from the magneto-induced charge migration in the first coordination sphere of Mn{sup +2}. As opposed to the spin-polarized tunneling that was described in ferromagnets between different valence forms of Mn, the observed effect is due to spin-dependent tunneling that occurs in the vicinity of Mn{sup +2} in a diluted paramagnetic system. (c) 2000 American Institute of Physics.

  3. Hyperfine interactions of Ho3+ ions in KY3F10: Electron paramagnetic resonance and optical spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Pytalev, D. S.; Chukalina, E. P.; Popova, M. N.; Shakurov, G. S.; Malkin, B. Z.; Korableva, S. L.

    2012-09-01

    We use high-frequency electron paramagnetic resonance (EPR) and high-resolution optical Fourier spectroscopies to characterize hyperfine interactions of the impurity Ho3+ ions in KY3F10 crystals. Well-resolved hyperfine structure is observed in the EPR spectra for several transitions within the ground 5I8 multiplet of the Ho3+ ion and in the optical spectra for many lines in the infrared and visible ranges. The observed hyperfine patterns and field dependences of the resonance frequencies in the EPR spectra are well reproduced by calculations based on the crystal field (CF) theory. This favors reliability of calculated energies and wave functions of the electron-nuclear states within the ground and excited levels of Ho3+ in KY3F10. Finally, the dc magnetic susceptibility of the concentrated KHo3F10 crystal taken from literature is successfully modeled in the temperature range 0.01-20 K, using CF parameters of the impurity Ho3+ ions in KY3F10.

  4. Analyzing Xanthine Dehydrogenase Iron-Sulfur Clusters Using Electron Paramagnetic Resonance Spectroscopy

    SciTech Connect

    Hodson, R.

    2004-02-05

    Xanthine dehydrogenase is a metalloenzyme that is present in a variety of eukaryotic and prokaryotic organisms. The oxidation of the xanthine occurs at the molybdenum site, and the catalytic cycle is completed by electron transfer to the iron-sulfur (Fe/S) clusters and finally the flavin, where they are accepted by nicotinamide adenine dinucleotide (NAD). Since the site giving rise to the Fe/S I electron paramagnetic resonance (EPR) signal is thought to be the initial recipient of the electrons from the Mo, we wish to understand which EPR signal is associated with which Fe/S cluster in the structure in order to develop an understanding of the electron flow within the molecule. Samples of xanthine dehydrogenase wild-type and mutant forms were analyzed with EPR spectroscopy techniques at low and high temperatures. The results showed an altered Fe/S I signal along with an unaltered Fe/S II signal. The converted Cysteine, in the mutant, did affect the Fe/S cluster immediately adjacent to it. Therefore, the Fe/S I signal arises from the Fe/S cluster closest to the Mo and immediately adjacent to the mutated amino acid, and the Fe/S II signal must arise from the more distant Fe/S cluster.

  5. Assessment of melanoma extent and melanoma metastases invasion using electron paramagnetic resonance and bioluminescence imaging.

    PubMed

    Godechal, Quentin; Defresne, Florence; Danhier, Pierre; Leveque, Philippe; Porporato, Paolo Ettore; Sonveaux, Pierre; Baurain, Jean-François; Feron, Olivier; Gallez, Bernard

    2011-01-01

    The clinical outcome of melanoma depends on the local and distant spread of the disease at the time of diagnosis, as the estimated 5-year survival rate is about 100% for superficial melanoma diagnosed early, but less than 10% for melanoma that has disseminated to major organs such as lungs. There is a crucial need for new effective methods for the detection and the characterization of melanomas. In the pre-clinical setting, this will help to understand the factors that contribute to the malignancy while the transfer into the clinic will contribute to an early effective treatment of patients. Melanoma lesions can be detected by electron paramagnetic resonance (EPR) using paramagnetic properties of melanin pigments. As part of the development of EPR imaging to characterize melanomas, we evaluated in the present study the usefulness of EPR to report on the extension of lung metastases by comparing the method with bioluminescence imaging using B16 melanoma cells expressing luciferase. B16 melanoma cells were injected subcutaneously or intravenously in C57/BL6 mice. The primary tumors or the lung colonization by melanoma cells was measured after several delay periods to obtain several degrees of invasiveness. The animals were measured in-vivo with bioluminescence after i.v. injection of luciferin. The primary tumors or lungs were then excised. After freeze-drying, the content of melanin in lungs was measured and imaged by EPR at 9 GHz. We observed a direct relationship between the EPR intensity and the bioluminescence intensity. Another tumor model (KHT sarcoma), non-pigmented but expressing luciferase, was used to confirm that the EPR signal was directly linked to the melanin pigment present in the tumors. PMID:21861288

  6. Temperature dependence on the electron paramagnetic resonance spectra of natural jasper from Taroko Gorge (Taiwan)

    NASA Astrophysics Data System (ADS)

    Hemantha Kumar, G. N.; Parthasarathy, G.; Chakradhar, R. P. S.; Rao, J. Lakshmana; Ratnakaram, Y. C.

    2010-04-01

    Structural properties of natural jasper from Taroko Gorge (Taiwan) have been investigated by means of powder X-ray diffraction, electron paramagnetic resonance (EPR) and Fourier transform infrared spectroscopic techniques. The EPR spectrum at room temperature exhibits a sharp resonance signal at g = 2.007 and two more resonance signals centered at g ≈ 4.3 and 14.0. The resonance signal at g = 2.007 has been attributed to the E' center and is related to a natural radiation-induced paramagnetic defect. Two more resonance signals centered at g ≈ 4.3 and 14.0 are characteristic of Fe3+ ions. The EPR spectra recorded at room temperature of jasper samples, heat-treated at temperatures ranging from 473 to 1,473 K exhibit marked temperature dependence. The resonance signal corresponding to E' center disappears at elevated temperatures. A broad, intense resonance signal centered at g ≈ 2.0 appears at elevated temperatures. This resonance signal is a characteristic of Fe3+ ions, which are present as hematite in the jasper sample. The intensity of the resonance signal becomes dominant at elevated temperatures at ≥873 K, masking g ≈ 4.3 and g ≈ 14.0 resonance signals. The EPR spectra of jasper heat-treated at 673 K have been recorded at temperatures between 123 and 296 K. The population of spin levels ( N) has been calculated for the broad g ≈ 2.0 resonance signal. It is found that N decreases with decreasing temperature. The linewidth (ΔH) of g ≈ 2.0 resonance signal of the heat-treated jasper is found to increase with decreasing temperature. This has been attributed to spin-spin interaction of the Fe3+ ions present in the form of hematite in the studied jasper sample.

  7. Absolute Oxygen R1e Imaging In Vivo with Pulse Electron Paramagnetic Resonance

    PubMed Central

    Epel, Boris; Bowman, Michael K.; Mailer, Colin; Halpern, Howard J.

    2015-01-01

    Purpose Tissue oxygen (O2) levels are among the most important and most quantifiable stimuli to which cells and tissues respond through inducible signaling pathways. Tumor O2 levels are major determinants of the response to cancer therapy. Developing more accurate measurements and images of tissue O2 partial pressure (pO2), assumes enormous practical, biological, and medical importance. Methods We present a fundamentally new technique to image pO2 in tumors and tissues with pulse electron paramagnetic resonance (EPR) imaging enabled by an injected, nontoxic, triaryl methyl (trityl) spin probe whose unpaired electron’s slow relaxation rates report the tissue pO2. Heretofore, virtually all in vivo EPR O2 imaging measures pO2 with the transverse electron spin relaxation rate, R2e, which is susceptible to the self-relaxation confounding O2 sensitivity. Results We found that the trityl electron longitudinal relaxation rate, R1e, is an order of magnitude less sensitive to confounding self-relaxation. R1e imaging has greater accuracy and brings EPR O2 images to an absolute pO2 image, within uncertainties. Conclusion R1e imaging more accurately determines oxygenation of cancer and normal tissue in animal models than has been available. It will enable enhanced, rapid, noninvasive O2 images for understanding oxygen biology and the relationship of oxygenation patterns to therapy outcome in living animal systems. PMID:24006331

  8. Ageing and thermal recovery of paramagnetic centers induced by electron irradiation in yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Costantini, J. M.; Beuneu, F.

    We have used electron spin resonance spectroscopy to study the defects induced in yttria-stabilized zirconia (YSZ) single crystals by 2.5-MeV electron irradiations. Two paramagnetic centers are produced: the first one with an axial <111> symmetry is similar to the trigonal Zr3+ electron center (T center) found after X-ray irradiation or thermo-chemical reduction, whereas the second one is a new oxygen hole center with an axial <100> symmetry different from the orthorhombic O- center induced by X-ray irradiation. At a fluence around 10(18) e/cm(2) , both centers are bleached out near 600 K, like the corresponding X-ray induced defects. At a fluence around 10(19) e/cm(2) , defects are much more stable, since complete thermal bleaching occurs near 1000 K. Accordingly, ageing of as-irradiated samples shows that high-dose defects at more stable than the low-dose ones.

  9. Characterization of the Iron-Sulfur Clusters in Xanthine Dehydrogenase Using Electron Paramagnetic Resonance Spectroscopy and Magnetic Coupling Interactions

    SciTech Connect

    Scott, J. Robert

    2004-02-04

    Xanthine dehydrogenase is a metalloenzyme that is present in numerous eukaryotic and prokaryotic organisms. It contains molybdenum, two different iron-sulfur clusters, and flavin. While the structures of both iron-sulfur clusters were known, it was unclear as to which structure was in which location. Electron paramagnetic resonance spectroscopy probes the paramagnetic qualities of molecules or ions. With this technology we wished to understand which EPR spectrum was associated with which iron-sulfur cluster by looking at magnetic coupling between the paramagnetic Mo(V) oxidation state and the reduced iron-sulfur clusters. We then assigned the clusters to their corresponding locations. The spin-spin interactions observed between Mo(V) and Fe-S I in xanthine dehydrogenase at low temperature show that Fe-S I is the closer site in contrast to Fe-S II.

  10. Electron paramagnetic resonance study of radiation damage in photosynthetic reaction center crystals.

    SciTech Connect

    Utschig, L. M.; Chemerisov, S. D.; Tiede, D. M.; Poluektov, O. G.; Chemical Sciences and Engineering Division

    2008-01-01

    Electron paramagnetic resonance (EPR) was used to simultaneously study radiation-induced cofactor reduction and damaging radical formation in single crystals of the bacterial reaction center (RC). Crystals of Fe-removed/Zn-replaced RC protein from Rhodobacter (R.) sphaeroides R26 were irradiated with varied radiation doses at cryogenic temperature and analyzed for radiation-induced free radical formation and alteration of light-induced photosynthetic electron transfer activity using high-field (HF) D-band (130 GHz) and X-band (9.5 GHz) EPR spectroscopies. These analyses show that the formation of radiation-induced free radicals saturated at doses 1 order of magnitude smaller than the amount of radiation at which protein crystals lose their diffraction quality, while light-induced RC activity was found to be lost at radiation doses at least 1 order of magnitude lower than the dose at which radiation-induced radicals exhibited saturation. HF D-band EPR spectra provide direct evidence for radiation-induced reduction of the quinones and possibly other cofactors. These results demonstrate that substantial radiation damage is likely to have occurred during X-ray diffraction data collection used for photosynthetic RC structure determination. Thus, both radiation-induced loss of photochemical activity in RC crystals and reduction of the quinones are important factors that must be considered when correlating spectroscopic and crystallographic measurements of quinone site structures.

  11. Copper Environment in Artificial Metalloproteins Probed by Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Flores, Marco; Olson, Tien L; Wang, Dong; Edwardraja, Selvakumar; Shinde, Sandip; Williams, JoAnn C; Ghirlanda, Giovanna; Allen, James P

    2015-10-29

    The design of binding sites for divalent metals in artificial proteins is a productive platform for examining the characteristics of metal-ligand interactions. In this report, we investigate the spectroscopic properties of small peptides and four-helix bundles that bind Cu(II). Three small peptides, consisting of 15 amino acid residues, were designed to have two arms, each containing a metal-binding site comprised of different combinations of imidazole and carboxylate side chains. Two four-helix bundles each had a binding site for a central dinuclear metal cofactor, with one design incorporating additional potential metal ligands at two identical sites. The small peptides displayed pH-dependent, metal-induced changes in the circular dichroism spectra, consistent with large changes in the secondary structure upon metal binding, while the spectra of the four-helix bundles showed a predominant α-helix content but only small structural changes upon metal binding. Electron paramagnetic resonance spectra were measured at X-band revealing classic Cu(II) axial patterns with hyperfine coupling peaks for the small peptides and four-helix bundles exhibiting a range of values that were related to the specific chemical natures of the ligands. The variety of electronic structures allow us to define the distinctive environment of each metal-binding site in these artificial systems, including the designed additional binding sites in one of the four-helix bundles.

  12. Membrane-Sugar Interactions Probed by Pulsed Electron Paramagnetic Resonance of Spin Labels.

    PubMed

    Konov, Konstantin B; Leonov, Dmitry V; Isaev, Nikolay P; Fedotov, Kirill Yu; Voronkova, Violeta K; Dzuba, Sergei A

    2015-08-13

    Sugars can stabilize biological systems under extreme desiccation and freezing conditions. Hypothetical molecular mechanisms suggest that the stabilization effect may be determined either by specific interactions of sugars with biological molecules or by the influence of sugars on the solvating shell of the biomolecule. To explore membrane-sugar interactions, we applied electron spin echo envelope modulation (ESEEM) spectroscopy, a pulsed version of electron paramagnetic resonance (EPR), to phospholipid bilayers with spin-labeled lipids added and solvated by aqueous deuterated sucrose and trehalose solutions. The phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The spin-labeled lipids were 1,2-dipalmitoyl-sn-glycero-3-phospho(TEMPO)choline (T-PCSL), with spin-label TEMPO at the lipid polar headgroup. The deuterium ESEEM amplitude was calibrated using known concentrations of glassy deuterated sugar solvents. The data obtained indicated that the sugar concentration near the membrane surface obeyed a simple Langmuir model of monolayer adsorption, which assumes direct sugar-molecule bonding to the bilayer surface. PMID:26214261

  13. Electron paramagnetic resonance of the SO{4/3-} radical in barite and celestite

    NASA Astrophysics Data System (ADS)

    Ryabov, I. D.

    1995-09-01

    The electron paramagnetic resonance (EPR) study of gammaor x-ray-irradiated natural barite and celestite has revealed the presence of a radiation center with principal values of the g tensor and the A tensor [MHz] of hyperfine interaction (from the 33S isotope): gxx=1.9963, gyy=2.0073, gzz=2.0025, Axx=434, Ayy=447, Azz=528 in BaSO4, gxx=1.9990, gyy=2.0075, gzz=2.0027, Axx=426, Ayy=439, Azz=520 in SrSO4. The center has been identified as SO{3-/4}radical. The electron centers SO{4/3-}in barite have been found to be produced along with the hole centers SO{4/3-}, and maximum concentration of both centers is reached at a gamma-ray-radiation dose of about 5·105 Gy. UV or thermal treatment causes both centers to disappear. The SO{4/3-}radicals proved to be more thermally stable than the SO{4/3-}radicals: within about 0.5 h the latter disappear at 125° C, whereas the former do so at 180° C.

  14. Electron Paramagnetic Resonance Study of a Photosynthetic Microbial Mat and Comparison with Archean Cherts

    NASA Astrophysics Data System (ADS)

    Bourbin, M.; Derenne, S.; Gourier, D.; Rouzaud, J.-N.; Gautret, P.; Westall, F.

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

  15. Electron paramagnetic resonance study of a photosynthetic microbial mat and comparison with Archean cherts.

    PubMed

    Bourbin, M; Derenne, S; Gourier, D; Rouzaud, J-N; Gautret, P; Westall, F

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

  16. Electron paramagnetic resonance study of a photosynthetic microbial mat and comparison with Archean cherts.

    PubMed

    Bourbin, M; Derenne, S; Gourier, D; Rouzaud, J-N; Gautret, P; Westall, F

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts. PMID:23254854

  17. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    SciTech Connect

    Kovács, A.; Duchamp, M.; Boothroyd, C. B.; Dunin-Borkowski, R. E.; Ney, A.; Ney, V.; Galindo, P. L.; Kaspar, T. C.; Chambers, S. A.

    2013-12-28

    We study planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al{sub 2}O{sub 3}), as well as the Co:ZnO/Al{sub 2}O{sub 3} interface, using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy. Co:ZnO samples that were deposited using pulsed laser deposition and reactive magnetron sputtering are both found to contain extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3–4 Co:ZnO layers next to the Al{sub 2}O{sub 3} substrate. The stacking fault density is in the range of 10{sup 17} cm{sup −3}. We also measure the local lattice distortions around the stacking faults. It is shown that despite the relatively high density of planar defects, lattice distortions, and small compositional variation, the Co:ZnO films retain paramagnetic properties.

  18. Electron paramagnetic resonance spectroscopy of Fe3+ ions in amethyst: thermodynamic potentials and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Sivaramaiah, Gobburu; Lin, Jinru; Pan, Yuanming

    2011-02-01

    Single-crystal and powder electron paramagnetic resonance (EPR) spectroscopic studies of natural amethyst quartz, before and after isochronal annealing between 573 and 1,173 K, have been made from 90 to 294 K. Single-crystal EPR spectra confirm the presence of two substitutional Fe3+ centers. Powder EPR spectra are characterized by two broad resonance signals at g = ~10.8 and 4.0 and a sharp signal at g = 2.002. The sharp signal is readily attributed to the well-established oxygen vacancy electron center E 1'. However, the two broad signals do not correspond to any known Fe3+ centers in the quartz lattice, but are most likely attributable to Fe3+ clusters on surfaces. The absolute numbers of spins of the Fe3+ species at g = ~10.8 have been calculated from powder EPR spectra measured at temperatures from 90 to 294 K. These results have been used to extract thermodynamic potentials, including Gibbs energy of activation Δ G, activation energy E a, entropy of activation Δ S and enthalpy of activation Δ H for the Fe3+ species in amethyst. In addition, magnetic susceptibilities ( χ) have been calculated from EPR data at different temperatures. A linear relationship between magnetic susceptibility and temperature is consistent with the Curie-Weiss law. Knowledge about the stability and properties of Fe3+ species on the surfaces of quartz is important to better understanding of the reactivity, bioavailability and heath effects of iron in silica particles.

  19. Use of Electron Paramagnetic Resonance Spectroscopy to Evaluate the Redox State In Vivo

    PubMed Central

    SWARTZ, HAROLD M.; KHAN, NADEEM; KHRAMTSOV, VALERY V.

    2009-01-01

    The aim of this article is to provide an overview of how electron paramagnetic resonance (EPR) can be used to measure redox-related parameters in vivo. The values of this approach include that the measurements are made under fully physiological conditions, and some of the measurements cannot be made by other means. Three complementary approaches are used with in vivo EPR: the rate of reduction or reactions of nitroxides, spin trapping of free radicals, and measurements of thiols. All three approaches already have produced unique and useful information. The measurement of the rate of decrease of nitroxides technically is the simplest, but difficult to interpret because the measured parameter, reduction in the intensity of the nitroxide signal, can occur by several different mechanisms. In vivo spin trapping can provide direct evidence for the occurrence of specific free radicals in vivo and reflect relative changes, but accurate absolute quantification remains challenging. The measurement of thiols in vivo also appears likely to be useful, but its development as an in vivo technique is at an early stage. It seems likely that the use of in vivo EPR to measure redox processes will become an increasingly utilized and valuable tool. PMID:17678441

  20. Stabilization of reactive nitroxides using invasomes to allow prolonged electron paramagnetic resonance measurements.

    PubMed

    Haag, S F; Taskoparan, B; Bittl, R; Teutloff, C; Wenzel, R; Fahr, A; Chen, M; Lademann, J; Schäfer-Korting, M; Meinke, M C

    2011-01-01

    The detection of the antioxidative capacity of the skin is of great practical relevance since free radicals are involved in many skin damaging processes, including aging and inflammation. The nitroxide TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxyl) in combination with electron paramagnetic resonance spectroscopy was found suitable for measuring the antioxidative capacity since its reaction with reducing agents is considerably fast. Yet, in order to achieve longer measurement times, e.g. in inflammatory skin diseases, the stabilizing effect of an invasome (ultraflexible vesicle/liposome) suspension with TEMPO was investigated ex vivo on porcine skin and in vivo on human skin. Invasomes increased the measurement time ex vivo 2-fold and the reduction was significantly slowed down in vivo, which is due to membrane-associated and therefore protected TEMPO. Furthermore, TEMPO accumulation in the membrane phase as well as the decreasing polarity of the ultimate surroundings of TEMPO during skin penetration explains the stabilizing effect. Thus, an invasome suspension with TEMPO exhibits stabilizing effects ex vivo and in vivo. PMID:21822032

  1. Multi-frequency electron paramagnetic resonance study of irradiated human finger phalanxes

    NASA Astrophysics Data System (ADS)

    Zdravkova, M.; Vanhaelewyn, G.; Callens, F.; Gallez, B.; Debuyst, R.

    2005-10-01

    Electron paramagnetic resonance (EPR) is often used in dosimetry using biological samples such as teeth and bones. It is generally assumed that the radicals, formed after irradiation, are similar in both tissues as the mineral part of bone and tooth is carbonated hydroxyapatite. However, there is a lack of experimental evidence to support this assumption. The aim of the present study was to contribute to that field by studying powder and block samples of human finger phalanxes that were irradiated and analyzed by multi-frequency EPR. The results obtained from bones are different from the ones obtained in enamel by several respects: the ordering of the apatite crystallites is much smaller in bone, complicating the assignment of the observed CO 2- radicals to a specific location, and one type of CO 33- radical was only found in enamel. Moreover, a major difference was found in the non-CO 2- and non-CO 33- signals. The elucidation of the nature of these native signals (in bone and tooth enamel) still represents a big challenge.

  2. Oxymetry Deep in Tissues With Low-Frequency Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    Halpern, Howard J.; Yu, Cheng; Peric, Miroslav; Barth, Eugene; Grdina, David J.; Teicher, Beverly A.

    1994-12-01

    We have measured the oxygen concentration in the body water of murine FSa and NFSa fibrosarcomas using a new method for quantitative oxygen concentration determination deep in the tissues of a living animal. The measurement uses unusually low-frequency electron paramagnetic spectroscopy sensitive to substrate 7 cm deep in tissue, partially deuterated spin probes (spin labels of molecular mass 195, approximating that of glucose) whose distribution compartment can be targeted with facile adduct substitution, and novel analytic techniques. We show that the water-compartment oxygen concentration of the tumors decreases as the tumor size increases and also shows a trend to decrease as radiobiologic hypoxia increases. An oxymetric spectral image of the tumor is presented. The technique will improve with larger human tissue samples. It provides the potential to quantitatively assess tissue hypoxia in ischemic or preischemic states in stroke and myocardial infarction. It will allow direct assessment of tumor hypoxia to determine the usefulness of radiation and chemotherapy adjuvants directed to hypoxic cell compartments.

  3. Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses.

    PubMed

    Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M

    2010-03-01

    Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported.

  4. Electron paramagnetic resonance oxygen mapping (EPROM): direct visualization of oxygen concentration in tissue.

    PubMed

    Velan, S S; Spencer, R G; Zweier, J L; Kuppusamy, P

    2000-06-01

    Tissue oxygen content is a central parameter in physiology but is difficult to measure. We report a novel procedure for spatial mapping of oxygen by electron paramagnetic resonance (EPR) utilizing a spectral-spatial imaging data set, in which an EPR spectrum is obtained from each image volume element. From this data set, spatial maps corresponding to local spin density and maximum EPR spectral line amplitude are generated. A map of local EPR spectral linewidth is then computed. Because linewidth directly correlates with oxygen concentration, the linewidth image provides a map of oxygenation. This method avoids a difficulty inherent in other oxygen content mapping techniques using EPR, that is, the unwanted influence of local spin probe density on the image. We provide simulation results and data from phantom studies demonstrating the validity of this method. We then apply the method to map oxygen content in rat tail tissue and vasculature. This method provides a new, widely applicable, approach to direct visualization of oxygen concentration in living tissue. Magn Reson Med 43:804-809, 2000.

  5. Electron paramagnetic resonance measurements of absorbed dose in teeth from citizens of Ozyorsk.

    PubMed

    Wieser, A; Vasilenko, E; Aladova, E; Fattibene, P; Semiochkina, N; Smetanin, M

    2014-05-01

    In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960. PMID:24604722

  6. Simulation of Nitroxide Electron Paramagnetic Resonance Spectra from Brownian Trajectories and Molecular Dynamics Simulations

    PubMed Central

    DeSensi, Susan C.; Rangel, David P.; Beth, Albert H.; Lybrand, Terry P.; Hustedt, Eric J.

    2008-01-01

    A simulated continuous wave electron paramagnetic resonance spectrum of a nitroxide spin label can be obtained from the Fourier transform of a free induction decay. It has been previously shown that the free induction decay can be calculated by solving the time-dependent stochastic Liouville equation for a set of Brownian trajectories defining the rotational dynamics of the label. In this work, a quaternion-based Monte Carlo algorithm has been developed to generate Brownian trajectories describing the global rotational diffusion of a spin-labeled protein. Also, molecular dynamics simulations of two spin-labeled mutants of T4 lysozyme, T4L F153R1, and T4L K65R1 have been used to generate trajectories describing the internal dynamics of the protein and the local dynamics of the spin-label side chain. Trajectories from the molecular dynamics simulations combined with trajectories describing the global rotational diffusion of the protein are used to account for all of the dynamics of a spin-labeled protein. Spectra calculated from these combined trajectories correspond well to the experimental spectra for the buried site T4L F153R1 and the helix surface site T4L K65R1. This work provides a framework to further explore the modeling of the dynamics of the spin-label side chain in the wide variety of labeling environments encountered in site-directed spin labeling studies. PMID:18234808

  7. Isotope effect on electron paramagnetic resonance of boron acceptors in silicon

    NASA Astrophysics Data System (ADS)

    Stegner, A. R.; Tezuka, H.; Andlauer, T.; Stutzmann, M.; Thewalt, M. L. W.; Brandt, M. S.; Itoh, K. M.

    2010-09-01

    The fourfold degeneracy of the boron acceptor ground state in silicon, which is easily lifted by any symmetry-breaking perturbation, allows for a strong inhomogeneous broadening of the boron-related electron paramagnetic resonance (EPR) lines, e.g., by a random distribution of local strains. However, since EPR of boron acceptors in externally unstrained silicon was reported initially, neither the line shape nor the magnitude of the residual broadening observed in samples with high-crystalline purity were compatible with the low concentrations of carbon and oxygen point defects, being the predominant source of random local strain. Adapting a theoretical model which has been applied to understand the acceptor ground-state splitting in the absence of a magnetic field as an effect due to the presence of different silicon isotopes, we show that local fluctuations of the valence-band edge due to different isotopic configurations in the vicinity of the boron acceptors can quantitatively account for all inhomogeneous broadening effects in high-purity Si with a natural isotope composition. Our calculations show that such an isotopic perturbation also leads to a shift in the g value of different boron-related resonances, which we could verify in our experiments. Further, our results provide an independent test and verification of the valence-band offsets between the different Si isotopes determined in previous works.

  8. Disulfide-Linked Dinitroxides for Monitoring Cellular Thiol Redox Status through Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Legenzov, Eric A; Sims, Stephen J; Dirda, Nathaniel D A; Rosen, Gerald M; Kao, Joseph P Y

    2015-12-01

    Intracellular thiol-disulfide redox balance is crucial to cell health, and may be a key determinant of a cancer's response to chemotherapy and radiation therapy. The ability to assess intracellular thiol-disulfide balance may thus be useful not only in predicting responsiveness of cancers to therapy, but in assessing predisposition to disease. Assays of thiols in biology have relied on colorimetry or fluorimetry, both of which require UV-visible photons, which do not penetrate the body. Low-frequency electron paramagnetic resonance imaging (EPRI) is an emerging magnetic imaging technique that uses radio waves, which penetrate the body well. Therefore, in combination with tailored imaging agents, EPRI affords the opportunity to image physiology within the body. In this study, we have prepared water-soluble and membrane-permeant disulfide-linked dinitroxides, at natural isotopic abundance, and with D,(15)N-substitution. Thiols such as glutathione cleave the disulfides, with simple bimolecular kinetics, to yield the monomeric nitroxide species, with distinctive changes in the EPR spectrum. Using the D,(15)N-substituted disulfide-dinitroxide and EPR spectroscopy, we have obtained quantitative estimates of accessible intracellular thiol in cultured human lymphocytes. Our estimates are in good agreement with published measurements. This suggests that in vivo EPRI of thiol-disulfide balance is feasible. Finally, we discuss the constraints on the design of probe molecules that would be useful for in vivo EPRI of thiol redox status. PMID:26523485

  9. Identification of free radical intermediates in oxidized wine using electron paramagnetic resonance spin trapping.

    PubMed

    Elias, Ryan J; Andersen, Mogens L; Skibsted, Leif H; Waterhouse, Andrew L

    2009-05-27

    Free radicals are thought to be key intermediates in the oxidation of wine, but their nature has not been established. Electron paramagnetic resonance spectroscopy was used to detect and identify several free radical species in wine under oxidative conditions with the aid of spin traps. The 1-hydroxylethyl radical was the sole radical species observed when α-(4-pyridyl-1-oxide)-N-tert-butylnitrone was used as a spin trap in a heated (55 °C), low-sulfite (15 mg L(-1)) red wine. This radical appears to arise from ethanol oxidation via the hydroxyl radical, and this latter species was confirmed by using a high concentration (1.5 M) of the 5,5-dimethylpyrroline-N-oxide spin trap, thus providing the first direct evidence of the Fenton reaction in wine. Hydroxyl radical formation in wine was corroborated by converting hydroxyl radicals to methyl radicals by its reaction with dimethyl sulfoxide. The novel spin trap 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide was also used in this study to identify sulfite radicals in wine for the first time. This spin trap has also been shown to trap hydroperoxyl radicals, the generation of which is predicted in wine; however, no evidence of this species was observed. PMID:19358607

  10. Robustness assessment of 1-d electron paramagnetic resonance for improved magnetic nanoparticle reconstructions.

    PubMed

    Coene, Annelies; Crevecoeur, Guillaume; Dupre, Luc

    2015-06-01

    Electron paramagnetic resonance (EPR) is a sensitive measurement technique which can be used to recover the 1-D spatial distribution of magnetic nanoparticles (MNP) noninvasively. This can be achieved by solving an inverse problem that requires a numerical model for interpreting the EPR measurement data. This paper assesses the robustness of this technique by including different types of errors such as setup errors, measurement errors, and sample positioning errors in the numerical model. The impact of each error is estimated for different spatial MNP distributions. Additionally, our error models are validated by comparing the simulated impact of errors to the impact on lab EPR measurements. Furthermore, we improve the solution of the inverse problem by introducing a combination of truncated singular value decomposition and nonnegative least squares. This combination enables to recover both smooth and discontinuous MNP distributions. From this analysis, conclusions are drawn to improve MNP reconstructions with EPR and to state requirements for using EPR as a 2-D and 3-D imaging technique for MNP. PMID:25667347

  11. Stabilization of reactive nitroxides using invasomes to allow prolonged electron paramagnetic resonance measurements.

    PubMed

    Haag, S F; Taskoparan, B; Bittl, R; Teutloff, C; Wenzel, R; Fahr, A; Chen, M; Lademann, J; Schäfer-Korting, M; Meinke, M C

    2011-01-01

    The detection of the antioxidative capacity of the skin is of great practical relevance since free radicals are involved in many skin damaging processes, including aging and inflammation. The nitroxide TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxyl) in combination with electron paramagnetic resonance spectroscopy was found suitable for measuring the antioxidative capacity since its reaction with reducing agents is considerably fast. Yet, in order to achieve longer measurement times, e.g. in inflammatory skin diseases, the stabilizing effect of an invasome (ultraflexible vesicle/liposome) suspension with TEMPO was investigated ex vivo on porcine skin and in vivo on human skin. Invasomes increased the measurement time ex vivo 2-fold and the reduction was significantly slowed down in vivo, which is due to membrane-associated and therefore protected TEMPO. Furthermore, TEMPO accumulation in the membrane phase as well as the decreasing polarity of the ultimate surroundings of TEMPO during skin penetration explains the stabilizing effect. Thus, an invasome suspension with TEMPO exhibits stabilizing effects ex vivo and in vivo.

  12. Training Effects on ROS Production Determined by Electron Paramagnetic Resonance in Master Swimmers

    PubMed Central

    Mrakic-Sposta, Simona; Gussoni, Maristella; Porcelli, Simone; Pugliese, Lorenzo; Pavei, Gaspare; Bellistri, Giuseppe; Montorsi, Michela; Tacchini, Philippe; Vezzoli, Alessandra

    2015-01-01

    Acute exercise induces an increase in Reactive Oxygen Species (ROS) production dependent on exercise intensity with highest ROS amount generated by strenuous exercise. However, chronic repetition of exercise, that is, exercise training, may reduce exercise-induced oxidative stress. Aim of this study was to evaluate the effects of 6-weeks high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on ROS production and antioxidant capacity in sixteen master swimmers. Time course changes of ROS generation were assessed by Electron Paramagnetic Resonance in capillary blood by a microinvasive approach. An incremental arm-ergometer exercise (IE) until exhaustion was carried out at both before (PRE) and after (POST) training (Trg) period. A significant (P < 0.01) increase of ROS production from REST to the END of IE in PRE Trg (2.82 ± 0.66 versus 3.28 ± 0.66 µmol·min−1) was observed. HIDT increased peak oxygen consumption (36.1 ± 4.3 versus 40.6 ± 5.7 mL·kg−1·min−1 PRE and POST Trg, resp.) and the antioxidant capacity (+13%) while it significantly decreased the ROS production both at REST (−20%) and after IE (−25%). The observed link between ROS production, adaptive antioxidant defense mechanisms, and peak oxygen consumption provides new insight into the correlation between ROS response pathways and muscle metabolic function. PMID:25874024

  13. Electron paramagnetic resonance spectroscopy studies of Eu-Y and coexchanged EuFe-Y zeolites

    SciTech Connect

    Ulla, M.A.; Millman, W.S. ); Aparicio, L.A.; Balse, V.R.; Dumesic, J.A. )

    1990-05-01

    Electron paramagnetic resonance (EPR) was used to probe the oxidation state of europium and the location of divalent europium cations in Eu-Y and EuFe-Y zeolite samples. Europium was present as trivalent cations following treatment in O{sub 2} at 770 K. Treatments in H{sub 2} or CO at 770 K led to formation of divalent cations, and perhaps also caused some reduction to lower oxidation states. Three EPR signals were observed for Eu{sup 2+}, giving rise to effective g values of 3, 4.9, and 6. The first and last signals are interpreted as being due to Eu{sup 2+} cations at sites I and II, respectively, while the latter signal is due to Eu{sup 2+} cations at sites I{prime} and II{prime}. The majority of the Eu{sup 2+} cations are at site I, and the amount of Eu at this site can be increased by reducing the sample in H{sub 2}, compared with reduction in CO. The presence of europium in site I forces the Fe{sup 2+} cations to occupy sites of lower coordination in the sodalite unit (sites I{prime} and II{prime}) and in the supercages (sites II and III{prime}).

  14. Novel antioxidant capacity assay for lipophilic compounds using electron paramagnetic resonance spectroscopy

    PubMed Central

    Takahashi, Yushi; Ichimori, Kohji; Okano, Masahito; Goto, Hirofumi

    2015-01-01

    A novel antioxidant capacity assay for lipophilic compounds was developed using electron paramagnetic resonance (EPR) spectroscopy. The assay is based on antioxidant’s scavenging ability against the tert-butoxyl radical generated photolytically from di-tert-butyl peroxide in ethyl acetate, and named the tert-butoxyl-based antioxidant capacity (BAC) assay. The radical was trapped by spin trap, 5,5-dimethyl-1-pyrroline-N-oxide, and EPR signal intensity of the spin adduct was used as a quantitative marker of radical levels. Signal intensity decreased in a dose-dependent manner in the presence of an antioxidant that competitively reacts with the radical, which was utilized to evaluate BAC values. The BAC method enabled the accurate estimation of antioxidant capacity for lipophilic materials that may counteract lipid peroxidation in biological membranes. The BAC values for quercetin and caffeic acid are 0.639 ± 0.020 and 0.118 ± 0.012 trolox equivalents, respectively, which are much smaller than values obtained by other aqueous methods such as H-ORAC and ORAC-EPR. Thus, antioxidants present in a non-aqueous environment should be evaluated using a non-aqueous system. In combination with in situ ascorbate reduction, the BAC method was capable of accurately determining the antioxidant capacity of water-insoluble materials that may be reduced in living cells. PMID:25759515

  15. A study of Roman glass by reflectance and electron paramagnetic resonance spectroscopies

    NASA Astrophysics Data System (ADS)

    Mirti, P.; Ferrari, R. P.; Laurenti, E.; Casoli, A.

    1993-08-01

    Reflectance and electron paramagnetic resonance (EPR) spectroscopies were used to study 25 fragments of Roman glass. Colour coordinates were used for an unbiased classification of the glasses in colour groups, which accounted for the presence of blue, blue-green, green, yellow-green, yellow and purple samples. Reflectance spectra were recorded in the 250-2500 nm wavelength range and showed absorption bands characteristic of Fe II, Fe III and Mn III ions; furthermore, Co II and Cu II bands were observed in the spectra of the blue glasses. A decrease of the absorbance ratio of Fe II to Fe III ions was observed moving from blue-green to green and yellow-green glasses; however, yellow fragments still proved to be reduced glasses. EPR spectra displayed the characteristic patterns of Fe III and Mn II ions, with g-values in the 2-5 interval and spectral features depending on the relative content of the two elements. The characteristic pattern of the V IV ion ( g ≈ 2) and signals due to the formation of iron-sulphur complexes ( g ≈ 6) appeared in the spectrum of a dark yellow glass, recorded at 77 K.

  16. Electron Paramagnetic Resonance: a tool for in situ detection, imaging and dating of biosignatures in primitive organic matter

    NASA Astrophysics Data System (ADS)

    Gourier, D.; Binet, L.; Vezin, H.

    2012-04-01

    Electron Paramagnetic Resonance (EPR) spectroscopy and imaging are based on the interaction of a microwave electromagnetic field (typically in the GHz range) with electron spins in presence of an external magnetic field. Contrary to UV-visible and Infrared light, microwave radiation can penetrate in most non conducting materials, so that EPR is sensitive to the bulk (and not to the surface) of samples. All the paramagnetic defects, impurities, point defects in the mineral matrix, radicals in carbonaceous matter of an ancient rock can be detected by this technique. As the most ancient traces of life, as old as 3.5 Gy, are recorded as carbonaceous microstructures in siliceous sedimentary structures (cherts), the radical defects of these microstructures can be probed in situ without sample preparation. By using continuous-wave EPR, the fossilized carbonaceous matter can be mapped at the sub-millimeter scale (EPR imaging)[1], and can be dated with respect to the host rock (evolution of the EPR lineshape)[2]. Thus this method could be used for contamination detection (endolithic bacteria, infiltration etc…). By using pulsed-EPR spectroscopy (instead of continuous wave), nuclear magnetic transitions of elements in and around radicals can be detected with a high resolution and sensitivity. We show that specific nuclear transitions for hydrogen (1H and 2D) and 13C (and other nuclei such as 29Si and 31P) can be identified in extraterrestrial carbonaceous matter (meteorites) and in Precambrian and younger cherts. These pulsed techniques provide molecular scale biosignatures for primitive life detection and internal probes to study the history of organic matter in the early solar system [3,4]. Paramagnetic biosignatures are not limited to the organic component of cherts. Specific EPR biosignatures of metal ions can be detected in biominerals such as MnO2 [5] or in molecular V4+ complexes [6]. EPR is thus a potential technique for the search of primitive life on Earth and

  17. Fe(3+) ions in alkali lead tetraborate glasses--an electron paramagnetic resonance and optical study.

    PubMed

    Chakradhar, R P Sreekanth; Sivaramaiah, G; Rao, J Lakshmana; Gopal, N O

    2005-11-01

    Glass systems of composition 90R(2)B(4)O(7)+9PbO+1Fe(2)O(3) (R=Li, Na and K) and 90Li(2)B(4)O(7)+(10-x)PbO+xFe(2)O(3) (x=0.5, 1, 3, 4, 5, 7 and 9 mol %) have been investigated by means of electron paramagnetic resonance (EPR) and optical absorption techniques. The EPR spectra exhibit three resonance signals at g approximately 6.0, 4.2 and 2.0. The resonances at g approximately 6.0 and 4.2 are attributed to Fe(3+) ions in rhombic and axial symmetry sites, respectively. The g approximately 2.0 resonance signal is due to two or more Fe(3+) ions coupled together with dipolar interaction. The EPR spectra of 1 mol % of Fe(2)O(3) doped in lithium lead tetraborate glass samples have been studied at different temperatures (123-433 K). The intensity of g approximately 4.2 resonance signal decreases and the intensity of g approximately 2.0 resonance signal increases with the increase of temperature. The line widths are found to be independent of temperature. The EPR spectra exhibit a marked concentration dependence on iron content. A decrease in intensity for the resonance signal at g approximately 4.2 with increase in iron content for more than 4 mol % has been observed in lithium lead tetraborate glass samples and this has been attributed to the formation of Fe(3+) ion clusters in the glass samples. The paramagnetic susceptibility (chi) is calculated from the EPR data at various temperatures and the Curie constant (C) has been evaluated from 1/chi versus T graph. The optical absorption spectrum of Fe(3+) ions in lithium lead tetraborate glasses exhibits three bands characteristic of Fe(3+) ions in an octahedral symmetry. The crystal field parameter D(q) and the Racah interelectronic repulsion parameters B and C have also been evaluated. The value of interelectronic repulsion parameter B (825 cm(-1)) obtained in the present work suggests that the bonding is moderately covalent.

  18. A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry

    NASA Astrophysics Data System (ADS)

    Meenakshisundaram, Guruguhan; Pandian, Ramasamy P.; Eteshola, Edward; Lee, Stephen C.; Kuppusamy, Periannan

    2010-03-01

    Lithium naphthalocyanine (LiNc) is a microcrystalline EPR oximetry probe with high sensitivity to oxygen [R.P. Pandian, M. Dolgos, C. Marginean, P.M. Woodward, P.C. Hammel, P.T. Manoharan, P. Kuppusamy, Molecular packing and magnetic properties of lithium naphthalocyanine crystal: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen J. Mater. Chem. 19 (2009) 4138-4147]. However, direct implantation of the crystals in the tissue for in vivo oxygen measurements may be hindered by concerns associated with their direct contact with the tissue/cells and loss of EPR signal due to particle migration in the tissue. In order to address these concerns, we have developed encapsulations (chips) of LiNc microcrystals in polydimethyl siloxane (PDMS), an oxygen-permeable, bioinert polymer. Oximetry evaluation of the fabricated chips revealed that the oxygen sensitivity of the crystals was unaffected by encapsulation in PDMS. Chips were stable against sterilization procedures or treatment with common biological oxidoreductants. In vivo oxygen measurements established the ability of the chips to provide reliable and repeated measurements of tissue oxygenation. This study establishes PDMS-encapsulated LiNc as a potential probe for long-term and repeated measurements of tissue oxygenation.

  19. Pulse radiolysis of alkanes: A time-resolved electron paramagnetic resonance study

    SciTech Connect

    Shkrob, I.A.; Trifunac, A.D.

    1994-02-14

    Time-resolved spin-echo-detected electron paramagnetic resonance (EPR) was applied to examine short-lived alkyl radicals formed in pulse radiolysis of liquid alkanes. It was found that the ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation is temperature-independent and is ca. 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the fast ion molecule reactions involving radical cations are a significant route of radical generation. The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals are emissively polarized in spur reactions. this initial polarization rapidly increases with shortening of the aliphatic chain. Another finding is that a long-chain structure of these radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. Effects of phenolic and alkene additives in radiolysis of n-alkanes are examined. It is demonstrated that phenoxy radicals are produced in dissociative capture of electrons and alkane holes. Another route is a reaction of phenols with free hydrogen atoms. A rapid transfer of singlet correlation from the geminate radical ion pairs is responsible for unusual polarization patterns in the phenoxy and cyclohexadienyl radicals. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. 56 refs.

  20. Triplet State Delocalization in a Conjugated Porphyrin Dimer Probed by Transient Electron Paramagnetic Resonance Techniques

    PubMed Central

    2015-01-01

    The delocalization of the photoexcited triplet state in a linear butadiyne-linked porphyrin dimer is investigated by time-resolved and pulse electron paramagnetic resonance (EPR) with laser excitation. The transient EPR spectra of the photoexcited triplet states of the porphyrin monomer and dimer are characterized by significantly different spin polarizations and an increase of the zero-field splitting parameter D from monomer to dimer. The proton and nitrogen hyperfine couplings, determined using electron nuclear double resonance (ENDOR) and X- and Q-band HYSCORE, are reduced to about half in the porphyrin dimer. These data unequivocally prove the delocalization of the triplet state over both porphyrin units, in contrast to the conclusions from previous studies on the triplet states of closely related porphyrin dimers. The results presented here demonstrate that the most accurate estimate of the extent of triplet state delocalization can be obtained from the hyperfine couplings, while interpretation of the zero-field splitting parameter D can lead to underestimation of the delocalization length, unless combined with quantum chemical calculations. Furthermore, orientation-selective ENDOR and HYSCORE results, in combination with the results of density functional theory (DFT) calculations, allowed determination of the orientations of the zero-field splitting tensors with respect to the molecular frame in both porphyrin monomer and dimer. The results provide evidence for a reorientation of the zero-field splitting tensor and a change in the sign of the zero-field splitting D value. The direction of maximum dipolar coupling shifts from the out-of-plane direction in the porphyrin monomer to the vector connecting the two porphyrin units in the dimer. This reorientation, leading to an alignment of the principal optical transition moment and the axis of maximum dipolar coupling, is also confirmed by magnetophotoselection experiments. PMID:25914154

  1. Electron Paramagnetic Resonance and Photoluminescence Studies of LaMgAl11O19:Mn2+ Green Phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Chakradhar, R. P. S.; Rao, J. L.; Dhoble, S. J.; Kim, S. H.

    2014-09-01

    Manganese-doped LaMgAl11O19 powder has been prepared by an easy combustion method. Powder x-ray diffraction and scanning electron microscopy have been used to characterize the as-prepared phosphor. The electron paramagnetic resonance (EPR) spectrum of LaMgAl11O19:Mn2+ phosphor exhibits six-line hyperfine structure centered at g ≈ 1.973. The number of spins participating in resonance (N) and the paramagnetic susceptibility (χ) for the resonance signal at g ≈ 1.973 have been calculated as a function of temperature. The photoluminescence spectrum exhibits green emission at 516 nm, which is attributed to 4T1 → 6A1 transition of Mn2+ ions. From EPR and luminescence studies, it is observed that Mn2+ ions occupy Mg2+ sites and Mn2+ ions are located at tetrahedral sites in the prepared phosphors.

  2. Paramagnetic GaN:Fe and ferromagnetic (Ga,Fe)N : The relationship between structural, electronic, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Bonanni, Alberta; Kiecana, Michał; Simbrunner, Clemens; Li, Tian; Sawicki, Maciej; Wegscheider, Matthias; Quast, Martin; Przybylińska, Hanka; Navarro-Quezada, Andrea; Jakieła, Rafał; Wolos, Agnieszka; Jantsch, Wolfgang; Dietl, Tomasz

    2007-03-01

    We report on the metalorganic chemical vapor deposition of GaN:Fe and (Ga,Fe)N layers on c -sapphire substrates and their thorough characterization via high-resolution x-ray diffraction, transmission electron microscopy (TEM), spatially resolved energy dispersive x-ray spectroscopy (EDS), secondary-ion mass spectroscopy (SIMS), photoluminescence (PL), Hall-effect, electron-paramagnetic resonance (EPR), and magnetometry employing a superconducting quantum interference device (SQUID). A combination of TEM and EDS reveals the presence of coherent nanocrystals presumably FexN with the composition and lattice parameter imposed by the host. From both TEM and SIMS studies, it is stated that the density of nanocrystals and, thus the Fe concentration increases towards the surface. According to Hall effect measurements, electrons from residual donors are trapped by midgap Fe acceptor states in the limit of low iron content x≲0.4% , indicating that the concentration of Fe2+ ions increases at the expense of Fe ions in the 3+ charge state. This effect is witnessed by PL measurements as changes in the intensity of the Fe3+ -related intraionic transition, which can be controlled by codoping with Si donors and Mg acceptors. In this regime, EPR of Fe3+ ions and Curie-like magnetic susceptibility are observed. As a result of the spin-orbit interaction, Fe2+ does not produce any EPR response. However, the presence of Fe ions in the 2+ charge state may account for a temperature-independent Van Vleck-type paramagnetic signal that we observe by SQUID magnetometry. Surprisingly, at higher Fe concentrations, the electron density is found to increase substantially with the Fe content. The coexistence of electrons in the conduction band and Fe in the 3+ charge state is linked to the gradient in the Fe concentration. In layers with iron content x≳0.4% the presence of ferromagnetic signatures, such as magnetization hysteresis and spontaneous magnetization, have been detected. A set of

  3. Advanced Paramagnetic Resonance Spectroscopies of Iron-Sulfur Proteins: Electron Nuclear Double Resonance (ENDOR) and Electron Spin Echo Envelope Modulation (ESEEM)

    PubMed Central

    Cutsail, George E.; Telser, Joshua; Hoffman, Brian M.

