High Resolution Continuous Flow Analysis System for Polar Ice Cores
NASA Astrophysics Data System (ADS)
Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa
2014-05-01
In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to 35.636 kyr b2k 7), respectively. The results show the conductivity measured upstream and downstream of the debubbler. We will calculate the depth resolution of our system and compare it with earlier studies. 1) Bigler at al, "Optimization of High-Resolution Continuous Flow Analysis For Transient Climate Signals in Ice Cores". Environ. Sci. Technol. 2011, 45, 4483-4489 2) Kaufmann et al, "An Improved Continuous Flow Analysis System for High Resolution Field Measurements on Ice Cores". Environmental Environ. Sci. Technol. 2008, 42, 8044-8050 3) Gkinis, V., T. J. Popp, S. J. Johnsen and T, Blunier, 2010: A continuous stream flash evaporator for the calibration of an IR cavity ring down spectrometer for the isotopic analysis of water. Isotopes in Environmental and Health Studies, 46(4), 463-475. 4) McConnell et al, "Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 2002, 36, 7-11 5) Rhodes et al, "Continuous methane measurements from a late Holocene Greenland ice core : Atmospheric and in-situ signals" Earth and Planetary Science Letters. 2013, 368, 9-19 6) Breton et al, "Quantifying Signal Dispersion in a Hybrid Ice Core Melting System". Environ. Sci. Technol. 2012, 46, 11922-11928 7) Rasmussen et al, " A first chronology for the NEEM ice core". Climate of the Past. 2013, 9, 2967--3013
Subannual layer variability in Greenland firn cores
NASA Astrophysics Data System (ADS)
Kjær, Helle Astrid; Vallelonga, Paul; Vinther, Bo; Winstrup, Mai; Simonsen, Marius; Maffezzoli, Niccoló; Jensen, Camilla Marie
2017-04-01
Ice cores are used to infer information about the past and modern techniques allow for high resolution (< cm) continuous flow analysis (CFA) of the ice. Such analysis is often used to inform on annual layers to constrain dating of ice cores, but can also be extended to provide information on sub-annual deposition patterns. In this study we use available high resolution data from multiple shallow cores around Greenland to investigate the seasonality and trends in the most often continuously measured components sodium, insoluble dust, calcium, ammonium and conductivity (or acidity) from 1800 AD to today. We evaluate the similarities and differences between the records and discuss the causes from different sources and transport to deposition and post-deposition effects over differences in measurement set up. Further we add to the array of cores already published with measurements from the newly drilled ReCAP ice core from a coastal ice cap in eastern Greenland and from a shallow core drilled at the high accumulation site at the Greenland South Dome.
NASA Astrophysics Data System (ADS)
Kreutz, K. J.; Campbell, S. W.; Winski, D.; Osterberg, E. C.; Kochtitzky, W. H.; Copland, L.; Dixon, D.; Introne, D.; Medrzycka, D.; Main, B.; Bernsen, S.; Wake, C. P.
2017-12-01
A growing array of high-resolution paleoclimate records from the terrestrial region bordering the Gulf of Alaska (GoA) continues to reveal details about ocean-atmosphere variability in the region during the Common Era. Ice core records from high-elevation ranges in proximity to the GoA provide key information on extratropical hydroclimate, and potential teleconnections to low latitude regions. In particular, stable water isotope and snow accumulation reconstructions from ice cores collected in high precipitation locations are uniquely tied to regional water cycle changes. Here we present new data collected in 2016 and 2017 from the St. Elias Mountains (Eclipse Icefield, Yukon Territories, Canada), including a range of ice core and geophysical measurements. Low- and high-frequency ice penetrating radar data enable detailed mapping of icefield bedrock topography and internal reflector stratigraphy. The 1911 Katmai eruption layer can be clearly traced across the icefield, and tied definitively to the coeval ash layer found in the 345 meter ice core drilled at Eclipse Icefield in 2002. High-resolution radar data are used to map spatial variability in 2015/16 and 2016/17 snow accumulation. Ice velocity data from repeat GPS stake measurements and remote sensing feature tracking reveal a clear divide flow regime on the icefield. Shallow firn/ice cores (20 meters in 2017 and 65 meters in 2016) are used to update the 345 meter ice core drilled at Eclipse Icefield in 2002. We use new algorithm-based layer counting software to improve and provide error estimates on the new ice core chronology, which extends from 2017 to 1450AD. 3D finite element modeling, incorporating all available geophysical data, is used to refine the reconstructed accumulation rate record and account for vertical and horizontal ice flow. Together with high-resolution stable water isotope data, the updated Eclipse record provides detailed, sub-annual resolution data on several aspects of the regional water cycle (e.g., accumulation/precipitation, moisture source and trajectory, coupled ocean/atmosphere variability). We compare the updated Eclipse record with other data in the North Pacific region, including the new Denali 1200-year ice core datasets, to assess regional hydroclimate variability during the Common Era.
Annually resolved Holocene record of dust deposition and size distribution from the South Pole
NASA Astrophysics Data System (ADS)
Chesler, A.; Koffman, B. G.; Kreutz, K. J.; Osterberg, E. C.; Winski, D.; Ferris, D. G.; Cole-Dai, J.; Wells, M. L.; Handley, M.
2017-12-01
Ice cores offer insights into past changes in atmospheric composition and circulation at high temporal resolution. Dust particles preserved in ice cores provide information regarding the atmospheric burden of dust and associated trace elements, changes in atmospheric circulation, and variations in the climates of dust-producing regions. Well resolved ice core dust records, therefore, can be used to gain a better understanding of the dynamics affecting ocean overturning circulation, to constrain atmospheric nutrient deposition to ocean ecosystems, and to assess atmospheric albedo variations. Existing Antarctic ice core dust records are generally either low-resolution and long-duration (glacial/interglacial timescale), or high-resolution and short-duration (past 2400 years), but high-resolution and long-duration records are rare. Here we present a continuous high-resolution record of dust deposition, including particle size distribution (PSD) and concentration, from the South Pole Ice (SPICE) Core, the first Holocene dust record from this location. The SPICE core was drilled during 2014-2016, reaching a depth of 1751 m. Cores were melted and analyzed for particles (1.0-12 µm diameter) using a continuous-flow Abakus laser particle sensor at Dartmouth College. The current SPICE Core chronology is based on: 1) visual stratigraphy from 0-10.2 ka and 2) correlations to the IceCube dust log calibration beyond 10.2 ka. Annual layer counts of Mg, dust (1.0 µm and 2.4 µm), Na, and SO4 demonstrate that the dust record is annually resolved through most of the Holocene ( 10.3 ka), allowing us to assess dust/climate relationships at high temporal resolution. We use meteorological and reanalysis data to understand modern drivers of observed variability in particle concentration and size distribution, and compare the new SPICE dust record to available Antarctic dust records including from EPICA Dome C, WAIS Divide, Taylor Dome, Taylor Glacier, Talos Dome, Siple Dome, and EPICA Dronning Maud Land. Interpretations of the SPICE dust record will be used to improve understanding of dust emissions, transport and deposition processes, and dust/climate relationships, through the Holocene.
High-resolution sulfur isotopes in ice cores identify large stratospheric volcanic eruptions
NASA Astrophysics Data System (ADS)
Burke, Andrea; Sigl, Michael; Adkins, Jess; Paris, Guillaume; McConnell, Joe
2016-04-01
The record of the volcanic forcing of climate over the past 2500 years is reconstructed primarily from sulfate concentrations in ice cores. Of particular interest are stratospheric eruptions, as these afford sulfate aerosols the longest residence time and largest dispersion in the atmosphere, and thus the greatest impact on radiative forcing. Identification of stratospheric eruptions currently relies on the successful matching of the same volcanic sulphate peak in ice cores from both the Northern and Southern hemispheres (a "bipolar event"). These are interpreted to reflect the global distribution of sulfur aerosols by the stratospheric winds. Despite its recent success, this method relies on precise and accurate dating of ice cores, in order to distinguish between a true 'bipolar event' and two separate eruptions that occurred in close temporal succession. Sulfur isotopes can been used to distinguish between these two scenarios since stratospheric sulfur aerosols are exposed to UV radiation which imparts a mass independent fractionation (Baroni et al., 2007). Mass independent fractionation of sulfate in ice cores thus offers a novel method of fingerprinting stratospheric eruptions, and thus refining the historic record of explosive volcanism and its forcing of climate. Here we present new high-resolution (sub-annual) sulfur isotope data from the Tunu Ice core in Greenland over seven eruptions. Sulfur isotopes were measured by MC-ICP-MS, which substantially reduces sample size requirements and allows high temporal resolution from a single ice core. We demonstrate the efficacy of the method on recent, well-known eruptions (including Pinatubo and Katmai/Novarupta), and then apply it to unidentified sulfate peaks, allowing us to identify new stratospheric eruptions. Baroni, M., Thiemens, M. H., Delmas, R. J., & Savarino, J. (2007). Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science, 315(5808), 84-87. http://doi.org/10.1126/science.1131754
High-resolution Sulfur Isotopes in Ice Cores Identify Large Stratospheric Eruptions
NASA Astrophysics Data System (ADS)
Burke, A.; Sigl, M.; Moore, K.; Nita, D. C.; Adkins, J. F.; Paris, G.; McConnell, J.
2016-12-01
The record of the volcanic forcing of climate over the past 2500 years is reconstructed primarily from sulfate concentrations in ice cores. Of particular interest are stratospheric eruptions, as these afford sulfate aerosols the longest residence time and largest dispersion in the atmosphere, and thus the greatest impact on radiative forcing. Identification of stratospheric eruptions currently relies on the successful matching of the same volcanic sulfate peak in ice cores from both the Northern and Southern hemispheres (a "bipolar event"). These are interpreted to reflect the global distribution of sulfur aerosols by the stratospheric winds. Despite its recent success, this method relies on precise and accurate dating of ice cores, in order to distinguish between a true `bipolar event' and two separate eruptions that occurred in close temporal succession. Sulfur isotopes can been used to distinguish between these two scenarios since stratospheric sulfur aerosols are exposed to UV radiation which imparts a mass independent fractionation (Baroni et al., 2007). Mass independent fractionation of sulfate in ice cores thus offers a novel method of fingerprinting stratospheric eruptions, and thus refining the historic record of explosive volcanism and its forcing of climate. Here we present new high-resolution (sub-annual) sulfur isotope data from the Tunu Ice core in Greenland over seven eruptions. Sulfur isotopes were measured by MC-ICP-MS, which substantially reduces sample size requirements and allows high temporal resolution from a single ice core. We demonstrate the efficacy of the method on recent, well-known eruptions (including Pinatubo and Katmai/Novarupta), and then apply it to unidentified sulfate peaks, allowing us to identify new stratospheric eruptions. Baroni, M., Thiemens, M. H., Delmas, R. J., & Savarino, J. (2007). Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science, 315(5808), 84-87. http://doi.org/10.1126/science.1131754
Towards a new common Greenland Ice Core Chronology for the last 5000 years
NASA Astrophysics Data System (ADS)
Winstrup, Mai; Olander Rasmussen, Sune; Møllesøe Vinther, Bo; Cook, Eliza; Svensson, Anders; McConnell, Joe; Steffensen, Jørgen Peder
2017-04-01
Since the development of the Greenland Ice Core Chronology 2005 (GICC05), it has been widely used as a reference chronology in paleoclimate research. However, recent research (Sigl et al, 2015) demonstrated that this timescale has small, but significant, issues over historical time. These discrepancies was found by counting annual layers in high-resolution chemistry records from the NEEM S1 shallow core, and confirmed by linking via 10Be marker horizons to the layer-counted WAIS Divide ice core, Antarctica, and accurately-dated tree-ring series. This work showed that a revision of GICC05 is required prior to 1250AD. We here refine and extend this work. Layer-counting in a single core will always involve some uncertainty, and we hence use data from multiple Greenland ice cores, for which high-resolution impurity records recently have been measured. These ice cores have been synchronized using volcanic marker horizons, and the layer-counting is performed automatically using the StratiCounter algorithm (Winstrup et al, 2012), while ensuring that the number of layers between volcanic horizons are the same in all cores. Based on this extended multiple-core data set, we are further able to extend the new Greenland timescale another few thousand years back in time. This will, among others, provide a new ice-core date for the catastrophic volcanic eruption ( 1600 BC) that destroyed the Greek Minoan culture, an important time marker in Greek history.
Holocene Accumulation and Ice Flow near the West Antarctic Ice Sheet Divide Ice Core Site
NASA Technical Reports Server (NTRS)
Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.
2016-01-01
The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and decreased by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.
NASA Astrophysics Data System (ADS)
Thompson, L. G.; Mosley-Thompson, E. S.; Zagorodnov, V.; Davis, M. E.; Mashiotta, T. A.; Lin, P.
2004-12-01
In 2003, six ice cores measuring 10.5, 11.5, 11.8, 12.4, 114 and 460 meters were recovered from the col between Mount Bona and Mount Churchill (61° 24'N; 141° 42'W; 4420 m asl). These cores have been analyzed for stable isotopic ratios, insoluble dust content and concentrations of major chemical species. Total Beta radioactivity was measured in the upper sections. The 460-meter core, extending to bedrock, captured the entire depositional record at this site where ice temperatures ranged from -24° C at 10 meters to -19.8° C at the ice/bedrock contact. The shallow cores allow assessment of surface processes under modern meteorological conditions while the deep core offers a ˜1500-year climate and environmental perspective. The average annual net balance is ˜~1000 mm of water equivalent and distinct annual signals in dust and calcium concentrations along with δ 18O allow annual resolution over most of the core. The excess sulfate record reflects many known large volcanic eruptions such as Katmai, Krakatau, Tambora, and Laki which allow validation of the time scale in the upper part of the core. The lower part of the core yields a history of earlier volcanic events. The 460-m Bona-Churchill ice core provides a detailed history of the `Little Ice Age' and medieval warm periods for southeastern Alaska. The source of the White River Ash will be discussed in light of the evidence from this core. The 460-m core also provides a long-term history of the dust fall that originates in north-central China. The annual ice core-derived climate records from southeastern Alaska will facilitate an investigation of the likelihood that the high resolution 1500-year record from the tropical Quelccaya Ice Cap (Peru) preserves a history of the variability of both the PDO and the Aleutian Low.
NASA Astrophysics Data System (ADS)
Catanzano, V.; Grannas, A. M.; Sleighter, R. L.; Hatcher, P. G.
2013-12-01
Historically, it has been an analytical challenge to detect and identify the organic components present in ice cores, due to the low abundance of organic carbon. In order to detect and characterize the small amounts of organic matter in ice cores, ultra high resolution instrumentation is required. Here we report the use of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry, coupled with electrospray ionization, to identify the molecular formulas and compound classes of organic matter in both modern and ancient ice core and glacial samples from Wyoming, Greenland, and Antarctica. A suite of 21 samples were analyzed and thousands of distinct molecular species were identified in each sample, providing clues to the nature and sources of organic matter in these regions. Major biochemical classes of compounds were detected such as lignins, tannins, carbohydrates, proteins, lipids, unsaturated hydrocarbons, and condensed aromatic compounds. We will compare the nature of the organic matter present in the samples in order to determine the differences in dominant organic compound classes and in heteroatom (nitrogen and sulfur) abundance. By analyzing these differences, it is possible to investigate the historical patterns of organic matter deposition/source, and begin to investigate the influence of climate change, volcanism, and onset of the industrial revolution on the nature of organic matter preserved in ice cores.
NASA Astrophysics Data System (ADS)
Rhodes, Rachael H.; Faïn, Xavier; Stowasser, Christopher; Blunier, Thomas; Chappellaz, Jérôme; McConnell, Joseph R.; Romanini, Daniele; Mitchell, Logan E.; Brook, Edward J.
2013-04-01
Ancient air trapped inside bubbles in ice cores can now be analysed for methane concentration utilising a laser spectrometer coupled to a continuous melter system. We present a new ultra-high resolution record of atmospheric methane variability over the last 1800 yr obtained from continuous analysis of a shallow ice core from the North Greenland Eemian project (NEEM-2011-S1) during a 4-week laboratory-based measurement campaign. Our record faithfully replicates the form and amplitudes of multi-decadal oscillations previously observed in other ice cores and demonstrates the detailed depth resolution (5.3 cm), rapid acquisition time (30 m day-1) and good long-term reproducibility (2.6%, 2σ) of the continuous measurement technique. In addition, we report the detection of high frequency ice core methane signals of non-atmospheric origin. Firstly, measurements of air from the firn-ice transition region and an interval of ice core dating from 1546-1560 AD (gas age) resolve apparently quasi-annual scale methane oscillations. Traditional gas chromatography measurements on discrete ice samples confirm these signals and indicate peak-to-peak amplitudes of ca. 22 parts per billion (ppb). We hypothesise that these oscillations result from staggered bubble close-off between seasonal layers of contrasting density during time periods of sustained multi-year atmospheric methane change. Secondly, we report the detection of abrupt (20-100 cm depth interval), high amplitude (35-80 ppb excess) methane spikes in the NEEM ice that are reproduced by discrete measurements. We show for the first time that methane spikes present in thin and infrequent layers in polar, glacial ice are accompanied by elevated concentrations of carbon- and nitrogen-based chemical impurities, and suggest that biological in-situ production may be responsible.
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Handley, M. J.; Sneed, S. D.; Mayewski, P. A.; Kreutz, K. J.; Fisher, D. A.
2004-12-01
The ice core melter system at the University of Maine Climate Change Institute has been recently modified and updated to allow high-resolution (<1-2 cm ice/sample), continuous and coregistered sampling of ice cores, most notably the 2001 Mt. Logan summit ice core (187 m to bedrock), for analyses of 34 trace elements (Sr, Cd, Sb, Cs, Ba, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, REE suite) by inductively coupled plasma mass spectrometry (ICP-MS), 8 major ions (Na+, Ca2+, Mg2+, K+, Cl-, SO42-, NO3-, MSA) by ion chromatography (IC), stable water isotopes (δ 18O, δ D, d) and volcanic tephra. The UMaine continuous melter (UMCoM) system is housed in a dedicated clean room with HEPA filtered air. Standard clean room procedures are employed during melting. A Wagenbach-style continuous melter system has been modified to include a pure Nickel melthead that can be easily dismantled for thorough cleaning. The system allows melting of both ice and firn without wicking of the meltwater into unmelted core. Contrary to ice core melter systems in which the meltwater is directly channeled to online instruments for continuous flow analyses, the UMCoM system collects discrete samples for each chemical analysis under ultraclean conditions. Meltwater from the pristine innermost section of the ice core is split between one fraction collector that accumulates ICP-MS samples in acid pre-cleaned polypropylene vials under a class-100 HEPA clean bench, and a second fraction collector that accumulates IC samples. A third fraction collector accumulates isotope and tephra samples from the potentially contaminated outer portion of the core. This method is advantageous because an archive of each sample remains for subsequent analyses (including trace element isotope ratios), and ICP-MS analytes are scanned for longer intervals and in replicate. Method detection limits, calculated from de-ionized water blanks passed through the entire UMCoM system, are below 10% of average Mt. Logan values. A strong correlation (R2>0.9) between Ca and S concentrations measured on different fractions of the same sample by IC and ICP-MS validates sample coregistration. Preliminary analyses of data from the 2001 Mt. Logan summit ice core confirm subannual resolution sampling and annual scale variability of major and trace elements. Accumulation rate models and isotope data suggest that annual resolution will be possible to 1000-2000 y.b.p., with multi-annual to centennial resolution for the remainder of the Holocene and possibly including the last deglaciation. Dust proxy elements, including REEs, strongly co-vary in time-series and reveal concentration ratio fluctuations interpreted as source region changes. Volcanic eruptions are characterized by elevated concentrations of S, SO42-, Cu, Sb, Zn and other trace elements. Concentrations of potential anthropogenic contaminants are also discussed.
Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing
NASA Technical Reports Server (NTRS)
Jezek, Kenneth C.
2001-01-01
An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the snow accumulation and the ice discharge of the ice sheet. Uncertainties in this calculation include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken throughout the ice sheet. The sparse data associated with ice cores, coupled with the high spatial and temporal resolution provided by remote sensing, have motivated scientists to investigate relationships between accumulation rate and microwave observations.
NASA Astrophysics Data System (ADS)
Bohleber, Pascal; Spaulding, Nicole; Mayewski, Paul; Kurbatov, Andrei; Hoffmann, Helene; Erhardt, Tobias; Fischer, Hubertus; More, Alexander; Loveluck, Christopher; Luongo, Matthew; Kabala, Jakub; McCormick, Michael
2016-04-01
Its extraordinary network of historical and archaeological records makes Europe exceptionally promising for investigating environmental change and human response over the last two thousand years. Among natural proxy archives, ice core records offer a wide range of environmental reconstructions including natural and human source histories of the chemistry of the atmosphere. To link these robust environmental records with historical evidence of past civilizations remains a great challenge, however. In central Europe the unique target for a comparison for environmental change recorded in ice cores and human activity is the small firn saddle of Colle Gnifetti (4550 m above sea level on the Italian-Swiss border). Its exceptionally low net accumulation make Colle Gnifetti (CG) the only feasible site in the Alps for retrieving a long-term ice core record beyond the last century. However, at CG rapid annual layer thinning eventually limits conventional cm-resolution analysis to multi-annual signals and hampers dating by annual layer counting beyond a few hundred years. Thereby, a crucial gap is introduced to the sub-seasonal time scale of events typically recorded in written archives. In our ongoing project we pioneer correlating the CG environmental ice core archive with a unique compilation of European historical records provided through the Harvard Initiative for the Science of the Human Past and the Digital Atlas of Roman and Medieval Civilization. For this purpose, state-of-the-art glacio-chemical analysis was performed on a newly recovered CG ice core, including continuous flow analysis chemistry and stable isotopes. A crucial contribution comes from the application of LA-ICP-MS (laser ablation ion coupled plasma mass spectrometry) to meter long sections of frozen ice samples, developed and operated by the University of Maine's Climate Change Institute, offering glacio-chemical records up to 100 μm in resolution. The new methods significantly improves sampling resolution and allows detection of annual layers even in highly compressed old sections of CG ice cores: A breakthrough not only for extending the ice core dating over the last two millennia but also for bridging the gap in time scales to historical records. Here we present first results from our ongoing efforts in bringing together ice core time series with historical evidence, focusing on the time period from 1 to 1400 C.E. Based on a thorough consideration of the glaciological constraints at CG we explore various ice core proxy signals for their significance to correlate with events recorded in human writing, such as dust storms, volcanic events, climate-induced crop failures and starvation as well as metal production levels. Distinct dust layers are frequently found in CG ice cores, representative for meteorological conditions that transported sand from the Sahara to Europe. At the same time, Saharan dust events were also frequently recorded by ancient and medieval observers as "blood rain". Ultimately we work towards using past extreme climate events from medieval Europe recorded as written evidence to constrain the ice core age scale and, vice versa, to investigate the response of human societies to environmental change recorded in the CG glacier archive.
NASA Astrophysics Data System (ADS)
Boschi, V.; Grannas, A. M.; Willoughby, A. S.; Catanzano, V.; Hatcher, P.
2015-12-01
With rapid changes in global temperatures, research aimed at better understanding past climatic events in order to predict future trends is an area of growing importance. Carbonaceous gases stored in ice cores are known to correlate with temperature change and provide evidence of such events. However, more complex forms of carbon preserved in ice cores such as dissolved organic matter (DOM) can provide additional information relating to changes in environmental conditions over time. The examination of ice core samples presents unique challenges including detection of ultra-low concentrations of organic material and extremely limited sample amounts. In this study, solid phase extraction techniques combined with ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR-MS) were utilized to successfully extract, concentrate and analyze the low concentrations of DOM in only 100 mL of ice core samples originating from various regions of Antarctica and Greenland. We characterize the DOM composition in each sample by evaluating elemental ratios, molecular formula distribution (CHO, CHON, CHOS and CHNOS) and compound class composition (lignin, tannin, lipid, condensed aromatic, protein and unsaturated hydrocarbon content). Upon characterization, we identified molecular trends in ice core DOM chemistry that correlated with past climatic events in addition to observing possible photochemical and microbial influences affecting DOM chemistry. Considering these samples range in age from 350-1175 years old, thus being formed during the Medieval Warm Period and Little Ice Age, we observed that DOM properties reflected anticipated changes in composition as influenced by warming and cooling events occurring during that time period.
Rooney, Alan D.; Selby, David; Llyod, Jeremy M.; Roberts, David H.; Luckge, Andreas; Sageman, Bradley B.; Prouty, Nancy G.
2016-01-01
High-resolution Os isotope stratigraphy can aid in reconstructing Pleistocene ice sheet fluctuation and elucidating the role of local and regional weathering fluxes on the marine Os residence time. This paper presents new Os isotope data from ocean cores adjacent to the West Greenland ice sheet that have excellent chronological controls. Cores MSM-520 and DA00-06 represent distal to proximal sites adjacent to two West Greenland ice streams. Core MSM-520 has a steadily decreasing Os signal over the last 10 kyr (187Os/188Os = 1.35–0.81). In contrast, Os isotopes from core DA00-06 (proximal to the calving front of Jakobshavn Isbræ) highlight four stages of ice stream retreat and advance over the past 10 kyr (187Os/188Os = 2.31; 1.68; 2.09; 1.47). Our high-resolution chemostratigraphic records provide vital benchmarks for ice-sheet modelers as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from regional and global settings serve to emphasize the overwhelming effect weathering sources have on seawater Os isotope composition. Further, these findings demonstrate that the residence time of Os is shorter than previous estimates of ∼104 yr.
A high resolution record of chlorine-36 nuclear-weapons-tests fallout from Central Asia
Green, J.R.; Cecil, L.D.; Synal, H.-A.; Santos, J.; Kreutz, K.J.; Wake, C.P.
2004-01-01
The Inilchek Glacier, located in the Tien Shan Mountains, central Asia, is unique among mid-latitude glaciers because of its relatively large average annual accumulation. In July 2000, two ice cores of 162 and 167 meters (m) in length were collected from the Inilchek Glacier for (chlorine-36) 36Cl analysis a part of a collaborative international effort to study the environmental changes archived in mid-latitude glaciers worldwide. The average annual precipitation at the collection site was calculated to be 1.6 m. In contrast, the reported average annual accumulations at the high-latitude Dye-3 glacial site, Greenland, the mid-latitude Guliya Ice Cap, China, and the mid-latitude Upper Fremont Glacier, Wyoming, USA, were 0.52, 0.16 and 0.76 m, respectively. The resolution of the 36Cl record in one of the Inilchek ice cores was from 2 to 10 times higher than the resolution of the records at these other sites and could provide an opportunity for detailed study of environmental changes that have occurred over the past 150 years. Despite the differences in accumulation among these various glacial sites, the 36Cl profile and peak concentrations for the Inilchek ice core were remarkably similar in shape and magnitude to those for ice cores from these other sites. The 36Cl peak concentration from 1958, the year during the mid-1900s nuclear-weapons-tests period when 36Cl fallout was largest, was preserved in the Inilchek core at a depth of 90.56 m below the surface of the glacier (74.14-m-depth water equivalent) at a concentration of 7.7 ?? 105 atoms of 36Cl/gram (g) of ice. Peak 36Cl concentrations from Dye-3, Guliya and the Upper Fremont glacial sites were 7.1 ?? 105, 5.4 ?? 105 and 0.7 ?? 105 atoms of 36Cl/g of ice, respectively. Measurements of 36Cl preserved in ice cores improve estimates of historical worldwide atmospheric deposition of this isotope and allow the sources of 36Cl in ground water to be better identified. ?? 2004 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Pedro, Joel; Heikkilä, Ulla; van Ommen, T. D.; Smith, A. M.
2010-05-01
Changes in solar activity modulate the galactic cosmic ray flux, and in turn, the production rate of 10Be in the earth's atmosphere. The best archives of past changes in 10Be production rate are the polar ice cores. Key challenges in interpreting these archives as proxies for past solar activity lie in separating the useful solar activity (or production) signal from the interfering meteorological (or climate) signal, and furthermore, in determining the atmospheric source regions of 10Be deposited to the ice core site. In this study we use a new monthly resolution composite 10Be record, which spans the past decade, and a general circulation model (ECHAM5-HAM), to constrain both the production and climate signals in 10Be concentrations at the Law Dome ice core site, East Antarctica. This study differs from most previous work on 10Be in Antarctica due to the very high sample resolution achieved. This high resolution, through a time period where accurate instrumental measurements of solar activity and climate are available, allows us to examine the response of 10Be concentrations in ice to short-term (monthly to annual) variations in solar activity, and to short-term variations in climate, including seasonality. We find a significant correlation (r2 = 0.56, P < 0.005, n = 92) between observed 10Be concentrations and solar activity (represented by the neutron counting rate). The most pervasive climate influence is a seasonal cycle, which shows maximum concentrations in mid-to-late-summer and minimum concentrations in winter. Model results show reasonable agreement with observations; both a solar activity signal and seasonal cycle in 10Be are captured. However, the modeled snow accumulation rate is too high by approximately 60%. According to the model, the main atmospheric source region of 10Be deposited to Law Dome is the 30-90°S stratosphere (~50%), followed by the 30-90°S troposphere (~30%). An enhancement in the fraction of 10Be arriving to Law Dome from the stratosphere is found by the model during the mid-to-late summer, we suggest this pattern is implicated in the seasonality of observed 10Be concentrations in ice. Our results have implications for interpretation of longer term records of 10Be from ice cores. Firstly, the strong production signal supports the use of 10Be as a solar proxy. Secondly, the short term climate processes operating here, may provide clues to how longer term shifts in climate impact on ice core 10Be.
Inverse stochastic-dynamic models for high-resolution Greenland ice core records
NASA Astrophysics Data System (ADS)
Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu; Kondrashov, Dmitri; Rousseau, Denis-Didier; Svensson, Anders; Bigler, Matthias; Ghil, Michael
2017-12-01
Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59-22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard-Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.
Dansgaard-Oeschger cycles observed in the Greenland ReCAP ice core project
NASA Astrophysics Data System (ADS)
Kjær, Helle Astrid; Vallelonga, Paul; Vinther, Bo; Simonsen, Marius; Maffezzoli, Niccoló; Gkinis, Vasileios; Svensson, Anders; Jensen, Camilla Marie; Dallmayr, Remi; Spolaor, Andrea; Edwards, Ross
2017-04-01
The new REnland ice CAP (RECAP) ice core was drilled in summer 2015 in Greenland and measured by means of Continuous flow analysis (CFA) during the last 3 months of 2015. The Renland ice core was obtained as part of the ReCAP project, extending 584.11 meters to the bottom of the Renland ice cap located in east Greenland. The unique position on a mountain saddle above 2000 meters altitude, but close to the coast, ensures that the Renland ice core offers high accumulation, but also reaches far back in time. Results show that despite the short length the RECAP ice core holds ice all the way back to the past warm interglacial period, the Eemian. The glacial section is strongly thinned and covers on 20 meters of the ReCAP core, but nonetheless due to the high resolution of the measurements all 25 expected DO events could be identified. The record was analyzed for multiple elements including the water isotopes, forest fire tracers NH4+ and black carbon, insoluble dust particles by means of Abakus laser particle counter and the dust ion Ca2+, sea salt Na+, and sea ice proxies as well as acidity useful for finding volcanic layers to date the core. Below the glacial section another 20 meters of warm Eemian ice have been analysed. Here we present the chemistry results as obtained by continuous flow analysis (CFA) and compare the glacial section with the chemistry profile from other Greenland ice cores.
Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine
NASA Astrophysics Data System (ADS)
Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael
2017-01-01
Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.
Severi, Mirko; Becagli, Silvia; Traversi, Rita; Udisti, Roberto
2015-11-17
Recently, the increasing interest in the understanding of global climatic changes and on natural processes related to climate yielded the development and improvement of new analytical methods for the analysis of environmental samples. The determination of trace chemical species is a useful tool in paleoclimatology, and the techniques for the analysis of ice cores have evolved during the past few years from laborious measurements on discrete samples to continuous techniques allowing higher temporal resolution, higher sensitivity and, above all, higher throughput. Two fast ion chromatographic (FIC) methods are presented. The first method was able to measure Cl(-), NO3(-) and SO4(2-) in a melter-based continuous flow system separating the three analytes in just 1 min. The second method (called Ultra-FIC) was able to perform a single chromatographic analysis in just 30 s and the resulting sampling resolution was 1.0 cm with a typical melting rate of 4.0 cm min(-1). Both methods combine the accuracy, precision, and low detection limits of ion chromatography with the enhanced speed and high depth resolution of continuous melting systems. Both methods have been tested and validated with the analysis of several hundred meters of different ice cores. In particular, the Ultra-FIC method was used to reconstruct the high-resolution SO4(2-) profile of the last 10,000 years for the EDML ice core, allowing the counting of the annual layers, which represents a key point in dating these kind of natural archives.
High-resolution Greenland ice core data show abrupt climate change happens in few years.
Steffensen, Jørgen Peder; Andersen, Katrine K; Bigler, Matthias; Clausen, Henrik B; Dahl-Jensen, Dorthe; Fischer, Hubertus; Goto-Azuma, Kumiko; Hansson, Margareta; Johnsen, Sigfús J; Jouzel, Jean; Masson-Delmotte, Valérie; Popp, Trevor; Rasmussen, Sune O; Röthlisberger, Regine; Ruth, Urs; Stauffer, Bernhard; Siggaard-Andersen, Marie-Louise; Sveinbjörnsdóttir, Arny E; Svensson, Anders; White, James W C
2008-08-01
The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasing Greenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of the Intertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphere atmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture source temperature from one year to the next.
Bipolar volcanic events in ice cores and the Toba eruption at 74 ka BP (Invited)
NASA Astrophysics Data System (ADS)
Svensson, A.
2013-12-01
Acidity spikes in Greenland and Antarctic ice cores are applied as tracers of past volcanic activity. Besides providing information on the timing and magnitude of past eruptions, the acidity spikes are also widely used for synchronization of ice cores. All of the deep Greenland ice cores are thus synchronized throughout the last glacial cycle based on volcanic markers. Volcanic matching of ice cores from the two Hemispheres is much more challenging but it is feasible in periods of favourable conditions. Over the last two millennia, where ice cores are precisely dated, some 50 bipolar volcanic events have thus been identified. In order for an eruption to express a bipolar fingerprint it generally needs to be a low latitude eruption with stratospheric injection. Sometimes tephra is associated with the ice-core acidity spikes, but most often there is no tephra present in the ice. As yet, an unknown eruption occurring in 1259 AD is the only event reported to have deposited tephra in both Greenland and Antarctica. During the last glacial period bipolar volcanic matching is very challenging and very little work has been done, but recent high-resolution ice core records have the potential to provide bipolar ice core matching for some periods. Recently, Greenland and Antarctic ice cores have been linked by acidity spikes in the time window of the most recent eruption (the YTT eruption) of the Indonesian Toba volcano that is situated close to equator in Sumatra. Ash from this Toba event is widespread over large areas in Asia and has been identified as far west as Africa, but no corresponding tephra has been found in polar ice cores despite several attempts. The age of the YTT eruption is well constrained by recent Ar-Ar dating to have occurred some 74 ka ago close to the Marine Isotope Stage 4/5 boundary and close to the onset of the cold Greenland Stadial 20 and the corresponding mild Antarctic Isotopic Maxima 19 and 20. Surprisingly, no single outstanding acidity spike can be associated with the YTT Toba eruption in Greenland or Antarctica. Instead, several large bipolar ice cores acidity spikes are occurring within a couple of centuries at the time of the YTT eruption. To complicate matters, the intensity of those acidity spikes varies greatly from ice core to ice core. At this point, it is therefore impossible to relate the Toba eruption to a single event in the ice cores. Probably there have been several large low-latitude eruptions occurring close to the time of the YTT or the Toba volcano itself had multiple large eruptions within centuries. Bipolar volcanic matching allows for an estimation of the climatic impact of eruptions on a global scale. In the case of Toba, there must have been a global cooling following the enormous eruption, but unfortunately at this depth the resolution of the ice core temperature proxies does not allow for an identification of short term events (<100 yr). A significant warming event in Antarctica following the period associated with the YTT shows, however, that Toba did not initiate a long-term global cooling (>100 yr). At the time of YTT it appears that the inter-hemispheric climate variability is governed by the bipolar seesaw pattern that is active throughout most of the last glacial period. Still, it is intriguing that Toba occurs right at the time when Greenland and much of the northern Hemisphere enters its most extreme cold stadial of the last glacial period.
An automated approach for annual layer counting in ice cores
NASA Astrophysics Data System (ADS)
Winstrup, M.; Svensson, A.; Rasmussen, S. O.; Winther, O.; Steig, E.; Axelrod, A.
2012-04-01
The temporal resolution of some ice cores is sufficient to preserve seasonal information in the ice core record. In such cases, annual layer counting represents one of the most accurate methods to produce a chronology for the core. Yet, manual layer counting is a tedious and sometimes ambiguous job. As reliable layer recognition becomes more difficult, a manual approach increasingly relies on human interpretation of the available data. Thus, much may be gained by an automated and therefore objective approach for annual layer identification in ice cores. We have developed a novel method for automated annual layer counting in ice cores, which relies on Bayesian statistics. It uses algorithms from the statistical framework of Hidden Markov Models (HMM), originally developed for use in machine speech recognition. The strength of this layer detection algorithm lies in the way it is able to imitate the manual procedures for annual layer counting, while being based on purely objective criteria for annual layer identification. With this methodology, it is possible to determine the most likely position of multiple layer boundaries in an entire section of ice core data at once. It provides a probabilistic uncertainty estimate of the resulting layer count, hence ensuring a proper treatment of ambiguous layer boundaries in the data. Furthermore multiple data series can be incorporated to be used at once, hence allowing for a full multi-parameter annual layer counting method similar to a manual approach. In this study, the automated layer counting algorithm has been applied to data from the NGRIP ice core, Greenland. The NGRIP ice core has very high temporal resolution with depth, and hence the potential to be dated by annual layer counting far back in time. In previous studies [Andersen et al., 2006; Svensson et al., 2008], manual layer counting has been carried out back to 60 kyr BP. A comparison between the counted annual layers based on the two approaches will be presented and their differences discussed. Within the estimated uncertainties, the two methodologies agree. This shows the potential for a fully automated annual layer counting method to be operational for data sections where the annual layering is unknown.
Chen, Yong; Li, Xiang-Kai; Si, Jing; Wu, Guang-Jian; Tian, Li-De; Xiang, Shu-Rong
2016-01-01
In this study, six bacterial community structures were analyzed from the Dunde ice core (9.5-m-long) using 16S rRNA gene cloning library technology. Compared to the Muztagata mountain ice core (37-m-long), the Dunde ice core has different dominant community structures, with five genus-related groups Blastococcus sp./Propionibacterium, Cryobacterium-related., Flavobacterium sp., Pedobacter sp., and Polaromas sp. that are frequently found in the six tested ice layers from 1990 to 2000. Live and total microbial density patterns were examined and related to the dynamics of physical-chemical parameters, mineral particle concentrations, and stable isotopic ratios in the precipitations collected from both Muztagata and Dunde ice cores. The Muztagata ice core revealed seasonal response patterns for both live and total cell density, with high cell density occurring in the warming spring and summer months indicated by the proxy value of the stable isotopic ratios. Seasonal analysis of live cell density for the Dunde ice core was not successful due to the limitations of sampling resolution. Both ice cores showed that the cell density peaks were frequently associated with high concentrations of particles. A comparison of microbial communities in the Dunde and Muztagata glaciers showed that similar taxonomic members exist in the related ice cores, but the composition of the prevalent genus-related groups is largely different between the two geographically different glaciers. This indicates that the micro-biogeography associated with geographic differences was mainly influenced by a few dominant taxonomic groups. PMID:27847503
NASA Astrophysics Data System (ADS)
Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.
2010-12-01
Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density profiles to guide the melting process. The combination of these data allow us to analyze melt head performance, minimize outer-to-inner fraction contamination and avoid melt head flooding. The WAIS Melt Monitor system allows the collection of real-time, sub-annual microparticle and electrical conductivity data while producing and storing enough sample for traditional Coulter-Counter particle measurements as well long term acid leaching of bioactive metals (e.g., Fe, Co, Cd, Cu, Zn) prior to chemical analysis.
High-resolution 129I bomb peak profile in an ice core from SE-Dome site, Greenland.
Bautista, Angel T; Miyake, Yasuto; Matsuzaki, Hiroyuki; Iizuka, Yoshinori; Horiuchi, Kazuho
2018-04-01
129 I in natural archives, such as ice cores, can be used as a proxy for human nuclear activities, age marker, and environmental tracer. Currently, there is only one published record of 129 I in ice core (i.e., from Fiescherhorn Glacier, Swiss Alps) and its limited time resolution (1-2 years) prevents the full use of 129 I for the mentioned applications. Here we show 129 I concentrations in an ice core from SE-Dome, Greenland, covering years 1956-1976 at a time resolution of ∼6 months, the most detailed record to date. Results revealed 129 I bomb peaks in years 1959, 1962, and 1963, associated to tests performed by the former Soviet Union, one year prior, in its Novaya Zemlya test site. All 129 I bomb peaks were observed in winter (1958.9, 1962.1, and 1963.0), while tritium bomb peaks, another prominent radionuclide associated with nuclear bomb testing, were observed in spring or summer (1959.3, and 1963.6; Iizuka et al., 2017). These results indicate that 129 I bomb peaks can be used as annual and seasonal age markers for these years. Furthermore, we found that 129 I recorded nuclear fuel reprocessing signals and that these can be potentially used to correct timing of estimated 129 I releases during years 1964-1976. Comparisons with other published records of 129 I in natural archives showed that 129 I can be used as common age marker and tracer for different types of records. Most notably, the 1963 129 I bomb peak can be used as common age marker for ice and coral cores, providing the means to reconcile age models and associated trends from the polar and tropical regions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Siple Dome ice reveals two modes of millennial CO2 change during the last ice age
Ahn, Jinho; Brook, Edward J.
2014-01-01
Reconstruction of atmospheric CO2 during times of past abrupt climate change may help us better understand climate-carbon cycle feedbacks. Previous ice core studies reveal simultaneous increases in atmospheric CO2 and Antarctic temperature during times when Greenland and the northern hemisphere experienced very long, cold stadial conditions during the last ice age. Whether this relationship extends to all of the numerous stadial events in the Greenland ice core record has not been clear. Here we present a high-resolution record of atmospheric CO2 from the Siple Dome ice core, Antarctica for part of the last ice age. We find that CO2 does not significantly change during the short Greenlandic stadial events, implying that the climate system perturbation that produced the short stadials was not strong enough to substantially alter the carbon cycle. PMID:24781344
NASA Astrophysics Data System (ADS)
Gkinis, V.; Popp, T. J.; Johnsen, S. J.; Blunier, T.; Bigler, M.; Stowasser, C.; Schüpbach, S.; Leuenberger, D.
2010-12-01
Ice core records as obtained from polar ice caps provide a wealth of paleoclimatic information. One of the main features of ice cores is their potential for high temporal resolution. The isotopic signature of the ice, expressed through the relative abundances of the two heavy isotopologues H218O and HD16O, is a widely used proxy for the reconstruction of past temperature and accumulation. One step further the combined information obtained from these two isotopologues, commonly referred to as the deuterium excess, can be utilized to infer additional information about the source of the precipitated moisture. Until very recently isotopic analysis of polar ice was performed with isotope Ratio Mass Spectrometry (IRMS) in a discrete fashion resulting in a high workload related to the preparation of samples. Most important though the available temporal resolution of the ice core was in many cases not fully exploited. In order to overcome these limitations we have developed a system that interfaces a commercially available IR laser cavity ring-down spectrometer tailored for water isotope analysis to a stream of liquid water as extracted from a continuously melted ice rod. The system offers the possibility for simultaneous δ18O and δD analysis with a sample requirement of approximately 0.1 ml/min. The system has been deployed in the field during the NEEM ice core drilling project on 2009 and 2010. In this study we present actual on line measurements of Holocene and glacial ice. We also discuss how parameters as the melt rate, acquisition rate and integration time affect the obtained precision and resolution and we describe data analysis techniques that can improve these last two parameters. By applying spectral methods we are able to quantify the smoothing effects imposed by diffusion of the sample in the sample transfer lines and the optical cavity of the instrument. We demonstrate that with an acquisition rate of 0.2 Hz we are able to obtain a precision of 0.5‰ and 0.15‰ for δD and δ18O respectively. This is comparable to the performance of traditional IRMS systems for δD but slightly less precise for δ18O. With this acquisition rate the system’s 3db bandwidth is 0.006 Hz. With a melt rate equal to 3 cm/min, the latter translates to signals with wavelengths of 8.3 cm. We will comment on the quality of the acquired ice core data and their potential use for dating, paleotemperature reconstruction, isotopic firn diffusion and deuterium excess studies.