    2015-01-01

    The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of Nature’s widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. PMID:25686535

  4. Lipid chain dynamics in stratum corneum studied by spin label electron paramagnetic resonance.

    PubMed

    Alonso, A; Meirelles, N C; Tabak, M

    2000-02-01

    The lipid chain motions in stratum corneum (SC) membranes have been studied through electron paramagnetic resonance (EPR) spectroscopy of stearic acid spin-labeled at the 5th, 12th and 16th carbon atom positions of the acyl chain. Lipids have been extracted from SC with a series of chloroform/methanol mixtures, in order to compare the molecular dynamics and the thermotropic behavior in intact SC, lipid-depleted SC (containing covalently bound lipids of the corneocyte envelope) and dispersion of extracted SC lipids. The segmental motion of 5- and 12-doxylstearic acid (5- and 12-DSA) and the rotational correlation time of 16-doxylstearic acid (16-DSA) showed that the envelope lipids are more rigid and the extracted lipids are more fluid than the lipids of the intact SC over the range of temperature measured. The lower fluidity observed for the corneocyte envelope, that may be caused mainly due to lipid-protein interactions, suggests a major contribution of this lipid domain to the barrier function of SC. Changes in the activation energy for reorientational diffusion of the 16-DSA spin label showed apparent phase transitions around 54 degrees C, for the three SC samples. Some lipid reorganization may occur in SC above 54 degrees C, in agreement with results reported from studies with several other techniques. This reorganization is sensitive to the presence of the extractable intercellular lipids, being different in the lipid-depleted sample as compared to native SC and lipid dispersion. The results contribute to the understanding of alkyl chain packing and mobility in the SC membranes, which are involved in the mechanisms that control the permeability of different compounds through skin, suggesting an important involvement of the envelope in the skin barrier.

  5. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    NASA Astrophysics Data System (ADS)

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  6. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    PubMed

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  7. Multiharmonic electron paramagnetic resonance for extended samples with both narrow and broad lines

    NASA Astrophysics Data System (ADS)

    Yu, Zhelin; Tseytlin, Mark; Eaton, Sandra S.; Eaton, Gareth R.

    2015-05-01

    Multiharmonic electron paramagnetic resonance spectroscopy was demonstrated for two samples with both narrow and broad lines: (i) α,γ-Bisdiphenylene-β-phenylallyl (BDPA) with ΔBpp of 0.85 G plus ultramarine blue with ΔBpp of 17 G, and (ii) a nitroxide radical immobilized in sucrose octaacetate. Modulation amplitudes up to 17 G at 41 kHz were generated with a rapid scan coil driver and Litz wire coils that provide uniform magnetic field sweeps over samples with heights of 5 mm. Data were acquired with a 2-D experiment in the Xepr software through the transient signal path of a Bruker E500T and digitized in quadrature with a Bruker SpecJet II. Signals at the modulation frequency and its harmonics were calculated by digital phase-sensitive detection. The number of harmonics with signal intensity greater than noise increases as the ratio of the modulation amplitude to the narrowest peak increases. Spectra reconstructed by the multiharmonic method from data obtained with modulation amplitudes up to five times the peak-to-peak linewidths of the narrowest features have linewidths that are broadened by up to only about 10% relative to linewidths in spectra obtained at low modulation amplitudes. The signal-to-noise improves with increasing modulation amplitude up to the point where the modulation amplitude is slightly larger than the linewidth of the narrowest features. If this high a modulation amplitude had been used in conventional methodology the linewidth of the narrowest features would have been severely broadened. The multiharmonic reconstruction methodology means that the selection of the modulation amplitude that can be used without spectral distortion is no longer tightly tied to the linewidth of the narrowest line.

  8. Thermoluminescence, electron paramagnetic resonance and optical absorption in natural and synthetic rhodonite crystals

    NASA Astrophysics Data System (ADS)

    Paião, J. R. B.; Watanabe, S.

    2008-10-01

    Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340°C TL peaks are observed; the difference occurs in their relative intensities, but only 340°C peak grows strongly for high doses. Al2O3 and Al2O3 + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4°C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn3+ in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe2+. It decays under heating up to 900°C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600°C.

  9. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    SciTech Connect

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  10. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    PubMed Central

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-01-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown. PMID:25362434

  11. Electron paramagnetic resonance studies on conformation states and metal ion exchange properties of vanadium bromoperoxidase

    SciTech Connect

    de Boer, E.; Boon, K.; Wever, R.

    1988-03-08

    An electron paramagnetic resonance (EPR) study was carried out to examine structural aspects of vanadium-containing bromoperoxidase from the brown seaweed Ascophyllum nodosum. At high pH, the reduced form of bromoperoxidase showed an apparently axially symmetric EPR signal with 16 hyperfine lines. When the pH was lowered, a new EPR spectrum was formed. When EPR spectra of the reduced enzyme were recorded in the pH range from 4.2 to 8.4, it appeared that these changes were linked to a functional group with an apparent pK/sub a/ of about 5.4. In D/sub 2/O this value for the pK/sub a/ was 5.3. It is suggested that these effects arise from protonation of histidine or aspartate/glutamate residues near the metal ion. The values for the isotropic hyperfine coupling constant of the reduced enzyme at both high and low pH are also consistent with a ligand field containing nitrogen and/or oxygen donor atoms. When reduced bromoperoxidase was dissolved in D/sub 2/O or H/sub 2//sup 17/O instead of H/sub 2//sup 16/O, vanadium (IV) hyperfine line widths were markedly affected, demonstrating that water is a ligand of the metal ion. Together with previous work these findings suggest that vanadium (IV) is not involved in catalytic turnover and confirm the model in which the vanadium (V) ion of the native enzyme only serves to bind both hydrogen peroxide and bromide. After excess vanadate was added to a homogeneous preparation of purified bromoperoxidase, the extent of vanadium bound to the protein increased from 0.5 to 1.1, with a concomitant enhancement of enzymic activity. Finally, it is demonstrated that both vanadate (VO/sub 4//sup 3 -/) and molybdate (MoO/sub 4//sup 2 -/) compete for the same site on apobromoperoxidase.

  12. Characterization of iron, manganese, and copper synthetic hydroxyapatites by electron paramagnetic resonance spectroscopy

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Wasowicz, T.; Howard, T.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.

  13. Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites.

    PubMed

    Desmet, Céline M; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria; Dong, Ruhong; Kmiec, Maciej M; Kobayashi, Kyo; Rychert, Kevin; Beun, Sébastien; Leprince, Julian G; Leloup, Gaëtane; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24 h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not

  14. Comparative electron paramagnetic resonance study of radical intermediates in turnip peroxidase isozymes.

    PubMed

    Ivancich, A; Mazza, G; Desbois, A

    2001-06-12

    The occurrence of isozymes in plant peroxidases is poorly understood. Turnip roots contain seven season-dependent isoperoxidases with distinct physicochemical properties. In the work presented here, multifrequency electron paramagnetic resonance spectroscopy has been used to characterize the Compound I intermediate obtained by the reaction of turnip isoperoxidases 1, 3, and 7 with hydrogen peroxide. The broad (2500 G) Compound I EPR spectrum of all three peroxidases was consistent with the formation of an exchange-coupled oxoferryl-porphyrinyl radical species. A dramatic pH dependence of the exchange interaction of the [Fe(IV)=O por(*+)] intermediate was observed for all three isoperoxidases and for a pH range of 4.5-7.7. This result provides substantial experimental evidence for previous proposals concerning the protein effect on the ferro- or antiferromagnetic character of the exchange coupling of Compound I based on model complexes. Turnip isoperoxidase 7 exhibited an unexpected pH effect related to the nature of the Compound I radical. At basic pH, a narrow radical species ( approximately 50 G) was formed together with the porphyrinyl radical. The g anisotropy of the narrow radical Delta(g) = 0.0046, obtained from the high-field (190 and 285 GHz) EPR spectrum, was that expected for tyrosyl radicals. The broad g(x) edge of the Tyr* spectrum centered at a low g(x) value (2.00660) strongly argues for a hydrogen-bonded tyrosyl radical in a heterogeneous microenvironment. The relationship between tyrosyl radical formation and the higher redox potential of turnip isozyme 7, as compared to that of isozyme 1, is discussed. PMID:11389600

  15. Application of Electron Paramagnetic Resonance (EPR) Oximetry to Monitor Oxygen in Wounds in Diabetic Models

    PubMed Central

    Desmet, Céline M.; Lafosse, Aurore; Vériter, Sophie; Porporato, Paolo E.; Sonveaux, Pierre; Dufrane, Denis; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    A lack of oxygen is classically described as a major cause of impaired wound healing in diabetic patients. Even if the role of oxygen in the wound healing process is well recognized, measurement of oxygen levels in a wound remains challenging. The purpose of the present study was to assess the value of electron paramagnetic resonance (EPR) oximetry to monitor pO2 in wounds during the healing process in diabetic mouse models. Kinetics of wound closure were carried out in streptozotocin (STZ)-treated and db/db mice. The pO2 was followed repeatedly during the healing process by 1 GHz EPR spectroscopy with lithium phthalocyanine (LiPc) crystals used as oxygen sensor in two different wound models: a full-thickness excisional skin wound and a pedicled skin flap. Wound closure kinetics were dramatically slower in 12-week-old db/db compared to control (db/+) mice, whereas kinetics were not statistically different in STZ-treated compared to control mice. At the center of excisional wounds, measurements were highly influenced by atmospheric oxygen early in the healing process. In pedicled flaps, hypoxia was observed early after wounding. While reoxygenation occurred over time in db/+ mice, hypoxia was prolonged in the diabetic db/db model. This observation was consistent with impaired healing and microangiopathies observed using intravital microscopy. In conclusion, EPR oximetry using LiPc crystals as the oxygen sensor is an appropriate technique to follow wound oxygenation in acute and chronic wounds, in normal and diabetic animals. Nevertheless, the technique is limited for measurements in pedicled skin flaps and cannot be applied to excisional wounds in which diffusion of atmospheric oxygen significantly affects the measurements. PMID:26659378

  16. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    PubMed

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  17. Application of Electron Paramagnetic Resonance (EPR) Oximetry to Monitor Oxygen in Wounds in Diabetic Models.

    PubMed

    Desmet, Céline M; Lafosse, Aurore; Vériter, Sophie; Porporato, Paolo E; Sonveaux, Pierre; Dufrane, Denis; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    A lack of oxygen is classically described as a major cause of impaired wound healing in diabetic patients. Even if the role of oxygen in the wound healing process is well recognized, measurement of oxygen levels in a wound remains challenging. The purpose of the present study was to assess the value of electron paramagnetic resonance (EPR) oximetry to monitor pO2 in wounds during the healing process in diabetic mouse models. Kinetics of wound closure were carried out in streptozotocin (STZ)-treated and db/db mice. The pO2 was followed repeatedly during the healing process by 1 GHz EPR spectroscopy with lithium phthalocyanine (LiPc) crystals used as oxygen sensor in two different wound models: a full-thickness excisional skin wound and a pedicled skin flap. Wound closure kinetics were dramatically slower in 12-week-old db/db compared to control (db/+) mice, whereas kinetics were not statistically different in STZ-treated compared to control mice. At the center of excisional wounds, measurements were highly influenced by atmospheric oxygen early in the healing process. In pedicled flaps, hypoxia was observed early after wounding. While reoxygenation occurred over time in db/+ mice, hypoxia was prolonged in the diabetic db/db model. This observation was consistent with impaired healing and microangiopathies observed using intravital microscopy. In conclusion, EPR oximetry using LiPc crystals as the oxygen sensor is an appropriate technique to follow wound oxygenation in acute and chronic wounds, in normal and diabetic animals. Nevertheless, the technique is limited for measurements in pedicled skin flaps and cannot be applied to excisional wounds in which diffusion of atmospheric oxygen significantly affects the measurements. PMID:26659378

  18. Electron paramagnetic resonance method for the quantitative assay of ketoconazole in pharmaceutical preparations.

    PubMed

    Morsy, Mohamed A; Sultan, Salah M; Dafalla, Hatim

    2009-08-15

    In this study, electron paramagnetic resonance (EPR) is used, for the first time, as an analytical tool for the quantitative assay of ketoconazole (KTZ) in drug formulations. The drug was successfully characterized by the prominent signals by two radical species produced as a result of its oxidation with 400 microg/mL cerium(IV) in 0.10 mol dm(-3) sulfuric acid. The EPR signal of the reaction mixture was measured in eight capillary tubes housed in a 4 mm EPR sample tube. The radical stability was investigated by obtaining multi-EPR scans of each KTZ sample solution at time intervals of 2.5 min of the reaction mixing time. The plot of the disappearance of the radical species show that the disappearance is apparently of zero order. The zero-time intercept of the EPR signal amplitude, which should be proportional to the initial radical concentration, is linear in the sample concentration in the range between 100 and 400 microg/mL, with a correlation coefficient, r, of 0.999. The detection limit was determined to be 11.7 +/- 2.5 microg/mL. The method newly adopted was fully validated following the United States Pharmacopeia (USP) monograph protocol in both the generic and the proprietary forms. The method is very accurate, such that we were able to measure the concentration at confidence levels of 99.9%. The method was also found to be suitable for the assay of KTZ in its tablet and cream pharmaceutical preparations, as no interferences were encountered from excipients of the proprietary drugs. High specificity, simplicity, and rapidity are the merits of the present method compared to the previously reported methods.

  19. Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites

    PubMed Central

    Desmet, Céline M.; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria; Dong, Ruhong; Kmiec, Maciej M.; Kobayashi, Kyo; Rychert, Kevin; Beun, Sébastien; Leprince, Julian G.; Leloup, Gaëtane; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not

  20. Methodology for increased precision in saturation transfer electron paramagnetic resonance studies of rotational dynamics.

    PubMed Central

    Squier, T C; Thomas, D D

    1986-01-01

    Microsecond rotational motions of nitroxide spin labels are measured primarily with saturation transfer electron paramagnetic resonance (ST-EPR). In the present study we have used model system experiments to quantitatively evaluate different ST-EPR spectral parameters, both in-phase and out-of-phase, with an emphasis on techniques for suppressing the interference from weakly immobilized probes. Analyses of both systematic and random errors show that maximum sensitivity to small changes in correlation time and minimum ambiguity of interpretation are best achieved by combining measurements of both spectral line-shape, i.e., the ratio of line-heights, and spectral intensity, i.e., the absolute amplitude of either a position within a spectrum or a spectral integral. Errors in the measurement of correlation times for the two types of parameters tend to be complementary. Integrated intensity parameters are particularly useful in measuring microsecond probe motions in the presence of weakly immobilized components. We confirm that integrated intensity parameters are sometimes effective in rejecting signals from weakly immobilized probes, but the effectiveness of this rejection is more limited than previously supposed and depends on the type of parameter being measured. We describe procedures for evaluating and minimizing errors due to weakly immobilized probes, emphasizing the advantages of a new kind of intensity parameter obtained from integrated in-phase spectra. We provide detailed descriptions of experimental procedures, along with calibration plots of the most useful spectral parameters vs. rotational correlation time, which should make it possible for workers in other laboratories, using different instruments and sample geometries, to reproduce spectra quantitatively and to make accurate correlation time measurements. PMID:3013330

  1. Dielectric microwave resonators in TE011 cavities for electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mett, Richard R.; Sidabras, Jason W.; Golovina, Iryna S.; Hyde, James S.

    2008-09-01

    The coupled system of the microwave cylindrical TE011 cavity and the TE01δ dielectric modes has been analyzed in order to determine the maximum achievable resonator efficiency parameter of a dielectric inserted into a cavity, and whether this value can exceed that of a dedicated TE01δ mode dielectric resonator. The frequency, Q value, and resonator efficiency parameter Λ for each mode of the coupled system were calculated as the size of the dielectric was varied. Other output parameters include the relative field magnitudes and phases. Two modes are found: one with fields in the dielectric parallel to the fields in the cavity center and the other with antiparallel fields. Results closely match those from a computer program that solves Maxwell's equations by finite element methods. Depending on the relative natural resonance frequencies of the cavity and dielectric, one mode has a higher Q value and correspondingly lower Λ than the other. The mode with the higher Q value is preferentially excited by a coupling iris or loop in or near the cavity wall. However, depending on the frequency separation between modes, either can be excited in this way. A relatively narrow optimum is found for the size of the insert that produces maximum signal for both modes simultaneously. It occurs when the self-resonance frequencies of the two resonators are nearly equal. The maximum signal is almost the same as that of the dedicated TE01δ mode dielectric resonator alone, Λ ≅40 G/W1/2 at X-band for a KTaO3 crystal. The cavity is analogous to the second stage of a two-stage coupler. In general, there is no electron paramagnetic resonance (EPR) signal benefit by use of a second stage. However, there is a benefit of convenience. A properly designed sample-mounted resonator inserted into a cavity can give EPR signals as large as what one would expect from the dielectric resonator alone.

  2. In Situ Monitoring of Diffusion of Guest Molecules in Porous Media Using Electron Paramagnetic Resonance Imaging.

    PubMed

    Spitzbarth, Martin; Lemke, Tobias; Drescher, Malte

    2016-01-01

    A method is demonstrated to monitor macroscopic translational diffusion using electron paramagnetic resonance (EPR) imaging. A host-guest system with nitroxide spin probe 3-(2-Iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (IPSL) as a guest inside the periodic mesoporous organosilica (PMO) aerogel UKON1-GEL as a host and ethanol as a solvent is used as an example to describe the protocol. Data is shown from a previous publication, where the protocol has been applied to both IPSL and Tris(8-carboxy-2,2,6,6-perdeutero-tetramethyl-benzo[1,2-d:4,5-d']bis(1,3)dithiole) methyl (Trityl) as guest molecules and UKON1-GEL and SILICA-GEL as host systems. A method is shown to prepare aerogel samples that cannot be synthesized directly in the sample tube for measurement due to a size change during synthesis. The aerogel is attached to sample tubes using heat shrink tubing and a pressure cooker to reach the necessary temperature without evaporating the solvent in the process. The method does not assume a clearly defined initial distribution of guest molecules at the start of the measurement. Instead, it requires a reservoir on top of the aerogel and experimentally determines the influx rate during data analysis. The diffusion is monitored continually over a period of 20 hr by recording the 1d spin density profile within the sample. The spectrometer settings for the imaging experiment are described quantitatively. Data analysis software is provided to take the resonator sensitivity profile into account and to numerically solve the diffusion equation. The software determines the macroscopic translational diffusion coefficient by least square minimization of the difference between the experiment and the numerical solution of the diffusion equation. PMID:27685166

  3. Intramolecular electron transfer versus substrate oxidation in lactoperoxidase: investigation of radical intermediates by stopped-flow absorption spectrophotometry and (9-285 GHz) electron paramagnetic resonance spectroscopy.

    PubMed

    Fielding, Alistair J; Singh, Rahul; Boscolo, Barbara; Loewen, Peter C; Ghibaudi, Elena M; Ivancich, Anabella

    2008-09-16

    We have combined the information obtained from rapid-scan electronic absorption spectrophotometry and multifrequency (9-295 GHz) electron paramagnetic resonance (EPR) spectroscopy to unequivocally determine the electronic nature of the intermediates in milk lactoperoxidase as a function of pH and to monitor their reactivity with organic substrates selected by their different accessibilities to the heme site. The aim was to address the question of the putative catalytic role of the protein-based radicals. This experimental approach allowed us to discriminate between the protein-based radical intermediates and [Fe(IV)=O] species, as well as to directly detect the oxidation products by EPR. The advantageous resolution of the g anisotropy of the Tyr (*) EPR spectrum at high fields showed that the tyrosine of the [Fe(IV)=O Tyr (*)] intermediate has an electropositive and pH-dependent microenvironment [g(x) value of 2.0077(0) at pH >or= 8.0 and 2.0066(2) at 4.0 electron transfer (favored at pH 8) not involving the tyrosyl radical, the formation of which competed with the substrate oxidation at pH 5. In contrast, the very efficient reaction with ABTS at pH 5 is consistent with [Fe(IV)=O Tyr (*)] being the oxidizing species. Accordingly, the identification of the ABTS binding site by X-ray crystallography may be a valuable tool in rational drug design.

  4. Biophysical Characterisation of Globins and Multi-Heme Cytochromes Using Electron Paramagnetic Resonance and Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Desmet, Filip

    Heme proteins of different families were investigated in this work, using a combination of pulsed and continuous-wave electron paramagnetic resonance (EPR) spectroscopy, optical absorption spectroscopy, resonance Raman spectroscopy and laser flash photolysis. The first class of proteins that were investigated, were the globins. The globin-domain of the globin-coupled sensor of the bacterium Geobacter sulfurreducens was studied in detail using different pulsed EPR techniques (HYSCORE and Mims ENDOR). The results of this pulsed EPR study are compared with the results of the optical investigation and the crystal structure of the protein. The second globin, which was studied, is the Protoglobin of Methanosarcina acetivorans, various mutants of this protein were studied using laser flash photolysis and Raman spectroscopy to unravel the link between this protein's unusual structure and its ligand-binding kinetics. In addition to this, the CN -bound form of this protein was investigated using EPR and the influence of the strong deformation of the heme on the unusual low gz values is discussed. Finally, the neuroglobins of three species of fishes, Danio rerio, Dissostichus mawsoni and Chaenocephalus aceratus are studied. The influence of the presence or absence of two cysteine residues in the C-D and D-region of the protein on the EPR spectrum, and the possible formation of a disulfide bond is studied. The second group of proteins that were studied in this thesis belong to the family of the cytochromes. First the Mouse tumor suppressor cytochrome b561 was studied, the results of a Raman and EPR investigation are compared to the Human orthologue of the protein. Secondly, the tonoplast cytochrome b561 of Arabidopsis was investigated in its natural form and in two double-mutant forms, in which the heme at the extravesicular side was removed. The results of this investigation are then compared with two models in literature that predict the localisation of the hemes in this

  5. Scaling craters in carbonates: Electron paramagnetic resonance analysis of shock damage

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1994-01-01

    Carbonate samples from the 8.9-Mt nuclear (near-surface explosion) crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron paramagnetic resonance (EPR). Samples from below the OAK apparent crater floor were obtained from six boreholes, as well as ejecta recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to the spectra of Solenhofen and Kaibab limestone, which had been skocked to known pressures. Analysis of the OAK Crater borehole samples has identified a thin zone of allocthonous highly shocked (10-13 GPa) carbonate material underneath the apparent crater floor. This approx. 5- to 15-m-thick zone occurs at a maximum depth of approx. 125 m below current seafloor at the borehole, sited at the initial position of the OAK explosive, and decreases in depth towards the apparent crater edge. Because this zone of allocthonous shocked rock delineates deformed rock below, and a breccia of mobilized sand and collapse debris above, it appears to outline the transient crater. The transient crater volume inferred in this way is found to by 3.2 +/- 0.2 times 10(exp 6)cu m, which is in good agreement with a volume of 5.3 times 10(exp 6)cu m inferred from gravity scaling of laboratory experiments. A layer of highly shocked material is also found near the surface outside the crater. The latter material could represent a fallout ejecta layer. The ejecta boulders recovered from the present crater floor experienced a range of shock pressures from approx. 0 to 15 GPa with the more heavily shocked samples all occurring between radii of 360 and approx. 600 m. Moreover, the fossil content, lithology and Sr isotopic composition all demonstrate that the initial position of the bulk of the heavily shocked rock ejecta sampled was originally near surface rock at initial depths in the 32 to 45-m depth (below sea level) range. The EPR technique is also sensitive to

  6. Electron paramagnetic resonance in irradiated fingernails: variability of dose dependence and possibilities of initial dose assessment.

    PubMed

    Reyes, R A; Romanyukha, Alexander; Olsen, C; Trompier, F; Benevides, L A

    2009-08-01

    The results of electron paramagnetic resonance (EPR) measurements in irradiated fingernails are presented. In total, 83 samples of different fingernails were studied. Five different groups of samples were selected based on the collection time of fingernail samples, their level of mechanical stress, and the number and size of clippings: (1) recently (<24 h) cut, irradiated and measured with EPR without any treatment of samples, and with rigorous control of size and number of clippings (stressed-fresh, controlled); (2) recently (<24 h) cut, irradiated and measured with EPR after application of a special treatment (10 min of water soaking, 5 min of drying time) to reduce the mechanical stress caused by cutting the samples, and with rigorous control of size and number of clippings (unstressed-fresh, controlled); (3) previously (>24 h) cut, stored at room temperature, additionally cut into small pieces immediately prior to study, irradiated and measured with EPR without any treatment of samples, and with rigorous control of size and number of clippings (stressed-old, controlled); (4) previously (>24 h) cut, stored at room temperature, additionally cut into small pieces immediately prior to the study, irradiated and measured with EPR after application of a special treatment to reduce mechanical stress caused by cut, and with rigorous control of size and number of clippings (unstressed-old, controlled); and (5) recently (<24 h) cut, irradiated and measured with EPR after application of a special treatment to reduce the mechanical stress caused by cut, and without rigorous control of size and number of clippings (unstressed-fresh, uncontrolled). Except for the fifth selected group, variability of the dose dependence inside all groups was found to be not statistically significant, although the variability among the different groups was significant. Comparison of the mean dose dependences obtained for each group allowed selection of key factors responsible for radiation

  7. Single-crystal electron paramagnetic resonance study of cytochrome c3 from Desulfovibrio desulfuricans Norway Strain. Assignment of the heme midpoint redox potentials.

    PubMed

    Guigliarelli, B; Bertrand, P; More, C; Haser, R; Gayda, J P

    1990-11-01

    A single crystal of cytochrome c3 from Desulfovibrio desulfuricans Norway is studied by electron paramagnetic resonance at low temperature. The orientation of the principal axis corresponding to the largest g value is determined for the 12 heme groups in the crystal unit cell. The comparison of these directions to the normals to the heme planes, determined from the crystallographic data at 2.5 A resolution, gives strong evidence for the following assignment of the midpoint redox potentials to the heme groups H1 to H4, defined in the three-dimensional structure: -150 mV is assigned to H3, -300 mV to H4, -330 mV to H1 and -355 mV to H2. This assignment is in agreement with a partial correspondence previously established from an independent study performed on cytochrome c3 in solution. PMID:2172551

  8. Electron Paramagnetic Resonance of MANGANESE(2+), COPPER(2+) and GADOLINIUM(3+) Ions Doping Some - and - Magnetic Single Crystals.

    NASA Astrophysics Data System (ADS)

    Kahrizi, Mojtaba

    X-band EPR measurements on several Mn('2+)-doped single crystals have been made at room and low temperatures. The spin-Hamiltonian parameters are evaluated from the data using a rigorous least-squares-fitting program suitable for electron-nuclear spin coupled systems. The signs of the parameters are determined from the observed relative intensities of EPR lines at liquid helium temperature. The temperature variation of zero-field splitting parameter b(,2)('0), as well as that of the linewidths have been studied. Using the shift of g-values in the paramagnetic Ni('2+) lattices, from those in the corresponding isostructural diagmagnetic lattices, the exchange constant between Mn('2+) -Ni('2+) ions in nickel salts has been estimated. For the case of hosts containing paramagnetic Co('2+) ions the spin-lattice relaxation time was estimated at room and liquid nitrogen temperatures. X-band EPR measurements on Cu('2+) in copper pentakisantipyrine perchlorate were performed at room and low temperatures. The principal values of g and A tensors and their direction cosines were evaluated using a rigorous least-squares fitting technique. Finally, X-band EPR studies of Gd('3+)-doped single crystals of LiYF(,4) and LiYbF(,4) have been made at room and low temperatures. In the case of paramagnetic host LiYbF(,4) the EPR lines broadened very fast as the temperature was lowered from room temperature, and below 270 K no EPR lines were observed. The parameters were evaluated using a least squares fitting method. The temperature variation of the parameters was studied. Using the g-shift in LiYbF(,4) from its value in LiYF(,4) the exchange constant between Gd('3+) and its paramagnetic neighbor ions Yb('3+), was estimated.

  9. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    NASA Astrophysics Data System (ADS)

    Pham, Chuyen V.; Krueger, Michael; Eck, Michael; Weber, Stefan; Erdem, Emre

    2014-03-01

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g = 2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  10. Electron Paramagnetic Resonance and Electron-Nuclear Double Resonance Studies of the Reactions of Cryogenerated Hydroperoxoferric–Hemoprotein Intermediates

    PubMed Central

    2015-01-01

    The fleeting ferric peroxo and hydroperoxo intermediates of dioxygen activation by hemoproteins can be readily trapped and characterized during cryoradiolytic reduction of ferrous hemoprotein–O2 complexes at 77 K. Previous cryoannealing studies suggested that the relaxation of cryogenerated hydroperoxoferric intermediates of myoglobin (Mb), hemoglobin, and horseradish peroxidase (HRP), either trapped directly at 77 K or generated by cryoannealing of a trapped peroxo-ferric state, proceeds through dissociation of bound H2O2 and formation of the ferric heme without formation of the ferryl porphyrin π-cation radical intermediate, compound I (Cpd I). Herein we have reinvestigated the mechanism of decays of the cryogenerated hydroperoxyferric intermediates of α- and β-chains of human hemoglobin, HRP, and chloroperoxidase (CPO). The latter two proteins are well-known to form spectroscopically detectable quasistable Cpds I. Peroxoferric intermediates are trapped during 77 K cryoreduction of oxy Mb, α-chains, and β-chains of human hemoglobin and CPO. They convert into hydroperoxoferric intermediates during annealing at temperatures above 160 K. The hydroperoxoferric intermediate of HRP is trapped directly at 77 K. All studied hydroperoxoferric intermediates decay with measurable rates at temperatures above 170 K with appreciable solvent kinetic isotope effects. The hydroperoxoferric intermediate of β-chains converts to the S = 3/2 Cpd I, which in turn decays to an electron paramagnetic resonance (EPR)-silent product at temperature above 220 K. For all the other hemoproteins studied, cryoannealing of the hydroperoxo intermediate directly yields an EPR-silent majority product. In each case, a second follow-up 77 K γ-irradiation of the annealed samples yields low-spin EPR signals characteristic of cryoreduced ferrylheme (compound II, Cpd II). This indicates that in general the hydroperoxoferric intermediates relax to Cpd I during cryoanealing at low temperatures, but

  11. Cathodoluminescence, laser ablasion inductively coupled plasma mass spectrometry, electron probe microanalysis and electron paramagnetic resonance analyses of natural sphalerite

    USGS Publications Warehouse

    Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.

    2008-01-01

    Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (<10 ppm) and Ag (<1 ppm), and they are enriched in Tl (1-30 ppm) and Pb (80-1500 ppm). Strong green CL is produced by sphalerite from the Balmat-Edwards district. Amber, lime-green and red-orange sphalerite produced weak orange-red CL at room temperatures, with several emission bands centred at 490, 580, 630, 680, 745, with ??max at 630 nm being the strongest. These emission bands are well correlated with trace quantities of Sn, In, Cu and Mn activators. Sphalerite from the famous Ogdensburg and Franklin mines exhibited brilliant deep blue and orange CL colours and the blue CL may be related to Se. Cathodoluminescence behaviour of sphalerite serves to characterise ore

  12. Photoactivation of the flavin cofactor in Xenopus laevis (6–4) photolyase: Observation of a transient tyrosyl radical by time-resolved electron paramagnetic resonance

    PubMed Central

    Weber, Stefan; Kay, Christopher W. M.; Mögling, Heike; Möbius, Klaus; Hitomi, Kenichi; Todo, Takeshi

    2002-01-01

    The light-induced electron transfer reaction of flavin cofactor photoactivation in Xenopus laevis (6–4) photolyase has been studied by continuous-wave and time-resolved electron paramagnetic resonance spectroscopy. When the photoactivation is initiated from the fully oxidized form of the flavin, a neutral flavin radical is observed as a long-lived paramagnetic intermediate of two consecutive single-electron reductions under participation of redox-active amino acid residues. By time-resolved electron paramagnetic resonance, a spin-polarized transient radical-pair signal was detected that shows remarkable differences to the signals observed in the related cyclobutane pyrimidine dimer photolyase enzyme. In (6–4) photolyase, a neutral tyrosine radical has been identified as the final electron donor, on the basis of the characteristic line width, hyperfine splitting pattern, and resonance magnetic field position of the tyrosine resonances of the transient radical pair. PMID:11805294

  13. Cryogen-free superconducting magnet system for multifrequency electron paramagnetic resonance up to 12.1 T

    NASA Astrophysics Data System (ADS)

    Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny

    2006-03-01

    Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.

  14. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Wassall, Cynthia D.

    The endothelium is a single layer of cells lining the arteries and is involved in many physiological reactions which are responsible for vascular tone. Free radicals are important participants in these chemical reactions in the endothelium. Here we quantify free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic resonance (EPR). In all of the experiments in this thesis, we use a novel EPR spin trapping technique that has been developed for tissue segments. EPR spin trapping is often considered the 'gold standard' in reactive oxygen species (ROS) detection because of its sensitivity and non-invasive nature. In all experiments, tissue was placed in physiological saline solution with 190-mM PBN (N-tert -butyl-α-phenylnitrone), 10% by volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for between 30 minutes up to 2 hours at 37°C while gently being stirred. Tissue and supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis. In our experiments, the EPR spectra were normalized with respect to tissue volume. Conducting experiments at liquid nitrogen temperature leads to some experimental advantages. The freezing of the spin adducts renders them stable over a longer period, which allows ample time to analyze tissue samples for ROS. The dielectric constant of ice is greatly reduced over its liquid counterpart; this property of water enables larger sample volumes to be inserted into the EPR cavity without overloading it and leads to enhanced signal detection. Due to Maxwell-Boltzmann statistics, the population difference goes up as the temperature goes down, so this phenomenon enhances the signal intensity as well. With the 'gold standard' assertion in mind, we investigated whether slicing tissue to assay ROS that is commonly used in fluorescence experiments will show more free radical generation than tissue of a similar volume that remains unsliced. Sliced tissue exhibited a 76

  15. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Wassall, Cynthia D.

    The endothelium is a single layer of cells lining the arteries and is involved in many physiological reactions which are responsible for vascular tone. Free radicals are important participants in these chemical reactions in the endothelium. Here we quantify free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic resonance (EPR). In all of the experiments in this thesis, we use a novel EPR spin trapping technique that has been developed for tissue segments. EPR spin trapping is often considered the 'gold standard' in reactive oxygen species (ROS) detection because of its sensitivity and non-invasive nature. In all experiments, tissue was placed in physiological saline solution with 190-mM PBN (N-tert -butyl-α-phenylnitrone), 10% by volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for between 30 minutes up to 2 hours at 37°C while gently being stirred. Tissue and supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis. In our experiments, the EPR spectra were normalized with respect to tissue volume. Conducting experiments at liquid nitrogen temperature leads to some experimental advantages. The freezing of the spin adducts renders them stable over a longer period, which allows ample time to analyze tissue samples for ROS. The dielectric constant of ice is greatly reduced over its liquid counterpart; this property of water enables larger sample volumes to be inserted into the EPR cavity without overloading it and leads to enhanced signal detection. Due to Maxwell-Boltzmann statistics, the population difference goes up as the temperature goes down, so this phenomenon enhances the signal intensity as well. With the 'gold standard' assertion in mind, we investigated whether slicing tissue to assay ROS that is commonly used in fluorescence experiments will show more free radical generation than tissue of a similar volume that remains unsliced. Sliced tissue exhibited a 76

  16. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM).

    PubMed

    Cutsail, George E; Telser, Joshua; Hoffman, Brian M

    2015-06-01

    The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

  17. Electron-paramagnetic-resonance study of the Sn DX center in direct-gap Ga0.69Al0.31As

    NASA Astrophysics Data System (ADS)

    von Bardeleben, H. J.; Bourgoin, J. C.; Basmaji, P.; Gibart, P.

    1989-09-01

    An electron-paramagnetic-resonance study of the Sn-related DX center in direct-gap Ga0.69Al0.31As shows that the DX center can be transformed by photoexcitation into an excited paramagnetic state, which is metastable at 4 K. This excited state has the characteristics of a strain-split T2 state; its asymmetric line can be decomposed into two Gaussians with the parameters g1=1.92,ΔB1=500 G and g2=1.95,ΔB2=200 G. The photoexcitation spectrum of this paramagnetic state, which is of the Lucovsky type with a threshold at 0.8 eV, is interpreted as an internal A1-T2 transition. No paramagnetic spectrum associated with the ground state of DX has been observed.

  18. Applications of electron paramagnetic resonance spectroscopy to study interactions of iron proteins in cells with nitric oxide

    NASA Astrophysics Data System (ADS)

    Cammack, R.; Shergill, J. K.; Ananda Inalsingh, V.; Hughes, Martin N.

    1998-12-01

    Nitric oxide and species derived from it have a wide range of biological functions. Some applications of electron paramagnetic resonance (EPR) spectroscopy are reviewed, for observing nitrosyl species in biological systems. Nitrite has long been used as a food preservative owing to its bacteriostatic effect on spoilage bacteria. Nitrosyl complexes such as sodium nitroprusside, which are added experimentally as NO-generators, themselves produce paramagnetic nitrosyl species, which may be seen by EPR. We have used this to observe the effects of nitroprusside on clostridial cells. After growth in the presence of sublethal concentrations of nitroprusside, the cells show they have been converted into other, presumably less toxic, nitrosyl complexes such as (RS) 2Fe(NO) 2. Nitric oxide is cytotoxic, partly due to its effects on mitochondria. This is exploited in the destruction of cancer cells by the immune system. The targets include iron-sulfur proteins. It appears that species derived from nitric oxide such as peroxynitrite may be responsible. Addition of peroxynitrite to mitochondria led to depletion of the EPR-detectable iron-sulfur clusters. Paramagnetic complexes are formed in vivo from hemoglobin, in conditions such as experimental endotoxic shock. This has been used to follow the course of production of NO by macrophages. We have examined the effects of suppression of NO synthase using biopterin antagonists. Another method is to use an injected NO-trapping agent, Fe-diethyldithiocarbamate (Fe-DETC) to detect accumulated NO by EPR. In this way we have observed the effects of depletion of serum arginine by arginase. In brains from victims of Parkinson's disease, a nitrosyl species, identified as nitrosyl hemoglobin, has been observed in substantia nigra. This is an indication for the involvement of nitric oxide or a derived species in the damage to this organ.

  19. Electron paramagnetic resonance spectroscopy of Cr3+ in hexagonal Cs2NaGaF6 crystals

    NASA Astrophysics Data System (ADS)

    Vrielinck, H.; Khaidukov, N. M.; Callens, F.; Matthys, P.

    Powder samples of hydrothermally grown Cr3+ -doped Cs-2 NaGaF6 crystals have been investigated with electron paramagnetic resonance spectroscopy at X - (9.5 GHz) and Q -band (34 GHz). Analysis of the spectra clearly demonstrates that there are two distinct Cr3+ centres in the Cs2NaGaF6 crystal, having nearly identical g factors, but differing largely from the viewpoint of their zero field splitting. By using the Cr-53 hyperfine spectra observed with electron nuclear double resonance spectroscopy, it is deduced that these centres have opposite signs for the zero field splitting. The spectroscopic properties of the Cr3+ centres in the isostructural Cs2NaGaF6 and Cs2NaAlF6 crystals are compared and discussed.

  20. [Electron paramagnetic resonance determination of ceruloplasmin concentration in the blood of patients for the diagnosis of urological cancer diseases].

    PubMed

    Ibragimova, M I; Chushnikov, A I; Moiseev, V N; Petukhov, V Iu; Zheglov, E P; Pogorel'tsev, V I; Khardina, N B

    2010-04-01

    The electron paramagnetic resonance technique was used to study the venous blood levels of ceruloplasmin (CP) in 93 cancer patients with Stages I-IV malignancies of the urinary bladder and kidneys. Two groups were selected as a control; one of them comprised 44 donors who were considered to be apparently healthy and the other included 32 outpatients, some of whom had noncancer diseases. It has been established that in urological cancer, the level of the paramagnetic phase of Cu2+ -CP may vary in the wide range: from the lower to exceeding upper normal range in noncancer disease. The content of Cu2+ -CP does not virtually depend on the site and differentiation of a tumor. A correlation between the blood concentration of Cu2+ -CP and erythrocyte sedimentation rate (ESR) in urological cancer patients has been considered. Determination of CP levels at the ESR exceeding the normal values may be expedient for the early diagnosis of cancer and also an addition to the biological individual screening of patients in the preoperative period to choose the correct and effective treatment tactics.

  1. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    PubMed

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  2. Image Resolution in Scanning Transmission Electron Microscopy

    SciTech Connect

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  3. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  4. Site selective substitution Pt for Ti in KTiOPO{sub 4}:Ga crystals revealed by electron paramagnetic resonance

    SciTech Connect

    Grachev, V.; Meyer, M.; Jorgensen, J.; Malovichko, G.; Hunt, A. W.

    2014-07-28

    Electron Paramagnetic Resonance at low temperatures has been used to characterize potassium titanyl phosphate (KTiOPO{sub 4}) single crystals grown by different techniques. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Platinum impurities act as electron traps in KTiOPO{sub 4} creating Pt{sup 3+} centers. Two different Pt{sup 3+} centers were observed, Pt(A) and Pt(D). The Pt(A) centers are dominant in undoped samples, whereas Pt(D)—in Ga-doped KTP crystals. Superhyperfine structure registered for Pt(D) centers was attributed to interactions of platinum electrons with {sup 39}K and two {sup 31}P nuclei in their surroundings. In both Pt(A) and Pt(D) centers, Pt{sup 3+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions. The site selective substitution can be controlled by the Ga-doping.

  5. Site selective substitution Pt for Ti in KTiOPO4:Ga crystals revealed by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Grachev, V.; Meyer, M.; Jorgensen, J.; Hunt, A. W.; Malovichko, G.

    2014-07-01

    Electron Paramagnetic Resonance at low temperatures has been used to characterize potassium titanyl phosphate (KTiOPO4) single crystals grown by different techniques. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Platinum impurities act as electron traps in KTiOPO4 creating Pt3+ centers. Two different Pt3+ centers were observed, Pt(A) and Pt(D). The Pt(A) centers are dominant in undoped samples, whereas Pt(D)—in Ga-doped KTP crystals. Superhyperfine structure registered for Pt(D) centers was attributed to interactions of platinum electrons with 39K and two 31P nuclei in their surroundings. In both Pt(A) and Pt(D) centers, Pt3+ ions substitute for Ti4+ ions, but with a preference to one of two electrically distinct crystallographic positions. The site selective substitution can be controlled by the Ga-doping.

  6. Effect of electron scavengers on the formation of paramagnetic species upon radiolysis of polystyrene and its low-molecular-weight analogs

    SciTech Connect

    Zezin, A.A.; Fel`dman, V.I.; Sukhov, F.F.

    1995-05-01

    The effect of electron scavengers on the composition and the yields of paramagnetic species upon the radiolysis of polystyrene was examined. Various mechanisms of the reactions of radical cations (holes) in low-molecular-weight aromatic hydrocarbons and polystyrene are discussed. The dimeric radical cations were found to be trapped in polystyrene and benzene irradiated in the presence of electron scavengers at 77 K. The yield of paramagnetic species was shown to increase markedly in the presence of small amounts (<1%) of chloroform of benzyl chloride. The results obtained show that the ionic processes make a large contribution to the formation of paramagnetic species. It is concluded that the radiation resistance of polystyrene is due not only to its chemical structure, but to the association of phenyl rings in the solid polymer.

  7. X-Band Rapid-Scan Electron Paramagnetic Resonance of Radiation-Induced Defects in Tooth Enamel.

    PubMed

    Yu, Zhelin; Romanyukha, Alexander; Eaton, Sandra S; Eaton, Gareth R

    2015-08-01

    X-band rapid-scan electron paramagnetic resonance (EPR) spectra from tooth enamel samples irradiated with doses of 0.5, 1 and 10 Gy had substantially improved signal-to-noise relative to conventional continuous wave EPR. The radiation-induced signal in a 60 mg of a tooth enamel sample irradiated with a 0.5 Gy dose was readily characterized in spectra recorded with 34 min data acquisition times. The coefficient of variance of the calculated dose for a 1 Gy irradiated sample, based on simulation of the first-derivative spectra for three replicates as the sum of native and radiation-induced signals, was 3.9% for continuous wave and 0.4% for rapid scan.

  8. Electron paramagnetic resonance spectral study of [Mn(acs)2(2-pic)2(H2O)2] single crystals

    NASA Astrophysics Data System (ADS)

    Kocakoç, Mehpeyker; Tapramaz, Recep

    2016-03-01

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn+2 ion complex with mixed ligand, [Mn(acs)2(2-pic)2(H2O)2], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that the complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.

  9. Theoretical and electron paramagnetic resonance studies of hyperfine interaction in nitrogen doped 4H and 6H SiC

    SciTech Connect

    Szász, K.; Gali, A.

    2014-02-21

    Motivated by recent experimental findings on the hyperfine signal of nitrogen donor (N{sub C}) in 4 H and 6 H SiC, we calculate the hyperfine tensors within the framework of density functional theory. We find that there is negligible hyperfine coupling with {sup 29}Si isotopes when N{sub C} resides at h site both in 4 H and 6 H SiC. We observe measurable hyperfine coupling to a single {sup 29}Si at k site in 4 H SiC and k{sub 1} site in 6 H SiC. Our calculations unravel that such {sup 29}Si hyperfine coupling does not occur at k{sub 2} site in 6 H SiC. Our findings are well corroborated by our new electron paramagnetic resonance studies in nitrogen doped 6 H SiC.

  10. In vivo pO2 imaging of tumors: Oxymetry with very low frequency Electron Paramagnetic Resonance

    PubMed Central

    Epel, Boris; Halpern, Howard J.

    2016-01-01

    For over a century it has been known that tumor hypoxia, regions of a tumor with low levels of oxygenation, are important contributors to tumor resistance to radiation therapy and failure of radiation treatment of cancer. Recently, using novel pulse electron paramagnetic resonance (EPR) oxygen imaging, near absolute images of the partial pressure of oxygen (pO2) in tumors of living animals have been obtained. We discuss here the means by which EPR signals can be obtained in living tissues and tumors. We review development of EPR methods to image the pO2 in tumors and the potential for the pO2 image acquisition in human subjects. PMID:26477263

  11. X-Band Rapid-Scan Electron Paramagnetic Resonance of Radiation-Induced Defects in Tooth Enamel

    PubMed Central

    Yu, Zhelin; Romanyukha, Alexander; Eaton, Sandra S.; Eaton, Gareth R.

    2015-01-01

    X-band rapid-scan electron paramagnetic resonance (EPR) spectra from tooth enamel samples irradiated with doses of 0.5, 1 and 10 Gy had substantially improved signal-to-noise relative to conventional continuous wave EPR. The radiation-induced signal in 60 mg of a tooth enamel sample irradiated with a 0.5 Gy dose was readily characterized in spectra recorded with 34 min data acquisition times. The coefficient of variance of the calculated dose for a 1 Gy irradiated sample, based on simulation of the first-derivative spectra for three replicates as the sum of native and radiation-induced signals, was 3.9% for continuous wave and 0.4% for rapid scan. PMID:26207683

  12. Superoxide Anion Radical Production in the Tardigrade Paramacrobiotus richtersi, the First Electron Paramagnetic Resonance Spin-Trapping Study.

    PubMed

    Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos

    2015-01-01

    Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical.

  13. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    SciTech Connect

    Bateni, Ali; Somer, Mehmet E-mail: msomer@ku.edu.tr; Erdem, Emre E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  14. Electron paramagnetic resonance studies of Cu 2+ ion in Tetraaqua-di(nicotinamide)Ni(II)-saccharinates single crystals

    NASA Astrophysics Data System (ADS)

    Yerli, Y.; Kazan, S.; Yalçın, O.; Aktaş, B.

    2006-06-01

    X-band (˜9.8 GHz) electron paramagnetic resonance (EPR) measurement at ambient temperature in three mutually perpendicular planes have been carried out on a single crystal of Cu 2+ doped mixed ligand complex of Ni(II) with saccharin and nicotinamide [Ni(Nic) 2(H 2O) 4](sac) 2. The angular dependent spectra showed that the Cu 2+ ion enters Ni 2+ sites in the lattice and distorted local environment of Ni 2+ site. The principal g and A values, covalency parameter ( α' 2), mixing coefficients ( α and β) and Fermi contact term ( K) have been evaluated from the EPR analysis. The ground-state wave function of the Cu 2+ ion has been constructed using the α' 2, α and β values. The nature of the distortion present in the lattice is obtained from the values of the mixing coefficients.

  15. Comparative identification of irradiated herbs by the methods of electron paramagnetic resonance and thermoluminescence

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Gancheva, V.; Radicheva, M.; Hristova, B.; Guelev, M.; Penchev, O.

    1998-12-01

    Non irradiated and γ-irradiated dry herbs savoury ( Savoury), wild thyme ( Thymus serpollorium) and marjoram ( Origanum) with absorbed dose of 8 kGy have been investigated by the methods of elecrtron paramagnetic resonance (EPR) and thermoluminescence (TL). Non-irradiated herbs exhibit only one weak siglet EPR signal whereas in irradiated samples its intensity increase and in addition two satelite lines are recorded. This triplet EPR spectrum is attributed to cellulose free radical generated by irradiation. It has been found that upon keeping the samples under the normal stock conditions the life-time of the cellulose free radical in the examined samples is ˜60-80 days. Thus the conclusion has been made that the presence of the EPR signal of cellulose free radical is unambiguous indication that the sample under study has been irradiated but its absence can not be considered as the opposite evidence. In the case when EPR signal was absent the method of TL has been used to give the final decision about the previous radiation treatment of the sample.

  16. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    SciTech Connect

    Pham, Chuyen V.; Krueger, Michael E-mail: emre.erdem@physchem.uni-freiburg.de; Eck, Michael; Weber, Stefan; Erdem, Emre E-mail: emre.erdem@physchem.uni-freiburg.de

    2014-03-31

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g = 2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  17. Electronic structure of Q-A in reaction centers from Rhodobacter sphaeroides. I. Electron paramagnetic resonance in single crystals.

    PubMed Central

    Isaacson, R A; Lendzian, F; Abresch, E C; Lubitz, W; Feher, G

    1995-01-01

    The magnitude and orientation of the electronic g-tensor of the primary electron acceptor quinone radical anion, Q-A, has been determined in single crystals of zinc-substituted reaction centers of Rhodobacter sphaeroides R-26 at 275 K and at 80 K. To obtain high spectral resolution, EPR experiments were performed at 35 GHz and the native ubiquinone-10 (UQ10) in the reaction center was replaced by fully deuterated UQ10. The principal values and the direction cosines of the g-tensor axes with respect to the crystal axes a, b, c were determined. Freezing of the single crystals resulted in only minor changes in magnitude and orientation of the g-tensor. The orientation of Q-A as determined by the g-tensor axes deviates only by a few degrees (< or = 8 degrees) from the orientation of the neutral QA obtained from an average of four different x-ray structures of Rb. sphaeroides reaction centers. This deviation lies within the accuracy of the x-ray structure determinations. The g-tensor values measured in single crystals agree well with those in frozen solutions. Variations in g-values between Q-A, Q-B, and UQ10 radical ion in frozen solutions were observed and attributed to different environments. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 9 PMID:8527644

  18. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  19. Electron paramagnetic resonance spectroscopic investigation of the inhibition of the phosphoroclastic system of Clostridium sporogenes by nitrite.

    PubMed

    Payne, M J; Woods, L F; Gibbs, P; Cammack, R

    1990-10-01

    The proposal that nitrite exerts its inhibitory effect on anaerobic bacteria by direct interaction with the iron-sulphur proteins of the phosphoroclastic system was investigated. The effects of nitrate, nitrite with or without ascorbate, and nitric oxide on the growth of Clostridium sporogenes in liquid cultures at pH 7.4, on the rates of hydrogen production, and on the activities of the enzymes pyruvate-ferredoxin oxidoreductase and hydrogenase, and of ferredoxin were investigated. In agreement with previous studies, nitrate was the least effective inhibitor of cell growth, and nitric oxide the most effective. Nitrite reductase activity was very low in C. sporogenes, indicating that the presence of external reducing agents would be necessary for the reduction of nitrite to nitric oxide. Inhibition by nitrite was enhanced by ascorbate; 0.5 mM-nitrite with 10 mM-ascorbate stopped growth completely. In partially-purified preparations 4.1 mM-NaNO2 and equimolar ascorbate caused complete inactivation of hydrogenase activity but only partial (up to 78%) inactivation of pyruvate-ferredoxin oxidoreductase. This agreed with the loss of hydrogen production observed with nitrite in vivo. Inhibition occurred within 5 min, and was irreversible in each case. Electron paramagnetic resonance (EPR) spectroscopy showed that paramagnetic [Fe(NO)2(SR)2] species were formed during growth in the presence of nitrite, and were associated with cells. However, the intensity of these EPR signals did not correlate with the inhibition of cell growth. The [4Fe-4S] clusters in ferredoxin were shown by EPR spectroscopy to be resistant to treatment with 3.6 mM-NaNO2 and 3.6 mM-ascorbate. It is concluded that the effects of nitrite on pre-formed iron-sulphur proteins are not convincing as a basis for the lethal effects on bacterial cells.

  20. Electron spin resonance spectroscopy of small ensemble paramagnetic spins using a single nitrogen-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Abeywardana, Chathuranga; Stepanov, Viktor; Cho, Franklin H.; Takahashi, Susumu

    2016-09-01

    A nitrogen-vacancy (NV) center in diamond is a promising sensor for nanoscale magnetic sensing. Here, we report on electron spin resonance (ESR) spectroscopy using a single NV center in diamond. First, using a 230 GHz ESR spectrometer, we performed ensemble ESR of a type-Ib sample crystal and identified a substitutional single nitrogen impurity as a major paramagnetic center in the sample crystal. Then, we carried out free-induction decay and spin echo measurements of the single NV center to study static and dynamic properties of nanoscale bath spins surrounding the NV center. We also measured ESR spectrum of the bath spins using double electron-electron resonance spectroscopy with the single NV center. The spectrum analysis of the NV-based ESR measurement identified that the detected spins are the nitrogen impurity spins. The experiment was also performed with several other single NV centers in the diamond sample and demonstrated that the properties of the bath spins are unique to the NV centers indicating the probe of spins in the microscopic volume using NV-based ESR. Finally, we discussed the number of spins detected by the NV-based ESR spectroscopy. By comparing the experimental result with simulation, we estimated the number of the detected spins to be ≤50 spins.

  1. A QUANTUM MECHANICAL STUDY OF STRUCTURAL AND ELECTRONIC DILUTION EFFECTS IN PARAMAGNETIC CHEMICAL EXCHANGE SATURATION TRANSFER AGENTS

    PubMed Central

    Miller, Whelton A.; Moore, Preston B.

    2014-01-01

    We present a computational study of the effect of chemical modifications of the meta and para substituents in the coordinating pendant arm of a modified 1,4,7,10-tetraazacyclododecane-N, N’, N″, N‴-tetraamide (DOTAM) ligand on the Chemical Exchange Saturation Transfer (CEST) signal. Magnetic Resonance Imaging (MRI) is currently one of the most widely used techniques available. MRI has led to a new class of pharmaceuticals termed “imagining” or “contrast” agents. These agents usually work by incorporating lanthanide metals such as Gadolinium (Gd) and Europium (Eu). This allows the contrast agents to take advantage of the paramagnetic properties of the metals, which in turn enhances the signal detectable by MRI. The effect of simple electron-withdrawing (e.g., nitro) and electron-donating (e.g., methyl) substituents chemically attached to a modified chelate arm (pendant arm) is quantified by charge transfer interactions in the coordinated water-chelate system computed from quantum mechanics. This study attempts to reveal the origin of the substituent effect on the CEST signal and the electronic structure of the complex. We find that the extent of Charge Transfer (CT) depends on orbital orientations and overlaps. However, CT interactions occur simultaneously from all arms, which causes a dilution effect with respect to the pendant arm. PMID:25485283

  2. A QUANTUM MECHANICAL STUDY OF STRUCTURAL AND ELECTRONIC DILUTION EFFECTS IN PARAMAGNETIC CHEMICAL EXCHANGE SATURATION TRANSFER AGENTS.

    PubMed

    Miller, Whelton A; Moore, Preston B

    2014-01-01

    We present a computational study of the effect of chemical modifications of the meta and para substituents in the coordinating pendant arm of a modified 1,4,7,10-tetraazacyclododecane-N, N', N″, N‴-tetraamide (DOTAM) ligand on the Chemical Exchange Saturation Transfer (CEST) signal. Magnetic Resonance Imaging (MRI) is currently one of the most widely used techniques available. MRI has led to a new class of pharmaceuticals termed "imagining" or "contrast" agents. These agents usually work by incorporating lanthanide metals such as Gadolinium (Gd) and Europium (Eu). This allows the contrast agents to take advantage of the paramagnetic properties of the metals, which in turn enhances the signal detectable by MRI. The effect of simple electron-withdrawing (e.g., nitro) and electron-donating (e.g., methyl) substituents chemically attached to a modified chelate arm (pendant arm) is quantified by charge transfer interactions in the coordinated water-chelate system computed from quantum mechanics. This study attempts to reveal the origin of the substituent effect on the CEST signal and the electronic structure of the complex. We find that the extent of Charge Transfer (CT) depends on orbital orientations and overlaps. However, CT interactions occur simultaneously from all arms, which causes a dilution effect with respect to the pendant arm. PMID:25485283

  3. New roles of flavoproteins in molecular cell biology: blue-light active flavoproteins studied by electron paramagnetic resonance.

    PubMed

    Schleicher, Erik; Bittl, Robert; Weber, Stefan

    2009-08-01

    Exploring enzymatic mechanisms at a molecular level is one of the major challenges in modern biophysics. Based on enzyme structure data, as obtained by X-ray crystallography or NMR spectroscopy, one can suggest how substrates and products bind for catalysis. However, from the 3D structure alone it is very rarely possible to identify how intermediates are formed and how they are interconverted. Molecular spectroscopy can provide such information and thus supplement our knowledge on the specific enzymatic reaction under consideration. In the case of enzymatic processes in which paramagnetic molecules play a role, EPR and related methods such as electron-nuclear double resonance (ENDOR) are powerful techniques to unravel important details, e.g. the electronic structure or the protonation state of the intermediate(s) carrying (the) unpaired electron spin(s). Here, we review recent EPR/ENDOR studies of blue-light active flavoproteins with emphasis on photolyases that catalyze the enzymatic repair of UV damaged DNA, and on cryptochrome blue-light photoreceptors that act in several species as central components of the circadian clock. PMID:19624734

  4. Optical absorption and electron paramagnetic resonance of the E{sub {alpha}}{sup '} center in amorphous silicon dioxide

    SciTech Connect

    Buscarino, G.; Boscaino, R.; Agnello, S.; Gelardi, F. M.

    2008-04-15

    We report a combined study by optical absorption (OA) and electron paramagnetic resonance (EPR) spectroscopy on the E{sub {alpha}}{sup '} point defect in amorphous silicon dioxide (a-SiO{sub 2}). This defect has been studied in {beta}-ray irradiated and thermally treated oxygen-deficient a-SiO{sub 2} materials. Our results have pointed out that the E{sub {alpha}}{sup '} center is responsible for an OA Gaussian band peaked at {approx}5.8 eV and having a full width at half maximum of {approx}0.6 eV. The estimated oscillator strength of the related electronic transition is {approx}0.14. Furthermore, we have found that this OA band is quite similar to that of the E{sub {gamma}}{sup '} center induced in the same materials, indicating that the related electronic transitions involve states highly localized on a structure common to both defects: the O{identical_to}Si{sup {center_dot}} moiety.

  5. New roles of flavoproteins in molecular cell biology: blue-light active flavoproteins studied by electron paramagnetic resonance.

    PubMed

    Schleicher, Erik; Bittl, Robert; Weber, Stefan

    2009-08-01

    Exploring enzymatic mechanisms at a molecular level is one of the major challenges in modern biophysics. Based on enzyme structure data, as obtained by X-ray crystallography or NMR spectroscopy, one can suggest how substrates and products bind for catalysis. However, from the 3D structure alone it is very rarely possible to identify how intermediates are formed and how they are interconverted. Molecular spectroscopy can provide such information and thus supplement our knowledge on the specific enzymatic reaction under consideration. In the case of enzymatic processes in which paramagnetic molecules play a role, EPR and related methods such as electron-nuclear double resonance (ENDOR) are powerful techniques to unravel important details, e.g. the electronic structure or the protonation state of the intermediate(s) carrying (the) unpaired electron spin(s). Here, we review recent EPR/ENDOR studies of blue-light active flavoproteins with emphasis on photolyases that catalyze the enzymatic repair of UV damaged DNA, and on cryptochrome blue-light photoreceptors that act in several species as central components of the circadian clock.

  6. Low-temperature interquinone electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides and Blastochloris viridis: characterization of Q(B)- states by high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR).

    PubMed

    Utschig, Lisa M; Thurnauer, Marion C; Tiede, David M; Poluektov, Oleg G

    2005-11-01

    High-frequency electron paramagnetic resonance (HF EPR) techniques have been employed to look for localized light-induced conformational changes in the protein environments around the reduced secondary quinone acceptor (Q(B)(-)) in Rhodobacter sphaeroides and Blastochloris viridis RCs. The Q(A)(-) and Q(B)(-) radical species in Fe-removed/Zn-replaced protonated RCs substituted with deuterated quinones are distinguishable with pulsed D-band (130 GHz) EPR and provide native probes of both the low-temperature Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer event and the structure of trapped conformational substates. We report here the first spectroscopic evidence that cryogenically trapped, light-induced changes enable low-temperature Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer in the B. viridis RC and the first observation of an inactive, trapped P(+)Q(B)(-) state in both R. sphaeroides and B. viridis RCs that does not recombine at 20 K. The high resolution and orientational selectivity of HF electron-nuclear double resonance (ENDOR) allows us to directly probe protein environments around Q(B)(-) for distinct P(+)Q(B)(-) kinetic RC states by spectrally selecting specific nuclei in isotopically labeled samples. No structural differences in the protein structure near Q(B)(-) or reorientation (within 5 degrees ) of Q(B)(-) was observed with HF ENDOR spectra of two states of P(+)Q(B)(-): "active" and "inactive" states with regards to low-temperature electron transfer. These results reveal a remarkably enforced local protein environment for Q(B) in its reduced semiquinone state and suggest that the conformational change that controls reactivity resides beyond the Q(B) local environment.

  7. Fast dynamic electron paramagnetic resonance (EPR) oxygen imaging using low-rank tensors.

    PubMed

    Christodoulou, Anthony G; Redler, Gage; Clifford, Bryan; Liang, Zhi-Pei; Halpern, Howard J; Epel, Boris

    2016-09-01

    Hypoxic tumors are resistant to radiotherapy, motivating the development of tools to image local oxygen concentrations. It is generally believed that stable or chronic hypoxia is the source of resistance, but more recent work suggests a role for transient hypoxia. Conventional EPR imaging (EPRI) is capable of imaging tissue pO2in vivo, with high pO2 resolution and 1mm spatial resolution but low imaging speed (10min temporal resolution for T1-based pO2 mapping), which makes it difficult to investigate the oxygen changes, e.g., transient hypoxia. Here we describe a new imaging method which accelerates dynamic EPR oxygen imaging, allowing 3D imaging at 2 frames per minute, fast enough to image transient hypoxia at the "speed limit" of observed pO2 change. The method centers on a low-rank tensor model that decouples the tradeoff between imaging speed, spatial coverage/resolution, and number of inversion times (pO2 accuracy). We present a specialized sparse sampling strategy and image reconstruction algorithm for use with this model. The quality and utility of the method is demonstrated in simulations and in vivo experiments in tumor bearing mice. PMID:27498337

  8. Fast dynamic electron paramagnetic resonance (EPR) oxygen imaging using low-rank tensors

    NASA Astrophysics Data System (ADS)

    Christodoulou, Anthony G.; Redler, Gage; Clifford, Bryan; Liang, Zhi-Pei; Halpern, Howard J.; Epel, Boris

    2016-09-01

    Hypoxic tumors are resistant to radiotherapy, motivating the development of tools to image local oxygen concentrations. It is generally believed that stable or chronic hypoxia is the source of resistance, but more recent work suggests a role for transient hypoxia. Conventional EPR imaging (EPRI) is capable of imaging tissue pO2in vivo, with high pO2 resolution and 1 mm spatial resolution but low imaging speed (10 min temporal resolution for T1-based pO2 mapping), which makes it difficult to investigate the oxygen changes, e.g., transient hypoxia. Here we describe a new imaging method which accelerates dynamic EPR oxygen imaging, allowing 3D imaging at 2 frames per minute, fast enough to image transient hypoxia at the "speed limit" of observed pO2 change. The method centers on a low-rank tensor model that decouples the tradeoff between imaging speed, spatial coverage/resolution, and number of inversion times (pO2 accuracy). We present a specialized sparse sampling strategy and image reconstruction algorithm for use with this model. The quality and utility of the method is demonstrated in simulations and in vivo experiments in tumor bearing mice.

  9. Design and implementation of an FPGA-based timing pulse programmer for pulsed-electron paramagnetic resonance applications.

    PubMed

    Sun, Li; Savory, Joshua J; Warncke, Kurt

    2013-08-01

    The design, construction and implementation of a field-programmable gate array (FPGA) -based pulse programmer for pulsed-electron paramagnetic resonance (EPR) experiments is described. The FPGA pulse programmer offers advantages in design flexibility and cost over previous pulse programmers, that are based on commercial digital delay generators, logic pattern generators, and application-specific integrated circuit (ASIC) designs. The FPGA pulse progammer features a novel transition-based algorithm and command protocol, that is optimized for the timing structure required for most pulsed magnetic resonance experiments. The algorithm was implemented by using a Spartan-6 FPGA (Xilinx), which provides an easily accessible and cost effective solution for FPGA interfacing. An auxiliary board was designed for the FPGA-instrument interface, which buffers the FPGA outputs for increased power consumption and capacitive load requirements. Device specifications include: Nanosecond pulse formation (transition edge rise/fall times, ≤3 ns), low jitter (≤150 ps), large number of channels (16 implemented; 48 available), and long pulse duration (no limit). The hardware and software for the device were designed for facile reconfiguration to match user experimental requirements and constraints. Operation of the device is demonstrated and benchmarked by applications to 1-D electron spin echo envelope modulation (ESEEM) and 2-D hyperfine sublevel correlation (HYSCORE) experiments. The FPGA approach is transferrable to applications in nuclear magnetic resonance (NMR; magnetic resonance imaging, MRI), and to pulse perturbation and detection bandwidths in spectroscopies up through the optical range.

  10. Quantitative determination of copper in a glass matrix using double pulse laser induced breakdown and electron paramagnetic resonance spectroscopic techniques.

    PubMed

    Khalil, Ahmed A I; Morsy, Mohamed A

    2016-07-01

    A series of lithium-lead-borate glasses of a variable copper oxide loading were quantitatively analyzed in this work using two distinct spectroscopic techniques, namely double pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR). DP-LIBS results measured upon a combined nanosecond lasers irradiation running at 266nm and 1064nm pulses of a collinear configuration directed to the surface of borate glass samples with a known composition. This arrangement was employed to predict the electron's temperature (Te) and density (Ne) of the excited plasma from the recorded spectra. The intensity of elements' responses using this scheme is higher than that of single-pulse laser induced breakdown spectroscopy (SP-LIBS) setup under the same experimental conditions. On the other hand, the EPR data shows typical Cu (II) EPR-signals in the borate glass system that is networked at a distorted tetragonal Borate-arrangement. The signal intensity of the Cu (II) peak at g⊥=2.0596 has been used to quantify the Cu-content accurately in the glass matrix. Both techniques produced linear calibration curves of Cu-metals in glasses with excellent linear regression coefficient (R(2)) values. This study establishes a good correlation between DP-LIBS analysis of glass and the results obtained using EPR spectroscopy. The proposed protocols prove the great advantage of DP-LIBS system for the detection of a trace copper on the surface of glasses. PMID:27154655

  11. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    SciTech Connect

    Yap, Yung Szen; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2015-06-15

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

  12. Design and implementation of an FPGA-based timing pulse programmer for pulsed-electron paramagnetic resonance applications

    PubMed Central

    Sun, Li; Savory, Joshua J.; Warncke, Kurt

    2014-01-01

    The design, construction and implementation of a field-programmable gate array (FPGA) -based pulse programmer for pulsed-electron paramagnetic resonance (EPR) experiments is described. The FPGA pulse programmer offers advantages in design flexibility and cost over previous pulse programmers, that are based on commercial digital delay generators, logic pattern generators, and application-specific integrated circuit (ASIC) designs. The FPGA pulse progammer features a novel transition-based algorithm and command protocol, that is optimized for the timing structure required for most pulsed magnetic resonance experiments. The algorithm was implemented by using a Spartan-6 FPGA (Xilinx), which provides an easily accessible and cost effective solution for FPGA interfacing. An auxiliary board was designed for the FPGA-instrument interface, which buffers the FPGA outputs for increased power consumption and capacitive load requirements. Device specifications include: Nanosecond pulse formation (transition edge rise/fall times, ≤3 ns), low jitter (≤150 ps), large number of channels (16 implemented; 48 available), and long pulse duration (no limit). The hardware and software for the device were designed for facile reconfiguration to match user experimental requirements and constraints. Operation of the device is demonstrated and benchmarked by applications to 1-D electron spin echo envelope modulation (ESEEM) and 2-D hyperfine sublevel correlation (HYSCORE) experiments. The FPGA approach is transferrable to applications in nuclear magnetic resonance (NMR; magnetic resonance imaging, MRI), and to pulse perturbation and detection bandwidths in spectroscopies up through the optical range. PMID:25076864

  13. Experimental and Theoretical Electron Paramagnetic Resonance (EPR) Study on the Temperature-Dependent Structural Changes of Methylsulfanylmethane

    PubMed Central

    Tapramaz, Recep; Türkkan, Ercan; Dereli, Ömer

    2011-01-01

    Methylsulfonylmethane (or dimethyl sulfone), a naturally produced and vitally important organosulfur compound in living organisms, was irradiated with gamma rays, and the produced radicals were investigated using electron paramagnetic resonance spectroscopy at different temperatures. The structure and behavior of the radical changed when the temperatures varied. The hyperfine splitting of the CH3 group was small, and the 33S splitting was relatively high between 80 and −50 °C. When the temperature was between −50 and −160 °C, the 33S splitting became small and the CH3 splitting was higher. However, the group kept rotating; therefore, only the isotropic splitting values were measured, and the g-values were anisotropic. When the temperature decreased below −180 °C, the CH3 group stopped rotating, and the hydrogen splitting values became nonequivalent due to an inhomogeneous electron distribution. The observed structures can be explained by referring to both the experimental and theoretically calculated values reported. PMID:21954334

  14. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures.

    PubMed

    Yap, Yung Szen; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2015-06-01

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously-a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

  15. One and Two Dimensional Pulsed Electron Paramagnetic Resonance Studies of in vivo Vanadyl Coordination in Rat Kidney

    PubMed Central

    Liboiron, Barry D.; Thompson, Katherine H.; Vera, Erika; Yuen, Violet G.; McNeill, John H.

    2003-01-01

    The biological fate of a chelated vanadium source is investigated by/n vivo spectroscopic methods to elucidate the chemical form in which the metal ion is accumulated. A pulsed electron paramagnetic resonance study of vanadyl ions in kidney tissue, taken from rats previously treated with bis(ethylmaltolato)oxovanadium(IV) (BEOV) in drinking water, is presented. A combined approach using stimulated echo (3-pulse) electron spin echo envelope modulation (ESEEM) and the two dimensional 4-pulse hyperfine sublevel correlation (HYSCORE) spectroscopies has shown that at least some of the VO2+ ions are involved in the coordination with nitrogen-containing ligands. From the experimental spectra, a 4N hyperfine coupling constant of 4.9 MHz and a quadrupole coupling constant of 0.6 + 0.04 MHz were determined, consistent with amine coordination of the vanadyl ions. Study of VO-histidine model complexes allowed for a determination of the percentage of nitrogen-coordinated VO2+ ions in the tissue sample that is found nitrogen-coordinated. By taking into account the bidentate nature of histidine coordination to VO2+ ions, a more accurate determination of this value is reported. The biological fate of chelated versus free (i.e. salts) vanadyl ion sources has been deduced by comparison to earlier reports. In contrast to its superior pharmacological efficacy over VOSO4, BEOV shares a remarkably similar biological fate after uptake into kidney tissue. PMID:18365044

  16. Electronic structure of the Mn-cofactor of modified bacterial reaction centers measured by electron paramagnetic resonance and electron spin echo envelope modulation spectroscopies.

    PubMed

    Tufts, A A; Flores, M; Olson, T L; Williams, J C; Allen, J P

    2014-05-01

    The electronic structure of a Mn(II) ion bound to highly oxidizing reaction centers of Rhodobacter sphaeroides was studied in a mutant modified to possess a metal binding site at a location comparable to the Mn4Ca cluster of photosystem II. The Mn-binding site of the previously described mutant, M2, contains three carboxylates and one His at the binding site (Thielges et al., Biochemistry 44:389-7394, 2005). The redox-active Mn-cofactor was characterized using electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopies. In the light without bound metal, the Mn-binding mutants showed an EPR spectrum characteristic of the oxidized bacteriochlorophyll dimer and reduced quinone whose intensity was significantly reduced due to the diminished quantum yield of charge separation in the mutant compared to wild type. In the presence of the metal and in the dark, the EPR spectrum measured at the X-band frequency of 9.4 GHz showed a distinctive spin 5/2 Mn(II) signal consisting of 16 lines associated with both allowed and forbidden transitions. Upon illumination, the amplitude of the spectrum is decreased by over 80 % due to oxidation of the metal upon electron transfer to the oxidized bacteriochlorophyll dimer. The EPR spectrum of the Mn-cofactor was also measured at the Q-band frequency of 34 GHz and was better resolved as the signal was composed of the six allowed electronic transitions with only minor contributions from other transitions. A fit of the Q-band EPR spectrum shows that the Mn-cofactor is a high spin Mn(II) species (S = 5/2) that is six-coordinated with an isotropic g-value of 2.0006, a weak zero-field splitting and E/D ratio of approximately 1/3. The ESEEM experiments showed the presence of one (14)N coordinating the Mn-cofactor. The nitrogen atom is assigned to a His by comparing our ESEEM results to those previously reported for Mn(II) ions bound to other proteins and on the basis of the X-ray structure of the M2

  17. Polynuclear water-soluble dinitrosyl iron complexes with cysteine or glutathione ligands: electron paramagnetic resonance and optical studies.

    PubMed

    Vanin, Anatoly F; Poltorakov, Alexander P; Mikoyan, Vasak D; Kubrina, Lyudmila N; Burbaev, Dosymzhan S

    2010-09-15

    Electron paramagnetic resonance and optical spectrophotometric studies have demonstrated that low-molecular dinitrosyl iron complexes (DNICs) with cysteine or glutathione exist in aqueous solutions in the form of paramagnetic mononuclear (capital EM, Cyrillic-DNICs) and diamagnetic binuclear complexes (B-DNICs). The latter represent Roussin's red salt esters and can be prepared by treatment of aqueous solutions of Fe(2+) and thiols (small er, Cyrilliccapital EN, Cyrillic 7.4) with gaseous nitric oxide (NO) at the thiol:Fe(2+) ratio 1:1. capital EM, Cyrillic-DNICs are synthesized under identical conditions at the thiol:Fe(2+) ratios above 20 and produce an EPR signal with an electronic configuration {Fe(NO)(2)}(7) at g(aver.)=2.03. At neutral pH, aqueous solutions contain both M-DNICs and B-DNICs (the content of the latter makes up to 50% of the total DNIC pool). The concentration of B-DNICs decreases with a rise in pH; at small er, Cyrilliccapital EN, Cyrillic 9-10, the solutions contain predominantly M-DNICs. The addition of thiol excess to aqueous solutions of B-DNICs synthesized at the thiol:Fe(2+) ratio 1:2 results in their conversion into capital EM, Cyrillic-DNICs, the total amount of iron incorporated into M-DNICs not exceeding 50% of the total iron pool in B-DNICs. Air bubbling of cys-capital EM, Cyrillic-DNIC solutions results in cysteine oxidation-controlled conversion of capital EM, Cyrillic-DNICs first into cys-B-DNICs and then into the EPR-silent compound capital HA, Cyrillic able to generate a strong absorption band at 278 nm. In the presence of glutathione or cysteine excess, compound capital HA, Cyrillic is converted into B-DNIC/M-DNIC and is completely decomposed under effect of the Fe(2+) chelator small o, Cyrillic-phenanthroline or N-methyl-d-glucamine dithiocarbamate (MGD). Moreover, MGD initiates the synthesis of paramagnetic mononitrosyl iron complexes with MGD. It is hypothesized that compound capital HA, Cyrillic represents a polynuclear

  18. Kissing G Domains of MnmE Monitored by X-Ray Crystallography and Pulse Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Meyer, Simon; Böhme, Sabine; Krüger, André; Steinhoff, Heinz-Jürgen; Klare, Johann P.; Wittinghofer, Alfred

    2009-01-01

    MnmE, which is involved in the modification of the wobble position of certain tRNAs, belongs to the expanding class of G proteins activated by nucleotide-dependent dimerization (GADs). Previous models suggested the protein to be a multidomain protein whose G domains contact each other in a nucleotide dependent manner. Here we employ a combined approach of X-ray crystallography and pulse electron paramagnetic resonance (EPR) spectroscopy to show that large domain movements are coupled to the G protein cycle of MnmE. The X-ray structures show MnmE to be a constitutive homodimer where the highly mobile G domains face each other in various orientations but are not in close contact as suggested by the GDP-AlFx structure of the isolated domains. Distance measurements by pulse double electron-electron resonance (DEER) spectroscopy show that the G domains adopt an open conformation in the nucleotide free/GDP-bound and an open/closed two-state equilibrium in the GTP-bound state, with maximal distance variations of 18 Å. With GDP and AlFx, which mimic the transition state of the phosphoryl transfer reaction, only the closed conformation is observed. Dimerization of the active sites with GDP-AlFx requires the presence of specific monovalent cations, thus reflecting the requirements for the GTPase reaction of MnmE. Our results directly demonstrate the nature of the conformational changes MnmE was previously suggested to undergo during its GTPase cycle. They show the nucleotide-dependent dynamic movements of the G domains around two swivel positions relative to the rest of the protein, and they are of crucial importance for understanding the mechanistic principles of this GAD. PMID:19806182

  19. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    PubMed

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  20. Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus.

    PubMed

    Shi, Huahong; Wang, Xiaorong; Luo, Yi; Su, Yan

    2005-09-30

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants (BFRs). To confirm its putative oxidative stress-inducing activity, freshwater fish Carassius auratus were injected intraperitoneally with TBBPA. One experiment lasted 3h to 28 days after a single injection of 100mg/kg TBBPA, and the other lasted 24h after a single injection of 0-300 mg/kg TBBPA. Reactive oxygen species (ROS) were trapped by phenyl-tert-butyl nitrone (PBN) and detected by electron paramagnetic resonance (EPR). Protein carbonyl (PCO) and lipid peroxidation product (LPO) content were also determined. A six-line EPR spectrum was detected in the sample prepared in air, and a multiple one was obtained in nitrogen. The observed spectrum in nitrogen fits the simulation one with PBN/OCH(3) and PBN/CH(3) quite well. As compared to the control group, TBBPA significantly induced ROS production marked by the intensity of the prominent spectra in liver and bile. TBBPA (100mg/kg) also significantly increased PCO content in liver starting 24h and LPO content 3 days after injection. Either PCO or LPO content showed significant relation with ROS production. Based on the hyperfine constants and shape of the spectrum, ROS induced by TBBPA was determined as OH. The results clearly indicated that TBBPA could induce OH generation and result in oxidative damage in liver of C. auratus.

  1. Evaluation of synergistic antioxidant potential of complex mixtures using oxygen radical absorbance capacity (ORAC) and electron paramagnetic resonance (EPR).

    PubMed

    Parker, Tory L; Miller, Samantha A; Myers, Lauren E; Miguez, Fernando E; Engeseth, Nicki J

    2010-01-13

    Previous research has demonstrated that certain combinations of compounds result in a decrease in toxic or pro-oxidative effects, previously noted when compounds were administered singly. Thus, there is a need to study many complex interactions further. Two in vitro techniques [electron paramagnetic resonance (EPR) and oxygen radical absorbance capacity (ORAC) assays] were used in this study to assess pro- and antioxidant capacity and synergistic potential of various compounds. Rutin, p-coumaric acid, abscisic acid, ascorbic acid, and a sugar solution were evaluated individually at various concentrations and in all 26 possible combinations at concentrations found in certain foods (honey or papaya), both before and after simulated digestion. EPR results indicated sugar-containing combinations provided significantly higher antioxidant capacity; those combinations containing sugars and ascorbic acid demonstrated synergistic potential. The ORAC assay suggested additive effects, with some combinations having synergistic potential, although fewer combinations were significantly synergistic after digestion. Finally, ascorbic acid, caffeic acid, quercetin, and urate were evaluated at serum-achievable levels. EPR analysis did not demonstrate additive or synergistic potential, although ORAC analysis did, principally in combinations containing ascorbic acid.

  2. Electron paramagnetic resonance studies of the soluble CuA protein from the cytochrome ba3 of Thermus thermophilus.

    PubMed Central

    Karpefors, M; Slutter, C E; Fee, J A; Aasa, R; Källebring, B; Larsson, S; Vänngård, T

    1996-01-01

    The electron paramagnetic resonance (EPR) spectrum of the binuclear CuA center in the water-soluble subunit II fragment from cytochrome ba3 of Thermus thermophilus was recorded at 3.93, 9.45, and 34.03 GHz, and the EPR parameters were determined by computer simulations. The frequency and M1 dependence of the linewidth was discussed in terms of g strain superimposed on a correlation between the A and g values. The g values were found to be gx = 1.996, gy = 2.011, gz = 2.187, and the two Cu ions contribute nearly equally to the hyperfine structure, with magnitude of Ax magnitude of approximately 15 G, magnitude of Ay magnitude = 29 G, and magnitude of Az magnitude of = 28.5 G (65Cu). Theoretical CNDO/S calculations, based on the x-ray structure of the Paracoccus denitrificans enzyme, yield a singly occupied antibonding orbital in which each Cu is pi*-bonded to one S and sigma*-bonded to the other. In contrast to the equal spin distribution suggested by the EPR simulations, the calculated contributions from the Cu ions differ by a factor of 2. However, only small changes in the ligand geometry are needed to reproduce the experimental results. PMID:8913619

  3. Electron paramagnetic resonance studies of the soluble CuA protein from the cytochrome ba3 of Thermus thermophilus.

    PubMed

    Karpefors, M; Slutter, C E; Fee, J A; Aasa, R; Källebring, B; Larsson, S; Vänngård, T

    1996-11-01

    The electron paramagnetic resonance (EPR) spectrum of the binuclear CuA center in the water-soluble subunit II fragment from cytochrome ba3 of Thermus thermophilus was recorded at 3.93, 9.45, and 34.03 GHz, and the EPR parameters were determined by computer simulations. The frequency and M1 dependence of the linewidth was discussed in terms of g strain superimposed on a correlation between the A and g values. The g values were found to be gx = 1.996, gy = 2.011, gz = 2.187, and the two Cu ions contribute nearly equally to the hyperfine structure, with magnitude of Ax magnitude of approximately 15 G, magnitude of Ay magnitude = 29 G, and magnitude of Az magnitude of = 28.5 G (65Cu). Theoretical CNDO/S calculations, based on the x-ray structure of the Paracoccus denitrificans enzyme, yield a singly occupied antibonding orbital in which each Cu is pi*-bonded to one S and sigma*-bonded to the other. In contrast to the equal spin distribution suggested by the EPR simulations, the calculated contributions from the Cu ions differ by a factor of 2. However, only small changes in the ligand geometry are needed to reproduce the experimental results.

  4. Identifying the Constituents of and Transformations in Diatomaceous Earth and Polysiloxane Foams Through the Use of Electron Paramagnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blair, Michael; Muenchausen, Ross; Bennett, Bryan; Smith, James; Stephens, Thomas; Cooke, Wayne

    2007-03-01

    The chemical aging of polymeric materials is largely governed by the characteristics of the storage environment. For polysiloxane foams, the diatomaceous earth (DE) filler is a small component of the foam, but it plays a large role in the handling of water in the system. The DE filler can act as either a ``source'' or a ``sink'' for water via both chemical hydroxylation/ dehydroxylation and physical adsorption/ desorption processes, depending on the processing history and storage conditions. We have used electron paramagnetic resonance (EPR) spectroscopy to examine composite foam material as well as the DE filler alone. Intense, broad (400 Gauss) resonances were recorded at room temperature as a function of the microwave power at X-band frequency. The observed spectra have been assigned to the iron oxide compounds goethite, lepidocrocite, hematite, and magnetite based upon the measured EPR spectra of these minerals. As the presence or absence of free H2O and the temperature of processing and storage also affects the interconversion of these various iron oxides, we indicate how this process can be followed by monitoring changes in the EPR spectra.

  5. Evaluation of synergistic antioxidant potential of complex mixtures using oxygen radical absorbance capacity (ORAC) and electron paramagnetic resonance (EPR).

    PubMed

    Parker, Tory L; Miller, Samantha A; Myers, Lauren E; Miguez, Fernando E; Engeseth, Nicki J

    2010-01-13

    Previous research has demonstrated that certain combinations of compounds result in a decrease in toxic or pro-oxidative effects, previously noted when compounds were administered singly. Thus, there is a need to study many complex interactions further. Two in vitro techniques [electron paramagnetic resonance (EPR) and oxygen radical absorbance capacity (ORAC) assays] were used in this study to assess pro- and antioxidant capacity and synergistic potential of various compounds. Rutin, p-coumaric acid, abscisic acid, ascorbic acid, and a sugar solution were evaluated individually at various concentrations and in all 26 possible combinations at concentrations found in certain foods (honey or papaya), both before and after simulated digestion. EPR results indicated sugar-containing combinations provided significantly higher antioxidant capacity; those combinations containing sugars and ascorbic acid demonstrated synergistic potential. The ORAC assay suggested additive effects, with some combinations having synergistic potential, although fewer combinations were significantly synergistic after digestion. Finally, ascorbic acid, caffeic acid, quercetin, and urate were evaluated at serum-achievable levels. EPR analysis did not demonstrate additive or synergistic potential, although ORAC analysis did, principally in combinations containing ascorbic acid. PMID:19957934

  6. Early folding events during light harvesting complex II assembly in vitro monitored by pulsed electron paramagnetic resonance.

    PubMed

    Fehr, Niklas; García-Rubio, Inés; Jeschke, Gunnar; Paulsen, Harald

    2016-06-01

    Efficient energy transfer in the major light harvesting complex II (LHCII) of green plants is facilitated by the precise alignment of pigments due to the protein matrix they are bound to. Much is known about the import of the LHCII apoprotein into the chloroplast via the TOC/TIC system and its targeting to the thylakoid membrane but information is sparse about when and where the pigments are bound and how this is coordinated with protein folding. In vitro, the LHCII apoprotein spontaneously folds and binds its pigments if the detergent-solubilized protein is combined with a mixture of chlorophylls a and b and carotenoids. In the present work, we employed this approach to study apoprotein folding and pigment binding in a time-resolved manner by using pulsed electron paramagnetic resonance (EPR). Intra-molecular distances were measured before folding, after 255 ms and 40 s folding time in the absence of cryoprotectant, and in the fully folded and assembled LHCII. In accordance with earlier results, the most of the folding of the three membrane-spanning alpha helices precedes their apposition into the final tertiary structure. However, their formation follows different kinetics, partially extending into the final phase of LHCII formation during which much of the condensation of the pigment-protein structure occurs, presumably governed by the binding of chlorophyll b. A rough timetable is proposed to sort partial events into the LHCII formation process. PMID:27063475

  7. Combustion Synthesized Europium Doped LaAI₁₁O₁₈ Phosphors--An Electron Paramagnetic Resonance and Optical Study.

    PubMed

    Singh, Vijay; Sivaramaiah, G; Rao, J L; Kumaran, R Senthil; Dhoble, S J

    2016-01-01

    By adopting a facile solution combustion synthesis, crystallized europium doped blue phosphors were successfully prepared. These phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared absorption (FT-IR), energy dispersive analysis of X-ray, Electron Paramagnetic Resonance (EPR) and Photoluminescence (PL) experimental methods. The photoluminescence spectrum indicates Eu²⁺ and Eu³⁺ ions in these phosphors. The band at around 442 nm is attributed to the spin-allowed 4f⁶5d¹ (2D) --> 4f⁷(⁸S₇/2) transition of Eu²⁺ ions. The sharp bands at 591 (⁵D₀ --> ⁷F₁) and 616 (⁵D₀ --> ⁷F₂) nm are attributed to the spin-forbidden transitions of Eu³⁺ ions. The EPR spectra of as-prepared and post-treated LaAl₁₁O₁₈:Eu phosphors exhibit signals characteristic of La²⁺ and Eu²⁺ ions. The number of spins, Gibbs energy, magnetic susceptibility, Curie constant and effective magnetic moment values were calculated and compared at 296 and 110 K. PMID:27398524

  8. Electron paramagnetic resonance of [(CH3)3NH]CuCl3.2H2O

    NASA Astrophysics Data System (ADS)

    Ritter, Mark B.; Drumheller, John E.; Kite, Terence M.; Snively, Leslie O.; Emerson, Kenneth

    1983-11-01

    The electron paramagnetic resonance of [(CH3)3NH]CuCl3.2H2O has been studied in the temperature range of 4 K to room temperature. This compound is known to behave magnetically as a spin- 1/2 , one-dimensional Heisenberg ferromagnetic with ordering below 1K. In the high-temperature regime the EPR data show a rich angular dependence of the linewidths as the magnetic field is rotated away from the chain. The data were analyzed in manner similar to that used by McGregor and Soos, who used the Blume-Hubbard result for spin dynamics and extracted exchange anisotropies in one dimension. For adequate fit, we reduced the symmetry of symmetric anisotropic exchange to orthorhombic and included the antisymmetric exchange. Isotropic symmetric, dipolar, anisotropic symmetric, and antisymmetric exchange therefore were included with the room temperature results of J0=0.8 K, Dd=0.058 K, De=0.032 K, and d=0.043 K, respectively, and further show about a 12% XY character to the exchange. These results are reasonably consistent with the previous results on this compound. Splitting of the EPR lines indicate that there are two inequivalent chains along the needle axis. Data to 4 K indicate no significant changes in the angle dependence but an anomalous monotonic broadening of the linewidths is observed as temperature is lowered.

  9. Superoxide Anion Radical Production in the Tardigrade Paramacrobiotus richtersi, the First Electron Paramagnetic Resonance Spin-Trapping Study.

    PubMed

    Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos

    2015-01-01

    Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical. PMID:26052642

  10. Probing the donor side of photosystem II in spinach chloroplasts and algae using electron paramagnetic resonance

    SciTech Connect

    Boska, M.D.

    1985-11-01

    this work concerns electron transfer reactions in photosystem II (PS II). Investigations carried out in this work examine the redox reaction rates in PS II using EPR. In Tris-washed PS II preparations from spinach, it is observed that the oxidation kinetics of S II/sub f/, the EPR signal formed by Z/sup +/ after deactivation of oxygen evolution, mirror the reduction kinetics of P680/sup +/ seen by EPR in samples poised at a variety of pH's. These data agree with previous data on the optically measured reduction kinetics of P680/sup +/. The oxidation kinetics of S II/sub vf/, the EPR transient seen from Z/sup +/ in samples active in O/sub 2/ evolving samples, were instrument limited (t/sub 1/2/ less than 4 ..mu..s) and thus could not be directly measured. These results taken together support a model where Z donates electrons directly to P680/sup +/. The examination of the oxidation and reduction kinetics of S II in monovalent and divalent salt-washed PS II preparations from spinach correlated most of the change of Z oxidation and re-reduction kinetics seen upon Tris-treatment with the loss of a 33 kDa polypeptide associated with the donor side of PS II. These data coupled with observations of stead-state light-induced amplitude changes in S II give evidence for the existance of an electron carrier between the water-splitting enzyme and Z. Observation of S II amplitude and kinetics in highly resolved PS II protein complexes from Synechoccus sp., consisting of either a 5 polypeptide PS II core complex (E-1) or a 4 polypeptide PS II core complex (CP2b), localize Z and P680 within the 4 polypeptide complex. 187 refs., 17 figs., 7 tabs.

  11. Strategy for the study of paramagnetic proteins with slow electronic relaxation rates by nmr spectroscopy: application to oxidized human [2Fe-2S] ferredoxin.

    PubMed

    Machonkin, Timothy E; Westler, William M; Markley, John L

    2004-05-01

    NMR studies of paramagnetic proteins are hampered by the rapid relaxation of nuclei near the paramagnetic center, which prevents the application of conventional methods to investigations of the most interesting regions of such molecules. This problem is particularly acute in systems with slow electronic relaxation rates. We present a strategy that can be used with a protein with slow electronic relaxation to identify and assign resonances from nuclei near the paramagnetic center. Oxidized human [2Fe-2S] ferredoxin (adrenodoxin) was used to test the approach. The strategy involves six steps: (1) NMR signals from (1)H, (13)C, and (15)N nuclei unaffected or minimally affected by paramagnetic effects are assigned by standard multinuclear two- and three-dimensional (2D and 3D) spectroscopic methods with protein samples labeled uniformly with (13)C and (15)N. (2) The very broad, hyperfine-shifted signals from carbons in the residues that ligate the metal center are classified by amino acid and atom type by selective (13)C labeling and one-dimensional (1D) (13)C NMR spectroscopy. (3) Spin systems involving carbons near the paramagnetic center that are broadened but not hyperfine-shifted are elucidated by (13)C[(13)C] constant time correlation spectroscopy (CT-COSY). (4) Signals from amide nitrogens affected by the paramagnetic center are assigned to amino acid type by selective (15)N labeling and 1D (15)N NMR spectroscopy. (5) Sequence-specific assignments of these carbon and nitrogen signals are determined by 1D (13)C[(15)N] difference decoupling experiments. (6) Signals from (1)H nuclei in these spin systems are assigned by paramagnetic-optimized 2D and 3D (1)H[(13)C] experiments. For oxidized human ferredoxin, this strategy led to assignments (to amino acid and atom type) for 88% of the carbons in the [2Fe-2S] cluster-binding loops (residues 43-58 and 89-94). These included complete carbon spin-system assignments for eight of the 22 residues and partial assignments for

  12. Biologic dosimetry for nuclear environments by electron paramagnetic resonance (EPR) methods. Conference paper

    SciTech Connect

    McCreery, M.J.; Swenberg, C.E.; Basso, M.J.; Conklin, J.J.; Hsieh, J.

    1982-06-18

    A number of stable and unstable free radicals are produced by exposure of calcified tissues to ionizing radiation. Identification of the exact molecular nature of these radicals and their kinetic annealing properties awaits further investigation. However, the high stability and the dose-response characteristics of the signal at g = 2.0023 make it very promising for use in biologic dosimetry. A 10-25 mg sample of enamel is enough to determine absorbed dose from 10-10 to the 7th power rads of gamma, X-ray, and accelerated electron exposures. This sample, which is no more than a chip from the ridge of a human tooth, does not expose the living portion of the tooth and so is relatively noninvasive. Investigations to establish a standard method for this procedure and to evaluate neutron dose is in progress. Although the procedures outlined here are relatively noninvasive, this technique affords other approaches that are even less invasive. Unlike optical methods, the sample for EPR analysis does not have to be transparent. It is not even necessary to suspend the sample as a fine powder. As long as the bone or tooth sample is within the dimensional limits of the tuned EPR cavity, it can be analyzed intact. This fact makes in vivo analysis feasible. We are currently making attempts to enlarge the EPR cavity with modification of the corresponding electronic components so that a finger can be analyzed. If this approach is successful, the expedient evaluation of large numbers of casualties might be possible by a method that is noninvasive and nondestructive.