First continuous flow analysis results from the Greenland ReCAP project
NASA Astrophysics Data System (ADS)
Kjær, Helle Astrid
2016-04-01
The new Renland ice core was drilled in summer 2015 in Greenland and measured by means of Continuous flow analysis during the last 3 months of 2015. The Renland ice core was obtained as part of the ReCAP project, extending 584.11 meters to the bottom of the Renland ice cap located in east Greenland. The unique position on a mountain saddle above 2000 meters altitude, but close to the coast, ensures that the Renland ice core offers high accumulation, but also reaches far back in time. Preliminary results show that the record holds ice from the past warm interglacial period, the Eemian. The record was analyzed for multiple elements including the forest fire tracers NH4+ and black carbon, insoluble dust particles by means of Abakus laser particle counter and the dust ion Ca2+, sea salt Na and acidity useful for finding volcanic layers to date the core. Further H2O2, and the nutrients Fe and dissolved reactive phosphorus was analyzed as well as the temperature indicator δ18O all by means of continuous flow analysis (CFA). The core was melted at a rate of 3 cm/min providing a temporal resolution for most components determined sufficient to resolve annual layers through the Holocene. The glacial section is strongly thinned, but nonetheless due to the high resolution of the measurements all DO events could be identified. Below the glacial section another ˜20 meters of warm Eemian ice have been analysed. Here we present the first chemistry results as obtained by continuous flow analysis (CFA).
Leads and lags between the Antarctic temperature and carbon dioxide during the last deglaciation
NASA Astrophysics Data System (ADS)
Gest, Léa; Parrenin, Frédéric; Raynaud, Dominique; Fudge, Tyler J.
2017-04-01
To understand causal relationships in past climate variations, it is essential to have accurate chronologies of paleoclimate records. Ice cores in Antarctica provide important paleoclimate variables, such as local temperature and global atmospheric CO2. Unfortunately, temperature is recorded in the ice while CO2 is recorded in the enclosed air bubbles. The ages of the former and of the latter are different since air is trapped at 50-120 m below the surface. For the last deglacial warming, 18,000 to 11,000 years ago, Parrenin et al. (Science, 2013) inferred that CO2 and Antarctic temperature started to increase in phase while CO2 lagged temperature at the beginning of the Holocene period. However, this study suffers from various uncertainties that we tried to address in the current study. First, Antarctic temperature was inferred from a stack of 5 Antarctic ice cores that were not always accurately synchronized. Here we use a stack of 4 Antarctic ice cores which are all accurately synchronized thanks to volcanic peak matching. Second, Parrenin et al. (Science, 2013) used a relatively low-resolution CO2 record from the EPICA Dome C ice core. Here, we use the more recent and higher resolution CO2 record from the West Antarctic Ice Sheet Divide ice core. Third, the air trapping depth was deduced on the low accumulation EPICA Dome C ice core using the gravitational enrichment of the δ15N isotopes and assuming a zero convective depth, a hypothesis that was not proved. Here, we use the higher accumulation WAIS Divide ice core, where the ice-air age shift is one order of magnitude smaller, and therefore better constrained. Finally, we use an improved mathematical method to infer break points in the Antarctic temperature and atmospheric CO2 records. We find that, at the onset of the last deglaciation and the onset of the Bølling-Allerød period, the phasing between CO2 and Antarctic temperature is negligible within a range of 130 years. Then CO2 slightly leads by 200 ± 90 years at the onset of the Younger-Dryas period. Finally, Antarctic temperature significantly leads by 460 ± 95 years at the onset of the Holocene period. Our results further supports the hypothesis of no convective zone at EPICA Dome C during the last deglaciation, as assumed by Parrenin et al. (Climate of the past, 2012, On the gas-ice depth difference (Delta depth) along the EPICA Dome C ice core)
A Method for Continuous (239)Pu Determinations in Arctic and Antarctic Ice Cores.
Arienzo, M M; McConnell, J R; Chellman, N; Criscitiello, A S; Curran, M; Fritzsche, D; Kipfstuhl, S; Mulvaney, R; Nolan, M; Opel, T; Sigl, M; Steffensen, J P
2016-07-05
Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) into the atmosphere and subsequent global deposition. We present a new method for continuous semiquantitative measurement of (239)Pu in ice cores, which was used to develop annual records of fallout from NWT in ten ice cores from Greenland and Antarctica. The (239)Pu was measured directly using an inductively coupled plasma-sector field mass spectrometer, thereby reducing analysis time and increasing depth-resolution with respect to previous methods. To validate this method, we compared our one year averaged results to published (239)Pu records and other records of NWT. The (239)Pu profiles from the Arctic ice cores reflected global trends in NWT and were in agreement with discrete Pu profiles from lower latitude ice cores. The (239)Pu measurements in the Antarctic ice cores tracked low latitude NWT, consistent with previously published discrete records from Antarctica. Advantages of the continuous (239)Pu measurement method are (1) reduced sample preparation and analysis time; (2) no requirement for additional ice samples for NWT fallout determinations; (3) measurements are exactly coregistered with all other chemical, elemental, isotopic, and gas measurements from the continuous analytical system; and (4) the long half-life means the (239)Pu record is stable through time.
First investigations of an ice core from Eisriesenwelt cave (Austria)
NASA Astrophysics Data System (ADS)
May, B.; Spötl, C.; Wagenbach, D.; Dublyansky, Y.; Liebl, J.
2010-09-01
Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analysed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb derived tritium removing any ice accumulated, since at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses made radiocarbon dating inconclusive, though a crude estimate gave a maximum ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 4 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cyro-calcite layers, a extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.
First investigations of an ice core from Eisriesenwelt cave (Austria)
NASA Astrophysics Data System (ADS)
May, B.; Spötl, C.; Wagenbach, D.; Dublyansky, Y.; Liebl, J.
2011-02-01
Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m-thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analyzed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb-derived tritium removing any ice accumulated since, at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses rendered radiocarbon dating inconclusive, though a crude estimate gave a basal ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 2 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cryocalcite layers, extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.
On the use of δ18Oatm for ice core dating
NASA Astrophysics Data System (ADS)
Extier, Thomas; Landais, Amaelle; Bréant, Camille; Prié, Frédéric; Bazin, Lucie; Dreyfus, Gabrielle; Roche, Didier M.; Leuenberger, Markus
2018-04-01
Deep ice core chronologies have been improved over the past years through the addition of new age constraints. However, dating methods are still associated with large uncertainties for ice cores from the East Antarctic plateau where layer counting is not possible. Indeed, an uncertainty up to 6 ka is associated with AICC2012 chronology of EPICA Dome C (EDC) ice core, which mostly arises from uncertainty on the delay between changes recorded in δ18Oatm and in June 21st insolation variations at 65°N used for ice core orbital dating. Consequently, we need to enhance the knowledge of this delay to improve ice core chronologies. We present new high-resolution EDC δ18Oatm record (153-374 ka) and δO2/N2 measurements (163-332 ka) performed on well-stored ice to provide continuous records of δ18Oatm and δO2/N2 between 100 and 800 ka. The comparison of δ18Oatm with the δ18Ocalcite from East Asian speleothems shows that both signals present similar orbital and millennial variabilities, which may represent shifts in the InterTropical Convergence Zone position, themselves associated with Heinrich events. We thus propose to use the δ18Ocalcite as target for δ18Oatm orbital dating. Such a tuning method improves the ice core chronology of the last glacial inception compared to AICC2012 by reconciling NGRIP and mid-latitude climatic records. It is especially marked during Dansgaard-Oeschger 25 where the proposed chronology is 2.2 ka older than AICC2012. This δ18Oatm - δ18Ocalcite alignment method applied between 100 and 640 ka improves the EDC ice core chronology, especially over MIS 11, and leads to lower ice age uncertainties compared to AICC2012.
Santa Barbara Basin Study Extends Global Climate Record
NASA Astrophysics Data System (ADS)
Hopkins, Sarah; Kennett, James; Nicholson, Craig; Pak, Dorothy; Sorlien, Christopher; Behl, Richard; Normark, William; Sliter, Ray; Hill, Tessa; Schimmelmann, Arndt; Cannariato, Kevin
2006-05-01
A fundamental goal of Earth science is to understand the remarkable instability of late Quarternary global climate prior to the beginning of the Holocene, about 11,000 years ago. This unusual climate behavior was characterized by millennial-scale climate oscillations on suborbital timescales, and a distinctive `Sawtooth' pattern of very abrupt glacial and stadial terminations (within decades) followed by more gradual global cooling [e.g., Dansgaard et al., 1993; Hendy and Kennett, 1999]. The fact that both major (glacial) and minor (stadial) cooling periods in Earth's climate were terminated by similar abrupt warming episodes suggests a common mechanism driving such rapid changes in global climate. Understanding the causes of this instability is crucial given developing concerns about global warming, yet knowledge about this climate behavior has been essentially confined to the last 150,000 years or so, owing to the absence of available sequences of sufficient age and chronological resolution. The high-resolution paleoclimate record from the Greenland ice cores is limited to about 110 thousand years ago (ka), and although Antarctic ice cores now extend back to more than 740 ka [European Project for Ice Coring in Antarctica, 2004], these latter cores primarily provide information about high-latitude conditions at much lower resolution than is required to address abrupt climate change.
Establishing a Reliable Depth-Age Relationship for the Denali Ice Core
NASA Astrophysics Data System (ADS)
Wake, C. P.; Osterberg, E. C.; Winski, D.; Ferris, D.; Kreutz, K. J.; Introne, D.; Dalton, M.
2015-12-01
Reliable climate reconstruction from ice core records requires the development of a reliable depth-age relationship. We have established a sub-annual resolution depth-age relationship for the upper 198 meters of a 208 m ice core recovered in 2013 from Mt. Hunter (3,900 m asl), Denali National Park, central Alaska. The dating of the ice core was accomplished via annual layer counting of glaciochemical time-series combined with identification of reference horizons from volcanic eruptions and atmospheric nuclear weapons testing. Using the continuous ice core melter system at Dartmouth College, sub-seasonal samples have been collected and analyzed for major ions, liquid conductivity, particle size and concentration, and stable isotope ratios. Annual signals are apparent in several of the chemical species measured in the ice core samples. Calcium and magnesium peak in the spring, ammonium peaks in the summer, methanesulfonic acid (MSA) peaks in the autumn, and stable isotopes display a strong seasonal cycle with the most depleted values occurring during the winter. Thin ice layers representing infrequent summertime melt were also used to identify summer layers in the core. Analysis of approximately one meter sections of the core via nondestructive gamma spectrometry over depths from 84 to 124 m identified a strong radioactive cesium-137 peak at 89 m which corresponds to the 1963 layer deposited during extensive atmospheric nuclear weapons testing. Peaks in the sulfate and chloride record have been used for the preliminary identification of volcanic signals preserved in the ice core, including ten events since 1883. We are confident that the combination of robust annual layers combined with reference horizons provides a timescale for the 20th century that has an error of less than 0.5 years, making calibrations between ice core records and the instrumental climate data particularly robust. Initial annual layer counting through the entire 198 m suggests the Denali Ice Core record will span the past 1000 years.
NASA Astrophysics Data System (ADS)
Popp, T. J.; White, J. W. C.; Gkinis, V.; Vinther, B. M.; Johnsen, S. J.
2012-04-01
In 1989 Willi Dansgaard and others, using the DYE3 ice core, showed that the abrupt termination of the Younger Dryas expressed in water stable isotope ratios and deuterium excess was completed in less than 50 years. A few years later, using the GISP2 ice core, Richard Alley and others proposed that snow accumulation at the site doubled in as little as 1-3 years across the same climate transition at the end of the Younger Dryas. Over the next two decades, in large part due to such observations from Greenland ice cores, a paradigm of linked, abrupt changes in the North Atlantic region has been developed around North Atlantic deep water formation, North Atlantic sea ice extent, and widespread atmospheric circulation changes occurring repeatedly during the last glacial period in response to changing freshwater fluxes to the region, or perhaps other causes. More recently, with the NGRIP ice core, using a suite of high resolution proxy data, and in particular deuterium excess, it was observed again that certain features in the climate system can switch modes from one year to the next, while other proxies can take from decades to centuries to completely switch modes. Thus, an event seen in the proxy records such as the abrupt end of the Younger Dryas (or other interstadial events) may comprise multiple climatic or oceanic responses with different relative timing and duration which potentially follow a predictable sequence of events, in some cases separated by only a few years. Today, the search continues for these emerging patterns through isotopic and other highly resolvable proxy data series from ice cores. With the recent completion of the drilling at NEEM, many abrupt transitions have now been measured in detail over a geographic transect with drilling sites spanning from DYE3 in Southern Greenland, GISP2 in the central summit region, and up to NGRIP and NEEM in the far north. The anatomy of abrupt climate transitions can therefore be examined both spatially and temporally, where obtaining the highest possible temporal resolution is desirable to resolve patterns. A new method for measuring water stable isotope ratios has been developed during the NEEM project that allows us to measure a carefully controlled fraction of a continuously melted ice core section which is evaporated directly into Cavity Ring Down Laser Spectrometer in the Near-Infrared spectrum. In such a system the resolution can be maximized (and characterized) largely as a function of both the melt rate and minimizing subsequent mixing in the gas phase during analysis. These new detailed water isotope series from the NEEM ice core are examined with respect to the corresponding series from new and previously available series from the other ice cores. The emerging picture indicates that abrupt climate changes have both a temporal and geographic anatomy that can change from one event to the next in how they are recorded across Greenland. Together with modeling and chemical impurity data, these patterns we detect in the water stable isotope series will provide clues and constraints to the timing and origin of oceanic and atmospheric changes that make up an abrupt climate change.
Non-Target Analyses of organic compounds in ice cores using HPLC-ESI-UHRMS
NASA Astrophysics Data System (ADS)
Zuth, Christoph; Müller-Tautges, Christina; Eichler, Anja; Schwikowski, Margit; Hoffmann, Thorsten
2015-04-01
To study the global climatic and environmental changes it is necessary to know the environmental and especially atmospheric conditions of the past. By analysing climate archives, such as for example ice cores, unique environmental information can be obtained. In contrast to the well-established analysis of inorganic species in ice cores, organic compounds have been analysed in ice cores to a much smaller extent. Because of current analytical limitations it has become commonplace to focus on 'total organic carbon' measurements or specific classes of organic molecules, as no analytical methods exist that can provide a broad characterization of the organic material present[1]. On the one hand, it is important to focus on already known atmospheric markers in ice cores and to quantify, where possible, in order to compare them to current conditions. On the other hand, unfortunately a wealth of information is lost when only a small fraction of the organic material is examined. However, recent developments in mass spectrometry in respect to higher mass resolution and mass accuracy enable a new approach to the analysis of complex environmental samples. The qualitative characterization of the complex mixture of water soluble organic carbon (WSOC) in the ice using high-resolution mass spectrometry allows for novel insights concerning the composition and possible sources of aerosol derived WSOC deposited at glacier sites. By performing a non-target analysis of an ice core from the Swiss Alps using previous enrichment by solid-phase extraction (SPE) and high performance liquid chromatography coupled to electrospray ionization and ultra-high resolution mass spectrometry (HPLC-ESI-UHRMS) 475 elemental formulas distributed onto 659 different peaks were detected. The elemental formulas were classified according to their elemental composition into CHO-, CHON-, CHOS-, CHONS-containing compounds and 'others'. Several methods for the analysis of complex data sets of high resolution mass spectrometry were applied to the results of the non-target analysis. By various classifications in Van Krevelen plots[2], amino acids and degradation products of proteins as well as degradation products of lignins have been determined as the main components of the ice core. Furthermore, the majority of WSOC molecular formulas identified in this non-target analysis had molar H/C and O/C ratios similar to mono- and di-carboxylic acids and SOAs[3]. Studies of the carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol showed that a majority of the elemental formulas can be associated with the combustion of biomass as a major source of the WSOC[4]. References: [1] Grannas et al., J. Geophys Res.,2006, 111 [2] Sleighter, RL, Hatcher, PG, J. Mass Spectrom., 2007, 42, 559-574 [3] Wozniak et al., Atmos. Chem. Phys., 2008, 8, 5099-5111 [4] Kroll et al., Nature Chemistry, 2011, 3, 133-139
Etheridge, D. M. [Division of Atmospheric Research, CSIRO, Aspendale, Victoria, Australia; Steele, L. P. [Division of Atmospheric Research, CSIRO, Aspendale, Victoria, Australia; Francey, R. J. [Division of Atmospheric Research, CSIRO, Aspendale, Victoria, Australia; Langenfelds, R. L. [Division of Atmospheric Research, CSIRO, Aspendale, Victoria, Australia
2002-01-01
The Antarctic CH4 records presented here are derived from three ice cores obtained at Law Dome, East Antarctica (66°44'S, 112°50'E, 1390 meters above mean sea level). Law Dome has many qualities of an ideal ice core site for the reconstruction of past concentrations of atmospheric gases; these qualities include: negligible melting of the ice sheet surface, low concentrations of impurities, regular stratigraphic layering undisturbed by wind stress at the surface or differential ice flow at depth, and a high snow accumulation rate. Further details on the site, drilling, and cores are provided by Etheridge et al. (1998), Etheridge et al. (1996), Etheridge and Wookey (1989), and Morgan et al. (1997). The two Greenland ice cores are from the Summit region (72°34' N, 37°37' W, 3200 meters above mean sea level). Lower snow accumulation rate there results in lower air-age resolution, and measurements presented here cover only the pre-industrial period (until 1885). More details about these measurements are presented in Etheridge et al. (1998). Additionally, this site contains firn data from Core DE08-2, and archived air samples from Cape Grim, Tasmania, for comparison.
The Late Holocene Atmospheric Methane Budget Reconstructed from Ice Cores
NASA Astrophysics Data System (ADS)
Mitchell, Logan E.
In this thesis I used a newly developed methane measurement line to make high-resolution, high-precision measurements of methane during the late Holocene (2800 years BP to present). This new measurement line is capable of an analytical precision of < 3 ppb using ˜120 g samples. The reduced sample size requirements as well as automation of a significant portion of the analysis process have enabled me to make >1500 discrete ice core methane measurements and construct the highest resolution records of methane available over the late Holocene. I first used a shallow ice core from WAIS Divide (WDC05A) to produce a 1000 year long methane record with a ˜9 year temporal resolution. This record confirmed the existence of multidecadal scale variations that were first observed in the Law Dome, Antarctica ice core. I then explored a range of paleoclimate archives for possible mechanistic connections with methane concentrations on multidecadal timescales. In addition, I present a detailed description of the analytical methods used to obtain high-precision measurements of methane including the effects of solubility and a new chronology for the WDC05A ice core. I found that, in general, the correlations with paleoclimate proxies for temperature and precipitation were low over a range of geographic regions. Of these, the highest correlations were found from 1400-1600 C.E. during the onset of the Little Ice Age and with a drought index in the headwater region of the major East Asian rivers. Large population losses in Asia and the Americas are also coincident with methane concentration decreases indicating that anthropogenic activities may have been impacting multidecadal scale methane variability. In the second component I extended the WAIS Divide record back to 2800 years B.P. and also measured methane from GISP2D over this time interval. These records allowed me to examine the methane Inter-Polar Difference (IPD) which is created by greater northern hemispheric sources. The IPD provides an important constraint on changes in the latitudinal distribution of sources. We used this constraint and an 8-box global methane chemical transport model to examine the Early Anthropogenic Hypothesis which posits that humans began influencing climate thousands of years ago by increasing greenhouse gas emissions and preventing the onset of the next ice age. I found that most of the increase in methane sources over this time came from tropical regions with a smaller contribution coming from the extratropical northern hemisphere. Based on previous modeling estimates of natural methane source changes, I found that the increase in the southern hemisphere tropical methane emissions was likely natural and that the northern hemispheric increase in methane emissions was likely due to anthropogenic activities. These results also provide new constraints on the total magnitude of pre-industrial anthropogenic methane emissions, which I found to be between the high and low estimates that have been previously published in the literature. For the final component of my thesis I assembled a coalition of scientists to investigate the effects of layering on the process of air enclosure in ice at WAIS Divide. Air bubbles are trapped in ice 60-100m below the surface of an ice sheet as snow compacts into solid ice in a region that is known as the Lock-In Zone (LIZ). The details of this process are not known and in the absence of direct measurements previous researchers have assumed it to be a smooth process. This project utilized high-resolution methane and air content measurements as well as density of ice, delta15N of N2, and bubble number density measurements to show that air entrapment is affected by high frequency (mm scale) layering in the density of ice within the LIZ. I show that previous parameterizations of the bubble closure process in firn models have not accounted for this variability and present a new parameterization which does. This has implications for interpreting rapid changes in trace gases measured in ice cores since variable bubble closure will impact the smoothing of those records. In particular it is essential to understand the details of this process as new high resolution ice core records from Antarctica and Greenland examine the relative timing between greenhouse gases and rapid climate changes. (Abstract shortened by UMI.)
High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core
NASA Astrophysics Data System (ADS)
Schüpbach, S.; Federer, U.; Kaufmann, P. R.; Albani, S.; Barbante, C.; Stocker, T. F.; Fischer, H.
2013-12-01
In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.
Continuous analysis of phosphate in a Greenland shallow ice core
NASA Astrophysics Data System (ADS)
Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe
2010-05-01
Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in ice cores may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for ice core analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the ice. Preliminary analysis of early Holocene samples from the NGRIP ice core show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn core with an annual layer thickness of about 20 cm ice equivalent. With a melt speed of 2.5 cm ice per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.
Annually resolved ice core records of tropical climate variability over the past ~1800 years.
Thompson, L G; Mosley-Thompson, E; Davis, M E; Zagorodnov, V S; Howat, I M; Mikhalenko, V N; Lin, P-N
2013-05-24
Ice cores from low latitudes can provide a wealth of unique information about past climate in the tropics, but they are difficult to recover and few exist. Here, we report annually resolved ice core records from the Quelccaya ice cap (5670 meters above sea level) in Peru that extend back ~1800 years and provide a high-resolution record of climate variability there. Oxygen isotopic ratios (δ(18)O) are linked to sea surface temperatures in the tropical eastern Pacific, whereas concentrations of ammonium and nitrate document the dominant role played by the migration of the Intertropical Convergence Zone in the region of the tropical Andes. Quelccaya continues to retreat and thin. Radiocarbon dates on wetland plants exposed along its retreating margins indicate that it has not been smaller for at least six millennia.
Changes in Black Carbon Deposition to Antarctica from Two Ice Core Records, A.D. 1850-2000
NASA Technical Reports Server (NTRS)
Bisiaux, Marion M.; Edward, Ross; McConnell, Joseph R.; Curran, Mark A. J.; VanOmmen, Tas D.; Smith, Andrew M.; Neumann, Thomas A.; Pasteris, Daniel R.; Penner, Joyce E.; Taylor, Kendrick
2012-01-01
Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter ice core sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the ice. The melted ice from the most inner part of the ice stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, ice density and snow accumulation rate at the ice core drilling site. For annual accumulation derived from the WAIS and Law Dome ice cores, we assumed 3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel ice cores notably from the WAIS Divide ice core site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified.
NASA Astrophysics Data System (ADS)
Thompson Davis, P.; Machalett, Björn; Gosse, John
2013-04-01
Varved lake sediments, which provide ideal high-resolution climate proxies, are not commonly available in many geographic areas over long time scales. This paper utilizes high-resolution grain-size analyses (n = 1040) from a 520-cm long sediment core from Lower Titcomb Lake (LTL), which lies just outside the type Titcomb Basin (TTB) moraines in the Wind River Range, Wyoming. The TTB moraines lie between Lower Titcomb Lake and Upper Titcomb Lake (UTL), about 3 km beyond, and 200 m lower than the modern glacier margin and Gannett Peak (Little Ice Age) moraines in the basin. Based on cosmogenic exposure dating, the TTB moraines are believed to be Younger Dryas (YD) age (Gosse et al., 1995) and lie in a geomorphic position similar to several other outer cirque moraines throughout the western American Cordillera. Until recently, many of these outer cirque moraines were believed to be Neoglacial age. The sediment core discussed here is one of five obtained from the two Titcomb Lakes, but is by the far the longest with the oldest sediment depositional record. Two AMS radiocarbon ages from the 445- and 455-cm core depths (about 2% loss on ignition, LOI) suggest that the lake basin may have been ice-free as early as 16.1 or even 16.8 cal 14C kyr, consistent with 10Be and 26Al exposure ages from boulders and bedrock surfaces outside the TTB moraines. The 257-cm depth in the core marks an abrupt transition from inorganic, sticky gray silt below (<1% LOI) to more organic, less sticky, light brown silt above (4-10% LOI). Eight AMS radiocarbon ages on bulk sediment and macrofossils date the transition to about 11.6 cal 14C kyr. Thus, sampling resolution above the transition is about 22.57 yr and below the transition is about 12.56 yr, consistent with a decreased sediment accumulation rate in LTL when Younger Dryas ice pulled back from the TTB moraines opening up UTL as a sediment depositional basin. The presented high-resolution grain size record reveals amplitudes and other structural features similar to delta 18O records from deep-lake ostracods in southern Germany, the Greenland ice core record, and speleothems in China. Major increases in the 2 - 8 µm grain size fraction indicative of increased glacier rock flour production between the 257 and 466 cm core depths appear to be roughly correlative with the YD-Alleröd-Bölling-Meiendorf-Heinrich 1 climate events recognized in other terrestrial records and Northern Atlantic Ocean marine cores, but provide much higher resolution than most of those records from a climate-sensitive alpine region in North America.
NASA Astrophysics Data System (ADS)
Yang, Xiaoxin; Yao, Tandong; Joswiak, Daniel; Yao, Ping
2014-05-01
Temperature signals in ice-core δ18O on the Tibetan Plateau (TP), particularly in the central and southern parts, continue to be debated because of the large scale of atmospheric circulation. This study presents ten ice-core δ18O records at an annual resolution, with four (Malan, Muztagata, Guliya, and Dunde) in the northern, three (Puruogangri, Geladaindong, Tanggula) in the central and three (Noijin Kangsang, Dasuopu, East Rongbuk) in the southern TP. Integration shows commonly increasing trends in δ18O in the past century, featuring the largest one in the northern, a moderate one in the central and the smallest one in the southern TP, which are all consistent with ground-based measurements of temperature. The influence of atmospheric circulation on isotopic signals in the past century was discussed through the analysis of El Niño/Southern Oscillation (ENSO), and of possible connections between sea surface temperature (SST) and the different increasing trends in both ice-core δ18O and temperature. Particularly, El Niño and the corresponding warm Bay of Bengal (BOB) SST enhance the TP ice-core isotopic enrichment, while La Niña, or corresponding cold BOB SST, causes depletion. This thus suggests a potential for reconstructing the ENSO history from the TP ice-core δ18O.
NASA Astrophysics Data System (ADS)
Li, Xiangying; Ding, Yongjian; Yu, Zhongbo; Mika, Sillanpää; Liu, Shiyin; Shangguan, Donghui; Lu, Chengyang
2015-02-01
The climate significance of oxygen isotopes from the central Tibetan Plateau (cTP) ice cores is a debated issue because of large scale atmospheric circulation. A high-resolution δ18O record was recovered from the Xiao Dongkemadi (XD) ice core, which expanded the spatial coverage of δ18O data in this region. Annual average δ18O correlated significantly with nearby MJJAS air temperatures, suggesting the δ18O can be used as a proxy to reconstruct regional climate change. The reconstructed temperature anomaly is related to the regional and global warming trends, and the greater warming amplitude since 1970s is related to the elevation dependency of the warming signal. The close relationship of the warming to variations in glacier mass balances and discharge reveal that recent warming has led to obvious glacier shrinkage and runoff increase. Correlation analysis suggests that monsoon and westerly moisture substantially influence the cTP ice core records, along with an increase in their level of contribution to the XD core accumulation in recent decades, and confirms a teleconnection of regional climate of the cTP ice cores with climate parameters in the Indian and North Atlantic Oceans.
A 62 ka record from the WAIS Divide ice core with annual resolution to 30 ka (so far)
NASA Astrophysics Data System (ADS)
Fudge, T. J.; Taylor, K.; McGwire, K.; Brook, E.; Sowers, T.; Steig, E.; White, J.; Vaughn, B.; Bay, R.; McConnell, J.; Waddington, E.; Conway, H.; Clow, G.; Cuffey, K.; Cole-Dai, J.; Ferris, D.; Severinghaus, J.
2012-04-01
Drilling of the West Antarctic Ice Sheet (WAIS) Divide ice core has been completed to a depth of 3400 m, about 60 meters above the bed. We present an annually resolved time scale for the most recent 30ka (to 2800 m) based on electrical conductivity measurements, called "timescale WDC06A-5". Below 2800 m the ice is dated by matching isotopes, methane, and/or dust records to other ice cores. Optical borehole logging provides stratigraphic ties to other cores for the bottom-most 75 m that was drilled in December 2011, and indicates the bottom-most ice has an age of 62 ka. The relatively young ice at depth is likely the result of basal melting. The inferred annual layer thickness of the deep ice is >1 cm, suggesting that annual layer counting throughout the entire core may be possible with continuous flow analysis of the ice core chemistry; however, the annual signal in the electrical measurements fades at about 30 ka. We compare the WDC06A-5 timescale through the glacial-interglacial transition with the Greenland GICC05 and GISP2 timescales via rapid variations in methane. We calculate a preliminary delta-age with: 1) accumulation rate inferred from the annual layer thicknesses and thinning functions computed with a 1-D ice flow model, and 2) surface temperature inferred from the low resolution d18O record and a preliminary borehole temperature profile. The WDC06A-5 timescale agrees with the GICC05 and GISP2 timescales to within decades at the 8.2k event and the ACR termination (Younger Dryas/Preboreal transition, 11.7 ka). This is within the delta-age and correlation uncertainties. At the rapid methane drop at ~12.8 ka, the WDC06A-5 timescale is ~150 years older than GICC05 and ~90 older than GISP2; while at ~14.8 ka, the timescales once again agree within the delta-age and correlation uncertainties. The cause of the age discrepancy at 12.8 ka is unclear. We also compare the WDC06A-5 timescale at Dansgaard-Oeschger events 3 and 4 (~27.5 and 29 ka) to the radiometrically-dated speolethem records from Hulu Cave, China (Larry Edwards and Hai Cheng, personal communication). To make such a comparison, we assume that the rapid variations in methane from the WAIS Divide core are synchronous with the rapid variations in d18O in the speleothem record. We find that the WDC06A-5 timescale is multiple hundreds of years older than the Hulu Cave record. As the GICC05 timescale is younger than the Hulu timescale, this puts the WDC06A-5 timescale even older than the GICC05. The uncertainties in the comparison are large both because of the uncertainty in the synchroneity of the ice core methane and speleothem isotope variations and because of the larger delta-age for the ice core in the glacial period. The timescale for the WAIS Divide core will be revised when the CFA results become available.
NASA Astrophysics Data System (ADS)
Mix, A. C.; Walczak, M.; Asahi, H.; Belanger, C. L.; Cowan, E. A.; Du, J.; Fallon, S.; Fifield, L. K.; Hobern, T.; Jaeger, J. M.; Jensen, B. J. L.; McKay, J. L.; Padman, J.; Ross, A.; Sharon, S.; Stoner, J. S.; Zellers, S.
2017-12-01
Development of precise chronologies extending older than late glacial time in the subpolar North Pacific has been notoriously difficult due to limited record length in sediment cores, poor carbonate preservation, and (in many cases) relatively low resolution records. This is a key gap in our understanding of Northern Hemisphere and global paleoclimate change, now addressed with results from IODP Expedition 341 in the Gulf of Alaska. Here we utilize marine core and drill sites (U1417, U1418, U1419, U1421 and co-located site-survey cores) some of which provide exceptionally high sustained sedimentation rates (up to 2 cm per year in extended glacial intervals). This facilitates a multifaceted approach to chronology development over the past 50,000 years including radiocarbon, foraminiferal stable isotopes and other geochemical proxies, sediment physical properties, sedimentology, and tephrochronology. Given high sedimentation rates and the superb preservation this provides, we have developed marine time series that rival the resolution of the polar ice core records, which allows us to compare radiocarbon-based chronologies with several strategies involving signal tuning. Such a multifaceted approach mitigates weaknesses in any of the individual methods and allows a rigorous analysis of uncertainties in ages and sediment accumulation rates. The resulting record reveals dynamic changes in the Cordilleran Ice Sheet and North Pacific Ocean and most importantly facilitates placing these records into the context of global climate changes. (We acknowledge the contributions of J. Addison and S. Praetorius, who were not listed as co-authors due to USGS submission rules).
Raman spectroscopy on ice cores from Greenland and Antarctica
NASA Astrophysics Data System (ADS)
Weikusat, C.; Kipfstuhl, S.
2012-04-01
Ice cores are invaluable archives for the reconstruction of the climatic history of the earth. Besides the analysis of various climatic processes from isotopes and chemical signatures they offer the unique possibility of directly extracting the past atmosphere from gaseous inclusions in the ice. Many aspects of the formation and alterations of these inclusions, e.g. the entrapment of air at the firn-ice-transition, the formation of crystalline gas hydrates (clathrates) from the bubbles or the structural relaxation during storage of the cores, need to be better understood to enable reliable interpretations of the obtained data. Modern micro Raman spectroscopy is an excellent tool to obtain high-quality data for all of these aspects. It has been productively used for phase identification of solid inclusions [1], investigation of air clathrates [2] and high-resolution measurements of N2/O2 mixing ratios inside individual air bubbles [3,4]. Detailed examples of the various uses of Raman spectroscopy will be presented along with practical information about the techniques required to obtain high-quality spectra. Retrieval and interpretation of quantitative data from the spectra will be explained. Future possibilities for advanced uses of Raman spectroscopy for ice core research will be discussed. [1] T. Sakurai et al., 2009, Direct observation of salts as micro-inclusions in the Greenland GRIP ice core. Journal of Glaciology, 55, 777-783. [2] F. Pauer et al., 1995, Raman spectroscopic study of nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core. Geophysical Research Letters, 22, 969-971. [3] T. Ikeda-Fukazawa et al., 2001, Variation in N2/O2 ratio of occluded air in Dome Fuji antarctic ice. Journal of Geophysical Research, 106, 17799-17810. [4] C. Weikusat et al., Raman spectroscopy of gaseous inclusions in EDML ice core: First results - microbubbles. Journal of Glaciology, accepted.
Are annual layers preserved in NorthGRIP Eemian ice?
NASA Astrophysics Data System (ADS)
Kettner, E.; Bigler, M.; Nielsen, M. E.; Steffensen, J. P.; Svensson, A.
2009-04-01
A newly developed setup for continuous flow analysis (CFA) of ice cores in Copenhagen is optimized for high resolution analysis of four components: Soluble sodium (mainly deriving from sea salt), soluble ammonium (related to biological processes and biomass burning events), insoluble dust particles (basically transported from Asian deserts to Greenland), and the electrolytic melt water conductivity (which is a bulk signal for all ionic constituents). Furthermore, we are for the first time implementing a flow cytometer to obtain high quality dust concentration and size distribution profiles based on individual dust particle measurements. Preliminary measurements show that the setup is able to resolve annual layers of 1 cm thickness. Ice flow models predict that annual layers in the Eemian section of the Greenland NorthGRIP ice core (130-115 ka BP) have a thickness of around 1 cm. However, the visual stratigraphy of the ice core indicates that the annual layering in the Eemian section may be disturbed by micro folds and rapid crystal growth. In this case study we will measure the impurity content of an Eemian segment of the NorthGRIP ice core with the new CFA setup. This will allow for a comparison to well-known impurity levels of the Holocene in both Greenland and Antarctic ice and we will attempt to determine if annual layers are still present in the ice.
Dating an 800,000 year Antarctic ice core record using the isotopic composition of trapped air
NASA Astrophysics Data System (ADS)
Dreyfus, Gabrielle Boissier
Here we measure the isotopic composition of air trapped in the European Project for Ice Coring in Antarctica Dome C (EDC) ice core, and use this geochemical information to improve the ice core agescale and our understanding of air enclosure processes. A first result is the detection of a flow anomaly in the bottom 500m of the EDC ice core using the delta18O of atmospheric oxygen (noted delta18Oatm). By tuning the measured delta18Oatm to the orbital precession signal, we correct the EDC agescale over 400-800 ka for flow-induced distortions in the duration of events. Uncertainty in delta 18Oatm phasing with respect to precession limits the accuracy of the tuned agescale to +/-6 ka. We use this improved agescale to date two 10Be peaks detected in the EDC ice core and associated with the Matuyama-Brunhes geomagnetic boundary. While the ice age of the "precursor" event agrees within uncertainty with the age of radioisotopically dated lavas, the volcanic age for the younger reversal is approximately 10 ka older than the mid-point of the 10 Be peak in the ice. Since 80% of the lavas recording the Matuyama-Brunhes reversal are located in the Central Pacific, the observed age difference may indicate that the magnetic field orientation at this location changed prior to the dipole intensity minimum recorded by the ice core 10Be, as suggested by recent geodynamo modeling. A particular challenge for ice core dating is accurately accounting for the age difference between the trapped air and surrounding ice. This gas age - ice age difference (noted Deltaage) depends on the age of the ice at the bottom of the firn. delta15N of N2 is constant in the atmosphere over the timescales considered here, so any deviation from atmospheric composition reflects fractionation processes in the firn. We show that delta15N is positively correlated with the ice deuterium content, a proxy for temperature, over the entire EDC record, and propose an accumulation-permeability-convection mechanism. While temporal resolution and noise in the available data limit our ability to constrain glacial Deltaage, these data suggest that delta15N may be used as a gas-phase climate proxy at EDC.
Measurements of ethane in Antarctic ice cores
NASA Astrophysics Data System (ADS)
Verhulst, K. R.; Fosse, E. K.; Aydin, K. M.; Saltzman, E. S.
2011-12-01
Ethane is one of the most abundant hydrocarbons in the atmosphere. The major ethane sources are fossil fuel production and use, biofuel combustion, and biomass-burning emissions and the primary loss pathway is via reaction with OH. A paleoatmospheric ethane record would be useful as a tracer of biomass-burning emissions, providing a constraint on past changes in atmospheric methane and methane isotopes. An independent biomass-burning tracer would improve our understanding of the relationship between biomass burning and climate. The mean annual atmospheric ethane level at high southern latitudes is about 230 parts per trillion (ppt), and Antarctic firn air measurements suggest that atmospheric ethane levels in the early 20th century were considerably lower (Aydin et al., 2011). In this study, we present preliminary measurements of ethane (C2H6) in Antarctic ice core samples with gas ages ranging from 0-1900 C.E. Samples were obtained from dry-drilled ice cores from South Pole and Vostok in East Antarctica, and from the West Antarctic Ice Sheet Divide (WAIS-D). Gases were extracted from the ice by melting under vacuum in a glass vessel sealed by indium wire and were analyzed using high resolution GC/MS with isotope dilution. Ethane levels measured in ice core samples were in the range 100-220 ppt, with a mean of 157 ± 45 ppt (n=12). System blanks contribute roughly half the amount of ethane extracted from a 300 g ice core sample. These preliminary data exhibit a temporal trend, with higher ethane levels from 0-900 C.E., followed by a decline, reaching a minimum between 1600-1700 C.E. These trends are consistent with variations in ice core methane isotopes and carbon monoxide isotopes (Ferretti et al., 2005, Wang et al., 2010), which indicate changes in biomass burning emissions over this time period. These preliminary data suggest that Antarctic ice core bubbles contain paleoatmospheric ethane levels. With further improvement of laboratory techniques it appears likely that a paleoatmospheric ethane record can be obtained from polar ice cores.
RICE ice core: Black Carbon reflects climate variability at Roosevelt Island, West Antarctica
NASA Astrophysics Data System (ADS)
Ellis, Aja; Edwards, Ross; Bertler, Nancy; Winton, Holly; Goodwin, Ian; Neff, Peter; Tuohy, Andrea; Proemse, Bernadette; Hogan, Chad; Feiteng, Wang
2015-04-01
The Roosevelt Island Climate Evolution (RICE) project successfully drilled a deep ice core from Roosevelt Island during the 2011/2012 and 2012/2013 seasons. Located in the Ross Ice Shelf in West Antarctica, the site is an ideal location for investigating climate variability and the past stability of the Ross Ice Shelf. Black carbon (BC) aerosols are emitted by both biomass burning and fossil fuels, and BC particles emitted in the southern hemisphere are transported in the atmosphere and preserved in Antarctic ice. The past record of BC is expected to be sensitive to climate variability, as it is modulated by both emissions and transport. To investigate BC variability over the past 200 years, we developed a BC record from two overlapping ice cores (~1850-2012) and a high-resolution snow pit spanning 2010-2012 (cal. yr). Consistent results are found between the snow pit profiles and ice core records. Distinct decadal trends are found with respect to BC particle size, and the record indicates a steady rise in BC particle size over the last 100 years. Differences in emission sources and conditions may be a possible explanation for changes in BC size. These records also show a significant increase in BC concentration over the past decade with concentrations rising over 1.5 ppb (1.5*10^-9 ng/g), suggesting a fundamental shift in BC deposition to the site.
Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...
2016-09-28
We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011–2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ A v > , formore » dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on < σ A v > , reaching a level of 10 - 23 cm 3 s - 1 , depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011–2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ A v > , formore » dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on < σ A v > , reaching a level of 10 - 23 cm 3 s - 1 , depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.« less
Climate Proxies: An Inquiry-Based Approach to Discovering Climate Change on Antarctica
NASA Astrophysics Data System (ADS)
Wishart, D. N.
2016-12-01
An attractive way to advance climate literacy in higher education is to emphasize its relevance while teaching climate change across the curriculum to science majors and non-science majors. An inquiry-based pedagogical approach was used to engage five groups of students on a "Polar Discovery Project" aimed at interpreting the paleoclimate history of ice cores from Antarctica. Learning objectives and student learning outcomes were clearly defined. Students were assigned several exercises ranging from examination of Antarctic topography to the application of physical and chemical measurements as proxies for climate change. Required materials included base and topographic maps of Antarctica; graph sheets for construction of topographic cross-sectional profiles from profile lines of the Western Antarctica Ice Sheet (WAIS) Divide and East Antarctica; high-resolution photographs of Antarctic ice cores; stratigraphic columns of ice cores; borehole and glaciochemical data (i.e. anions, actions, δ18O, δD etc.); and isotope data on greenhouse gases (CH4, O2, N2) extracted from gas bubbles in ice cores. The methodology was to engage students in (2) construction of topographic profiles; (2) suggest directions for ice flow based on simple physics; (3) formulate decisions on suitable locations for drilling ice cores; (4) visual ice stratigraphy including ice layer counting; (5) observation of any insoluble particles (i.e. meteoritic and volcanic material); (6) analysis of borehole temperature profiles; and (7) the interpretation of several datasets to derive a paleoclimate history of these areas of the continent. The overall goal of the project was to improve the students analytical and quantitative skills; their ability to evaluate relationships between physical and chemical properties in ice cores, and to advance the understanding the impending consequences of climate change while engaging science, technology, engineering and mathematics (STEM). Student learning outcomes were assessed at the completion of the `Polar Discovery Project' for their curiosity, analytical strength, creativity, group collaboration, problem-solving, innovation, and interest in level climate change and the implications of the its effects on polar regions.
Schuster, Paul F.; Krabbenhoft, David P.; Naftz, David L.; Cecil, L. DeWayne; Olson, Mark L.; DeWild, John F.; Susong, David D.; Green, Jaromy R.; Abbott, Michael L.
2002-01-01
Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation are significant environmental problems of global extent. At regional to global scales, the primary mechanism of Hg contamination is atmospheric Hg transport. Thus, a better understanding of the long-term history of atmospheric Hg cycling and quantification of the sources is critical for assessing the regional and global impact of anthropogenic Hg emissions. Ice cores collected from the Upper Fremont Glacier (UFG), Wyoming, contain a high-resolution record of total atmospheric Hg deposition (ca. 1720−1993). Total Hg in 97 ice-core samples was determined with trace-metal clean handling methods and low-level analytical procedures to reconstruct the first and most comprehensive atmospheric Hg deposition record of its kind yet available from North America. The record indicates major atmospheric releases of both natural and anthropogenic Hg from regional and global sources. Integrated over the past 270-year ice-core history, anthropogenic inputs contributed 52%, volcanic events 6%, and background sources 42%. More significantly, during the last 100 years, anthropogenic sources contributed 70% of the total Hg input. Unlike the 2−7-fold increase observed from preindustrial times (before 1840) to the mid-1980s in sediment-core records, the UFG record indicates a 20-fold increase for the same period. The sediment-core records, however, are in agreement with the last 10 years of this ice-core record, indicating declines in atmospheric Hg deposition.