  13. Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy.

    PubMed

    Kadam, R M; Rajeswari, B; Sengupta, Arijit; Achary, S N; Kshirsagar, R J; Natarajan, V

    2015-02-25

    A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P4(2)/mnm, a=4.5946(1) Å, c=2.9597(1) Å, V=62.48(1) (Å)(3), Z=2; anatase: space group I4(1)/amd, 3.7848(2) Å, 9.5098(11) Å, V=136.22(2) (Å)(3), Z=4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V(4+), Cr(3+), Mn(4+) and Fe(3+) species. EPR studies revealed the presence of transition metal ions V(4+)(d(1)), Cr(3+)(d(3)), Mn(4+)(d(3)) and Fe(3+)(d(5)) at Ti(4+) sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s>1) suggesting that the transition metal ions substitute the Ti(4+) in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S=3/2 and 5/2) are discussed. PMID:25233027

  14. Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy.

    PubMed

    Kadam, R M; Rajeswari, B; Sengupta, Arijit; Achary, S N; Kshirsagar, R J; Natarajan, V

    2015-02-25

    A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P4(2)/mnm, a=4.5946(1) Å, c=2.9597(1) Å, V=62.48(1) (Å)(3), Z=2; anatase: space group I4(1)/amd, 3.7848(2) Å, 9.5098(11) Å, V=136.22(2) (Å)(3), Z=4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V(4+), Cr(3+), Mn(4+) and Fe(3+) species. EPR studies revealed the presence of transition metal ions V(4+)(d(1)), Cr(3+)(d(3)), Mn(4+)(d(3)) and Fe(3+)(d(5)) at Ti(4+) sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s>1) suggesting that the transition metal ions substitute the Ti(4+) in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S=3/2 and 5/2) are discussed.

  15. Binding of manganese(II) to a tertiary stabilized hammerhead ribozyme as studied by electron paramagnetic resonance spectroscopy

    PubMed Central

    KISSELEVA, NATALIA; KHVOROVA, ANASTASIA; WESTHOF, ERIC; SCHIEMANN, OLAV

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to study the binding of MnII ions to a tertiary stabilized hammer-head ribozyme (tsHHRz) and to compare it with the binding to the minimal hammerhead ribozyme (mHHRz). Continuous wave EPR measurements show that the tsHHRz possesses a single high-affinity MnII binding site with a KD of ≤10 nM at an NaCl concentration of 0.1 M. This dissociation constant is at least two orders of magnitude smaller than the KD determined previously for the single high-affinity MnII site in the mHHRz. In addition, whereas the high-affinity MnII is displaced from the mHHRz upon binding of the aminoglycoside antibiotic neomycin B, it is not from the tsHHRz. Despite these pronounced differences in binding, a comparison between the electron spin echo envelope modulation and hyperfine sublevel correlation spectra of the minimal and tertiary stabilized HHRz demonstrates that the structure of both binding sites is very similar. This suggests that the MnII is located in both ribozymes between the bases A9 and G10.1 of the sheared G · A tandem base pair, as shown previously and in detail for the mHHRz. Thus, the much stronger MnII binding in the tsHHRz is attributed to the interaction between the two external loops, which locks in the RNA fold, trapping the MnII in the tightly bound conformation, whereas the absence of long-range loop–loop interactions in the mHHRz leads to more dynamical and open conformations, decreasing MnII binding. PMID:15611296

  16. Electron paramagnetic resonance and theoretical studies of Nb in 4H- and 6H-SiC

    NASA Astrophysics Data System (ADS)

    Tien Son, Nguyen; Thang Trinh, Xuan; Gällström, Andreas; Leone, Stefano; Kordina, Olof; Janzén, Erik; Szász, Krisztián; Ivády, Viktor; Gali, Adam

    2012-10-01

    High purity silicon carbide (SiC) materials are of interest from high-power high temperature applications across recent photo-voltaic cells to hosting solid state quantum bits, where the tight control of electrically, optically, and magnetically active point defects is pivotal in these areas. 4H- and 6H-SiC substrates are grown at high temperatures and the incorporation of transition metal impurities is common. In unintentionally Nb-doped 4H- and 6H-SiC substrates grown by high-temperature chemical vapor deposition, an electron paramagnetic resonance (EPR) spectrum with C1h symmetry and a clear hyperfine (hf) structure consisting of ten equal intensity hf lines was observed. The hf structure can be identified as due to the interaction between the electron spin S = 1/2 and the nuclear spin of 93Nb. Additional hf structures due to the interaction with three Si neighbors were also detected. In 4H-SiC, a considerable spin density of ˜37.4% was found on three Si neighbors, suggesting the defect to be a complex between Nb and a nearby carbon vacancy (VC). Calculations of the 93Nb and 29Si hf constants of the neutral Nb on Si site, NbSi0, and the Nb-vacancy defect, NbSiVC0, support previous reported results that Nb preferentially forms an asymmetric split-vacancy (ASV) defect. In both 4H- and 6H-SiC, only one Nb-related EPR spectrum has been observed, supporting the prediction from calculations that the hexagonal-hexagonal defect configuration of the ASV complex is more stable than others.

  17. Photoluminescence, thermally stimulated luminescence and electron paramagnetic resonance investigations of Tb{sup 3+} doped SrBPO{sub 5}

    SciTech Connect

    Kumar, Mithlesh; Seshagiri, T.K.; Kadam, R.M.; Godbole, S.V.

    2011-09-15

    Graphical abstract: EPR spectra of BOHC's in 2 kGy {gamma}-irradiated SrBPO{sub 5}:Tb sample using Receiver Gain RG = 4 x 10{sup 4}, Modulation Amplitude MA = 0.25 G, Microwave power setting 6.3 mW: (A) un-annealed sample recorded at 300 K, (B) un-annealed sample recorded at 100 K and (C) sample annealed at 550 K for 10 min and recorded at 100 K. Highlights: {yields} PL studies on Tb doped SrBPO{sub 5} phosphor have shown emission due to Tb{sup 3+} associated with {sup 5}D{sub 3} {yields} {sup 7}F{sub J} and {sup 5}D{sub 4} {yields} {sup 7}F{sub J} (J = 3, 4, 5 and 6) transitions. {yields} The EPR studies on {gamma}-irradiated samples revealed formation of three types of boron oxygen hole trapped centres viz., BOHC{sub 1}, BOHC{sub 2} and BOHC{sub 3} and an electron trapped centre. {yields} The TSL peak at 475 K was associated with the thermal destruction of BOHC{sub 2}. -- Abstract: Trap level spectroscopic studies were carried out on {gamma}-irradiated Tb (1 mole%) doped SrBPO{sub 5} were carried out using photoluminescence (PL), thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) techniques. The incorporation of Tb in the 3+ oxidation state was ascertained from PL studies. Life time for Tb{sup 3+} emission corresponding to the intense transition {sup 5}D{sub 4} {yields} {sup 7}F{sub 5} at 543 nm was determined. The spectral characteristics of the TSL glows have shown that Tb{sup 3+} ions act as the emission center for the glow peak at 475 K. The trap parameters of the glow peak were determined. EPR investigations at room temperature/77 K revealed the stabilization of three boron oxygen hole trapped centers (BOHC's) and oxygen centered radicals such as O{sup -} and O{sub 2}{sup -} and trapped electrons in room temperature {gamma}-irradiated samples. TSL glow peak at 475 K was found to be associated with recombination of electron released from trapped electron center and the BOHC{sub 2} center.

  18. Theoretical investigations of the electron paramagnetic resonance for Cr 3+ ions at tetragonal sites in K 2ZnF 4 crystal

    NASA Astrophysics Data System (ADS)

    Zeng, Ti-xian; Chen, Jia-jun; Chen, Tai-hong; Dai, Xiao-jing; Liao, Guo

    2010-06-01

    In tetragonal ligand-field, based on the Zhao’s semi-SCF d-orbit wave functions model, the Macfarlane’s perturbation loop method and point-charge crystal field model, the third-order perturbation formulas of electron paramagnetic resonance parameters (zero-field splitting D and g-factors) for 3d 3/7 configuration ions have been constructed. In these formulas, the contributions from configuration interaction, covalency effect, Racah-Trees corrections and local structure distortion (Δ R) have been considered. By using these formulas, the electron paramagnetic resonance parameters of Cr 3+ ion at tetragonal site in K 2ZnF 4 crystal have been calculated. The theoretically calculated values are consistent with the experimentally observed.

  19. Electron paramagnetic resonance study of free radicals in γ-irradiated L-glutamine and L-glutamine-t-butyl ester hydrochloride

    NASA Astrophysics Data System (ADS)

    Yeşim Dicle, Işık; Osmanğolu, Şemsettin; İpek, Nazenin

    2015-01-01

    Electron paramagnetic resonance (EPR) spectra of γ-irradiated single crystals of l-glutamine (LG) and l-glutamine-t-butyl ester hydrochloride (LGBESHCI) powders were studied and analyzed for different orientations of the crystals in the magnetic field, after γ-irradiation. The spectra were observed to be independent of temperature down to 130 K. The hyperfine interaction tensors for one α proton and two β protons of radical have been determined at 295 K. An analysis of the EPR of γ-irradiated single crystals of LG and LGBESHCI powders shows that the paramagnetic species produced by the radiation damage is CH2ĊH. The g values of the radical and the hyperfine structure constants of the free electron with nearby protons and 14N nucleus were determined. The results were found to be in good agreement with the existing literature data.

  20. Electron paramagnetic resonance characteristics of some non-heme low-spin iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Duelund, Lars; Toftlund, Hans

    2000-02-01

    We have recorded the powder EPR-spectra of some near octahedral iron(III) complexes with tridentate ligands donors and analysed their spectra with simple ligand field analysis and for some cases with the angular overlap model (AOM). We have determined the electron praramagnetic resonance (EPR) characteristic of bis 1,4,7-triazacyclonane iron(III)chloride at 4 K and found that it was similar to the characteristics of the so-called 'highly anisotropic low spin' complexes. We have recorded the powder spectra of bis (2,6-bis(benzimidazoly-2-yl)pyridine) iron(III) perchlorate and made an AOM-analyses of the structural similar complex bis-(2,6 (N-carbamoyl)-pyridine) iron(III). With a combination of ligand field analyses and AOM, we could determine the π-donor properties of these ligands. The same approach have been used to determine the π-donor properties of the hydroperoxo ligand. Finally we have recorded the powder EPR-spectrum of [Fe(CN) 6] 3- doped in K 3[Co(CN) 6] and [Co(NH 3) 6][Co(CN) 6] at 4 and 100 K and in water at 4 K. The spectra are interpreted as the effect of a dynamic Jahn-Teller distortion.

  1. Electron paramagnetic resonance and photoluminescence investigation on ultraviolet-emitting gadolinium-ion-doped CaAl₁₂O₁₉ phosphors.

    PubMed

    Singh, Vijay; Borkotoky, S; Murali, A; Rao, J L; Rao, T K Gundu; Dhoble, S J

    2015-03-15

    The gadolinium doped CaAl12O19 phosphor has been prepared by a low temperature solution combustion method in a short time and characterized using powder X-ray diffraction, energy dispersive analysis of X-ray mapping, electron paramagnetic resonance (EPR) and photoluminescence spectroscopic techniques. EPR and optical analysis of the sample confirm the presence of Gd(3+) in the CaAl12O19 matrix. PMID:25546490

  2. Application of electron paramagnetic resonance spectroscopy to comparative examination of different groups of free radicals in thermal injuries treated with propolis and silver sulphadiazine.

    PubMed

    Olczyk, Pawel; Ramos, Pawel; Bernas, Marcin; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara

    2013-01-01

    Different groups of free radicals expressed in burn wounds treated with propolis and silver sulphadiazine were examined. The thermal effect forms major types of free radicals in a wound because of the breaking of chemical bonds. Free radicals, located in the heated skin, were tested after 21 days of treating by these two substances. The aim of this work was to find the method for determination of types and concentrations of different groups of free radicals in wound after high temperature impact during burning. The effects of the therapy by propolis and silver sulphadiazine on free radicals were studied. Since the chemical methods of free radicals studies are destructive, the usefulness of the electron paramagnetic resonance spectroscopy was tested in this work. The electron paramagnetic resonance spectra measured with the microwave power of 2.2 mW were numerically fitted by theoretical curves of Gaussian and Lorentzian shapes. The experimental electron paramagnetic resonance spectra of tissue samples are best fitted by the sum of one Gauss and two Lorentz lines. An innovatory numerical procedure of spectroscopic skin analysis was presented. It is very useful in the alternative medicine studies.

  3. Application of Electron Paramagnetic Resonance Spectroscopy to Comparative Examination of Different Groups of Free Radicals in Thermal Injuries Treated with Propolis and Silver Sulphadiazine

    PubMed Central

    Olczyk, Pawel; Ramos, Pawel; Bernas, Marcin; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara

    2013-01-01

    Different groups of free radicals expressed in burn wounds treated with propolis and silver sulphadiazine were examined. The thermal effect forms major types of free radicals in a wound because of the breaking of chemical bonds. Free radicals, located in the heated skin, were tested after 21 days of treating by these two substances. The aim of this work was to find the method for determination of types and concentrations of different groups of free radicals in wound after high temperature impact during burning. The effects of the therapy by propolis and silver sulphadiazine on free radicals were studied. Since the chemical methods of free radicals studies are destructive, the usefulness of the electron paramagnetic resonance spectroscopy was tested in this work. The electron paramagnetic resonance spectra measured with the microwave power of 2.2 mW were numerically fitted by theoretical curves of Gaussian and Lorentzian shapes. The experimental electron paramagnetic resonance spectra of tissue samples are best fitted by the sum of one Gauss and two Lorentz lines. An innovatory numerical procedure of spectroscopic skin analysis was presented. It is very useful in the alternative medicine studies. PMID:23762162

  4. High resolution electron attachment to CO₂ clusters.

    PubMed

    Denifl, Stephan; Vizcaino, Violaine; Märk, Tilmann D; Illenberger, Eugen; Scheier, Paul

    2010-01-01

    Electron attachment to CO₂ clusters performed at high energy resolution (0.1 eV) is studied for the first time in the extended electron energy range from threshold (0 eV) to about 10 eV. Dissociative electron attachment (DEA) to single molecules yields O(-) as the only fragment ion arising from the well known (2)Π(u) shape resonance (ion yield centered at 4.4 eV) and a core excited resonance (at 8.2 eV). On proceeding to CO₂ clusters, non-dissociated complexes of the form (CO₂)(n)(-) including the monomer CO₂(-) are generated as well as solvated fragment ions of the form (CO₂)(n)O(-). The non-decomposed complexes appear already within a resonant feature near threshold (0 eV) and also within a broad contribution between 1 and 4 eV which is composed of two resonances observed for example for (CO₂)(4)(-) at 2.2 eV and 3.1 eV (peak maxima). While the complexes observed around 3.1 eV are generated via the (2)Π(u) resonance as precursor with subsequent intracluster relaxation, the contribution around 2.2 eV can be associated with a resonant scattering feature, recently discovered in single CO₂ in the selective excitation of the higher energy member of the well known Fermi dyad [M. Allan, Phys. Rev. Lett., 2001, 87, 0332012]. Formation of (CO₂)(n)(-) in the threshold region involves vibrational Feshbach resonances (VFRs) as previously discovered via an ultrahigh resolution (1 meV) laser photoelectron attachment method [E. Leber, S. Barsotti, I. I. Fabrikant, J. M. Weber, M.-W. Ruf and H. Hotop, Eur. Phys. J. D, 2000, 12, 125]. The complexes (CO₂)(n)O(-) clearly arise from DEA at an individual molecule within the cluster involving both the (2)Π(u) and the core excited resonance. PMID:21491691

  5. Models for Copper Dynamic Behavior in Doped Cadmium dl-Histidine Crystals: Electron Paramagnetic Resonance and Crystallographic Analysis.

    PubMed

    Colaneri, Michael J; Teat, Simon J; Vitali, Jacqueline

    2015-11-12

    Electron paramagnetic resonance and crystallographic studies of copper-doped cadmium dl-histidine, abbreviated as CdDLHis, were undertaken to gain further understanding on the relationship between site structure and dynamic behavior in biological model complexes. X-ray diffraction measurements determined the crystal structure of CdDLHis at 100 and 298 K. CdDLHis crystallizes in the monoclinic space group P21/c with two cadmium complexes per asymmetric unit. In each complex, the Cd is hexacoordinated to two histidine molecules. Both histidines are l in one complex and d in the other. Additionally, each complex contains multiple waters of varying disorder. Single crystal EPR spectroscopic splitting (g) and copper hyperfine (A(Cu)) tensors at room temperature (principal values: g = 2.249, 2.089, 2.050; A(Cu) = -453, -30.5, -0.08 MHz) were determined from rotational experiments. Alignments of the tensor directions with the host structure were used to position the copper unpaired dx(2)-y(2) orbital in an approximate plane made by four proposed ligand atoms: the N-imidazole and N-amino of one histidine, and the N-amino and O-carboxyl of the other. Each complex has two such planes related by noncrystallographic symmetry, which make an angle of 65° and have a 1.56 Å distance between their midpoints. These findings are consistent with three interpretations that can adequately explain previous temperature-dependent EPR powder spectra of this system: (1) a local structural distortion (static strain) at the copper site has a temperature dependence significant enough to affect the EPR pattern, (2) the copper can hop between the two sites in each complex at high temperature, and (3) there exists a dynamic Jahn-Teller effect involving the copper ligands. PMID:26501364

  6. Electron paramagnetic resonance (EPR) oxygen image hypoxic fraction plus radiation dose strongly correlates with tumor cure in FSa fibrosarcomas

    PubMed Central

    Elas, Martyna; Bell, Rebecca; Hleihel, Danielle; Barth, Eugene D.; McFaul, Colin; Haney, Chad R.; Bielanska, Joanna; Pustelny, Katarzyna; Ahn, Kang-Hyun; Pelizzari, Charles A.; Kocherginsky, Masha; Halpern, Howard J.

    2008-01-01

    Purpose Tumor hypoxia has long been known to produce resistance to radiation. In this study, electron paramagnetic resonance (EPR) oxygen imaging was investigated for its power to predict the success of tumor control depending on tumor oxygenation level and radiation therapy dose. Methods and Materials Thirty-four EPR oxygen images were obtained from the legs of C3H mice bearing 0.5 ml FSa fibrosarcomas under both normal (air breathing) and clamped tumor conditions. Under the same conditions as those during which the images were obtained, tumors were irradiated to a variety doses near the FSa TCD50. Tumor tissue was distinguished from normal tissue using co-registration of the EPR oxygen images with spin-echo MRI images of the tumor and/or stereotactic localization. Tumor voxel statistics in the EPR oxygen image included mean and median pO2, and the fraction of tumor voxels below the specified pO2 values of 3, 6 and 10 torr. Bivariate logistic regression analysis using radiation dose and each of the EPR oxygen image statistics determined which best separated treatment failure from success. Results and Conclusions TCD50 measurements were similar to those found in the literature for this syngeneic tumor. Bivariate analysis of 34 tumors demonstrated that tumor cure correlated with dose (p=0.004) and with <10 torr hypoxic fraction (p=0.023). Together, radiation dose and EPR image hypoxic fraction separate the population of FSa fibrosarcomas which are cured from those which fail, thus predicting curability. PMID:18474313

  7. 2-Chlorophenol induced hydroxyl radical production in mitochondria in Carassius auratus and oxidative stress--an electron paramagnetic resonance study.

    PubMed

    Luo, Yi; Sui, Yun-xia; Wang, Xiao-rong; Tian, Yuan

    2008-04-01

    In our previous study, electron paramagnetic resonance (EPR) evidence of reactive oxygen species (ROS) production in Carassius auratus following 2-chlorophenol (2-CP) administration was provided. To further investigate the potential pathway of ROS production, liver mitochondria of C. auratus was isolated and incubated with 2-CP for 30 min. An EPR analysis indicated ROS was produced, and intensities of ROS increased with increasing concentrations of 2-CP. The ROS was then assigned OH by comparing with Fenton reaction. Either catalase or superoxide dismutase, extinguished OH completely in the mitochondria mixture. These facts suggested that O2(.-) and H2O2 contributed to the formation of OH in mitochondria in C. auratus stressed by 2-CP. Combining previous references and our own data, it is reasonable to suggest that 2-CP is first oxidized by H2O2 present in vivo to form phenoxyl radical under the catalytic action of cellular peroxidase (1); phenoxyl radical oxidizes mitochondria NADH to NAD in the presence of NADH (2); NAD reacts with oxygen in vivo to produce O2(.-) (3); O2(.-) is spontaneously dismutated by SOD to form H2O2 and O2, which creates a renewable supply of H2O2 as the initiators of the chain reactions until NADH is consumed (4); simultaneously with reaction (4), O2(.-) reacts with H2O2 to form OH radical via the Haber-Weiss reaction (5). A strong negative correlation (r=-0.9278, p<0.01) between glutathione (GSH) pool and OH production was observed after fish were i.p. injected with 2-CP (250 mg kg(-1)), indicating the depletion of GSH caused by OH.

  8. An Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(L-histidinato)cadmium Dihydrate

    PubMed Central

    Colaneri, Michael J.; Vitali, Jacqueline; Kirschbaum, Kristin

    2013-01-01

    Electron Paramagnetic Resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal; bis(L-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, − 190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature dependent conversion between two species with a critical temperature Tc ≈ 160 K. The species below Tc hops between the two low temperature site patterns, and the one above Tc represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites νh4 = 4.5 × 108 s−1 and between the low and high temperature states νh2 = 1.7 × 108 s−1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE4 = 389 cm−1 and ΔE2 = 656 cm−1 between the two low temperature sites, and between the low and high temperature states, respectively. PMID:23530765

  9. Measuring "free" iron levels in Caenorhabditis elegans using low-temperature Fe(III) electron paramagnetic resonance spectroscopy.

    PubMed

    Pate, Kira T; Rangel, Natalie A; Fraser, Brian; Clement, Matthew H S; Srinivasan, Chandra

    2006-11-15

    Oxidative stress, caused by free radicals within the body, has been associated with the process of aging and many human diseases. Because free radicals, in particular superoxide, are difficult to measure, an alternative indirect method for measuring oxidative stress levels has been used successfully in Escherichia coli and yeast. This method is based on a proposed connection between elevated superoxide levels and release of iron from solvent-exposed [4Fe-4S] enzyme clusters that eventually leads to an increase in hydroxyl radical production. In past studies using bacteria and yeast, a positive correlation was found between superoxide production or oxidative stress due to superoxide within the organism and electron paramagnetic resonance (EPR) detectable "free" iron levels. In the current study, we have developed a reliable and efficient method for measuring "free" iron levels in Caenorhabditis elegans using low-temperature Fe(III) EPR at g=4.3. This method uses synchronized worm cultures grown on plates that are homogenized and treated with desferrioxamine, an Fe(III) chelator, prior to packing the EPR tube. Homogenization was found not to alter "free" iron levels, whereas desferrioxamine treatment significantly raised these levels, indicating the presence of both Fe(II) and Fe(III) in the "free" iron pool. The correlation between free radical levels and the observed "free" iron levels was examined by using heat stress and paraquat treatment. The intensity of the Fe(III) EPR signal, and thus the concentration of the "free" iron pool, varied with the treatments that altered radical levels without changing the total iron levels. This study provides the groundwork needed to uncover the correlation among oxidative stress, "free" iron levels, and longevity in C. elegans.

  10. Electron paramagnetic resonance study of the C e3 + pair centers in YAl O3 :Ce scintillator crystals

    NASA Astrophysics Data System (ADS)

    Buryi, M.; Laguta, V. V.; Mihóková, E.; Novák, P.; Nikl, M.

    2015-12-01

    Single crystals of YAl O3 doped with Ce have been studied by electron paramagnetic resonance (EPR) at the 9.4 and 34 GHz microwave bands. Besides the single-ion C e3 + spectrum, measurements have revealed many satellite lines which belong to the C e3 +-C e3 + pair centers. Their spectra have been fitted by a general effective spin Hamiltonian describing two interacting particles with the spin S =1 /2 . Corresponding g factors and spin-spin coupling constants have been determined. The spin-spin coupling constants are in the range from 0.1 up to 0.65 c m-1 for the nearest and next-nearest neighbors depending on the distance between Ce ions and their position. The exchange interaction between next-nearest neighbors (NNNs) is comparable to or even bigger than that between nearest neighbors (NNs), being in the range 0.4 -0.6 c m-1 . For a single C e3 + ion, crystal field parameters, energy sublevels of the 2F5 /2 and 2F7 /2 multiplets and principal g tensor components were obtained from the density functional theory calculation. They are in satisfactory agreement with those determined experimentally. The principal g tensor components of C e3 + pair centers are also calculated. Nevertheless, it was impossible to assign each of the satellite lines to actual positions of the six NN and 12 NNN Ce pairs in the lattice due to lack of valid information on the sign of the exchange interactions. The influence of C e3 + pairs on the luminescence efficiency is discussed as well.

  11. Electron paramagnetic resonance radiation dose assessment in fingernails of the victim exposed to high dose as result of an accident.

    PubMed

    Romanyukha, Alexander; Trompier, François; Reyes, Ricardo A; Christensen, Doran M; Iddins, Carol J; Sugarman, Stephen L

    2014-11-01

    In this paper, we report results of radiation dose measurements in fingernails of a worker who sustained a radiation injury to his right thumb while using 130 kVp X-ray for nondestructive testing. Clinically estimated absorbed dose was about 20-25 Gy. Electron paramagnetic resonance (EPR) dose assessment was independently carried out by two laboratories, the Naval Dosimetry Center (NDC) and French Institut de Radioprotection et de Sûreté Nucléaire (IRSN). The laboratories used different equipments and protocols to estimate doses in the same fingernail samples. NDC used an X-band transportable EPR spectrometer, e-scan produced by Bruker BioSpin, and a universal dose calibration curve. In contrast, IRSN used a more sensitive Q-band stationary spectrometer (EMXplus) with a new approach for the dose assessment (dose saturation method), derived by additional dose irradiation to known doses. The protocol used by NDC is significantly faster than that used by IRSN, nondestructive, and could be done in field conditions, but it is probably less accurate and requires more sample for the measurements. The IRSN protocol, on the other hand, potentially is more accurate and requires very small amount of sample but requires more time and labor. In both EPR laboratories, the intense radiation-induced signal was measured in the accidentally irradiated fingernails and the resulting dose assessments were different. The dose on the fingernails from the right thumb was estimated as 14 ± 3 Gy at NDC and as 19 ± 6 Gy at IRSN. Both EPR dose assessments are given in terms of tissue kerma. This paper discusses the experience gained by using EPR for dose assessment in fingernails with a stationary spectrometer versus a portable one, the reasons for the observed discrepancies in dose, and potential advantages and disadvantages of each approach for EPR measurements in fingernails.

  12. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument.

    PubMed

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  13. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument.

    PubMed

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  14. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    NASA Astrophysics Data System (ADS)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  15. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  16. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  17. The local environment of Cr3+ impurities in normal and x-rays irradiated carbon doped ruby: An electron paramagnetic resonance (EPR) study

    NASA Astrophysics Data System (ADS)

    Kazan, S.; Açıkgöz, M.; Yalçın, O.

    2015-01-01

    Local environment of substitutional paramagnetic point defect (impurity) in normal and x-ray irradiated commercially available α-Al2O3:C samples (commercial product of Landauer, Inc.) has been studied by using the electron paramagnetic resonance (EPR) technique at room temperature. In both samples the EPR spectra showed strongly angular dependent behavior. The zero-field splitting (ZFS) parameters (ZFSPs) have been determined for substitutional Cr3+ centers. The observed additional EPR signals for x-ray irradiated sample were attributed to another center with different spin Hamiltonian (SH) parameters. In addition to the experimental findings, the ZFSPs and the local structure of the Cr3+ ions were theoretically determined using superposition model (SPM) calculations.

  18. Electron paramagnetic resonance crystallography of 17O-enriched oxycobaltomyoglobin: Stereoelectronic structure of the cobalt dioxygen system

    PubMed Central

    Dickinson, L. Charles; Chien, James C. W.

    1980-01-01

    An electron paramagnetic resonance crystallographic study was made on oxycobaltomyoglobin with the dioxygen ligand enriched to 19.1% in 17O. There are two spectroscopically distinct cobalt dioxygen species. The less abundant species, II (40%), has nonequivalent oxygen atoms with superhyperfine tensors OAα = (5, -67.5, 22.4)G and OAβ = (5.4, -83.3, 30.3)G. Together with the previously reported 59Co hyperfine tensor [Chien, J. C. W. & Dickinson, L. C. (1972) Proc. Natl. Acad. Sci. USA 69, 2783-2787], the orbital spin densities are found to be Oα(pη) = 0.48, Oα(pζ) = -0.11, Oβ(pη) = 0.74, Oβ(pζ) = -0.16, Co(dxz) = -0.01, Co(dyz) = 0.06 for a total electron density of 1.01. The O—O axis is directed toward His-E7, suggesting a possible hydrogen bonding interaction which may contribute to the nonequivalency of the oxygen atoms; its projection approximately bisects N1—Fe—N2. The z axis of the CoA tensor is tilted at an angle of 28° from the heme normal, resulting in a Co—O—O angle of 120°. The more abundant species, I (60%), has equivalent oxygen atoms with OAγ = (12, -72.5, 20)G and orbital spin densities of Oγ(pη) = 0.54, Oγ(pζ) = -0.05, Co(dxz) = -0.02, Co(dyz) = 0.09 for a total spin density of 1.10. Although the direction cosines for this molecule cannot be precisely determined, the projection of its O—O axis approximately bisects N2—Fe—N3 and is parallel to the imidazole ring of His-F8. Increase of temperature changes g, CoA, and OA values, with the largest effect seen with OA. This temperature dependence indicates averaging of the two bond structures which are stabilized at 77 K. PMID:6246485

  19. Characterization of endothelial nitric-oxide synthase and its reaction with ligand by electron paramagnetic resonance spectroscopy.

    PubMed

    Tsai, A L; Berka, V; Chen, P F; Palmer, G

    1996-12-20

    Electron paramagnetic resonance was used to characterize the heme structure of resting endothelial nitric-oxide synthase (eNOS), eNOS devoid of its myristoylation site (G2A mutant), and their heme complexes formed with 16 different ligands. Resting eNOS and the G2A mutant have a mixture of low spin and high spin P450-heme with widely different relaxation behavior and a stable flavin semiquinone radical identified by EPR as a neutral radical. This flavin radical showed efficient electron spin relaxation as a consequence of dipolar interaction with the heme center; P1/2 is independent of Ca2+-calmodulin and tetrahydrobiopterin. Seven of the 16 ligands led to the formation of low spin heme complexes. In order of increasing rhombicity they are pyrimidine, pyridine, thiazole, L-lysine, cyanide, imidazole, and 4-methylimidazole. These seven low spin eNOS complexes fell in a region between the P and O zones on the "truth diagram" originally derived by Blumberg and Peisach (Blumberg, W. E., and Peisach, J. (1971) in Probes and Structure and Function of Macromolecules and Membranes (Chance, B., Yonetani, T., and Mildvan, A. S., eds) Vol. 2, pp. 215-229, Academic Press, New York) and had significant overlap with complexes of chloroperoxidase. A re-definition of the P and O zones is proposed. As eNOS and chloroperoxidase lie closer than do eNOS and P450cam on the truth diagram, it implies that the distal heme environment in eNOS resembles chloroperoxidase more than P450cam. In contrast, 4-ethylpyridine, 4-methylpyrimidine, acetylguanidine, ethylguanidine, 2-aminothiazole, 2amino-4,5-dimethylthiazole, L-histidine, and 7-nitroindazole resulted in high spin heme complexes of eNOS, similar to that observed with L-arginine. This contrasting EPR behavior caused by families of ligands such as imidazole/L-histidine or thiazole/2-aminothiazole confirms the conclusion derived from parallel optical and kinetic studies. The ligands resulting in the low spin complexes bind directly to the

  20. Role of the coordinating histidine in altering the mixed valency of Cu(A): an electron nuclear double resonance-electron paramagnetic resonance investigation.

    PubMed Central

    Lukoyanov, Dmitriy; Berry, Steven M; Lu, Yi; Antholine, William E; Scholes, Charles P

    2002-01-01

    The binuclear Cu(A) site engineered into Pseudomonas aeruginosa azurin has provided a Cu(A)-azurin with a well-defined crystal structure and a CuSSCu core having two equatorial histidine ligands, His120 and His46. The mutations His120Asn and His120Gly were made at the equatorial His120 ligand to understand the histidine-related modulation to Cu(A), notably to the valence delocalization over the CuSSCu core. For these His120 mutants Q-band electron nuclear double resonance (ENDOR) and multifrequency electron paramagnetic resonance (EPR) (X, C, and S-band), all carried out under comparable cryogenic conditions, have provided markedly different electronic measures of the mutation-induced change. Q-band ENDOR of cysteine C(beta) protons, of weakly dipolar-coupled protons, and of the remaining His46 nitrogen ligand provided hyperfine couplings that were like those of other binuclear mixed-valence Cu(A) systems and were essentially unperturbed by the mutation at His120. The ENDOR findings imply that the Cu(A) core electronic structure remains unchanged by the His120 mutation. On the other hand, multifrequency EPR indicated that the H120N and H120G mutations had changed the EPR hyperfine signature from a 7-line to a 4-line pattern, consistent with trapped-valence, Type 1 mononuclear copper. The multifrequency EPR data imply that the electron spin had become localized on one copper by the His120 mutation. To reconcile the EPR and ENDOR findings for the His120 mutants requires that either: if valence localization to one copper has occurred, the spin density on the cysteine sulfurs and the remaining histidine (His46) must remain as it was for a delocalized binuclear Cu(A) center, or if valence delocalization persists, the hyperfine coupling for one copper must markedly diminish while the overall spin distribution on the CuSSCu core is preserved. PMID:11964261

  1. High resolution scanning electron microscopy of plasmodesmata.

    PubMed

    Brecknock, Sarah; Dibbayawan, Teresa P; Vesk, Maret; Vesk, Peter A; Faulkner, Christine; Barton, Deborah A; Overall, Robyn L

    2011-10-01

    Symplastic transport occurs between neighbouring plant cells through functionally and structurally dynamic channels called plasmodesmata (PD). Relatively little is known about the composition of PD or the mechanisms that facilitate molecular transport into neighbouring cells. While transmission electron microscopy (TEM) provides 2-dimensional information about the structural components of PD, 3-dimensional information is difficult to extract from ultrathin sections. This study has exploited high-resolution scanning electron microscopy (HRSEM) to reveal the 3-dimensional morphology of PD in the cell walls of algae, ferns and higher plants. Varied patterns of PD were observed in the walls, ranging from uniformly distributed individual PD to discrete clusters. Occasionally the thick walls of the giant alga Chara were fractured, revealing the surface morphology of PD within. External structures such as spokes, spirals and mesh were observed surrounding the PD. Enzymatic digestions of cell wall components indicate that cellulose or pectin either compose or stabilise the extracellular spokes. Occasionally, the PD were fractured open and desmotubule-like structures and other particles were observed in their central regions. Our observations add weight to the argument that Chara PD contain desmotubules and are morphologically similar to higher plant PD.

  2. Effects of MnO doping on the electronic properties of zinc oxide: 406 GHz electron paramagnetic resonance spectroscopy and Newman superposition model analysis

    SciTech Connect

    Yüksel Price, Berat E-mail: muhammed.acikgoz@eng.bahcesehir.edu.tr Hardal, Gökhan; Açıkgöz, Muhammed E-mail: muhammed.acikgoz@eng.bahcesehir.edu.tr; Repp, Sergej; Erdem, Emre E-mail: muhammed.acikgoz@eng.bahcesehir.edu.tr

    2015-11-07

    MnO-doped ZnO ceramics have been synthesized through the conventional ceramic processing route. Mn{sup 2+} ions have been incorporated into the ZnO lattice within the limits of solid solubility. By using X-band-frequency and high-field electron paramagnetic resonance (EPR), we have resolved some of the main electronic transitions for the S = 5/2, I = 5/2 high-spin system and have determined accurately the EPR spin-Hamiltonian parameters. By combining data from crystallographic X-ray diffraction and EPR with the semi-empirical Newman superposition model, we have found the local configurational position of Mn{sup 2+} and have confirmed the symmetry of the lattice. The results presented in this contribution indicate that Mn ions substitute at Zn sites in ZnO. The effect of Mn{sup 2+} ions on the intrinsic defects becomes remarkable, thus the vacancy related intrinsic defect signals cannot be visible in the EPR spectrum. MnO doping affects the band gap energy of ZnO system which was confirmed via UV-Vis spectroscopy.

  3. Effects of MnO doping on the electronic properties of zinc oxide: 406 GHz electron paramagnetic resonance spectroscopy and Newman superposition model analysis

    NASA Astrophysics Data System (ADS)

    Yüksel Price, Berat; Hardal, Gökhan; Açıkgöz, Muhammed; Repp, Sergej; Erdem, Emre

    2015-11-01

    MnO-doped ZnO ceramics have been synthesized through the conventional ceramic processing route. Mn2+ ions have been incorporated into the ZnO lattice within the limits of solid solubility. By using X-band-frequency and high-field electron paramagnetic resonance (EPR), we have resolved some of the main electronic transitions for the S = 5/2, I = 5/2 high-spin system and have determined accurately the EPR spin-Hamiltonian parameters. By combining data from crystallographic X-ray diffraction and EPR with the semi-empirical Newman superposition model, we have found the local configurational position of Mn2+ and have confirmed the symmetry of the lattice. The results presented in this contribution indicate that Mn ions substitute at Zn sites in ZnO. The effect of Mn2+ ions on the intrinsic defects becomes remarkable, thus the vacancy related intrinsic defect signals cannot be visible in the EPR spectrum. MnO doping affects the band gap energy of ZnO system which was confirmed via UV-Vis spectroscopy.

  4. Host spin-lattice relaxation narrowing and the electron paramagnetic resonance of Mn(II) in single crystals of hexakis(pyridine N-oxide)cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Murugesan, R.; Thamaraichelvan, A.; Milton Franklin, A.; Ramakrishnan, V.

    The electron paramagnetic resonance spectra of Mn(C5H5NO)6. X2 (X ≡ ClO-4, BF-4 and NO-3) doped in single crystals of isomorphous paramagnetic Co(C5H5NO)6. X2 are studied at various temperatures. Zero-field splitting in all three crystals is axially symmetric and the magnitude of D is unusually large for an octahedral coordination polyhedron with all ligands identical. The sharp resonance of Mn(II) in the paramagnetic host observed at high temperatures is interpreted in terms of random modulation of the dipolar interaction between the guest Mn(II) and host Co(II) ions by the rapid spin-lattice relaxation of Co(II). The spin-lattice relaxation times of Co(II) ions at 300 K, estimated from the temperature dependent linewidth of the Mn(II) resonance, are 24 × 10-12, 28 × 10-12 and 23 × 10-12 s in perchlorate, fluoborate and nitrate crystals respectively. The temperature dependence of the relaxation is of the form 1/(at + bt5) and below 270 K the direct process dominates.

  5. SU-C-BRD-05: Non-Invasive in Vivo Biodosimetry in Radiotherapy Patients Using Electron Paramagnetic Resonance (EPR) Spectroscopy

    SciTech Connect

    Bahar, N; Roberts, K; Stabile, F; Mongillo, N; Decker, RD; Wilson, LD; Husain, Z; Contessa, J; Carlson, DJ; Williams, BB; Flood, AB; Swartz, HM

    2015-06-15

    Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence of radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and delivered

  6. [Theoretical Investigation of the Electron Paramagnetic Resonance Parameters and Local Structures for Zinc Phosphate Glass Doped with VO2+].

    PubMed

    Li, Chao-ying; Yuang, Xian-Kai; Tu, Qiu; Wang, Wei-yang; Zheng, Xue-mei

    2015-07-01

    As an important model system, 3d(1) ions (VO2+, V4+ et al) have been extensively investigated by means of electron paramagnetic resonance (EPR), and many experimental results of EPR parameters were also measured. The optical absorption and EPR parameters (g factors g||, g⊥ and hyperfine structure constants A||, A⊥) of a tetragonal V4+ center in zinc phosphate glass are theoretically investigated, using the perturbation formulas for a 3d(1) ion in tetragonally compressed octahedra. Since the spin-orbit coupling parameter r (150 cm(-1)) of ligand O2- is close to that ξp(0) (≈248 cm(-1)) of the central 3d(1) ion in zinc phosphate glass doped VO2+, the effect of the spin-orbit coupling parameter ξp(0) on the EPR spectra and optical absorption spectra should be taken into account. In this work, the relationship between the EPR parameters as well as the optical absorption spectra and the local structure of the impurity center are established based on the superposition model. By fitting the calculated EPR parameters and optical absorption spectra for V4+ center in zinc phosphate glass to the experimental data, the local structure parameters of [VO6](8-) cluster are obtained. According to the investigation, the magnitudes of the metal-ligand distances parallel and perpendicular to the C4-axis of [VO6](8-) cluster are, respectively, R|| ≈ 0.175 nm and R⊥ ≈ 0.197 nm, the local structure around the V4+ ions possesses a compressed tetragonal distortion along C4 axis. Theoretical results of EPR parameters and optical absorption spectra are in good agreement with experimental data, the validity of the calculated results has also been discussed. Thus, perturbation method is effective to the studies the EPR parameters and optical spectra of transition-metal 3d ions in crystals. In addition, based on the studies of the hyperfine structure constants (All and A1), one can found that the large value of kappa indicates a large contribution to the hyperfine constant by the

  7. Detection of nitric oxide and superoxide radical anion by electron paramagnetic resonance spectroscopy from cells using spin traps.

    PubMed

    Gopalakrishnan, Bhavani; Nash, Kevin M; Velayutham, Murugesan; Villamena, Frederick A

    2012-01-01

    spin adduct which can be detected by electron paramagnetic resonance (EPR) spectroscopy. The various radical adducts exhibit distinctive spectrum which can be used to identify the radicals being generated and can provide a wealth of information about the nature and kinetics of radical production. The cyclic nitrones, 5,5-dimethyl-pyrroline-N-oxide, DMPO, the phosphoryl-substituted DEPMPO, and the ester-substituted, EMPO and BMPO, have been widely employed as spin traps--the latter spin traps exhibiting longer half-lives for O2•- adduct. Iron (II)-N-methyl-D-glucamine dithiocarbamate, Fe(MGD)2 is commonly used to trap NO due to high rate of adduct formation and the high stability of the spin adduct. PMID:22929836

  8. Electron paramagnetic resonance spectroscopic measurement of Mn2+ binding affinities to the hammerhead ribozyme and correlation with cleavage activity.

    PubMed

    Horton, T E; Clardy, D R; DeRose, V J

    1998-12-22

    Efficient phosphodiester bond cleavage activity by the hammerhead ribozyme requires divalent cations. Toward understanding this metal ion requirement, the Mn2+-binding properties of hammerhead model ribozymes have been investigated under dilute solution conditions, using electron paramagnetic resonance spectroscopy (EPR) to detect free Mn2+ in the presence of added ribozyme. Numbers and affinities of bound Mn2+ were obtained at pH 7.8 (5 mM triethanolamine) in the presence of 0, 0.1, and 1.0 M NaCl for an RNA-DNA model consisting of a 13-nucleotide DNA "substrate" hybridized to a 34-nucleotide RNA "enzyme" [Pley, H. W., Flaherty, K. M., and McKay, D. B. (1994) Nature 372, 68-74]. In 0.1 M NaCl, two classes of Mn2+ sites are found with n1 = 3.7 +/- 0.4, Kd(1) = 4 +/- 1 microM (type 1) and n2 = 5.2 +/- 0.4, Kd(2) = 460 +/- 130 microM (type 2). The high-affinity type 1 sites are confirmed for an active RNA-RNA hybrid (34-nucleotide RNA enzyme:13-nucleotide RNA substrate) by EPR measurements at low Mn2+ concentrations. Decreasing NaCl concentration results in an increased number of bound Mn2+ per hammerhead. By contrast, a binding titration in 1 M NaCl indicates that a single Mn2+ site with apparent Kd approximately 10 microM is populated in low concentrations of Mn2+, and apparent cooperative effects at higher Mn2+ concentrations result in population of a similar total number of Mn2+ sites (n1 = 8-10) as found in 0.1 M NaCl. Mn2+-dependent activity profiles are similar for the active RNA-RNA hybrid in 0.1 and 1 M NaCl. Correlation with binding affinities determined by EPR indicates that hammerhead activity in 0.1 M NaCl is only observed after all four of the high-affinity Mn2+ sites are occupied, rises with population of the type 2 sites, and is independent of Mn2+ concentrations corresponding to > 8-9 Mn2+ bound per hammerhead. Equivalent measurements in 1 M NaCl demonstrate a rise in activity with the cooperative transition observed in the Mn2+ binding curve. These

  9. Cerebral Oxygenation in Awake Rats during Acclimation and Deacclimation to Hypoxia: An In Vivo Electron Paramagnetic Resonance Study

    PubMed Central

    Khan, Mohammad N.; Hou, Huagang G.; Merlis, Jennifer; Abajian, Michelle A.; Demidenko, Eugene; Grinberg, Oleg Y.; Swartz, Harold M.

    2011-01-01

    Abstract Dunn, J. F., N. Khan, H. G. Hou, J. Merlis, M. A. Abajian, E. Demidenko, O.Y. Grinberg, and H. M. Swartz. Cerebral oxygenation in awake rats during acclimation and deacclimation to hypoxia: an in vivo EPR study. High Alt. Med. Biol. 12:71–77, 2011.— Exposure to high altitude or hypobaric hypoxia results in a series of metabolic, physiologic, and genetic changes that serve to acclimate the brain to hypoxia. Tissue Po2 (Pto2) is a sensitive index of the balance between oxygen delivery and utilization and can be considered to represent the summation of such factors as cerebral blood flow, capillary density, hematocrit, arterial Po2, and metabolic rate. As such, it can be used as a marker of the extent of acclimation. We developed a method using electron paramagnetic resonance (EPR) to measure Pto2 in unanesthetized subjects with a chronically implanted sensor. EPR was used to measure rat cortical tissue Pto2 in awake rats during acute hypoxia and over a time course of acclimation and deacclimation to hypobaric hypoxia. This was done to simulate the effects on brain Pto2 of traveling to altitude for a limited period. Acute reduction of inspired O2 to 10% caused a decline from 26.7 ± 2.2 to 13.0 ± 1.5 mmHg (mean ± SD). Addition of 10% CO2 to animals breathing 10% O2 returned Pto2 to values measured while breathing 21% O2, indicating that hypercapnia can reverse the effects of acute hypoxia. Pto2 in animals acclimated to 10% O2 was similar to that measured preacclimation when breathing 21% O2. Using a novel, individualized statistical model, it was shown that the T1/2 of the Pto2 response during exposure to chronic hypoxia was approximately 2 days. This indicates a capacity for rapid adaptation to hypoxia. When subjects were returned to normoxia, there was a transient hyperoxygenation, followed by a return to lower values with a T1/2 of deacclimation of 1.5 to 3 days. These data indicate that exposure to hypoxia results in significant

  10. Electron paramagnetic resonance of the excited triplet state of metal-free and metal-substituted cytochrome c.

    PubMed Central

    Angiolillo, P J; Vanderkooi, J M

    1995-01-01

    The photoactivated metastable triplate states of the porphyrin (free-base, i.e., metal-free) zinc and tin derivatives of horse cytochrome c were investigated using electron paramagnetic resonance. Zero-field splitting parameters, line shape, and Jahn-Teller distortion in the temperature range 3.8-150 K are discussed in terms of porphyrin-protein interactions. The zero-field splitting parameters D for the free-base, Zn and Sn derivatives are 465 x 10(-4), 342 x 10(-4) and 353 x 10(-4) cm-1, respectively, and are temperature invariant over the temperature ranges studied. AN E value at 4 K of 73 x 10(-4) cm-1 was obtained for Zn cytochrome c, larger than any previously found for Zn porphyrins derivatives of hemeproteins, showing that the heme site of cytochrome c imposes an asymmetric field. Though the E value for Zn cytochrome c is large, the geometry of the site appears quite constrained, as indicated by a spectral line shape showing a single species. Intersystem crossing occurred predominantly to the T2 > zero-field spin sublevel. EPR line shape changes with respect to temperature of Zn cyt c are interpreted in terms of vibronic coupling, and a maximum Jahn-Teller crystal-field splitting of approximately 180 cm-1 is obtained. Sn cytochrome c in comparison with the Zn protein exhibits a photoactivated triplet line shape that is less well resolved in the X-Y region. The magnitude of E value is approximately 60 x 10(-4) cm-1 at 4 K; its value rapidly tends toward zero with increasing temperature, from which a value for the Jahn-Teller crystal-field splitting of > or = 40 cm-1 is estimated. In contrast to those for the metal cytochromes, the magnitude of E value for the free-base derivative was essentially zero at all temperatures studied. This finding is discussed as a consequence of an excited-state tautomerization process that occurs even at 4 K. PMID:7647253

  11. Improved apparatus for trapped radical and other studies down to 1.5 K. [microwave cavity cryogenic equipment for electron paramagnetic resonance experiments

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Sugawara, K.

    1978-01-01

    A Dewar system and associated equipment for electron paramagnetic resonance (EPR) studies of trapped free radicals and other optical or irradiation experiments are described. The apparatus is capable of reaching a temperature of 1.5 K and transporting on the order of 20 W per K temperature gradient; its principal advantages are for use at pumped cryogen temperatures and for experiments with large heat inputs. Two versions of the apparatus are discussed, one of which is designed for EPR in a rectangular cavity operating in a TE(102) mode and another in which EPR is performed in a cylindrical microwave cavity.

  12. Investigation of electron relaxation in the metal proteins containing the single paramagnetic centers of integer spin by nuclear forward scattering of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Popov, E. A.; Yanvarev, Eugene A.; Bashkirov, Sh. S.; Kouznetsov, V. I.

    2001-11-01

    Nuclear forward scattering (NFS) of synchrotron radiation (SR) is being modeled in metal proteins containing the single paramagnetic centers of integer spin (Fe2+). It is known the spin fluctuations in the electron environment of Moessbauer ion Fe2+ will be manifested itself in NFS if a sample undergoes the influence of applied magnetic field of a few Tesla. Under the condition we are analyzing how the resonant response (RR) of a sample to SR pulse will be changed due to the both spin-lattice and spin-spin interactions.

  13. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent.

    PubMed

    Yu, X; Song, S K; Chen, J; Scott, M J; Fuhrhop, R J; Hall, C S; Gaffney, P J; Wickline, S A; Lanza, G M

    2000-12-01

    In this study, the sensitivity of a novel fibrin-targeted contrast agent for fibrin detection was defined in vitro on human thrombus. The contrast agent was a lipid-encapsulated perfluorocarbon nanoparticle with numerous Gd-DTPA complexes incorporated into the outer surface. After binding to fibrin clots, scanning electron microscopy of treated clots revealed dense accumulation of nanoparticles on the clot surfaces. Fibrin clots with sizes ranging from 0.5-7.0 mm were imaged at 4.7 T with or without treatment with the targeted contrast agent. Regardless of sizes, untreated clots were not detectable by T(1)-weighted MRI, while targeted contrast agent dramatically improved the detectability of all clots. Decreases in T(1) and T(2) relaxation times (20-40%) were measured relative to the surrounding media and the control clots. These results suggest the potential for sensitive and specific detection of microthrombi that form on the intimal surfaces of unstable atherosclerotic plaque.

  14. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, Second Edition (John A. Weil and James R. Bolton)

    NASA Astrophysics Data System (ADS)

    Williams, Ffrancon

    2009-01-01

    The detection of electron magnetic resonance by Zavoiskii in the mid 1940s (1) ushered in a golden age of physical and chemical applications. Perhaps no single book did more to stimulate this development of EPR spectroscopy than the classic text by Wertz and Bolton (2) , which appeared in 1972. A revised version, with John A. Weil added as a co-author, was published by Wiley in 1994. This 2007 text is formally described as the second edition of the 1994 version. Wertz died shortly after the publication of the 1994 edition leaving Weil and Bolton as authors. In noting that the senior author (JAW) takes most of the responsibility for the content of this 2007 version, the Preface refers to it at one point as the "third edition", which of course is precisely how older readers will regard it. The main thrust of the book is decidedly on the physical aspects of EPR, so that it nicely complements the more chemical emphasis provided in the recent comprehensive text by Gerson and Hüber (3) . As the authors remark, the 2007 edition does not differ dramatically from the 1994 version. The titles of the 13 chapters remain the same except for chapter 11, which now refers to the "Noncontinuous" instead of the "Time-Dependent" Excitation of Spins. Recent developments are generally accommodated by a few extra pages in each chapter. Thus, chapter 1 on Basic Principles of Paramagnetic Resonance has been expanded from 31 to 36 pages to introduce the topics of parallel-field EPR, time-resolved EPR, "computerology", and EPR imaging. Chapter 2 on Magnetic Interactions is essentially unchanged while chapter 3 on Isotropic Hyperfine Effects has been expanded to include new sections on Deviations from the Simple Multinomial Scheme (3.7) and Some Interesting π-Type Free Radicals (3.9). Section 3.9 provides a useful corrective to the notion that the EPR method can detect and characterize almost any type of radical species. This welcome touch of realism is nicely illustrated by mentioning

  15. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, Second Edition (John A. Weil and James R. Bolton)

    NASA Astrophysics Data System (ADS)

    Williams, Ffrancon

    2009-01-01

    The detection of electron magnetic resonance by Zavoiskii in the mid 1940s (1) ushered in a golden age of physical and chemical applications. Perhaps no single book did more to stimulate this development of EPR spectroscopy than the classic text by Wertz and Bolton (2) , which appeared in 1972. A revised version, with John A. Weil added as a co-author, was published by Wiley in 1994. This 2007 text is formally described as the second edition of the 1994 version. Wertz died shortly after the publication of the 1994 edition leaving Weil and Bolton as authors. In noting that the senior author (JAW) takes most of the responsibility for the content of this 2007 version, the Preface refers to it at one point as the "third edition", which of course is precisely how older readers will regard it. The main thrust of the book is decidedly on the physical aspects of EPR, so that it nicely complements the more chemical emphasis provided in the recent comprehensive text by Gerson and Hüber (3) . As the authors remark, the 2007 edition does not differ dramatically from the 1994 version. The titles of the 13 chapters remain the same except for chapter 11, which now refers to the "Noncontinuous" instead of the "Time-Dependent" Excitation of Spins. Recent developments are generally accommodated by a few extra pages in each chapter. Thus, chapter 1 on Basic Principles of Paramagnetic Resonance has been expanded from 31 to 36 pages to introduce the topics of parallel-field EPR, time-resolved EPR, "computerology", and EPR imaging. Chapter 2 on Magnetic Interactions is essentially unchanged while chapter 3 on Isotropic Hyperfine Effects has been expanded to include new sections on Deviations from the Simple Multinomial Scheme (3.7) and Some Interesting π-Type Free Radicals (3.9). Section 3.9 provides a useful corrective to the notion that the EPR method can detect and characterize almost any type of radical species. This welcome touch of realism is nicely illustrated by mentioning

  16. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1.

    PubMed

    Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E

    2013-01-21

    Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.

  17. Electron paramagnetic resonance studies of a viscous nematic liquid crystal: Evidence counter to a second-order phase change

    NASA Technical Reports Server (NTRS)

    Shutt, W. E.; Gelerinter, E.; Fryburg, G. C.; Sheley, C. F.

    1972-01-01

    The ordering in a viscous, nematic, liquid crystal was studied using vanadyl acetyl acetonate and several nitroxides as paramagnetic probes. The ordering curve for VAAC at both K-band and X-band shows a slope discontinuity at a reduced temperature of 0.85. This discontinuity is caused by the tumbling time of the VAAC becoming comparable with the hyperfine splitting. The slope discontinuity is not present in the ordering curves of the nitroxides. The results are taken as evidence counter to the presence of a second-order phase transition.

  18. Native and induced triplet nitrogen-vacancy centers in nano- and micro-diamonds: Half-field electron paramagnetic resonance fingerprint

    NASA Astrophysics Data System (ADS)

    Shames, A. I.; Osipov, V. Yu.; von Bardeleben, H.-J.; Boudou, J.-P.; Treussart, F.; Vul', A. Ya.

    2014-02-01

    Multiple frequency electron paramagnetic resonance (EPR) study of small (4-25 nm) nanodiamonds obtained by various dynamic synthesis techniques reveals systematic presence in the half-field (HF) region a distinctive doublet fingerprint consisting of resolved gHF1 = 4.26 and gHF2 = 4.00 signals. This feature is attributed to "forbidden" ΔMS = 2 transitions in EPR spectra of two native paramagnetic centers of triplet (S = 1) origin designated as TR1 and TR2, characterized by zero field splitting values D1 = 0.0950 ± 0.002 cm-1 and D2 = 0.030 ± 0.005 cm-1. Nanodiamonds of ˜50 nm particle size, obtained by crushing of Ib type nitrogen rich synthetic diamonds, show only HF TR2 signal whereas the same sample undergone high energy (20 MeV) electron irradiation and thermal annealing demonstrates rise of HF TR1 signal. The same HF TR1 signals appear in the process of fabrication of fluorescent nanodiamonds from micron-size synthetic diamond precursors. Results obtained allow unambiguous attribution of the half-field TR1 EPR signals with gHF1 = 4.26, observed in nano- and micron-diamond powders, to triplet negatively charged nitrogen-vacancy centers. These signals are proposed as reliable and convenient fingerprints in both qualitative and quantitative study of fluorescent nano- and micron-diamonds.

  19. The Origin of the Multiline and g = 4.1 Electron Paramagnetic Resonance Signals from the Oxygen-Evolving System of Photosystem II

    PubMed Central

    Hansson, Örjan; Aasa, Roland; Vänngȧrd, Tore

    1987-01-01

    Continuous illumination at 200 K of photosystem (PS) II-enriched membranes generates two electron paramagnetic resonance (EPR) signals that both are connected with the S2 state: a multiline signal at g 2 and a single line at g = 4.1. From measurements at three different X-band frequencies and at 34 GHz, the g tensor of the multiline species was found to be isotropic with g = 1.982. It has an excited spin multiplet at ∼30 cm-1, inferred from the temperature-dependence of the linewidth. The intensity ratio of the g = 4.1 signal to the multiline signal was found to be almost constant from 5 to 23 K. Based on these findings and on spin quantitation of the two signals in samples with and without 4% ethanol, it is concluded that they arise from the ground doublets of paramagnetic species in different PS II centers. It is suggested that the two signals originate from separate PS II electron donors that are in a redox equilibrium with each other in the S2 state and that the g = 4.1 signal arises from monomeric Mn(IV). PMID:19431697

  20. The influence of oxygen-17 enriched oxygen-donor ligands on the electronic spin relaxation behaviour of paramagnetic metal ions

    NASA Astrophysics Data System (ADS)

    Wells, Gregg B.; Yim, Moon B.; Makinen, Marvin W.

    Continuous wave microwave power saturation of high-spin paramagnetic metalloprotein complexes of Co2+ and Fe3+ showed that the value of the saturation parameter P1/2 is influenced by the coordination of oxygen-17 enriched water to the metal ion. No change was observed for H218O or 2H2O. Pulse saturation and recovery of paramagnetic high-spin Fe3+ heme proteins identified a fast relaxation component sensitive to isotopic oxygen-17 composition that was assigned to the process of spectral diffusion. It is shown that the change in relaxation time for spectral diffusion can alter the (apparent) spin-lattice relaxation to account for the observed changes in continuous wave microwave power saturation experiments. These changes are shown to correlate with alterations in the extent of covalency between the metal ion and oxygen-donor ligand. The experimental results provide a basis for use of continuous wave microwave saturation to identify the presence of oxygen-donor ligands within the inner coordination shell of high-spin Co2+ or Fe3+ in metalloprotein and small molecule complexes and to qualitatively assess the extent of covalency between the metal ion and the oxygen-donor ligand.

  1. Effects of thermal annealing on the radiation produced electron paramagnetic resonance spectra of bovine and equine tooth enamel: Fossil and modern

    NASA Astrophysics Data System (ADS)

    Weeks, Robert A.; Bogard, James S.; Elam, J. Michael; Weinand, Daniel C.; Kramer, Andrew

    2003-06-01

    The concentration of stable radiation-induced paramagnetic states in fossil teeth can be used as a measure of sample age. Temperature excursions >100 °C, however, can cause the paramagnetic state clock to differ from the actual postmortem time. We have heated irradiated enamel from both fossilized bovid and modern equine (MEQ) teeth for 30 min in 50 °C increments from 100 to 300 °C, measuring the electron paramagnetic resonance (EPR) spectrum after each anneal, to investigate such effects. Samples were irradiated again after the last anneal, with doses of 300-1200 Gy from 60Co photons, and measured. Two unirradiated MEQ samples were also annealed for 30 min at 300 °C, one in an evacuated EPR tube and the other in a tube open to the atmosphere, and subsequently irradiated. The data showed that hyperfine components attributed to the alanine radical were not detected in the irradiated MEQ sample until after the anneals. The spectrum of the MEQ sample heated in air and then irradiated was similar to that of the heat treated fossil sample. We conclude that the hyperfine components are due to sample heating to temperatures/times >100 °C/30 min and that similarities between fossil and MEQ spectra after the 300 °C/30 min MEQ anneal are also due to sample heating. We conclude that the presence of the hyperfine components in spectra of fossil tooth enamel indicate that such thermal events occurred either at the time of death, or during the postmortem history.

  2. The Collection of High-Resolution Electron Diffraction Data

    PubMed Central

    Gonen, Tamir

    2013-01-01

    A number of atomic-resolution structures of membrane proteins (better than 3Å resolution) have been determined recently by electron crystallography. While this technique was established more than 40 years ago, it is still in its infancy with regard to the two-dimensional (2D) crystallization, data collection, data analysis, and protein structure determination. In terms of data collection, electron crystallography encompasses both image acquisition and electron diffraction data collection. Other chapters in this volume outline protocols for image collection and analysis. This chapter, however, outlines detailed protocols for data collection by electron diffraction. These include microscope setup, electron diffraction data collection, and troubleshooting. PMID:23132060

  3. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  4. Electron paramagnetic resonance and magnetization in Co doped La{sub 2/3}Ca{sub 1/3}MnO{sub 3}

    SciTech Connect

    Rivadulla, F.; Sande, P.; Causa, M. T.; Hueso, L. E.; Lopez-Quintela, M. A.; Rivas, J.

    2001-06-01

    Spin dynamics of the Mn-site substituted colossal magnetoresistance system were studied by means of electron paramagnetic resonance (EPR) and dc magnetic susceptibility in La{sub 2/3}Ca{sub 1/3}Mn{sub 1{minus}x}Co{sub x}O{sub 3} (0{le}x{le}0.1,{Delta}x=0.025). A dramatic increase in the high temperature limiting value for the EPR linewidth ({Delta}H{sub pp}({infinity})) was observed with doping. Structural analysis revealed that only negligible changes are produced in bond distances and angles at these low doping levels. On the other hand, dipolar contribution to {Delta}H{sub pp}({infinity}) was estimated in a few Gauss. To explain the effect of doping on {Delta}H{sub pp}({infinity}), we propose here a scenario including fast Mn-spin lattice relaxation through paramagnetic Co ions. {copyright} 2001 American Institute of Physics.

  5. Ultra-High-Resolution Electron Microscopy of Carbon Nanotube Walls

    SciTech Connect

    Cowley, J. M.; Winterton, Jamie

    2001-07-02

    The resolution in scanning transmission electron microscopy may be enhanced by taking advantage of the information contained in the nanodiffraction patterns recorded for each position of the scanning incident beam. We have demonstrated the first production of ultrahigh resolution, better than 0.1nm, by this method, in the imaging of an essentially one-dimensional object, the wall of a multiwalled carbon nanotube, using an instrument for which the resolution for normal imaging is about 0.3nm.

  6. A high-frequency electron paramagnetic resonance spectrometer for multi-dimensional, multi-frequency, and multi-phase pulsed measurements.

    PubMed

    Cho, F H; Stepanov, V; Takahashi, S

    2014-07-01

    We describe instrumentation for a high-frequency electron paramagnetic resonance (EPR) and pulsed electron-electron double resonance (PELDOR) spectroscopy. The instrumentation is operated in the frequency range of 107-120 GHz and 215-240 GHz and in the magnetic field range of 0-12.1 T. The spectrometer consisting of a high-frequency high-power solid-state source, a quasioptical system, a phase-sensitive detection system, a cryogenic-free superconducting magnet, and a (4)He cryostat enables multi-frequency continuous-wave EPR spectroscopy as well as pulsed EPR measurements with a few hundred nanosecond pulses. Here we discuss the details of the design and the pulsed EPR sensitivity of the instrumentation. We also present performance of the instrumentation in unique experiments including PELDOR spectroscopy to probe correlations in an insulating electronic spin system and application of dynamical decoupling techniques to extend spin coherence of electron spins in an insulating solid-state system. PMID:25085176

  7. A high-frequency electron paramagnetic resonance spectrometer for multi-dimensional, multi-frequency, and multi-phase pulsed measurements

    SciTech Connect

    Cho, F. H.; Stepanov, V.; Takahashi, S.

    2014-07-15

    We describe instrumentation for a high-frequency electron paramagnetic resonance (EPR) and pulsed electron-electron double resonance (PELDOR) spectroscopy. The instrumentation is operated in the frequency range of 107−120 GHz and 215−240 GHz and in the magnetic field range of 0−12.1 T. The spectrometer consisting of a high-frequency high-power solid-state source, a quasioptical system, a phase-sensitive detection system, a cryogenic-free superconducting magnet, and a {sup 4}He cryostat enables multi-frequency continuous-wave EPR spectroscopy as well as pulsed EPR measurements with a few hundred nanosecond pulses. Here we discuss the details of the design and the pulsed EPR sensitivity of the instrumentation. We also present performance of the instrumentation in unique experiments including PELDOR spectroscopy to probe correlations in an insulating electronic spin system and application of dynamical decoupling techniques to extend spin coherence of electron spins in an insulating solid-state system.

  8. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments.

    PubMed

    Enomoto, Ayano; Hirata, Hiroshi

    2014-02-01

    This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.

  9. Electron Paramagnetic Resonance Characterization of Three Iron-Sulfur Clusters Present in the Nitrogenase Cofactor Maturase NifB from Methanocaldococcus infernus.

    PubMed

    Wilcoxen, Jarett; Arragain, Simon; Scandurra, Alessandro A; Jimenez-Vicente, Emilio; Echavarri-Erasun, Carlos; Pollmann, Stephan; Britt, R David; Rubio, Luis M

    2016-06-22

    NifB utilizes two equivalents of S-adenosyl methionine (SAM) to insert a carbide atom and fuse two substrate [Fe-S] clusters forming the NifB cofactor (NifB-co), which is then passed to NifEN for further modification to form the iron-molybdenum cofactor (FeMo-co) of nitrogenase. Here, we demonstrate that NifB from the methanogen Methanocaldococcus infernus is a radical SAM enzyme able to reductively cleave SAM to 5'-deoxyadenosine radical and is competent in FeMo-co maturation. Using electron paramagnetic resonance spectroscopy we have characterized three [4Fe-4S] clusters, one SAM binding cluster, and two auxiliary clusters probably acting as substrates for NifB-co formation. Nitrogen coordination to one or more of the auxiliary clusters in NifB was observed, and its mechanistic implications for NifB-co dissociation from the maturase are discussed. PMID:27268267

  10. From a paramagnetic, mononuclear supersulfidonickel(II) complex to a diamagnetic dimer with a four-sulfur two-electron bond.

    PubMed

    Yao, Shenglai; Milsmann, Carsten; Bill, Eckhard; Wieghardt, Karl; Driess, Matthias

    2008-10-15

    The first isolable "side-on" supersulfidonickel(II) complex 1(1) with the elusive S2-. ligand has been synthesized by facile oxidation of the corresponding nickel(I) precursor [LNi] with elemental sulfur. Remarkably, paramagnetic 1(1) associates voluntarily to give the diamagnetic dimer 1(2) with a four-sulfur two-electron bond as proven by X-ray diffraction analysis, spectroscopic measurements (1H NMR, EPR, SQUID), and DFT calculations. Gentle sulfur transfer of 1(1) to Ph3P or its reaction with [LNi] affords solely the genuine disulfide complex 3 having a Ni2(mu-mu2:mu2-S2) core. PMID:18803388

  11. Evaluation of the effect of dietary lycopene, the main carotenoid in tomato (Lycopersicon esculentum), on the in vivo renal reducing ability by a radiofrequency electron paramagnetic resonance method.

    PubMed

    Yoshida, Kazutaka; Yokoyama, Hidekatsu; Oteki, Takaaki; Matsumoto, Gaku; Aizawa, Koichi; Inakuma, Takahiro

    2011-04-13

    Although it has been reported that dietary lycopene, the main carotenoid in tomato, improved drug-induced nephropathy, there are no reports on the effect of orally administered lycopene on the in vivo renal reducing (i.e., antioxidant) ability. The radiofrequency electron paramagnetic resonance (EPR) method is a unique technique by which the in vivo reducing ability of an experimental animal can be studied. In this study, the in vivo changes in the renal reducing ability of rats orally administered lycopene were investigated using a 700 MHz EPR spectrometer equipped with a surface-coil-type resonator. Rats were fed either a control diet or a diet containing lycopene. After 2 weeks, in vivo EPR measurements were conducted. The renal reducing ability of lycopene-treated rats was significantly greater than that of the control. This is the first verification of in vivo antioxidant enhancement via dietary lycopene administration. PMID:21381743

  12. Application of electron paramagnetic resonance imaging to the characterization of the Ultem(R) exposed to 1 MeV electrons. Correlation of radical density data to tiger code calculations

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1994-01-01

    A major long-term goal of the Materials Division at the NASA Langley Research Center is the characterization of new high-performance materials that have potential applications in the aircraft industry, and in space. The materials used for space applications are often subjected to a harsh and potentially damaging radiation environment. The present study constitutes the application of a novel technique to obtain reliable data for ascertaining the molecular basis for the resilience and durability of materials that have been exposed to simulated space radiations. The radiations of greatest concern are energetic electrons and protons, as well as galactic cosmic rays. Presently, the effects of such radiation on matter are not understood in their entirety. It is clear however, that electron radiation causes ionization and homolytic bond rupture, resulting in the formation of paramagnetic spin centers in the polymer matrices of the structural materials. Since the detection and structure elucidation of paramagnetic species are most readily accomplished using Electron Paramagnetic Resonance (EPR) Spectroscopy, the NASA LaRC EPR system was brought back on-line during the 1991 ASEE term. The subsequent 1992 ASEE term was devoted to the adaptation of the EPR core system to meet the requirements for EPR Imaging (EPRI), which provides detailed information on the spatial distribution of paramagnetic species in bulk media. The present (1994) ASEE term was devoted to the calibration of this EPR Imaging system, as well as to the application of this technology to study the effects of electron irradiation on Ultem(exp R), a high performance polymer which is a candidate for applications in aerospace. The Ultem was exposed to a dose of 2.4 x 10(exp 9) Rads (1-MeV energy/electron) at the LaRC electron accelerator facility. Subsequently, the exposed specimens were stored in liquid nitrogen, until immediately prior to analyses by EPRI. The intensity and dimensions of the EPR Images that

  13. Native and induced triplet nitrogen-vacancy centers in nano- and micro-diamonds: Half-field electron paramagnetic resonance fingerprint

    SciTech Connect

    Shames, A. I.; Osipov, V. Yu.; Vul’, A. Ya.; Bardeleben, H.-J. von

    2014-02-10

    Multiple frequency electron paramagnetic resonance (EPR) study of small (4–25 nm) nanodiamonds obtained by various dynamic synthesis techniques reveals systematic presence in the half-field (HF) region a distinctive doublet fingerprint consisting of resolved g{sub HF1} = 4.26 and g{sub HF2} = 4.00 signals. This feature is attributed to “forbidden” ΔM{sub S} = 2 transitions in EPR spectra of two native paramagnetic centers of triplet (S = 1) origin designated as TR1 and TR2, characterized by zero field splitting values D{sub 1} = 0.0950 ± 0.002 cm{sup −1} and D{sub 2} = 0.030 ± 0.005 cm{sup −1}. Nanodiamonds of ∼50 nm particle size, obtained by crushing of Ib type nitrogen rich synthetic diamonds, show only HF TR2 signal whereas the same sample undergone high energy (20 MeV) electron irradiation and thermal annealing demonstrates rise of HF TR1 signal. The same HF TR1 signals appear in the process of fabrication of fluorescent nanodiamonds from micron-size synthetic diamond precursors. Results obtained allow unambiguous attribution of the half-field TR1 EPR signals with g{sub HF1} = 4.26, observed in nano- and micron-diamond powders, to triplet negatively charged nitrogen-vacancy centers. These signals are proposed as reliable and convenient fingerprints in both qualitative and quantitative study of fluorescent nano- and micron-diamonds.

  14. Finite pulse effects in CPMG pulse trains on paramagnetic materials.

    PubMed

    Leskes, Michal; Grey, Clare P

    2015-09-14

    The Carr-Purcell-Meiboom-Gill (CPMG) sequence is commonly used in high resolution NMR spectroscopy and in magnetic resonance imaging for the measurement of transverse relaxation in systems that are subject to diffusion in internal or external gradients and is superior to the Hahn echo measurement, which is more sensitive to diffusion effects. Similarly, it can potentially be used to study dynamic processes in electrode materials for lithium ion batteries. Here we compare the (7)Li signal decay curves obtained with the CPMG and Hahn echo sequences under static conditions (i.e., in the absence of magic angle spinning) in paramagnetic materials with varying transition metal ion concentrations. Our results indicate that under CPMG pulse trains the lifetime of the (7)Li signal is substantially extended and is correlated with the strength of the electron-nuclear interaction. Numerical simulations and analytical calculations using Floquet theory suggest that the combination of large interactions and a train of finite pulses, results in a spin locking effect which significantly slows the signal's decay. While these effects complicate the interpretation of CPMG-based investigations of diffusion and chemical exchange in paramagnetic materials, they may provide a useful approach to extend the signal's lifetime in these often fast relaxing systems, enabling the use of correlation experiments. Furthermore, these results highlight the importance of developing a deeper understanding of the effects of the large paramagnetic interactions during multiple pulse experiments in order to extend the experimental arsenal available for static and in situ NMR investigations of paramagnetic materials.

  15. Electronic structure description of a [Co(III)3Co(IV)O4] cluster: a model for the paramagnetic intermediate in cobalt-catalyzed water oxidation.

    PubMed

    McAlpin, J Gregory; Stich, Troy A; Ohlin, C André; Surendranath, Yogesh; Nocera, Daniel G; Casey, William H; Britt, R David

    2011-10-01

    Multifrequency electron paramagnetic resonace (EPR) spectroscopy and electronic structure calculations were performed on [Co(4)O(4)(C(5)H(5)N)(4)(CH(3)CO(2))(4)](+) (1(+)), a cobalt tetramer with total electron spin S = 1/2 and formal cobalt oxidation states III, III, III, and IV. The cuboidal arrangement of its cobalt and oxygen atoms is similar to that of proposed structures for the molecular cobaltate clusters of the cobalt-phosphate (Co-Pi) water-oxidizing catalyst. The Davies electron-nuclear double resonance (ENDOR) spectrum is well-modeled using a single class of hyperfine-coupled (59)Co nuclei with a modestly strong interaction (principal elements of the hyperfine tensor are equal to [-20(±2), 77(±1), -5(±15)] MHz). Mims (1)H ENDOR spectra of 1(+) with selectively deuterated pyridine ligands confirm that the amount of unpaired spin on the cobalt-bonding partner is significantly reduced from unity. Multifrequency (14)N ESEEM spectra (acquired at 9.5 and 34.0 GHz) indicate that four nearly equivalent nitrogen nuclei are coupled to the electron spin. Cumulatively, our EPR spectroscopic findings indicate that the unpaired spin is delocalized almost equally across the eight core atoms, a finding corroborated by results from DFT calculations. Each octahedrally coordinated cobalt ion is forced into a low-spin electron configuration by the anionic oxo and carboxylato ligands, and a fractional electron hole is localized on each metal center in a Co 3d(xz,yz)-based molecular orbital for this essentially [Co(+3.125)(4)O(4)] system. Comparing the EPR spectrum of 1(+) with that of the catalyst film allows us to draw conclusions about the electronic structure of this water-oxidation catalyst.

  16. Problem Resolution through Electronic Mail: A Five-Step Model.

    ERIC Educational Resources Information Center

    Grandgenett, Neal; Grandgenett, Don

    2001-01-01

    Discusses the use of electronic mail within the general resolution and management of administrative problems and emphasizes the need for careful attention to problem definition and clarity of language. Presents a research-based five-step model for the effective use of electronic mail based on experiences at the University of Nebraska at Omaha.…

  17. Disappearance of electron-hole asymmetry in nanoparticles of Nd{sub 1−x}Ca{sub x}MnO{sub 3}(x=0.6,0.4): magnetization and electron paramagnetic resonance evidence

    SciTech Connect

    Bhagyashree, K. S. Bhat, S. V.

    2015-05-07

    We study and compare magnetic and electron paramagnetic resonance behaviors of bulk and nanoparticles of Nd{sub 1−x}Ca{sub x}MnO{sub 3} in hole doped (x=0.4;NCMOH) and electron doped (x=0.6;NCMOE) samples. NCMOH in bulk form shows a complex temperature dependence of magnetization M(T), with a charge ordering transition at ∼250 K, an antiferromagnetic (AFM) transition at ∼150 K, and a transition to a canted AFM phase/mixed phase at ∼80 K. Bulk NCMOE behaves quite differently with just a charge ordering transition at ∼280 K, thus providing a striking example of the so called electron-hole asymmetry. While our magnetization data on bulk samples are consistent with the earlier reports, the new results on the nanoparticles bring out drastic effects of size reduction. They show that M(T) behaviors of the two nanosamples are essentially similar in addition to the absence of the charge order in them thus providing strong evidence for vanishing of the electron-hole asymmetry in nanomanganites. This conclusion is further corroborated by electron paramagnetic resonance studies which show that the large difference in the “g” values and their temperature dependences found for the two bulk samples disappears as they approach a common behavior in the corresponding nanosamples.

  18. High-resolution low-dose scanning transmission electron microscopy

    PubMed Central

    Buban, James P.; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D.; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM. PMID:19915208

  19. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  20. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  1. Phosphonated Trityl Probes for Concurrent in Vivo Tissue Oxygen and pH Monitoring Using Electron Paramagnetic Resonance-Based Techniques

    PubMed Central

    Dhimitruka, Ilirian; Bobko, Andrey A.; Eubank, Timothy D.; Komarov, Denis A.; Khramtsov, Valery V.

    2014-01-01

    Previously we proposed the concept of dual function pH and oxygen paramagnetic probes based on the incorporation of ionizable groups into the structure of persistent triarylmethyl radicals, TAMs (J. Am. Chem. Soc. 2007, 129, 7240–7241). In this paper, we synthesized an asymmetric monophosphonated TAM probe with the simplest doublet hfs pattern ideally suited for dual function electron paramagnetic resonance (EPR)-based applications. An extraordinary low line width of the synthesized deuterated derivative, p1TAM-D (ΔHpp ≤ 50 mG, Lorentz line width, ≤20 mG) results in high sensitivity to pO2 due to oxygen-induced line broadening (ΔLW/ΔpO2 ≈ 0.5 mG/mmHg or ≈400 mG/mM); accuracy of pO2 measurement, ≈1 mmHg). The presence of a phosphono group in the p1TAM-D structure provides pH sensitivity to its EPR spectra in the physiological range of pH from 5.9 to 8.2 with the ratio of signal intensities of protonated and deprotonated states being a reliable pH marker (accuracy of pH measurements, ± 0.05). The independent character of pH and [O2] effects on the EPR spectra of p1TAM-D provides dual functionality to this probe. The L-band EPR studies performed in breast tumor-bearing mice show a significant difference in extracellular pH and pO2 between tumor and normal mammary gland tissues, as well as the effect of animal breathing with 100% O2 on tissue oxygenation. The developed dual function phosphonated p1TAM-D probe provides a unique tool for in vivo concurrent tissue oxygen and pH monitoring. PMID:23517077

  2. Phosphonated trityl probes for concurrent in vivo tissue oxygen and pH monitoring using electron paramagnetic resonance-based techniques.

    PubMed

    Dhimitruka, Ilirian; Bobko, Andrey A; Eubank, Timothy D; Komarov, Denis A; Khramtsov, Valery V

    2013-04-17

    Previously we proposed the concept of dual function pH and oxygen paramagnetic probes based on the incorporation of ionizable groups into the structure of persistent triarylmethyl radicals, TAMs (J. Am. Chem. Soc.2007, 129, 7240-7241). In this paper, we synthesized an asymmetric monophosphonated TAM probe with the simplest doublet hfs pattern ideally suited for dual function electron paramagnetic resonance (EPR)-based applications. An extraordinary low line width of the synthesized deuterated derivative, p1TAM-D (ΔHpp ≤ 50 mG, Lorentz line width, ≤20 mG) results in high sensitivity to pO2 due to oxygen-induced line broadening (ΔLW/ΔpO2 ≈ 0.5 mG/mmHg or ≈400 mG/mM); accuracy of pO2 measurement, ≈1 mmHg). The presence of a phosphono group in the p1TAM-D structure provides pH sensitivity to its EPR spectra in the physiological range of pH from 5.9 to 8.2 with the ratio of signal intensities of protonated and deprotonated states being a reliable pH marker (accuracy of pH measurements, ± 0.05). The independent character of pH and [O2] effects on the EPR spectra of p1TAM-D provides dual functionality to this probe. The L-band EPR studies performed in breast tumor-bearing mice show a significant difference in extracellular pH and pO2 between tumor and normal mammary gland tissues, as well as the effect of animal breathing with 100% O2 on tissue oxygenation. The developed dual function phosphonated p1TAM-D probe provides a unique tool for in vivo concurrent tissue oxygen and pH monitoring.

  3. Electron spin resonance of Ni-doped CuGeO3 in the paramagnetic, spin-Peierls, and antiferromagnetic states: Comparison with nonmagnetic impurities

    NASA Astrophysics Data System (ADS)

    Grenier, B.; Monod, P.; Hagiwara, M.; Matsuda, M.; Katsumata, K.; Clément, S.; Renard, J.-P.; Barra, A. L.; Dhalenne, G.; Revcolevschi, A.

    2002-03-01

    We have performed electron-spin-resonance measurements on single crystals of the doped spin-Peierls compounds CuGe1-ySiyO3 and Cu1-xMxGeO3 with M=Zn, Mg, Ni (x,y<=0.1). The first part of our experiments was performed in the paramagnetic and spin-Peierls phases at 9.5, 95, and 190 GHz. All nonmagnetic impurities (Si, Zn and Mg) were found to hardly affect the position and linewidth of the single line resonance, in spite of the moment formation due to the broken chains. In contrast to Si, Zn, and Mg dopings, the presence of Ni (S=1) at low concentration induces a spectacular shift toward high fields of the ESR line (up to 40% for x=0.002), together with a large broadening. This shift is strictly proportional to the ratio of Ni to Cu susceptibilities: Hence it is strongly enhanced below the spin-Peierls transition. We interpret this shift and the broadening as due to the exchange field induced by the Ni ions onto strongly exchange coupled Cu spins. Second, the antiferromagnetic resonance was investigated in Ni-doped samples. The frequency vs magnetic-field relation of the resonance is well explained by the classical theory with orthorhombic anisotropy, with g values remarkably reduced, in accordance with the study of the spin-Peierls and paramagnetic phases. The easy, second-easy, and hard axes are found to be a, c, and b axes, respectively. These results, which are dominated by the single ion anisotropy of Ni2+, are discussed in comparison with those in the Zn- and Si-doped CuGeO3.

  4. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    SciTech Connect

    Shames, Alexander I.; Bounioux, Celine; Katz, Eugene A.; Yerushalmi-Rozen, Rachel; Zussman, Eyal

    2012-03-12

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  5. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    NASA Astrophysics Data System (ADS)

    Shames, Alexander I.; Bounioux, Céline; Katz, Eugene A.; Yerushalmi-Rozen, Rachel; Zussman, Eyal

    2012-03-01

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  6. A miniature high-resolution accelerometer utilizing electron tunneling

    NASA Technical Reports Server (NTRS)

    Rockstad, Howard K.; Kenny, T. W.; Reynolds, J. K.; Kaiser, W. J.; Vanzandt, T. R.; Gabrielson, Thomas B.

    1992-01-01

    New methods have been developed to implement high-resolution position sensors based on electron tunneling. These methods allow miniaturization while utilizing the position sensitivity of electron tunneling to give high resolution. A single-element tunneling accelerometer giving a displacement resolution of 0.002 A/sq rt Hz at 10 Hz, corresponding to an acceleration resolution of 5 x 10 exp -8 g/sq rt Hz, is described. A new dual-element tunneling structure which overcomes the narrow bandwidth limitations of a single-element structure is described. A sensor with an operating range of 5 Hz to 10 kHz, which can have applications as an acoustic sensor, is discussed. Noise is analyzed for fundamental thermal vibration of the suspended masses and is compared to electronic noise. It is shown that miniature tunnel accelerometers can achieve resolution such that thermal noise in the suspended masses is the dominant cause of the resolution limit. With a proof mass of order 100 mg, noise analysis predicts limiting resolutions approaching 10 exp -9 g/sq rt Hz in a 300 Hz band and 10 exp -8 g/sq rt Hz at 1 kHz.

  7. In-Situ Transmission Electron Microscopy with Nanosecond Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Browning, Nigel

    2012-02-01

    The dynamic transmission electron microscope (DTEM) can obtain both high spatial (˜1nm or better) and high temporal (˜1μs or faster) resolution. The high temporal resolution is achieved by using a short pulse laser to create the pulse of electrons through photo-emission. This pulse of electrons is propagated down the microscope column in the same way as in a conventional high-resolution TEM. The only difference is that the spatial resolution is limited by the electron-electron interactions in the pulse (a typical 10ns pulse contains ˜10^9 electrons). To synchronize this pulse of electrons with a particular dynamic event, a second laser is used to ``drive'' the sample a defined time interval prior to the arrival of the laser pulse. The important aspect of the DTEM is that one pulse of electrons is used to form the whole image, allowing irreversible transitions and cumulative phenomena such as nucleation and growth, to be studied directly in the microscope. The use of the drive laser for fast heating of the specimen presents differences and several advantages over conventional resistive heating in-situ TEM -- such as the ability to drive the sample into non-equilibrium states. So far, the drive laser has been used for in-situ processing of nanoscale materials, rapid and high temperature phase transformations, and controlled thermal activation of materials. In this presentation, a summary of the development of the DTEM and in-situ stages to control the environment around the specimen will be described. Particular attention will be paid to the potential for gas stages to study catalytic processes and liquid stages to study biological specimens in their live hydrated states. The future potential improvements in spatial and temporal resolution that can be expected through the implementation of upgrades to the lasers, electron optics and detectors will also be discussed.

  8. Study of a DNA Duplex by Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Validation of Pulsed Dipolar Electron Paramagnetic Resonance Distance Measurements Using Triarylmethyl-Based Spin Labels.

    PubMed

    Lomzov, Alexander A; Sviridov, Eugeniy A; Shernuykov, Andrey V; Shevelev, Georgiy Yu; Pyshnyi, Dmitrii V; Bagryanskaya, Elena G

    2016-06-16

    Pulse dipole-dipole electron paramagnetic resonance (EPR) spectroscopy (double electron-electron resonance [DEER] or pulse electron-electron double resonance [PELDOR] and double quantum coherence [DQC]) allows for measurement of distances in biomolecules and can be used at low temperatures in a frozen solution. Recently, the possibility of distance measurement in a nucleic acid at a physiological temperature using pulse EPR was demonstrated. In these experiments, triarylmethyl (TAM) radicals with long memory time of the electron spin served as a spin label. In addition, the duplex was immobilized on modified silica gel particles (Nucleosil DMA); this approach enables measurement of interspin distances close to 4.5 nm. Nevertheless, the possible influence of TAM on the structure of a biopolymer under study and validity of the data obtained by DQC are debated. In this paper, a combination of molecular dynamics (MD) and nuclear magnetic resonance (NMR) methods was used for verification of interspin distances measured by the X-band DQC method. NMR is widely used for structural analysis of biomolecules under natural conditions (room temperature and an aqueous solution). The ultraviolet (UV) melting method and thermal series (1)H NMR in the range 5-95 °C revealed the presence of only the DNA duplex in solution at oligonucleotide concentrations 1 μM to 1.1 mM at temperatures below 40 °C. The duplex structures and conformation flexibility of native and TAM-labeled DNA complexes obtained by MD simulation were the same as the structure obtained by NMR refinement. Thus, we showed that distance measurements at physiological temperatures by the X-band DQC method allow researchers to obtain valid structural information on an unperturbed DNA duplex using terminal TAM spin labels.

  9. High-resolution electron microscopy of advanced materials

    SciTech Connect

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  10. The theory and practice of high resolution scanning electron microscopy

    SciTech Connect

    Joy, D.C. Oak Ridge National Lab., TN )

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  11. Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap

    NASA Astrophysics Data System (ADS)

    Golden, E. M.; Basun, S. A.; Evans, D. R.; Grabar, A. A.; Stoika, I. M.; Giles, N. C.; Halliburton, L. E.

    2016-10-01

    Electron paramagnetic resonance (EPR) is used to identify the singly ionized charge state of the Sn vacancy ( VSn - ) in single crystals of Sn2P2S6 (often referred to as SPS). These vacancies, acting as a hole trap, are expected to be important participants in the photorefractive effect observed in undoped SPS crystals. In as-grown crystals, the Sn vacancies are doubly ionized ( VSn 2 - ) with no unpaired spins. They are then converted to a stable EPR-active state when an electron is removed (i.e., a hole is trapped) during an illumination below 100 K with 633 nm laser light. The resulting EPR spectrum has g-matrix principal values of 2.0079, 2.0231, and 1.9717. There are resolved hyperfine interactions with two P neighbors and one Sn neighbor. The isotropic portions of these hyperfine matrices are 167 and 79 MHz for the two 31P neighbors and 8504 MHz for the one Sn neighbor (this latter value is the average for 117Sn and 119Sn). These VSn - vacancies are shallow acceptors with the hole occupying a diffuse wave function that overlaps the neighboring Sn2+ ion and (P2S6)4- anionic unit. Using a general-order kinetics approach, an analysis of isothermal decay curves of the VSn - EPR spectrum in the 107-115 K region gives an activation energy of 283 meV.

  12. Strong reduction of V4+ amount in vanadium oxide/hexadecylamine nanotubes by doping with Co2+ and Ni2+ ions: Electron paramagnetic resonance and magnetic studies

    NASA Astrophysics Data System (ADS)

    Saleta, M. E.; Troiani, H. E.; Ribeiro Guevara, S.; Ruano, G.; Sánchez, R. D.; Malta, M.; Torresi, R. M.

    2011-05-01

    In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VOx/Hexa NT's) doped with Co2+ and Ni2+ ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co2+, S = 3/2 and Ni2+, S = 1) decreases notably the amount of V4+ ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V4+ in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes.

  13. Electron Paramagnetic Resonance and Fluorescence In Situ Hybridization-Based Investigations of Individual Doses for Persons Living at Metlino in the Upper Reaches of the Techa River

    SciTech Connect

    Degteva, M. O.; Anspaugh, L. R.; Akleyev, A V.; Jacob, Peter; Ivanov, Denis V.; Wieser, Albrecht; Vorobiova, M I.; Shishkina, Elena A.; Shved, Valentina A.; Vozilova, Alexandra; Bayankin, Sergey N.; Napier, Bruce A.

    2005-02-01

    Waterborne releases to the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to persons living downstream; the most contaminated village was Metlino, about 7 km from the site of release. Internal and external doses have been estimated for these residents using the Techa River Dosimetry System-2000 (TRDS-2000); the primary purpose is to support epidemiological studies of the members of the Extended Techa River Cohort. Efforts to validate the calculations of external and internal dose are considered essential. One validation study of the TRDS-2000 system has been performed by the comparison of calculated doses to quartz from bricks in old buildings at Metlino with those measured by luminescence dosimetry. Two additional methods of validation considered here are electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. For electron paramagnetic resonance, 36 measurements on 26 teeth from 16 donors from Metlino were made at the GSF-National Research Center for Environment and Health (16 measurements) and the Institute of Metal Physics (20 measurements); the correlation among measurements made at the two laboratories has been found to be 0.99. Background measurements were also made on 218 teeth (63 molars, 128 premolars, and 27 incisors). Fluorescence in situ hybridization measurements were made for 31 residents of Metlino. These measurements were handicapped by the analysis of a limited number of cells; for several individuals no stable translocations were observed. Fluorescence in situ hybridization measurements were also made for 39 individuals believed to be unexposed. The EPR- and FISH-based estimates agreed well for permanent residents of Metlino: 0.67 +/- 0.21 Gy and 0.48 +/- 0.18 Gy (mean +/- standard error of the mean), respectively. Results of the two experimental methods also agreed well

  14. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    PubMed Central

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  15. Human enamel structure studied by high resolution electron microscopy

    SciTech Connect

    Wen, S.L. )

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references.

  16. Artifact suppression in electron paramagnetic resonance imaging of 14N- and 15N-labeled nitroxyl radicals with asymmetric absorption spectra

    NASA Astrophysics Data System (ADS)

    Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi

    2014-10-01

    This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.

  17. Potentially diagnostic electron paramagnetic resonance spectra elucidate the underlying mechanism of mitochondrial dysfunction in the deoxyguanosine kinase deficient rat model of a genetic mitochondrial DNA depletion syndrome.

    PubMed

    Bennett, Brian; Helbling, Daniel; Meng, Hui; Jarzembowski, Jason; Geurts, Aron M; Friederich, Marisa W; Van Hove, Johan L K; Lawlor, Michael W; Dimmock, David P

    2016-03-01

    A novel rat model for a well-characterized human mitochondrial disease, mitochondrial DNA depletion syndrome with associated deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model recapitulates the pathologic and biochemical signatures of the human disease. The application of electron paramagnetic (spin) resonance (EPR) spectroscopy to the identification and characterization of respiratory chain abnormalities in the mitochondria from freshly frozen tissue of the mitochondrial disease model rat is introduced. EPR is shown to be a sensitive technique for detecting mitochondrial functional abnormalities in situ and, here, is particularly useful in characterizing the redox state changes and oxidative stress that can result from depressed expression and/or diminished specific activity of the distinct respiratory chain complexes. As EPR requires no sample preparation or non-physiological reagents, it provides information on the status of the mitochondrion as it was in the functioning state. On its own, this information is of use in identifying respiratory chain dysfunction; in conjunction with other techniques, the information from EPR shows how the respiratory chain is affected at the molecular level by the dysfunction. It is proposed that EPR has a role in mechanistic pathophysiological studies of mitochondrial disease and could be used to study the impact of new treatment modalities or as an additional diagnostic tool. PMID:26773591

  18. Evaluation of oxidative stress in the brain of a transgenic mouse model of Alzheimer disease by in vivo electron paramagnetic resonance imaging.

    PubMed

    Matsumura, Akihiro; Emoto, Miho C; Suzuki, Syuuichirou; Iwahara, Naotoshi; Hisahara, Shin; Kawamata, Jun; Suzuki, Hiromi; Yamauchi, Ayano; Sato-Akaba, Hideo; Fujii, Hirotada G; Shimohama, Shun

    2015-08-01

    Alzheimer disease (AD) is a neurodegenerative disease clinically characterized by progressive cognitive dysfunction. Deposition of amyloid-β (Aβ) peptides is the most important pathophysiological hallmark of AD. Oxidative stress induced by reactive oxygen species is prominent in AD, and several reports suggest the relationship between a change in redox status and AD pathology containing progressive Aβ deposition, the activation of glial cells, and mitochondrial dysfunction. Therefore, we performed immunohistochemical analysis using a transgenic mouse model of AD (APdE9) and evaluated the activity of superoxide dismutase in brain tissue homogenates of APdE9 mice in vitro. Together with those analyses, in vivo changes in redox status with age in both wild-type (WT) and APdE9 mouse brains were measured noninvasively by three-dimensional electron paramagnetic resonance (EPR) imaging using nitroxide (3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy) as a redox-sensitive probe. Both methods found similar changes in redox status with age, and in particular a significant change in redox status in the hippocampus was observed noninvasively by EPR imaging between APdE9 mice and age-matched WT mice from 9 to 18 months of age. EPR imaging clearly visualized the accelerated change in redox status of APdE9 mouse brain compared with WT. The evaluation of the redox status in the brain of AD model rodents by EPR imaging should be useful for diagnostic study of AD.