Microshear in the deep EDML ice core analyzed using cryogenic EBSD
NASA Astrophysics Data System (ADS)
Kuiper, Ernst-Jan; Pennock, Gill; Drury, Martyn; Kipfstuhl, Sepp; Faria, Sérgio; Weikusat, Ilka
2017-04-01
Ice sheets play an important role in sea level evolution by storing large amounts of fresh water on land. The ice in an ice sheet flows from the interior of the ice sheet to the edges where it either melts or calves into the ocean. This flow of ice results from internal deformation of the ice aggregate. Dislocation creep is assumed to be the dominant deformation mechanism for polar ice and is grain size insensitive. Recently, a different deformation mechanism was identified in the deeper part of the EDML ice core (Antarctica) where, at a depth of 2385 meters, the grain size strongly decreases, the grain aspect ratio increase and, the inclination of the grain elongation changes (Faria et al., 2006; Weikusat et al., 2017). At this depth the borehole displacement increases strongly (Weikusat et al., 2017), which indicates a relatively high strain rate. Part of this EDML ice core section was studied using cryogenic electron backscattered diffraction (cryo-EBSD) (Weikusat et al, 2011). EBSD produces high resolution, full crystallographic (a-axis and c-axis) maps of the ice core samples. EBSD samples were taken from an ice core section at 2392.2 meter depth. This section was chosen for its very small grain size and the strongly aligned grain boundaries. The EBSD maps show a very low orientation gradient of <0.3° per millimetre inside the grains, which is 5-10 times lower than the orientation gradients found in other parts of the ice core. Furthermore, close to some grain boundaries, a relatively strong orientation gradient of 1°-2° per millimetre was found. The subgrain boundaries developed such that they elongate the sliding boundaries in order to accommodate the incompatibilities and maintain the strongly aligned grain boundary network. We identify the dominant deformation mechanism in this part of the ice core as grain boundary sliding accommodated by localized dislocation creep, which is a process similar to microshear (Drury and Humpreys, 1988). The existence of layers of soft ice has serious implications for ice core dating, related paleoclimate studies and ice flow modelling with respect to ice sheet mass balance and sea level predictions. References: - Drury and Humphreys, 1988. Microstructural shear criteria associated with grain boundary sliding during ductile deformation. J. of Struc. Geol. 10, 1, 83-89. - Faria et al., 2006. Is Antarctica like a birthday cake?, Max Planck Institute of Mathematics and the Sciences - Weikusat et al., 2011. Cryogenic EBSD on ice: preserving a stable surface in a low pressure SEM. J. Micros. 242, 3, 295-310. (doi: 10.1111/j.1365-2818.2010.03471.x) - Weikusat et al., 2017. Physical analysis of an Antarctic ice core-towards an integration of micro- and macrodynamics of polar ice. Phil. Trans. R. Soc. A 375, 2015347. (doi:10.1098/rsta.2015.0347)
The geochemical record in rock glaciers
Steig, E.J.; Fitzpatrick, J.J.; Potter, N.; Clark, D.H.
1998-01-01
A 9.5 m ice core was extracted from beneath the surficial debris cover of a rock glacier at Galena Creek, northwestern Wyoming. The core contains clean, bubble-rich ice with silty debris layers spaced at roughly 20 cm intervals. The debris layers are similar in appearance to those in typical alpine glaciers, reflecting concentration of debris by melting at the surface during the summer ablation season. Profiles of stable isotope concentrations and electrical conductivity measurements provide independent evidence for melting in association with debris layers. These observations are consistent with a glacial origin for the ice, substantiating the glacigenic model for rock glacier formation. The deuterium excess profile in the ice indicates that the total depth of meltwater infiltration is less than the thickness of one annual layer, suggesting that isotope values and other geochemical signatures are preserved at annual resolution. This finding demonstrates the potential for obtaining useful paleoclimate information from rock glacier ice.
Denali Ice Core MSA: A Record of North Pacific Primary Productivity
NASA Astrophysics Data System (ADS)
Polashenski, D.; Osterberg, E. C.; Winski, D.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.
2017-12-01
The high nutrient, low chlorophyll region of the North Pacific is one of the most biologically productive marine ecosystems in the world and forms the basis of commercial, sport, and subsistence fisheries worth more than a billion dollars annually. Marine phytoplankton prove to be important both as the primary producers in these ecosystems and as a major source of biogenic sulfur emissions which have long been hypothesized to serve as a biological control on Earth's climate system. Despite their importance, the record of marine phytoplankton abundance and the flux of biogenic sulfur from these regions is not well constrained. In situ measurements of marine phytoplankton from oceanographic cruises over the past several decades are limited in both spatial and temporal resolution. Meanwhile, marine sediment records may provide insight on million year timescales, but lack decadal resolution due to slow sediment deposition rates and bioturbation. In this study, we aim to investigate changes in marine phytoplankton productivity of the northeastern subarctic Pacific Ocean (NSPO) over the twentieth century using the methanesulfonic acid (MSA) record from the Mt. Hunter ice cores drilled in Denali National Park, Alaska. These parallel, 208 meter long ice cores were drilled during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 4,000 m above sea level). Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) modeling is used to identify likely source areas in the NSPO for MSA being transported to the core site. SeaWiFS satellite imagery allows for a direct comparison of chlorophyll a concentrations in these source areas with MSA concentrations in the core record through time. Our findings suggest that the Denali ice core MSA record reflects changes in the biological productivity of marine phytoplankton and shows a significant decline in MSA beginning in 1961. We investigate several hypotheses for potential mechanisms driving this MSA decline including iron limitation from windblown dust, copper toxicity, phytoplankton speciation change, and a change in moisture source using additional chemical records from the Denali ice core.
NASA Astrophysics Data System (ADS)
Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad
2015-04-01
Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.
Towards multi-decadal to multi-millennial ice core records from coastal west Greenland ice caps
NASA Astrophysics Data System (ADS)
Das, Sarah B.; Osman, Matthew B.; Trusel, Luke D.; McConnell, Joseph R.; Smith, Ben E.; Evans, Matthew J.; Frey, Karen E.; Arienzo, Monica; Chellman, Nathan
2017-04-01
The Arctic region, and Greenland in particular, is undergoing dramatic change as characterized by atmospheric warming, decreasing sea ice, shifting ocean circulation patterns, and rapid ice sheet mass loss, but longer records are needed to put these changes into context. Ice core records from the Greenland ice sheet have yielded invaluable insight into past climate change both regionally and globally, and provided important constraints on past surface mass balance more directly, but these ice cores are most often from the interior ice sheet accumulation zone, at high altitude and hundreds of kilometers from the coast. Coastal ice caps, situated around the margins of Greenland, have the potential to provide novel high-resolution records of local and regional maritime climate and sea surface conditions, as well as contemporaneous glaciological changes (such as accumulation and surface melt history). But obtaining these records is extremely challenging. Most of these ice caps are unexplored, and thus their thickness, age, stratigraphy, and utility as sites of new and unique paleoclimate records is largely unknown. Access is severely limited due to their high altitude, steep relief, small surface area, and inclement weather. Furthermore, their relatively low elevation and marine moderated climate can contribute to significant surface melting and degradation of the ice stratigraphy. We recently targeted areas near the Disko Bay region of central west Greenland where maritime ice caps are prevalent but unsampled, as potential sites for new multi-decadal to multi-millennial ice core records. In 2014 & 2015 we identified two promising ice caps, one on Disko Island (1250 m. asl) and one on Nuussuaq Peninsula (1980 m. asl) based on airborne and ground-based geophysical observations and physical and glaciochemical stratigraphy from shallow firn cores. In spring 2015 we collected ice cores at both sites using the Badger-Eclipse electromechanical drill, transported by a medley of small fixed wing and helicopter aircraft, and working out of small tent camps. On Disko Island, despite high accumulation rates and ice thickness of 250 meters, drilling was halted twice due to the encounter of liquid water at depths ranging from 18-20 meters, limiting the depth of the final core to 21 m, providing a multi-decadal record (1980-2015.) On Nuussuaq Peninsula, we collected a 138 m ice core, almost to bedrock, representing a 2500 year record. The ice cores were subsequently analyzed using a continuous flow analysis system (CFA). Age-depth profiles and accumulation histories were determined by combining annual layer counting and an ice flow thinning model, both constrained by glaciochemical tie points to other well-dated Greenland ice core records (e.g. volcanic horizons and continuous heavy metal records). Here we will briefly provide an overview of the project and the new sites, and the novel dating methodology, and describe the latest stratigraphic, isotopic and glaciochemical results. We will also provide a particular focus on new regional climatological insight gained from our records during three climatically sensitive time periods: the late 20th & early 21st centuries; the Little Ice Age; and the Medieval Climate Anomaly.
NASA Astrophysics Data System (ADS)
Kreutz, K. J.; Osterberg, E. C.; Winski, D.; Wake, C. P.; Campbell, S. W.; Introne, D.; Ferris, D. G.
2016-12-01
The mechanisms and outcomes of teleconnections between the tropical and North Pacific regions over the past 2000 years remain elusive. Correctly assessing the impact on the Aluetian Low, storm tracks, and general hydroclimate during the Medieval Climate Anomaly (MCA), transition to the Little Ice Age (LIA), and then into the 20th century likely requires a suite of high resolution paleoclimate data from the region. Here we present an ice core stable water isotope developed from two surface to bedrock ice cores recovered in 2013 from the high elevation Mt. Hunter plateau in Denali National Park, Alaska. The cores were processed using a continuous flow analysis (CFA) system, and dated using a combination of annual chemical and dust signals, and radioactive and volcanic horizons. The resulting annually-resolved timescale currently spans 2013-810AD. We analyzed 6000 stable water isotope samples for d18O, dD, and the derived deuterium excess (dxs) parameter, yielding a subannually resolved isotope record from 2013-1234AD, and 1-3 year resolution from 1233-810AD. We initially focus on the dxs record, as there are trends in the data that correspond to the large scale climate features of the Common Era. The dxs record shows decreased values during the MCA and a rise into the LIA, consistent with several other regional paleoclimate records. The most obvious feature of the dxs record is a pronounced decrease beginning in the mid 19th century and continuing to present. We note that this trend mirrors a rise in snow accumulation rate in the Denali ice core record, suggesting coherent changes in North Pacific climate dynamics over the past 150 years. Understanding the dxs record in terms of ocean source region temperature and/or relative humidity remains a challenge, and we discuss progress on interpreting the Denali isotope record and fitting these data into a broader paleoclimate context.
Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores
NASA Astrophysics Data System (ADS)
Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.
2017-02-01
Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS-CFA systems, including optimizing liquid and vapor mixing lengths, determining melt rates for ice cores with different accumulation and thinning histories, and removing system-wide mixing effects that are convolved with the natural diffusional signal that results primarily from water molecule diffusion in the firn column.
NASA Astrophysics Data System (ADS)
Butler, Paul; Estrella-Martínez, Juan; Scourse, James
2017-04-01
The so-called 8.2K cold event is a rapid cooling of about 6° +/- 2° recorded in the Greenland ice core record and thought to be a consequence of a freshwater pulse from the Laurentide ice sheet which reduced deepwater formation in the North Atlantic. In the Greenland ice cores the event is characterized by a maximum extent of 159 years and a central event lasting for 70 years. As discussed by Thomas et al (QSR, 2007), the low resolution and dating uncertainty of much palaeoclimate data makes it difficult to determine the rates of change and causal sequence that characterise the event at different locations. We present here a bivalve shell chronology based on four shells of Arctica islandica from the northern North Sea which (within radiocarbon uncertainty) is coeval with the 8.2K event recorded in the Greenland ice cores. The years of death of each shell based on radiocarbon analysis and crossmatching are 8094, 8134, 8147, and 8208 yrs BP (where "present" = AD 1950), with an associated radiocarbon uncertainty of +/-80 yrs, and their longevities are 106, 122, 112 and 79 years respectively. The total length of the chronology is 192 years (8286 - 8094 BP +/- 80 yrs). The most noticeable feature of the chronology is an 60-year period of increasing growth which may correspond to a similar period of decreasing ice accumulation in the GRIP (central Greenland) ice core record. We tentatively suggest that this reflects increasing food supply to the benthos as summer stratification is weakened by colder seawater temperatures. Stable isotope analyses (results expected to be available when this abstract is presented), will show changes at annual and seasonal resolution, potentially giving a very detailed insight into the causal factors associated with the 8.2K event and its impact in the northern North Sea.
Burn-Nunes, Laurie; Vallelonga, Paul; Lee, Khanghyun; Hong, Sungmin; Burton, Graeme; Hou, Shugui; Moy, Andrew; Edwards, Ross; Loss, Robert; Rosman, Kevin
2014-07-15
Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a <110 m ice core dated to the 18th and 20th centuries, as well as snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ~1,953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia. Copyright © 2014 Elsevier B.V. All rights reserved.
Cosmogenic 10Be Depth Profile in top 560 m of West Antarctic Ice Sheet Divide Ice Core
NASA Astrophysics Data System (ADS)
Welten, K. C.; Woodruff, T. E.; Caffee, M. W.; Edwards, R.; McConnell, J. R.; Bisiaux, M. M.; Nishiizumi, K.
2009-12-01
Concentrations of cosmogenic 10Be in polar ice samples are a function of variations in solar activity, geomagnetic field strength, atmospheric mixing and annual snow accumulation rates. The 10Be depth profile in ice cores also provides independent chronological markers to tie Antarctic to Greenland ice cores and to tie Holocene ice cores to the 14C dendrochronology record. We measured 10Be concentrations in 187 samples from depths of 0-560 m of the main WAIS Divide core, WDC06A. The ice samples are typically 1-2 kg and represent 2-4 m of ice, equivalent to an average temporal resolution of ~12 years, based on the preliminary age-depth scale proposed for the WDC core, (McConnell et al., in prep). Be, Al and Cl were separated using ion exchange chromatography techniques and the 10Be concentrations were measured by accelerator mass spectrometry (AMS) at PRIME lab. The 10Be concentrations range from 8.1 to 19.1 x 10^3 at/g, yielding an average of (13.1±2.1) x 10^3 at/g. Adopting an average snow accumulation rate of 20.9 cm weq/yr, as derived from the age-depth scale, this value corresponds to an average 10Be flux of (2.7±0.5) x 10^5 atoms/yr/cm2. This flux is similar to that of the Holocene part of the Siple Dome (Nishiizumi and Finkel, 2007) and Dome Fuji (Horiuchi et al. 2008) ice cores, but ~30% lower than the value of 4.0 x 10^5 atoms/yr/cm2 for GISP2 (Finkel and Nishiizumi, 1997). The periods of low solar activity, known as Oort, Wolf, Spörer, Maunder and Dalton minima, show ~20% higher 10Be concentrations/fluxes than the periods of average solar activity in the last millennium. The maximum 10Be fluxes during some of these periods of low solar activity are up to ~50% higher than average 10Be fluxes, as seen in other polar ice cores, which makes these peaks suitable as chronologic markers. We will compare the 10Be record in the WAIS Divide ice core with that in other Antarctic as well as Greenland ice cores and with the 14C treering record. Acknowledgment. This work was supported by NSF grants ANT-0538427, 0636815, 0636964 and 0739780. Finkel R. C. and Nishiizumi K. 1997. J. Geophys. Res. 102, 26,699-26,706. Horiuchi K., et al. 2008. Quatern. Geochron. 3, 253-261. Nishiizumi K. and Finkel R. C. 2007. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.
Ultra high resolution cation analysis of NGRIP deep ice via cryo-cell UV-laser-ablation ICPMS
NASA Astrophysics Data System (ADS)
Della Lunga, Damiano; Muller, Wolfgang; Olander Rasmussen, Sune; Svensson, Anders
2014-05-01
During glacial periods, Earth experienced abrupt climate change events that led to rapid natural warming/ cooling over a few years only (Steffensen et al., 2008). In order to investigate these rapid climate events especially in old thinned ice, highest spatial/time resolution analysis of climate proxies is required. A recently developed methodology at Royal Holloway University of London (Müller et al., 2011), which permits in situ chemical analysis of frozen ice with spatial (and thus time) resolution up to 0.1 mm (100 ?m) using cryo-cell UV-laser ablation inductively-coupled-plasma mass spectrometry (UV-LA-ICPMS), has been optimized and utilized for analysis of (major) elements indicative of dust and/or sea salt (e.g. Fe, Al, Ca, Mg, Na), while maintaining detection limits in the low(est) ppb-range. NGRIP samples of Greenland Stadial GS22 (~86 ka, depth of ~2690 m), representing a minor δ18O shift (of about ± 4) within the stadial phase of D-O event 22, have been selected and analysed. With a single storm-event resolution capability, seasonal, annual and multiannual periodicity of elements have been identified and will be presented with particular focus on the phasing of the climate proxies. Corresponding results include also an optimized UV-LA-ICPMS methodology, particularly with reference to depth-profiling, assessing contamination of the sample surface and standardization. Finally, the location and distribution of soluble and insoluble micro-inclusions in deep ice have also been assessed concerning the partitioning of elements between grain boundaries and grain interiors. Results show that impurities tend to be concentrated along boundaries in clear (winter) ice, whereas in cloudy bands ('dirtier' ice) they distribute equally between boundaries and interiors. References Müller, W., Shelley, J.M.G., Rasmussen, S.O., 2011. Direct chemical analysis of frozen ice cores by UV-laser ablation ICPMS. J. Anal. At. Spectrom. 26, 2391-2395. Steffensen, J.P., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S.J., Jouzel, J., Masson-Delmotte, V., Popp, T., Rasmussen, S.O., Rothlisberger, R., Ruth, U., Stauffer, B., Siggaard-Andersen, M.L., Sveinbjornsdottir, A.E., Svensson, A., White, J.W.C., 2008. High-resolution Greenland Ice Core data show abrupt climate change happens in few years. Science 321, 680-684.
NASA Astrophysics Data System (ADS)
Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.
2014-12-01
Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the 2013 Roosevelt Island Climate Evolution (RICE) ice core processing campaign achieved high precision measurements, in particular for δD, with high temporal resolution for the upper part of the core, where a seasonally resolved isotopic signal is preserved.
The Holocene Record of the Arctic Oscillation and a Possible Link to Solar Variability
NASA Astrophysics Data System (ADS)
Rand, J.; Darby, D. A.; Ortiz, J.; Cook, M. Y.; Keigwin, L.
2007-12-01
Detailed Fe grain provenance for a 19.9 meter long piston core (HLY02-JPC16) with about 17.5 m of Holocene sediment provides a sub-century scale resolution of the Arctic Oscillation (AO). The presence of Fe grains matched to Russian shelves fluctuates throughout this core, located 125 km north of Alaska in 1300 m water depth. High amounts of these Fe grains indicate a strong positive AO. While century scale fluctuations occur in the influx of Russian ice-rafted grains at this core site, a significant periodicity of about 1500 years exists that is similar to that of Be-10 in the Greenland ice cores. This begs the question as to how the AO might be linked to solar variations, especially such weak ones. The sources of sea ice rafting throughout the Holocene are compared to Modern sea ice samples and there is generally a good match. There is much greater heterogeneity in sources based on Fe grain provenance than other techniques for sourcing sea ice today. While the Laptev Sea is certainly an important sea ice entrainment area, it is by no means the only one and not even the most important over the long term. This distinction lies with northern Canadian sources, especially the Queen Elizabeth Islands facing the Arctic Ocean. The AO plays a major role in mixing sea ice from Russian and North American sources, especially during ++AO events. At these times, not only does the Trans Polar Drift swing closer to North America introducing sea ice from the Russian shelves such as the Laptev Sea to the Beaufort Gyre (BG), but it also aids in dragging some of the BG ice toward Fram Strait. This BG ice is a mix of North American and Russian ice and thus it is not surprising to find sediment from both sources in ice along the drift path of this ice moving toward Fram Strait.
NASA Astrophysics Data System (ADS)
Kozachek, Anna; Mikhalenko, Vladimir; Masson-Delmotte, Valérie; Ekaykin, Alexey; Ginot, Patrick; Kutuzov, Stanislav; Legrand, Michel; Lipenkov, Vladimir; Preunkert, Susanne
2017-05-01
A 181.8 m ice core was recovered from a borehole drilled into bedrock on the western plateau of Mt El'brus (43°20'53.9'' N, 42°25'36.0'' E; 5115 m a.s.l.) in the Caucasus, Russia, in 2009 (Mikhalenko et al., 2015). Here, we report on the results of the water stable isotope composition from this ice core with additional data from the shallow cores. The distinct seasonal cycle of the isotopic composition allows dating by annual layer counting. Dating has been performed for the upper 126 m of the deep core combined with 20 m from the shallow cores. The whole record covers 100 years, from 2013 back to 1914. Due to the high accumulation rate (1380 mm w.e. year-1) and limited melting, we obtained isotopic composition and accumulation rate records with seasonal resolution. These values were compared with available meteorological data from 13 weather stations in the region and also with atmosphere circulation indices, back-trajectory calculations, and Global Network of Isotopes in Precipitation (GNIP) data in order to decipher the drivers of accumulation and ice core isotopic composition in the Caucasus region. In the warm season (May-October) the isotopic composition depends on local temperatures, but the correlation is not persistent over time, while in the cold season (November-April), atmospheric circulation is the predominant driver of the ice core's isotopic composition. The snow accumulation rate correlates well with the precipitation rate in the region all year round, which made it possible to reconstruct and expand the precipitation record at the Caucasus highlands from 1914 until 1966, when reliable meteorological observations of precipitation at high elevation began.
NASA Astrophysics Data System (ADS)
Goursaud, Sentia; Masson Delmotte, Valerie; Preunkert, Susanne; Legrand, Michel; Werner, Martin
2017-04-01
Documenting climatic variations in Antarctica is important to characterize natural climate variability and to provide a long-term context for recent changes. For this purpose, ice cores are unique archives providing a variety of proxy records. While water stable isotopes are commonly used to reconstruct past temperatures, their variability may also reflect changes in moisture origin and evaporation conditions. Further information on the origin of air masses can be obtained from aerosols, through the chemical analyses of ice cores. In high accumulation regions, such as the coastal Adélie Land area, the combination of water stable isotope and chemical records is crucial to date ice cores by annual layer counting and assess the associated uncertainty on annual accumulation rates, but may also help to unveil past changes in regional atmospheric circulation. In order to document accumulation in the area from Dumont d'Urville station to the central Antarctic plateau, towards Dome C, the Agence Nationale de la Recherche ASUMA project (Improving the Accuracy of the Surface Mass Balance of Antarctica, 2014-2018) initiated new field campaigns and was successful in obtaining a network of new shallow ice cores in a previously undocumented region. Here, we will present new results from two shallow ice cores drilled in Adélie Land, the S1C1 ice core (67.71 °S, 139.83 °E ,279 m a.s.l.) drilled in January 2007 and the TA192A ice core (66.78 °S, 139.56 °E, 602 m a.s.l.). We have dated the ice cores by combining multi-parameter annual layer counting using major ions and δ18O, as well as reference horizons. This allowed us to estimate very contrasted accumulation rates (respectively 21.8 ± 6.9 cm w.e. y-1 and 73.38±21.9 cm w.e. y-1), averaged respectively over the period from 1946 to 2006 and from 1998 to 2014 . As a result, we have reconstructed annual accumulation rates, isotopic and ion time series, and investigated their characteristics (mean values, trends and periodicities). The high accumulation rates enables us to compare the ice core seasonal variations in δ18O and deuterium excess with outputs from the ECHAM5-wiso atmospheric general circulation model equipped with water stable isotopes and nudged to ERA reanalyses. We have investigated through statistical analyses the relationships between inter-annual variations in our new ice core records with local climatic parameters (near-surface temperature, wind speed and direction, local sea-ice extent), and with large-scale modes of variability (ENSO and PSA2). The first results rule out any significant multi-decadal trend and evidence decadal periodicities already documented in instrumental records. Remarkable years identified in one shallow ice core do not coincide with those identified in the other ice core. No significant correlation with local or regional climate parameters is identified. This suggests that either the ice core signals are dominated by changes in regional atmospheric circulation or that they are strongly affected very local effects of deposition and post deposition, in an area marked by strong katabatic winds.
Glacier-derived permafrost ground ice, Bylot Island, Nunavut
NASA Astrophysics Data System (ADS)
Coulombe, S.; Fortier, D.; Lacelle, D.; Godin, E.; Veillette, A.
2014-12-01
Massive icy bodies are important components of permafrost geosystems. In situ freezing of water in the ground by ice-segregation processes forms most of these icy bodies. Other hypotheses for the origin of massive ice include the burial of ice (e.g. glacier, snow, lake, river, sea). The analysis of ground-ice characteristics can give numerous clues about the geomorphologic processes and the thermal conditions at the time when permafrost developed. Massive underground ice therefore shows a great potential as a natural archive of the earth's past climate. Identifying the origin of massive ice is a challenge for permafrost science since the different types of massive ice remain difficult to distinguish on the sole basis of field observations. There is actually no clear method to accurately assess the origin of massive ice and identification criteria need to be defined. The present study uses physico-chemical techniques to characterize buried glacier ice observed on Bylot Island, Nunavut. Combined to the analysis of cryostratigraphy, massive-ice cores crystallography and high-resolution imagery of the internal structure of the ice cores were obtained using micro-computed tomography techniques. These techniques are well suited for detailed descriptions (shape, size, orientation) of crystals, gas inclusions and sediment inclusions. Oxygen and hydrogen isotopes ratios of massive-ice cores were also obtained using common equilibrium technique. Preliminary results suggest the occurrence of two types of buried massive-ice of glacial origin similar to those found on contemporary glaciers: 1) Englacial ice: clear to whitish ice, with large crystals (cm) and abundant gas bubbles at crystal intersections; 2) Basal glacier ice: ice-rich, banded, micro-suspended to suspended cryostructures and ice-rich lenticular to layered cryostructures, with small ice crystals (mm) and a few disseminated gas bubbles. Glacier-derived permafrost contains antegenetic ice, which is ice that predates the aggradation of the permafrost. Remnants of glacier ice represent unique environmental archives and offer the possibility to reconstruct climate anterior to the formation of permafrost.
Archival processes of the water stable isotope signal in East Antarctic ice cores
NASA Astrophysics Data System (ADS)
Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean
2018-05-01
The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.
NASA Astrophysics Data System (ADS)
Uglietti, C.; Gabrielli, P.; Thompson, L. G.
2013-12-01
The recent increase in trace element concentrations, for example Cr, Cu, Zn, Ag, Pb, Bi, and U, in polar snow and ice has provided compelling evidence of a hemispheric change in atmospheric composition since the nineteenth century. This change has been concomitant with the expansion of the Industrial Revolution and points towards an anthropogenic source of trace elements in the atmosphere. There are very few low latitude trace element ice core records and these are believed to be sensitive to perturbations of regional significance. To date, these records have not been used to document a preindustrial anthropogenic impact on atmospheric composition at low latitudes. Ice cores retrieved from the tropical Andes are particularly interesting because they have the potential to reveal detailed information about the evolution and environmental consequences of mineral exploitation related to the Pre Inca Civilizations, the Inca Empire (1438-1533 AD) and the subsequent Spanish invasion and dominance (1532-1833 AD). The chemical record preserved in the ice of the Quelccaya ice cap (southern Peruvian Andes) offers the exceptional opportunity to geochemically constrain the composition of the tropical atmosphere at high resolution over the last ~1200 years. Quantification of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was performed by ICP-SFMS over 105 m of the Quelccaya North Dome core (5600 m asl, 128.57 m) by analyzing 2450 samples. This provides the first atmospheric trace element record in South America spanning continuously and at high resolution for the time period between 1990 and 790 AD. Ag, As, Bi, Cd, Cr, Co, Cu, Mn, Mo, Sb, Sn, Pb and Zn show increases in concentration and crustal enrichment factor starting at different times between 1450 and 1550 AD, in concomitance with the expansions of the Inca Empire and, subsequently, the Spanish Empire well before the inception of the Industrial Revolution. This indicates that there have been additional anthropogenic sources that have impacted the South American atmosphere during the past ~550 years. Furthermore, As, Bi and Pb record shows, the two most significant increases have occurred in the 20th century, one beginning in ~1905 AD and peaking in the 1920s and the second beginning in ~1955 AD and peaking in the 1970s. Comparison with other trace element records from Greenland and Antarctica reveals concomitant peaks of different amplitude in Pb concentration and crustal enrichment factor, possibly pointing to an unexpected larger than regional scale significance for the Quelccaya ice core record during the last century. In conclusion, the Quelccaya ice core indicates that societal and industrial development influenced the atmospheric composition in South America, from different large scale sources, during the last ~550 years. This is the first time that a low latitude ice core record has been used to reconstruct pre-industrial anthropogenic forcing on the atmosphere.
Radio-echo sounding at Dome C, East Antarctica: A comparison of measured and modeled data
NASA Astrophysics Data System (ADS)
Winter, Anna; Eisen, Olaf; Steinhage, Daniel; Zirizzotti, Achille; Urbini, Stefano; Cavitte, Marie; Blankenship, Donald D.; Wolff, Eric
2016-04-01
The internal layering architecture of ice sheets, detected with radio-echo sounding (RES), contains clues to past ice-flow dynamics and mass balance. A common way of relating the recorded travel time of RES reflections to depth is by integrating a wave-speed distribution. This results in an increasing absolute error with depth. We present a synchronization of RES-internal layers of different radar systems (Alfred Wegener Institute, Center for Remote Sensing of Ice Sheets, Istituto Nazionale di Geofisica e Vulcanologia, British Antarctic Survey and University of Texas Institute for Geophysics) with ice-core records from the Antarctic deep drill site Dome C. Synthetic radar traces are obtained from measurements of ice-core density and conductivity with a 1D model of Maxwell's equations. The reflection peaks of the different radar systems' measurements are shifted by a wiggle-matching algorithm, so they match the synthetic trace. In this way, we matched pronounced internal reflections in the RES data to conductivity peaks with considerably smaller depth uncertainties, and assigned them with the ice-core age. We examine the differences in shifts and resolution of the different RES data to address the question of their comparability and combined analysis for an extensive age-depth distribution.
NASA Astrophysics Data System (ADS)
Wei, L.; Mosley-Thompson, E.
2006-12-01
The Laki (Iceland) volcanic event was a basaltic flood lava eruption lasting from June 8, 1783 to February 7, 1784. The timing of the arrival of the sulfate aerosols and volcanic fragments to the Greenland Ice Sheet (GIS) remains uncertain, but is important to confirm as the highly conductive sulfate layer has been consistently used as a time stratigraphic marker (1783 AD) in ice cores collected across Greenland. However, in the GISP2 ice core a few glass shards were found within the annual layer lying just below that containing the sulfate aerosols from Laki suggesting that the ash arrived first, in 1783, while the aerosols arrived the following year [Fiacco et al., 1994]. Additional published ice core results have neither confirmed nor refuted this observation. We have taken advantage of the accurately dated, high temporal resolution ice cores collected by PARCA (Program for Arctic Regional Climate Assessment) to (1) determine more precisely the timing of the arrival of Laki's sulfate aerosols and (2) assess the spatial variability of the excess sulfate contributed by Laki to the GIS. Our results indicate that the sulfate emitted from the Laki eruption most likely arrived on the GIS in the late summer or early fall of 1783 AD. This is also supported by contemporary weather logs and official reports of the appearance of Laki haze [Thordarson and Self, 2003]. The flux of Laki sulfate varies significantly over the GIS, largely as a function of the regional annual accumulation rate. Laki sulfate aerosols also arrived as a single pulse in most of the PARCA cores, suggesting that only a small fraction of the gases emitted from Laki reached the stratosphere. References: Fiacco, R.J.,et al., Atmospheric aerosol loading and transport due to the 1783-84 Laki eruption in Iceland, interpreted from ash particles and acidity in the GISP2 ice core, Quat. Res., 42, 231-240, 1994. Thordarson, T, and S. Self, Atmospheric and environmental effects of the 1783-1784 Laki eruption: A review and reassessment, J. Geophy. Res., 108, 4011-4039, 2003.
Climatic Teleconnections Recorded By Tropical Mountain Glaciers
NASA Astrophysics Data System (ADS)
Thompson, L. G.; Permana, D.; Mosley-Thompson, E.; Davis, M. E.
2014-12-01
Information from ice cores from the world's highest mountains in the Tropics demonstrates both local climate variability and a high degree of teleconnectivity across the Pacific basin. Here we examine recently recovered ice core records from glaciers near Puncak Jaya in Papua, Indonesia, which lie on the highest peak between the Himalayas and the South American Andes. These glaciers are located on the western side of the Tropical Pacific warm pool, which is the "center of action" for interannual climate variability dominated by El Niño-Southern Oscillation (ENSO). ENSO either directly or indirectly affects most regions of Earth and their populations. In 2010, two ice cores measuring 32.13 m and 31.25 m were recovered to bedrock from the East Northwall Firn ice field. Both have been analyzed in high resolution (~3 cm sample length, 1156 and 1606 samples, respectively) for stable isotopes, dust, major ions and tritium concentrations. To better understand the controls on the oxygen isotopic (δ18 O) signal for this region, daily rainfall samples were collected between January 2013 and February 2014 at five weather stations over a distance of ~90 km ranging from 9 meters above sea level (masl) on the southern coast up to 3945 masl. The calculated isotopic lapse rate for this region is 0.24 ‰/100m. Papua, Indonesian ice core records are compared to ice core records from Dasuopu Glacier in the central Himalayas and from Quelccaya, Huascarán, Hualcán and Coropuna ice fields in the tropical Andes of Peru on the eastern side of the Pacific Ocean. The composite of the annual isotopic time series from these cores is significantly (R2 =0.53) related to tropical Pacific sea surface temperatures (SSTs), reflecting the strong linkage between tropical Pacific SSTs associated with ENSO and tropospheric temperatures in the low latitudes. New data on the already well-documented concomitant loss of ice on Quelccaya, Kilimanjaro in eastern Africa and the ice fields near Puncak Jaya reinforce the hypothesis that large-scale tropical processes dominate recent tropical glacier retreat. The observed widespread melting of glaciers is consistent with model predictions of a vertical amplification of temperature, which is documented by increasing isotopic enrichment in ice cores from high elevation glaciers throughout the Tropics.
NASA Astrophysics Data System (ADS)
Niessen, F.; Magens, D.; Kuhn, G.; Helling, D.
2008-12-01
Within the ANDRILL-MIS Project, a more than 1200 m long sediment core, dating back to about 13 Ma, was drilled beneath McMurdo Ice Shelf near Ross Island (Antarctica) in austral summer 2006/07 with the purpose of contributing to a better understanding of the Late Cenozoic history of the Antarctic Ice Sheet. One way to approach past ice dynamics and changes in the paleoenvironment quantitatively, is the analysis of high- resolution physical properties obtained from whole-core multi-sensor core logger measurements in which lithologic changes are expressed numerically. This is especially applicable for the repeating sequences of diatomites and diamictites in the upper half of the core with a prominent cyclicity between 140-300 mbsf. Rather abrupt high-amplitude variations in wet-bulk density (WBD) and magnetic susceptibility (MS) reflect a highly dynamic depositional system, oscillating between two main end-member types: a grounded ice sheet and open marine conditions. For the whole core, the WBD signal, ranging from 1.4 kg/cu.m in the diatomites to 2.3 kg/cu.m in diamictites from the lower part of the core, represents the influence of three variables: (i) the degree of compaction seen as reduction of porosities with depth of about 30 % from top to bottom, (ii) the clast content with clasts being almost absent in diatomite deposits and (iii) the individual grain density (GD). GD itself strongly reflects the variety of lithologies as well as the influence of cement (mainly pyrite and carbonate) on the matrix grain density. The calculation of residual porosities demonstrates the strong imprint of glacial loading for especially diamictites from the upper 150 m, pointing to a significant thickness of the overriding Pleistocene ice sheet. MS on the other hand mainly documents a marine vs. terrestrial source of sediments where the latter can be divided into younger local material from the McMurdo Volcanic Province and basement clasts from the Transantarctic Mountains. Values range over several orders of magnitude from <10 (10-5 SI) in the diatomites to 8000 (10-5 SI) in single clasts (mainly dolerite). Synchronous minima and maxima in both WBD and MS support dramatic changes in the depositional environment, driven by oscillations in ice extent in response to global climate fluctuations on orbital timescales. Superimposed on this, small-amplitude variations of high frequency are found within diatomite units. A rhythmic pattern of probably millennial to centennial pacing proposes an additional non-orbital forcing as control on system dynamics, at least during interglacials.
Earth's Climate History from Glaciers and Ice Cores
NASA Astrophysics Data System (ADS)
Thompson, Lonnie
2013-03-01
Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from ice cores drilled in both Polar Regions and from low to mid-latitude, high-elevation ice fields. Those ice core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these ice fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these ice caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program
NASA Astrophysics Data System (ADS)
Ditlevsen, Peter
2017-04-01
The causes for and possible predictions of rapid climate changes are poorly understood. The most pronounced changes observed, beside the glacial terminations, are the Dansgaard-Oeschger events. Present day general circulation climate models simulating glacial conditions are not capable of reproducing these rapid shifts. It is thus not known if they are due to bifurcations in the structural stability of the climate or if they are induced by stochastic fluctuations. By analyzing a high resolution ice core record we exclude the bifurcation scenario, which strongly suggests that they are noise induced and thus have very limited predictability. Ref: Peter Ditlevsen, "Tipping points in the climate system", in Nonlinear and Stochastic Climate Dynamics, Cambridge University Press (C. Franzke and T. O'Kane, eds.) (2016) P. D. Ditlevsen and S. Johnsen, "Tipping points: Early warning and wishful thinking", Geophys. Res. Lett., 37, L19703, 2010
Surface mass balance of Greenland mountain glaciers and ice caps
NASA Astrophysics Data System (ADS)
Benson, R. J.; Box, J. E.; Bromwich, D. H.; Wahr, J. M.
2009-12-01
Mountain glaciers and ice caps contribute roughly half of eustatic sea-level rise. Greenland has thousands of small mountain glaciers and several ice caps > 1000 sq. km that have not been included in previous mass balance calculations. To include small glaciers and ice caps in our study, we use Polar WRF, a next-generation regional climate data assimilation model is run at grid resolution less than 10 km. WRF provides surface mass balance data at sufficiently high resolution to resolve not only the narrow ice sheet ablation zone, but provides information useful in downscaling melt and accumulation rates on mountain glaciers and ice caps. In this study, we refine Polar WRF to simulate a realistic surface energy budget. Surface melting is calculated in-line from surface energy budget closure. Blowing snow sublimation is computed in-line. Melt water re-freeze is calculated using a revised scheme. Our results are compared with NASA's Gravity Recovery and Climate Experiment (GRACE) and associated error is calculated on a regional and local scale with validation from automated weather stations (AWS), snow pits and ice core data from various regions along the Greenland ice sheet.
Chemistry of microparticles trapped in last glacial period ice of EPICA-DML deep ice core
NASA Astrophysics Data System (ADS)
Nedelcu, Aneta F.; Faria, Sérgio H.; Kipfstuhl, Sepp; Kuhs, Werner F.
2010-05-01
The EDML ice core, drilled within the framework of the European project for Ice Coring in Antarctica, (EPICA), in the interior of Dronning Maud Land, DML, Antarctica (at 75°S, 0°E), is the first deep ice core in the Atlantic sector of the Southern Ocean region that provides higher-resolution atmosphere and climate records for the last glacial period, when compared with other ice cores retrieved from the East Antarctic plateau [1]. The chemical impurities embedded in the ice matrix of an ice sheet are basic proxies for climate reconstruction, and their concentration and composition usually determine the occurrence of distinct (cloudy or clear) strata in the ice sheet structure. The easiest observable impurities in polar ice are air bubbles. But a considerable amount of the impurities trapped inside ice layers are observed as microscopic deposits of solid (soluble or insoluble) particles, not bigger than a few micra in size, called microinclusions. Layers of ice with a high content of (micro)inclusions are in general called cloudy bands and are considered to have been formed from the precipitations deposited during colder periods. Roughly, we expect that the colder the climate during the time the snow accumulated, the cloudier the ice stratum that forms afterwards [2]. Mainly by means of in-situ micro-Raman spectroscopy, it has been shown that in Antarctic glacial ice the soluble microinclusions occur mostly as sulphate and nitrate salts [3], while in Arctic ice more commonly as carbonate salts [4]. These findings could be explained in terms of different aerosol compositions determined by the specific regional environments and climatic conditions [5]. Regarding the insoluble particles that might exist in natural ice, with higher frequency in ice layers formed during glacial type stages, the general findings classify them in the (alumino)silicate mineralogical class [6]. Microinclusions existent in solid samples taken from clear and cloudy ice layers, corresponding to the Marine Isotope Stage 2 of the EDML deep ice core, were subjected to in-situ Raman scattering measurements. The overall results [7] resemble the observations [8] that a high content of sulphate anions could characterize the chemical composition of the aerosols arriving at the EDML ice core drilling site. Many microparticles provided a Raman signal different from what would be expected if only simple compounds were forming them (and dissimilar with those in [3]). For example, it resulted that in the same microinclusion nonequivalent sulphate groups are present (20% of all), or that sulphate and silicate anions coexist (10% of all). On the one hand, this can be explained by a simple post-depositional aggregation of very small inclusions of simple sulphate salts into microclusters. On the other hand the results might be interpreted in terms of aerosol chemistry, when a mixture of sulphate salts could have been already formed prior to deposition. This work will offer answers for questions related with the existence of a post-depositional alteration of the initial impurities deposited in the LGP ice at the EDML ice core drilling site. [1] EPICA community members (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195-198. [2] Faria, S.H., Freitag, J., Kipfstuhl, S. (2010) Polar ice structure and the integrity of ice-core paleoclimate records, Quaternary Sci. Rev., 29, 1-2, 338-351. [3] Ohno H., M. Igarashi, T. Hondoh. 2005. Salt inclusions in polar ice core: Location and chemical form of water-soluble impurities, Earth Planet.Sci. Lett., 232, 171-178. [4] Sakurai T., Iizuka Y., Horikawa S., Johnsen S., Dahl-Jensen D., Steffensen J.P., Hondoh T. (2009). Direct observation of salts as micro-inclusions in the Greenland GRIP ice core. J. Glaciol., 55, 193, 777-783. [5] Iizuka Y., Horikawa S., Sakurai T., Johnson S, Dahl-Jensen D., Steffensen J.P., Hondoh T. (2008). A relationship between ion balance and the chemical compounds of salt inclusions found in the Greenland Ice Core Project and Dome Fuji ice cores. J. Geophys. Res., 113, D7, D07303. [6] Iizuka, Y., Miyake T., Hirabayashi M., Suzuki T., Matoba S., Motoyama H., Fujii Y., Hondoh T. (2009). Constituent elements of insoluble and non-volatile particles during the Last Glacial Maximum exhibited in the Dome Fuji (Antarctica) ice core. J. Glaciol., 55, 191, 552-562. [7] Nedelcu A.F., Kipfstuhl S., Faria S.H., Kuhs W.F. Microinclusions in clear and cloudy (MIS2) EDML ice revealed by Raman spectroscopy. In preparation for J. Glaciol. [8] Weller R., Wagenbach D. (2007) Year-round chemical aerosol records in continental Antarctica obtained by automatic samplings. Tellus 59, 755-765.
NASA Astrophysics Data System (ADS)
Sadatzki, H.; Berben, S.; Dokken, T.; Stein, R.; Fahl, K.; Jansen, E.
2016-12-01
Rapid changes in sea ice extent in the Nordic Seas may have played a crucial role in controlling the abruptness of ocean circulation and climate changes associated with Dansgaard-Oeschger (D-O) cycles during the last glacial (Li et al., 2010; Dokken et al., 2013). To investigate the role of sea ice for abrupt climate changes, we produced a sea ice record from the Norwegian Sea Core MD99-2284 at a temporal resolution approaching that of ice core records, covering four D-O cycles at ca. 32-41 ka. This record is based on the sea ice diatom biomarker IP25, open-water phytoplankton biomarker dinosterol and semi-quantitative phytoplankton-IP25 (PIP25) estimates. A detailed tephrochronology of MD99-2284 corroborates the tuning-based age model and independently constrains the GS9/GIS8 transition, allowing for direct comparison between our sediment and ice core records. For cold stadials we find extremely low fluxes of total organic carbon, dinosterol and IP25, which points to a general absence of open-water phytoplankton and ice algae production under a near-permanent sea ice cover. For the interstadials, in turn, all biomarker fluxes are strongly enhanced, reflecting a highly productive sea ice edge situation and implying largely open ocean conditions for the eastern Nordic Seas. As constrained by three tephra layers, we observe that the stadial-interstadial sea ice decline was rapid and may have induced a coeval abrupt northward shift in the Greenland precipitation moisture source as recorded in ice cores. The sea ice retreat also facilitated a massive heat release through deep convection in the previously stratified Nordic Seas, generating atmospheric warming of the D-O events. We thus conclude that rapid changes in sea ice extent in the Nordic Seas amplified oceanic reorganizations and were a key factor in controlling abrupt Greenland climate changes over D-O cycles. Dokken, T.M. et al., 2013. Paleoceanography 28, 491-502 Li, C. et al., 2010. Journ. Clim. 23, 5457-5475
NASA Astrophysics Data System (ADS)
Bereiter, Bernhard; Maechler, Lars; Schmitt, Jochen; Walther, Remo; Tuzson, Béla; Scheidegger, Philipp; Emmenegger, Lukas; Fischer, Hubertus
2017-04-01
Ice cores are unique archives of ancient air providing the only direct record of past greenhouse gases - key in reconstructing the roles of greenhouse gases in past climate changes. The European Partnership in Ice Core Sciences (EuroPICS) plans to drill an ice core extending over 1.5 Ma, nearly doubling the time span of the existing greenhouse record and covering the time period of the Mid Pleistocene Transition. The ice covering the time interval from 1-1.5 Ma is expected to be close to the bedrock and, due to glacial flow, extremely thinned. A 10,000 yr glacial/interglacial transition can be compressed in 1 m of ice. The targeted 100 yr resolution therefore constrains the sample size to 15-30 g containing only 1-2ml STP air. Within the deepSlice project we aim to unlock such atmospheric archives in extremely thinned ice by developing a novel coupled semi-continuous sublimation extraction/laser spectroscopy system. Vacuum sublimation, with an infrared source, has been chosen as extraction method as it allows 100% gas extraction of all gas species from ice without changing the isotopic composition of CO2. In order to reduce ice waste and accelerate sample throughput, we are building a sublimation extraction system that is able to continuously sublimate an ice-core section and subsequently collect discrete full air samples. For the gas analytics, we develop a custom-made mid-infrared laser spectrometer allowing simultaneous measurement of the CO2, CH4 and N2O concentrations as well as the isotopic composition of CO2 on air samples of only 1-2 ml STP. The two systems will be coupled via cryo-trapping of the sample air in dip tubes, followed by expansion of the sample air into the laser spectrometer. Due to the nondestructive laser technique, the air sample can be recollected and reused for further analytics.