  19. Binding of transition metals to monosilicic acid in aqueous and xylem (Cucumis sativus L.) solutions: a low-T electron paramagnetic resonance study.

    PubMed

    Stevic, Nenad; Korac, Jelena; Pavlovic, Jelena; Nikolic, Miroslav

    2016-10-01

    The supplementation of monosilicic acid [Si(OH)4] to the root growing medium is known to protect plants from toxic levels of iron (Fe), copper (Cu) and manganese (Mn), but also to mitigate deficiency of Fe and Mn. However, the physicochemical bases of these alleviating mechanisms are not fully understood. Here we applied low-T electron paramagnetic resonance (EPR) spectroscopy to examine the formation of complexes of Si(OH)4 with Mn(2+), Fe(3+), and Cu(2+) in water and in xylem sap of cucumber (Cucumis sativus L.) grown without or with supply of Si(OH)4. EPR, which is also useful in establishing the redox state of these metals, was combined with measurements of total concentrations of metals in xylem sap by inductive coupled plasma. Our results show that Si(OH)4 forms coordination bonds with all three metals. The strongest interactions of Si(OH)4 appear to be with Cu(2+) (1/1 stoichiometry) which might lead to Cu precipitation. In line with this in vitro findings, Si(OH)4 supply to cucumber resulted in dramatically lower concentration of this metal in the xylem sap. Further, it was demonstrated that Si(OH)4 supplementation causes pro-reductive changes that contribute to the maintenance of Fe and, in particular, Mn in the xylem sap in bioavailable 2+ form. Our results shed more light on the intertwined reactions between Si(OH)4 and transition metals in plant fluids (e.g. xylem sap).

  20. Temperature-Dependent Electron Paramagnetic Resonance Studies of Docosahexaenoic Acid and Gamma Linolenic Acid Effects on Phospholipid Membranes With and Without Cholesterol

    NASA Astrophysics Data System (ADS)

    Yonar, D.; Horasanb, N.; Sünnetçioğlu, M. Maral

    2016-07-01

    Free docosahexaenoic acid (DHAn-3) and gamma linolenic acid (GLAn-6) effects on dimyristoyl phosphatidylcholine (DMPC) membranes were studied as a function of temperature by electron paramagnetic resonance (EPR) spectroscopy. 5- and 16-doxyl stearic acid (5-, 16-DS) spin labels were utilized to obtain information from the interfacial and alkyl chain region, respectively. In the studied temperature range, the presence of DHAn-3 or GLAn-6 caused decreases in maximum hyperfi ne splitting values and correlation times of DMPC membranes. Both in the interfacial region and depths of membrane, changes were more pronounced for DHAn-3 in pure DMPC. In the presence of cholesterol (CH), DHAn-3 and GLAn-6 effects were similar and more pronounced in the depths of the membrane. The changes in the structure and dynamics of samples were obtained from simulations of spectra, which indicated some changes in the number of spectral components by incorporation of DHAn-3 and GLAn-6. In the interfacial region and below the main phase transition temperature of DMPC, there was an increase in heterogeneity. For temperatures above the phase transition, a more homogeneous environment for spin label was obtained in the presence of fatty acids.

  1. Electron paramagnetic resonance study of hydrogen peroxide/ascorbic acid ratio as initiator redox pair in the inulin-gallic acid molecular grafting reaction.

    PubMed

    Arizmendi-Cotero, Daniel; Gómez-Espinosa, Rosa María; Dublán García, Octavio; Gómez-Vidales, Virginia; Dominguez-Lopez, Aurelio

    2016-01-20

    Gallic acid (GA) was grafted onto inulin using the free radicals method, generated by the hydrogen peroxide/ascorbic acid (H2O2/AA) redox pair. Molar ratios of H2O2/AA at 9, 20, 39 and 49 were evaluated by Electron Paramagnetic Resonance in order to find the effect of the oxidation of the inulin and the efficiency in the inulin-gallic acid grafting (IGA). The highest concentration of the inulin macro-radical was obtained with H2O2/AA molar ratios of 20 and 49 with the removal of a hydrogen atom from a methyl group of the inulin fructose monomers. The highest grafting ratio (30.4 mg GA eq/g IGA) was obtained at 9 M of H2O2/AA. UV-Vis, FT-IR-ATR and XDR results confirmed a successful IGA grafting. The efficiency of the grafting reaction depends on the concentration of the macro-radical, it depends on the molar ratio of H2O2/AA, being affected by simultaneous reactions between components of the mixture (H2O2, AA, inulin, GA and eventually atmospheric oxygen) as well.

  2. Electron Paramagnetic Resonance Measurements of Free Radicals in the Intact Beating Heart: A Technique for Detection and Characterization of Free Radicals in Whole Biological Tissues

    NASA Astrophysics Data System (ADS)

    Zweier, Jay L.; Kuppusamy, Periannan

    1988-08-01

    Free radicals have been hypothesized to be important mediators of disease in a variety of organs and tissues. Electron paramagnetic resonance (EPR) spectroscopy can be applied to directly measure free radicals; however, it has not been possible to measure important biological radicals in situ because conventional spectrometer designs are not suitable for the performance of measurements on whole organs or tissues. We report the development of an EPR spectrometer designed for optimum performance in measuring free radicals in intact biological organs or tissues. This spectrometer consists of a 1- to 2-GHz microwave bridge with the source locked to the resonant frequency of a recessed gap loop-gap resonator. With this spectrometer, radical concentrations as low as 0.4 μ M can be measured. Isolated beating hearts were studied in which simultaneous real time measurements of free radicals and cardiac contractile function were performed. This in vivo EPR technique was applied to study the kinetics of free radical uptake and metabolism in normally perfused and globally ischemic hearts. In addition, we show that this technique can be used to noninvasively measure tissue oxygen consumption. Thus, it is demonstrated that EPR spectroscopy can be applied to directly measure in vivo free radical metabolism and tissue oxygen consumption. This technique offers great promise in the study of in vivo free radical generation and the effects of this radical generation on whole biological tissues.

  3. Physical, Optical and Electron paramagnetic resonance studies of PbBr2-PbO-B2O3 glasses containing Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md

    2016-09-01

    The glasses with the composition PbBr2-PbO-B2O3 glasses containing Cu2+ ions were prepared by melt quenching technique. X-ray diffractograms revealed the amorphous nature of the glasses. Density and molar volume were determined. Density is found to decrease while the molar volume increases with increase of PbBr2 content. The optical absorption spectra exhibited a broad band corresponding to the d- d transition of Cu2+ ion. From optical absorption spectra Eopt and Urbach energies were determined. Electron Paramagnetic Resonance (EPR) studies were carried out by introducing Cu2+ as the spin probe. Glasses containing transition metal(TM) ions such as Cu2+ give the information about the structure and the site symmetry around the TM ions. EPR spectra of all the glass samples were recorded at X-band frequencies. From the EPR spectra spin-Hamiltonian parameters were evaluated. It was observed that g∥ >g±>ge (2.0023) and A∥>A±. From this values it is concluded that the ground state of Cu2+ is dx2-y2 (2B1g) and the site symmetry around Cu2+ ion is tetragonally distorted octahedral. From the EPR and Optical data bonding coefficients were evaluated. The in plane o-bonding(α2) is moderately ionic while out of plane 7t-bonding(β2) and in plane 7t-bonding(β1 2) are ionic nature

  4. Optical and time-resolved electron paramagnetic resonance studies of the excited states of a UV-B absorber (4-methylbenzylidene)camphor.

    PubMed

    Kikuchi, Azusa; Shibata, Kenji; Kumasaka, Ryo; Yagi, Mikio

    2013-02-21

    The excited states of UV-B absorber (4-methylbenzylidene)camphor (MBC) have been studied through measurements of UV absorption, phosphorescence, triplet-triplet (T-T) absorption, and steady-state and time-resolved electron paramagnetic resonance spectra in ethanol. The energy level and lifetime of the lowest excited triplet (T(1)) state of MBC were determined. The energy level of the T(1) state of MBC is much lower than that of photolabile 4-tert-butyl-4'-methoxydibenzoylmethane. The weak phosphorescence and strong time-resolved EPR signals, and T-T absorption band of MBC were observed. These facts suggest that the significant proportion of the lowest excited singlet (S(1)) molecules undergoes intersystem crossing to the T(1) state and the deactivation process from the T(1) state is predominantly radiationless. The quantum yields of singlet oxygen production by MBC determined by time-resolved near-IR luminescence measurements are 0.05 ± 0.01 and 0.06 ± 0.01 in ethanol and in acetonitrile, respectively. The photostability of MBC arises from the (3)ππ* character in the T(1) state. The zero-field splitting parameters in the T(1) state are D = 0.0901 cm(-1) and E = -0.0498 cm(-1). The sublevel preferentially populated by intersystem crossing is T(y) (y close to in-plane short axis and to the C═O direction). PMID:23320917

  5. Effects of diffusion and surface interactions on the line shape of electron paramagnetic resonances in the presence of a magnetic field gradient

    SciTech Connect

    Schaden, M.; Zhao, K. F.; Wu, Z.

    2007-12-15

    In an evanescent wave magnetometer the Zeeman polarization is probed at micrometer to submicrometer distances from the cell surface. The electron paramagnetic resonance lines of an evanescent wave magnetometer in the presence of a magnetic field gradient exhibit edge enhancement seen previously in nuclear magnetic resonance lines. We present a theoretical model that describes quantitatively the shape of the magnetic resonance lines of an evanescent wave magnetometer under a wide range of experimental conditions. It accounts for diffusion broadening in the presence of a magnetic field gradient as well as interactions of spin polarized Rb atoms with the coated Pyrex glass surfaces. Depending on the field gradient, cell thickness, and buffer gas pressure, the resonance line may have the form of a single asymmetric peak or two peaks localized near the front and back surfaces in frequency space. The double-peaked response depends on average characteristics of the surface interactions. Its shape is sensitive to the dwell time, relaxation probability, and average phase shift of adsorbed spin polarized Rb atoms.

  6. Dose-dependent vitamin C uptake and radical scavenging activity in human skin measured with in vivo electron paramagnetic resonance spectroscopy.

    PubMed

    Lauer, Anna-Christina; Groth, Norbert; Haag, Stefan F; Darvin, Maxim E; Lademann, Jürgen; Meinke, Martina C

    2013-01-01

    Vitamin C is a potent radical scavenger and a physiological part of the antioxidant system in human skin. The aim of this study was to measure changes in the radical-scavenging activity of human skin in vivo due to supplementation with different doses of vitamin C and at different time points. Therefore, 33 volunteers were supplemented with vitamin C or placebo for 4 weeks. The skin radical-scavenging activity was measured with electron paramagnetic resonance spectroscopy. After 4 weeks, the intake of 100 mg vitamin C/day resulted in a significant increase in the radical-scavenging activity by 22%. Intake of 180 mg/day even resulted in a significant increase of 37%. No changes were found in the placebo group. A part of the study population was additionally measured after 2 weeks: in this group radical scavenging had already reached maximal activity after 2 weeks. In conclusion, orally administered vitamin C increases the radical-scavenging activity of the skin. The effect occurs fast and is enhanced with higher doses of vitamin C.

  7. Using nitroxide spin labels. How to obtain T1e from continuous wave electron paramagnetic resonance spectra at all rotational rates.

    PubMed Central

    Haas, D A; Mailer, C; Robinson, B H

    1993-01-01

    Historically, the continuous wave electron paramagnetic resonance (CW-EPR) progressive saturation method has been used to obtain information on the spin-lattice relaxation time (T1e) and those processes, such as motion and spin exchange, that occur on a competitive timescale. For example, qualitative information on local dynamics and solvent accessibility of proteins and nucleic acids has been obtained by this method. However, making quantitative estimates of T1e from CW-EPR spectra have been frustrated by a lack of understanding of the role of T1e (and T2e) in the slow-motion regime. Theoretical simulation of the CW-EPR lineshapes in the slow-motion region under increasing power levels has been used in this work to test whether the saturation technique can produce quantitative estimates of the spin-lattice relaxation rates. A method is presented by which the correct T1e may be extracted from an analysis of the power-saturation rollover curve, regardless of the amount of inhomogeneous broadening or the rates of molecular reorientation. The range of motional correlation times from 10 to 200 ns should be optimal for extracting quantitative estimates of T1e values in spin-labeled biomolecules. The progressive-saturation rollover curve method should find wide application in those areas of biophysics where information on molecular interactions and solvent exposure as well as molecular reorientation rates are desired. PMID:8386009

  8. Detection of undistorted continuous wave (CW) electron paramagnetic resonance (EPR) spectra with non-adiabatic rapid sweep (NARS) of the magnetic field

    PubMed Central

    Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.

    2011-01-01

    A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868

  9. Nd3+ ions at the low-symmetry sites of β-Ba B2 O4 single crystals studied by electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bravo, D.; Solé, R.; Aguiló, M.; Díaz, F.; López, F. J.

    2004-11-01

    An electron paramagnetic resonance (EPR) study of Nd3+ ions in single crystals of the low-temperature phase of barium metaborate ( β-BaB2O4 or BBO) is presented. The EPR spectrum shows the existence of various slightly different Nd3+ centers. The g matrices of the three more abundant centers have been determined through the analysis of the angular dependencies of the spectrum in two planes of the crystal. The principal g -axis systems do not allow a straightforward assignment of the centers to a specific lattice cation site because of the low site symmetry ( C1 in all cases). To overcome this problem we have developed a method to calculate principal g -axis systems by constructing and diagonalizing the crystal-field energy matrix for the ground I9/24 level of Nd3+ , including the Zeeman interaction. The superposition model of the crystal field has been employed to estimate the crystal-field Bnm parameters for this ion in BBO, as they are unknown. From this study it is concluded that neodymium is incorporated in the low-symmetry Ba2+ site. Possible reasons for the appearance of different Nd3+ centers are discussed.

  10. New opportunities of the application of natural herb and spice extracts in plant oils: application of electron paramagnetic resonance in examining the oxidative stability.

    PubMed

    Kozłowska, Mariola; Szterk, Arkadiusz; Zawada, Katarzyna; Ząbkowski, Tomasz

    2012-09-01

    The aim of this study was to establish the applicability of natural water-ethanol extracts of herbs and spices in increasing the oxidative stability of plant oils and in the production of novel food. Different concentrations (0, 100, 300, 500, and 700 ppm) of spice extracts and butylated hydroxyanisole (BHA) (100 ppm) were added to the studied oils. The antioxidant activity of spice extracts was determined with electron paramagnetic resonance (EPR) spectroscopy using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. The study showed that the extracts significantly increased the oxidative stability of the examined oils when compared to one of the strongest synthetic antioxidants--BHA. The applied simple production technology and addition of herb and spice extracts to plant oils enabled enhancement of their oxidative stability. The extracts are an alternative to the oils aromatized with an addition of fresh herbs, spices, and vegetables because it did not generate additional flavors thus enabling the maintenance of the characteristic ones. Moreover, it will increase the intake of natural substances in human diet, which are known to possess anticarcinogenic properties.

  11. Electron microscopy of whole cells in liquid with nanometer resolution

    PubMed Central

    de Jonge, N.; Peckys, D. B.; Kremers, G. J.; Piston, D. W.

    2009-01-01

    Single gold-tagged epidermal growth factor (EGF) molecules bound to cellular EGF receptors of fixed fibroblast cells were imaged in liquid with a scanning transmission electron microscope (STEM). The cells were placed in buffer solution in a microfluidic device with electron transparent windows inside the vacuum of the electron microscope. A spatial resolution of 4 nm and a pixel dwell time of 20 μs were obtained. The liquid layer was sufficiently thick to contain the cells with a thickness of 7 ± 1 μm. The experimental findings are consistent with a theoretical calculation. Liquid STEM is a unique approach for imaging single molecules in whole cells with significantly improved resolution and imaging speed over existing methods. PMID:19164524

  12. Atomic resolution imaging of graphene by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Robertson, Alex W.; Warner, Jamie H.

    2013-05-01

    The atomic structure of a material influences its electronic, chemical, magnetic and mechanical properties. Characterising carbon nanomaterials, such as fullerenes, nanotubes and graphene, at the atomic level is challenging due to their chemical reactivity and low atomic mass. Transmission electron microscopy and scanning probe microscopy are two of the leading methods for imaging graphene at the atomic level. Here, we report on recent advances in atomic resolution imaging of graphene using aberration-corrected high resolution transmission electron microscopy and how it has revealed many of the structural deviations from the pristine monolayer form. Structures in graphene such as vacancy defects, edges, grain boundaries, linear chains, impurity dopants, layer number, layer stacking and bond rotations are explored.

  13. Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Tybrandt, Klas; Stauffer, Flurin; Vörös, Janos

    2016-05-01

    Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays.

  14. High-Resolution Secondary Electron Microscopy and Scanning Reflection Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jingyue

    1990-01-01

    High resolution secondary electron microscopy (HRSEM) utilizes the low energy electrons emitted from the sample to form images of the surface. By using a very small incident electron probe subnanometer resolution images of solid surfaces can be obtained by collecting secondary electrons. Surfaces of both electron beam transparent samples and bulk samples can be investigated by high resolution secondary electron (SE) imaging technique. The emission of secondary electrons is determined by three different processes: (1) the generation of secondary electrons inside the sample; (2) the transport of the excited electrons to the vacuum-sample interface and (3) the escape of secondary electrons over the surface potential barrier into vacuum. The total yield of the emitted secondary electrons is sensitive to sample surface conditions. Surface electronic and geometric modifications will influence the total yield of secondary electrons. The contrast in a SE image is determined by the change of the total SE yield. Therefore the knowledge of the origin of SE emission is essential for interpreting the experimental high resolution secondary electron images. The first part of this dissertation is to discuss the origins of the collected secondary electrons, to develop the theory of surface imaging by secondary electrons and to investigate the contrast mechanisms of high resolution SE images. By combining HRSEM with secondary electron spectroscopy information about the surface topographic and, to some extent, surface electronic structures can be obtained. Experimental results obtained in the ultra-high vacuum (UHV) scanning transmission electron microscope have yielded fruitful information about the electron emission processes. Scanning reflection electron microscopy (SREM) utilizes the high energy electrons reflected from a bulk crystal to form images of the crystal surface. At glancing incident angle specularlly Bragg diffracted beam satisfying surface resonance conditions can

  15. Analysis of saturation transfer electron paramagnetic resonance spectra of a spin-labeled integral membrane protein, band 3, in terms of the uniaxial rotational diffusion model.

    PubMed Central

    Hustedt, E J; Beth, A H

    1995-01-01

    Algorithms have been developed for the calculation of saturation transfer electron paramagnetic resonance (ST-EPR) spectra of a nitroxide spin-label assuming uniaxial rotational diffusion, a model that is frequently used to describe the global rotational dynamics of large integral membrane proteins. One algorithm explicitly includes terms describing Zeeman overmodulation effects, whereas the second more rapid algorithm treats these effects approximately using modified electron spin-lattice and spin-spin relaxation times. Simulations are presented to demonstrate the sensitivity of X-band ST-EPR spectra to the rate of uniaxial rotational diffusion and the orientation of the nitroxide probe with respect to the diffusion axis. Results obtained by using the algorithms presented, which are based on the transition-rate formalism, are in close agreement with those obtained by using an eigenfunction expansion approach. The effects of various approximations used in the simulation algorithms are considered in detail. Optimizing the transition-rate formalism to model uniaxial rotational diffusion results in over an order of magnitude reduction in computation time while allowing treatment of nonaxial A- and g-tensors. The algorithms presented here are used to perform nonlinear least-squares analyses of ST-EPR spectra of the anion exchange protein of the human erythrocyte membrane, band 3, which has been affinity spin-labeled with a recently developed dihydrostilbene disulfonate derivative, [15N,2H13]-SL-H2DADS-MAL. These results suggest that all copies of band 3 present in intact erythrocytes undergo rotational diffusion about the membrane normal axis at a rate consistent with a band 3 dimer. PMID:8534811

  16. Backbone Dynamics of Alamethicin Bound to Lipid Membranes: Spin-Echo Electron Paramagnetic Resonance of TOAC-Spin Labels

    PubMed Central

    Bartucci, Rosa; Guzzi, Rita; De Zotti, Marta; Toniolo, Claudio; Sportelli, Luigi; Marsh, Derek

    2008-01-01

    Alamethicin F50/5 is a hydrophobic peptide that is devoid of charged residues and that induces voltage-dependent ion channels in lipid membranes. The peptide backbone is likely to be involved in the ion conduction pathway. Electron spin-echo spectroscopy of alamethicin F50/5 analogs in which a selected Aib residue (at position n = 1, 8, or 16) is replaced by the TOAC amino-acid spin label was used to study torsional dynamics of the peptide backbone in association with phosphatidylcholine bilayer membranes. Rapid librational motions of limited angular amplitude were observed at each of the three TOAC sites by recording echo-detected spectra as a function of echo delay time, 2τ. Simulation of the time-resolved spectra, combined with conventional EPR measurements of the librational amplitude, shows that torsional fluctuations of the peptide backbone take place on the subnanosecond to nanosecond timescale, with little temperature dependence. Associated fluctuations in polar fields from the peptide could facilitate ion permeation. PMID:18096632

  17. Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

    SciTech Connect

    Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark; Iverson, Richard H.; Krejcik, Patrick; Lincoln, Melissa; Siemann, Robert H.; Walz, Dieter; Clayton, Chris E.; Huang, Chengkun; Lu, Wei; Deng, Suzhi; Oz, Erdem; /Southern California U.

    2005-06-22

    In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function of the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.

  18. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  19. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm.

  20. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. PMID:27511534

  1. Membrane Docking of the Synaptotagmin 7 C2A Domain: Electron Paramagnetic Resonance Measurements Show Contributions from Two Membrane Binding Loops

    PubMed Central

    Osterberg, J. Ryan; Chon, Nara Lee; Boo, Arthur; Maynard, Favinn A.; Lin, Hai; Knight, Jefferson D.

    2015-01-01

    The synaptotagmin (Syt) family of proteins plays an important role in vesicle docking and fusion during Ca2+-induced exocytosis in a wide variety of cell types. Its role as a Ca2+ sensor derives primarily from its two C2 domains, C2A and C2B, which insert into anionic lipid membranes upon binding Ca2+. Syt isoforms 1 and 7 differ significantly in their Ca2+ sensitivity; the C2A domain from Syt7 binds Ca2+ and membranes much more tightly than the C2A domain from Syt1, due at least in part to greater contributions from the hydrophobic effect. While the structure and membrane activity of Syt1 have been extensively studied, the structural origins of differences between Syt7 and Syt1 are unknown. The present study used site-directed spin labeling and electron paramagnetic resonance spectroscopy to determine depth parameters for the Syt7 C2A domain, for comparison to analogous previous measurements with Syt1 C2A. In a novel approach, the membrane docking geometry of both Syt1 and Syt7 C2A was modeled by mapping depth parameters onto multiple molecular dynamics simulated structures of the Ca2+-bound protein. The models reveal membrane penetration of Ca2+ binding loops (CBLs) 1 and 3, and membrane binding is more sensitive to mutations in CBL3. On average, Syt7 C2A inserts more deeply in the membrane than Syt1 C2A, although depths vary among the different structural models. This observation provides a partial structural explanation for the hydrophobically driven membrane docking of Syt7 C2A. PMID:26322740

  2. Brain redox imaging in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy by using in vivo electron paramagnetic resonance and a nitroxide imaging probe.

    PubMed

    Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G

    2015-11-01

    Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy.

  3. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy

    PubMed Central

    Mett, R. R.; Sidabras, J. W.; Anderson, J. R.; Hyde, J. S.

    2011-01-01

    The two-way insertion loss of a 1 m length of waveguide was reduced by nearly 5 dB over a 4% bandwidth at W-band (94 GHz) for an electron paramagnetic resonance (EPR) spectrometer relative to WR10 waveguide. The waveguide has an oversize section of commercially available rectangular WR28 and a novel pair of tapers that vary in cross section with axial position according to a hyperbolic-cosine (HC) function. The tapers connect conventional rectangular WR10 waveguide to the WR28. For minimum loss, the main mode electric field is parallel to the long side of the WR28. Using mode coupling theory, the position of maximum flare (inflection point) in the taper was optimized with respect to the coupling to higher order modes and the reflection of the main mode. The optimum inflection point position is about one-tenth of the taper length from the small end of the taper. Reflection and coupling were reduced by about 20 dB relative to a pyramidal (linear) taper of the same length. Comb-like dips in the transmission coefficient produced by resonances of the higher order modes in the oversize section were about 0.03 dB. Specially designed high-precision, adjustable WR28 flanges with alignment to about 5 μm were required to keep higher order mode amplitudes arising from the flanges comparable to those from the HC tapers. Minimum return loss was about 30 dB. This paper provides a foundation for further optimization, if needed. Methods are not specific to EPR or the microwave frequency band. PMID:21806211

  4. Electron paramagnetic resonance study of ferrous cytochrome P-450/sub scc/-nitric oxide complexes: effects of cholesterol and its analogs

    SciTech Connect

    Tsubaki, M.; Hiwatashi, A.; Ichikawa, Y.; Hori, H.

    1987-07-14

    Electron paramagnetic resonance (EPR) spectra of nitric oxide (NO) complexes of ferrous cytochrome P-450/sub scc/ were measured at 77 K for the first time without using the rapid-mixing and freeze-quenching technique. Without substrate the EPR spectra were very similar to those of cytochrome P-450/sub cam/ (from Pseudomonas putida) and cytochrome P-450/sub LM/ (from rat liver microsomes) with rhombic symmetry; g/sub x/ = 2.071, g/sub z/ = 2.001, g/sub y/ = 1.962, and A/sub z/ = 2.2 mT for /sup 14/NO complexes. Upon addition of substrates, the EPR spectra exhibited many variations having rhombic symmetry in the major component and an additional minor component with less rhombic symmetry. Furthermore, addition of 20(S)-hydroxycholesterol caused a striking change in the EPR spectrum. The component with rhombic symmetry disappeared completely, and the component with less rhombic symmetry dominated (g/sub x/ = 2.027, g/sub z/ = 2.007, g/sub y/ = 1.984, and A/sub z/ = 1.76 mT for /sup 14/NO complexes). These observations suggest the existence of the following physiologically important natures: (1) the conformational flexibility of the active site of the enzyme due to the steric interaction between the substrate and the heme-bound ligand molecule and (2) the importance of the hydroxylation of the cholesterol side chain at the 20S position to proceed the side-chain cleavage reaction in cytochrome P-450/sub scc/.

  5. A comparative electron paramagnetic resonance study of the nucleotide-binding domains' catalytic cycle in the assembled maltose ATP-binding cassette importer.

    PubMed

    Grote, Mathias; Bordignon, Enrica; Polyhach, Yevhen; Jeschke, Gunnar; Steinhoff, Heinz-Jürgen; Schneider, Erwin

    2008-09-15

    We present a quantitative analysis of conformational changes of the nucleotide-binding subunits, MalK(2), of the maltose ATP-binding cassette importer MalFGK(2) during the transport cycle. Distance changes occurring between selected residues were monitored in the full transporter by site-directed spin-labeling electron paramagnetic resonance spectroscopy and site-directed chemical cross-linking. We considered S83C and A85C from the conserved Q-loop and V117C located on the outer surface of MalK. Additionally, two native cysteines (C350, C360) were included in the study. On ATP binding, small rearrangements between the native sites, and no distance changes between positions 117 were detected. In contrast, positions 85 come closer together in the ATP-bound state and in the vanadate-trapped intermediate and move back toward the apo-state after ATP hydrolysis. The distance between positions 83 is shown to slightly decrease on ATP binding, and to further decrease after ATP hydrolysis. Results from cross-linking experiments are in agreement with these findings. The data are compared with in silico spin-labeled x-ray structures from both isolated MalK(2) and the MalFGK(2)-E complex. Our results are consistent with a slightly modified "tweezers-like" model of closure and reopening of MalK(2) during the catalytic cycle, and show an unforeseen potential interaction between MalK and the transmembrane subunit MalG.

  6. Copper doping of ZnO crystals by transmutation of {sup 64}Zn to {sup 65}Cu: An electron paramagnetic resonance and gamma spectroscopy study

    SciTech Connect

    Recker, M. C.; McClory, J. W. Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-06-28

    Transmutation of {sup 64}Zn to {sup 65}Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the {sup 65}Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of {sup 64}Zn nuclei to {sup 65}Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu{sup 2+} ions (where {sup 63}Cu and {sup 65}Cu hyperfine lines are easily resolved). A spectrum from isolated Cu{sup 2+} (3d{sup 9}) ions acquired after the neutron irradiation showed only hyperfine lines from {sup 65}Cu nuclei. The absence of {sup 63}Cu lines in this Cu{sup 2+} spectrum left no doubt that the observed {sup 65}Cu signals were due to transmuted {sup 65}Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu{sup +}-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu{sup +}-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  7. Binding of transition metals to monosilicic acid in aqueous and xylem (Cucumis sativus L.) solutions: a low-T electron paramagnetic resonance study.

    PubMed

    Stevic, Nenad; Korac, Jelena; Pavlovic, Jelena; Nikolic, Miroslav

    2016-10-01

    The supplementation of monosilicic acid [Si(OH)4] to the root growing medium is known to protect plants from toxic levels of iron (Fe), copper (Cu) and manganese (Mn), but also to mitigate deficiency of Fe and Mn. However, the physicochemical bases of these alleviating mechanisms are not fully understood. Here we applied low-T electron paramagnetic resonance (EPR) spectroscopy to examine the formation of complexes of Si(OH)4 with Mn(2+), Fe(3+), and Cu(2+) in water and in xylem sap of cucumber (Cucumis sativus L.) grown without or with supply of Si(OH)4. EPR, which is also useful in establishing the redox state of these metals, was combined with measurements of total concentrations of metals in xylem sap by inductive coupled plasma. Our results show that Si(OH)4 forms coordination bonds with all three metals. The strongest interactions of Si(OH)4 appear to be with Cu(2+) (1/1 stoichiometry) which might lead to Cu precipitation. In line with this in vitro findings, Si(OH)4 supply to cucumber resulted in dramatically lower concentration of this metal in the xylem sap. Further, it was demonstrated that Si(OH)4 supplementation causes pro-reductive changes that contribute to the maintenance of Fe and, in particular, Mn in the xylem sap in bioavailable 2+ form. Our results shed more light on the intertwined reactions between Si(OH)4 and transition metals in plant fluids (e.g. xylem sap). PMID:27502949

  8. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution.

    PubMed

    Löschberger, Anna; Franke, Christian; Krohne, Georg; van de Linde, Sebastian; Sauer, Markus

    2014-10-15

    Here, we combine super-resolution fluorescence localization microscopy with scanning electron microscopy to map the position of proteins of nuclear pore complexes in isolated Xenopus laevis oocyte nuclear envelopes with molecular resolution in both imaging modes. We use the periodic molecular structure of the nuclear pore complex to superimpose direct stochastic optical reconstruction microscopy images with a precision of <20 nm on electron micrographs. The correlative images demonstrate quantitative molecular labeling and localization of nuclear pore complex proteins by standard immunocytochemistry with primary and secondary antibodies and reveal that the nuclear pore complex is composed of eight gp210 (also known as NUP210) protein homodimers. In addition, we find subpopulations of nuclear pore complexes with ninefold symmetry, which are found occasionally among the more typical eightfold symmetrical structures.

  9. Manganese binding properties of human calprotectin under conditions of high and low calcium: X-ray crystallographic and advanced electron paramagnetic resonance spectroscopic analysis.

    PubMed

    Gagnon, Derek M; Brophy, Megan Brunjes; Bowman, Sarah E J; Stich, Troy A; Drennan, Catherine L; Britt, R David; Nolan, Elizabeth M

    2015-03-01

    The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron-nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed (15)N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin. PMID:25597447

  10. Mapping magnetism with atomic resolution using aberrated electron probes

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan; Rusz, Ján; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Lupini, Andrew R.

    2015-03-01

    In this talk, we report a direct experimental real-space mapping of magnetic circular dichroism with atomic resolution in aberration-corrected scanning transmission electron microscopy (STEM). Using an aberrated electron probe with customized phase distribution, we reveal with electron energy-loss (EEL) spectroscopy the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The aberrated probes allow the collection of EEL spectra using the transmitted beam, which results in a magnetic circular dichroic signal with intrinsically larger signal-to-noise ratios than those obtained via nanodiffraction techniques (where most of the transmitted electrons are discarded). The novel experimental setup presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution. This research was supported by DOE SUFD MSED, by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US DOE, and by the Swedish Research Council and Swedish National Infrastructure for Computing (NSC center)

  11. Imaging plasmodesmata with high-resolution scanning electron microscopy.

    PubMed

    Barton, Deborah A; Overall, Robyn L

    2015-01-01

    High-resolution scanning electron microscopy (HRSEM) is an effective tool to investigate the distribution of plasmodesmata within plant cell walls as well as to probe their complex, three-dimensional architecture. It is a useful alternative to traditional transmission electron microscopy (TEM) in which plasmodesmata are sectioned to reveal their internal substructures. Benefits of adopting an HRSEM approach to studies of plasmodesmata are that the specimen preparation methods are less complex and time consuming than for TEM, many plasmodesmata within a large region of tissue can be imaged in a single session, and three-dimensional information is readily available without the need for reconstructing TEM serial sections or employing transmission electron tomography, both of which are lengthy processes. Here we describe methods to prepare plant samples for HRSEM using pre- or postfixation extraction of cellular material in order to visualize plasmodesmata embedded within plant cell walls.

  12. Determination of g-tensors of low-symmetry Nd{sup 3+} centers in LiNbO{sub 3} by rectification of angular dependence of electron paramagnetic resonance spectra

    SciTech Connect

    Grachev, V. Malovichko, G.; Munro, M.; Kokanyan, E.

    2015-07-28

    Two procedures for facilitation of line tracing and deciphering of complicated spectra of electron paramagnetic resonance (EPR) were developed: a correction of microwave frequencies for every orientation of external magnetic field on the base of known values of g-tensor components for a reference paramagnetic center and followed rectification of measured angular dependences using plots of effective deviation of g{sup 2}-factors of observed lines from effective g{sup 2}-factors of the reference center versus angles or squared cosines of angles describing magnetic field orientations. Their application to EPR spectra of nearly stoichiometric lithium niobate crystals doped with neodymium allowed identifying two axial and six different low-symmetry Nd{sup 3+} centers, to determine all components of their g-tensors, and to propose common divacancy models for a whole family of Nd{sup 3+} centers.

  13. Effect of gamma radiation and accelerated electron beam on stable paramagnetic centers induction in bone mineral: influence of dose, irradiation temperature and bone defatting.

    PubMed

    Jastrzebska, Anna; Kaminski, Artur; Grazka, Ewelina; Marowska, Joanna; Sadlo, Jaroslaw; Gut, Grzegorz; Uhrynowska-Tyszkiewicz, Izabela

    2014-09-01

    Ionizing radiation has been found to induce stable defects in the crystalline lattice of bone mineral hydroxyapatite, defined as CO(2) (-) radical ions possessing spins. The purpose of our study was to evaluate CO(2) (-) radical ions induced in non-defatted or defatted human compact bone by gamma radiation (G) and accelerated electron beam (EB), applied with two doses at different temperatures. Moreover, the potential effect of free radical ion formation on mechanical parameters of compact bone, tested under compression in the previous studies, was evaluated. Bone rings from femoral shafts of six male donors (age 51 ± 3 years) were collected and assigned to sixteen experimental groups according to different processing methods (non-defatted or defatted), G and EB irradiation dose (25 or 35 kGy), and irradiation temperature [ambient temperature (AT) or dry ice (DI)]. Untreated group served as control. Following grinding under LN2 and lyophilization, CO(2) (-) radical ions in bone powder were measured by electron paramagnetic resonance spectrometry. We have found that irradiation of bone with G and EB induces formation of enormous amounts of CO(2) (-) radical ions, absent from native tissue. Free radical ion formation was dose-dependent when irradiation was performed at AT, and significantly lower in EB as compared to G-irradiated groups. In contrast, no marked effect of dose was observed when deep-frozen (DI) bone samples were irradiated with G or EB, and free radical ion numbers seemed to be slightly higher in EB-irradiated groups. Irradiation at AT induced much higher quantities of CO(2) (-) radical ions then on DI. That effect was more pronounced in G-irradiated bone specimens, probably due to longer exposure time. Similarly, bone defatting protective effect on free radical ion formation was found only in groups irradiated for several hours with gamma radiation at ambient temperature. Ambient irradiation temperature together with exposure time seem to be key

  14. High-Resolution Transmission Electron Microscopy Using Negative Spherical Aberration

    NASA Astrophysics Data System (ADS)

    Jia, Chun-Lin; Lentzen, Markus

    2004-04-01

    A novel imaging mode for high-resolution transmission electron microscopy is described. It is based on the adjustment of a negative value of the spherical aberration CS of the objective lens of a transmission electron microscope equipped with a multipole aberration corrector system. Negative spherical aberration applied together with an overfocus yields high-resolution images with bright-atom contrast. Compared to all kinds of images taken in conventional transmission electron microscopes, where the then unavoidable positive spherical aberration is combined with an underfocus, the contrast is dramatically increased. This effect can only be understood on the basis of a full nonlinear imaging theory. Calculations show that the nonlinear contrast contributions diminish the image contrast relative to the linear image for a positive-CS setting whereas they reinforce the image contrast relative to the linear image for a negative-CS setting. The application of the new mode to the imaging of oxygen in SrTiO3 and YBa2Cu3O7 demonstrates the benefit to materials science investigations. It allows us to image directly, without further image processing, strongly scattering heavy-atom columns together with weakly scattering light-atom columns.

  15. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis

    PubMed Central

    Tang, Shi-Yang; Zhang, Wei; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2014-01-01

    Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment. PMID:25089528

  16. Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics

    PubMed Central

    Tybrandt, Klas; Stauffer, Flurin; Vörös, Janos

    2016-01-01

    Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays. PMID:27157804

  17. Single sideband imaging in high-resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Hohenstein, M.

    1992-06-01

    More then 20 years ago, Hanßen and Morgenstern [1] described the case of single sideband imaging in electron microscopy. Single sideband imaging allows to correct artifacts in the imaging process due to spherical aberration and defocus and to reconstruct the electron wave function at the exit surface of the sample from experimental micrographs. In the present work, optimized imaging parameters allowed us to obtain new experimental results, thus confirming the resolution limit of single sideband imaging (0.13 nm) to be close to the information limit of a JEOL 4000EX microscope. Furthermore, the reconstructed exit surface wave functions were throuroughly checked by using them to calculate a focus series, which was compared with an experimental focus series.

  18. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance.

    PubMed

    Albracht, Simon P J; Roseboom, Winfried; Hatchikian, E Claude

    2006-01-01

    The hydrogen-activating cluster (H cluster) in [FeFe]-hydrogenases consists of two moieties. The [2Fe]H subcluster is a (L)(CO)(CN)Fe(mu-RS2)(mu-CO)Fe(CysS)(CO)(CN) centre. The Cys-bound Fe is called Fe1, the other iron Fe2. The Cys-thiol forms a bridge to a [4Fe-4S] cluster, the [4Fe-4S]H subcluster. We report that electron paramagnetic resonance (EPR) spectra of the 57Fe-enriched enzyme from Desulfovibrio desulfuricans in the H(ox)-CO state are consistent with a magnetic hyperfine interaction of the unpaired spin with all six Fe atoms of the H cluster. In contrast to the inactive aerobic enzyme, the active enzyme is easily destroyed by light. The [2Fe]H subcluster in some enzyme molecules loses CO by photolysis, whereupon other molecules firmly bind the released CO to form the H(ox)-CO state giving rise to the so-called axial 2.06 EPR signal. Though not destroyed by light, the H(ox)-CO state is affected by it. As demonstrated in the accompanying paper [49] two of the intrinsic COs, both bound to Fe2, can be exchanged by extrinsic 13CO during illumination at 2 degrees C. We found that only one of the three 13COs, the one at the extrinsic position, gives an EPR-detectable isotropic superhyperfine interaction of 0.6 mT. At 30 K both the inhibiting extrinsic CO bound to Fe2 and one more CO can be photolysed. EPR spectra of the photolysed products are consistent with a 3d7 system of Fe with the formal oxidation state +1. The damaged enzyme shows a light-sensitive g = 5 signal which is ascribed to an S = 3/2 form of the [2Fe](H) subcluster. The light sensitivity of the enzyme explains the occurrence of the g = 5 signal and the axial 2.06 signal in published EPR spectra of nearly all preparations studied thus far.

  19. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization.

    PubMed

    Sidabras, Jason W; Strangeway, Robert A; Mett, Richard R; Anderson, James R; Mainali, Laxman; Hyde, James S

    2016-03-01

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE10 mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  20. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization.

    PubMed

    Sidabras, Jason W; Strangeway, Robert A; Mett, Richard R; Anderson, James R; Mainali, Laxman; Hyde, James S

    2016-03-01

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE10 mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  1. Probing Structural Dynamics and Topology of the KCNE1 Membrane Protein in Lipid Bilayers via Site-Directed Spin Labeling and Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Sahu, Indra D; Craig, Andrew F; Dunagan, Megan M; Troxel, Kaylee R; Zhang, Rongfu; Meiberg, Andrew G; Harmon, Corrinne N; McCarrick, Robert M; Kroncke, Brett M; Sanders, Charles R; Lorigan, Gary A

    2015-10-20

    KCNE1 is a single transmembrane protein that modulates the function of voltage-gated potassium channels, including KCNQ1. Hereditary mutations in the genes encoding either protein can result in diseases such as congenital deafness, long QT syndrome, ventricular tachyarrhythmia, syncope, and sudden cardiac death. Despite the biological significance of KCNE1, the structure and dynamic properties of its physiologically relevant native membrane-bound state are not fully understood. In this study, the structural dynamics and topology of KCNE1 in bilayered lipid vesicles was investigated using site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy. A 53-residue nitroxide EPR scan of the KCNE1 protein sequence including all 27 residues of the transmembrane domain (45-71) and 26 residues of the N- and C-termini of KCNE1 in lipid bilayered vesicles was analyzed in terms of nitroxide side-chain motion. Continuous wave-EPR spectral line shape analysis indicated the nitroxide spin label side-chains located in the KCNE1 TMD are less mobile when compared to the extracellular region of KCNE1. The EPR data also revealed that the C-terminus of KCNE1 is more mobile when compared to the N-terminus. EPR power saturation experiments were performed on 41 sites including 18 residues previously proposed to reside in the transmembrane domain (TMD) and 23 residues of the N- and C-termini to determine the topology of KCNE1 with respect to the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayers. The results indicated that the transmembrane domain is indeed buried within the membrane, spanning the width of the lipid bilayer. Power saturation data also revealed that the extracellular region of KCNE1 is solvent-exposed with some of the portions partially or weakly interacting with the membrane surface. These results are consistent with the previously published solution NMR

  2. A comparative study by electron paramagnetic resonance of free radical species in the mainstream and sidestream smoke of cigarettes with conventional acetate filters and 'bio-filters'.

    PubMed

    Valavanidis, A; Haralambous, E

    2001-01-01

    Tobacco smoking is the most important extrinsic cause, after the diet, for increasing morbidity and mortality in humans. Unless current tobacco smoking patterns in industrialised and non-industrialised countries change, cigarettes will kill prematurely 10 million people a year by 2025. Greece is at the top of the list of European countries in cigarette consumption. In 1997, a Greek tobacco company introduced a new 'bio-filter' (BF) claiming that it reduces substantially the risks of smoking. In a recent publication [Deliconstantinos G, Villiotou V, Stavrides J. Scavenging effects of hemoglobin and related heme containing compounds on nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke. A new method for protection against the dangerous cigarette constituents. Anticancer Res 1994; 14: 2717-2726] it was claimed that the new 'bio-filter' (activated carbon impregnated with dry hemoglobin) reduces certain toxic substances and oxidants (like NO, CO, NOx, H2O2, aldehydes, trace elements and nitroso-compounds) in the gas-phase of the mainstream smoke. We have investigated by electron paramagnetic resonance (EPR) the mainstream and sidestream smoke of the BF cigarette, in comparison with three other cigarettes with similar tar and nicotine contents, that have conventional acetate filters. We found that BF cigarette smoke has similar tar radical species with the same intensity EPR signals to those of the other cigarettes. The ability of the aqueous cigarette tar extracts to produce hydroxyl radicals (HO*), which were spin trapped by DMPO, was very similar to, or even higher than, the other 3 brands. The gas-phase of the mainstream smoke of the BF cigarette showed a 30-35% reduction in the production of oxygen-centered radicals (spin trapped with PBN). In the case of the sidestream smoke, BF cigarettes produced substantially higher concentrations of gas-phase radicals, compared to the other brands. These results suggest that BF is

  3. A comparative study by electron paramagnetic resonance of free radical species in the mainstream and sidestream smoke of cigarettes with conventional acetate filters and 'bio-filters'.

    PubMed

    Valavanidis, A; Haralambous, E

    2001-01-01

    Tobacco smoking is the most important extrinsic cause, after the diet, for increasing morbidity and mortality in humans. Unless current tobacco smoking patterns in industrialised and non-industrialised countries change, cigarettes will kill prematurely 10 million people a year by 2025. Greece is at the top of the list of European countries in cigarette consumption. In 1997, a Greek tobacco company introduced a new 'bio-filter' (BF) claiming that it reduces substantially the risks of smoking. In a recent publication [Deliconstantinos G, Villiotou V, Stavrides J. Scavenging effects of hemoglobin and related heme containing compounds on nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke. A new method for protection against the dangerous cigarette constituents. Anticancer Res 1994; 14: 2717-2726] it was claimed that the new 'bio-filter' (activated carbon impregnated with dry hemoglobin) reduces certain toxic substances and oxidants (like NO, CO, NOx, H2O2, aldehydes, trace elements and nitroso-compounds) in the gas-phase of the mainstream smoke. We have investigated by electron paramagnetic resonance (EPR) the mainstream and sidestream smoke of the BF cigarette, in comparison with three other cigarettes with similar tar and nicotine contents, that have conventional acetate filters. We found that BF cigarette smoke has similar tar radical species with the same intensity EPR signals to those of the other cigarettes. The ability of the aqueous cigarette tar extracts to produce hydroxyl radicals (HO*), which were spin trapped by DMPO, was very similar to, or even higher than, the other 3 brands. The gas-phase of the mainstream smoke of the BF cigarette showed a 30-35% reduction in the production of oxygen-centered radicals (spin trapped with PBN). In the case of the sidestream smoke, BF cigarettes produced substantially higher concentrations of gas-phase radicals, compared to the other brands. These results suggest that BF is

  4. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance.

    PubMed

    Danhier, Pierre; Magat, Julie; Levêque, Philippe; De Preter, Géraldine; Porporato, Paolo E; Bouzin, Caroline; Jordan, Bénédicte F; Demeur, Gladys; Haufroid, Vincent; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2015-03-01

    Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs. Following intracardiac injection, SPIO-labeled 4 T1-luc cells were imaged using multiple gradient-echo sequences. Ex vivo iron oxide quantification in the mouse brain was performed using EPR (9 GHz). The long-term fate of 4 T1-luc cells after injection was characterized using bioluminescence imaging (BLI), brain MRI and immunofluorescence. We observed hypointense spots due to SPIO-labeled cells in the mouse brain 4 h after injection on T2 *-weighted images. Histology studies showed that SPIO-labeled cancer cells were localized within blood vessels shortly after delivery. Ex vivo quantification of SPIOs showed that less than 1% of the injected cells were taken up by the mouse brain after injection. MRI experiments did not reveal the development of macrometastases in the mouse brain several days after injection, but immunofluorescence studies demonstrated that these cells found in the brain established micrometastases. Concerning the metastatic patterns of 4 T1-luc cells, an EPR biodistribution study demonstrated that SPIO-labeled 4 T1-luc cells were also entrapped in the lungs of mice after intracardiac injection. BLI performed 6 days after injection of 4 T1-luc cells showed that this cell line formed macrometastases in the lungs and in the bones. Conclusively, EPR and MRI were found to be complementary for cell tracking applications. MRI cell tracking at 11.7 T allowed sensitive detection of isolated SPIO-labeled cells in the mouse brain, whereas EPR

  5. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    NASA Astrophysics Data System (ADS)

    Sidabras, Jason W.; Strangeway, Robert A.; Mett, Richard R.; Anderson, James R.; Mainali, Laxman; Hyde, James S.

    2016-03-01

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE10 mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  6. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance.

    PubMed

    Danhier, Pierre; Magat, Julie; Levêque, Philippe; De Preter, Géraldine; Porporato, Paolo E; Bouzin, Caroline; Jordan, Bénédicte F; Demeur, Gladys; Haufroid, Vincent; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2015-03-01

    Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs. Following intracardiac injection, SPIO-labeled 4 T1-luc cells were imaged using multiple gradient-echo sequences. Ex vivo iron oxide quantification in the mouse brain was performed using EPR (9 GHz). The long-term fate of 4 T1-luc cells after injection was characterized using bioluminescence imaging (BLI), brain MRI and immunofluorescence. We observed hypointense spots due to SPIO-labeled cells in the mouse brain 4 h after injection on T2 *-weighted images. Histology studies showed that SPIO-labeled cancer cells were localized within blood vessels shortly after delivery. Ex vivo quantification of SPIOs showed that less than 1% of the injected cells were taken up by the mouse brain after injection. MRI experiments did not reveal the development of macrometastases in the mouse brain several days after injection, but immunofluorescence studies demonstrated that these cells found in the brain established micrometastases. Concerning the metastatic patterns of 4 T1-luc cells, an EPR biodistribution study demonstrated that SPIO-labeled 4 T1-luc cells were also entrapped in the lungs of mice after intracardiac injection. BLI performed 6 days after injection of 4 T1-luc cells showed that this cell line formed macrometastases in the lungs and in the bones. Conclusively, EPR and MRI were found to be complementary for cell tracking applications. MRI cell tracking at 11.7 T allowed sensitive detection of isolated SPIO-labeled cells in the mouse brain, whereas EPR

  7. Electron Paramagnetic Resonance and Fluorescence In Situ Hybridization-Based Investigations of Individual Doses for Persons Living at Metlino in the Upper Reaches of the Techa River

    SciTech Connect

    Degteva, M. O.; Anspaugh, L. R.; Akleyev, A. V.; Jacob, Peter; Ivanov, Denis V.; Wieser, Albrecht; Vorobiova, M. I.; Shishkina, Elena A.; Shved, Valentina A.; Vozilova, Alexandra; Bayankin, Sergey N.; Napier, Bruce A.

    2005-02-01

    Waterborne releases from the Mayak Production Association in Russia during 1949–1956 resulted in significant doses to persons living downstream; the most contaminated village was Metlino about 7 km downstream. Internal and external doses have been estimated for these residents using the Techa River Dosimetry System–2000; the primary purpose is to support epidemiological studies of the members of the Extended Techa River Cohort (ETRC). Efforts to validate the calculations of external and internal dose are considered essential. Two methods used for the validation of external dose are electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. For EPR, 36 measurements on 26 teeth from 16 donors from Metlino were made at the GSF (16 measurements) and the IMP (20 measurements); the correlation between measurements made at the two laboratories has been found to be 0.99. Background measurements were also made on 218 teeth (63 molars, 128 premolars, and 27 incisors). FISH measurements were made for 31 residents of Metlino at the GSF. These measurements were handicapped by the analysis of a limited number of cells; for several individuals no stable translocations were observed. FISH measurements were also made for 39 individuals believed to be unexposed. The majority of EPR-measurement results fell within the range of 70 to 2700 mGy (including background). The results of FISH-based measurements fell within the range of nondetectable to 2 Gy (background subtracted). The results of individual measurements using EPR and FISH methods were generally consistent with each other and with results of other assays, including thermoluminescent measurements of quartz extracted from bricks taken from old buildings. Results were also consistent with those estimated with the TRDS-2000. Thus, the limited sets of data currently available tend to validate the present

  8. Unitized paramagnetic salt thermometer

    SciTech Connect

    Abraham, B.M.

    1982-06-01

    The details of construction and assembly of a cerous magnesium nitrate (CMN) paramagnetic thermometer are presented. The thermometer is a small unit consisting of a primary, two secondaries, the salt pill, and thermal links. The thermometer calibration changes very little on successive coolings and is reliable to 35 mK. A typical calibration curve is also presented.

  9. Paramagnetic and Diamagnetic Materials

    ERIC Educational Resources Information Center

    Thompson, Frank

    2011-01-01

    Paramagnetic and diamagnetic materials are now generally known as the "Cinderella" materials of the magnetic world. However, susceptibility measurements made on these materials in the past have revealed many details about the molecular bonding and the atomic structure of the so-called "transition" elements. Indeed, the magnetic moment of neodymium…

  10. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  11. Collective modes in cold paramagnetic gases

    SciTech Connect

    Andreeva, T L; Rubin, P L

    2014-02-28

    We have obtained a condition for the emergence of spin waves in paramagnetic gases Re >> ImÂ, which is fulfilled only at temperatures of the order of 1 μK. (laser applications and other topics in quantum electronics)

  12. Ultralow Energy Electron Attachment at Sub-Millielectron Volt Resolution

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Kortyna, A.; Darrach, M. R.; Howe, P. -T.

    1999-01-01

    The technique of rare-gas photoionization has been extended by use of direct laser ionization to electron energies epsilon in the range 0-100 meV, with a resolution Delta(epsilon) of 0.4-0.5 meV (FWHM). Tunable UV light at (Lambda)276 nm is produced using a pulsed Nd:YAG laser and nonlinear mixing techniques. The beam is frequency tripled in a pulsed jet of xenon. The VUV radiation, tunable at (Lambda)92 nm, is then used to photoionize Xe at its 2P(sub 1/2) threshold (single-photon ionization). The photoelectrons produced interact with admixed target gas to generate negative ions through the s-wave capture process. Recent results in electron attachment to SF(sub 6) will be reported which show resonance structure at the opening of the ground-state vibrational channels. This structure corresponds to the process of vibrational excitation + attachment, which is superimposed on the underlying s-wave (direct) capture process. It should be a general phenomenon, present in a wide variety of zero-energy electron attaching molecules.

  13. High Resolution Studies of Electron Attachment to Molecules

    SciTech Connect

    Braun, M.; Ruf, M.-W.; Hotop, H.; Fabrikant, I. I.

    2009-05-02

    In this paper, we survey recent progress in studies of anion formation via (dissociative) electron attachment (DEA) to simple molecules, as measured with the laser photoelectron attachment (LPA) method at high resolution. The limiting (E{yields}0) threshold behavior of the cross sections is elucidated for s-wave and p-wave attachment. Cusps at onsets for vibrational excitation (VE), due to interaction of the DEA channnel with the VE channel, are clearly detected, and vibrational Feshbach resonances just below vibrational onsets are observed for molecules with sufficiently strong long-range attraction between the electron and the molecule. From the LPA anion yields, absolute DEA cross sections (energy range typically E = 0.001-2 eV) are determined with reference to rate coefficients for thermal electron attachment at the appropriate gas temperature (normally T{sub G} = 300 K). The experimental data are compared with theoretical cross sections, calculated within the framework of an R-matrix or an Effective Range theory approach.

  14. Paramagnetic shimming for wide-range variable-field NMR.

    PubMed

    Ichijo, Naoki; Takeda, Kazuyuki; Takegoshi, K

    2014-09-01

    We propose a new passive shimming strategy for variable-field NMR experiments, in which the magnetic field produced by paramagnetic shim pieces placed inside the magnet bore compensates the inhomogeneity of a variable-field magnet for a wide range of magnet currents. Paramagnetic shimming is demonstrated in (7)Li, (87)Rb, and (45)Sc NMR of a liquid solution sample in magnetic fields of 3.4, 4.0, and 5.4T at a fixed carrier frequency of 56.0MHz. Since both the main-field inhomogeneity and the paramagnetic magnetization are proportional to the main-magnet current, the resonance lines are equally narrowed by the improved field homogeneity with an identical configuration of the paramagnetic shim pieces. Paramagnetic shimming presented in this work opens the possibility of high-resolution variable-field NMR experiments. PMID:25080372

  15. High time resolution electron measurement by Fast Electron energy Spectrum Analyzer (FESA)

    SciTech Connect

    Saito, Yoshifumi; Fujimoto, Masaki; Maezawa, Kiyoshi; Shinohara, Iku; Tsuda, Yuichi; Sasaki, Shintaro; Kojima, Hirotsugu

    2009-06-16

    We have newly developed an electron energy analyzer FESA (Fast Electron energy Spectrum Analyzer) for a future magnetospheric satellite mission SCOPE. The SCOPE mission is designed in order that observational studies from the cross-scale coupling viewpoint are enabled. One of the key observations necessary for the SCOPE mission is high-time resolution electron measurement. Eight FESAs on a spinning spacecraft are capable of measuring three dimensional electron distribution function with time resolution of 8 msec. FESA consists of two electrostatic analyzers that are composed of three nested hemispherical deflectors. Single FESA functions as four top-hat type electrostatic analyzers that can measure electrons with four different energies simultaneously. By measuring the characteristics of the test model FESA, we proved the validity of the design concept of FESA. Based on the measured characteristics, we designed FESA optimized for the SCOPE mission. This optimized analyzer has good enough performance to measure three dimensional electron distribution functions around the magnetic reconnection region in the Earth's magnetotail.

  16. High Resolution Λ Hypernuclear Spectroscopy with Electron Beams

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, C.; Chiba, A.; Christy, E.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.

    JLab E05-115 which is an experiment for Λ hypernuclear spectroscopy with electron beams was carried out at Jefferson Lab (JLab) in 2009. In the experiment, Λ 7He, Λ 9Li, Λ 10Be, Λ 12B and Λ 52V were measured by new magnetic spectrometer systems (SPL+HES+HKS) which were necessary for spectroscopy with high energy resolution of sub-MeV (FWHM). This is the first attempt to measure a Λ hypernucleus with up to medium-heavy mass region by the (e,e' K + ) reaction, overcoming high rate and high multiplicity conditions due to electromagnetic background particles. An overview of the hypernuclear experiments at JLab Hall-C and preliminary binding energy spectrum of Λ 10Be are shown.

  17. Acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  18. High-resolution imaging in the scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Pennycook, S. J.; Jesson, D. E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. S states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z.

  19. Solid-state nuclear magnetic resonance structural studies of proteins using paramagnetic probes.

    PubMed

    Jaroniec, Christopher P

    2012-01-01

    Determination of three-dimensional structures of biological macromolecules by magic-angle spinning (MAS) solid-state NMR spectroscopy is hindered by the paucity of nuclear dipolar coupling-based restraints corresponding to distances exceeding 5 Å. Recent MAS NMR studies of uniformly (13)C,(15)N-enriched proteins containing paramagnetic centers have demonstrated the measurements of site-specific nuclear pseudocontact shifts and spin relaxation enhancements, which report on electron-nucleus distances up to ~20 Å. These studies pave the way for the application of such long-distance paramagnetic restraints to protein structure elucidation and analysis of protein-protein and protein-ligand interactions in the solid phase. Paramagnetic species also facilitate the rapid acquisition of high resolution and sensitivity multidimensional solid-state NMR spectra of biomacromolecules using condensed data collection schemes, and characterization of solvent-accessible surfaces of peptides and proteins. In this review we discuss some of the latest applications of magic-angle spinning NMR spectroscopy in conjunction with paramagnetic probes to the structural studies of proteins in the solid state.

  20. APES: Acute Precipitating Electron Spectrometer -- A high time resolution monodirectional magnetic deflection electron spectrometer

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Samara, M.; Grubbs, G.; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-06-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm × 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm × 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  1. High resolution analytical transmission electron microscopy of magnetic recording media

    NASA Astrophysics Data System (ADS)

    Risner, Juliet Danielle

    Since the invention of the hard disk drive in 1954, the density of bits per disk has increased exponentially. This trend is partly due to improvements to the magnetic recording media. In current hard disks, each bit is approximately 0.04 mum in its smallest dimension and comprises ˜100 hexagonal close packed Co-alloy magnetic grains. These grains have magnetic "easy" axes oriented longitudinally, or parallel to the film plane. Future recording media have easy axes oriented perpendicular to the film plane. Perpendicular media are expected to provide continued increases in storage density above the limit of longitudinal media. Quantum-mechanical exchange coupling between magnetic grains degrades the signal-to-noise ratio (SNR) and limits storage density in both media types. Controlling exchange coupling is possible by creating nonmagnetic grain boundaries which compositionally isolate the magnetic grains. High-resolution analytical transmission electron microscopy (TEM) is required to study these media because of their nano-scale grains and grain boundaries. Examining the microstructure and elemental distribution in these films at near atomic level is paramount to understanding their magnetic performance. The microstructure and elemental distribution in longitudinal and perpendicular media were examined using high resolution analytical TEM techniques, such as energy-filtered TEM (EFTEM), energy-dispersive x-ray spectroscopy (EDS) using a 1.5 nm electron probe, and spectrum imaging with a scanning TEM. These techniques successfully determined how grain boundary Cr segregation varies with grain orientation in longitudinal media. Boundaries misoriented by 0° and 90° commonly occur and were found to have minimal Cr segregation, which limits storage density improvement in these media. Analytical TEM techniques applied to oxygen-enriched perpendicular media, fabricated using different deposition methods, effectively related microstructure and composition to magnetic

  2. High Resolution Electron Spectroscopy with Time-of-Flight Spectrometers

    NASA Astrophysics Data System (ADS)

    Krässig, Bertold; Kanter, Elliot P.

    2015-05-01

    We have developed a parametrization based on ray-tracing calculations to convert electron time-of-flight (eTOF) to kinetic energy for the spectrometers of the LCLS-AMO end station at SLAC National Accelerator Laboratory. During the experiments the eTOF detector signals are recorded as digitized waveforms for every shot of the accelerator. With our parameterization we can analyze the waveforms on-line and convert detector hit times to kinetic energies. In this way we accumulate histograms with equally spaced bins in energy directly, rather than a posteriori converting an accumulated histogram of equally spaced flight times into a histogram of kinetic energies with unequal bin sizes. The parametrization is, of course, not a perfect replica of the ray tracing results, and the ray tracing is based on nominal dimensions, perfect alignment, detector response, and knowledge of time zero for the time-of-flight. In this presentation we will discuss causes, effects, and remedies for the observed deviations. We will present high-resolution results for the Ne KLL Auger spectrum that has been well studied and serves as a benchmark for our analysis algorithm. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division by the Office of Basic Energy Sciences, Office of Science, US Department of Energy, under Contract No. DE-AC02-06CH11357.

  3. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images.

    PubMed

    Lee, Z; Rose, H; Lehtinen, O; Biskupek, J; Kaiser, U

    2014-10-01

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions.

  4. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images.

    PubMed

    Lee, Z; Rose, H; Lehtinen, O; Biskupek, J; Kaiser, U

    2014-10-01

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. PMID:24566042

  5. A cyanide-bridged heterometallic coordination polymer constructed from square-planar [Ni(CN)4](2-): synthesis, crystal structure, thermal decomposition, electron paramagnetic resonance (EPR) spectrum and magnetic properties.

    PubMed

    Qin, Ying Lian; Yang, Bin Wu; Wang, Gao Feng; Sun, Hong

    2016-07-01

    Square-planar complexes are commonly formed by transition metal ions having a d(8) electron configuration. Planar cyanometallate anions have been used extensively as design elements in supramolecular coordination systems. In particular, square-planar tetracyanometallate(II) ions, i.e. [M(CN)4](2-) (M(II) = Ni, Pd or Pt), are used as good building blocks for bimetallic Hofmann-type assemblies and their analogues. Square-planar tetracyanonickellate(II) complexes have been extensively developed with N-donor groups as additional co-ligands, but studies of these systems using O-donor ligands are scarce. A new cyanide-bridged Cu(II)-Ni(II) heterometallic compound, poly[[diaquatetra-μ2-cyanido-κ(8)C:N-nickel(II)copper(II)] monohydrate], {[Cu(II)Ni(II)(CN)4(H2O)2]·H2O}n, has been synthesized and characterized by X-ray single-crystal diffraction analyses, vibrational spectroscopy (FT-IR), thermal analysis, electron paramagnetic resonance (EPR) and magnetic moment measurements. The structural analysis revealed that it has a two-dimensional grid-like structure built up of cationic [Cu(H2O)2](2+) and anionic [Ni(CN)4](2-) units connected through bridging cyanide ligands. The overall three-dimensional supramolecular network is expanded by a combination of interlayer O-H...N and intralayer O-H...O hydrogen-bond interactions. The first decomposition reactions take place at 335 K under a static air atmosphere, which illustrates the existence of guest water molecules in the interlayer spaces. The electron paramagnetic resonance (EPR) spectrum confirms that the Cu(II) cation has an axial coordination symmetry and that the unpaired electrons occupy the d(x(2)-y(2)) orbital. In addition, magnetic investigations showed that antiferromagnetic interactions exist in the Cu(II) atoms through the diamagnetic [Ni(CN)4](2-) ion.

  6. Spin-lattice relaxation of ligand nuclei in slowly reorienting paramagnetic complexes in the electronic doublet spin state ( S = {1}/{2}). A theoretical approach for strongly coupled two-spin systems

    NASA Astrophysics Data System (ADS)

    Benetis, Nikolas P.

    In this paper a general theory for treating the spin-lattice relaxation of a ligand nucleus (denoted by I) is derived for a metal complex in a doublet electron spin state ( S = {1}/{2}). The dipole-dipole SI interaction is treated for the case where the electron spin is also strongly coupled to the metal nucleus K. The SK interaction considered here is the hyperfine coupling, both scalar (SC) and dipolar (DD). The present theory is valid for slowly reorienting complexes in solution and can, furthermore, incorporate relaxation effects of the electron spin S, and the metal nucleus K due to processes which are faster than, and independent of, reorientation, i.e., for processes that fulfil the strong narrowing conditions. The effects of chemical exchange of the ligands and of anisotropic reorientation of the complex are also studied. Together with our previous studies of paramagnetic complexes with electron spin S ≧ 1, that have been recently reviewed by J. Kowalewski, L. Nordenskiöld, N. Benetis, and P. O. Westlund, ( Prog. NMR Spectrosc.17, 141 (1985)), the present work completes the elementary relaxation features of ligand nuclei of metal complexes in the slow motional regime. The present theory is shown to be more general than the theory of Bertini and co-workers ( J. Magn. Reson.59 , 213 (1984)), which can be obtained as a limit of the present approach by decoupling the reorientation from the motions of the S-K two spin system. The treatment of a strongly coupled two-spin system is emphasized since it provides a necessary step to the treatment of the relaxation of paramagnetic doublets.

  7. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.

    PubMed

    Brodusch, N; Demers, H; Gauvin, R

    2013-04-01

    A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy.

  8. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.

    PubMed

    Shah, A B; Ramasse, Q M; Wen, J G; Bhattacharya, A; Zuo, J M

    2011-08-01

    The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency.

  9. Comparative analysis of dioxins and furans by electron impact, high-resolution mass spectrometry and by electron capture, negative ionization, low-resolution mass spectrometry

    SciTech Connect

    Koester, C.J.; Harless, R.L.; Hites, R.A.

    1990-01-01

    Electron impact, high resolution mass spectrometry (HRMS) is currently the method of choice for the analysis of polychlorinated dibenso-p-dioxins and dibenzofurans (PCDD/F) because of its ability to detect PCDD/F in the presence of interfering compounds, such as polychlorinated biphenyls (PCB), which cannot be resolved by low resolution methods. The PDCC/F analyses may also be performed using electron capture, negative ionization (ECNI) low resolution mass spectrometry, providing extensive sample preparation is done to remove interferences. Before ECNI low resolution mass spectrometry (MS) can be accepted as a routine method for PCDD/F analysis, it is necessary to show that results generated by this method are comparable to those obtained by HRMS. Known mixtures and unknown air samples were analyzed by electron impact HRMS (Finnigan MAT 90 system) and by ECNI low resolution MS (Hewlett Packard 5985B). Both instruments were fitted with a gas chromatographic inlet. The PCDD/F concentrations determined by the two techniques compare favorably, typically within 20%. The major difference between these two methods is that the ECNI low resolution method shows poor sensitivity in detecting 2,3,7,8-tetrachlorodioxin. However, ECNI MS offers the advantage of lower detection limits (50-100 fg) than electron impact HRMS (0.1 to 0.5 pg). These results suggest that ECNI low resolution MS can be a simple, low cost alternative to the common high resolution methods used for PCDD/F analysis.

  10. Electron paramagnetic resonance study of alinement induced by magnetic fields in two smectic-A liquid crystals not exhibiting nematic phases

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Gelerinter, E.

    1972-01-01

    Using vanadyl acetylacetonate (VAAC) as a paramagnetic probe, the molecular ordering in two smectic-A liquid crystals that do not display nematic phases were studied. Reproducible alinement was attained by slow cooling throughout the isotropic smectic-A transition in dc magnetic fields of 1.1 and 2.15 teslas. The degree of order attained is small for a smectic-A liquid crystal. Measurements were made of the variation of the average hyperfine splitting of the alined samples as a function of orientation relative to the dc magnetic field of the spectrometer. This functional dependence is in agreement with the theoretical prediction except where the viscosity of the liquid crystal becomes large enough to slow the tumbling of the VAAC, as indicated by asymmetry in the end lines of the spectrum.

  11. Low dimensional quantum paramagnets

    NASA Astrophysics Data System (ADS)

    Hong, Tao

    A quantum paramagnet is a material with interacting spins that possesses a paramagnetic ground state and an energy gap to all excitations. This dissertation focuses on studying the magnetic excitation spectrum and the quantum critical phenomena of such low dimensional quantum paramagnet systems. Inelastic neutron scattering (INS) measurements of Cu(Quinoxaline)Br 2 was performed on a partially deuterated powder sample. Magnetic neutron scattering was identified above an energy gap of 1.9 meV. Consideration of the sharp spectral max imum and wave vector dependence of the scattering and polymeric structure further identifies the material as a two-legged spin-1/2 ladder. The continuous uniform transformation theory provides an excellent account of the data with leg exchange J‖ =2.0 meV and the rung exchange J⊥ =3.3 meV. INS study of (2,3 - dimethylpyridinium)2CuBr4 (DIMPY) in both powder and single crystalline form are presented to understand the origin of the spin gap and what is the right spin Hamiltonian. Magnetic excitations are found above a 0.3 meV energy gap. The excitation only disperses along the a-direction with a bandwidth that exceeds 1.7 meV. The conclusion to be a S=1/2 two-legged spin ladder is supported by the material structure and INS measurement. External magnetic field drives the system into a critical region and induced low energy excitation continuum above critical field was studied. Piperazinium Hexachlorodicuprate (PHCC) is a two-dimensional antiferromagnet. We studied the behavior in the vicinity of the quantum critical point (QCP) where the spin gap is closed by an applied magnetic field by INS. The energy and damping of the low energy excitations were measured in the vicinity of the QCP where both quantities become strongly temperature dependent, which can be successfully described by a selfconsistent Hartree-Fock theory of strongly interacting bosons developed by Sachdev and Dunkel. A preliminary study of hydrostatic pressure effects

  12. Theoretical studies of the local structures and electron paramagnetic resonance parameters for Cu2+ center in Zn(C3H3O4)2(H2O)2 single crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-Ming; Xiao, Wen-Bo; Wan, Xiong

    2014-07-01

    The electron paramagnetic resonance (EPR) parameters (g factors gxx, gyy, gzz and hyperfine structure constants Axx, Ayy, Azz) are interpreted by taking account of the admixture of d-orbitals in the ground state wave function of the Cu2+ ion in a Zn(C3H3O4)2(H2O)2 (DABMZ) single crystal. Based on the calculation, local structural parameters of the impurity Cu2+ center were obtained (i.e. Ra≈1.92 Å, Rb≈1.96 Å, Rc≈1.99 Å). The theoretical EPR parameters based on the above Cu2+-O2- bond lengths in the DABMZ crystal show good agreement with the observed values and some improvements have been made as compared with those in the previous studies.

  13. Practical Considerations for High Spatial and Temporal Resolution Dynamic Transmission Electron Microscopy

    SciTech Connect

    Armstrong, M; Boyden, K; Browning, N D; Campbell, G H; Colvin, J D; DeHope, B; Frank, A M; Gibson, D J; Hartemann, F; Kim, J S; King, W E; LaGrange, T B; Pyke, B J; Reed, B W; Shuttlesworth, R M; Stuart, B C; Torralva, B R

    2006-05-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5 x 10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  14. X-ray Crystallographic, Multifrequency Electron Paramagnetic Resonance, and Density Functional Theory Characterization of the Ni(P(Cy)2N(tBu)2)2(n+) Hydrogen Oxidation Catalyst in the Ni(I) Oxidation State.

    PubMed

    Niklas, Jens; Westwood, Mark; Mardis, Kristy L; Brown, Tiara L; Pitts-McCoy, Anthony M; Hopkins, Michael D; Poluektov, Oleg G

    2015-07-01

    The Ni(I) hydrogen oxidation catalyst [Ni(P(Cy)2N(tBu)2)2](+) (1(+); P(Cy)2N(tBu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane) has been studied using a combination of electron paramagnetic resonance (EPR) techniques (X-, Q-, and D-band, electron-nuclear double resonance, hyperfine sublevel correlation spectroscopy), X-ray crystallography, and density functional theory (DFT) calculations. Crystallographic and DFT studies indicate that the molecular structure of 1(+) is highly symmetrical. EPR spectroscopy has allowed determination of the electronic g tensor and the spin density distribution on the ligands, and revealed that the Ni(I) center does not interact strongly with the potentially coordinating solvents acetonitrile and butyronitrile. The EPR spectra and magnetic parameters of 1(+) are found to be distinctly different from those for the related compound [Ni(P(Ph)2N(Ph)2)2](+) (4(+)). One significant contributor to these differences is that the molecular structure of 4(+) is unsymmetrical, unlike that of 1(+). DFT calculations on derivatives in which the R and R' groups are systematically varied have allowed elucidation of structure/substituent relationships and their corresponding influence on the magnetic resonance parameters.

  15. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution.

    PubMed

    Vasilyev, D; Kirschner, J

    2016-08-01

    We describe a new "complete" spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the "spin-polarizing mirror" type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å(-1), at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution. PMID:27587131

  16. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    NASA Astrophysics Data System (ADS)

    Vasilyev, D.; Kirschner, J.

    2016-08-01

    We describe a new "complete" spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the "spin-polarizing mirror" type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å-1, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  17. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution.

    PubMed

    Vasilyev, D; Kirschner, J

    2016-08-01

    We describe a new "complete" spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the "spin-polarizing mirror" type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å(-1), at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  18. High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene

    NASA Astrophysics Data System (ADS)

    Gruet, Sébastien; Goubet, Manuel; Pirali, Olivier

    2014-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) have long been suspected to be the carriers of so called Unidentified Infrared Bands (UIBs). Most of the results published in the literature report rotationally unresolved spectra of pure carbon as well as heteroatom-containing PAHs species. To date for this class of molecules, the principal source of rotational informations is ruled by microwave (MW) spectroscopy while high resolution measurements reporting rotational structure of the infrared (IR) vibrational bands are very scarce. Recently, some high resolution techniques provided interesting new results to rotationally resolve the IR and far-IR bands of these large carbonated molecules of astrophysical interest. One of them is to use the bright synchrotron radiation as IR continuum source of a high resolution Fourier transform (FTIR) spectrometer. We report the very complementary analysis of the [1,6] naphthyridine (a N-bearing PAH) for which we recorded the microwave spectrum at the PhLAM laboratory (Lille) and the high resolution far-infrared spectrum on the AILES beamline at synchrotron facility SOLEIL. MW spectroscopy provided highly accurate rotational constants in the ground state to perform Ground State Combinations Differences (GSCD) allowing the analysis of the two most intense FT-FIR bands in the 50-900 wn range. Moreover, during this presentation the negative value of the inertial defect in the GS of the molecule will be discussed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013).

  19. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    PubMed

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  20. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells

    PubMed Central

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-01-01

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results. PMID:26066680

  1. Aberrated electron probes for magnetic spectroscopy with atomic resolution: Theory and practical aspects

    DOE PAGESBeta

    Rusz, Ján; Idrobo, Juan Carlos

    2016-03-24

    It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. Here we present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  2. {HIGH Resolution Electronic Spectroscopy of 2,6-DIAMINOPYRIDINE in the Gas PHASE}

    NASA Astrophysics Data System (ADS)

    Clements, Casey L.; Fleisher, Adam J.; Young, Justin W.; Thomas, Jessica A.; Pratt, David W.

    2009-06-01

    Ab initio calculations suggest that 2,6-diaminopyridine (26DAP) has several interesting low-frequency vibrations arising from motion of its amino groups. For this reason, 26DAP has been studied in the gas phase using both low resolution and high resolution electronic spectroscopy techniques. Presented here are the results of this study, which provide information about the structural and dynamical properties of 26DAP in both the ground and excited electronic states. The results will be discussed. footnote

  3. High-Resolution Transmission Electron Microscopy Observation of Colloidal Nanocrystal Growth Mechanisms using Graphene Liquid Cells

    SciTech Connect

    Yuk, Jong Min; Park, Jungwon; Ercius, Peter; Kim, Kwanpyo; Hellebusch, Danny J.; Crommie, Michael F.; Lee, Jeong Yong; Zettl, A.; Alivisatos, A. Paul

    2011-12-12

    We introduce a new type of liquid cell for in-situ electron microscopy based upon entrapment of a liquid film between layers of graphene. We employ this cell to achieve high-resolution imaging of colloidal platinum nanocrystal growth. The ability to directly image and resolve critical steps at atomic resolution provides new insights into nanocrystal coalescence and reshaping during growth.

  4. Strong reduction of V{sup 4+} amount in vanadium oxide/hexadecylamine nanotubes by doping with Co{sup 2+} and Ni{sup 2+} ions: Electron paramagnetic resonance and magnetic studies

    SciTech Connect

    Saleta, M. E.; Troiani, H. E.; Ribeiro Guevara, S.; Ruano, G.; Sanchez, R. D.; Malta, M.; Torresi, R. M.

    2011-05-01

    In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO{sub x}/Hexa NT's) doped with Co{sup 2+} and Ni{sup 2+} ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co{sup 2+}, S = 3/2 and Ni{sup 2+}, S = 1) decreases notably the amount of V{sup 4+} ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V{sup 4+} in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes.

  5. Paramagnetic-Salt Thermometer With Flux Pump And SQUID's

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M.; Israelsson, Ulf E.

    1993-01-01

    Paramagnetic-salt low-temperature thermometer incorporates improved superconducting magnetic-flux pump, multiple superconducting quantum interference devices as magnetometers, and feedback stabilization of magnetic flux. Requires much smaller initial magnetizing currents and provides improved temperature resolution via suppression of drift in magnetic induction.

  6. Magnetic dynamics studied by high-resolution electron spectroscopy and time-resolved electron microscopy

    NASA Astrophysics Data System (ADS)

    Jayaraman, Rajeswari

    Future information technology requires an increased magnetically encoded data density and novel electromagnetic modes of data transfer. While to date magnetic properties are observed and characterized mostly statically, the need emerges to monitor and capture their fast dynamics. In this talk, I will focus on the spin dynamics i.e. spin wave excitations and the dynamics of a new topological distribution of spins termed ``skyrmions''. Wave packets of spin waves offer the unique capability to transport a quantum bit, the spin, without the transport of charge or mass. Here, large wave-vector spin waves are of particular interest as they admit spin localization within a few nanometers. By using our recently developed electron energy loss spectrometer, we could study such spin waves in ultrathin films with an unprecedented energy resolution of 4 meV. By virtue of the finite penetration depth of low energy electrons, spin waves localized at interfaces between a substrate and a thin capping layer can be been studied yielding information about the exchange coupling between atoms at the interface. The quantization of spin waves with wave vectors perpendicular to the film gives rise to standing modes to which EELS has likewise access. Such studies when carried out as function of the film thickness again yield information on the layer dependence of the exchange coupling. Magnetic skyrmions are promising candidates as information carriers in logic or storage devices. Currently, little is known about the influence of disorder, defects, or external stimuli on the spatial distribution and temporal evolution of the skyrmion lattice. In this talk, I will describe the dynamical role of disorder in a large and flat thin film of Cu2OSeO3, exhibiting a skyrmion phase in an insulating material. We image up to 70,000 skyrmions by means of cryo-Lorentz Transmission Electron Microscopy as a function of the applied magnetic field. In the skyrmion phase, dislocations are shown to cause the

  7. Modeling atomic-resolution scanning transmission electron microscopy images.

    PubMed

    Findlay, Scott D; Oxley, Mark P; Allen, Leslie J

    2008-02-01

    A real-space description of inelastic scattering in scanning transmission electron microscopy is derived with particular attention given to the implementation of the projected potential approximation. A hierarchy of approximations to expressions for inelastic images is presented. Emphasis is placed on the conditions that must hold in each case. The expressions that justify the most direct, visual interpretation of experimental data are also the most approximate. Therefore, caution must be exercised in selecting experimental parameters that validate the approximations needed for the analysis technique used. To make the most direct, visual interpretation of electron-energy-loss spectroscopic images from core-shell excitations requires detector improvements commensurate with those that aberration correction provides for the probe-forming lens. Such conditions can be relaxed when detailed simulations are performed as part of the analysis of experimental data. PMID:18096101

  8. Modelling atomic resolution scanning transmission electron microscopy images

    SciTech Connect

    Findlay, Scott D.; Oxley, Mark P; Allen, L. J.

    2008-01-01

    A real-space description of inelastic scattering in scanning transmission electron microscopy is derived with particular attention given to the implementation of the projected potential approximation. A hierarchy of approximations to expressions for inelastic images is presented. Emphasis is placed on the conditions that must hold in each case. The expressions that justify the most direct, visual interpretation of experimental data are also the most approximate. Therefore, caution must be exercised in selecting experimental parameters that validate the approximations needed for the analysis technique used. To make the most direct, visual interpretation of electron-energy-loss spectroscopic images from core-shell excitations requires detector improvements commensurate with those that aberration correction provides for the probe-forming lens. Such conditions can be relaxed when detailed simulations are performed as part of the analysis of experimental data.

  9. Paramagnetic state of the isolated gold impurity in silicon

    NASA Astrophysics Data System (ADS)

    Son, N. T.; Gregorkiewicz, T.; Ammerlaan, C. A. J.

    1992-11-01

    The paper reports on the observation of the electron paramagnetic resonance spectrum of the isolated substitutional gold impurity in silicon. The spectrum has orthorhombic I (C2v) symmetry and an effective spin S=1/2. It has been detected in silver-doped samples with gold being introduced as contamination of the isotope used for diffusion. Parameters of the spectrum are given and an electronic model is proposed. With the results of the current study the puzzling question concerning paramagnetism of the isolated gold impurity in silicon appears to be clarified.

  10. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution.

    PubMed

    Manz, Stephanie; Casandruc, Albert; Zhang, Dongfang; Zhong, Yinpeng; Loch, Rolf A; Marx, Alexander; Hasegawa, Taisuke; Liu, Lai Chung; Bayesteh, Shima; Delsim-Hashemi, Hossein; Hoffmann, Matthias; Felber, Matthias; Hachmann, Max; Mayet, Frank; Hirscht, Julian; Keskin, Sercan; Hada, Masaki; Epp, Sascha W; Flöttmann, Klaus; Miller, R J Dwayne

    2015-01-01

    The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic

  11. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution.

    PubMed

    Manz, Stephanie; Casandruc, Albert; Zhang, Dongfang; Zhong, Yinpeng; Loch, Rolf A; Marx, Alexander; Hasegawa, Taisuke; Liu, Lai Chung; Bayesteh, Shima; Delsim-Hashemi, Hossein; Hoffmann, Matthias; Felber, Matthias; Hachmann, Max; Mayet, Frank; Hirscht, Julian; Keskin, Sercan; Hada, Masaki; Epp, Sascha W; Flöttmann, Klaus; Miller, R J Dwayne

    2015-01-01

    The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic

  12. High-resolution α and electron spectroscopy of Cf24998

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Greene, J. P.; Kondev, F. G.; Zhu, S.

    2015-04-01

    α -particle spectra of 249Cf have been measured with a double-focusing magnetic spectrometer and with passivated implanted planar silicon (PIPS) detectors. The conversion-electron spectra of 249Cf have been measured with a cooled Si(Li) detector and with a room-temperature PIPS detector. Precise energies of α groups in the decay of 249Cf have been measured with respect to the known energy of 250Cf. In addition, α -electron, α -γ , and γ -γ coincidence measurements were also performed to determine the spin-parity of the previously known 643.64-keV level. From electron intensities, conversion coefficients of transitions in the daughter 245Cm have been determined. The measured L3 conversion coefficients of the 333.4- and 388.2-keV transitions are found to be in agreement with the theoretical conversion coefficients for pure E 1 multipolarity. On the other hand, the K ,L1+L2 ,M , and N conversion coefficients are approximately twice the theoretical values for pure E 1 transitions. These measurements indicate anomalous E 1 conversion coefficients for the 333.4- and 388.2-keV transitions, as has been pointed out in earlier measurements. The measured conversion coefficient of the 255.5-keV transition gives an M 1 multipolarity for this transition which establishes a spin-parity of 7/2- and the 7/2-[743 ] single-particle assignment to the 643.64-keV level.

  13. High-resolution width-modulated pulse rebalance electronics for strapdown gyroscopes and accelerometers

    NASA Technical Reports Server (NTRS)

    Kennedy, E. J.; Blalock, T. V.; Bryan, W. L.; Rush, K.

    1974-01-01

    Three different rebalance electronic loops were designed, implemented, and evaluated. The loops were width-modulated binary types using a 614.4 kHz keying signal; they were developed to accommodate the following three inertial sensors with the indicated resolution values: (1) Kearfott 2412 accelerometer - resolution = 260 micro-g/data pulse, (2) Honeywell GG334 gyroscope - resolution = 3.9 milli-arc-sec/data pulse, (3) Kearfott 2401-009 accelerometer - resolution = 144 milli-g/data pulse. Design theory, details of the design implementation, and experimental results for each loop are presented.

  14. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    SciTech Connect

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strong as those obtained by nanodiffraction methods.

  15. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE PAGESBeta

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  16. Understanding the magnetic behavior of heat treated CaO-P2O5-Na2O-Fe2O3-SiO2 bioactive glass using electron paramagnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2014-09-01

    Bioactive glass of composition 41CaO-44SiO2-4P2O5-8Fe2O3-3Na2O has been heat treated in the temperature (TA) range of 750-1150 °C for time periods (tA) ranging from 1 h to 3 h to yield magnetic bioactive glass ceramics (MBCs). X-ray diffraction studies indicate the presence of bone mineral (hydroxyapatite and wollastonite) and magnetic (magnetite and α-hematite) phases in nanocrystalline form in the MBCs. Electron paramagnetic resonance (EPR) study was carried out to understand the variation in saturation magnetization and coercivity of the MBCs with TA and tA. These studies reveal the nature and amount of iron ions present in the MBCs and their interaction in the glassy oxide matrix as a function of annealing parameters. The deterioration in the magnetic properties of the glass heat treated above 1050 °C is attributed to the crystallization of the non-magnetic α-hematite phase. These results are expected to be useful in the application of these MBCs as thermoseeds in hyperthermia treatment of cancer.

  17. Neutron diffraction, Mössbauer effect and electron paramagnetic resonance studies on multiferroic Pb(Fe{sub 2/3}W{sub 1/3})O{sub 3}

    SciTech Connect

    Matteppanavar, Shidaling; Angadi, Basavaraj; Rayaprol, Sudhindra; AV, Anupama; Sahoo, Balaram

    2015-06-24

    Multiferroic Pb(Fe{sub 2/3}W{sub 1/3})O{sub 3} ceramics were synthesized via a modified two-stage Columbite method. Single phase formation was confirmed from the analysis of x-ray and neutron diffraction patterns recorded at room temperature. Structural analysis of the diffraction data reveals cubic phase (space group Pm-3m) for the title compound. Magnetic structure of the title compound at room temperature exhibits G-type antiferromagnetic structure. The Mössbauer spectroscopy and Electron Paramagnetic Resonance (EPR) studies were carried out at 300 K. The isomer shift and quadrupole splitting of the Mössbauer spectra confirms the trivalent state of iron (Fe{sup 3+}). The Mössbauer spectra also suggest that the iron and tungsten are randomly distributed at the octahedral, B site. EPR spectra show a single broad line associated with Fe{sup 3+} ions. Both spectra clearly exhibit weak ferromagnetic behaviour of Pb(Fe{sub 2/3}W{sub 1/3})O{sub 3} ceramic at 300 K. Considering neutron diffraction, Mössbauer and EPR results together, it may be stated here that Pb(Fe{sub 2/3}W{sub 1/3})O{sub 3} exhibits antiferromagnetic behavior along with weak ferromagnetism at room temperature.

  18. Acceptor-oxygen vacancy defect dipoles and fully coordinated defect centers in a ferroelectric perovskite lattice: Electron paramagnetic resonance analysis of Mn2+ in single crystal BaTiO3

    NASA Astrophysics Data System (ADS)

    Maier, R. A.; Pomorski, T. A.; Lenahan, P. M.; Randall, C. A.

    2015-10-01

    Defect dipoles are significant point defects in perovskite oxides as a result of their impact on oxygen vacancy dynamics. Electron paramagnetic resonance (EPR) was used to investigate the local defect structure of single crystal BaTiO3 doped with manganese. These results, along with a re-analysis of literature data, do not support the conclusion that transition metal-oxygen vacancy nearest neighbor defect dipoles ( M nT i ″ - VO • • ) × in ferroelectric BaTiO3 are majority defect centers as previously reported. Local symmetry analysis of the zero-field splitting term of the spin Hamiltonian supports the assignment of fully coordinated defect centers as opposed to defect dipoles for resonance signals at geff ˜ 2. A newly discovered defect center with g⊥ ˜ 6 is observed in the manganese doped system, and it is argued that this defect center belongs to an associated defect complex or defect dipole. This newly reported strong axial defect center, however, is present in small, minor concentrations compared to the well-known Mn2+ center with zero-field splitting of D ˜ 645 MHz. In regard to relative concentration, it is concluded that the dominant point defect related to the Mn2+ ion doped in BaTiO3 corresponds to B-site substitution with six nearest neighbor anions in octahedral coordination.

  19. The Structure of Vimentin Linker 1 and Rod 1B Domains Characterized by Site-directed Spin-labeling Electron Paramagnetic Resonance (SDSL-EPR) and X-ray Crystallography*

    PubMed Central

    Aziz, Atya; Hess, John F.; Budamagunta, Madhu S.; Voss, John C.; Kuzin, Alexandre P.; Huang, Yuanpeng J.; Xiao, Rong; Montelione, Gaetano T.; FitzGerald, Paul G.; Hunt, John F.

    2012-01-01

    Despite the passage of ∼30 years since the complete primary sequence of the intermediate filament (IF) protein vimentin was reported, the structure remains unknown for both an individual protomer and the assembled filament. In this report, we present data describing the structure of vimentin linker 1 (L1) and rod 1B. Electron paramagnetic resonance spectra collected from samples bearing site-directed spin labels demonstrate that L1 is not a flexible segment between coiled-coils (CCs) but instead forms a rigid, tightly packed structure. An x-ray crystal structure of a construct containing L1 and rod 1B shows that it forms a tetramer comprising two equivalent parallel CC dimers that interact with one another in the form of a symmetrical anti-parallel dimer. Remarkably, the parallel CC dimers are themselves asymmetrical, which enables them to tetramerize rather than undergoing higher order oligomerization. This functionally vital asymmetry in the CC structure, encoded in the primary sequence of rod 1B, provides a striking example of evolutionary exploitation of the structural plasticity of proteins. EPR and crystallographic data consistently suggest that a very short region within L1 represents a minor local distortion in what is likely to be a continuous CC from the end of rod 1A through the entirety of rod 1B. The concordance of this structural model with previously published cross-linking and spectral data supports the conclusion that the crystallographic oligomer represents a native biological structure. PMID:22740688

  20. Characterization of the coral allene oxide synthase active site with UV-visible absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopy: evidence for tyrosinate ligation to the ferric enzyme heme iron.

    PubMed

    Abraham, B D; Sono, M; Boutaud, O; Shriner, A; Dawson, J H; Brash, A R; Gaffney, B J

    2001-02-20

    Coral allene oxide synthase (AOS), a hemoprotein with weak sequence homology to catalase, is the N-terminal domain of a naturally occurring fusion protein with an 8R-lipoxygenase. AOS converts 8R-hydroperoxyeicosatetraenoic acid to the corresponding allene oxide. The UV--visible absorption and magnetic circular dichroism spectra of ferric AOS and of its cyanide and azide complexes, and the electron paramagnetic resonance spectra of native AOS (high-spin, g = 6.56, 5.22, 2.00) and of its cyanide adduct (low-spin, g = 2.86, 2.24, 1.60) closely resemble the corresponding spectra of bovine liver catalase (BLC). These results provide strong evidence for tyrosinate ligation to the heme iron of AOS as has been established for catalases. On the other hand, the positive circular dichroism bands in the Soret region for all three derivatives of ferric AOS are almost the mirror image of those in catalase. In addition, the cyanide affinity of native AOS (K(d) = 10 mM at pH 7) is about 3 orders of magnitude lower than that of BLC. Thus, while these results conclusively support a common tyrosinate-ligated heme in AOS as in catalase, significant differences exist in the interaction between their respective heme prosthetic groups and protein environments, and in the access of small molecules to the heme iron. PMID:11329294

  1. Structure and Stability of Pentafluoroaniline and 4-Aminononafluorobiphenyl Radical Anions: Optically Detected Electron Paramagnetic Resonance, Time-Resolved Fluorescence, Time-Resolved Magnetic Field Effect, and Quantum Chemical Study.

    PubMed

    Borovkov, Vsevolod I; Beregovaya, Irina V; Shchegoleva, Lyudmila N; Blinkova, Svetlana V; Ovchinnikov, Dmitry A; Gurskaya, Larisa Yu; Shteingarts, Vitaly D; Bagryansky, Victor A; Molin, Yuriy N

    2015-08-01

    Radical anions (RAs) are the key intermediates of the selective hydrodefluorination of polyfluoroarenes. We used the techniques of optically detected electron paramagnetic resonance (OD EPR), time-resolved fluorescence, time-resolved magnetic field effect (TR MFE), and the density functional theory to study the possibility of RAs formation from 4-aminononafluorobiphenyl (1) and pentafluoroaniline (2) and estimate their lifetimes and decay channels. To our knowledge, both RAs have not been detected earlier. We have registered the OD EPR spectrum for relatively stable in nonpolar solutions 1(-•) but failed to register the spectra for 2(-•). However, we have managed to fix the 2(-•) by the TR MFE method and obtained its hyperfine coupling constants. The lifetime of 2(-•) was found to be only a few nanoseconds. The activation energy of its decay was estimated to be 3.6 ± 0.3 kcal/mol. According to the calculation results, the short lifetime of 2(-•) is due to the RA fast fragmentation with the F(-) elimination from ortho-position to the amine group. The calculated energy barrier, 3.2 kcal/mol, is close to the experimental value. The fragmentation of 2(-•) in a nonpolar solvent is possible due to the stabilization of the incipient F(-) anion by the binding with the amine group proton.

  2. {sup 13}C, {sup 1}H, {sup 6}Li magic-angle spinning nuclear magnetic resonance, electron paramagnetic resonance, and Fourier transform infrared study of intercalation electrodes based in ultrasoft carbons obtained below 3100 K

    SciTech Connect

    Alcantara, R.; Madrigal, F.J.F.; Lavela, P.; Tirado, J.L.; Mateos, J.M.J.; Stoyanova, R.; Zhecheva, E.

    1999-01-01

    The past decade has seen an important development of materials for high-performance energy storage systems. Particularly, the field of electrode materials for advanced lithium batteries has attracted the interest of numerous researchers. Petroleum coke samples of different origins and heat treated at different temperatures below 3100 K have been studied by spectroscopic and electrochemical procedures. According to {sup 13}C and {sup 1}H magic-angle spinning (MAS) nuclear magnetic resonance (NMR), infrared (IR), and electron paramagnetic resonance (EPR) data, aromatic compounds and surface OH groups are present in green coke samples. The preparation of CMB (combustible) sample from 1673 K leads to a low-temperature graphitization process, as shown by the occurrence of multiphase products containing both turbostatic and graphitized solid. This process is accompanied by the loss of aromatic compounds and surface hydroxyls. The optimization of the lithium intercalation electrodes based in the green coke materials was carried out by thermal treatment at 1023 K under dynamic vacuum conditions. Such pretreatment of the electrode material leads to marked enhancement of reversible capacities without the higher temperatures usually required for other soft carbon materials. Finally, the results of {sup 6}Li MAS NMR and EPR have been correlated with the experimental determination of lithium diffusion coefficients and surface properties. On the basis of these results, spin resonance spectroscopies are found to be a powerful tool to discern between the different petroleum coke samples to select the active electrode material with best performance.