Recent and past dust concentrations and fluxes from a developing array of Antarctic ice cores
NASA Astrophysics Data System (ADS)
McConnell, J. R.; Anschütz, H.; Baggenstos, D.; Das, S. B.; Isaksson, E. D.; Lawrence, R.; Layman, L.; Maselli, O.; Severinghaus, J. P.; Sigl, M.; Petit, J. R.; Grente, B.
2012-12-01
Continental dust is an important component of climate forcing, both because of its interaction with incoming solar and outgoing long wave radiation and because of its impact on albedo when deposited on bright surfaces such as fresh snow. Continental dust may also play an important role in ocean fertilization and carbon sequestration. Because the lifetime of dust aerosol in the atmosphere is only on the order of days to weeks, spatial and temporal variability in concentrations and fluxes is high and understanding of recent and long term changes is limited. Here we present and discuss detailed continuous, high depth resolution measurements of a range of dust proxies in a developing array of Antarctic ice cores. Included are traditional proxies such as non-sea-salt (nss) calcium and insoluble particle number and size distribution as well as less traditional proxies such as aluminum, vanadium, manganese, rare earth elements, and nss uranium which together provide important insights into how dust sources and transport may have changed in the past. The array includes a number of new shallow ice core records from East and West Antarctica spanning recent centuries to millennia, as well as Last Glacial Maximum to early Holocene records from the deep WAIS Divide and Taylor Glacier Horizontal ice cores.
Bacterial responses to environmental change on the Tibetan Plateau over the past half century.
Liu, Yongqin; Priscu, John C; Yao, Tandong; Vick-Majors, Trista J; Xu, Baiqing; Jiao, Nianzhi; Santibáñez, Pamela; Huang, Sijun; Wang, Ninglian; Greenwood, Mark; Michaud, Alexander B; Kang, Shichang; Wang, Jianjun; Gao, Qun; Yang, Yunfeng
2016-06-01
Climate change and anthropogenic factors can alter biodiversity and can lead to changes in community structure and function. Despite the potential impacts, no long-term records of climatic influences on microbial communities exist. The Tibetan Plateau is a highly sensitive region that is currently undergoing significant alteration resulting from both climate change and increased human activity. Ice cores from glaciers in this region serve as unique natural archives of bacterial abundance and community composition, and contain concomitant records of climate and environmental change. We report high-resolution profiles of bacterial density and community composition over the past half century in ice cores from three glaciers on the Tibetan Plateau. Statistical analysis showed that the bacterial community composition in the three ice cores converged starting in the 1990s. Changes in bacterial community composition were related to changing precipitation, increasing air temperature and anthropogenic activities in the vicinity of the plateau. Collectively, our ice core data on bacteria in concert with environmental and anthropogenic proxies indicate that the convergence of bacterial communities deposited on glaciers across a wide geographical area and situated in diverse habitat types was likely induced by climatic and anthropogenic drivers. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Eemian and penultimate transition reflected in the chemical ice core record from Dome C
NASA Astrophysics Data System (ADS)
Bigler, M.; Lambert, F.; Stauffer, B.; Röthlisberger, R.; Wolff, E. W.
2003-04-01
Within the scope of the European Project for Ice Coring in Antarctica (EPICA) chemical analyses have been done along the Dome C ice core. Among other substances, Ca2+, dust, Na+, NH_4{}+, NO_3{}- and electrolytical melt water conductivity have been measured at 1 cm resolution with the Bern Continuous Flow Analysis (CFA) system. Here we present new data from the Eemian and the preceding transition covering an age interval from approximately 180 kyr to 110 kyr before present. This sequence is compared with the Holocene and the last transition, mainly with emphasis on terrestrial and marine tracers. Concentration levels for the two periods compare quite well, but the general shape differs considerably. The changes in dust input to Dome C seemed to have been much more abrupt during the penultimate transition than during the last transition (18 to 15 kyr BP). This may reflect different conditions and/or processes in the dust source region.
NASA Astrophysics Data System (ADS)
Baroni, Mélanie; Bard, Edouard; Aster Team
2015-04-01
Cosmogenic nuclides provide the only possibility to document solar activity over millennia. Carbon-14 (14C) and beryllium-10 (10Be) records are retrieved from tree rings and ice cores, respectively. Recently, 14C records have also proven to be reliable to detect two large Solar Proton Events (SPE) (Miyake et al., Nature, 2012, Miyake et al., Nat. Commun., 2013) that occurred in 774-775 A.D. and in 993-994 A.D.. The origin of these events is still under debate but it opens new perspectives for the interpretation of 10Be ice core records. We present a new 10Be record from an ice core from Dome C (Antarctica) covering the last millennium. The chronology of this new ice core has been established by matching volcanic events on the WAIS Divide ice core (WDC06A) that is the best dated record in Antarctica over the Holocene (Sigl et al., JGR, 2013, Sigl et al., Nat. Clim. Change, 2014). The five minima of solar activity (Oort, Wolf, Spörer, Maunder and Dalton) are detected and characterized by a 10Be concentration increase of ca. 20% above average in agreement with previous studies of ice cores drilled at South Pole and Dome Fuji in Antarctica (Bard et al., EPSL, 1997; Horiuchi et al., Quat. Geochrono., 2008) and at NGRIP and Dye3 in Greenland (Berggren et al., GRL, 2009). The high resolution, on the order of a year, allows the detection of the 11-year solar cycle. Sulfate concentration, a proxy for volcanic eruptions, has also been measured in the very same samples, allowing a precise comparison of both 10Be and sulfate profiles. We confirm the systematic relationship between stratospheric eruptions and 10Be concentration increases, first evidenced by observations of the stratospheric volcanic eruptions of Agung in 1963 and Pinatubo in 1991 (Baroni et al., GCA, 2011). This relationship is due to an increase in 10Be deposition linked to the role played by the sedimentation of volcanic aerosols. In the light of these new elements, we will discuss the limitations and possibilities of using a 10Be ice core record to detect SPE and the variations of past solar activity.
Abrupt Atmospheric Methane Increases Associated With Hudson Strait Heinrich Events
NASA Astrophysics Data System (ADS)
Rhodes, R.; Brook, E.; Chiang, J. C. H.; Blunier, T.; Maselli, O. J.; McConnell, J. R.; Romanini, D.; Severinghaus, J. P.
2015-12-01
The drivers of abrupt climate change during the Last Glacial Period are not well understood. While Dansgaard-Oeschger (DO) cycles are thought to be linked to variations in the strength of the Atlantic Meridional Ocean Circulation (AMOC), it is not clear how or if Heinrich Events—extensive influxes of icebergs into the North Atlantic Ocean that impacted global climate and biogeochemistry—are related. An enduring problem is the difficultly in dating iceberg rafted debris deposits that typically lack foraminifera. Here we present an ultra-high resolution record of methane from the West Antarctic Ice Sheet Divide ice core at unprecedented, continuous temporal resolution from 67.2-9.8 ka BP, which we propose constrains the timing of Heinrich events. Our methane record essentially mirrors Greenland ice core stable isotope variability across D-O events, except during Heinrich stadials 1, 2, 4 and 5. Partway through these stadials only, methane increases abruptly and rapidly, as at the onset of a D-O event but Greenland temperature exhibits no equivalent response. Speleothem records exhibit signatures of drought in the Northern extra-tropics and intensified monsoonal activity over South America at these times. We use a simple heuristic model to propose that cold air temperatures and extensive sea ice in the North, resulting from Heinrich events, caused extreme reorganization of tropical hydroclimate. This involved curtailment of the seasonal northerly migration of tropical rain belts, leading to intensification of rainfall over Southern Hemisphere tropical wetlands, thus allowing production of excess methane relative to a 'normal' Greenland stadial. We note that this mechanism can operate if AMOC is already in a slowed state when a Heinrich event occurs, as paleo-evidence suggests it was. Heinrich events and associated sea ice cover would therefore act to prolong the duration of this AMOC state. Our findings place the big four Heinrich events of Hudson Strait origin firmly within ice core chronologies and suggest that their impacts on AMOC and tropical hydroclimate persisted for 740-1520 yr.
Variability of Black Carbon Deposition to the East Antarctic Plateau, 1800-2000 AD
NASA Technical Reports Server (NTRS)
Bisiaux, M. M.; Edwards, R.; McConnell, J. R.; Albert, M. R.; Anschutz, H.; Neumann, T. A.; Isaksson, E.; Penner, J. E.
2012-01-01
Refractory black carbon aerosols (rBC) from biomass burning and fossil fuel combustion are deposited to the Antarctic ice sheet and preserve a history of emissions and long-range transport from low- and mid-latitudes. Antarctic ice core rBC records may thus provide information with respect to past combustion aerosol emissions and atmospheric circulation. Here, we present six East Antarctic ice core records of rBC concentrations and fluxes covering the last two centuries with approximately annual resolution (cal. yr. 1800 to 2000). The ice cores were drilled in disparate regions of the high East Antarctic ice sheet, at different elevations and net snow accumulation rates. Annual rBC concentrations were log-normally distributed and geometric means of annual concentrations ranged from 0.10 to 0.18 m cro-g/kg. Average rBC fluxes were determined over the time periods 1800 to 2000 and 1963 to 2000 and ranged from 3.4 to 15.5 m /a and 3.6 to 21.8 micro-g/sq m/a, respectively. Geometric mean concentrations spanning 1800 to 2000 increased linearly with elevation at a rate of 0.025 micro-g/kg/500 m. Spectral analysis of the records revealed significant decadal-scale variability, which at several sites was comparable to decadal ENSO variability.
NASA Astrophysics Data System (ADS)
Brügger, S.; Gobet, E.; Sigl, M.; Osmont, D.; Schwikowski, M.; Tinner, W.
2017-12-01
Wild fires are an ecological disturbance agent across ecosystems, driving vegetation dynamics and resulting in disruption of habitats (Moritz et al. 2014).We analyze pollen and spores as proxies for vegetation composition, structure and agricultural activity, microscopic charcoal as a proxy for fire activity, and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion which preserve in ice cores over millennia (Eichler et al. 2011).Our high-alpine ice core (4452 m a.s.l.) from Colle Gnifetti, Swiss Alps is located in the center of Western Europe, thus allowing to assess vegetation and societal responses to climatic change and wildfire disturbance on a subcontinental scale. The record covers the last millennium with an excellent chronological control (Jenk et al. 2009, Sigl et al. 2009), particularly over the most recent 200 years - the period that experienced important climatic changes and an increasing globalization of economy.The Colle Gnifetti record reflects large scale impacts such as extreme weather, societal innovations, agricultural crises and pollution of the industrial period in Western Europe. Pollution tracers occur in the record as early as 1750 AD and coincide with the shift to large-scale maize production in Northern Italy and with increased fire activity. Our multiproxy record may allow desentagling the role of climate and humans for vegetation composition and biomass burning. The attribution of causes may significantly advance our understanding of future vegetation and fire dynamics under global change conditions. To our knowledge we present the first long-term high-resolution palynological record of a high elevation ice core in Europe.REFERENCESEichler et al. (2011): An ice-core based history of Siberian forest fires since AD 1250. Quaternary Science Reviews, 30(9), 1027-1034.Jenk et al. (2009): A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. Journal of Geophysical Research: Atmospheres, 114(D14).Moritz et al. (2014): Learning to coexist with wildfire. Nature, 515(7525), 58-66.Sigl et al. (2009): Towards radiocarbon dating of ice cores. Journal of Glaciology, 55(194), 985-996.
Glacigenic landforms and sediments of the Western Irish Shelf
NASA Astrophysics Data System (ADS)
McCarron, Stephen; Monteys, Xavier; Toms, Lee
2013-04-01
Vibrocoring of possible glacigenic landforms identified from high resolution bathymetric coverage of the Irish Shelf by the Irish National Seabed Survey (INSS) has provided several clusters of short (<3m) cores that, due to a regional post-glacial erosional event, comprise last glacial age stratigraphies. In addition, new shallow seismic data and sedimentological information from across the Western Irish Shelf provide new insights into aspects of the nature, timing and pattern of shelf occupation by grounded lobate extensions of the last Irish Ice Sheet. Restricted chronological control of deglacial sequences in several cores indicates that northern parts of the western mid-shelf (south of a prominent outer Donegal Bay ridge) were ice free by ~24 ka B.P., and that ice had also probably retreated from outer shelf positions (as far west as the Porcupine Bank) at or before this time.
NASA Astrophysics Data System (ADS)
Oyabu, Ikumi; Iizuka, Yoshinori; Uemura, Ryu; Miyake, Takayuki; Hirabayashi, Motohiro; Motoyama, Hideaki; Sakurai, Toshimitsu; Suzuki, Toshitaka; Hondoh, Takeo
2014-12-01
The flux and chemical composition of aerosols impact the climate. Antarctic ice cores preserve the record of past atmospheric aerosols, providing useful information about past atmospheric environments. However, few studies have directly measured the chemical composition of aerosol particles preserved in ice cores. Here we present the chemical compositions of sulfate and chloride salts from aerosol particles in the Dome Fuji ice core. The analysis method involves ice sublimation, and the period covers the last termination, 25.0-11.0 thousand years before present (kyr B.P.), with a 350 year resolution. The major components of the soluble particles are CaSO4, Na2SO4, and NaCl. The dominant sulfate salt changes at 16.8 kyr B.P. from CaSO4, a glacial type, to Na2SO4, an interglacial type. The sulfate salt flux (CaSO4 plus Na2SO4) inversely correlates with δ18O in Dome Fuji over millennial timescales. This correlation is consistent with the idea that sulfate salt aerosols contributed to the last deglacial warming of inland Antarctica by reducing the aerosol indirect effect. Between 16.3 and 11.0 kyr B.P., the presence of NaCl suggests that winter atmospheric aerosols are preserved. A high NaCl/Na2SO4 fraction between 12.3 and 11.0 kyr B.P. indicates that the contribution from the transport of winter atmospheric aerosols increased during this period.
Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett
2015-08-28
Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with <1mL of sample. This new approach provides a reliable and robust analytical method for the simultaneous determination of organic and inorganic anions, including fluoride, methanesulfonate, chloride, sulfate and nitrate anions. Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Belt, Simon T.; Vare, Lindsay L.; Massé, Guillaume; Manners, Hayley R.; Price, John C.; MacLachlan, Suzanne E.; Andrews, John T.; Schmidt, Sabine
2010-12-01
A 7000 year spring sea ice record for Victoria Strait (ARC-4) and Dease Strait (ARC-5) in the Canadian Arctic Archipelago (CAA) has been determined by quantification of the sea ice diatom-derived biomarker IP 25 in two marine sediment piston cores obtained in 2005. The chronologies of the ARC-4 and ARC-5 cores were determined using a combination of 14C AMS dates obtained from macrobenthic fossils and magnetic susceptibility measurements. The ages of the tops of the piston cores were estimated by matching chemical and physical parameters with those obtained from corresponding box cores. These analyses revealed that, while the top of the ARC-4 piston core was estimated to be essentially modern (ca. 60 cal yr BP), a few hundred years of sediment appeared to be absent from the ARC-5 piston core. Downcore changes to IP 25 fluxes for both cores were interpreted in terms of variations in spring sea ice occurrence, and correlations between the individual IP 25 flux profiles for Victoria Strait, Dease Strait and Barrow Strait (reported previously) were shown to be statistically significant at both 50 and 100-year resolutions. The IP 25 data indicate lower spring sea ice occurrences during the early part of the record (ca. 7.0-3.0 cal kyr BP) and for parts of the late Holocene (ca. 1.5-0.8 cal kyr BP), especially for the two lower latitude study locations. In contrast, higher spring sea ice occurrences existed during ca. 3.0-1.5 cal kyr BP and after ca. 800 cal yr BP. The observation of, consecutively, lower and higher spring sea ice occurrence during two periods of the late Holocene, coincides broadly with the Medieval Warm Period and Little Ice Age epochs, respectively. The IP 25 data are complemented by particle size and mineralogical data, although these may alternatively reflect changes in sea level at the study sites. The IP 25 data are also compared to previous proxy-based determinations of palaeo sea ice and palaeoclimate for the CAA, including those based on bowhead whale remains and dinocyst assemblages. The spatial consistency in the proxy data which, most notably, indicates an increase in spring sea ice occurrence around 3 cal kyr BP, provides a potentially useful benchmark for the termination of the Holocene Thermal Maximum for the central CAA.
Late-glacial and Holocene history of changes in Quelccaya Ice Cap, Peru
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.; Finkel, R. C.
2008-12-01
Quelccaya Ice Cap in the southeastern Peruvian Andes (~13-14° S latitude) is an icon for climate change. Its rapidly receding outlet, Qori Kalis Glacier, has been monitored since the 1970's. Cores from Quelccaya Ice Cap provide high-resolution information about temperature and precipitation during the past 1,500 years. We extend the understanding of past changes in Quelccaya Ice Cap based on mapping and dating of glacial moraines and associated deposits. Our results include fifty 10Be ages of moraines and bedrock as well as twenty-nine 14C ages of organic material associated with moraines. These results form the basis of a chronology of changes in Quelccaya Ice Cap from ~16,000 yr BP to late Holocene time. Results from 10Be and 14C dating indicate that Quelccaya Ice Cap experienced a significant advance at 12,700-11,400 yr BP. Subsequent to this advance, the ice margin deposited at least three recessional moraine sets. Quelccaya Ice Cap receded to near its present-day margin by ~10,000 yr BP. Neoglacial advances began by ~3,000 yr BP and culminated with a maximum advance during the Little Ice Age. This chronology fits well with prior work which indicates a restricted Quelccaya Ice Cap during middle Holocene time. Moreover, the overlap between moraine and ice core data for the last 1,500 years provides a unique opportunity to assess the influences of temperature and precipitation on past ice cap extents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuster, Paul F.; White, David E.; Naftz, David L.
2000-02-27
The potential to use ice cores from alpine glaciers in the midlatitudes to reconstruct paleoclimatic records has not been widely recognized. Although excellent paleoclimatic records exist for the polar regions, paleoclimatic ice core records are not common from midlatitude locations. An ice core removed from the Upper Fremont Glacier in Wyoming provides evidence for abrupt climate change during the mid-1800s. Volcanic events (Krakatau and Tambora) identified from electrical conductivity measurements (ECM) and isotopic and chemical data from the Upper Fremont Glacier were reexamined to confirm and refine previous chronological estimates of the ice core. At a depth of 152 mmore » the refined age-depth profile shows good agreement (1736{+-}10 A.D.) with the {sup 14}C age date (1729{+-}95 A.D.). The {delta}{sup 18}O profile of the Upper Fremont Glacier (UFG) ice core indicates a change in climate known as the Little Ice Age (LIA). However, the sampling interval for {delta}{sup 18}O is sufficiently large (20 cm) such that it is difficult to pinpoint the LIA termination on the basis of {delta}{sup 18}O data alone. Other research has shown that changes in the {delta}{sup 18}O variance are generally coincident with changes in ECM variance. The ECM data set contains over 125,000 data points at a resolution of 1 data point per millimeter of ice core. A 999-point running average of the ECM data set and results from f tests indicates that the variance of the ECM data decreases significantly at about 108 m. At this depth, the age-depth profile predicts an age of 1845 A.D. Results indicate the termination of the LIA was abrupt with a major climatic shift to warmer temperatures around 1845 A.D. and continuing to present day. Prediction limits (error bars) calculated for the profile ages are {+-}10 years (90% confidence level). Thus a conservative estimate for the time taken to complete the LIA climatic shift to present-day climate is about 10 years, suggesting the LIA termination in alpine regions of central North America may have occurred on a relatively short (decadal) timescale. (c) 2000 American Geophysical Union.« less
NASA Astrophysics Data System (ADS)
Williams, T.; Escutia, C.; De Santis, L.; O'Brien, P.; Pekar, S. F.; Brinkhuis, H.; Domack, E. W.
2013-12-01
Along the George V and Adélie Land continental shelf of East Antarctica, shallowly-buried strata contain a record of Antarctica's climate and ice history from the lush forests of the Eocene greenhouse to the dynamic ice sheet margins of the Neogene. Short piston cores and dredges have recovered Early Cretaceous and Eocene organic-rich sediment at the seabed, and in 2010, IODP Expedition 318 recovered earliest Oligocene and early Pliocene subglacial and proglacial diamictites. However, challenging ice and drilling conditions from the JOIDES Resolution on the shelf resulted in poor core recovery and sites had to be abandoned before the stratigraphic targets could be reached. Therefore, in a new IODP drilling proposal submitted earlier this year, we propose to use the MeBo sea bed drill for improved core recovery and easier access to the shelf, and drill a stratigraphic transect of shallow (~80m) holes. To investigate the evolution of the Antarctic ice sheet in this sector, we target strata above and below regional erosional and downlap surfaces to date and characterize major episodes of ice sheet advance and retreat. These direct records of ice extent on the shelf can be set in the context of Southern Ocean records of temperature, ice-rafted debris (IRD) and latitudinal fluctuations of the opal belt, and hence we can relate ice sheet evolution to paleoclimate conditions. Targets include possible late Eocene precursor glaciations, the Eocene/Oligocene boundary erosion surface, Oligocene and Miocene ice extents, and ice margin fluctuations in the Pliocene. At the Cretaceous and Eocene proposed sites, marine and terrestrial temperature proxies and palynological records will provide information on high-latitude paleoenvironments and pole-equator temperature gradients. Here we present existing data from the area and the proposed new drill sites. The ice and climate history of the George V and Adélie Land margin can provide warm-world scenarios to help understand ice sheet instability in analogous future warm climates.
NASA Astrophysics Data System (ADS)
Gfeller, Gideon; Bigler, Matthias; Schüpbach, Simon; Mini, Olivia; Leuenberger, Daiana; Fischer, Hubertus
2014-05-01
Earth's climate system has been oscillating over the last million years between cold glacials and warm interglacials, leaving the imprints of their climate states in form of isotopes variations and chemical impurities in polar ice caps. In the course of the North Greenland Eemian Ice Drilling (NEEM) project, the NEEM ice core has been entirely analysed in very high depth resolution with a Continuous Flow Analysis (CFA) system for the concentrations of chemical aerosol tracers in the ice. Only in the brittle ice zone (600-1100 m depth equivalent to the time interval 3000-8000 years before present) most of the ice had to be discarded due to multifractured core material. Based on the unique reconstructed age scale to unfold the stratigraphically disturbed part from about 2200 m depth downwards (NEEM community members, Nature, 2013), we are able to present the first Greenland chemistry record over the entire last interglacial, the so called Eemian period (about 128'000 to 115'000 years ago). As the Eemian is believed to have been 4 to 8 degrees C warmer than the modern climate, it can be used as an analogue for our present warming climate and, thus, contributes to a better understanding of processes causing natural variations. By means of the chemistry records we are able to assess the natural variability of Greenland Eemian climate and gain insight in its biogeochemical state. Here, short-term variability as well as long term trends of soluble chemical impurities in the Eemian are investigated and compared with those in the Holocene. Changes of organic processes in soils and biomass burning for example are assessed through soluble ammonium and nitrate concentrations. In comparison to the Holocene, ammonium concentrations were about 25% higher during the Eemian. Nitrate, on the other hand, shows about 25% lower concentrations. Sodium concentrations, reflecting changes in sea salt aerosol, are about 35% lower during the Eemian than during the Holocene. Calcium, generally regarded as a long range transport proxy, shows similar concentration during both periods.
NASA Astrophysics Data System (ADS)
Thompson, L. G.; Yao, T.; Mosley-Thompson, E. S.; Lin, P.
2012-12-01
The tropical hydrological cycle is a key factor coupling isotopic records from ice core, speleothem and lake records with tropical SSTs and the vertical amplification of temperature in the Tropics. Stable isotopic ratios, particularly of oxygen, preserved in glacier ice provide high resolution records of climate changes over long time periods. In polar ice sheets the isotopic signal is driven primarily by temperature while in low-latitudes it depends on a variety of hydrologic and thermal influences in the broad geographic region that supplies moisture to the mountain glaciers. The strong correlation between ice core-derived isotopic records throughout the low- and mid-latitudes and tropical SSTs likely reflects the dominance of tropical evaporation in the flux of water vapor to the atmosphere and provides a possible explanation for the large-scale isotopic links among low- and mid-latitude paleoclimate records. Many low- to mid-latitude ice fields provide continuous, annually-resolved proxy records of climatic and environmental variability recorded by many preserved and measurable parameters including oxygen and hydrogen isotopic ratios and net mass balance (accumulation). These records present an opportunity to examine the nature of climate variability in these regions in greater detail and to extract new information about long-distance relationships in the climate system. Understanding these relationships is essential for proper interpretation of the isotopic records archived in glaciers, lakes, speleothems and other paleo-archives in the Third Pole (TP) Region. Here we compare high resolution records from Dasuopu Glacier in the Himalaya, a speleothem record from Wanxiang Cave in Gansu Province on the TP and the annually resolved ice core records from the Quelccaya Ice Cap in the tropical Andes of South America. The purpose is to explore the role of long-distance processes in determining the isotopic composition of paleo archives on the TP. Running correlations between the Quelccaya and Dasuopu records over the last 500 years reveal that through time isotopes and net balance are both positively and negatively correlated over multi-decades scales while correlation of the annual values over the entire period is quite low. The annual isotopic records are strongly correlated with tropical Pacific SSTs (R2 = 0.55) reflecting the strong linkage between tropical Pacific SSTs associated with ENSO and tropospheric temperatures in the low latitudes. The well-documented contemporaneous loss of ice cover on Quelccaya, Naimona'nyi, Kilimanjaro in eastern Africa and the ice fields near Puncak Jaya in Papua, Indonesia likely reflects the dominance of large-scale processes. Moreover, such widespread melting is consistent with model predictions for a vertical amplification of temperature in the tropics and with increasing isotopic enrichment with elevation across the Third Pole Region over the last 100 years.
NASA Astrophysics Data System (ADS)
Faïn, Xavier; Chappellaz, Jérôme; Rhodes, Rachael; Stowasser, Christopher; Blunier, Thomas; McConnell, Joseph; Brook, Edward; Desbois, Thibault; Romanini, Daniele
2014-05-01
Carbon monoxide (CO) is the principal sink for hydroxyl radicals (OH) in the troposphere. Consequently, changes in atmospheric CO levels can considerably perturb the oxidizing capacity of the atmosphere, affecting mixing ratios of a host of chemical species oxidized by OH, including methane. In addition, CO variations (and changes in its stable isotopic composition) are expected to be good tracers of changes in biomass burning emissions. Investigating past mixing ratios of carbon monoxide is thus a promising approach towards reducing uncertainty related to the past oxidative capacity of the atmosphere and biogeochemical cycling of methane. Recent developments in optical spectrometry (Optical Feedback Cavity Enhanced Absorption Spectrometry, OFCEAS), combined with continuous flow analysis (CFA) systems, allow efficient, precise measurements of CO concentrations in ice cores. Coupling our OFCEAS spectrometer with the CFA melter operated at DRI (Reno, USA) provided the first continuous CO measurements along the NEEM (Greenland) core covering the last 1800 yr at an unprecedented resolution. Although the most recent section of this record (i.e., since 1700 AD) agreed with existing discrete CO measurements from the Eurocore ice core and the deep NEEM firn, it was difficult to interpret in terms of atmospheric CO variation due to high frequency, high amplitudes spikes related to in-situ production (Faïn et al., Climate of the Past Discussion). During a recent 8-week analytical campaign, three different ice archives from Greenland were melted on the DRI CFA and analyzed continuously for CO with the OFCEAS spectrometer: (i) the D4 core (spanning the last 170 yr), (ii) the NEEM core (extending the existing record from 200 AD to 800 BC), and (iii) the Tunu core (spanning the last 1800 yr). Although in-situ production of CO is observed at all sites, these new records reveal different CO patterns and trends. This multisite approach allows us to better characterize the processes involved in CO in-situ production by evaluating the influence of site-specific factors such as surface accumulation rate (10, 22 and 41 cm ice yr-1 for Tunu, NEEM, and D4 respectively), surface temperature, or aerosols loading (with e.g., median black carbon concentration ranging from 0.9 to 2.3 ng g-1 among the investigated sites). However, a quantitative understanding of the past evolution of atmospheric CO above Greenland remains challenging due to the existence of these artifacts.
The Climate and Human Impacts of Major Explosive Volcanism AD670-730, A Multi-proxy Assessment
NASA Astrophysics Data System (ADS)
Gao, C.; Ludlow, F.
2013-12-01
Chronologically secure volcanic events can provide an important tool to improve ice core dating as well as our understanding of volcano-climate responses. However, there is a substantial lack of reference horizons for ice-core dating during the first millennium, excepting the Taupo (New Zealand, AD186×10) and Vesuvius (Italy, AD 79) eruptions. In this exploratory case-study, we use a total of 20 ice core records, 9 from the Arctic and 11 from the Antarctic, together with historical records to examine the occurrence and climatic impact of explosive volcanism, AD 670-730. Sulfate signals comparable in magnitude to the sizeable 1815 Tambora eruption are detected in all of the ice-core time series, with different cores attributing the timing of eruptions to AD 676×2, 688×2, or 700×2, respectively. Historical records of widespread frost damage, anomalously warm winters, drought, famine and mortality from Chinese, European and Middle Eastern chronicles suggest substantial climate and social perturbations during AD 677-685 and AD 699-709. The distinctive double-peak feature seen in the majority of the volcanic signals from both poles at AD 676×2 and AD 688×2 suggests that these signals may belong to the same eruption, with those cores dating the signals to c.AD 676 generally considered to have a more precise chronology. Combining the evidence from natural and historical anthropogenic records and taking into account uncertainties (e.g. resolution, dating accuracy) associated with individual ice cores, we propose that a (most-likely) low-latitude eruption took place around AD676, followed by another possible eruption around AD700, identifiable by the significant acidity in polar ice-caps and historical documents. Unique historical observations of 'blood rain' in Ireland (often associated with Saharan sand deposition, but also plausibly with iron and manganese-rich tephra falls) also suggest a high-latitude eruption (possibly Icelandic) at AD693, corresponding to a GISP2 volcanic signal at 690.7×2.5. Results from this study attempt to characterize and reduce uncertainties in ice-core volcanic reconstructions, and make a contribution towards establishing a new reference horizon for this relatively under-studied period.
An Ice Core Perspective on Aleutian Low Variability over the Common Era
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Winski, D.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S.; Introne, D.
2016-12-01
The Aleutian Low (ALow) is the dominant feature of atmospheric circulation in the North Pacific, strongly influencing wintertime temperature, precipitation and wind patterns in Alaska and the Yukon Territory, as well as further downstream in North America via atmospheric teleconnections. Changes in ALow strength are known to impact marine ecosystems by contributing to the multi-decadal sea-surface temperature mode in the North Pacific known as the Pacific Decadal Oscillation (PDO). Meteorological records show that in addition to distinct PDO-like variability, the ALow has intensified over the 20th century. However, ALow variability prior to the instrumental period remains unclear due to generally poor correlations among published ALow and PDO reconstructions, including the Mt. Logan ice core ALow record. An improved understanding of past ALow variability is critical for evaluating natural ALow forcing mechanisms, placing the 20th century intensification in context, and improving ALow projections under increased anthropogenic forcing. Here we combine ALow-sensitive time series from the new Denali ice core and the Mt. Logan ice core to develop a high-resolution (1-3 year) multi-ice-core record of ALow variability over the past 1500 years. The Denali ice core was collected from the summit plateau (3900 m) of Mt. Hunter in 2013, and was sampled using the Dartmouth continuous melter system with discrete sampling for major ion (IC), trace element (ICP-MS), and stable isotope ratios (Picarro), as well as continuous flow analyses for dust size and concentration (Klotz Abakus). We focus here on the sea-salt sodium time series, and calibrate our record over the 20th century with reanalysis wind speed and pressure data. The Denali sodium record of ALow strength strongly resembles the Mt. Logan ALow record, with both showing a recent intensification of the ALow that started in the late 1600s and continues into the 20th century. Both records reveal that the ALow was stronger during the late 19th to 20th centuries than earlier in the last millennium, and both show a previous strong ALow period from ca. 500-900 AD. We compare our mutli-core ALow record to other ALow-sensitive ice core time series, as well as to ALow records from other proxy archives and General Circulation Models.
Reconstruction of Aerosol Concentration and Composition from Glacier Ice Cores
NASA Astrophysics Data System (ADS)
Vogel, Alexander; Dällenbach, Kaspar; El-Haddad, Imad; Wendl, Isabel; Eichler, Anja; Schwikowski, Margit
2017-04-01
Reconstruction of the concentration and composition of natural aerosol in an undisturbed atmosphere enables the evaluation of the understanding of aerosol-climate effects, which is currently based on highly uncertain emission inventories of the biosphere under pre-industrial conditions. Understanding of the natural state of the pre-industrial atmosphere and evaluating the atmospheric perturbations by anthropogenic emissions, and their potential feedbacks, is essential for accurate model predictions of the future climate (Boucher et al., 2013). Here, we present a new approach for the chemical characterization of the organic fraction preserved in cold-glacier ice cores. From this analysis historic trends of atmospheric organic aerosols are reconstructed, allowing new insights on organic aerosol composition and mass in the pre-industrial atmosphere, which can help to improve climate models through evaluation of our current understanding of aerosol radiative effects. We present results from a proof-of-principal study, analyzing an 800 year ice core record from the Lomonosovfonna glacier ice core, drilled in 2009 in Svalbard, Norway, using a setup that has until then only been applied on offline measurements of aerosol filter extracts (Dällenbach et al., 2016): The melted ice was nebulized and dried, such that aerosols are formed from the soluble and insoluble organic and inorganic compounds that are preserved in the ice. To improve the sensitivity, the aerosol stream was then enriched by the application of an online aerosol concentrator, before the aerosol was analyzed by electron ionization within a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). We were able to demonstrate that this setup is a quantitative method toward nitrate and sulfate when internal inorganic standards of NH415NO3 and (NH4)234SO4 are added to the sample. Comparison between AMS and IC measurements of nitrate and sulfate resulted in an excellent agreement. The analysis of the organic fraction, however, was biased by a source of organic contamination, likely introduced during sample storage. However, freshly prepared ice blanks showed no significant source or organics, and the calibration with an organic surrogate standard demonstrated that this technique is applicable for the analysis of newly prepared ice samples. Furthermore, we present first results of the method development towards organic molecular tracer analysis using solid phase extraction and liquid-chromatography coupled to ultra-high resolution mass spectrometry. References: Boucher, O., et al., Clouds and Aerosols: 7, in: Climate Change 2013: The Physical Science Basis., Cambridge University Press, 571-658, 2013. Dällenbach, K. R., et al., Atmos. Meas. Tech. 9, 23-39, 2016.
NASA Astrophysics Data System (ADS)
Sowers, T. A.; Vladimirova, D.; Blunier, T.
2017-12-01
During the preAnthropogenic era (prior to 1600AD) the interpolar CH4 gradient (IPG) is effectively dictated by the ratio of tropical to Pan Arctic CH4 emissions. IPG records from ice cores in Greenland and Antarctica provide fundamental information for assessing the latitudinal distribution of CH4 emissions and their relation to global climate change. We recently constructed a high-resolution (100yr) record of IPG changes throughout the Holocene using the ReCAP (E. Greenland) and WAIS (W. Antarctica) ice cores. Contemporaneous samples from both cores were analyzed on the same day to minimize analytical uncertainties associated with IPG reconstructions. CH4results from the WAIS core were indistinguishable from previous results suggesting our analytical scheme was intact (± 3ppb). Our reconstructed IPG showed early Holocene IPG values of 65ppb declining throughout the Holocene to values approximating 45 ppb during the latest portion of the Holocene (preAnthropogenic). We then utilized an eight box atmospheric methane box model (EBAMM) to quantify emission scenarios that agree with ice core CH4 records (concentration, IPG and isotopic composition). Our results are consistent with the idea that early Holocene peatland development in the PanArctic regions followed glacier retreat near the end of the last glacial termination contributing an additional 20Tg of CH4/yr relative to the late Holocene. In addition, we had to invoke elevated biomass burning emissions (40Tg/yr) during the early Holocene to account for the elevated d13CH4 values.
NASA Astrophysics Data System (ADS)
Iverson, N. A.; Dunbar, N. W.; Lieb-Lappen, R.; Kim, E. J.; Golden, E. J.; Obbard, R. W.
2014-12-01
Volcanic tephra layers have been seen in most ice cores in Antarctica. These tephra layers are deposited almost instantaneously across wide areas of ice sheets, creating horizons that can provide "pinning points" to adjust ice time scales that may otherwise be lacking detailed chronology. A combination of traditional particle morphology characterization by SEM with new non-destructive X-ray micro-computed tomography (Micro-CT) has been used to analyze selected coarse grained tephra in the West Antarctica Ice Sheet (WAIS) Divide WDC06A ice core. Micro-CT has the ability to image particles as small as 50µm in length (15µm resolution), quantifying both particle shape and size. The WDC06A contains hundreds of dusty layers of which 36 have so far been identified as primary tephra layers. Two of these tephra layers have been characterized as phreatomagmatic eruptions based on SEM imagery and are blocky and platy in nature, with rare magmatic particles. These layers are strikingly different in composition from the typical phonolitic and trachytic tephra produced from West Antarctic volcanoes. These two layers are coarser in grain size, with many particles (including feldspar crystals) exceeding 100µm in length. One tephra layer found at 3149.138m deep in the ice core is a coarse ~1mm thick basanitic tephra layer with a WDC06-7 ice core age of 45,381±2000yrs. The second layer is a ~1.3 cm thick zoned trachyandesite to trachydacite tephra found at 2569.205m deep with an ice core age 22,470±835yrs. Micro-CT analysis shows that WDC06A-3149.138 has normal grading with the largest particles at the bottom of the sample (~160μm). WDC06A-2569.205 has a bimodal distribution of particles with large particles at the top and bottom of the layer. These large particles are more spherical in shape at the base and become more irregular and finer grained higher in the layer, likely showing changes in eruption dynamics. The distinct chemistry as well as the blocky and large grain size of the two tephra lead us to believe that these eruptions are from volcanoes proximal to WAIS Divide and did not transport far because neither tephra was observed in the Byrd core (<100km away). It is likely that these tephra are sourced from volcanoes beneath the WAIS and have since been buried and if they were to erupt again, may contribute to ice sheet instability.
Atmospheric CO2 Over the Last 1000 Years: WAIS Divide Ice Core Record
NASA Astrophysics Data System (ADS)
Ahn, J.; Brook, E. J.
2009-04-01
How atmospheric CO2 varied over the last thousands years is of great interest because we may see not only natural, but also anthropogenic variations (Ruddiman, Climatic Change, 2003). The Law Dome ice cores reveal decadal to centennial variations in CO2 over the last 2000 years (MacFarling Meure et al., Geophys. Res. Lett., 2006). However, these variations have not yet been well confirmed in other ice core records. Here we use a newly drilled WAIS Divide ice core, which is ideal for this purpose because WAIS Divide has relatively high snow accumulation rate and small gas age distribution that allow us to observe decadal CO2 variations with minimal damping. We have started an extensive study of CO2 in WAIS Divide core. So far we have obtained data for 960-1940 A.D. from the WDC05-A core drilled in 2005-2006. 344 ice samples from 103 depths were analyzed and the standard error of the mean is ~0.8 ppm on average. Ancient air in 8~12 g of bubbly ice is liberated by crushing with steel pins at -35 °C and trapped in stainless steel tubes at -262 °C. CO2 mixing ratio in the extracted air is precisely determined using a gas chromatographic method. Details of the high-precision methods are described in Ahn et al. (J. of Glaciology, in press). Our new results show preindustrial atmospheric CO2 variability of ~ 10 ppm. The most striking feature of the record is a rapid atmospheric CO2 decrease of 7~8 ppm within ~20 years at ~ 1600 A.D. Considering the larger smoothing of gas records in the WAIS Divide relative to Law Dome, our results confirm the atmospheric CO2 decrease of ~10 ppm in Law Dome records observed at this time. However, this event is not significant in the Dronning Maud Land ice core (Siegenthaler et al., Tellus, 2005), probably due to more extensive smoothing of gas records in the core. Similar rapid changes of CO2 at other times in the WAIS Divide record need to be confirmed with higher resolution studies. We also found that our WAIS Divide CO2 data are slightly higher than those of Law Dome by 3~5 ppm over most of the record. It is not clear whether the offset is due to real variability in ice cores or an analytical offset. We are participating in international laboratory intercalibration to determine the origin of the offset. Several WDC05-A and Law Dome ice samples are shared and will be analyzed for data comparison with CSIRO (Australian Common Wealth Scientific and Research Organization).
NASA Astrophysics Data System (ADS)
Iizuka, Yoshinori; Uemura, Ryu; Fujita, Koji; Hattori, Shohei; Seki, Osamu; Miyamoto, Chihiro; Suzuki, Toshitaka; Yoshida, Naohiro; Motoyama, Hideaki; Matoba, Sumito
2018-01-01
The Southeastern Greenland Dome (SE-Dome) has both a high elevation and a high accumulation rate (1.01 m we yr-1), which are suitable properties for reconstructing past environmental changes with a high time resolution. For this study, we measured the major ion fluxes in a 90 m ice core drilled from the SE-Dome region in 2015 and present the records of annual ion fluxes from 1957 to 2014. From 1970 to 2010, the trend of nonsea-salt (nss) SO42- flux decreases, whereas that for NH4+ increases, tracking well with the anthropogenic SO
NASA Astrophysics Data System (ADS)
Massam, A.; Mulvaney, R.; McConnell, J.; Abram, N.; Arienzo, M. M.; Whitehouse, P. L.
2016-12-01
The James Ross Island ice core, drilled to 364 m on the northern tip of the Antarctic Peninsula, preserves a climate record that spans beyond the Holocene period to the end of the last glacial maximum (LGM). Reanalysis of the ice core using high-resolution continuous flow analysis (CFA) highlighted errors in the identification of events of known age that had been used to constrain the earlier chronology. The new JRI2 chronology is annual layer counted to 300 years, with the remaining profile reconstructed using a new age-depth model that is tied to age horizons identified in the annual-layer counted WAIS Divide ice core record. An accurate age-depth profile requires reliable known-age horizons along the ice core profile. In addition, these allow us to determine a solution for the accumulation history and rate of compaction due to vertical strain. The accuracy of the known-age constraints used in JRI2 allows only a small uncertainty in the reconstruction of the most recent 2000 years of accumulation variability. Independently, the surface temperature profile has been estimated from the stable water isotope profile and calibrated to borehole temperature observations. We present the accumulation, vertical thinning and temperature history interpreted from the James Ross Island ice core for the most recent 2000 years. JRI2 reconstructions show accumulation variability on a decadal to centennial timescale up to 20% from the present-day mean annual accumulation rate of 0.63 m yr-1. Analysis of the accumulation profile for James Ross Island offers insight into the sensitivity of accumulation to a change in surface temperature, as well as the reliability of the assumed relationship between accumulation and surface temperature in climate reconstructions using stable water isotope proxies.
Water isotopic ratios from a continuously melted ice core sample
NASA Astrophysics Data System (ADS)
Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.
2011-06-01
A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the framework of the NEEM deep ice core drilling project in Greenland, during the 2010 field season.
Water isotopic ratios from a continuously melted ice core sample
NASA Astrophysics Data System (ADS)
Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.
2011-11-01
A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the field during the 2010 season as part of the NEEM deep ice core drilling project in North Greenland.
NASA Astrophysics Data System (ADS)
Bertler, Nancy A. N.; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Daniel B.; Winstrup, Mai; Vallelonga, Paul T.; Lee, James E.; Brook, Ed J.; Severinghaus, Jeffrey P.; Fudge, Taylor J.; Keller, Elizabeth D.; Baisden, W. Troy; Hindmarsh, Richard C. A.; Neff, Peter D.; Blunier, Thomas; Edwards, Ross; Mayewski, Paul A.; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle A.; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D.; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J.; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G.; Delmonte, Barbara; Eling, Lukas; Ellis, Aja; Ganesh, Shruthi; Golledge, Nicholas R.; Haines, Skylar; Handley, Michael; Hawley, Robert L.; Hogan, Chad M.; Johnson, Katelyn M.; Korotkikh, Elena; Lowry, Daniel P.; Mandeno, Darcy; McKay, Robert M.; Menking, James A.; Naish, Timothy R.; Noerling, Caroline; Ollive, Agathe; Orsi, Anaïs; Proemse, Bernadette C.; Pyne, Alexander R.; Pyne, Rebecca L.; Renwick, James; Scherer, Reed P.; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B.; Steig, Eric J.; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero-Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A.; Winton, V. Holly L.; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin
2018-02-01
High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.
NASA Astrophysics Data System (ADS)
Fischer, Hubertus
2014-05-01
The sequence of the last 8 glacial cycles is characterized by irregular 100,000 year cycles in temperature and sea level. In contrast, the time period between 1.5-1.2 million years ago is characterized by more regular cycles with an obliquity periodicity of 41,000 years. Based on a deconvolution of deep ocean temperature and ice volume contributions to benthic δ18O (Elderfield et al., Science, 2012), it is suggested that glacial sea level became progressively lower over the last 1.5 Myr, while glacial deep ocean temperatures were very similar. At the same time many interglacials prior to the Mid Brunhes event showed significantly cooler deep ocean temperatures than the Holocene, while at the same time interglacial ice volume remained essentially the same. In contrast, interglacial sea surface temperatures in the tropics changed little (Herbert et al., Science,2010) and proxy reconstructions of atmospheric CO2 using δ11B in planktic foraminifera (Hönisch et al., Science, 2009) suggest that prior to 900,000 yr before present interglacial CO2 levels did not differ substantially from those over the last 450,000 years. Accordingly, the conundrum arises how interglacials can differ in deep ocean temperature without any obvious change in ice volume or greenhouse gas forcing and what caused the change in cyclicity of glacial interglacial cycles over the Mid Pleistocene Transition. Probably the most important contribution to solve this riddle is the recovery of a 1.5 Myr old ice core from Antarctica, which among others would provide an unambiguous, high-resolution record of the greenhouse gas history over this time period. Accordingly, the international ice core community, as represented by the International Partnership for Ice Core Science (IPICS), has identified such an 'Oldest Ice' ice core as one of the most important scientific targets for the future (http://www.pages.unibe.ch/ipics/white-papers). However, finding stratigraphically undisturbed ice, which covers this time period in Antarctica, is not an easy task. Based on a simple ice and heat flow model and glaciological observations (Fischer et al., Climate of the Past, 2013), we conclude that sites in the vicinity of major domes and saddle positions on the East Antarctic Plateau will most likely have such old ice in store and represent the best study areas for dedicated reconnaissance studies in the near future. In contrast to previous ice core drill site selections, however, significantly reduced ice thickness is required to avoid bottom melting. The most critical parameter is the largely unknown geothermal heat flux at the bottom of the ice sheet. For example for the geothermal heat flux and accumulation conditions at Dome C, an ice thickness lower than but close to about 2500 m would be required to find 1.5 My old ice. If sites with lower geothermal heat flux can be found, also a higher ice thickness is allowed, alleviating the problem of potential flow disturbances in the bottom-most ice to affect a 1.5 Myr climate record.
NASA Astrophysics Data System (ADS)
Wegner, Anna; Fischer, Hubertus; Delmonte, Barbara; Petit, Jean-Robert; Erhardt, Tobias; Ruth, Urs; Svensson, Anders; Vinther, Bo; Miller, Heinrich
2015-10-01
We present a record of particulate dust concentration and size distribution in subannual resolution measured on the European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land (EDML) ice core drilled in the Atlantic sector of the East Antarctic plateau. The record reaches from present day back to the penultimate glacial until 145,000 years B.P. with subannual resolution from 60,000 years B.P. to the present. Mean dust concentrations are a factor of 46 higher during the glacial (~850-4600 ng/mL) compared to the Holocene (~16-112 ng/mL) with slightly smaller dust particles during the glacial compared to the Holocene and with an absolute minimum in the dust size at 16,000 years B.P. The changes in dust concentration are mainly attributed to changes in source conditions in southern South America. An increase in the modal value of the dust size suggests that at 16,000 years B.P. a major change in atmospheric circulation apparently allowed more direct transport of dust particles to the EDML drill site. We find a clear in-phase relation of the seasonal variation in dust mass concentration and dust size during the glacial (r(conc,size) = 0.8) but no clear phase relationship during the Holocene (0 < r(conc,size) < 0.4). With a simple conceptual 1-D model describing the transport of the dust to the ice sheet using the size as an indicator for transport intensity, we find that the effect of the changes in the seasonality of the source emission strength and the transport intensity on the dust decrease over Transition 1 can significantly contribute to the large decrease of dust concentration from the glacial to the Holocene.
Primary spectrum and composition with IceCube/IceTop
NASA Astrophysics Data System (ADS)
Gaisser, Thomas K.; IceCube Collaboration
2016-10-01
IceCube, with its surface array IceTop, detects three different components of extensive air showers: the total signal at the surface, GeV muons in the periphery of the showers and TeV muons in the deep array of IceCube. The spectrum is measured with high resolution from the knee to the ankle with IceTop. Composition and spectrum are extracted from events seen in coincidence by the surface array and the deep array of IceCube. The muon lateral distribution at the surface is obtained from the data and used to provide a measurement of the muon density at 600 meters from the shower core up to 30 PeV. Results are compared to measurements from other experiments to obtain an overview of the spectrum and composition over an extended range of energy. Consistency of the surface muon measurements with hadronic interaction models and with measurements at higher energy is discussed.
NASA Technical Reports Server (NTRS)
Hecht, Michael; Carsey, Frank
2005-01-01
The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.
NASA Astrophysics Data System (ADS)
Rasmussen, Sune O.; Bigler, Matthias; Blockley, Simon P.; Blunier, Thomas; Buchardt, Susanne L.; Clausen, Henrik B.; Cvijanovic, Ivana; Dahl-Jensen, Dorthe; Johnsen, Sigfus J.; Fischer, Hubertus; Gkinis, Vasileios; Guillevic, Myriam; Hoek, Wim Z.; Lowe, J. John; Pedro, Joel B.; Popp, Trevor; Seierstad, Inger K.; Steffensen, Jørgen Peder; Svensson, Anders M.; Vallelonga, Paul; Vinther, Bo M.; Walker, Mike J. C.; Wheatley, Joe J.; Winstrup, Mai
2014-12-01
Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial-Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard-Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (δ18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard-Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations.
Collaborative data-modelling approach to infer Oldest Ice sites in the vicinity of Concordia.
NASA Astrophysics Data System (ADS)
Ritz, Catherine; Cavitte, Marie; Corr, Hugh; Frezzotti, Massimo; Martin, Carlos; Mulvaney, Robert; Passalacqua, Olivier; Parrenin, Frederic; Roberts, Jason; Urbini, Stefano; Vittuari, Luca; Young, Duncan
2017-04-01
Recovering a 1.5 million years record of climate and greenhouse gases from Antarctica is a major objective of the ice core community. There is an agreement concerning the most important criteria to retrieve such old ice: low horizontal velocity; low accumulation rate and no (or very little) basal melting. These criteria indicate that such "Oldest Ice" could be found close to the divides of the East Antarctic Plateau and the region around the permanent station of Concordia (East Antarctica) appears to be amongst the few possible candidate sites. By 2015, this region was already relatively well documented because of the proximity of Concordia station and the fact that geophysical survey had been performed in the context of the EPICA drilling. However, the detection/selection of an appropriate drilling site requires to complete the geophysical data coverage and to develop modeling tools to make the best use of the data. This constitutes a major objective of the BE-OI (Beyond EPICA Oldest Ice) European Project and we present here the approach used to join data acquisition, interpretation and modeling as well as the current status of this collaborative work. The approach is based on several steps. 1) On the basis of existing data (essentially bedmap2) a broad region of interest was defined and airborne radar survey was performed in January 2016 by a UTIG/AAD team over a grid ( 40 x 100 km, resolution 1 km in one direction). 2) Interpretation of these data allowed to produce a high resolution bedrock map. Moreover, using the EPICA ice core data, it was possible to date internal layers back to 360 kyr all over the surveyed domain. 3) Ice flow and thermal inverse modeling extrapolated the age and its vertical gradient (vertical resolution) down to the bedrock and evaluated the associated basal melting (see Parrenin et al. Presentation) 4) smaller patches of interests (5 x 5 km) were defined from the model results (and related uncertainties), morphology of the internal layers and basal hydrology patterns (including sublgacial lakes) that can be inferred from the radar echoes, 5) these patches are now surveyed with a ground based radar with a very high horizontal resolution (250 m in both direction). Stations for ApRES measurements and strain net (GPS) are also set up. After revisit next year they will give information concerning ice flow. 6) the ultimate task will be to use the synthesis of all data/models to decide the precise drilling site for the fast drilling tool "Subglacior"
NASA Astrophysics Data System (ADS)
Winebrenner, D. P.; Kintner, P. M. S.; MacGregor, J. A.
2017-12-01
Over deep Antarctic subglacial lakes, spatially varying ice thickness and the pressure-dependent melting point of ice result in areas of melting and accretion at the ice-water interface, i.e., the lake lid. These ice mass fluxes drive lake circulation and, because basal Antarctic ice contains air-clathrate, affect the input of oxygen to the lake, with implications for subglacial life. Inferences of melting and accretion from radar-layer tracking and geodesy are limited in spatial coverage and resolution. Here we develop a new method to estimate rates of accretion, melting, and the resulting oxygen input at a lake lid, using airborne radar data over Lake Vostok together with ice-temperature and chemistry data from the Vostok ice core. Because the lake lid is a coherent reflector of known reflectivity (at our radar frequency), we can infer depth-averaged radiowave attenuation in the ice, with spatial resolution 1 km along flight lines. Spatial variation in attenuation depends mostly on variation in ice temperature near the lid, which in turn varies strongly with ice mass flux at the lid. We model ice temperature versus depth with ice mass flux as a parameter, thus linking that flux to (observed) depth-averaged attenuation. The resulting map of melt- and accretion-rates independently reproduces features known from earlier studies, but now covers the entire lid. We find that accretion is dominant when integrated over the lid, with an ice imbalance of 0.05 to 0.07 km3 a-1, which is robust against uncertainties.
NASA Astrophysics Data System (ADS)
Vermassen, F.; Andresen, C. S.; Sabine, S.; Holtvoeth, J.; Cordua, A. E.; Wangner, D. J.; Dyke, L. M.; Kjaer, K. H.; Kokfelt, U.; Haubner, K.
2016-12-01
There is a growing body of evidence demonstrating that changes in warm water inflow to Greenlandic fjords are linked to the rapid retreat of marine-terminating outlet glaciers. This process is thought to be responsible for a substantial component of the increased mass loss from the Greenland Ice Sheet over the last two decades. Sediment cores from glaciated fjords provide high-resolution sedimentological and biological proxy records which can be used to evaluate the interplay of warm water inflow and glacier calving over recent time scales. In this study, multiple short cores ( 2 m) from Upernavik Isfjord, West Greenland, were analysed to establish a multi-proxy record of glacier behaviour and oceanographic conditions that spans the past 150 years. The down-core variation in the amount of ice-rafted debris reveals periods of increased glacier calving, and biomarker proxies are used to reconstruct variability in the inflow of warm, Atlantic-sourced water to the fjord. Measurements of the sortable silt grain size are used to reconstruct bottom-current strength; periods of vigorous current flow are assumed to be due to enhanced warm water inflow. Finally, a record of glacier terminus position changes, derived from historical observations and satellite imagery, allows comparison of our new proxy records with the retreat of the ice margin from 1849 onwards. We use these data to assess the relative importance of mechanisms controlling the (rapid) retreat of marine-terminating glaciers in Upernavik Isfjord.
A New Method for the Determination of Annual Sediment Fluxes from Varved Lake Sediments
NASA Astrophysics Data System (ADS)
Francus, P.; Massa, C.; Lapointe, F.
2013-12-01
Calculation of sediment mass accumulation rates instead of thickness accumulation is preferable for paleoclimatic reconstruction as it eliminates the effects of dilution and compaction. Annually laminated lake sediment sequences (varved) theoretically allow for the estimation of sediment fluxes at annual scale, but the calculation is limited by discrete bulk density measurements, often carried out at a much lower resolution (usually 1 cm) than the varves (ranging from 0.07 to 27.3 mm, average 1.84 mm according to Ojala et al. 2012). Since many years the development of automated logging instruments made available continuous and high resolution sediment property data, in a non-destructive fashion. These techniques can easily be used to extract the physical and chemical parameters of sediments at the varve scale (down to 100 μm). Here we present a robust method to calculate annual sediment fluxes from varved lake sediments by combining varves thickness measurements to core logging data, and provide an example for its applications. Several non-destructive densitometric methods applied to the Strathcona Lake sediment, northern Ellesmere Island, Canada (78°33'N; 82°05'W) were compared: Hounsfield Units from a CT-Scan, coherent/incoherent ratio and X-ray radiography (of both split core and sediment slabs, from an Itrax core Scanner), and gamma ray attenuation density. Core logging data were statistically compared to 400 discrete measurements of dry bulk density, wet bulk density and water content performed at 2 mm contiguous intervals. A very strong relationship was found between X-ray grey level on sediment slab and dry bulk density. Relative X-ray densities, at 100μm resolution, were then successfully calibrated against real densities. The final step consisted in binning the calibrated densities to the corresponding varve thickness and then to calculate the annual mass accumulation rates by multiplying the two parameters for each varve year. Strathcona Lake is located directly downstream of the Agassiz ice cap and contains laminated sediments whose accumulation is directly related to hydrological inputs generated by the melting of the ice cap. Over the last 65 years, annual sediment accumulation rates in Strathcona Lake documented an increase in high-energy hydrologic discharge events from 1990 to 2009. This timing is in agreement with evidence for an increase in the amount of melt on the adjacent Agassiz Ice Cap, as recorded in ice cores. A good correspondence was also found between annual mass accumulation rates and Eureka air temperature records, suggesting that temperature changes affected the extent of summer melting on the Agassiz Ice Cap, leading to high sediment yield to Strathcona Lake. Ojala, A.E.K., Francus, P., Zolitschka, B., Besonen, M. and Lamoureux, S.F. (2012) Characteristics of sedimentary varve chronologies - A review. Quaternary Science Reviews, 43, 45-60.
NASA Astrophysics Data System (ADS)
Gorbarenko, Sergey A.; Artemova, Antonina V.; Goldberg, Evgeniy L.; Vasilenko, Yuriy P.
2014-05-01
Reconstruction of regional climate and the Okhotsk Sea (OS) environment for the Last Glacial Maximum (LGM), deglaciation and Holocene was performed on the basis of high-resolution records of ice rafted debris (IRD), СаСО3, opal, total organic carbon (TOС), biogenic Ba (Ba_bio) and redox sensitive element (Mn, Mo) content, and diatom and pollen results of four cores that form a north-southern transect. Age models of the studied cores were earlier established by AMS 14C data, oxygen-isotope chronostratigraphy and tephrochronology. According to received results, since 25 ka the regional climate and OS environmental conditions have changed synchronously with LGM condition, cold Heinrich event 1, Bølling-Allerød (BA) warming, Younger Dryas (YD) cooling and Pre-Boreal (PB) warming recorded in the Greenland ice core, North Atlantic sediment, and China cave stalagmites. Calculation of IRD MAR in sediment of north-south transect cores indicates an increase of sea ice formation several times in the glacial OS as compared to the Late Holocene. Accompanying ice formation, increased brine rejection and the larger potential density of surface water at the north shelf due to a drop of glacial East Asia summer monsoon precipitation and Amur River run off, led to strong enhancement of the role of the OS in glacial North Pacific Intermediate Water (NPIW) formation. The remarkable increase in OS productivity during BA and PB warming was probably related with significant reorganisation of the North Pacific deep water ventilation and nutrient input into the NPIW and OS Intermediate Water (OSIW). Seven Holocene OS millennial cold events based on the elevated values of the detrended IRD stack record over the IRD broad trend in the sediments of the studied cores have occurred synchronously with cold events recorded in the North Atlantic, Greenland ice cores and China cave stalagmites after 9 ka. Diatom production in the OS was mostly controlled by sea ice cover changes and surface water stratification induced by sea-ice melting; therefore significant opal accumulation in sediments of this basin begin from 4 to 6 ka ago simultaneously with a remarkable decrease of sea ice cover.
NASA Astrophysics Data System (ADS)
Rohling, E. J.; Liu, Q. S.; Roberts, A. P.; Stanford, J. D.; Rasmussen, S. O.; Langen, P. L.; Siddall, M.
2009-12-01
Previous studies have suggested a sound chronological correlation between the Hulu Cave record (East Asian monsoon) and Greenland ice-core records, which implies a dominant control of northern hemisphere climate processes on monsoon intensity. We present an objective, straightforward statistical evaluation that challenges this generally accepted paradigm for sub-orbital variability. We propose a more flexible, global interpretation, which takes into account a broad range of variability in the signal structures in the Hulu Cave and polar ice-core records, rather than a limited number of major transitions. Our analysis employs the layer-counted Greenland Ice-Core Chronology 2005 (GICC05), which was developed for Greenland records and has since been applied - via methane synchronisation - to the high-resolution δ 18O ice series from EPICA Dronning Maud Land (EDML). The GICC05 chronology allows these ice-core records to be compared to the U-Th dated Hulu Cave record within relatively narrow (˜3%) bounds of age uncertainty. Following previous suggestions, our proposed interpretation suggests that the East Asian monsoon is influenced by a combination of northern hemisphere 'pull' (which is more intense during boreal warm periods), and southern hemisphere 'push' (which is more intense monsoon during austral cold periods). Our analysis strongly suggests a dominant control on millennial-scale monsoon variability by southern hemisphere climate changes during glacial times when the monsoon is weak overall, and control by northern hemisphere climate changes during deglacial and interglacial times when the monsoon is strong. The deduced temporally variable relationship with southern hemisphere climate records offers a statistically more plausible reason for the apparent coincidence of major East Asian monsoon transitions with northern hemisphere (Dansgaard-Oeschger, DO) climate events during glacial times, than the traditional a priori interpretation of strict northern hemisphere control.
Tree ring and ice core time scales around the Santorini eruption
NASA Astrophysics Data System (ADS)
Löfroth, Elin; Muscheler, Raimund; Aldahan, Ala; Possnert, Göran; Berggren, Ann-Marie
2010-05-01
When studying cosmogenic radionuclides in ice core and tree ring archives around the Santorini eruption a ~20 year discrepancy was found between the records (Muscheler 2009). In this study a new 10Be dataset from the NGRIP ice core is presented. It has a resolution of 7 years and spans the period 3752-3244 BP (1803-1295 BC). The NGRIP 10Be record and the previously published 10Be GRIP record were compared to the IntCal datasets to further investigate the discrepancy between the ice core and tree ring chronologies. By modelling the 14C production rate based on atmospheric 14C records a comparison could be made to the 10Be flux which is assumed to represent the 10Be production rate. This showed a time shift of ~23 years between the records. The sensitivity of the results to changes in important model parameters was evaluated. Uncertainties in the carbon cycle model cannot explain a substantial part of the timing differences. Potential influences of climate and atmospheric processes on the 10Be deposition were studied using δ18O from the respective cores and GISP2 ice core ion data. The comparison to δ18O revealed a small but significant correlation between 10Be flux and δ18O when the 14C-derived production signal was removed from the 10Be curves. The ion data, as proxies for atmospheric circulation changes, did not show any correlations to the 10Be record or the 10Be/14C difference. When including possible data uncertainties there is still a minimum discrepancy of ~10 years between the 10Be ice core and the 14C tree ring record. Due to lack of alternative explanations it is concluded that the ice core and/or the tree ring chronologies contains unaccounted errors in this range. This also reconciles the radiocarbon 1627-1600 BC (Friedrich et al., 2006) and ice core 1642±5 BC (Vinther et al., 2006) datings of the Santorini eruption. Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., & Talamo, S., 2006: Santorini eruption radiocarbon dated to 1627-1600 BC. Science 312, 548-548. Muscheler, 2009: 14C and 10Be around 1650 cal BC. In Warburton, D.A., (ed.): Time's Up! Dating the Minoan Eruption of Santorini: acts of the Minoan Eruption Chronology Workshop, Sandbjerg November 2007: Monographs of the Danish Institute at Athens. Aarhus University Press, Aarhus. 298 pp. Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad, I.K., Siggaard-Andersen, M.L., Steffensen, J.P., Svensson, A., Olsen, J., & Heinemeier, J., 2006: A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research-Atmospheres 111, 11.
NASA Astrophysics Data System (ADS)
Hörner, Tanja; Stein, Ruediger; Fahl, Kirsten
2016-04-01
Four well-dated sediment cores from the Eurasian continental shelf, i.e., the Kara Sea (Cores BP99/07 and BP00/07) and Laptev Sea (Cores PS51/154 and PS51/159), were selected for high-resolution reconstruction of past Arctic environmental conditions during the deglacial-Holocene time interval. These marginal seas are strongly affected by the post-glacial sea-level rise of about 120m. The major focus of our study was the reconstruction of the paleo-sea-ice distribution as sea-ice plays a key role within the modern and past climate system. For reconstruction of paleo-sea ice, the sea-ice proxy IP25 in combination with open-water phytoplankton biomarkers was used (for approach see Belt et al., 2007; Müller et al., 2009, 2011). In addition, specific sterols were determined to reconstruct changes in river run-off and biological production. The post-glacial sea-level rise is especially reflected in prominent decrease in terrigenous biomarkers. Deglacial variations in sea-ice cover sustained for thousand of years, mostly following climatic changes like the Bølling/Allerød (14.7-12.9 ka), Younger Dryas (12.9-11.6 ka) and Holocene warm phase (10-8 ka). Superimposed on a (Late) Holocene cooling trend, short-term fluctuations in sea-ice cover (on centennial scale) are distinctly documented in the distal/off-shore Core BP00/07 from the Kara Sea, less pronounced in the proximal/near-shore Core PS99/07 and in the Laptev Sea cores. Interestingly, this short-term variability in sea-ice cover correlates quite well to changes in Siberian river run-off (e.g., Stein et al. 2004), pointing to a direct linkage between precipitation (atmospheric circulation) and sea-ice formation. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38, 16-27. Müller, J., Masse, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nature Geoscience 2, 772-776. Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., Lohmann, G., 2011. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach. Earth and Planetary Science Letters 306, 137-148. Stein, R., Steinke, T., Dittmers, K., Fahl, K., Kraus, M., Matthiessen, J., Niessen, F., Pirrung, M., Polyakova, Ye., Achoster, F., Fqtterer, D.K., 2004. Terrigenous sediment supply and paleoenvironment of the Holocene Kara Sea. Quaternary Science Reviews, 23, 485-1511.
NASA Astrophysics Data System (ADS)
Iverson, N. A.; Dunbar, N. W.; McIntosh, W. C.; Kurbatov, A.
2016-12-01
Reconstructing volcanic activity in Antarctica is difficult because of the limited outcrop exposure. However, ice is an excellent medium for sampling tephra, allowing for a more complete eruptive record than can be found in other depositional environments. Furthermore, because of low ambient temperature, glass shards trapped in ice remain unaltered and unhydrated. Mt. Berlin is an ice covered volcano in Marie Byrd Land, Antarctica, and, because of heavy glaciation, eruptive records on the volcano itself are sparse. Here, we present the integration of two different records of Mt. Berlin volcanism: the blue ice record found at Mt. Moulton (Dunbar et al., 2008) and the ice core record from the WAIS Divide ice core. Tephra from Mt. Berlin are also found in other ice and marine core records, and these have been correlated and integrated into the combined volcanic record. The Mt. Moulton blue ice area is located 30 km from Mt. Berlin and hosts a fabulous tephra record spanning the last 500 ka. A total of 36 tephra from Mt. Berlin were sampled in stratigraphic order and nine were directly dated by 40Ar/39Ar dating method. Twenty five tephra from WAIS Divide have been analyzed and are geochemically similar to Mt. Berlin with ice core ages dating back to 70 ka. The two tephra records were integrated using their respective timescales. In locations where the Mt. Moulton record does not have precise chronology, the δ18O records from Mt. Moulton (Popp, 2008) and WAIS (WAIS, 2015) were used to integrate the stratigraphy. In total 61 tephra from both ice sections provide an excellent record of the magmatic evolution of Mt. Berlin over the past 500 ka. EMP analyses on glass shards show a gradual change in Fe and S over time. Most of the other major elements remain relatively unchanged. The trend in Fe and S could be produced by progressive tapping of a single, stratified magma chamber, but the long duration of volcanism makes this unlikely. We instead favor small batches of progressively more primitive melts being generated over time. Thirty nine of the tephra have been erupted within the past 100 ka with the majority (25) of them being erupted between 40 ka and 20 ka. The resolution in eruptive frequency is unparalleled and provides many stratigraphic markers that can be correlated throughout West Antarctica, which are useful in climate research.
Tezaur, Irina K.; Tuminaro, Raymond S.; Perego, Mauro; ...
2015-01-01
We examine the scalability of the recently developed Albany/FELIX finite-element based code for the first-order Stokes momentum balance equations for ice flow. We focus our analysis on the performance of two possible preconditioners for the iterative solution of the sparse linear systems that arise from the discretization of the governing equations: (1) a preconditioner based on the incomplete LU (ILU) factorization, and (2) a recently-developed algebraic multigrid (AMG) preconditioner, constructed using the idea of semi-coarsening. A strong scalability study on a realistic, high resolution Greenland ice sheet problem reveals that, for a given number of processor cores, the AMG preconditionermore » results in faster linear solve times but the ILU preconditioner exhibits better scalability. In addition, a weak scalability study is performed on a realistic, moderate resolution Antarctic ice sheet problem, a substantial fraction of which contains floating ice shelves, making it fundamentally different from the Greenland ice sheet problem. We show that as the problem size increases, the performance of the ILU preconditioner deteriorates whereas the AMG preconditioner maintains scalability. This is because the linear systems are extremely ill-conditioned in the presence of floating ice shelves, and the ill-conditioning has a greater negative effect on the ILU preconditioner than on the AMG preconditioner.« less
NASA Astrophysics Data System (ADS)
Belart, Joaquín M. C.; Berthier, Etienne; Magnússon, Eyjólfur; Anderson, Leif S.; Pálsson, Finnur; Thorsteinsson, Thorsteinn; Howat, Ian M.; Aðalgeirsdóttir, Guðfinna; Jóhannesson, Tómas; Jarosch, Alexander H.
2017-06-01
Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs) over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland) from Pléiades and WorldView2 (WV2) are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Statistics in snow- and ice-free areas reveal similar vertical relative accuracy (< 0.5 m) with and without ground control points (GCPs), demonstrating the capability for measuring seasonal snow accumulation. The calculated winter (14 October 2014 to 22 May 2015) mass balance of Drangajökull was 3.33 ± 0.23 m w.e. (meter water equivalent), with ∼ 60 % of the accumulation occurring by February, which is in good agreement with nearby ground observations. On average, the repeated DEMs yield 22 % less elevation change than the length of eight winter snow cores due to (1) the time difference between in situ and satellite observations, (2) firn densification and (3) elevation changes due to ice dynamics. The contributions of these three factors were of similar magnitude. This study demonstrates that seasonal geodetic mass balance can, in many areas, be estimated from sub-meter resolution satellite stereo images.
Radar Detection of Layering in Ice: Experiments on a Constructed Layered Ice Sheet
NASA Astrophysics Data System (ADS)
Carter, L. M.; Koenig, L.; Courville, Z.; Ghent, R. R.; Koutnik, M. R.
2016-12-01
The polar caps and glaciers of both Earth and Mars display internal layering that preserves a record of past climate. These layers are apparent both in optical datasets (high resolution images, core samples) and in ground penetrating radar (GPR) data. On Mars, the SHARAD (Shallow Radar) radar on the Mars Reconnaissance Orbiter shows fine layering that changes spatially and with depth across the polar caps. This internal layering has been attributed to changes in fractional dust contamination due to obliquity-induced climate variations, but there are other processes that can lead to internal layers visible in radar data. In particular, terrestrial sounding of ice sheets compared with core samples have revealed that ice density and composition differences account for the majority of the radar reflectors. The large cold rooms and ice laboratory facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) provide us a unique opportunity to construct experimental ice sheets in a controlled setting and measure them with radar. In a CRREL laboratory, we constructed a layered ice sheet that is 3-m deep with a various snow and ice layers with known dust concentrations (using JSC Mars-1 basaltic simulant) and density differences. These ice sheets were profiled using a commercial GPR, at frequencies of 200, 400 and 900 MHz, to determine how the radar profile changes due to systematic and known changes in snow and ice layers, including layers with sub-wavelength spacing. We will report results from these experiments and implications for interpreting radar-detected layering in ice on Earth and Mars.
Kellerhals, Thomas; Tobler, Leonhard; Brütsch, Sabina; Sigl, Michael; Wacker, Lukas; Gäggeler, Heinz W; Schwikowski, Margit
2010-02-01
Trace element records from glacier and ice sheet archives provide insights into biogeochemical cycles, atmospheric circulation changes, and anthropogenic pollution history. We present the first continuous high-resolution thallium (Tl) record, derived from an accurately dated ice core from tropical South America, and discuss Tl as a tracer for volcanic eruptions. We identify four prominent Tl peaks and propose that they represent signals from the massive explosive eruptions of the "unknown 1258" A.D. volcano, of Kuwae ( approximately 1450 A.D.), Tambora (1815 A.D.), and Krakatoa (1883 A.D.). The highly resolved record was obtained with an improved setup for the continuous analysis of trace elements in ice with inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The new setup allowed for a stronger initial acidification of the meltwater and shorter tubing length, thereby reducing the risk of memory effects and losses of analytes to the capillary walls. With a comparison of the continuous method to the established conventional decontamination and analysis procedure for discrete samples, we demonstrate the accuracy of the continuous method for Tl analyses.
NASA Astrophysics Data System (ADS)
Giorio, C.; King, A. C. F.; Wolff, E. W.; Kalberer, M.; Thomas, E. R.; Mulvaney, R.
2016-12-01
Records of inorganic gases and particles trapped in ice core layers have provided some of the most important insights to our understanding of climate of the last 800,000 years. Organic compounds within the ice, however, are an un-tapped reservoir of information. In particular, two groups of compounds emitted from the terrestrial biosphere, fatty acids and terpene secondary oxidation aerosols (SOAs), display characteristics required for ice core paleoclimate reconstruction; emission rates depend on atmospheric states (e.g. temperature), compounds survive long-distance transport in the atmosphere to high altitudes and latitudes (Grannas et al., 2004; Fu et al., 2013 among others), and are shown to survive in ice layers up to 450 yrs old for fatty acids in Greenland (Kawamura et al., 1996) and 350 yrs for SOAs in Alaska (Pokhrel et al., 2015). Here, we aim to develop a single method for quantification of all compounds of interest over longer timescales and further locations using liquid chromatography (LC) ultrahigh resolution mass spectrometry (LTQ Orbitrap). Initial quantification of compound contamination from sources such as drilling fluids and storage bags, diffusing through outer ice core surfaces, suggests compound contamination is limited to the outer few mm's of ice over periods of a few months. Detection limits were in the order of 1-5 ppb for the compounds of interest, leading to the trial of pre-concentration methods using stir bar sorbtive extraction (SBSE) to facilitate detection of ppt concentration levels, as expected for these types of compounds based on previous analysis of snow samples (Pokhrel et al., 2015). Detection of these compounds seems highly viable, with promise for long-term records being achieved in the near future. Fu et al.(2013) Biogeosciences, 10(2), 653-667; Grannas et al.(2004) Global Biogeochem. Cycles, 18, GB1006; Kawamura et al.(1996) Geophys. Res. Lett., 23(19), 2665-2668; Pokhrel et al.(2015) Atmos. Environ., 130, 105-112.
NASA Astrophysics Data System (ADS)
Groot, M. H. M.; Bogotá, R. G.; Lourens, L. J.; Hooghiemstra, H.; Vriend, M.; Berrio, J. C.; Tuenter, E.; van der Plicht, J.; van Geel, B.; Ziegler, M.; Weber, S. L.; Betancourt, A.; Contreras, L.; Gaviria, S.; Giraldo, C.; González, N.; Jansen, J. H. F.; Konert, M.; Ortega, D.; Rangel, O.; Sarmiento, G.; Vandenberghe, J.; van der Hammen, T.; van der Linden, M.; Westerhoff, W.
2010-10-01
Tropical montane biome migration patterns in the northern Andes are found to be coupled to glacial-induced mean annual temperature (MAT) changes; however, the accuracy and resolution of current records are insufficient to fully explore their magnitude and rates of change. Here we present a ~60-year resolution pollen record over the past 284 000 years from Lake Fúquene (5° N) in Colombia. This record shows rapid and extreme MAT changes at 2540 m elevation of up to 10 ± 2 °C within a few hundred of years that concur with the ~100 and 41-kyr (obliquity) paced glacial cycles and North Atlantic abrupt climatic events as documented in ice cores and marine sediments. Using transient climate modelling experiments we demonstrate that insolation-controlled ice volume and greenhouse gasses are the major forcing agents causing the orbital MAT changes, but that the model simulations significantly underestimate changes in lapse rates and local hydrology and vegetation feedbacks within the studied region due to its low spatial resolution.
NASA Astrophysics Data System (ADS)
Weilbach, K.; O'Cofaigh, C.; Lloyd, J. M.; Benetti, S.; Dunlop, P.
2016-12-01
Recent studies of the British and Irish Ice Sheet (BIIS) have identified evidence of ice extending to the continental shelf edge along the western margin of the ice sheet off NW Ireland. While this advance is assumed to have occurred during the LGM, exact timing of maximum advance, and the timing and nature of the subsequent retreat is not well constrained. The location of the north-western sector of the BIIS adjacent to the North Atlantic makes this area ideal to study the ice sheet dynamics of a major marine terminating ice sheet, and the rate and nature of its retreat following the LGM. High resolution swath bathymetry and sub-bottom profiler (SBP) data along with sedimentological, micropalaeontological and geochronological investigations of sediment cores, collected across the NW Irish shelf, have been used to establish the extent, timing and nature of retreat of this sector of the BIIS. Swath bathymetry show glacial landforms on the shelf, and SBP-data along with twenty seven vibro-cores were collected in east-west oriented transects across a series of arcuate recessional moraines stretching from the shelf edge to Donegal Bay. These moraines record progressive still stands of a lobate ice margin during its retreat from the shelf edge, and are therefore ideal for the investigation of ice-sheet dynamics and chronology during retreat. Twenty two radiocarbon dates from foraminifera and macrofossils, sampled from the sediment cores, indicate that maximum ice sheet extent occurred around 26200 y cal BP, with an initial rapid retreat across the shelf. Visual logging, X-ray imagery, MSCL data and palaeoenvironmental analyses of the sediment cores, indicate that retreat happened in a glacimarine environment, and was punctuated by multiple stillstands and possible readvances across the mid and inner shelf, forming the arcuate moraines. The radiocarbon dates suggest that final retreat occurred after 17857 y. cal BP, which is consistent with onshore cosmogenic exposure ages from NW Ireland, showing de-glaciation around 17400 y cal BP.
Davies, Siwan M.; Guðmundsdóttir, Esther R.; Abbott, Peter M.; Pearce, Nicholas J. G.
2018-01-01
ABSTRACT Contiguous sampling of ice spanning key intervals of the deglaciation from the Greenland ice cores of NGRIP, GRIP and NEEM has revealed three new silicic cryptotephra deposits that are geochemically similar to the well‐known Borrobol Tephra (BT). The BT is complex and confounded by the younger closely timed and compositionally similar Penifiler Tephra (PT). Two of the deposits found in the ice are in Greenland Interstadial 1e (GI‐1e) and an older deposit is found in Greenland Stadial 2.1 (GS‐2.1). Until now, the BT was confined to GI‐1‐equivalent lacustrine sequences in the British Isles, Sweden and Germany, and our discovery in Greenland ice extends its distribution and geochemical composition. However, the two cryptotephras that fall within GI‐1e ice cannot be separated on the basis of geochemistry and are dated to 14358 ± 177 a b2k and 14252 ± 173 a b2k, just 106 ± 3 years apart. The older deposit is consistent with BT age estimates derived from Scottish sites, while the younger deposit overlaps with both BT and PT age estimates. We suggest that either the BT in Northern European terrestrial sequences represents an amalgamation of tephra from both of the GI‐1e events identified in the ice‐cores or that it relates to just one of the ice‐core events. A firm correlation cannot be established at present due to their strong geochemical similarities. The older tephra horizon, found within all three ice‐cores and dated to 17326 ± 319 a b2k, can be correlated to a known layer within marine sediment cores from the North Iceland Shelf (ca. 17179‐16754 cal a BP). Despite showing similarities to the BT, this deposit can be distinguished on the basis of lower CaO and TiO2 and is a valuable new tie‐point that could eventually be used in high‐resolution marine records to compare the climate signals from the ocean and atmosphere. PMID:29576671
Measurements of acetylene in air extracted from polar ice cores
NASA Astrophysics Data System (ADS)
Nicewonger, M. R.; Aydin, M.; Montzka, S. A.; Saltzman, E. S.
2016-12-01
Acetylene (ethyne) is a non-methane hydrocarbon emitted during combustion of fossil fuels, biofuels, and biomass. The major atmospheric loss pathway of acetylene is oxidation by hydroxyl radical with a lifetime estimated at roughly two weeks. The mean annual acetylene levels over Greenland and Antarctica are 250 ppt and 20 ppt, respectively. Firn air measurements suggest atmospheric acetylene is preserved unaltered in polar snow and firn. Atmospheric reconstructions based on firn air measurements indicate acetylene levels rose significantly during the twentieth century, peaked near 1980, then declined to modern day levels. This historical trend is similar to that of other fossil fuel-derived non-methane hydrocarbons. In the preindustrial atmosphere, acetylene levels should primarily reflect emissions from biomass burning. In this study, we present the first measurements of acetylene in preindustrial air extracted from polar ice cores. Air from fluid and dry-drilled ice cores from Summit, Greenland and WAIS-Divide Antarctica is extracted using a wet-extraction technique. The ice core air is analyzed using gas chromatography and high-resolution mass spectrometry. Between 1400 to 1800 C.E., acetylene levels over Greenland and Antarctica varied between roughly 70-120 ppt and 10-30 ppt, respectively. The preindustrial Greenland acetylene levels are significantly lower than modern levels, reflecting the importance of northern hemisphere fossil fuel sources today. The preindustrial Antarctic acetylene levels are comparable to modern day levels, indicating similar emissions in the preindustrial atmosphere, likely from biomass burning. The implications of the preindustrial atmospheric acetylene records from both hemispheres will be discussed.
9,400 years of cosmic radiation and solar activity from ice cores and tree rings
Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans
2012-01-01
Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348
9,400 years of cosmic radiation and solar activity from ice cores and tree rings.
Steinhilber, Friedhelm; Abreu, Jose A; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W; Mann, Mathias; McCracken, Ken G; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans; Wilhelms, Frank
2012-04-17
Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be ice core records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.
CALICE: Calibrating Plant Biodiversity in Glacier Ice
NASA Astrophysics Data System (ADS)
Festi, Daniela; Cristofori, Antonella; Vernesi, Cristiano; Zerbe, Stefan; Wellstein, Camilla; Maggi, Valter; Oeggl, Klaus
2017-04-01
The objective of the project is to reconstruct plant biodiversity and its trend archived in Alpine glacier ice by pollen and eDNA (environmental DNA) during the last five decades by analyzing a 40 m ice core. For our study we chose the Adamello glacier (Trentino - Südtirol, Lombardia) because of i) the good preservation conditions for pollen and eDNA in ice, ii) the thickness of the ice cap (270m) and iii) the expected high time resolution. The biodiversity estimates gained by pollen analysis and eDNA will be validated by historical biodiversity assessments mainly based on vegetation maps, aerial photos and vegetation surveys in the catchment area of the Adamello glacier for the last five decades. This historical reconstruction of biodiversity trends will be performed on a micro-, meso- and macro-scale (5, 20-50 and 50-100 Km radius, respectively). The results will serve as a calibration data set on biodiversity for future studies, such as the second step of the coring by the POLLiCE research consortium (pollice.fmach.it). In fact, arrangements are currently been made to drill the complete ice cap and retrieve a 270 m thick core which has the potential to cover a time span of minimum 400 years up to several millennia. This second stage will extend the time scale and enable the evaluation of dissimilarity/similarity of modern biodiversity in relation to Late Holocene trends. Finally, we believe this case study has the potential to be applied in other glaciated areas to evaluate biodiversity for large regions (e.g. central Asian mountain ranges, Tibet and Tian Shan or the Andes).
NASA Astrophysics Data System (ADS)
de Angelis, M.; Tison, J.-L.; Morel-Fourcade, M.-C.; Susini, J.
2013-10-01
The EPICA Dome C ice core (EDC) reached a final depth of 3260 m, at a maximum height of about 15 m above the ice-bedrock interface in December 2004. We present here data gained from a detailed investigation of selected samples of the deeper part of the core located below 3200 m and referred to as bottom ice. This part of the core has been poorly investigated so far mainly because there are significant challenges in interpreting paleo-records that were very likely modified by long term in situ processes. Our study combines high resolution ion chromatography, high resolution synchrotron X-Ray micro-fluorescence (micro XRF), scanning, and transmission electron microscopy. Our aim was to identify the long term physico-chemical processes at work close to the bedrock, to determine how they have altered the initial registers, and, ultimately to extract information on the very ancient Antarctic environment. The ubiquitous presence of nanometer iron oxide crystals at the surface of wind-borne dust aggregates containing also large amount of organic matter raises the possibility that the consolidation of windborne dust clusters formed during ice recrystallization could be related to microbial iron reduction and, thus, to the progressive reactivation of dormant bacterial activity in warming ice. Inclusions of size and number density increasing with depth observed in the 12 last meters (3248-3260 m) contain liquid and solid species, among them marine biogenic acids, numerous wind-borne dust aggregates and clusters of large reversible calcium carbonate particles precipitated once the inclusion was formed and often covered by secondary gypsum. The refreezing of slush lenses is discussed as a potential cause of the formation of such heterogeneous and complex mixtures. In addition to the very fine micrometer size minerals windborne from extra-Antarctic continental sources and often accreted in large aggregates, single medium size particles (a few to ca 20 μm and among them organic debris) are commonly encountered. Their size, surface shape, and mineralogy suggest that aerosol transport from Antarctic ice-free areas played a significant role at the time EDC bottom ice was formed. Concentrations and concentration ratios of biogenic sulfur species also advocate for the strengthening of peri-Antarctic meteorological patterns that favor the inland penetration of disturbed flow carrying local material. Very large well preserved mineral particles several tens of micrometers in diameter, and biotope relics in deeper ice close to 3260 m likely come from the sub-glacial environment.
Greenhouse Gas Concentration Records Extended Back to 800,000 Years From the EPICA Dome C Ice Core
NASA Astrophysics Data System (ADS)
Chappellaz, J.; Luethi, D.; Loulergue, L.; Barnola, J.; Bereiter, B.; Blunier, T.; Jouzel, J.; Lefloch, M.; Lemieux, B.; Masson-Delmotte, V.; Raynaud, D.; Schilt, A.; Siegenthaler, U.; Spahni, R.; Stocker, T.
2007-12-01
The deep ice core recovered from Dome Concordia in the framework of EPICA, the European Project for Ice Coring in Antarctica, has extended the record of Antarctic climate history back to 800,000 years [Jouzel et al., 2007]. We present the current status of measurements of CO2, CH4 and N2O on air trapped in the bubbles of the Dome C ice core. CO2 is measured in two laboratories using different techniques (laser absorption spectroscopy or gas chromatography on samples of 8 and 40 g of ice which are mechanically crushed or milled, respectively). CH4 and N2O are extracted using a melt-refreeze technique and then measured by gas chromatography (in two laboratories for CH4). The greenhouse gas concentrations have now been measured on the lowest 200 m of the Dome C core, going back to Marine Isotope Stage 20 (MIS 20) as verified by a consistent gas age/ice age difference determined at termination IX [Jouzel et al., 2007]. The atmospheric CO2 concentration mostly lagged the Antarctic temperature with a rather strong correlation throughout the eight and a half glacial cycles, but with significantly lower CO2 values between 650 and 750 kyr BP. Its lowest level ever measured in ice cores (172 ppmv) is observed during MIS 16 (minimum centered at 667 kyr BP according to the EDC3 chronology) redetermining the natural span of CO2 to 172-300 ppmv. With 2245 individual measurements, the CH4 concentration is now reconstructed over 800,000 years from a single core, with an average time resolution of 380 years. Spectral analyses of the CH4 signal show an increasing contribution of precession during the last four climatic cycles compared with the four older ones, suggesting an increasing impact of low latitudes sources/sinks. Millennial scale features in this very detailed signal allows us to compare their occurrence with ice volume reconstructions and the isotopic composition of precipitation over the East Antarctic plateau. N2O is still affected by glaciological artefacts involving dust content in the ice, and its exact temporal evolution remains to be deciphered. These measurements represent the basis of the so-called "EPICA Challenge" [Wolff et al., 2005]: they will put the climate and carbon cycle modelers under the challenge of fully understanding how orbital parameters and climate system configurations could have built such tight coupling between atmospheric composition and natural climate change during the late Quaternary. Jouzel et al., Science 317, 793-796, 10 August 2007 Wolff et al., EOS 86, N°38, 341-345, 20 September 2005
Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing
NASA Technical Reports Server (NTRS)
Jezek, Kenneth C.