  3. Very high frequency electron paramagnetic resonance of 2,2,6,6-tetramethyl-1-piperidinyloxy in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine liposomes: partitioning and molecular dynamics.

    PubMed Central

    Smirnov, A I; Smirnova, T I; Morse, P D

    1995-01-01

    Partitioning and molecular dynamics of 2,2,6,6,-tetramethylpiperedine-1-oxyl (TEMPO) nitroxide radicals in large unilamellar liposomes (LUV) composed from 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine were investigated by using very high frequency electron paramagnetic resonance (EPR) spectroscopy. Experiments carried out at a microwave frequency of 94.3 GHz completely resolved the TEMPO EPR spectrum in the aqueous and hydrocarbon phases. An accurate computer simulation method combined with Levenberg-Marquardt optimization was used to analyze the TEMPO EPR spectra in both phases. Spectral parameters extracted from the simulations gave the actual partitioning of the TEMPO probe between the LUV hydrocarbon and aqueous phases and allowed analysis of picosecond rotational dynamics of the probe in the LUV hydrocarbon phase. In very high frequency EPR experiments, phase transitions in the LUV-TEMPO system were observed as sharp changes in both partitioning and rotational correlation times of the TEMPO probe. The phase transition temperatures (40.5 +/- 0.2 and 32.7 +/- 0.5 degrees C) are in agreement with previously reported differential scanning microcalorimetry data. Spectral line widths were analyzed by using existing theoretical expressions for motionally narrowed nitroxide spectra. It was found that the motion of the small, nearly spherical, TEMPO probe can be well described by anisotropic Brownian diffusion in isotropic media and is not restricted by the much larger hydrocarbon chains existing in ripple structure (P beta') or fluid bilayer structure (L alpha) phases. PMID:7647239

  4. Super-resolution phase reconstruction technique in electron holography with a stage-scanning system

    NASA Astrophysics Data System (ADS)

    Lei, Dan; Mitsuishi, Kazutaka; Harada, Ken; Shimojo, Masayuki; Ju, Dongying; Takeguchi, Masaki

    2014-02-01

    Super-resolution image reconstruction is a digital signal processing technique that allows creating a high-resolution image from multiple low-resolution images taken at slightly different positions. We introduce the super-resolution image reconstruction technique into electron holography for reconstructing phase images as follows: the studied specimen is shifted step-wise with a high-precision piezo holder, and a series of holograms is recorded. When the step size is not a multiple of the CCD pixel size, processing of the acquired series results in a higher pixel density and spatial resolution as compared to the phase image obtained with conventional holography. The final resolution exceeds the limit of the CCD pixel size divided by the magnification.

  5. Electron-beam-enhanced oxidation processes in II-VI compound semiconductors observed by high-resolution electron microscopy

    SciTech Connect

    Thangaraj, N.; Wessels, B.W.

    1990-02-01

    Enhanced oxidation of ZnS and ZnSe semiconductor surfaces has been observed in situ during electron irradiation in a high-resolution electron microscope. The phase present at the surface region has been identified as ZnO by optical diffractogram and selected area electron diffraction techniques. For ZnS oxidation, both hexagonal ZnO having a random orientation and cubic ZnO in perfect epitaxial relationship with the bulk ZnS were observed. Enhanced oxidation of ZnSe to ZnO has also been observed under electron beam irradiation. However, only the hexagonal form was observed. The oxidation rates for both ZnS and ZnSe depended on electron flux but was independent of orientation. A model in which the oxidation process is limited by diffusion through the oxide film is proposed. By electron irradiation the diffusion rate is enhanced presumably by a nonthermal process.

  6. High resolution electron microscopy and spectroscopy of ferritin in thin window liquid cells

    NASA Astrophysics Data System (ADS)

    Wang, Canhui; Qiao, Qiao; Shokuhfar, Tolou; Klie, Robert

    2014-03-01

    In-situ transmission electron microscopy (TEM) has seen a dramatic increase in interest in recent years with the commercial development of liquid and gas stages. High-resolution TEM characterization of samples in a liquid environment remains limited by radiation damage and loss of resolution due to the thick window-layers required by the in-situ stages. We introduce thin-window static-liquid cells that enable sample imaging with atomic resolution and electron energy-loss (EEL) spectroscopy with 1.3 nm resolution. Using this approach, atomic and electronic structures of biological samples such as ferritin is studied via in-situ transmission electron microscopy experiments. Ferritin in solution is encapsulated using the static liquid cells with reduced window thickness. The integrity of the thin window liquid cell is maintained by controlling the electron dose rate. Radiation damage of samples, such as liquid water and protein, is quantitatively studied to allow precision control of radiation damage level within the liquid cells. Biochemical reactions, such as valence change of the iron in a functioning ferritin, is observed and will be quantified. Relevant biochemical activity: the release and uptake of Fe atoms through the channels of ferritin protein shell is also imaged at atomic resolution. This work is funded by Michigan Technological University. The UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470).

  7. Spin paramagnetic deformation of a neutron star

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.; Mastrano, A.; Melatos, A.

    2016-02-01

    Quantum mechanical corrections to the hydromagnetic force balance equation, derived from the microscopic Schrödinger-Pauli theory of quantum plasmas, modify the equilibrium structure and hence the mass quadrupole moment of a neutron star. It is shown here that the dominant effect - spin paramagnetism - is most significant in a magnetar, where one typically has μ _B|B|≳ k_B T_e, where μB is the Bohr magneton, B is the magnetic field, and Te is the electron temperature. The spin paramagnetic deformation of a non-barotropic magnetar with a linked poloidal-toroidal magnetic field is calculated to be up to ˜10 times greater than the deformation caused solely by the Lorentz force. It depends on the degree of Pauli blocking by conduction electrons and the propensity to form magnetic domains, processes which are incompletely modelled at magnetar field strengths. The star becomes more oblate, as the toroidal field component strengthens. The result implies that existing classical predictions underestimate the maximum strength of the gravitational wave signal from rapidly spinning magnetars at birth. Turning the argument around, future gravitational-wave upper limits of increasing sensitivity will place ever-stricter constraints on the physics of Pauli blocking and magnetic domain formation under magnetar conditions.

  8. On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD).

    PubMed

    van Bremen, R; Ribas Gomes, D; de Jeer, L T H; Ocelík, V; De Hosson, J Th M

    2016-01-01

    The work presented aims at determining the optimum physical resolution of the transmission-electron backscattered diffraction (t-EBSD) technique. The resolution depends critically on intrinsic factors such as the density, atomic number and thickness of the specimen but also on the extrinsic experimental set-up of the electron beam voltage, specimen tilt and detector position. In the present study, the so-called physical resolution of a typical t-EBSD set-up was determined with the use of Monte Carlo simulations and confronted to experimental findings. In the case of a thin Au film of 20 nm, the best resolution obtained was 9 nm whereas for a 100 nm Au film the best resolution was 66 nm. The precise dependence of resolution on thickness was found to vary differently depending on the specific elements involved. This means that the resolution of each specimen should be determined individually. Experimentally the median probe size of the t-EBSD for a 140 nm thick AuAg specimen was measured to be 87 nm. The first and third quartiles of the probe size measurements were found to be 60 nm and 118 nm. Simulation of this specimen resulted in a resolution of 94 nm which fits between these quartiles.

  9. High-resolution spin-polarized scanning electron microscopy (spin SEM).

    PubMed

    Kohashi, Teruo; Konoto, Makoto; Koike, Kazuyuki

    2010-01-01

    We have developed spin-polarized scanning electron microscopy (spin SEM) with a 5-nm resolution. The secondary electron optics is very important, as it needs to transfer a sufficient number of secondary electrons to the spin polarimeter, due to the low efficiency of the polarimeter. The optics was designed using a three-dimensional (3D) simulation program of the secondary electron trajectories, and it achieves highly efficient collection and transport of the secondary electrons even though the distance between the sample and the objective lens exit of the electron gun remains short. Moreover, the designed optics enables us to obtain clear SEM images in the spin SEM measurement and to precisely adjust the probe beam shape. These functions lead to images with high spatial resolution and sufficient signal-to-noise (S/N) ratios. This optics has been installed in an ultra-high vacuum (UHV) spin SEM chamber with a Schottky-type electron gun for the probe electron beam. We observed recorded bits on a perpendicular magnetic recording medium and visualized small irregularities in the bit shapes around the track edges and bit boundaries. The high resolution of 5 nm was demonstrated by observing the smallest domain composed by a single grain in the recording medium. PMID:19840986

  10. A Long-Lived Fe(III)-(Hydroperoxo) Intermediate in the Active H200C Variant of Homoprotocatechuate 2,3-Dioxygenase: Characterization by Mössbauer, Electron Paramagnetic Resonance, and Density Functional Theory Methods.

    PubMed

    Meier, Katlyn K; Rogers, Melanie S; Kovaleva, Elena G; Mbughuni, Michael M; Bominaar, Emile L; Lipscomb, John D; Münck, Eckard

    2015-11-01

    The extradiol-cleaving dioxygenase homoprotocatechuate 2,3-dioxygenase (HPCD) binds substrate homoprotocatechuate (HPCA) and O2 sequentially in adjacent ligand sites of the active site Fe(II). Kinetic and spectroscopic studies of HPCD have elucidated catalytic roles of several active site residues, including the crucial acid-base chemistry of His200. In the present study, reaction of the His200Cys (H200C) variant with native substrate HPCA resulted in a decrease in both kcat and the rate constants for the activation steps following O2 binding by >400 fold. The reaction proceeds to form the correct extradiol product. This slow reaction allowed a long-lived (t1/2 = 1.5 min) intermediate, H200C-HPCAInt1 (Int1), to be trapped. Mössbauer and parallel mode electron paramagnetic resonance (EPR) studies show that Int1 contains an S1 = 5/2 Fe(III) center coupled to an SR = 1/2 radical to give a ground state with total spin S = 2 (J > 40 cm(-1)) in Hexch = JŜ1·ŜR. Density functional theory (DFT) property calculations for structural models suggest that Int1 is a (HPCA semiquinone(•))Fe(III)(OOH) complex, in which OOH is protonated at the distal O and the substrate hydroxyls are deprotonated. By combining Mössbauer and EPR data of Int1 with DFT calculations, the orientations of the principal axes of the (57)Fe electric field gradient and the zero-field splitting tensors (D = 1.6 cm(-1), E/D = 0.05) were determined. This information was used to predict hyperfine splittings from bound (17)OOH. DFT reactivity analysis suggests that Int1 can evolve from a ferromagnetically coupled Fe(III)-superoxo precursor by an inner-sphere proton-coupled-electron-transfer process. Our spectroscopic and DFT results suggest that a ferric hydroperoxo species is capable of extradiol catalysis. PMID:26485328

  11. On the optical stability of high-resolution transmission electron microscopes.

    PubMed

    Barthel, J; Thust, A

    2013-11-01

    In the recent two decades the technique of high-resolution transmission electron microscopy experienced an unprecedented progress through the introduction of hardware aberration correctors and by the improvement of the achievable resolution to the sub-Ångström level. The important aspect that aberration correction at a given resolution requires also a well defined amount of optical stability has received little attention so far. Therefore we investigate the qualification of a variety of high-resolution electron microscopes to maintain an aberration corrected optical state in terms of an optical lifetime. We develop a comprehensive statistical framework for the estimation of the optical lifetime and find remarkably low values between tens of seconds and a couple of minutes. Probability curves are introduced, which inform the operator about the chance to work still in the fully aberration corrected state.

  12. High-Resolution Analytical Electron Microscopy Characterization of Corrosion and Cracking at Buried Interfaces

    SciTech Connect

    Bruemmer, Stephen M.; Thomas, Larry E.

    2001-07-01

    Recent results are presented demonstrating the application of cross-sectional analytical transmission electron microscopy (ATEM) to corrosion and cracking in high-temperature water environments. Microstructural, chemical and crystallographic characterization of buried interfaces at near-atomic resolutions is shown to reveal evidence for unexpected local environments, corrosion reactions and material transformations. Information obtained by a wide variety of high-resolution imaging and analysis methods indicates the processes occurring during crack advance and provides insights into the mechanisms controlling environmental degradation.

  13. Three-Dimensional Imaging of the Local Structure of Materials at Atomic Resolution by Electron Tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Chun

    Electron tomography was originally developed in 1968, and has been primarily applied to determine the three-dimensional (3D) structure of biological systems. In the last decade, the application of electron tomography in materials science and nanoscience has revived due to the utilization of scanning transmission electron microscopy (STEM) in the high-angle annular dark-field (HAADF) mode, and a highest resolution of ˜1 nm3 has been achieved. However, improving the resolution from ˜1 nm 3 to the atomic level remains a challenging task, which requires new tomographic reconstruction algorithms, better projection alignment methods, state-of-the-art STEM instruments, and more accurate data-acquisition procedures. In this thesis, important progress has been made in all these four areas. First, a novel tomographic method, termed equally sloped tomography (EST), was developed and allows the 3D image reconstruction of tilt series with a limited number projections and a "missing wedge" (i.e. specimens cannot usually be tilted beyond +/-70°). Second, an alignment method which can be used to align the projections of a tilt series at atomic-level resolution was developed based on center of mass. Finally, by using a Titan 80-300 STEM instrument at the California NanoSystems Institute, UCLA, more accurate data acquisition procedures were developed and a number of tomographic tilt series of atomic resolution projections from different nanoparticles have been obtained. With all these combinations, the 3D structure of a 10 nm gold nanoparticle was determined at 2.4 A resolution, the highest resolution ever achieved in any general tomography method. More recently, this novel electron tomography method has been applied to observe nearly all the atoms in a Pt nanoparticle, and imaged for the first time the 3D core structure of edge and screw dislocations at atomic resolution. Furthermore, through numerical simulations the feasibility of determining the 3D atomic structure of

  14. A study of C-13-enriched chemical vapor deposited diamond film by means of C-13 nuclear magnetic resonance, electron paramagnetic resonance, and dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Lock, Herman; Wind, Robert A.; Maciel, Gary E.; Johnson, Curtis E.

    1993-09-01

    The results are presented of a study, based on EPR and various NMR techniques, of the effect on the nature of CVD diamond films of the addition of O2 to the methane-hydrogen mixture used to produce the film. The addition of oxygen to the feed gas results in a reduction of the number of unpaired electron spins, roughly from 10 exp 18 spins/g up to 10 exp 17 spins/g. There is a small aromatic signal in the dynamic nuclear polarization (DNP)-cross polarization (CP)-magic angle spinning (MAS) C-13 spectrum and a small peak at 28 ppm in the 14 T DP-MAS C-13 spectrum for only the diamond film sample grown without O2 present in the feed gas. The combination of DNP and CP at 1.4 T enables one to obtain a useful DNP-CP-MAS C-13 spectrum, ostensibly probing only the surface and intergrain boundary regions, in a matter of hours.

  15. Enhancement of Paramagnetic Relaxation by Photoexcited Gold Nanorods

    PubMed Central

    Wen, Tao; Wamer, Wayne G.; Subczynski, Witold K.; Hou, Shuai; Wu, Xiaochun; Yin, Jun-Jie

    2016-01-01

    Electron spin resonance (ESR) spectroscopy was used to investigate the switchable, light-dependent effects of gold nanorods (GNRs) on paramagnetic properties of nitroxide spin probes. The photoexcited GNRs enhanced the spin-spin and spin-lattice relaxations of nitroxide spin probes. It was shown that molecular oxygen plays the key role in this process. Our results demonstrate that ESR is a powerful tool for investigating the events following photoexcitation of GNRs. The novel light-controlled effects observed for GNRs on paramagnetic properties and activities of surrounding molecules have a number of significant applications where oxygen sensing and oxygen activity is important. PMID:27071507

  16. Intrinsic electric dipole moments of paramagnetic atoms: rubidium and cesium.

    PubMed

    Nataraj, H S; Sahoo, B K; Das, B P; Mukherjee, D

    2008-07-18

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximately Z;{3}. Thus, the heavy paramagnetic atoms will exhibit large EDM enhancement factors. However, the sizes of the couplings are so small that they are of interest of high precision atomic experiments. In this work we have computed the EDM enhancement factors of the ground states of Rb and Cs due to both the electron EDM and the S-PS EDM using the relativistic coupled-cluster theory. The importance of determining precise ab initio enhancement factors and experimental results of atomic EDMs in deducing a reliable limit on the electron EDM is emphasized.

  17. Axial ligand modulation of the electronic structures of binuclear copper sites: analysis of paramagnetic 1H NMR spectra of Met160Gln Cu(A).

    PubMed

    Fernández, C O; Cricco, J A; Slutter, C E; Richards, J H; Gray, H B; Vila, A J

    2001-11-28

    Cu(A) is an electron-transfer copper center present in heme-copper oxidases and N2O reductases. The center is a binuclear unit, with two cysteine ligands bridging the metal ions and two terminal histidine residues. A Met residue and a peptide carbonyl group are located on opposite sides of the Cu2S2 plane; these weaker ligands are fully conserved in all known Cu(A) sites. The Met160Gln mutant of the soluble subunit II of Thermus thermophilus ba3 oxidase has been studied by NMR spectroscopy. In its oxidized form, the binuclear copper is a fully delocalized mixed-valence pair, as are all natural Cu(A) centers. The faster nuclear relaxation in this mutant suggests that a low-lying excited state has shifted to higher energies compared to that of the wild-type protein. The introduction of the Gln residue alters the coordination mode of His114 but does not affect His157, thereby confirming the proposal that the axial ligand-to-copper distances influence the copper-His interactions (Robinson, H.; Ang, M. C.; Gao, Y. G.; Hay, M. T.; Lu, Y.; Wang, A. H. Biochemistry 1999, 38, 5677). Changes in the hyperfine coupling constants of the Cys beta-CH2 groups are attributed to minor geometrical changes that affect the Cu-S-C(beta)-H(beta) dihedral angles. These changes, in addition, shift the thermally accessible excited states, thus influencing the spectral position of the Cys beta-CH2 resonances. The Cu-Cys bonds are not substantially altered by the Cu-Gln160 interaction, in contrast to the situation found in the evolutionarily related blue copper proteins. It is possible that regulatory subunits in the mitochondrial oxidases fix the relative positions of thermally accessible Cu(A) excited states by tuning axial ligand interactions.

  18. High-resolution spectroscopy of X-rays emitted from electron bombarded surfaces

    NASA Astrophysics Data System (ADS)

    Jabłoński, Ł.; Banaś, D.; Jagodziński, P.; Kubala-Kukuś, A.; Sobota, D.; Pajek, M.

    2015-07-01

    The investigations of a compact 6-crystal Johann/Johansson diffraction X-ray spectrometer, covering a wide range (70 eV-15 keV) of photon energies, applied to observe the X-rays emitted from electron bombarded surfaces are discussed in terms of its focusing properties and achievable energy resolution. In the present study the X-ray spectra of Si-Kα1,2 and Al-Kα1,2 X-ray lines excited by 5 keV electron beam were measured using PET and TAP crystal, respectively, in the "out-of-focus" geometry which will be used to study the electron/ion surface interactions at the electron beam ion source (EBIS) facility. The measured X-ray spectra were interpreted in terms of the performed ray-tracing simulations which demonstrate the key features of the "out-of-focus" geometry. It was demonstrated that in this case the energy resolution in the range 1-3 eV for photon energy 1-2 keV can be achieved with an increased acceptance for the extension of X-ray source, of about 1 mm, which is important feature for practical applications. Additionally, a dependence of the X-ray intensity and energy resolution on slit opening was studied in details. The results are important for investigations of surfaces with electron and ion impact, in particular, for the future high-resolution X-ray spectroscopy experiments at the EBIS facility.

  19. Electron transfer and ionic displacements at the origin of the 2D electron gas at the LAO/STO interface: direct measurements with atomic-column spatial resolution.

    PubMed

    Cantoni, Claudia; Gazquez, Jaume; Miletto Granozio, Fabio; Oxley, Mark P; Varela, Maria; Lupini, Andrew R; Pennycook, Stephen J; Aruta, Carmela; di Uccio, Umberto Scotti; Perna, Paolo; Maccariello, Davide

    2012-08-01

    Using state-of-the-art, aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy with atomic-scale spatial resolution, experimental evidence for an intrinsic electronic reconstruction at the LAO/STO interface is shown. Simultaneous measurements of interfacial electron density and system polarization are crucial for establishing the highly debated origin of the 2D electron gas.

  20. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography

    PubMed Central

    Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald

    2015-01-01

    Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471

  1. Effects of hydrostatic pressure and temperature on the electron paramagnetic resonance spectrum of off-centre Jahn Teller [CuF4F4]6- complexes in SrF2 crystal

    NASA Astrophysics Data System (ADS)

    Ulanov, V. A.; Krupski, M.; Hoffmann, S. K.; Zaripov, M. M.

    2003-02-01

    Pressure and temperature variations of the spin-Hamiltonian parameters and electron paramagnetic resonance (EPR) linewidths of non-central Jahn-Teller [CuF4F4]6- complexes in SrF2 crystal were studied by continuous-wave EPR. It was found that the static spin-Hamiltonian parameters, found at T = 85 K and at normal pressure (gparallel = 2.491, gbot = 2.083, aparallel = 360, abot = 26, Ax'' = 96, Ay'' = 99, Az'' = 403 and betaexp = 17°), are slightly changed with hydrostatic pressure and, at T = 85 K and P = 550 MPa, become equal to gparallel = 2.489, gbot = 2.083, aparallel = 348, abot = 27, Ax'' = 99, Ay'' = 102, Az'' = 406 and betaexp = 20° (a and A values in megahertz, x''-, y''-and z''-axes are eigenvectors of the super-hyperfine tensor A, betaexp is the experimental value of the angle between the C4 symmetry axis of the complex and the x''-axis). With increasing temperature the well-resolved EPR spectrum of the complex is transformed continuously into a single broad line both at normal pressure and at a hydrostatic pressure of 550 MPa. But in the first case the coalescence point corresponds to 220-230 K while in the second case it is 195-205 K. Treatment using the linear combination of atomic orbitals representation of molecular orbitals (LCAO MO) model was performed to establish some relations between variations of the spin-Hamiltonian parameters and pressure-induced changes in the molecular structure of the complex. To get some additional information about the molecular structure of the complex and variations of its structural parameters with pressure, treatment using the rigid-ion model was performed. Experimental and theoretical results are discussed in the framework of the Jahn-Teller model of the complex.

  2. Arsenic speciation in newberyite (MgHPO(4)·3H(2)O) determined by synchrotron X-ray absorption and electron paramagnetic resonance spectroscopies: implications for the fate of arsenic in green fertilizers.

    PubMed

    Lin, Jinru; Chen, Ning; Pan, Yuanming

    2014-06-17

    Newberyite (MgHPO4·3H2O), a biomineral and common constituent in guano deposits, is an important decomposition product of struvite that is an increasingly popular green fertilizer recovered from wastewaters. Two samples of newberyite containing 1099 and 25 ppm As have been obtained at pH = 6.4, by using Na2HAsO4·7H2O and NaAsO2 as the dopant, respectively (i.e., Synthesis 1 and Synthesis 2). Synchrotron arsenic K-edge X-ray absorption spectroscopic data of newberyite from Synthesis 1 show that As(5+) is dominant and has a local environment typical of the arsenate species. Single-crystal electron paramagnetic resonance (EPR) spectra of gamma-ray-irradiated newberyite from Synthesis 1 contain two arsenic-associated oxyradicals: [AsO3](2-) and [AsO2](2-) derived from As(5+) and As(3+), respectively, at the P site. Quantitative analyses of powder EPR spectra allow determinations of the As(5+) and As(3+) contents in newberyite from Synthesis 1 and Synthesis 2. Elevated concentrations of arsenic also occur in natural newberyite transformed from struvite in guano deposits and record the accumulation of this metalloid in the food chain. Therefore, newberyite, which sequesters As during crystallization and retains this metalloid during the transformation from struvite, can attenuate arsenic contamination from green fertilizers in moderately acidic soils. Also, the capacity for accommodating both As(5+) and As(3+) in the crystal lattice coupled with simple chemistry and easy crystallization at ambient conditions makes newberyite an attractive material for remediation of arsenic contamination in aqueous environments.

  3. Structural effects of insulin-loading into HII mesophases monitored by electron paramagnetic resonance (EPR), small angle X-ray spectroscopy (SAXS), and attenuated total reflection Fourier transform spectroscopy (ATR-FTIR).

    PubMed

    Mishraki, Tehila; Ottaviani, Maria Francesca; Shames, Alexander I; Aserin, Abraham; Garti, Nissim

    2011-06-30

    Insulin entrapment within a monoolein-based reverse hexagonal (H(II)) mesophase was investigated under temperature-dependent conditions at acidic (pH 3) and basic (pH 8) conditions. Studying the structure of the host H(II) system and the interactions of insulin under temperature-dependent conditions has great impact on the enhancement of its thermal stabilization and controlled release for the purposes of transdermal delivery. Small angle X-ray spectroscopy (SAXS) measurements show that pH variation and/or insulin entrapment preserve the hexagonal structure and do not influence the lattice parameter. Attenuated total reflection Fourier transform spectroscopy (ATR-FTIR) spectra indicate that, although insulin interacts with hydroxyl groups of GMO in the interface region, it is not affected by pH variations. Hence different microenvironments within the H(II) mesophase were monitored by a computer-aided electron paramagnetic resonance (EPR) analysis using 5-doxylstearic acid (5-DSA) as a pH-dependent probe. The microviscosity, micropolarity, order of systems, and distribution of the probes in different microenvironments were influenced by three factors: temperature, pH, and insulin solubilization. When the temperature is increased, microviscosity and order parameters decreased at both pH 3 and 8, presenting different decrease trends. It was found that, at pH 3, the protein perturbs the lipid structure while "pushing aside" the un-ionized 5-DSA probe to fit into the narrow water cylinders. At the interface region (pH 8), the probe was distributed in two differently structured environments that significantly modifies by increasing temperature. Insulin loading within the H(II) mesophase decreased the order and microviscosity of both the microenvironments and increased their micropolarity. Finally, the EPR analysis also provides information about the unfolding/denaturation of insulin within the channel at high temperatures.

  4. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting.

    PubMed

    Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A

    2016-04-01

    X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in

  5. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting.

    PubMed

    Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A

    2016-04-01

    X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in

  6. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.

    PubMed

    Bellido, Edson P; Rossouw, David; Botton, Gianluigi A

    2014-06-01

    Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson-Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson-Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.

  7. Longitudinal Profile Diagnostic Scheme with Subfemtosecond Resolution for High-Brightness Electron Beams

    SciTech Connect

    Andonian, G.; Hemsing, E.; Xiang, D.; Musumeci, P.; Murokh, A.; Tochitsky, S.; Rosenzweig, J.B.; /UCLA

    2012-05-03

    High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond) with exceptional temporal resolution (hundreds of attoseconds) and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution) horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow) angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.

  8. The Potential for Bayesian Compressive Sensing to Significantly Reduce Electron Dose in High Resolution STEM Images

    SciTech Connect

    Stevens, Andrew J.; Yang, Hao; Carin, Lawrence; Arslan, Ilke; Browning, Nigel D.

    2014-02-11

    The use of high resolution imaging methods in the scanning transmission electron microscope (STEM) is limited in many cases by the sensitivity of the sample to the beam and the onset of electron beam damage (for example in the study of organic systems, in tomography and during in-situ experiments). To demonstrate that alternative strategies for image acquisition can help alleviate this beam damage issue, here we apply compressive sensing via Bayesian dictionary learning to high resolution STEM images. These experiments successively reduce the number of pixels in the image (thereby reducing the overall dose while maintaining the high resolution information) and show promising results for reconstructing images from this reduced set of randomly collected measurements. We show that this approach is valid for both atomic resolution images and nanometer resolution studies, such as those that might be used in tomography datasets, by applying the method to images of strontium titanate and zeolites. As STEM images are acquired pixel by pixel while the beam is scanned over the surface of the sample, these post acquisition manipulations of the images can, in principle, be directly implemented as a low-dose acquisition method with no change in the electron optics or alignment of the microscope itself.

  9. Barnett effect in paramagnetic states

    NASA Astrophysics Data System (ADS)

    Ono, Masao; Chudo, Hiroyuki; Harii, Kazuya; Okayasu, Satoru; Matsuo, Mamoru; Ieda, Jun'ichi; Takahashi, Ryo; Maekawa, Sadamichi; Saitoh, Eiji

    2015-11-01

    We report the observation of the Barnett effect in paramagnetic states by mechanically rotating gadolinium (Gd) metal with a rotational frequency of up to 1.5 kHz above the Curie temperature. An in situ magnetic measurement setup comprising a high-speed rotational system and a fluxgate magnetic sensor was developed for the measurement. Temperature dependence of the observed magnetization follows that of paramagnetic susceptibility, indicating that any emergent magnetic field is proportional to the rotational frequency and is independent of temperature. From the proportionality constant of the emergent field, the gyromagnetic ratio of Gd is calculated to be -29 ±5 GHz /T . This study revisits the primordial issue of magnetism with modern technologies to shed new light on the fundamental spin-rotation coupling.

  10. Paramagnetically induced gapful topological superconductors

    NASA Astrophysics Data System (ADS)

    Daido, Akito; Yanase, Youichi

    2016-08-01

    We propose a generic scenario for realizing gapful topological superconductors (TSCs) from gapless spin-singlet superconductors (SCs). Noncentrosymmetric nodal SCs in two dimensions are shown to be gapful under a Zeeman field, as a result of the cooperation of inversion-symmetry breaking and time-reversal-symmetry breaking. In particular, non-s -wave SCs acquire a large excitation gap. Such paramagnetically induced gapful SCs may be classified into TSCs in the symmetry class D specified by the Chern number. We show nontrivial Chern numbers over a wide parameter range for spin-singlet SCs. A variety of the paramagnetically induced gapful TSCs are demonstrated, including D +p -wave TSC, extended S +p -wave TSC, p +D +f -wave TSC, and s +P -wave TSC. Natural extension toward three-dimensional Weyl SCs is also discussed.

  11. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    PubMed

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  12. Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers.

    PubMed

    Horiuchi, Shin; Hanada, Takeshi; Ebisawa, Masaharu; Matsuda, Yasuhiro; Kobayashi, Motoyasu; Takahara, Atsushi

    2009-05-26

    Specimen contamination induced by electron beam irradiation has long been a serious problem for high-resolution imaging and analysis by a transmission electron microscope (TEM). It creates a deposition of carbonaceous compounds on a region under study, causing the loss of resolution. We developed a method to reduce the beam-induced specimen contamination by cleaning a TEM with activated oxygen radicals. The hydrocarbon contaminants accumulated inside the microscope's chamber can be etched away by gentle chemical oxidation without causing any damage to the microscope. The "contamination-free TEM" can effectively suppress the deposition of carbon-rich products on a specimen and therefore enables us to perform high-resolution carbon elemental mapping by energy-filtering transmission electron microscopy (EFTEM). In this study, we investigated the structure of polymer brushes immobilized on a silica nanoparticle (SiNP), of which molecular weight, length, and density of the brushes had been characterized in detail. The isolated particle showed the stretched formations of the polymer chains growing from the surface, while the densely distributed particles showed the connection of the polymer chains between neighboring particles. Moreover, the polymer brush layer and the surface initiator could be differentiated from each other by the component-specific contrast achieved by electron spectroscopic imaging (ESI). The contamination-free TEM can allow us to perform high-resolution carbon mapping and is expected to provide deep insights of soft materials' nanostructures. PMID:19402650

  13. Factors Associated with Young People's Successful Resolution of Distressing Electronic Harassment

    ERIC Educational Resources Information Center

    Fenaughty, John; Harre, Niki

    2013-01-01

    Electronic harassment is a pervasive phenomenon among young people, however relatively little is known about actions that targets of harassment may undertake to manage such abuse, and whether particular actions and personal characteristics are associated with successful resolution of such harassment. This mixed methods research identified whether…

  14. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution. PMID:26329206

  15. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    NASA Astrophysics Data System (ADS)

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O8+δ. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  16. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  17. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    SciTech Connect

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-15

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  18. High-Resolution Electron Energy-Loss Spectroscopy (HREELS) Using a Monochromated TEM/STEM

    NASA Technical Reports Server (NTRS)

    Sai, Z. R.; Bradley, J. P.; Erni, R.; Browning, N.

    2005-01-01

    A 200 keV FEI TF20 XT monochromated (scanning) transmission electron microscope funded by NASA's SRLIDAP program is undergoing installation at Lawrence Livermore National Laboratory. Instrument specifications in STEM mode are Cs =1.0 mm, Cc =1.2 mm, image resolution =0.18 nm, and in TEM mode Cs =1.3 mm, Cc =1.3 mm, information limit =0.14 nm. Key features of the instrument are a voltage-stabilized high tension (HT) supply, a monochromator, a high-resolution electron energy-loss spectrometer/energy filter, a high-resolution annular darkfield detector, and a solid-state x-ray energy-dispersive spectrometer. The high-tension tank contains additional sections for 60Hz and high frequency filtering, resulting in an operating voltage of 200 kV plus or minus 0.005V, a greater than 10-fold improvement over earlier systems. The monochromator is a single Wien filter design. The energy filter is a Gatan model 866 Tridiem-ERS high resolution GIF spec d for less than or equal to 0.15 eV energy resolution with 29 pA of current in a 2 nm diameter probe. 0.13 eV has already been achieved during early installation. The x-ray detector (EDAX/Genesis 4000) has a take-off angle of 20 degrees, an active area of 30 square millimeters, and a solid angle of 0.3 steradians. The higher solid angle is possible because the objective pole-piece allows the detector to be positioned as close as 9.47 mm from the specimen. The voltage-stabilized HT supply, monochromator and GIF enable high-resolution electron energy-loss spectroscopy (HREELS) with energy resolution comparable to synchrotron XANES, but with approximately 100X better spatial resolution. The region between 0 and 100 eV is called the low-loss or valence electron energy-loss spectroscopy (VEELS) region where features due to collective plasma oscillations and single electron transitions of valence electrons are observed. Most of the low-loss VEELS features we are detecting are being observed for the first time in IDPs. A major focus of

  19. Resolution Quality and Atom Positions in Sub-?ngstr?m Electron Microscopy

    SciTech Connect

    O'Keefe, Michael A.; Allard Jr, Lawrence Frederick; Blom, Douglas Allen

    2005-01-01

    John Cowley pioneered use of transmission electron microscopy (TEM) for high-resolution imaging and helped spur improvements in resolution that enabled researchers to pinpoint the positions of all but the lightest atoms within a crystal structure. Sub-{angstrom} capabilities allow imaging of even the lightest atoms. Initially achieved with software aberration correction (focal-series reconstruction of the specimen exit-surface wave), sub-{angstrom} imaging will become commonplace for next-generation electron microscopes with hardware-corrected lenses and monochromated electron beams. Currently, advanced HR-TEMs can image columns of light atoms (carbon, oxygen, nitrogen) in complex structures, including the lithium atoms present in battery materials. The ability to determine whether an image peak represents one single atom (or atom column) instead of several depends on the resolution of the HR-(S)TEM. Rayleigh's resolution criterion, an accepted standard in optics, was derived as a means for judging when two image intensity peaks from two sources of light (stars) are distinguishable from a single source. Atom spacings closer than the Rayleigh limit have been resolved in HR-TEM, suggesting that it may be useful to consider other limits, such as the Sparrow resolution criterion. From the viewpoint of the materials scientist, it is important to be able to use the image to determine whether an image feature represents one or more atoms (resolution), and where the atoms (or atom columns) are positioned relative to one another (resolution quality). When atoms and the corresponding image peaks are separated by more than the Rayleigh limit of the HR-(S)TEM, it is possible to adjust imaging parameters so that relative peak positions in the image correspond to relative atom positions in the specimen. When atoms are closer than the Rayleigh limit, we must find the relationship of the peak position to the atom position by peak fitting or, if we have a suitable model, by image

  20. Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy

    PubMed Central

    Mateos, José María; Guhl, Bruno; Doehner, Jana; Barmettler, Gery; Kaech, Andres; Ziegler, Urs

    2016-01-01

    Fluorescence microscopy reveals molecular expression at nanometer resolution but lacks ultrastructural context information. This deficit often hinders a clear interpretation of results. Electron microscopy provides this contextual subcellular detail, but protein identification can often be problematic. Correlative light and electron microscopy produces complimentary information that expands our knowledge of protein expression in cells and tissue. Inherent methodological difficulties are however encountered when combining these two very different microscopy technologies. We present a quick, simple and reproducible method for protein localization by conventional and super-resolution light microscopy combined with platinum shadowing and scanning electron microscopy to obtain topographic contrast from the surface of ultrathin cryo-sections. We demonstrate protein distribution at nuclear pores and at mitochondrial and plasma membranes in the extended topographical landscape of tissue. PMID:27666401

  1. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Ozdol, V. B.; Gammer, C.; Jin, X. G.; Ercius, P.; Ophus, C.; Ciston, J.; Minor, A. M.

    2015-06-01

    We report on the development of a nanometer scale strain mapping technique by means of scanning nano-beam electron diffraction. Only recently possible due to fast acquisition with a direct electron detector, this technique allows for strain mapping with a high precision of 0.1% at a lateral resolution of 1 nm for a large field of view reaching up to 1 μm. We demonstrate its application to a technologically relevant strain-engineered GaAs/GaAsP hetero-structure and show that the method can even be applied to highly defected regions with substantial changes in local crystal orientation. Strain maps derived from atomically resolved scanning transmission electron microscopy images were used to validate the accuracy, precision and resolution of this versatile technique.

  2. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction

    SciTech Connect

    Ozdol, V. B.; Ercius, P.; Ophus, C.; Ciston, J.; Gammer, C. E-mail: aminor@lbl.gov; Jin, X. G.; Minor, A. M. E-mail: aminor@lbl.gov

    2015-06-22

    We report on the development of a nanometer scale strain mapping technique by means of scanning nano-beam electron diffraction. Only recently possible due to fast acquisition with a direct electron detector, this technique allows for strain mapping with a high precision of 0.1% at a lateral resolution of 1 nm for a large field of view reaching up to 1 μm. We demonstrate its application to a technologically relevant strain-engineered GaAs/GaAsP hetero-structure and show that the method can even be applied to highly defected regions with substantial changes in local crystal orientation. Strain maps derived from atomically resolved scanning transmission electron microscopy images were used to validate the accuracy, precision and resolution of this versatile technique.

  3. Improving spatial resolution of convergent beam electron diffraction strain mapping in silicon microstructures

    SciTech Connect

    Armigliato, A.; Balboni, R.; Frabboni, S.

    2005-02-07

    Despite the use of nanometer-sized probes in field emission transmission electron microscopes, the spatial resolution in strain analysis performed by convergent beam electron diffraction is limited in one direction by the need for tilting the cross-sectional sample in the electron microscope off the vertical <110> direction. We demonstrate that it is possible to improve this resolution by using the <340> zone axis, instead of the <230> one, which has recently become of common use in the analysis of silicon microdevices. Quantitative strain information with good sensitivity and accuracy can be obtained in the new axis. An example of application to the two-dimensional strain mapping in shallow trench isolation structures, obtained with a scanning attachment and a high-angle annular dark-field detector, is reported.

  4. High-resolution, high-throughput imaging with a multibeam scanning electron microscope

    PubMed Central

    EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D

    2015-01-01

    Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873

  5. Assessing the imaging capabilities of radial mechanical and electronic echo-endoscopes using the resolution integral.

    PubMed

    Inglis, Scott; Janeczko, Anna; Ellis, William; Plevris, John N; Pye, Stephen D

    2014-08-01

    Over the past decade there have been significant advances in endoscopic ultrasound (EUS) technology. Although there is an expectation that new technology will deliver improved image quality, there are few methods or phantoms available for assessing the capabilities of mechanical and electronic EUS systems. The aim of this study was to investigate the possibility of assessing the imaging capability of available EUS technologies using measurements of the resolution integral made with an Edinburgh Pipe Phantom. Various radial EUS echo-endoscopes and probes were assessed using an Edinburgh Pipe Phantom. Measurements of the resolution integral (R), depth of field (LR) and characteristic resolution (DR) were made at all operating frequencies. The mean R value for Fuji miniprobes was 16.0. The GF-UM20 and GF-UM2000 mechanical radial scopes had mean R values of 24.0 and 28.5, respectively. The two electronic radial echo-endoscopes had similar mean R values of 34.3 and 34.6 for the Olympus GF-UE260 and Fujinon EG-530 UR scopes, respectively. Despite being older technology, the mechanical GF-UM2000 scope had superior characteristic resolution (DR), but could not compare with the depths of field (LR) delivered by the current generation of electronic radial scopes, especially at the standard operating frequencies of 7.5 and 12 MHz.

  6. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance.

    PubMed

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  7. Application of an ultrahigh-resolution scanning electron microscope (UHS-T1) to biological specimens.

    PubMed

    Tanaka, K; Mitsushima, A; Kashima, Y; Nakadera, T; Osatake, H

    1989-06-01

    In 1985 we developed an ultrahigh-resolution scanning electron microscope with a resolution of 0.5 nm. It is equipped with a field emission gun and an objective lens with a very short focal length. In this study we report a survey of some different preparation techniques and biological specimens using the new scanning electron microscope. Intracellular structures such as cell organelles were observed surprisingly sharper than those observed by ordinary scanning electron microscopes. However, at magnifications over 250,000 x, platinum particles could be discerned as scattered pebbles on the surface of all structures in coated materials. Using an uncoated but conductively stained specimen, we successfully observed ribosomes on a rough endoplasmic reticulum at a direct magnification of 1 million. In these images some protrusions were recognized on the ribosomes. Ferritin and immunoglobulin G were used as samples of biological macromolecules. These samples were observed without metal coating and conductive staining. The ferritin particles appeared as rounded bodies without any substructure on the surface and immunoglobulin G as complexes of three-unit bodies. In the latter the central body might correspond to the Fc fragment and two side ones to Fab fragments. We assume that ultrahigh-resolution scanning electron microscopy is an effective means for observation of the cell fine structures and biological macromolecules. It will open a new research field in biomedicine.

  8. Vacuum-free self-powered parallel electron lithography with sub-35-nm resolution.

    PubMed

    Lu, Yuerui; Lal, Amit

    2010-06-01

    The critical dimension, throughput, and cost of nanolithography are central to developing commercially viable high-performance nanodevices. Available top-down lithography approaches to fabricate large-area nanostructures at low cost, such as controllable nanowire (NW) array fabrication for solar cells applications, are challenging due to the requirement of both high lithography resolution and high throughput. Here, a minimum 35 nm resolution is experimentally demonstrated by using a new mask fabrication technique in our demonstrated vacuum-free high-throughput self-powered parallel electron lithography (SPEL) system, which uses large-area planar radioactive beta-electron thin film emitters to parallel expose e-beam resist through a stencil mask. SPEL is the first-time demonstrated vacuum-free electron lithography, which overcomes the membrane mask distortion challenge that was shown to be the Achilles heel of previous attempts at electron projection lithography in vacuum. Monte Carlo simulations show that by using beryllium tritide thin film source in SPEL system, the exposure time can be reduced down to 2 min for each large-area (10000 cm(2) or more) parallel exposure, with resolution not larger than 20 nm. Moreover, experimental demonstration of large-area diameter-and-density controllable vertical NW arrays fabricated by SPEL shows its promising utility for an application requiring large-area nanostructure definition. PMID:20481509

  9. YUP.SCX: coaxing atomic models into medium resolution electron density maps.

    PubMed

    Tan, Robert K-Z; Devkota, Batsal; Harvey, Stephen C

    2008-08-01

    The structures of large macromolecular complexes in different functional states can be determined by cryo-electron microscopy, which yields electron density maps of low to intermediate resolutions. The maps can be combined with high-resolution atomic structures of components of the complex, to produce a model for the complex that is more accurate than the formal resolution of the map. To this end, methods have been developed to dock atomic models into density maps rigidly or flexibly, and to refine a docked model so as to optimize the fit of the atomic model into the map. We have developed a new refinement method called YUP.SCX. The electron density map is converted into a component of the potential energy function to which terms for stereochemical restraints and volume exclusion are added. The potential energy function is then minimized (using simulated annealing) to yield a stereochemically-restrained atomic structure that fits into the electron density map optimally. We used this procedure to construct an atomic model of the 70S ribosome in the pre-accommodation state. Although some atoms are displaced by as much as 33A, they divide themselves into nearly rigid fragments along natural boundaries with smooth transitions between the fragments.

  10. The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens.

    PubMed

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-06-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as a function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as a function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens.

  11. Magnetic resonance studies of isotopically labeled paramagnetic proteins: (2FE-2S) ferredoxins

    SciTech Connect

    Cheng, H.; Xia, B.; Chae, Y.K.; Westler, W.M.; Markley, J.L.

    1994-12-01

    Recent developments in NMR spectroscopy, especially multidimensional, multinuclear NMR techniques, have made NMR the most versatile tool available for studying protein structure and function in solution. Unlike diamagnetic proteins, paramagnetic proteins contain centers with unpaired electrons. These unpaired electrons interact with magnetic nuclei either through chemical bonds by a contact mechanism or through space by a pseudocontact mechanism. Such interactions make the acquisition and analysis of NMR spectra of paramagnetic proteins more challenging than those of diamagnetic proteins. Some NMR signals from paramagnetic proteins are shifted outside the chemical shift region characteristic of diamagnetic proteins; these {open_quotes}hyperfine-shifted{close_quotes} resonances originate from nuclei that interact with unpaired electrons from the paramagnetic center. The large chemical shift dispersion in spectra of paramagnetic proteins makes it difficult to excite the entire spectral window and leads to distortions in the baseline. Interactions with paramagnetic centers shorten T{sub 1} and T{sub 2} relaxation times of nuclei; the consequences are line broadening and lower spectral sensitivity. Scalar (through bond) and dipolar (through space) interactions between pairs of nuclei are what give rise to crosspeak signals in multi-dimensional NMR spectra of small diamagnetic proteins. When such interactions involve a nucleus that is strongly relaxed by interaction with a paramagnetic center, specialized methods may be needed for its detection or it may be completely undetectable by present nD NMR methods.

  12. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    PubMed Central

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-01-01

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging. Here we present a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and X-ray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective. PMID:26226459

  13. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement.

    PubMed

    Jackson, Ryan N; McCoy, Airlie J; Terwilliger, Thomas C; Read, Randy J; Wiedenheft, Blake

    2015-09-01

    Structures of multisubunit macromolecular machines are primarily determined either by electron microscopy (EM) or by X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at a higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for the generation of atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the 'phase' information that is missing from an X-ray crystallography experiment; however, integration of EM and X-ray diffraction data has been technically challenging. Here we present a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over noncrystallographic symmetry. As the resolution gap between EM and X-ray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.

  14. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE PAGESBeta

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  15. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    SciTech Connect

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging. Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.

  16. Paramagnetic Meissner effect in Nb

    NASA Astrophysics Data System (ADS)

    Kostić, P.; Veal, B.; Paulikas, A. P.; Welp, U.; Todt, V. R.; Gu, C.; Geiser, U.; Williams, J. M.; Carlson, K. D.; Klemm, R. A.

    1996-01-01

    The paramagnetic Meissner effect (PME), or Wohlleben effect, in which the field-cooled magnetization of superconducting samples is paramagnetic below Tc, has been reported to occur in some samples of a variety of high-Tc cuprate superconductors. It has been proposed that the effect arose in granular hole-doped cuprates from current loops with π phase shifts of the superconducting order parameter at some grain-boundary junctions. It is argued that such behavior would be expected to occur in a d-wave superconductor, but not in a conventional s-wave superconductor. To test this hypothesis, we have searched for the occurrence of the effect in Nb, and have confirmed a recent report by Minhaj et al. of its occurrence in some Nb samples. For these studies, the effects of stray fields and field gradients in the measurement volume of the superconducting quantum interference device magnetometer have been carefully considered to rule out the possibility that measurement artifacts might be responsible for the apparent paramagnetic behavior in Nb. The M(T) and M(H) curves obtained in Nb samples that show the PME also show remarkably strong resemblance to those curves reported for the cuprate materials exhibiting the PME. Evidence is presented that the effect arises from inhomogeneously trapped flux, and is strongly influenced by sample geometry and surface effects. These results suggest that, for the effect to be observable, Tc on the sample surface must be different from the bulk Tc. The occurrence of the PME in Nb strongly suggests that the observation of this effect is unrelated to d-wave superconductivity.

  17. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    PubMed

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral paramete