2002-01-01
An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the areally Integrated snow accumulation and the net ice discharge of the ice sheet. Uncertainties in this calculation Include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken from isolated spots across the ice sheet. The sparse data associated with ice cores juxtaposed against the high spatial and temporal resolution provided by remote sensing , has motivated scientists to investigate relationships between accumulation rate and microwave observations as an option for obtaining spatially contiguous estimates. The objective of this PARCA continuation proposal was to complete an estimate of surface accumulation rate on the Greenland Ice Sheet derived from C-band radar backscatter data compiled in the ERS-1 SAR mosaic of data acquired during, September-November, 1992. An empirical equation, based on elevation and latitude, is used to determine the mean annual temperature. We examine the influence of accumulation rate, and mean annual temperature on C-band radar backscatter using a forward model, which incorporates snow metamorphosis and radar backscatter components. Our model is run over a range of accumulation and temperature conditions. Based on the model results, we generate a look-up table, which uniquely maps the measured radar backscatter, and mean annual temperature to accumulation rate. Our results compare favorably with in situ accumulation rate measurements falling within our study area.
Modern foraminifera assemblages in the Amundsen Sea Embayment
NASA Astrophysics Data System (ADS)
Ewa Jernas, Patrycja; Kuhn, Gerhard; Hillenbrand, Claus-Dieter; Lander Rasmussen, Tine; Forwick, Matthias; Mackensen, Andreas; Schröder, Michael; Smith, James; Klages, Johann Philipp
2015-04-01
The West Antarctic Ice Sheet (WAIS) is considered the most unstable part of the Antarctic Ice Sheet. As the WAIS is mostly grounded below sea level, its stability is of great concern. A collapse of large parts of the WAIS would result in a significant global sea-level rise. At present, the WAIS shows dramatic ice loss in its Amundsen Sea sector, especially in Pine Island Bay. Pine Island Glacier (PIG) is characterised by fast flow, major thinning and rapid grounding-line retreat. Its mass los over recent decades is generally attributed to melting caused by the inflow of warm Circumpolar Deep Water (CDW). Future melting of PIG may result in a sea level tipping point, because it could trigger widespread collapse of the WAIS, especially when considering ongoing climate change. Our research project aims to establish proxies (integration of foraminifera, sediment properties and oceanographic data) for modern environmental conditions by analysing seafloor surface sediments along a transect from the glacier proximal settings to the middle-outer shelf in the eastern Amundsen Sea Embayment. These proxies will then be applied on sediment records spanning the Holocene back to the Last Glacial Maximum for reconstructing spatial and temporal variations of CDW upwelling and ice-ocean interactions during the past c. 23,000 years. We will present preliminary results from the analyses of ten short marine sediment cores (multi and box cores) collected during expeditions JR179 (2008) and ANT-XXVI/3 (2010) along a transect from inner Pine Island Bay to the middle-outer shelf part of the Abbot Palaeo-Ice Stream Trough at water depths ranging from 458 m (middle shelf) to 1444 m (inner shelf). The sediment cores are currently investigated for distribution patterns of planktonic and benthic foraminifera and grain-size distribution at 1 cm resolution. Core tops (0-10 cm) were stained with Rose Bengal for living benthic foraminifera investigations. The chronology of the cores will be based on 210Pb and calibrated 14C dates. First results reveal the presence of living benthic foraminifera in surface sediments of all investigated cores suggesting that modern seabed surfaces were recovered. Moreover, a core retrieved from a water depth of 793 m in the Abbot Palaeo-Ice Stream Trough shows particularly high abundances of planktonic foraminifera Neogloboquadrina pachyderma.
NASA Astrophysics Data System (ADS)
Thundercloud, Z. R.; Osterberg, E. C.; Ferris, D. G.; Graeter, K.; Lewis, G.; Hawley, R. L.; Marshall, H. P.
2016-12-01
Greenland ice cores provide seasonally to annually resolved proxy records of past temperature, accumulation and atmospheric circulation. Most Greenland ice cores have been collected from the dry snow zone at elevations greater than 2500 m to produce records of North Atlantic paleoclimate over the last full glacial cycle. Ice cores collected from more costal regions, however, provide the opportunity to develop regional-scale records of climate conditions along ice sheet margins where recent temperature and precipitation changes have been larger than those in the ice sheet interior. These cores are more readily comparable to lake sediment and landscape (i.e. moraine) records from the ice sheet margin, and are potentially more sensitive to sea-ice variability due to the proximity to the coast. Here we present major ion and stable isotope records from an array of firn cores (40-55 year records) collected in the western Greenland percolation zone, and assess the spatial variability of ice core statistical relationships with the North Atlantic Oscillation (NAO) and Baffin Bay sea ice extent. Seven cores were collected from elevations of 2100-2500 m along a 400-km segment of the ice sheet from Dye-2 to Milcent as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project from May-June 2016. They were sampled by a continuous melter system at Dartmouth College, and analyzed using Dionex ion chromatographs and a Picarro L2130-i laser ring-down spectrometer. We focus on the signature of the NAO and Baffin Bay sea ice extent in the sea-salt, dust, deuterium excess (d-excess), and methanesulfonic acid (MSA) firn core records, and assess the special variability of these climate-ice core relationships across the study area. Climate reanalysis data indicate that NAO-ice core correlations should be stronger at lower elevation in the percolation zone than high in the dry snow zone. Our results will provide valuable insight into the sensitivity of Greenland ice core paleoclimate reconstructions to the specific ice core location, and thereby aid in site selection for deeper ice cores that could span the Holocene.
Rapid coupling between ice volume and polar temperature over the past 150,000 years.
Grant, K M; Rohling, E J; Bar-Matthews, M; Ayalon, A; Medina-Elizalde, M; Ramsey, C Bronk; Satow, C; Roberts, A P
2012-11-29
Current global warming necessitates a detailed understanding of the relationships between climate and global ice volume. Highly resolved and continuous sea-level records are essential for quantifying ice-volume changes. However, an unbiased study of the timing of past ice-volume changes, relative to polar climate change, has so far been impossible because available sea-level records either were dated by using orbital tuning or ice-core timescales, or were discontinuous in time. Here we present an independent dating of a continuous, high-resolution sea-level record in millennial-scale detail throughout the past 150,000 years. We find that the timing of ice-volume fluctuations agrees well with that of variations in Antarctic climate and especially Greenland climate. Amplitudes of ice-volume fluctuations more closely match Antarctic (rather than Greenland) climate changes. Polar climate and ice-volume changes, and their rates of change, are found to covary within centennial response times. Finally, rates of sea-level rise reached at least 1.2 m per century during all major episodes of ice-volume reduction.
An ultra-high resolution last deglacial marine sediment records of the Northwest Atlantic Ocean
NASA Astrophysics Data System (ADS)
Rashid, H.; Piper, D.; Marche, B.; Vermooten, M.; Lazar, K.; Brockway, B.
2016-12-01
Lack of high sedimentation rate records of past changes pertaining to the late Pleistocene Laurentide ice-sheet (LIS) dynamics has prevented efforts to differentiate the various forcings in modulating abrupt climate changes. Here, we present an ultra-high resolution sediment record spanning approximately 1,500 km of the Eastern Canadian continental margin. The new record comprises four sediment cores which were collected from the northwest Labrador Sea (i.e., Saglek Bank) to southwestern Flemish Pass to the southeast Grand Banks in outer shelf and slope settings. Fifty new 14C-accelerator mass spectrometric dates were obtained to construct the stratigraphy. The total sediment thickness of the new record is 41 m covering the past 26 ka with 1.58/ka mean sediment rate, the highest sediment rate ever reported from the Northwest Atlantic Ocean for this time interval. Further, the temporal resolution of the record varies from a couple of decades to centuries depending on the time interval. X-ray fluorescence (XRF) data in conjunction with physical properties of sediments and petrology allowed us to distinguish sediment delivered by major ice-streams of the LIS namely the Hudson Strait, Hopedale Saddle, and Cumberland Sound ice streams. Heinrich layers 1 and 2 are well identified by their Labrador Sea specific characteristics. The so-called Younger Dryas equivalent Heinrich layer H0 was identified in these cores but the timing of onset of H0 has an offset by nearly 1,000 years with that of the 12.9 ka, suggesting that the YD event was not initiated by the Hudson Strait compared to other Heinrich events.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiundar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa
2015-01-01
The Goddard microphysics scheme was recently improved by adding a 4th ice class (frozen dropshail). This new 4ICE scheme was implemented and tested in the Goddard Cumulus Ensemble model (GCE) for an intense continental squall line and a moderate,less-organized continental case. Simulated peak radar reflectivity profiles were improved both in intensity and shape for both cases as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified - Weather Research and Forecasting model (NU-WRF) and tested on an intense mesoscale convective system that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). The NU42WRF simulated radar reflectivities, rainfall intensities, and vertical and horizontal structure using the new 4ICE scheme agree as well as or significantly better with observations than when using previous versions of the Goddard 3ICE (graupel or hail) schemes. In the 4ICE scheme, the bin microphysics-based rain evaporation correction produces more erect convective cores, while modification of the unrealistic collection of ice by dry hail produces narrow and intense cores, allowing more slow-falling snow to be transported rearward. Together with a revised snow size mapping, the 4ICE scheme produces a more horizontally stratified trailing stratiform region with a broad, more coherent light rain area. In addition, the NU-WRF 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive open lateral boundaries
NASA Astrophysics Data System (ADS)
Bertò, Michele; Barbante, Carlo; Gabrielli, Paolo; Gabrieli, Jacopo; Spolaor, Andrea; Dreossi, Giuliano; Laj, Paolo; Zanatta, Marco; Stenni, Barbara
2017-04-01
Reconstructions of the atmospheric content of black carbon, heavy metals and mineral dust covering millennial time scales are rare, particularly in the European region. Evaluating the human impact on the environment through mining and industrial activities, road traffic, biomass and coal burning, and the naturally emitted aerosols atmospheric load, is important to know the degree of contaminations and the quality of melting water, the radiative effect on the glacier's radiative balance, the atmospheric aerosols' climatic impacts and the recent decades pollutions emissions policies' efficiencies. Four ice cores were drilled in 2011 from the "Alto dell'Ortles" (3859 m), the highest glacier of the Mt. Ortles massif (South Tirol, Italy). Three 74 m long ice cores were dated by mean of 210Pb, tritium, beta emissions and 14C analyses following also the new dating technique based on filtering the ice for extracting the carbonaceous component of the deposited aerosols. The depth-age curve was obtained by using a Monte Carlo based empirical fitting model (COPRA). The basal ice of core#2 and #3 was dated back to about 7000 years b.p., whereas that of core#1, about one meter shorter, to 3000 years before present. Below the firn-ice transition, at a depth of about 24 m, the borehole temperature revealed the presence of well-preserved cold ice (Gabrielli et al, 2012). The O and H stable isotopes profiles describe well the atmospheric warming as well as the low temperatures recorded during the Little Ice Age (LIA). The proximity of the "Alto dell'Ortles" to densely industrialized areas (Po Valley) makes these ice cores specifically suited for reconstructing the anthropogenic impacts in the Eastern European Alpine region over the last 3 millennia. The ice core#1 was analyzed with a "Continuous Flow Analysis" system (CFA). The separation between internal and external parts of the core prevents any kind of contamination. The core was melted at about 2.5 cm min-1 and simultaneous analyses of conductivity, dust concentration and size distribution (from 0.8 to 80 μm), trace elements with Inductive Coupled Plasma Mass Spectrometer (ICP-MS, Agilent 7500) and refractory black carbon (rBC) with the Single Particle Soot Photometer (SP2, Droplet Measurement Technologies) were performed. A fraction of the melt water was collected by an auto-sampler. More than 1000 samples were analyzed discreetly with a CRC-ICP-MS (with the highest resolution of about 3 cm). The rBC shows significant variability over the last century peaking in concentrations of about 10 ng g-1 from the 1920s to the 1970s, whereas very low values characterized the period from 1000 BC to 1850 AD. The seasonality appears to be preserved even in the firn temperate part of the core as argued from the comparison with the water stable isotopes ratios (δO18). The overall determined trace elements are Li, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Sr, Ag, Cd, Sb, Te, I, Cs, Ba, Hg, Tl, Pb, Bi, U. The Enrichment Factors (EF) for the crustal elements didn't show any particular trend. While mining and smelting activities appeared to be the most significant heavy metals sources before the 19th century, other anthropogenic heavy metals strongly increased from the onset of the Industrial Revolutions.
Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes
NASA Astrophysics Data System (ADS)
Gross, B. H.; Kreutz, K. J.; Osterberg, E. C.; McConnell, J. R.; Handley, M.; Wake, C. P.; Yalcin, K.
2012-08-01
Trends and sources of lead (Pb) aerosol pollution in the North Pacific rim of North America from 1850 to 2001 are investigated using a high-resolution (subannual to annual) ice core record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Beginning in the early 1940s, increasing Pb concentration at Eclipse Icefield occurs coevally with anthropogenic Pb deposition in central Greenland, suggesting that North American Pb pollution may have been in part or wholly responsible in both regions. Isotopic ratios (208Pb/207Pb and 206Pb/207Pb) from 1970 to 2001 confirm that a portion of the Pb deposited at Eclipse Icefield is anthropogenic, and that it represents a variable mixture of East Asian (Chinese and Japanese) emissions transported eastward across the Pacific Ocean and a North American component resulting from transient meridional atmospheric flow. Based on comparison with source material Pb isotope ratios, Chinese and North American coal combustion have likely been the primary sources of Eclipse Icefield Pb over the 1970-2001 time period. The Eclipse Icefield Pb isotope composition also implies that the North Pacific mid-troposphere is not directly impacted by transpolar atmospheric flow from Europe. Annually averaged Pb concentrations in the Eclipse Icefield ice core record show no long-term trend during 1970-2001; however, increasing208Pb/207Pb and decreasing 206Pb/207Pb ratios reflect the progressive East Asian industrialization and increase in Asian pollutant outflow. The post-1970 decrease in North American Pb emissions is likely necessary to explain the Eclipse Icefield Pb concentration time series. When compared with low (lichen) and high (Mt. Logan ice core) elevation Pb data, the Eclipse ice core record suggests a gradual increase in pollutant deposition and stronger trans-Pacific Asian contribution with rising elevation in the mountains of the North Pacific rim.
NASA Astrophysics Data System (ADS)
Dominiczak, Aleksander; Szczuciński, Witold; Moskalik, Mateusz; Forwick, Matthias
2017-04-01
As a result of global warming from the end of the Little Ice Age a fast withdrawal and loss of mass of many glaciers have been observed. The retreat has been particularly rapid in case of tidewater glaciers of Spitsbergen, where in an effect a new bays were formed and serve as glaciomarine sediment accumulation areas. The new depocenters in emerging bays are characterized by high sediment accumulation rates. Analysis and quantitative assessment of the processes occurring in these bays can enhance a better understanding of the dynamics of glaciers recession and bio-geochemical processes occurring in the fjords. This is particularly important because the subpolar fjords may be important storage for organic carbon on a global scale (Smith at al. 2015). In order to obtain a detailed high-resolution record of sedimentation history in the post Little Ice Age bays, 30 gravity cores and 18 box cores were collected along with detail seism acoustic surveys (Chirp) during three cruises on board of R/V Helmar Hansen in 2007, 2014 and 2015. The sediment cores revealed two major types of sediments: subglacial till and overlying laminated glacimarine mud with abundant ice rafted debris. The sediment accumulation rate of the latter is estimated to be on average in order of 1 to 5 cm per year. The periods of increase ice rafting are likely related to surge events. The dense Chirp survey grid spatial changeability in the post-Little Ice Age sediment cover. The amount and lithology of sediments in different parts of the bays also helped to link glacier dynamics with sedimentary effect. Our results confirms that despite similarities in lithology there are significant differences in sediment accumulation rates, probably driven by changes in accommodation spaces and sediment delivery. The record is also affected by effects of glacier surges. However, analyses of historical data enhanced the interpretation of sedimentary record and provide hints to identify the specific processes and events in the sedimentary record. The study was funded by Polish National Science Centre grant No. 2013/10/E/ST10/00166. We kindly acknowledge help of the captain and crew of R/V Helmer Hanssen as well as onboard scientific party. Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., & Galy, V. (2015). High rates of organic carbon burial in fjord sediments globally. Nature Geoscience, 8(6), 450-453.
NASA Astrophysics Data System (ADS)
Erdmann, Eric S.; Ribic, Christine A.; Patterson-Fraser, Donna L.; Fraser, William R.
2011-07-01
In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin ( Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (<200 m) waters near land and on mixed-layer (200-500 m) waters near the edge of deep troughs. Within-ice variability and wind (as a proxy for potential areas with cracks and leads) were not found to be influential variables, which is likely because of the low resolution satellite imagery and model outputs that were available. Throughout the study period, all individuals maintained a core foraging area separated from other individuals with very little overlap. However, from a year with light sea ice to one with heavy ice cover (2001-2002), we observed an increase in the overlap of individual female foraging areas with those of other birds, likely due to restricted access to the water column, reduced prey abundance, or higher prey concentration. Male birds maintained separate core foraging areas with the same small amount of overlap, showing no difference in overlap between the years. While complex bathymetry was an important physical variable influencing the Adélie penguin's foraging, the analysis of sea ice data of a higher resolution than was available for this study may help elucidate the role of sea ice in affecting Adélie penguin winter foraging behavior within the pack ice.
Erdmann, Eric S.; Ribic, Christine; Patterson-Fraser, Donna L.; Fraser, William R.
2011-01-01
In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin (Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (<200 m) waters near land and on mixed-layer (200–500 m) waters near the edge of deep troughs. Within-ice variability and wind (as a proxy for potential areas with cracks and leads) were not found to be influential variables, which is likely because of the low resolution satellite imagery and model outputs that were available. Throughout the study period, all individuals maintained a core foraging area separated from other individuals with very little overlap. However, from a year with light sea ice to one with heavy ice cover (2001–2002), we observed an increase in the overlap of individual female foraging areas with those of other birds, likely due to restricted access to the water column, reduced prey abundance, or higher prey concentration. Male birds maintained separate core foraging areas with the same small amount of overlap, showing no difference in overlap between the years. While complex bathymetry was an important physical variable influencing the Adélie penguin's foraging, the analysis of sea ice data of a higher resolution than was available for this study may help elucidate the role of sea ice in affecting Adélie penguin winter foraging behavior within the pack ice.
A common and optimized age scale for Antarctic ice cores
NASA Astrophysics Data System (ADS)
Parrenin, F.; Veres, D.; Landais, A.; Bazin, L.; Lemieux-Dudon, B.; Toye Mahamadou Kele, H.; Wolff, E.; Martinerie, P.
2012-04-01
Dating ice cores is a complex problem because 1) there is a age shift between the gas bubbles and the surrounding ice 2) there are many different ice cores which can be synchronized with various proxies and 3) there are many methods to date the ice and the gas bubbles, each with advantages and drawbacks. These methods fall into the following categories: 1) Ice flow (for the ice) and firn densification modelling (for the gas bubbles); 2) Comparison of ice core proxies with insolation variations (so-called orbital tuning methods); 3) Comparison of ice core proxies with other well dated archives; 4) Identification of well-dated horizons, such as tephra layers or geomagnetic anomalies. Recently, an new dating tool has been developped (DATICE, Lemieux-Dudon et al., 2010), to take into account all the different dating information into account and produce a common and optimal chronology for ice cores with estimated confidence intervals. In this talk we will review the different dating information for Antarctic ice cores and show how the DATICE tool can be applied.
Atmospheric CO2 and abrupt climate change on submillennial timescales
NASA Astrophysics Data System (ADS)
Ahn, Jinho; Brook, Edward
2010-05-01
How atmospheric CO2 varies and is controlled on various time scales and under various boundary conditions is important for understanding how the carbon cycle and climate change are linked. Ancient air preserved in ice cores provides important information on past variations in atmospheric CO2. In particular, concentration records for intervals of abrupt climate change may improve understanding of mechanisms that govern atmospheric CO2. We present new multi-decadal CO2 records that cover Greenland stadial 9 (between Dansgaard-Oeschger (DO) events 8 and 9) and the abrupt cooling event at 8.2 ka. The CO2 records come from Antarctic ice cores but are well synchronized with Greenland ice core records using new high-resolution CH4 records,precisely defining the timing of CO2 change with respect to abrupt climate events in Greenland. Previous work showed that during stadial 9 (40~38 ka), CO2 rose by about 15~20 ppm over around 2,000 years, and at the same time temperatures in Antarctica increased. Dust proxies indicate a decrease in dust flux over the same period. With more detailed data and better age controls we now find that approximately half of the CO2 increase during stadial 9 occurred abruptly, over the course of decades to a century at ~39.6 ka. The step increase of CO2 is synchronous with a similar step increase of Antarctic isotopic temperature and a small abrupt change in CH4, and lags after the onset of decrease in dust flux by ~400 years. New atmospheric CO2 records at the well-known ~8.2 ka cooling event were obtained from Siple Dome ice core, Antarctica. Our preliminary CO2 data span 900 years and include 19 data points within the 8.2 ka cooling event, which persisted for ~160 years (Thomas et al., Quarternary Sci. Rev., 2007). We find that CO2 increased by 2~4 ppm during that cooling event. Further analyses will improve the resolution and better constrain the CO2 variability during other times in the early Holocene to determine if the variations observed during at 8.2 ka event are significant.
NASA Astrophysics Data System (ADS)
Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L. G.
2014-12-01
The Tibetan Plateau or Third Pole covers over 5 million km2, and has ~46,000 glaciers that collectively contain one of the Earth's largest stores of fresh water. The Guliya ice cap located in the western Kunlun Shan on the Qinghai-Tibetan Plateau, China, is the largest (> 200 km2) ice cap in the subtropical zone. In 1992, a 308.6 m ice core to bedrock was recovered from the Guliya ice cap. The deepest 20 meters yielded the first record extending back through the last glacial cycle found outside of the Polar Regions. Because of its continental location on the northwestern side of the Tibetan Plateau, the atmospheric circulation over the Guliya ice cap is dominated by westerly air flow from the Eurasian region. Therefore the site is expected to be unaffected by the fallout of anthropogenic trace metals originating from the inner Asian continent and rather may serve to characterize trace metal emissions from the western countries. Here we present preliminary results of the determination of 29 trace elements, Rb, Sr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Ta, Tl, Pb, Bi, U, Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and As, from Guliya ice core samples spanning the period 1500 - 1992 AD at seasonal (1750-1992 AD) and annual (1500-1750 AD) resolution. This Guliya trace element record will complement the developing records from the Dasuopu glacier, central Himalaya, and from the Puruogangri ice cap in the western Tanggula Shan in central Tibetan Plateau, which in contrast to Guliya are influenced by the monsoon. We investigate the possible sources both natural and anthropogenic of atmospheric trace elements and their fluxes over the Tibetan Plateau during the last 500 years.
A tephra lattice for Greenland and a reconstruction of volcanic events spanning 25-45 ka b2k
NASA Astrophysics Data System (ADS)
Bourne, A. J.; Cook, E.; Abbott, P. M.; Seierstad, I. K.; Steffensen, J. P.; Svensson, A.; Fischer, H.; Schüpbach, S.; Davies, S. M.
2015-06-01
Tephra layers preserved within the Greenland ice-cores are crucial for the independent synchronisation of these high-resolution records to other palaeoclimatic archives. Here we present a new and detailed tephrochronological framework for the time period 25,000-45,000 a b2k that brings together results from 4 deep Greenland ice-cores. In total, 99 tephra deposits, the majority of which are preserved as cryptotephra, are described from the NGRIP, NEEM, GRIP and DYE-3 records. The major element signatures of single glass shards within these deposits indicate that 93 are basaltic in composition all originating from Iceland. Specifically, 43 originate from Grimsvötn, 20 are thought to be sourced from the Katla volcanic system and 17 show affinity to the Kverkfjöll system. Robust geochemical characterisations, independent ages derived from the GICC05 ice-core chronology, and the stratigraphic positions of these deposits relative to the Dansgaard-Oeschger climate events represent a key framework that provides new information on the frequency and nature of volcanic events in the North Atlantic region between GS-3 and GI-12. Of particular importance are 19 tephra deposits that lie on the rapid climatic transitions that punctuate the last glacial period. This framework of well-constrained, time-synchronous tie-lines represents an important step towards the independent synchronisation of marine, terrestrial and ice-core records from the North Atlantic region, in order to assess the phasing of rapid climatic changes during the last glacial period.
IceAge: Chemical Evolution of Ices during Star Formation
NASA Astrophysics Data System (ADS)
McClure, Melissa; Bailey, J.; Beck, T.; Boogert, A.; Brown, W.; Caselli, P.; Chiar, J.; Egami, E.; Fraser, H.; Garrod, R.; Gordon, K.; Ioppolo, S.; Jimenez-Serra, I.; Jorgensen, J.; Kristensen, L.; Linnartz, H.; McCoustra, M.; Murillo, N.; Noble, J.; Oberg, K.; Palumbo, M.; Pendleton, Y.; Pontoppidan, K.; Van Dishoeck, E.; Viti, S.
2017-11-01
Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. We propose to trace the evolution of pristine and complex ice chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R 1500-3000) and sensitivity (S/N 100-300) observations from 3 to 15 um to template spectra, we will map the spatial distribution of ices down to 20-50 AU in these targets to identify when, and at what visual extinction, the formation of each ice species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different ice morphologies,thermal histories, and mixing environments. The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory ice database will provide feature identifications for all of the expected ices, while a chemical model fit to the observed ice abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.
Investigating the Microscopic Location of Trace Elements in High-Alpine Glacier Ice
NASA Astrophysics Data System (ADS)
Avak, Sven Erik; Birrer, Mario; Laurent, Oscar; Guillong, Marcel; Wälle, Markus; Jenk, Theo Manuel; Bartels-Rausch, Thorsten; Schwikowski, Margit; Eichler, Anja
2017-04-01
Past changes in atmospheric pollution can be reconstructed from high-alpine ice core trace element records (Schwikowski et al., 2004). Percolation of meltwater alters the information originally stored in these environmental archives. Eichler et al. (2001) suggested that the preservation of major ions with respect to meltwater percolation depends on their location in the crystal ice lattice, i.e. grain boundaries versus grain interiors. Other studies have also focused on the effect of meltwater on organic pollutant concentrations as well as on stable isotope profiles in ice cores, whereas no information exists about trace elements. Here, we investigate for the first time the effect of the microscopic location of anthropogenic, dust and volcanic related trace elements on the behavior during meltwater percolation by using two different approaches. On the one hand we assess the microscopic location of trace elements indirectly by analyzing trace element concentrations in a high-alpine ice core, which has been shown to be affected by an inflow of meltwater, using discrete inductively coupled plasma mass spectrometry (ICP-MS). Impurities located at grain boundaries are prone to be removed by meltwater and tend to be depleted in the affected section of the record whereas those incorporated into the ice interior are preserved and not disturbed in the record. In the second approach we work towards a direct quantification of differences in concentrations of trace elements between ice grain boundaries and grain interiors in samples both from unaffected and affected sections of this ice core. Therefore we use cryocell laser ablation (LA) ICP-MS, which is the method of choice for the direct in situ chemical analysis of trace elements at a sub-millimeter resolution in glacier ice (Reinhardt et al., 2001, Della Lunga et al., 2014, Sneed et al., 2015). We will present first results of both approaches with regard to the evaluation of the potential of trace elements as environmental proxies in glaciers partially affected by melting. References Della Lunga, D., Müller, W., Rasmussen, S. O. & Svensson, A. 2014: Location of cation impurities in NGRIP deep ice revealed by cryo-cell UV-laser-ablation ICPMS, Journal of Glaciology, 60, 970-988. Eichler, A., Schwikowski, M., Gäggeler, H. W. 2001: Meltwater-induced relocation of chemical species in Alpine firn, Tellus B, 53, 192-203. Reinhardt, H., Kriews, M., Miller, H., Schrems, O., Lüdke, C., Hoffmann, E. & Skole, J. 2001: Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores, Fresenius' Journal of Analytical Chemistry, 370, 629-636. Schwikowski, M., Barbante, C., Doering, T., Gäggeler, H. W., Boutron, C., Schotterer, U., Tobler, L., van de Velde, K., Ferrari, C., Cozzi, G., Rosman, K., Cescon, P. 2004: Post-17th-Century Changes of European Lead Emissions Recorded in High-Altitude Alpine Snow and Ice, Environmental Science & Technology, 38, 957-964. Sneed, S. B., Mayewski, P. A., Sayre, W. G., Handley, M. J., Kurbatov, A. V., Taylor, K. C., Bohleber, P., Wagenbach, D., Erhardt, T. & Spaulding, N. E. 2015: New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores, Journal of Glaciology, 61, 233-242.
In-situ observation of bubble trapping in polar firn
NASA Astrophysics Data System (ADS)
Florian Schaller, Christoph; Freitag, Johannes; Sowers, Todd; Vinther, Bo; Weinhart, Alexander; Eisen, Olaf
2017-04-01
The air trapped in polar ice cores is not a direct record of past atmospheric composition but is strongly influenced by the process of firnification as bubbles are only sealed at a certain point, when the respective horizontal layer reaches a so called "critical" porosity. In order to investigate this process, we performed high-resolution (approximately 25 μm) 3D-XCT measurements of the complete lock-in zone for two polar ice cores representing opposite extremes of the temperature and accumulation rate range: B53, close to Dome Fuji, East Antarctica and RECAP_S2, Renland, Greenland. For every 1m core segment, we scanned a minimum number of five sections of approximately 3.5cm height of the full core diameter with a focus on homogenous layers. This allows us to non-destructively deduce detailed profiles of open and closed porosity on a solid statistical basis. For each of the cores individually, we find that the trapping of bubbles in a single layer is solely determined by its total porosity and thereby independent of depth. We can confirm the existence of a distinct Schwander-type relation of closed and total porosity. Even though the two cores deviate from each other significantly in critical porosity, 0.0907 for B53 compared to 0.1025 for RECAP_S2, we observe many similarities. We hypothesize, that the determining factors of bubble trapping are the average size and variability of pore space structures. This could potentially allow the reconstruction of past close-off porosities from the remaining pore structures in deep ice, e.g. from bubble number densities.
Precise interpolar phasing of abrupt climate change during the last ice age.
2015-04-30
The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard-Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.
A New Multielement Method for LA-ICP-MS Data Acquisition from Glacier Ice Cores.
Spaulding, Nicole E; Sneed, Sharon B; Handley, Michael J; Bohleber, Pascal; Kurbatov, Andrei V; Pearce, Nicholas J; Erhardt, Tobias; Mayewski, Paul A
2017-11-21
To answer pressing new research questions about the rate and timing of abrupt climate transitions, a robust system for ultrahigh-resolution sampling of glacier ice is needed. Here, we present a multielement method of LA-ICP-MS analysis wherein an array of chemical elements is simultaneously measured from the same ablation area. Although multielement techniques are commonplace for high-concentration materials, prior to the development of this method, all LA-ICP-MS analyses of glacier ice involved a single element per ablation pass or spot. This new method, developed using the LA-ICP-MS system at the W. M. Keck Laser Ice Facility at the University of Maine Climate Change Institute, has already been used to shed light on our flawed understanding of natural levels of Pb in Earth's atmosphere.
NASA Astrophysics Data System (ADS)
Thompson, L. G.; Mosley-Thompson, E. S.; Davis, M. E.
2011-12-01
High-resolution ice core stratigraphic records of δ18O (temperature proxy) demonstrate that the current warming at high elevations in mid- to lower latitudes is unprecedented for at least the last two millennia, although at many sites the Early Holocene was much warmer than at present. Here we discuss the interaction of El Niño-Southern Oscillation (ENSO) variability and warming trends as recorded in ice core records from high-altitude tropical glaciers and the implications of the warming trends for the future of these glaciers. ENSO has strong impacts on meteorological phenomena that either directly or indirectly affect most regions on the planet and their populations, particularly throughout the Tropics. Here we examine similarities and differences among ice core records from Papua (Indonesia), Quelccaya Ice Cap (Peru) and Kilimanjaro (Tanzania). Quelccaya, Earth's largest tropical ice cap, has provided continuous, annually-resolved proxy records of climatic and environmental variability preserved in many measurable parameters, especially oxygen and hydrogen isotopic ratios (δ18O, δD) and the net mass balance (accumulation) spanning the last 1800 years. The remarkable similarity between changes in the highland and coastal cultures of Peru and climate variability in the Andes, especially with regard to precipitation, implies a strong connection between prehistoric human activities and climate in this region. The well-documented ice loss on Quelccaya, Kilimanjaro in eastern Africa and the ice fields near Puncak Jaya in Papua, Indonesia presents a possible analog for glacier response in the tropics during the Holocene. The ongoing melting of these ice fields is consistent with model predictions of a vertical amplification of temperature in the Tropics. A sequence of over 50 recently exposed, rooted, soft-bodied plant deposits collected between 2002 and 2011 from the retreating margins of the Quelccaya ice cap provide a longer term perspective for the recent glacier retreat. The ongoing glacier retreat in the Tropics and associated loss of natural resources has dire implications for people living in these areas. These recent changes are examined in the context of the Common Era from a glacier derived paleoclimate perspective as recorded in the glaciers on the world's highest mountains.
NASA Astrophysics Data System (ADS)
Grimoldi, E.; Roberts, D. H.; Evans, D. J. A.; Stewart, H. A.; Sejrup, H. P.; Hjelstuen, B. O. B.; Haflidason, H.; Clark, C.
2016-12-01
The deglacial history of the former eastern margin of the last British and Irish Ice Sheet (BIIS) is still poorly understood, particularly in the western North Sea basin. The North Sea Lobe (NSL) affected the area, although gaps remain in our knowledge of the geomorphological and sedimentary imprint that the ice stream left on the seafloor and, more importantly, of its way of final retreat. In this work we analyse new high-resolution multibeam bathymetry, 2D seismic profiles and five vibro-cores, collected in the western North Sea in collaboration with the Britice-Chrono project, and provide new insights on the seafloor geomorphology and acoustic and lithological facies that characterize the Quaternary sediments of the area. The presence of bedrock-cored lineations orientated WNW-ESE to NW-SE indicates that the NSL was fed by the Forth ice stream which moved offshore from southern Scotland. Moraine ridges and two grounding zone wedges, perpendicular to the lineations, suggest that the NSL underwent different phases of stillstand/readvance and retreated towards the north-west. Five acoustic facies (AF) were identified, four of which are found on top of pre-Quaternary strata (AF 1), though their lateral extension is discontinuous. They are interpreted to represent glacigenic diamicts (AF 2 and 3), that are overlain by glacimarine (AF 4) and by Holocene deposits (AF 5). The vibro-cores penetrate in depth until reaching the top of AF 3. This facies correlates to the diamictic sediments observed in the cores, which are characterized by soft silts and clays and abundant clasts. The glacimarine sediments generally appear as highly laminated silts and clays with dropstones that usually become less frequent going upwards in the cores. These sediments are also characterized by foraminifera species associated with glacial environments. Foraminifera tests were dated within the galcimarine sequences in two cores and will help constrain the timing of ice retreat. By compiling all the available datasets, we suggest that the NSL flew sub-parallel to the coasts of eastern England during the Late Devensian and underwent different phases of stillstands/readvances that indicate a slow retreat towards land.
NASA Astrophysics Data System (ADS)
Hardin, L. A.; Wellner, J. S.
2010-12-01
Beascochea Bay has an overall rapid rate of sedimentation due to retreating fast-flowing ice, and thus contains high-resolution records of Antarctica’s glacial and climate history. Beascochea Bay is a 16 km long by 8 km wide bay located on the western margin of the Antarctica Peninsula, centered between Anvers Island and Renaud Island, but open to the Bellingshausen Sea. Currently, three tidewater glaciers draining the Bruce Plateau of Graham Land enter into the fjords of Beascochea Bay, releasing terrigenous sediments which have left a record of the fluctuations of the Antarctic Peninsula Ice Cap since the grounded ice decoupled from the seafloor after the last glacial maximum. These three glaciers have played a significant role in providing sediment to the main basin, allowing a detailed sediment facies analysis to be conducted from eight sediment cores which were collected during the austral summer of 2007. Pebbly silty clay sediment cores, along with 3.5 kHz seismic data and multibeam swath bathymetry data, are integrated to reconstruct a glacial retreat timeline for the middle to late Holocene, which can be compared to the recent retreat rates over the last century. Paleoenvironment of deposition is determined by mapping lateral facies changes from the side fjords (proximal) to the outer basin (distal), as each region records the transition from glacial-marine sediments to open-marine sediments. As the ice retreated from the outer basin to the inner basin, and most recently leaving the side fjords, each facies deposited can be age-constrained by radiocarbon, 210Pb, and 137Cs dating methods. A distinct 137Cs signal is readily seen in two kasten cores from a side fjord and the inner basin of Beascochea Bay. This dating method revealed an average sedimentation rate of 2.7 mm per year for approximately the last century, which is comparable to 210Pb rates obtained in other studies. Lithology variations in each sediment core record indications of ice-shelf influence in Beascochea Bay throughout the Holocene deglaciation. The distinctively laminated sub-ice shelf facies can be clearly seen in the x-rays of these cores, and can be easily distinguished from the poorly sorted glacial-marine facies and the greenish finer-grained facies deposited in open-marine conditions. A 14 m long sediment core taken from the outer basin of Beascochea Bay recovered the greatest length of sediment and dates back to the middle Holocene. X-rays of this core show a possible mid-Holocene retreat of the ice shelf followed by intermittent advance and retreat that precedes the most recent retreat. The inner basin of Beascochea Bay has been without an ice shelf for the last 200 years, based on the sedimentation rates of the last century projected downcore.
NASA Astrophysics Data System (ADS)
Kutuzov, Stanislav; Ginot, Patrick; Mikhaenko, Vladimir; Krupskaya, Victoria; Legrand, Michel; Preunkert, Suzanne; Polukhov, Alexey; Khairedinova, Alexandra
2017-04-01
The nature and extent of both radiative and geochemical impacts of mineral dust on snow pack and glaciers depend on physical and chemical properties of dust particles and its deposition rates. Ice cores can provide information about amount of dust particles in the atmosphere and its characteristic and also give insights on strengths of the dust sources and its changes in the past. A series of shallow ice cores have been obtained in Caucasus mountains, Russia in 2004 - 2015. A 182 meter ice core has been recovered at the Western Plateau of Mt. Elbrus (5115 m a.s.l.) in 2009. The ice cores have been dated using stable isotopes, NH4+ and succinic acid data with the seasonal resolution. Samples were analysed for chemistry, concentrations of dust and black carbon, and particle size distributions. Dust mineralogy was assessed by XRD. Individual dust particles were analysed using SEM. Dust particle number concentration was measured using the Markus Klotz GmbH (Abakus) implemented into the CFA system. Abakus data were calibrated with Coulter Counter multisizer 4. Back trajectory cluster analysis was used to assess main dust source areas. It was shown that Caucasus region experiencing influx of mineral dust from the Sahara and deserts of the Middle East. Mineralogy of dust particles of desert origin was significantly different from the local debris material and contained large proportion of calcite and clay minerals (kaolinite, illite, palygorskite) associated with material of desert origin. Annual dust flux in the Caucasus Mountains was estimated as 300 µg/cm2 a-1. Particle size distribution depends on individual characteristics of dust deposition event and also on the elevation of the drilling site. The contribution of desert dust deposition was estimated as 35-40 % of the total dust flux. Average annual Ca2+ concentration over the period from 1824 to 2013 was of 150 ppb while some of the strong dust deposition events led to the Ca2+ concentrations reaching 4400 ppb. An increase of dust and Ca2+ concentration was registered since the beginning of XX century. The ice core record depicts also a prominent increase of dust concentration in 1980's which may be related to the increase of dust sources strength in North Africa.
NASA Astrophysics Data System (ADS)
Rasmussen, Sune O.
2014-05-01
Due to their outstanding resolution and well-constrained chronologies, Greenland ice core records have long been used as a master record of past climatic changes during the last interglacial-glacial cycle in the North Atlantic region. As part of the INTIMATE (INtegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition of numbered Greenland Stadials (GS) and Greenland Interstadials (GI) within the past glacial period as the Greenland expressions of the characteristic Dansgaard-Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. Using a recent synchronization of the NGRIP, GRIP, and GISP2 ice cores that allows the parallel analysis of all three records on a common time scale, we here present an extension of the GS/GI stratigraphic template to the entire glacial period. This is based on a combination of isotope ratios (δ18O, reflecting mainly local temperature) and calcium concentrations (reflecting mainly atmospheric dust loading). In addition to the well-known sequence of Dansgaard-Oeschger events that were first defined and numbered in the ice core records more than two decades ago, a number of short-lived climatic oscillations have been identified in the three synchronized records. Some of these events have been observed in other studies, but we here propose a consistent scheme for discriminating and naming all the significant climatic events of the last glacial period that are represented in the Greenland ice cores. This is a key step aimed at promoting unambiguous comparison and correlation between different proxy records, as well as a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations. The work presented is under review for publication in Quaternary Science Reviews. Author team: S.O. Rasmussen, M. Bigler, S.P.E. Blockley, T. Blunier, S.L. Buchardt, H.B. Clausen;, I. Cvijanovic, D. Dahl-Jensen, S.J. Johnsen;, H. Fischer, V. Gkinis, M. Guillevic, W.Z. Hoek, J.J. Lowe, J. Pedro, T. Popp, I.K. Seierstad, J.P. Steffensen, A.M. Svensson, P. Vallelonga, B.M. Vinther, M.J.C. Walker, J.J. Wheatley, and M. Winstrup (ased).
NASA Astrophysics Data System (ADS)
Hörner, Tanja; Stein, Ruediger; Fahl, Kirsten
2015-04-01
Here, we provide a high-resolution reconstruction of sea-ice cover variations in the western Laptev Sea, a crucial area in terms of sea-ice production in the Arctic Ocean and a region characterized by huge river discharge. Furthermore, the shallow Laptev Sea was strongly influenced by the post-glacial sea-level rise that should also be reflected in the sedimentary records. The sea Ice Proxy IP25 (Highly-branched mono-isoprenoid produced by sea-ice algae; Belt et al., 2007) was measured in two sediment cores from the western Laptev Sea (PS51/154, PS51/159) that offer a high-resolution composite record over the last 18 ka. In addition, sterols are applied as indicator for marine productivity (brassicasterol, dinosterol) and input of terrigenous organic matter by river discharge into the ocean (campesterol, ß-sitosterol). The sea-ice cover varies distinctly during the whole time period and shows a general increase in the Late Holocene. A maximum in IP25 concentration can be found during the Younger Dryas. This sharp increase can be observed in the whole circumarctic realm (Chukchi Sea, Bering Sea, Fram Strait and Laptev Sea). Interestingly, there is no correlation between elevated numbers of ice-rafted debris (IRD) interpreted as local ice-cap expansions (Taldenkova et al. 2010), and sea ice cover distribution. The transgression and flooding of the shelf sea that occurred over the last 16 ka in this region, is reflected by decreasing terrigenous (riverine) input, reflected in the strong decrease in sterol (ß-sitosterol and campesterol) concentrations. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38 (1), 16e27. Taldenkova, E., Bauch, H.A., Gottschalk, J., Nikolaev, S., Rostovtseva, Yu., Pogodina, I., Ya, Ovsepyan, Kandiano, E., 2010. History of ice-rafting and water mass evolution at the northern Siberian continental margin (Laptev Sea) during Late Glacial and Holocene times. Quaternary Science Reviews 29 (27-28), 3919-3935.
NASA Astrophysics Data System (ADS)
Stein, R. H.; Hörner, T.; Fahl, K.
2014-12-01
Here, we provide a high-resolution reconstruction of sea-ice cover variations in the western Laptev Sea, a crucial area in terms of sea-ice production in the Arctic Ocean and a region characterized by huge river discharge. Furthermore, the shallow Laptev Sea was strongly influenced by the post-glacial sea-level rise that should also be reflected in the sedimentary records. The sea Ice Proxy IP25 (Highly-branched mono-isoprenoid produced by sea-ice algae; Belt et al., 2007) was measured in two sediment cores from the western Laptev Sea (PS51/154, PS51/159) that offer a high-resolution composite record over the last 18 ka. In addition, sterols are applied as indicator for marine productivity (brassicasterol, dinosterol) and input of terrigenous organic matter by river discharge into the ocean (campesterol, ß-sitosterol). The sea-ice cover varies distinctly during the whole time period and shows a general increase in the Late Holocene. A maximum in IP25 concentration can be found during the Younger Dryas. This sharp increase can be observed in the whole circumarctic realm (Chukchi Sea, Bering Sea, Fram Strait and Laptev Sea). Interestingly, there is no correlation between elevated numbers of ice-rafted debris (IRD) interpreted as local ice-cap expansions (Taldenkova et al. 2010), and sea ice cover distribution. The transgression and flooding of the shelf sea that occurred over the last 16 ka in this region, is reflected by decreasing terrigenous (riverine) input, reflected in the strong decrease in sterol (ß-sitosterol and campesterol) concentrations. ReferencesBelt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38 (1), 16e27. Taldenkova, E., Bauch, H.A., Gottschalk, J., Nikolaev, S., Rostovtseva, Yu., Pogodina, I., Ya, Ovsepyan, Kandiano, E., 2010. History of ice-rafting and water mass evolution at the northern Siberian continental margin (Laptev Sea) during Late Glacial and Holocene times. Quaternary Science Reviews 29 (27-28), 3919-3935.
NASA Astrophysics Data System (ADS)
Müller-Tautges, C.; Eichler, A.; Schwikowski, M.; Pezzatti, G. B.; Conedera, M.; Hoffmann, T.
2016-01-01
Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6-C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6-C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.
NASA Astrophysics Data System (ADS)
Gkinis, Vasileios; Møllesøe Vinther, Bo; Terkelsen Holme, Christian; Capron, Emilie; Popp, Trevor James; Olander Rasmussen, Sune
2017-04-01
The continuity and high resolution available in polar ice core records constitutes them an excellent tool for the study of the stadial-interstadial transitions, notably through the study of the water isotopic composition of polar precipitation (δ18O, δD ). The quest for the highest resolution possible has resulted in experimental sampling and analysis techniques that have yielded data sets with a potential to change the current picture on the climatic signals of the last Glacial. Specifically, the ultra-high resolution δ18O signals from the NorthGRIP and NEEM ice cores, present a variability at multi-annual and decadal time scales, whose interpretation gives rise to further puzzling though interesting questions and an obvious paradox. By means of simple firn isotope diffusion and densification calculations, we firstly demonstrate that the variability of observed signals is unlikely to be due to post depositional effects that are known to occur on the surface of the Greenland ice cap and alter the δ18O composition of the precipitated snow. Assuming specific values for the δ18O sensitivity to temperature (commonly referred to as the δ18O slope), we estimate that the temperature signal during the stadials has a variability that extents from interstadial to extremely cold levels with peak-to-peak fluctuations of almost 35 K occurring in a few years. Similarly, during interstadial phases the temperature varies rapidly from stadial to Holocene levels while the signal variability shows a maximum during the LGM, with magnitudes of up to 15‰ that translate to ≈ 50 K when a δ18O slope of 0.3‰K-1 is used. We assess the validity of these results and comment on the stability of the δ18O slope. Driven by a simple logical queue, we conclude that the observed δ18O variability reflects a climatic signal although not necessarily attributed 100% to temperature changes. From this we can assume that there occur climatic mechanisms during the previously thought stable stadial phases that allow for swift changes, with magnitudes comparable if not greater to that of the stadial-interstadial transitions. We are thus tempted to propose that rapid climate change is the normal mode of climate during the last Glacial and that some of the mechanisms associated with the stadial-interstadial transitions are possibly in play also during other, phenomenally more stable times of the Glacial climate record.
IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores
NASA Astrophysics Data System (ADS)
Parrenin, F.; Bazin, L.; Capron, E.; Landais, A.; Lemieux-Dudon, B.; Masson-Delmotte, V.
2015-05-01
Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age-scale uncertainty are essential to interpret the climate and environmental records that they contain. It is, however, a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the lock-in depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice- and air-dated horizons, ice and air depth intervals with known durations, depth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 (Antarctic ice core chronology) for four Antarctic ice cores and one Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono1 are demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono1 and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as air intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the General Public License v3 open source license.
NASA Astrophysics Data System (ADS)
Small, David; Hibbert, Fiona; Austin, Bill
2010-05-01
Ice-rafted debris (IRD) within marine sediments of the North Atlantic provide an important archive of glacial activity on adjacent landmasses and attest to the activity of multiple calving ice margins during the last glacial cycle. IRD records therefore provide a means to reconstruct ice sheet dynamics and their interaction with the climate system, providing evidence of both the source of the ice and the location of melting (e.g. Ruddiman, 1977; Bond and Lotti, 1995). The complex interaction of the circum-Atlantic ice sheets and limitations of individual techniques often hinders firm source designations (i.e. IRD may be derived from multiple sources which cannot be differentiated by, for example, visual characterisation). Initial work identified diagnostic grain types that could be attributed to source areas of palaeo ice-sheets (eg: Bond & Lotti 1995) however, for the BIS, "diagnostic" basalt may be derived from sources to the east and west of the cores (Hibbert et al 2009, Scourse et al 2009). We therefore, utilise a multi-proxy approach to investigate the deglacial dynamics of the last British Ice Sheet (BIS) using inter alia lithic characterisation, fluxes of IRD to the core sites, magnetic susceptibility and a magnetic un-mixing model. A novel application of major element geochemistry of garnets contained within ice-rafted debris of the three high resolution marine sediment cores is presented. Garnets can be used to infer provenance (e.g. Oliver 2001) as major element composition may be assigned to specific metamorphic terranes. The IRD present within these cores is believed to be predominantly sourced from the BIS (cf: Knutz et al 2001, Hibbert et al 2009). This assertion is tested through multiple analytical techniques used and replication of records across the Hebridean shelf into the deep ocean. References • Bond, G.C. & Lotti, R., 1995. Iceberg discharges into the North Atlantic on millennial timescales during the last glaciation. Science 267. pp. 1005-1010. • Hibbert, F.D., Austin, W.E.N., Leng, M.J. and Gatliff, R.W., 2009. British Ice Sheet Dynamics inferred from North Atlantice ice-rafted debris records spanning the last 175,000 years. Journal of Quaternary Science. ISSN 0267-8179. • Knutz, P.C., Austin, W.E.N. and Jones, E.J.W., 2001. Millenial-scale depositional cycles related to British Ice Sheet variability and North Atlantic paleocirculation since 45kyr B.P., Barra Fan, U.K. margin. Paleoceanography 16. pp.53-64. • Oliver, G.J.H., 2001. Reconstruction of the Grampian episode in Scotland: it's place in the Caledonian Orogeny. Tectonphysics 332. pp.23-49. • Ruddiman, W.F., 1977. Late Quaternary deposition of ice-rafted sand in the sub-polar North Atlantic (lat 40° to 65°). Geological Society of America Bulletin 88. pp.1813-1821. • Scourse, J.D., Haapaniemi, A.I., Colmenero-Hidalgo, E., Peck, V.L., Hall, I.R., Austin, W.E.N., Knutz, P.C. and Zahn, R., 2009. Growth, dynamics and deglaciation of the last British-Irish Ice Sheet: the deep-sea ice-rafted detritus record. Quaternary Science Reviews 28. pp.3066-3084.
NASA Technical Reports Server (NTRS)
Cavitte, Marie G. P.; Blankenship, Donald D.; Young, Duncan A.; Schroeder, Dustin M.; Parrenin, Frederic; Lemeur, Emmanuel; Macgregor, Joseph A.; Siegert, Martin J.
2016-01-01
Several airborne radar-sounding surveys are used to trace internal reflections around the European Project for Ice Coring in Antarctica Dome C and Vostok ice core sites. Thirteen reflections, spanning the last two glacial cycles, are traced within 200 km of Dome C, a promising region for million-year-old ice, using the University of Texas Institute for Geophysics High-Capacity Radar Sounder. This provides a dated stratigraphy to 2318 m depth at Dome C. Reflection age uncertainties are calculated from the radar range precision and signal-to-noise ratio of the internal reflections. The radar stratigraphy matches well with the Multichannel Coherent Radar Depth Sounder (MCoRDS) radar stratigraphy obtained independently. We show that radar sounding enables the extension of ice core ages through the ice sheet with an additional radar-related age uncertainty of approximately 1/3-1/2 that of the ice cores. Reflections are extended along the Byrd-Totten Glacier divide, using University of Texas/Technical University of Denmark and MCoRDS surveys. However, core-to-core connection is impeded by pervasive aeolian terranes, and Lake Vostok's influence on reflection geometry. Poor radar connection of the two ice cores is attributed to these effects and suboptimal survey design in affected areas. We demonstrate that, while ice sheet internal radar reflections are generally isochronal and can be mapped over large distances, careful survey planning is necessary to extend ice core chronologies to distant regions of the East Antarctic ice sheet.
Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A; Livina, Valerie
2013-12-03
Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change.
Permafrost as palaeo-environmental archive - potentials and limitations
NASA Astrophysics Data System (ADS)
Schirrmeister, L.; Wetterich, S.; Meyer, H.; Grosse, G.; Schwamborn, G.; Siegert, C.
2009-04-01
Since 1994, the Periglacial Research Group of the Alfred Wegener Institute is studying permafrost sequences of the Beringian landmass. The study sites in Siberia cover lake banks on Taymyr Peninsula, coastal sites at the Laptev and the East Siberian Seas, locations in the Lena Delta, at the lower Kolyma river, the middle Lena and the lower Aldan rivers, and the catchment area of the El'gygytgyn crater lake in Chukotka. In Alaska, permafrost tunnels near Fairbanks and Barrow, and coastal sites on the Seward Peninsula coast were studied. In addition, Canadian sites on Herschel Island in the Beaufort Sea and at the adjacent coast of the Yukon plain were studied. Subsurface exposures like tunnels and cellars provided the opportunity for three-dimensional studies of sedimentary and ground ice features, relatively ‘clean' field conditions for in-situ experiments, monitoring procedures, and detailed and repeatable sampling. Permafrost cores were drilled in order to study inaccessible sequences below the terrain surface and shelf sea floor. Cores were transported and stored frozen for further high-resolution analysis. Reference core sections were preserved for subsequent later studies. Terrestrial sediment cores are highly localized records, sometimes problematic in extrapolating horizons in inhomogeneous sediments like ground ice-deformed permafrost deposits, and drill campaigns are usually cost intensive and logistical challenging. Coastal permafrost cliffs often naturally expose large cross sections trough modern and ancient landscapes. Contrary to cores, they provide an opportunity to study the wider context of depositional environments and ground ice features. Due to the relative easy access to coasts and the recurring natural exposure of cliffs by thermo-abrasive wave action they are very convenient study objects for regional comparisons and correlation of past environmental conditions. Finally, palaeogeographical reconstructions are also guided by remote sensing-based analyses of geomorphological surface patterns, like Yedoma hills, thermokarst depressions, pingos or thermoerosional valleys. We generally relied on a multidisciplinary approach to study permafrost sequences in order to use the rich palaeo-environmental information stored in these frozen records. Cryofacies analysis describes both sediment and ice structures that allow interpretation of freezing conditions, thaw events, temperature regimes, and the local accumulation conditions. Ground ice bodies were sampled by ice screw and chain saw for analysis of hydrochemical and stable isotope composition. Several ground ice types were classified. The interaction between ice, sediment, and cryosoil were determined. The isotope signatures of sub-vertically layered ice wedges contain information about temperature variations, evaporation conditions and precipitation sources during different periods of ice wedge formation. The stratigraphy of the permafrost sequences was determined by lithostratigraphical classifications and geochronological results. Numerous sediment parameters were measured for differentiation between horizons in individual exposures, for local and regional stratigraphic correlation of permafrost sequences as well as for reconstruction of accumulation and transport conditions. Age determinations were carried out by radiocarbon analyses on organic remains, isochron uranium-thorium disequilibria technique on peats, optical stimulated luminescence on clastic sediments, and 36Cl/Cl stable isotope ratios measurements in ground ice. For palaeo-ecological reconstructions various fossil bioindicators were studied including pollen, plant macro-remains, insects, ostracods, testate amoebae, diatoms, chironomids, and mammal bones of the so-called mammoth fauna. By combining these data sets, we assembled a complex picture of the climate, landscape and vegetation dynamics of the studied regions during the Quaternary past. Derived palaeo-information includes mean annual air temperatures, mean winter temperatures, mean Juli temperatures, precipitation, humidity, soil climate and chemistry, hydrology and hydrochemistry of waters). The general potential of permafrost archives includes spatial (circumarctic, high arctic to boreal zones) and temporal (Mid Pleistocene to modern) environmental gradients. Lateral cross sections contain information about permafrost degradation during interglacial periods, the aggradation of ice-rich sequences during stadial and interstadial periods, and extreme changes in periglacial hydrology during the late Quaternary. The spatial reconstruction of ancient landscapes is possible by detailed study of kilometer-long coastal exposures. Temporally relative high resolution (about 50 years) isotope data from ice wedges reflect the Late Pleistocene to Holocene climate transition. Using transfer functions for pollen, plant macro remains or chironomids, the numerical estimation of palaeo-climate data (temperature and precipitation) is possible. The limitations of permafrost archives are the frequent lack of continuous sequences due to thermokarst or thermo-erosion events. Local stratigraphies are sometimes difficult to correlate on a regional scale because of permafrost degradation and neotectonic influence on the accumulative/erosive environment in some regions. Until now there are still uncertainties for comparing different geochronological methods, some of them related to unknown influences of permafrost processes on chemical and physical parameters important to the age determination technique. Due to strong cryoturbation patterns and sometimes challenging sampling situations on near-vertical frozen exposures the geochronological resolution in permafrost sequences is usually lower than in lacustrine sequences or glacial ice cores. Eventually, as for any other archive, we need to consider the effect of local versus regional signals derived from the palaeo-ecological interpretation of fossil records.
Toward an integrated ice core chronology using relative and orbital tie-points
NASA Astrophysics Data System (ADS)
Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Blunier, T.; Capron, E.; Chappellaz, J.; Fischer, H.; Leuenberger, M.; Lipenkov, V.; Loutre, M.-F.; Martinerie, P.; Parrenin, F.; Prié, F.; Raynaud, D.; Veres, D.; Wolff, E.
2012-04-01
Precise ice cores chronologies are essential to better understand the mechanisms linking climate change to orbital and greenhouse gases concentration forcing. A tool for ice core dating (DATICE [developed by Lemieux-Dudon et al., 2010] permits to generate a common time-scale integrating relative and absolute dating constraints on different ice cores, using an inverse method. Nevertheless, this method has only been applied for a 4-ice cores scenario and for the 0-50 kyr time period. Here, we present the bases for an extension of this work back to 800 ka using (1) a compilation of published and new relative and orbital tie-points obtained from measurements of air trapped in ice cores and (2) an adaptation of the DATICE inputs to 5 ice cores for the last 800 ka. We first present new measurements of δ18Oatm and δO2/N2 on the Talos Dome and EPICA Dome C (EDC) ice cores with a particular focus on Marine Isotopic Stages (MIS) 5, and 11. Then, we show two tie-points compilations. The first one is based on new and published CH4 and δ18Oatm measurements on 5 ice cores (NorthGRIP, EPICA Dronning Maud Land, EDC, Talos Dome and Vostok) in order to produce a table of relative gas tie-points over the last 400 ka. The second one is based on new and published records of δO2/N2, δ18Oatm and air content to provide a table of orbital tie-points over the last 800 ka. Finally, we integrate the different dating constraints presented above in the DATICE tool adapted to 5 ice cores to cover the last 800 ka and show how these constraints compare with the established gas chronologies of each ice core.
Historical Isotopic Temperature Record from the Vostok Ice Core (420,000 years BP-present)
Petit, J. R. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Raynaud, D. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Lorius, C. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Jouzel, J. [Laboratoire des Sciences du Climat et de l'Environnement; Delaygue, G. [Laboratoire des Sciences du Climat et de l'Environnement; Barkov, N. I. [Arctic and Antarctic Research Inst. (AARI), St. Petersburg (Russian Federation); Kotlyakov, V. M. [Institute of Geography, Russia
2000-01-01
Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (D) in snowfall are temperature-dependent and a strong spatial correlation exists between the annual mean temperature and the mean isotopic ratio (18O or δD) of precipitation, it is possible to derive ice-core climate records. The record presented by Jouzel et al. (1987) was the first ice core record to span a full glacial-interglacial cycle. That record was based on an ice core drilled at the Russian Vostok station in central east Antarctica. The 2083-m ice core was obtained during a series of drillings in the early 1970s and 1980s and was the result of collaboration between French and former-Soviet scientists. Drilling continued at Vostok and was completed in January 1998, reaching a depth of 3623 m, the deepest ice core ever recovered (Petit et al. 1997, 1999). The resulting core allows the ice core record of climate properties at Vostok to be extended to ~420 kyr BP.
A review of sea ice proxy information from polar ice cores
NASA Astrophysics Data System (ADS)
Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.
2013-11-01
Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea ice and its role in both long and short-term climate changes.
Ice Core Perspective on Mercury Pollution during the Past 600 Years.
Beal, Samuel A; Osterberg, Erich C; Zdanowicz, Christian M; Fisher, David A
2015-07-07
Past emissions of the toxic metal mercury (Hg) persist in the global environment, yet these emissions remain poorly constrained by existing data. Ice cores are high-resolution archives of atmospheric deposition that may provide crucial insight into past atmospheric Hg levels during recent and historical time. Here we present a record of total Hg (HgT) in an ice core from the pristine summit plateau (5340 m asl) of Mount Logan, Yukon, Canada, representing atmospheric deposition from AD 1410 to 1998. The Colonial Period (∼1603-1850) and North American "Gold Rush" (1850-1900) represent minor fractions (8% and 14%, respectively) of total anthropogenic Hg deposition in the record, with the majority (78%) occurring during the 20th Century. A period of maximum HgT fluxes from 1940 to 1975 coincides with estimates of enhanced anthropogenic Hg emissions from commercial sources, as well as with industrial emissions of other toxic metals. Rapid declines in HgT fluxes following peaks during the Gold Rush and the mid-20th Century indicate that atmospheric Hg deposition responds quickly to reductions in emissions. Increasing HgT fluxes from 1993 until the youngest samples in 1998 may reflect the resurgence of Hg emissions from unregulated coal burning and small-scale gold mining.
NASA Astrophysics Data System (ADS)
Rhodes, Rachael; Brook, Edward; Chiang, John; Blunier, Thomas; Cheng, Hai; Edwards, R. Lawrence; Maselli, Olivia; McConnell, Joseph; Romanini, Daniele; Severinghaus, Jeffrey; Sowers, Todd; Stowasser, Christopher
2014-05-01
The Last Glacial period was punctuated by millennial scale abrupt climate changes - Dansgaard-Oeschger (D-O) cycles and Heinrich events. Controls on the magnitude and frequency of these climate perturbations, and how they may be inter-related, remain unclear. Specific problems include the difficulty of dating Heinrich sediment layers and local bias of key paleoclimate archives. We present a highly detailed and precise record of ice core methane (CH4), a globally integrated signal, which resolves climatic features in unprecedented resolution. Abrupt CH4 increases are resolved in Heinrich Stadials (HS) 1, 2, 4 and 5 where, in contrast to all D-O cycles, there are no concurrent abrupt changes in Greenland temperature. Using modern-day tropical rainfall variability as an analog, we propose that strong cooling in the North Atlantic severely restricted the northerly range of the Intertropical Convergence Zone (ITCZ), leading to an enhanced wet season over Southern Hemisphere tropical land areas, and consequently driving production of excess CH4 in tropical wetlands. Our findings place four Heinrich events firmly within ice core chronologies and suggest maximum durations of 778 to 1606 yr. CH4 anomalies are only associated with Heinrich events of Hudson Strait provenance, indicating that the tropical impacts of Heinrich events were not uniform.
NASA Astrophysics Data System (ADS)
Goodge, J. W.; Severinghaus, J. P.
2014-12-01
The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.
NASA Astrophysics Data System (ADS)
Jenk, Theo Manuel; Rubino, Mauro; Etheridge, David; Ciobanu, Viorela Gabriela; Blunier, Thomas
2016-08-01
Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition (δ13C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data exist from a limited number of sampling sites and time periods. Additional analytical resources with high analytical precision and throughput are thus desirable to extend the existing datasets. Moreover, consistent measurements derived by independent laboratories and a variety of analytical systems help to further increase confidence in the global CO2 palaeo-reconstructions. Here, we describe our new set-up for simultaneous measurements of atmospheric CO2 mixing ratios and atmospheric δ13C and δ18O-CO2 in air extracted from ice core samples. The centrepiece of the system is a newly designed needle cracker for the mechanical release of air entrapped in ice core samples of 8-13 g operated at -45 °C. The small sample size allows for high resolution and replicate sampling schemes. In our method, CO2 is cryogenically and chromatographically separated from the bulk air and its isotopic composition subsequently determined by continuous flow isotope ratio mass spectrometry (IRMS). In combination with thermal conductivity measurement of the bulk air, the CO2 mixing ratio is calculated. The analytical precision determined from standard air sample measurements over ice is ±1.9 ppm for CO2 and ±0.09 ‰ for δ13C. In a laboratory intercomparison study with CSIRO (Aspendale, Australia), good agreement between CO2 and δ13C results is found for Law Dome ice core samples. Replicate analysis of these samples resulted in a pooled standard deviation of 2.0 ppm for CO2 and 0.11 ‰ for δ13C. These numbers are good, though they are rather conservative estimates of the overall analytical precision achieved for single ice sample measurements. Facilitated by the small sample requirement, replicate measurements are feasible, allowing the method precision to be improved potentially. Further, new analytical approaches are introduced for the accurate correction of the procedural blank and for a consistent detection of measurement outliers, which is based on δ18O-CO2 and the exchange of oxygen between CO2 and the surrounding ice (H2O).
Methanesulfonic acid (MSA) migration in polar ice: data synthesis and theory
NASA Astrophysics Data System (ADS)
Osman, Matthew; Das, Sarah B.; Marchal, Olivier; Evans, Matthew J.
2017-11-01
Methanesulfonic acid (MSA; CH3SO3H) in polar ice is a unique proxy of marine primary productivity, synoptic atmospheric transport, and regional sea-ice behavior. However, MSA can be mobile within the firn and ice matrix, a post-depositional process that is well known but poorly understood and documented, leading to uncertainties in the integrity of the MSA paleoclimatic signal. Here, we use a compilation of 22 ice core MSA records from Greenland and Antarctica and a model of soluble impurity transport in order to comprehensively investigate the vertical migration of MSA from summer layers, where MSA is originally deposited, to adjacent winter layers in polar ice. We find that the shallowest depth of MSA migration in our compilation varies over a wide range (˜ 2 to 400 m) and is positively correlated with snow accumulation rate and negatively correlated with ice concentration of Na+ (typically the most abundant marine cation). Although the considered soluble impurity transport model provides a useful mechanistic framework for studying MSA migration, it remains limited by inadequate constraints on key physico-chemical parameters - most notably, the diffusion coefficient of MSA in cold ice (DMS). We derive a simplified version of the model, which includes DMS as the sole parameter, in order to illuminate aspects of the migration process. Using this model, we show that the progressive phase alignment of MSA and Na+ concentration peaks observed along a high-resolution West Antarctic core is most consistent with 10-12 m2 s-1 < DMS < 10-11 m2 s-1, which is 1 order of magnitude greater than the DMS values previously estimated from laboratory studies. More generally, our data synthesis and model results suggest that (i) MSA migration may be fairly ubiquitous, particularly at coastal and (or) high-accumulation regions across Greenland and Antarctica; and (ii) can significantly change annual and multiyear MSA concentration averages. Thus, in most cases, caution should be exercised when interpreting polar ice core MSA records, although records that have undergone severe migration could still be useful for inferring decadal and lower-frequency climate variability.
NASA Astrophysics Data System (ADS)
Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.
2015-12-01
We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.
NASA Astrophysics Data System (ADS)
Seierstad, Inger K.; Rasmussen, Sune O.
2014-05-01
We here present records from the NGRIP, GRIP and GISP2 ice cores tied to the same chronology for the past 104 ka at an unprecedented time resolution. The three ice cores have been linked by matching distinct peaks in volcanic proxy records and other impurity records from the three ice cores, assuming that these layers of elevated impurity content represent the same, instantaneous event in the past at all three sites. In total there are more than 900 identified marker horizons between the three cores including previously published match points, of which we introduce a minor revision. Our matching is independently confirmed by new and existing volcanic ash layers (tephra). The depth-depth relationship from the detailed matching is used to transfer the most recent and widely used Greenland ice core chronology, the GICC05modelext timescale, to the two Summit cores, GRIP and GISP2. Furthermore, we provide gas chronologies for the Summit cores that are consistent with the GICC05modelext timescale by utilizing both existing and new unpublished gas data. A comparison of the GICC05modelext and the former GISP2 timescale reveals major discrepancies in short time intervals during the glacial section. We detect a pronounced change in the relative annual layer thickness between the two Summit sites and NGRIP across the Last Glacial termination and early-to-mid Holocene, which can be explained by a relative accumulation increase at NGRIP compared to the Summit region as response to the onset of the Holocene and the climatic optimum. Between stadials and interstadials we infer that the accumulation contrast typically was nearly 10% greater at Summit compared to at NGRIP. The δ18O temperature-proxy records from NGRIP, GRIP and GISP2 are generally very similar and display a synchronous behavior at climate transitions, but the δ18O differences between Summit and NGRIP is slowly changing over the last glacial-interglacial cycle superimposed by abrupt millennial-to centennial scale anomalies. We suggest that the latitudinal δ18O gradient during the glacial is result of 1) relatively higher degree of precipitation with a Pacific signature at NGRIP, 2) increased summer bias at Summit, and 3) enhanced Raleigh distillation process due to and increased source-to-site distance, and we conclude that this is governed by North American Ice Sheet (NAIS) volume and North Atlantic sea-ice extent and/or sea-surface temperatures (SST) at orbital timescales, while changing sea-ice extent and SSTs are the driving mechanisms on shorter timescales. We assert that δ18O difference maxima can be linked to Heinrich Events, which is associated with southwards expansion of polar waters and low SSTs in the North Atlantic, and ths propose a direct link between the marine realm and the Greenland ice core records. The work presented is under review for publication in Quaternary Science Reviews. Author team: I.K. Seierstad, P. Abbott, M. Bigler, T. Blunier, A. Bourne, E. Brook, S.L. Buchardt, C. Buizert, H.B. Clausen, E. Cook, D. Dahl-Jensen, S.Davies, M. Guillevic, S.J. Johnsen, D.S. Pedersen, T.J. Popp, S.O. Rasmussen, J. Severinghaus, A. Svensson, B.M. Vinther (deceased).
The IceAge ERS Program: Probing Building blocks of Life During the JWST Era
NASA Astrophysics Data System (ADS)
McClure, Melissa K.; Boogert, Adwin; Linnartz, Harold; Beck, Tracy L.; van Dishoeck, Ewine; Egami, Eiichi; Garrod, Robin; Gordon, Karl D.; Palumbo, Maria Elisabetta; Brown, Wendy; Fraser, Helen; Ioppolo, Sergio; Jimenez-Serra, Izaskun; McCoustra, Martin; Noble, Jennifer; Pendleton, Yvonne J.; Pontoppidan, Klaus; Viti, Serena; Chiar, Jean E.; Caselli, Paola; Bailey, John Ira; Jorgensen, Jes; Kristensen, Lars; Murillo, Nadia; Oberg, Karin I.; IceAge ERS Team Collaborators
2018-06-01
Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. Through the IceAge Early Release Science program, we will trace the evolution of pristine and complex ice chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R~1500-3000) and sensitivity (S/N~100-300) observations from 3 to 15 micron to template spectra, we will map the spatial distribution of ices down to ~20-50 AU in these targets to identify when, and at what visual extinction, the formation of each ice species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different ice morphologies, thermal histories, and mixing environments.The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory ice database will provide feature identifications for all of the expected ices, while a chemical model fit to the observed ice abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.
Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes
NASA Astrophysics Data System (ADS)
Kreutz, K. J.; Osterberg, E. C.; Gross, B.; Handley, M.; Wake, C. P.; Yalcin, K.
2009-12-01
Trends and sources of lead aerosol pollution in the North Pacific boundary layer from 1970-2001 are investigated using a high-resolution ice core record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Average Pb concentrations in the ice core are enriched 31.8 times above crustal values based on ratios with five crustal reference elements (La, Ce, Pr, Al and Ti), indicating that >90% of the Pb deposited is anthropogenic. Isotopic analyses (208Pb/207Pb and 206Pb/207Pb) confirm that the Pb deposited at Eclipse Icefield is predominantly anthropogenic. Annually averaged Pb concentrations range from 25.6 ng/l to 96.7 ng/l (67.6 ng/l mean) and show no long term trend for the 1970-2001 period, contrary to other ice core records from the North Atlantic and the North Pacific. The stable Pb isotope ratio (208Pb/207Pb and 206Pb/207Pb) field indicates that recent Eclipse Icefield Pb pollution represents a variable mixture of North American, Central Eurasian and Asian (Chinese and Japanese) emissions transported across the Pacific basin, with Chinese coal combustion likely being the primary source. Increasing 208Pb/207Pb and 206Pb/207Pb ratios from the 1970’s through 2001 reflect the progressive East Asian industrialization concurrent with a decrease in Eurasian Pb emissions. We compare Pb isotope results from the Eclipse Icefield to data recently acquired from Denali National Park, where snowpit samples were collected from the Kahiltna Pass region (3048 masl). Pb isotope data from both sites are used to evaluate the relative importance of Asian emissions at similar altitudes yet different latitudes.
NASA Astrophysics Data System (ADS)
Grigholm, B.; Mayewski, P. A.; Aizen, V.; Kreutz, K.; Wake, C. P.; Aizen, E.; Kang, S.; Maasch, K. A.; Handley, M. J.; Sneed, S. B.
2016-04-01
High-resolution major and trace element (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Na, Pb, S, Ti, and V) ice core records from Inilchek glacier (5120 m above sea level) on the northwestern margin of the Tibetan Plateau provide the first multi-decadal ice core record spanning the period 1908-1995 AD in central Tien Shan. The trace element records reveal pronounced temporal baseline trends and concentration maxima characteristic of post-1950 anthropogenic emissions. Examination of Pb, Cd and Cu concentrations, along with non-crustal calculation estimates (i.e. excess (ex) and enrichment factor (EF)), reveal that discernable anthropogenic inputs began during the 1950s and rapidly increased to the late-1970s and early 1980s, by factors up to of 5, 6 and 3, respectively, relative to a 1910-1950 means. Pb, Cd and Cu concentrations between the 1950s-1980s are reflective of large-scale Soviet industrial and agricultural development, including the growth of production and/or consumption of the non-ferrous metals, coal and phosphate fertilizers. NOAA HYSPLIT back-trajectory frequency analysis suggests pollutant sources originating primarily from southern Kazakhstan (e.g. Shymkent and Balkhash) and the Fergana Valley (located in Kazakhstan, Uzbekistan and Kyrgyzstan). Inilchek ice core Pb, Cd and Cu reveals declines during the 1980s concurrent with Soviet economic declines, however, due to the rapid industrial and agricultural growth of western China, Pb, Cd and Cu trends increase during the 1990s reflecting a transition from primarily central Asian sources to emission sources from western China (e.g. Xinjiang Province).
10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core.
Raisbeck, G M; Yiou, F; Cattani, O; Jouzel, J
2006-11-02
An ice core drilled at Dome C, Antarctica, is the oldest ice core so far retrieved. On the basis of ice flow modelling and a comparison between the deuterium signal in the ice with climate records from marine sediment cores, the ice at a depth of 3,190 m in the Dome C core is believed to have been deposited around 800,000 years ago, offering a rare opportunity to study climatic and environmental conditions over this time period. However, an independent determination of this age is important because the deuterium profile below a depth of 3,190 m depth does not show the expected correlation with the marine record. Here we present evidence for enhanced 10Be deposition in the ice at 3,160-3,170 m, which we interpret as a result of the low dipole field strength during the Matuyama-Brunhes geomagnetic reversal, which occurred about 780,000 years ago. If correct, this provides a crucial tie point between ice cores, marine cores and a radiometric timescale.
Precise interpolar phasing of abrupt climate change during the last ice age
,; Buizert, Christo; Adrian, Betty M.; Ahn, Jinho; Albert, Mary; Alley, Richard B.; Baggenstos, Daniel; Bauska, Thomas K.; Bay, Ryan C.; Bencivengo, Brian B.; Bentley, Charles R.; Brook, Edward J.; Chellman, Nathan J.; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Cravens, Eric; Cuffey, Kurt M.; Dunbar, Nelia W.; Edwards, Jon S.; Fegyveresi, John M.; Ferris, Dave G.; Fitzpatrick, Joan J.; Fudge, T. J.; Gibson, Chris J.; Gkinis, Vasileios; Goetz, Joshua J.; Gregory, Stephanie; Hargreaves, Geoffrey Mill; Iverson, Nels; Johnson, Jay A.; Jones, Tyler R.; Kalk, Michael L.; Kippenhan, Matthew J.; Koffman, Bess G.; Kreutz, Karl; Kuhl, Tanner W.; Lebar, Donald A.; Lee, James E.; Marcott, Shaun A.; Markle, Bradley R.; Maselli, Olivia J.; McConnell, Joseph R.; McGwire, Kenneth C.; Mitchell, Logan E.; Mortensen, Nicolai B.; Neff, Peter D.; Nishiizumi, Kunihiko; Nunn, Richard M.; Orsi, Anais J.; Pasteris, Daniel R.; Pedro, Joel B.; Pettit, Erin C.; Price, P. Buford; Priscu, John C.; Rhodes, Rachael H.; Rosen, Julia L.; Schauer, Andrew J.; Schoenemann, Spruce W.; Sendelbach, Paul J.; Severinghaus, Jeffrey P.; Shturmakov, Alexander J.; Sigl, Michael; Slawny, Kristina R.; Souney, Joseph M.; Sowers, Todd A.; Spencer, Matthew K.; Steig, Eric J.; Taylor, Kendrick C.; Twickler, Mark S.; Vaughn, Bruce H.; Voigt, Donald E.; Waddington, Edwin D.; Welten, Kees C.; Wendricks, Anthony W.; White, James W. C.; Winstrup, Mai; Wong, Gifford J.; Woodruff, Thomas E.
2015-01-01
The last glacial period exhibited abrupt Dansgaard–Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives1. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard–Oeschger cycle and vice versa2, 3, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw4, 5, 6. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events7, 8, 9. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision2, 3,10. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard–Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard–Oeschger dynamics.
NASA Astrophysics Data System (ADS)
Griffies, Stephen M.; Danabasoglu, Gokhan; Durack, Paul J.; Adcroft, Alistair J.; Balaji, V.; Böning, Claus W.; Chassignet, Eric P.; Curchitser, Enrique; Deshayes, Julie; Drange, Helge; Fox-Kemper, Baylor; Gleckler, Peter J.; Gregory, Jonathan M.; Haak, Helmuth; Hallberg, Robert W.; Heimbach, Patrick; Hewitt, Helene T.; Holland, David M.; Ilyina, Tatiana; Jungclaus, Johann H.; Komuro, Yoshiki; Krasting, John P.; Large, William G.; Marsland, Simon J.; Masina, Simona; McDougall, Trevor J.; Nurser, A. J. George; Orr, James C.; Pirani, Anna; Qiao, Fangli; Stouffer, Ronald J.; Taylor, Karl E.; Treguier, Anne Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valdivieso, Maria; Wang, Qiang; Winton, Michael; Yeager, Stephen G.
2016-09-01
The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs.OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations.
Tracing Marine Cryptotephras in the North Atlantic during the Last Glacial Period
NASA Astrophysics Data System (ADS)
Abbott, Peter; Davies, Siwan; Griggs, Adam; Bourne, Anna
2017-04-01
Tephrochronology is a powerful technique that can be utilised for the independent correlation and synchronisation of disparate palaeoclimatic records from different depositional environments. There is a high potential to utilise this technique to integrate ice, marine and terrestrial records to study climatic phasing within the North Atlantic region due to the high eruptive frequency of Icelandic volcanic systems. However, until now North Atlantic marine records have been relatively understudied. Here we report on investigations to define a tephra framework integrating new studies of cryptotephra horizons within a wide network of North Atlantic marine cores with horizons identified in prior work. This framework has the potential to underpin the correlation of the marine records to the Greenland ice-core records and European terrestrial sequences. Tephrochronological investigations were conducted on 13 marine sequences from a range of locations and depositional settings using cryptotephra extraction techniques, including density and magnetic separation, to gain high resolution glass shard concentration profiles and rigorous single-shard major element geochemical analysis to characterise identified deposits. Cryptotephras with an Icelandic source were identified in many records and displayed diversity in shard concentration profiles and the geochemical homo/heterogeneity of shards within the deposits. These differences reflect spatial and temporal variability in the operation of a range of transport processes, e.g. airfall, sea-ice and iceberg rafting, and post-depositional processes, e.g. bioturbation and secondary redeposition. The operation of these processes within the marine environment can potentially impart a temporal delay on tephra deposition and hamper the placement of the isochron, therefore, it is crucial to assess their influence. To aid this assessment a range of deposit types with common transport and depositional histories have been defined. Spatial patterns in the occurrence of these deposit types have been detected, the dominant controls at different sites explored and key regions of the North Atlantic with a greater likelihood for preserving isochronous deposits identified. Overall, these investigations have allowed a framework of isochronous marine cryptotephras to be defined for the last glacial period. The most widespread deposit is the rhyolitic phase of North Atlantic Ash Zone II, identified in 9 of the marine sequences and providing a direct tie-line to the Greenland ice-cores records. The framework is dominated by horizons with a basaltic composition, predominantly sourced from the Icelandic Grímsvötn volcanic system but horizons with Katla, Hekla, Kverkfjöll, Veidivötn and Vestmannaeyjar like compositions have also been isolated. Correlations to horizons in the Greenland ice-core tephra framework are being explored, however, this is a challenging process due to the large number of horizons with similar geochemical signatures in the records and the difference in temporal resolution and stratigraphic control between the ice and marine sequences.
Ice cores and SeaRISE: What we do (and don't) know
NASA Technical Reports Server (NTRS)
Alley, Richard B.
1991-01-01
Ice core analyses are needed in SeaRISE to learn what the West Antarctic ice sheet and other marine ice sheets were like in the past, what climate changes led to their present states, and how they behave. The major results of interest to SeaRISE from previous ice core analyses in West Antarctic are that the end of the last ice age caused temperature and accumulation rate increases in inland regions, leading to ice sheet thickening followed by thinning to the present.
NASA Astrophysics Data System (ADS)
Eshelman, E.; Wanger, G.; Manatt, K.; Malaska, M.; Willis, M.; Abbey, W.; Doloboff, I.; Beegle, L. W.; DeFlores, L. P.; Priscu, J. C.; Lane, A. L.; Carrier, B. L.; Mellerowicz, B.; Kim, D.; Paulsen, G.; Zacny, K.; Bhartia, R.
2017-12-01
Future astrobiological missions to Europa and other ocean worlds may benefit from next-generation instrumentation capable of in situ organic and life detection in subsurface ice environments. WATSON (Wireline Analysis Tool for in Situ Observation of Northern ice sheets) is an instrument under development at NASA's Jet Propulsion Laboratory. WATSON contains high-TRL instrumentation developed for SHERLOC, the Mars 2020 deep-UV fluorescence and Raman spectrometer, including a 248.6 nm NeCu hollow cathode laser as an excitation source. In WATSON, these technologies provide spectroscopic capabilities highly sensitive to many organic compounds, including microbes, in an instrument package approximately 1.2 m long with a 101.6 mm diameter, designed to accommodate a 108 mm ice borehole. Interrogation into the ice wall with a laser allows for a non-destructive in situ measurement that preserves the spatial distribution of material within the ice. We report on a successful deployment of WATSON to Kangerlussuaq, Greenland, where the instrument was lowered to a 4.5 m depth in a hand-cored hole on the Kangerlussuaq sector of the Greenland ice sheet. Motorized stages within the instrument were used to raster a laser across cm-scale regions of the interior surface of the borehole, obtaining fluorescence spectral maps with a 200 µm spatial resolution and a spectral range from 265 nm to 440 nm. This region includes the UV emission bands of many aromatic compounds and microbes, and includes the water and ice Raman O-H stretching modes. We additionally report on experiments designed to inform an early-2018 deployment to Kangerlussuaq where WATSON will be incorporated into a Honeybee Robotics planetary deep drill, with a goal of drilling to a depth of 100 m and investigating the distribution of organic material within the ice sheet. These experiments include laboratory calibrations to determine the sensitivity to organic compounds embedded in ice at various depths, as well as analysis of ice cores obtained during the deployment and returned for subsequent study.
The 1500m South Pole Ice Core: Recovering a 40 Ka Environmental Record
NASA Technical Reports Server (NTRS)
Casey, Kimberly Ann; Neumann, Thomas Allen; Fudge, T. J.; Neumann, T. A.; Steig, E. J.; Cavitte, M. G. P.; Blankenship, D. D.
2014-01-01
Supported by the US National Science Foundation, a new 1500 m, approximately 40 ka old ice core will be recovered from South Pole during the 2014/15 and 2015/16 austral summer seasons using the new US Intermediate Depth Drill. The combination of low temperatures, relatively high accumulation rates and low impurity concentrations at South Pole will yield detailed records of ice chemistry and trace atmospheric gases. The South Pole ice core will provide a climate history record of a unique area of the East Antarctic plateau that is partly influenced by weather systems that cross the West Antarctic ice sheet. The ice at South Pole flows at approximately 10m a(exp-1) and the South Pole ice-core site is a significant distance from an ice divide. Therefore, ice recovered at depth originated progressively farther upstream of the coring site. New ground-penetrating radar collected over the drill site location shows no anthropogenic influence over the past approximately 50 years or upper 15 m. Depth-age scale modeling results show consistent and plausible annual-layer thicknesses and accumulation rate histories, indicating that no significant stratigraphic disturbances exist in the upper 1500m near the ice-core drill site.
IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores
NASA Astrophysics Data System (ADS)
Parrenin, Frédéric; Bazin, Lucie; Capron, Emilie; Landais, Amaëlle; Lemieux-Dudon, Bénédicte; Masson-Delmotte, Valérie
2016-04-01
Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age scale uncertainty are essential to interpret the climate and environmental records that they contain. It is however a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and air dated horizons, ice and air depth intervals with known durations, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 chronology for 4 Antarctic ice cores and 1 Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono is demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as gas intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the GPL v3 open source license.
NASA Astrophysics Data System (ADS)
Asay-Davis, Xylar; Price, Stephen; Petersen, Mark; Wolfe, Jonathan
2017-04-01
The capability for simulating sub-ice shelf circulation and submarine melting and freezing has recently been added to the U.S. Department of Energy's Accelerated Climate Model for Energy (ACME). With this new capability, we use an eddy permitting ocean model to conduct two sets of simulations in the spirit of Spence et al. (GRL, 41, 2014), who demonstrate increased warm water upwelling along the Antarctic coast in response to poleward shifting and strengthening of Southern Ocean westerly winds. These characteristics, symptomatic of a positive Southern Annular Mode (SAM), are projected to continue into the 21st century under anthropogenic climate change (Fyfe et al., J. Clim., 20, 2007). In our first simulation, we force the climate model using the standard CORE interannual forcing dataset (Large and Yeager; Clim. Dyn., 33, 2009). In our second simulation, we force our climate model using an altered version of CORE interannual forcing, based on the latter half of the full time series, which we take as a proxy for a future climate state biased towards a positive SAM. We compare ocean model states and sub-ice shelf melt rates with observations, exploring sources of model biases as well as the effects of the two forcing scenarios.
Giorio, Chiara; Kehrwald, Natalie; Barbante, Carlo; Kalberer, Markus; King, Amy C.F.; Thomas, Elizabeth R.; Wolff, Eric W.; Zennaro, Piero
2018-01-01
Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive.
NASA Astrophysics Data System (ADS)
Giorio, Chiara; Kehrwald, Natalie; Barbante, Carlo; Kalberer, Markus; King, Amy C. F.; Thomas, Elizabeth R.; Wolff, Eric W.; Zennaro, Piero
2018-03-01
Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive.
Rise in central west Greenland surface melt unprecedented over the last three centuries
NASA Astrophysics Data System (ADS)
Trusel, Luke; Das, Sarah; Osman, Matthew; Evans, Matthew; Smith, Ben; McConnell, Joe; Noël, Brice; van den Broeke, Michiel
2017-04-01
Greenland Ice Sheet surface melting has intensified and expanded over the last several decades and is now a leading component of ice sheet mass loss. Here, we constrain the multi-century temporal evolution of surface melt across central west Greenland by quantifying layers of refrozen melt within well-dated firn and ice cores collected in 2014 and 2015, as well as from a core collected in 2004. We find significant agreement among ice core, satellite, and regional climate model melt datasets over recent decades, confirming the fidelity of the ice core melt stratigraphy as a reliable record of past variability in the magnitude of surface melt. We also find a significant correlation between the melt records derived from our new 100-m GC-2015 core (2436 m.a.s.l.) and the older (2004) 150-m D5 core (2472 m.a.s.l.) located 50 km to the southeast. This agreement demonstrates the robustness of the ice core-derived melt histories and the potential for reconstructing regional melt evolution from a single site, despite local variability in melt percolation and refreeze processes. Our array of upper percolation zone cores reveals that although the overall frequency of melt at these sites has not increased, the intensification of melt over the last three decades is unprecedented within at least the last 365 years. Utilizing the regional climate model RACMO 2.3, we show that this melt intensification is a nonlinear response to warming summer air temperatures, thus underscoring the heightened sensitivity of this sector of Greenland to further climate warming. Finally, we examine spatial correlations between the ice core melt records and modeled melt fields across the ice sheet to assess the broader representation of each ice core record. This analysis reveals wide-ranging significant correlations, including to modeled meltwater runoff. As such, our ice core melt records may furthermore offer unique, observationally-constrained insights into past variability in ice sheet mass loss.
Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A.; Livina, Valerie
2013-01-01
Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70°N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change. PMID:24248352
Implications of high amplitude atmospheric CO2 fluctuations on past millennium climate change
NASA Astrophysics Data System (ADS)
van Hoof, Thomas; Kouwenberg, Lenny; Wagner-Cremer, Friederike; Visscher, Henk
2010-05-01
Stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of pre-industrial atmospheric CO2 concentration complementary to measurements in Antarctic ice cores. Stomatal frequency based CO2 trends from the USA and NW European support the presence of significant CO2 variability during the first half of the last millennium (Kouwenberg et al., 2005; Wagner et al., 2004; van Hoof et al., 2008). The timing of the most significant perturbation in the stomata records (1200 AD) is in agreement with an observed CO2 fluctuation in the D47 Antarctic ice-core record (Barnola et al., 1995; van Hoof et al., 2005). The amplitude of the stomatal frequency based CO2 changes (> 34ppmv) exceeds the maximum amplitude of CO2 variability in the D47 ice core (< 10 ppmv). A modelling experiment taking into account firn-densification based smoothing processes in the D47 ice core proved, however, that the amplitude difference between the stomata record and the D47 ice-core can be explained by natural smoothing processes in the ice (van Hoof et al., 2005). This observation gives credence to the existence of high-amplitude CO2 fluctuations during the last millennium and suggests that high resolution ice core CO2 records should be regarded as a smoothed representation of the atmospheric CO2 signal. In the present study, potential marine and terrestrial sources and sinks associated with the observed atmospheric CO2 perturbation will be discussed. The magnitude of the observed CO2 variability implies that inferred changes in CO2 radiative forcing are of a similar magnitude as variations ascribed to other forcing mechanisms (e.g. solar forcing and volcanism), therefore challenging the IPCC concept of CO2 as an insignificant preindustrial climate forcing factor. References Barnola J.M., M. Anklin, J. Porcheron, D. Raynaud, J. Schwander and B. Stauffer 1995. CO2 evolution during the last millennium as recorded by Antarctic and Greenland ice. Tellus, v 47B, p. 264-272 Kouwenberg L.L.R., F. Wagner, W.M. Kürschner and H. Visscher 2005. Atmospheric CO2 fluctuations during the last Millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles. Geology, v. 33, no.1, pp. 33-36 van Hoof T.B., K.A. Kaspers, F. Wagner, R.S.W. van de Wal, W.M. Kürschner and H. Visscher 2005. Atmospheric CO2 during the 13th century AD: reconciliation of data from ice core measurements and stomatal frequency analysis. Tellus B, v. 57, pp. 351-355 van Hoof T.B., F. Wagner-Cremer, W.M. K Kürschner and H. Visscher 2008. A role for atmospheric CO2 in preindustrial climate forcing. Proceedings of the National Academy of Sciences of the USA, v. 105, no. 41, pp. 15815-15818 Wagner F., L.L.R. Kouwenberg, T.B. van Hoof and H. Visscher 2004. Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quartenary Science Reviews. V. 23, pp. 1947-1954
NASA Astrophysics Data System (ADS)
Zumaque, J.; Eynaud, F.; Zaragosi, S.; Marret, F.; Matsuzaki, K. M.; Kissel, C.; Roche, D. M.; Malaizé, B.; Michel, E.; Billy, I.; Richter, T.; Palis, E.
2012-12-01
The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~60-30 cal ka BP) provides key issues to understand the atmosphere-ocean-cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the southern part of the Faeroe Bank. This sector was under the proximal influence of European ice sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) during the last glacial and thus probably responded to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis of core MD99-2281, including magnetic properties, x-ray fluorescence measurements, characterisation of the coarse (>150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst - e.g. dinocyst - assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland ice cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material suggest increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.
NASA Astrophysics Data System (ADS)
Zumaque, J.; Eynaud, F.; Zaragosi, S.; Marret, F.; Matsuzaki, K. M.; Kissel, C.; Roche, D. M.; Malaizé, B.; Michel, E.; Billy, I.; Richter, T.; Palis, E.
2012-08-01
The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~ 60-30 CAL-ka BP) provides key issues to understand the atmosphere-ocean-cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the Southern part of the Faeroe Bank. This sector was under the proximal influence of European Ice Sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) and thus probably recorded their response to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis on core MD99-2281, including magnetic properties, X-Ray Fluorescence measurements, characterisation of the coarse (> 150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst - e.g. dinocyst - assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland Ice Cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material typify increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.
An Optical Dye Method for Continuous Determination of Acidity in Ice Cores.
Kjær, Helle Astrid; Vallelonga, Paul; Svensson, Anders; Elleskov L Kristensen, Magnus; Tibuleac, Catalin; Winstrup, Mai; Kipfstuhl, Sepp
2016-10-04
The pH of polar ice is important for the stability and mobility of impurities in ice cores and can be strongly influenced by volcanic eruptions or anthropogenic emissions. We present a simple optical method for continuous determination of acidity in ice cores based on spectroscopically determined color changes of two common pH-indicator dyes, bromophenol blue, and chlorophenol red. The sealed-system method described here is not equilibrated with CO 2 , making it simpler than existing methods for pH determination in ice cores and offering a 10-90% peak response time of 45 s and a combined uncertainty of 9%. The method is applied to Holocene ice core sections from Greenland and Antarctica and compared to standard techniques such as electrical conductivity measurement (ECM) conducted on the solid ice, and electrolytic meltwater conductivity, EMWC. Acidity measured in the Greenland NGRIP ice core shows good agreement with acidity calculated from ion chromatography. Conductivity and dye-based acidity H dye + are found to be highly correlated in the Greenland NEGIS firn core (75.38° N, 35.56° W), with all signals greater than 3σ variability coinciding with either volcanic eruptions or possible wild fire activity. In contrast, the Antarctic Roosevelt Island ice core (79.36° S, 161.71° W) features an anticorrelation between conductivity and H dye + , likely due to strong influence of marine salts.
Nitrate flux on the Ross Ice Shelf, Antarctica and its relation to solar cosmic rays
NASA Astrophysics Data System (ADS)
Zeller, Edward J.; Dreschhoff, Gisela A. M.; Laird, Claude M.
1986-11-01
Nitrate flux has been determined in the snow sequence deposited at Windless Bight on the Ross Ice Shelf (Antarctica). The data were obtained from on-site analysis of nitrate concentrations from a glaciological pit and a firn core spanning the time interval from midwinter 1971 to January 1986. The high resolution data can be combined with precipitation records collected from adjacent areas to provide a record of nitrate flow. The resulting time series contains a signal which corresponds to the two major solar events of 1972 and 1984. The concentration and flux profiles may be useful in studies of Antarctic ozone depletion.
NASA Astrophysics Data System (ADS)
Landais, Amaelle; Casado, Mathieu; Prié, Frédéric; Magand, Olivier; Arnaud, Laurent; Ekaykin, Alexey; Petit, Jean-Robert; Picard, Ghislain; Fily, Michel; Minster, Bénédicte; Touzeau, Alexandra; Goursaud, Sentia; Masson-Delmotte, Valérie; Jouzel, Jean; Orsi, Anaïs
2017-07-01
Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (∼ 0.7-0.8‰·°C-1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C-1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is associated with a much slower δ18O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m-2.yr-1 may record a seasonal cycle at shallow depths.
NASA Astrophysics Data System (ADS)
Kolling, H. M.; Stein, R. H.; Fahl, K.
2016-12-01
Sea is a critical component of the climate system and its role is not yet fully understood e.g. the recent rapid decrease in sea ice is not clearly reflected in climate models. This illustrates the need for high-resolution proxy-based sea-ice reconstructions going beyond the time scale of direct measurements in order to understand the processes controlling present and past natural variability of sea ice on short time scales. Here we present the first comparison of two high-resolution biomarker records from the East and West Greenland Shelf for the late Holocene. Both areas are highly sensitive to sea-ice changes as they are influenced by the East Greenland Current, the main exporter of Arctic freshwater and sea ice. On the East Greenland Shelf, we do not find any clear evidence for a long-term increase of sea ice during the late Holocene Neoglacial. This sea-ice record seems to be more sensitive to short-term climate events, such as the Roman Warm Period, the Dark Ages, the Medieval Warm Period and the Little Ice Age. In contrary, the West Greenland Shelf record shows a strong and gradual increase in sea ice concentration and a reduction in marine productivity markers starting near 1.6 ka. In general, the increase in sea ice seems to follow the decreasing solar insolation trend. Short-term events are not as clearly pronounced as on the East Greenland Shelf. A comparison to recently published foraminiferal records from the same cores (Perner et al., 2011, 2015) illuminates the differences of biomarker and micropaleontoligical proxies. It seems that the general trend is reflected in both proxies but the signal of small-scale events is preserved rather differently, pointing towards different environmental requirements of the species behind both proxies. References: Perner, K., et al., 2011. Quat. Sci. Revs. 30, 2815-2826 Perner, K., et al., 2015. Quat. Sci. Revs. 129, 296-307
Ice Core Records of Recent Northwest Greenland Climate
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Wong, G. J.; Ferris, D.; Lutz, E.; Howley, J. A.; Kelly, M. A.; Axford, Y.; Hawley, R. L.
2014-12-01
Meteorological station data from NW Greenland indicate a 3oC temperature rise since 1990, with most of the warming occurring in fall and winter. According to remote sensing data, the NW Greenland ice sheet (GIS) and coastal ice caps are responding with ice mass loss and margin retreat, but the cryosphere's response to previous climate variability is poorly constrained in this region. We are developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate change and cryospheric response in NW Greenland to improve projections of future ice loss and sea level rise in a warming climate. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 21 m) from the coastal region of the GIS (2Barrel site; 76.9317o N, 63.1467o W, 1685 m el.) and the summit of North Ice Cap (76.938o N, 67.671o W, 1273 m el.) in 2011, 2012 and 2014. The 2Barrel ice core record has statistically significant relationships with regional spring and fall Baffin Bay sea ice extent, summertime temperature, and annual precipitation. Here we evaluate relationships between the 2014 North Ice Cap firn core glaciochemical record and climate variability from regional instrumental stations and reanalysis datasets. We compare the coastal North Ice Cap record to more inland records from 2Barrel, Camp Century and NEEM to evaluate spatial and elevational gradients in recent NW Greenland climate change.
NASA Astrophysics Data System (ADS)
Zdanowicz, Christian Michel
1999-10-01
The past and present variability of climate in the Arctic region is investigated using ice core records of atmospheric dust (microparticles) and volcanic aerosols developed from the Canadian Arctic and Greenland. A high- resolution, 10 4-year long proxy record of atmospheric dust deposition is developed from an ice core (P95) drilled through the Penny Ice Cap, Baffin Island. Snowpit studies indicate that dust deposited on the Penny Ice Cap are representative of background mineral aerosol, and demonstrate that the variability of dust fallout is preserved in the P95 core at multi-annual to longer time scales. The P95 dust record reveals a significant increase in dust deposition on the Penny Ice Cap between ca 7500-5000 yr ago. This increase was driven by early to mid-/late Holocene transformations in the Northern Hemisphere landscape (ice cover retreat, postglacial land emergence) and climate (transition to colder, drier conditions) that led to an expansion of sources and enhanced eolian activity. Comparison between dust records in the P95 and GISP2 (Greenland) ice cores shows an increasing divergence between the two records beginning ca 7500 years ago. The effects of Northern Hemisphere atmospheric circulation and snow cover extent on atmospheric dust deposition in the Arctic are evaluated by comparing the P95 dust record with observational data. Changes in dust deposition are strongly linked to modes of the Northern Hemisphere winter circulation. Most prominently, an inverse relationship between the P95 dust record and the intensity of the winter Siberian High accounts for over 50% of the interannual variance of these two parameters over the period 1899-1995. On inter- to multi- annual time scales, the P95 dust record is significantly anticorrelated with variations in spring, and to a lesser extent fall, snow cover extent in the mid-latitude interior regions of Eurasia and North America. These relationships account for an estimated 10 to 20% of variance in the P95 dust record. An empirical orthogonal function (EOF) analysis is used to investigate patterns of temporal covariance among insoluble microparticles and major ions deposited in the GISP2 and P95 ice cores. Dust and major ions covary strongly in the GISP2 late glacial record but are uncorrelated in both the GISP2 and P95 Holocene records. Companion EOF analyses of the Holocene records identify distinctive covariance patterns among microparticles and/or major ions that are associated with certain aerosols types or with source-specific air masses reaching the Arctic, providing further evidence of increased regional-scale climatic and atmospheric variability over the last ~ 12,000 years. The atmospheric and climatic impact of the early Holocene eruption of Mount Mazama (Crater Lake, Oregon) is evaluated from the GISP2 ice core record of volcanically- derived sulfate and ash particles. The calendrical age of the eruption is determined to be 7627 +/- 150 cal yr B.P. The GISP2 sulfate record suggests a total stratospheric aerosol loading between 88 and 224 Mt spread over a ~ 6-year period following the eruption. From these figures, the Mount Mazama eruption is estimated to have depressed temperature by ~ 0.6 to 0.7°C at mid- to high northern latitudes. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Mackay, Sean Leland
Antarctic debris-covered glaciers are potential archives of long-term climate change. However, the geomorphic response of these systems to climate forcing is not well understood. To address this concern, I conducted a series of field-based and numerical modeling studies in the McMurdo Dry Valleys of Antarctica (MDV), with a focus on Mullins and Friedman glaciers. I used data and results from geophysical surveys, ice-core collection and analysis, geomorphic mapping, micro-meteorological stations, and numerical-process models to (1) determine the precise origin and distribution of englacial and supraglacial debris within these buried-ice systems, (2) quantify the fundamental processes and feedbacks that govern interactions among englacial and supraglacial debris, (3) establish a process-based model to quantify the inventory of cosmogenic nuclides within englacial and supraglacial debris, and (4) isolate the governing relationships between the evolution of englacial /supraglacial debris and regional climate forcing. Results from 93 field excavations, 21 ice cores, and 24 km of ground-penetrating radar data show that Mullins and Friedman glaciers contain vast areas of clean glacier ice interspersed with inclined layers of concentrated debris. The similarity in the pattern of englacial debris bands across both glaciers, along with model results that call for negligible basal entrainment, is best explained by episodic environmental change at valley headwalls. To constrain better the timing of debris-band formation, I developed a modeling framework that tracks the accumulation of cosmogenic 3He in englacial and supraglacial debris. Results imply that ice within Mullins Glacier increases in age non-linearly from 12 ka to ˜220 ka in areas of active flow (up to >> 1.6 Ma in areas of slow-moving-to-stagnant ice) and that englacial debris bands originate with a periodicity of ˜41 ka. Modeling studies suggest that debris bands originate in synchronicity with changes in obliquity-paced, total integrated summer insolation. The implication is that the englacial structure and surface morphology of some cold-based, debris-covered glaciers can preserve high-resolution climate archives that exceed the typical resolution of Antarctic terrestrial deposits and moraine records.
NASA Astrophysics Data System (ADS)
Okazaki, Yusuke; Takahashi, Kozo; Katsuki, Kota; Ono, Ayumu; Hori, Joichi; Sakamoto, Tatsuhiko; Uchida, Masao; Shibata, Yasuyuki; Ikehara, Minoru; Aoki, Kaori
2005-08-01
High-resolution analyses of geochemical parameters (biogenic opal, calcium carbonate, organic carbon, and nitrogen) and microfossil assemblages (diatoms and radiolarians) on Core MD01-2412 clarified detailed paleoceanographic changes such as sea-ice cover and biological production in the southwestern Okhotsk Sea during the last 115 kyr. An age model of Core MD01-2412 was established based on δ 18O stratigraphy, accelerator mass spectrometer (AMS) 14C, and tephrochronology. Sea-ice history reconstructed by siliceous microplankton records indicated that the present sea-ice condition was formed during the last 8 kyr. Only during Marine Isotope Stage (MIS) 2 was the duration of sea-ice cover in this region much longer than that of today (4-5 months a year). Two diatom species, Thalassionema nitzschioides and Fragilariopsis doliolus, revealed that the Soya Warm Current Water (SWCW) flowed into the Okhotsk Sea near the site of Core MD01-2412 during the last 12-14 kyr and during MIS 5a, and was associated with sea-level rise. Biological productivity rapidly increased during MIS 1, associated with sea-ice retreat. Two major increases of organic carbon (OC) contents (wt%) and C org/N ratios were observed, and the timings of these events were 15.8-16.7 ka (Event 1) and 13.1-13.6 ka (Event 2). Corresponding to these events, the abundance of Cycladophora davisiana, an intermediate water dwelling radiolarian species, increased. This high C. davisiana abundance can be correlated to the input of terrestrial organic matter from the submerged shelf to the intermediate water. Apart from the radiolarians, the production of diatoms in the surface waters was suppressed by the development of well-stratified surface water along with sea-ice melting during the early Holocene. Diatom production increased gradually during the last 10 kyr with enhanced vertical mixing.
NASA Astrophysics Data System (ADS)
Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.
2015-07-01
Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O are 0.30 and 0.18 ‰ for the custom 2013 and WVISS setup, respectively, after averaging times of 104 s (2.78 h). Using response time tests and stability tests, we show that the custom setups are more responsive (shorter response time), whereas the University of Copenhagen (UC) setup is more stable. More broadly, comparisons of different setups address the challenge of integrating vaporizer/spectrometer isotope measurement systems into a CFA campaign with many other analytical instruments.
Initial Continuous Chemistry Results From The Roosevelt Island Ice Core (RICE)
NASA Astrophysics Data System (ADS)
Kjær, H. A.; Vallelonga, P. T.; Simonsen, M. F.; Neff, P. D.; Bertler, N. A. N.; Svensson, A.; Dahl-Jensen, D.
2014-12-01
The Roosevelt Island ice core (79.36° S, -161.71° W) was drilled in 2011-13 at the top of the Roosevelt Island ice dome, a location surrounded by the Ross ice shelf. The RICE ice core provides a unique opportunity to look into the past evolution of the West Antarctic Ice sheet. Further the site has high accumulation; 0.26 m of ice equivalent is deposited annually allowing annual layer determination for many chemical parameters. The RICE core was drilled to bedrock and has a total length of 763 metres. Preliminary results derived from water isotopes suggest that the oldest ice reaches back to the Eemian, with the last glacial being compressed in the bottom 60 metres. We present preliminary results from the RICE ice core including continuous measurements of acidity using an optical dye method, insoluble dust particles, conductivity and calcium. The core was analyzed at the New Zealand National Ice Core Research Facility at GNS Science in Wellington. The analytical set up used to determine climate proxies in the ice core was a modified version of the Copenhagen CFA system (Bigler et al., 2011). Key volcanic layers have been matched to those from the WAIS record (Sigl et al., 2013). A significant anti-correlation between acidity and calcium was seen in the Holocene part of the record. Due to the proximity to the ocean a large fraction of the calcium originates from sea salt and is in phase with total conductivity and sodium. In combination with the insoluble dust record, calcium has been apportioned into ocean-related and dust-related sources. Variability over the Holocene is presented and attributed to changing inputs of marine and dust aerosols.
Moros, M.; Andrews, John T.; Eberl, D.D.; Jansen, E.
2006-01-01
We present new high-resolution proxy data for the Holocene history of drift ice off Iceland based on the mineralogy of the <2-mm sediment fraction using quantitative X-ray diffraction. These new data, bolstered by a comparison with published proxy records, point to a long-term increasing trend in drift ice input into the North Atlantic from 6 to 5 ka toward the present day at sites influenced by the cold east Greenland Current. This feature reflects the late Holocene Neoglacial or cooling period recorded in ice cores and further terrestrial archives on Greenland. In contrast, a decrease in drift ice during the same period is recorded at sites underlying the North Atlantic Drift, which may reflect a warming of this region. The results document that Holocene changes in iceberg rafting and sea ice advection did not occur uniformly across the North Atlantic. Centennial-scale climate variability in the North Atlantic region over the last ???4 kyr is linked to the observed changes in drift ice input. Increased drift ice may have played a role in the increase of cold intervals during the late Holocene, e.g., the Little Ice Age cooling. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Bohaty, Steven M.; Huck, Claire E.; Liebrand, Diederik; Röhl, Ursula; Wilson, Paul; van de Flierdt, Tina; Pälike, Heiko
2016-04-01
The early stages of the modern 'Icehouse' climate state first developed in the Oligocene following rapid global cooling and the onset of Antarctic glaciation at the Eocene-Oligocene Transition (34 Ma). However, the size and stability of the early Antarctic ice sheets that existed during the Oligocene under atmospheric CO2 levels higher than present day are poorly known. Here we report on an ongoing investigation of Oligocene (hemi)pelagic drillcores recovered at Ocean Drilling Program (ODP) Site 689, drilled on Maud Rise in the eastern Weddell Sea in late 1980s (Leg 113). Shipboard physical properties data were not routinely collected from pre-Quaternary cores at this site, and the lack of continuous composite sections and supporting data has previously been a considerable hindrance to high-resolution paleoceanographic studies. New high-resolution XRF scanning, discrete magnetic susceptibility, and benthic foraminiferal stable isotope records were collected from the upper Eocene-upper Oligocene interval of ODP Sites 689. The XRF datasets allow compositing of Holes 689B and 689D, which fortuitously contain offset cores throughout the sequence. Although condensed in two intervals, Site 689 contains a complete ~12-Myr record spanning Chron C17n.1n to Chron C8n.1n (~37 to 25 Ma). The composited records from Sites 689 exhibit prominent orbital-scale cyclicity in XRF-derived iron/calcium ratios, enabling development of an astronomical age model and detailed reconstruction of carbonate dissolution intensity of South Atlantic deep waters. These composited and well-dated records from Site 689 will, for the first-time, provide an Oligocene pelagic reference section for the Southern Ocean and serve as stratigraphic stepping stone between proximal Antarctic shelf records and high-resolution proxy records from lower latitude locations. Further development of high-resolution benthic foraminiferal and detrital neodymium isotope records at Site 689 will address the timing and frequency of East Antarctic ice-sheet advance and retreat events during cool intervals of the mid Oligocene and the onset of warming in the latest Oligocene. These data will both inform and test model results of ice-sheet behaviour and stability during different climatic phases of the Oligocene.
Atmospheric CO2 variations on millennial-scale during MIS 6
NASA Astrophysics Data System (ADS)
Shin, Jinhwa; Grilli, Roberto; Chappellaz, Jérôme; Teste, Grégory; Nehrbass-Ahles, Christoph; Schmidely, Loïc; Schmitt, Jochen; Stocker, Thomas; Fischer, Hubertus
2017-04-01
Understanding natural carbon cycle / climate feedbacks on various time scales is highly important for predicting future climate changes. Paleoclimate records of Antarctic temperatures, relative sea level and foraminiferal isotope and pollen records in sediment cores from the Portuguese margin have shown climate variations on millennial time scale over the Marine Isotope Stage 6 (MIS 6; from approximately 135 to 190 kyr BP). These proxy data suggested iceberg calving in the North Atlantic result in cooling in the Northern hemisphere and warming in Antarctica by changes in the Atlantic Meridional Overturning Circulation, which is explained by a bipolar see-saw trend in the ocean (Margari et al., 2010). Atmospheric CO2 reconstruction from Antarctic ice cores can provide key information on how atmospheric CO2 concentrations are linked to millennial-scale climate changes. However, existing CO2 records cannot be used to address this relationship because of the lack of suitable temporal resolution. In this work, we will present a new CO2 record with an improved time resolution, obtained from the Dome C ice core (75˚ 06'S, 123˚ 24'E) spanning the MIS 6 period, using dry extraction methods. We will examine millennial-scale features in atmospheric CO2, and their possible links with other proxies covering MIS 6. Margari, V., Skinner, L. C., Tzedakis, P. C., Ganopolski, A., Vautravers, M., and Shackleton, N. J.: The nature of millennial scale climate variability during the past two glacial periods, Nat.Geosci., 3, 127-131, 2010.
Visual-Stratigraphic Dating of the GISP2 Ice Core: Basis, Reproducibility, and Application
NASA Technical Reports Server (NTRS)
Alley, R. B.; Shuman, C. A.; Meese, D. A.; Gow, A. J.; Taylor, K. C.; Cuffey, K. M.; Fitzpatrick, J. J.; Grootes, P. M.; Zielinski, G. A.; Ram, M.;
1997-01-01
Annual layers are visible in the Greenland Ice Sheet Project 2 ice core from central Greenland, allowing rapid dating of the core. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the ice correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene ice. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan ice-age ice and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for ice older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle ice" or many other core-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the core by dedicated observers.
Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application
NASA Astrophysics Data System (ADS)
Alley, R. B.; Shuman, C. A.; Meese, D. A.; Gow, A. J.; Taylor, K. C.; Cuffey, K. M.; Fitzpatrick, J. J.; Grootes, P. M.; Zielinski, G. A.; Ram, M.; Spinelli, G.; Elder, B.
1997-11-01
Annual layers are visible in the Greenland Ice Sheet Project 2 ice core from central Greenland, allowing rapid dating of the core. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the ice correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene ice. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan ice-age ice and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for ice older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle ice" or many other core-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the core by dedicated observers.
The design and performance of IceCube DeepCore
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.
2012-05-01
The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
The Design and Performance of IceCube DeepCore
NASA Technical Reports Server (NTRS)
Stamatikos, M.
2012-01-01
The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking pbysics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
NASA Astrophysics Data System (ADS)
Kuhn, G.; Wu, S.; Hass, H. C.; Klages, J. P.; Zheng, X.; Arz, H. W.; Esper, O.; Hillenbrand, C. D.; Lange, C.; Lamy, F.; Lohmann, G.; Müller, J.; McCave, I. N. N.; Nürnberg, D.; Roberts, J.; Tiedemann, R.; Timmermann, A.; Titschack, J.; Zhang, X.
2017-12-01
The evolution of the Antarctic Ice Sheet during the last climate cycle and the interrelation to global atmospheric and ocean circulation remains controversial and plays an important role for our understanding of ice sheet response to modern global warming. The timing and sequence of deglacial warming is relevant for understanding the variability and sensitivity of the Antarctic Ice Sheet to climatic changes, and the continuing rise of atmospheric greenhouse gas concentrations. The Antarctic Ice Sheet is a pivotal component of the global water budget. Freshwater fluxes from the ice sheet may affect the Antarctic Circumpolar Current (ACC), which is strongly impacted by the westerly wind belt in the Southern Hemisphere (SHWW) and constricted to its narrowest extent in the Drake Passage. The flow of ACC water masses through Drake Passage is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global meridional overturning circulation and global climate change. In order to address orbital and millennial-scale variability of the Antarctic ice sheet and the ACC, we applied a multi-proxy approach on a sediment core from the central Drake Passage including grain size, iceberg-rafted debris, mineral dust, bulk chemical and mineralogical composition, and physical properties. In combination with already published and new sediment records from the Drake Passage and Scotia Sea, as well as high-resolution data from Antarctic ice cores (WDC, EDML), we now have evidence that during glacial times a more northerly extent of the perennial sea-ice zone decreased ACC current velocities in the central Drake Passage. During deglaciation the SHWW shifted southwards due to a decreasing temperature gradient between subtropical and polar latitudes caused by sea ice and ice sheet decline. This in turn caused Southern Hemisphere warming, a more vigorous ACC, stronger Southern Ocean ventilation, and warm Circumpolar Deep Water (CDW) upwelling on Antarctic shelves resulting in increased ice shelf melting. Stronger upwelling is associated with a rise in atmospheric carbon dioxide to reach a threshold at which full deglaciation could become inevitable.
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Thompson, J. T.; Wong, G. J.; Hawley, R. L.; Kelly, M. A.; Lutz, E.; Howley, J.; Ferris, D. G.
2013-12-01
A significant rise in summer temperatures over the past several decades has led to widespread retreat of the Greenland Ice Sheet (GIS) margin and surrounding sea ice. Recent observations from geodetic stations and GRACE show that ice mass loss progressed from South Greenland up to Northwest Greenland by 2005 (Khan et al., 2010). Observations from meteorological stations at the U.S. Thule Air Force Base, remote sensing platforms, and climate reanalyses indicate a 3.5C mean annual warming in the Thule region and a 44% decrease in summer (JJAS) sea-ice concentrations in Baffin Bay from 1980-2010. Mean annual precipitation near Thule increased by 12% over this interval, with the majority of the increase occurring in fall (SON). To improve projections of future ice loss and sea-level rise in a warming climate, we are currently developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate variability and cryospheric response in NW Greenland, with a focus on past warm periods. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 20 m) from the coastal region of the GIS (2Barrel site; 76.9317 N, 63.1467 W) and the summit of North Ice Cap (76.938 N, 67.671 W) in 2011 and 2012, respectively. The 2Barrel ice core was sampled using a continuous ice core melting system at Dartmouth, and subsequently analyzed for major anion and trace element concentrations and stable water isotope ratios. Here we show that the 2Barrel ice core spanning 1990-2010 records a 25% increase in mean annual snow accumulation, and is positively correlated (r = 0.52, p<0.01) with ERA-Interim precipitation. The 2Barrel annual sea-salt Na concentration is strongly correlated (r = 0.5-0.8, p<0.05) with summer and fall sea-ice concentrations in northern Baffin Bay near Thule (Figure 1). We hypothesize that the positive correlation represents a significant Na contribution from frost flowers growing on fall frazil ice. Ongoing analyses will evaluate the relationship between MSA concentrations and sea ice extent. Our results show that a deep ice core collected from this dynamic and climate-sensitive region of NW Greenland would produce a valuable record of late Holocene climate and sea ice extent.
NASA Astrophysics Data System (ADS)
Köhler, P.
2010-08-01
Methane synchronisation is a concept to align ice core records during rapid climate changes of the Dansgaard/Oeschger (D/O) events onto a common age scale. However, atmospheric gases are recorded in ice cores with a log-normal-shaped age distribution probability density function, whose exact shape depends mainly on the accumulation rate on the drilling site. This age distribution effectively shifts the mid-transition points of rapid changes in CH4 measured in situ in ice by about 58% of the width of the age distribution with respect to the atmospheric signal. A minimum dating uncertainty, or artefact, in the CH4 synchronisation is therefore embedded in the concept itself, which was not accounted for in previous error estimates. This synchronisation artefact between Greenland and Antarctic ice cores is for GRIP and Byrd less than 40 years, well within the dating uncertainty of CH4, and therefore does not calls the overall concept of the bipolar seesaw into question. However, if the EPICA Dome C ice core is aligned via CH4 to NGRIP this synchronisation artefact is in the most recent unified ice core age scale (Lemieux-Dudon et al., 2010) for LGM climate conditions of the order of three centuries and might need consideration in future gas chronologies.
NASA Astrophysics Data System (ADS)
Keeler, D. G.; Rupper, S.; Forster, R. R.; Miège, C.; Brewer, S.; Koenig, L.
2017-12-01
The West Antarctic Ice Sheet (WAIS) could be a substantial source of future sea level rise, with 3+ meters of potential increase stored in the ice sheet. Adequate predictions of WAIS contributions, however, depend on well-constrained surface mass balance estimates for the region. Given the sparsity of available data, such estimates are tenuous. Although new data are periodically added, further research (both to collect more data and better utilize existing data) is critical to addressing these issues. Here we present accumulation data from 9 shallow firn cores and 600 km of Ku band radar traces collected as part of the Satellite Era Antarctic Traverse (SEAT) 2011/2012 field season. Using these data, combined with similar data collected during the SEAT 2010/2011 field season, we investigate the spatial variability in accumulation across the WAIS Divide and surrounding regions. We utilize seismic interpretation and 3D visualization tools to investigate the extent and variations of laterally continuous internal horizons in the radar profiles, and compare the results to nearby firn cores. Previous results show that clearly visible, laterally continuous horizons in radar returns in this area do not always represent annual accumulation isochrones, but can instead represent multi-year or sub-annual events. The automated application of Bayesian inference techniques to averaged estimates of multiple adjacent radar traces, however, can estimate annually-resolved independent age-depth scales for these radar data. We use these same automated techniques on firn core isotopic records to infer past snow accumulation rates, allowing a direct comparison with the radar-derived results. Age-depth scales based on manual annual-layer counting of geochemical and isotopic species from these same cores provide validation for the automated approaches. Such techniques could theoretically be applied to additional radar/core data sets in polar regions (e.g. Operation IceBridge), thereby increasing the number of high resolution accumulation records available in these data-sparse regions. An increased understanding of the variability in magnitude and past rates of surface mass balance can provide better constraints on sea level projections and more precise context for present-day and future observations in these regions.
NASA Astrophysics Data System (ADS)
Bertò, Michele; Barbante, Carlo; Gabrieli, Jacopo; Gabrielli, Paolo; Spolaor, Andrea; Dreossi, Giuliano; Laj, Paolo; Zanatta, Marco; Ginot, Patrick; Fain, Xavier
2016-04-01
Ice cores are an archive of a wide variety of climatic and environmental information from the past, retaining them for hundreds of thousands of years. Anthropogenic pollutants, trace elements, heavy metals and major ions, are preserved as well providing insights on the past atmospheric circulations and allowing evaluating the human impact on the environment. Several ice cores were drilled in glaciers at mid and low latitudes, as in the European Alps. The first ice cores drilled to bedrock in the Eastern Alps were retrieved during autumn 2011 on the "Alto dell`Ortles glacier", the uppermost glacier of the Ortles massif (3905m, South Tirol, Italy), in the frame of the "Ortles Project". A preliminary dating of the core suggests that it should cover at least 300-400 years. Despite the summer temperature increase of the last decades this glacier still contain cold ice. Indeed, O and H isotopes profiles well describe the atmospheric warming as well as the low temperatures recorded during the Little Ice Age (LIA). Moreover, this glacier is located close to densely populated and industrialized areas and can be used for reconstructing for the first time past and recent air pollution and the human impact in the Eastern European Alps. The innermost part of the core is under analysis by means of a "Continuous Flow Analysis" system. This kind of analysis offers a high resolution in data profiles. The separation between the internal and the external parts of the core avoid any kind of contamination. An aluminum melting head melts the core at about 2.5 cm min-1. Simultaneous analyses of conductivity, dust concentration and size distribution (from 0.8 to 80 μm), trace elements with Inductive Coupled Plasma Mass Spectrometer (ICP-MS, Agilent 7500) and refractory black carbon (rBC) with the Single Particle Soot Photometer (SP2, Droplet Measurement Technologies) are performed. A fraction of the melt water is collected by an auto-sampler for further analysis. The analyzed elements are Li, Na, Mg, Al, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Rb, Ag, Cd, Sb, I, Ba, Pt, Tl, Pb and U. Trace elements concentrations in the Ortles snow are related to the emissions from the Po Valley, one of the most polluted region of Europe. The results show an increase in the concentration of many heavy metals due to anthropogenic emissions, mainly from the onset of the Industrial Revolution. rBC is one of the most important aerosol species affecting the climate system, particularly the glaciers, by modifying the radiative energy balance. A significant increase of rBC was found in the ice identifying this kind of aerosol as a responsible in forcing the end of the LIA.
IceChrono v1: a probabilistic model to compute a common and optimal chronology for several ice cores
NASA Astrophysics Data System (ADS)
Parrenin, Frédéric
2015-04-01
Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores is essential to interpret the paleo records that they contain, but it is a complicated problem since it involves different dating methods. Here I present IceChrono v1, a new probabilistic model to combine different kinds of chronological information to obtain a common and optimized chronology for several ice cores, as well as its uncertainty. It is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the vertical thinning function. The chronological information used are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and gas dated horizons, ice and gas dated depth intervals, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air), stratigraphic links in between ice cores (ice-ice, air-air or mix ice-air and air-ice links). The optimization problem is formulated as a least squares problems, that is, all densities of probabilities are assumed gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono is similar in scope to the Datice model, but has differences from the mathematical, numerical and programming point of views. I apply IceChrono on an AICC2012-like experiment and I find similar results than Datice within a few centuries, which is a confirmation of both IceChrono and Datice codes. IceChrono v1 is freely available under the GPL v3 open source license.
NASA Astrophysics Data System (ADS)
Martin, Daniel; Asay-Davis, Xylar; Cornford, Stephen; Price, Stephen; Ng, Esmond; Collins, William
2015-04-01
We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010 resulting from two different choices of climate forcing: a 'normal-year' climatology and the CORE v. 2 interannual forcing data (Large and Yeager 2008). Simulations are performed at 0.1o (~5 km) ocean resolution and adaptive ice sheet resolution as fine as 500 m. We compare time-averaged melt rates below a number of major ice shelves with those reported by Rignot et al. (2013) as well as other recent studies. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and consequent dynamics of the grounded ice sheet. POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh (2009) to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d; Pattyn et al., 2013) and realistic configurations (Favier et al. 2014).
McConnell, Joseph R.; Burke, Andrea; Dunbar, Nelia W.; Köhler, Peter; Thomas, Jennie L.; Chellman, Nathan J.; Maselli, Olivia J.; Sigl, Michael; Adkins, Jess F.; Baggenstos, Daniel; Burkhart, John F.; Brook, Edward J.; Buizert, Christo; Cole-Dai, Jihong; Fudge, T. J.; Knorr, Gregor; Graf, Hans-F.; Grieman, Mackenzie M.; Iverson, Nels; McGwire, Kenneth C.; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H.; Saltzman, Eric S.; Steffensen, Jørgen Peder; Taylor, Kendrick C.; Winckler, Gisela
2017-01-01
Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics—similar to those associated with modern stratospheric ozone depletion over Antarctica—plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka. PMID:28874529
McConnell, Joseph R; Burke, Andrea; Dunbar, Nelia W; Köhler, Peter; Thomas, Jennie L; Arienzo, Monica M; Chellman, Nathan J; Maselli, Olivia J; Sigl, Michael; Adkins, Jess F; Baggenstos, Daniel; Burkhart, John F; Brook, Edward J; Buizert, Christo; Cole-Dai, Jihong; Fudge, T J; Knorr, Gregor; Graf, Hans-F; Grieman, Mackenzie M; Iverson, Nels; McGwire, Kenneth C; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H; Saltzman, Eric S; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Taylor, Kendrick C; Winckler, Gisela
2017-09-19
Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.
NASA Astrophysics Data System (ADS)
Scholz, Denis; Hoffmann, Dirk; Spötl, Christoph; Hopcroft, Peter; Mangini, Augusto; Richter, Detlef K.
2010-05-01
We present high-resolution stable oxygen and carbon isotope (δ18O and δ13C) as well as trace element profiles for stalagmite HBSH-1 from Hüttenbläserschachthöhle, western Germany. The chronology was established by MC-ICPMS 230Th/U-dating, and the high U-content of the stalagmite allowed determination of very precise 230Th/U-ages although using very small sample sizes. The beginning and end of individual growth phases of the stalagmite could, thus, be determined very accurately. Stalagmite HBSH-1 grew during the penultimate interglacial (MIS 7), the Last Interglacial (MIS 5) and the Holocene. The major part of the sample (40 cm) grew between 130 and 80 ka providing a climate record with decadal to centennial resolution for this period. The record shows three growth interruptions during MIS 5 coinciding with Greenland Stadials 25, 24 and 22, as recorded in the NGRIP ice core (North Greenland Ice Core Project members, 2004). The end of the MIS 5 growth phase coincides with GS 21. This shows that stalagmite growth in this area is a very sensitive proxy for northern hemisphere cooling. Correlation of the absolutely dated stalagmite record with Greenland ice cores may provide a tool to improve the chronology of the Greenland Stadials. The δ18O profile of stalagmite HBSH-1 shows a distinct similarity during MIS 5 with the NGRIP ice core and a sea surface temperature record from the Iberian Margin (Martrat et al., 2007). This suggests that stalagmite δ18O mainly reflects past temperature variability. Stalagmite HBSH-1 consists of aragonite rather than calcite, which is probably a result of pronounced prior calcite precipitation in the epikarst above the cave (Fairchild and Treble, 2009). In this case, the δ13C signal rather reflects changes in past precipitation than temperature. The δ13C record of HBSH-1 shows three pronounced negative peaks during MIS 5, in agreement with the three MIS 5 warm phases, MIS 5e, 5c and 5a. During the Last Interglacial, however, the evolution of δ18O and δ13C, and thus temperature and precipitation, is opposite. Whereas the δ18O signal suggests the warmest temperatures around 125 ka followed by a gradual decrease, the δ13C signal indicates wetter conditions towards the end of the Last Interglacial. The decoupling of temperature and precipitation during this time period is also seen in a series of snapshot simulations performed using a fast coupled ocean-atmosphere general circulation model. This behaviour can be explained by the influence of varying solar insolation patterns (in response to changing orbital configuration) on atmospheric dynamics and the resulting influence on storm activity in the region. References Fairchild, I. J. and Treble, P. C., 2009. Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews 28, 449-468. Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., and Stocker, T. F., 2007. Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin. Science 317, 502-507. North Greenland Ice Core Project members, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147-151.
Han, Changhee; Burn-Nunes, Laurie J; Lee, Khanghyun; Chang, Chaewon; Kang, Jung-Ho; Han, Yeongcheol; Hur, Soon Do; Hong, Sungmin
2015-08-01
An improved decontamination method and ultraclean analytical procedures have been developed to minimize Pb contamination of processed glacial ice cores and to achieve reliable determination of Pb isotopes in North Greenland Eemian Ice Drilling (NEEM) deep ice core sections with concentrations at the sub-picogram per gram level. A PL-7 (Fuso Chemical) silica-gel activator has replaced the previously used colloidal silica activator produced by Merck and has been shown to provide sufficiently enhanced ion beam intensity for Pb isotope analysis for a few tens of picograms of Pb. Considering the quantities of Pb contained in the NEEM Greenland ice core and a sample weight of 10 g used for the analysis, the blank contribution from the sample treatment was observed to be negligible. The decontamination and analysis of the artificial ice cores and selected NEEM Greenland ice core sections confirmed the cleanliness and effectiveness of the overall analytical process. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Brigham-Grette, J.
2011-12-01
Contemporary change cannot be evaluated without the perspective of past rates of change in concert with a complete evaluation of associated feedbacks and forcings. Paleoclimate studies offer the only valid context for evaluating trajectories and dynamics in the climate system especially in a warming world driven by anthropogenic CO2. "If it happened before it could happen again" and it is with this adage that most of the paleoclimate community is now screaming déjà vu. The present rate of global scale warming is unprecedented within the resolution of paleorecords. High resolution terrestrial studies (lakes, tree rings and ice cores) of the last 2 ka across the Arctic clearly show that the wholesale warming of the past few decades is unprecedented and likely forced by increases in green house gas emissions. Emerging evidence of earlier warm periods over the past few million years inform us about the sensitivity of the arctic system to change, particularly the rates and magnitudes of warmth that directly impact the seasonal extent and existence of sea ice, the melt of glacial systems and changes in sea level. While there is some consensus about the rapid response of the sea-ice albedo feedback processes, it still remains difficult to model. Large changes in seasonal ice across the Arctic have been documented for parts of the early Holocene due to insolation forcing and sea ice was arguably less extensive during MIS 5e (125ka), and several other interglacials. Along with less sea ice there are data to suggest large northward range extensions of marine flora and fauna that likely accompanied changes in water mass structure. Sustained warmth during the Pliocene (especially 3.0 to 3.6 Ma) suggests several intervals when summer sea ice was absent and even the presence of winter sea ice is debated. While different research groups have each produced a variety estimates for pCO2 in mid Pliocene ranging from 280 ppm to 400 ppm, most agree that pCO2 may have been like today in the 350 to 400 ppm range as a major forcing factor. New continuous interglacial records from the Lake El'gygytgyn core (central Chukotka) correlative with well-known marine isotopic stages 5e, 9, 11 and 31, which each differ in character, presumably due to orbital forcing and feedbacks. Because many of these warm episodes at Lake El'gygytgyn surpass the warmth of the last interglacial when the Greenland Ice Sheet is thought to have been smaller than today, these new data will contribute to modeling efforts that test the vulnerability of Arctic sea ice and the Greenland Ice Sheet to global warming.
NASA Astrophysics Data System (ADS)
Ibarra-Castanedo, C.; Brault, L.; Marcotte, F.; Genest, M.; Farley, V.; Maldague, X.
2012-06-01
Water ingress in honeycomb structures is of great concern for the civil and military aerospace industries. Pressure and temperature variations during take-off and landing produce considerable stress on aircraft structures, promoting moisture ingress (by diffusion through fibers or by direct ingress through voids, cracks or unsealed joints) into the core. The presence of water (or other fluids such as kerosene, hydraulic fluid and de-icing agents) in any of its forms (gas vapor, liquid or ice) promotes corrosion, cell breakage, and induce composite layer delaminations and skin disbonds. In this study, testing specimens were produced from unserviceable parts from military aircraft. In order to simulate atmospheric conditions during landing, selected core areas were filled with measured quantities of water and then frozen in a cold chamber. The specimens were then removed from the chamber and monitored for over 20 minutes as they warm up using a cooled high-resolution infrared camera. Results have shown that detection and quantification of water ingress on honeycomb sandwich structures by passive infrared thermography is possible using a HD mid-wave infrared cameras for volumes of water as low as 0.2 ml and from a distance as far as 20 m from the target.
Dust Records in Ice Cores from the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Wang, N.; Yao, T.; Thompson, L. G.
2014-12-01
Dust plays an important role in the Earth system, and it usually displays largely spatial and temporal variations. It is necessary for us to reconstruct the past variations of dust in different regions to better understand the interactions between dust and environments. Ice core records can reveal the history of dust variations. In this paper, we used the Guliya, Dunde, Malan and Dasuopu ice cores from the Tibetan Plateau to study the spatial distribution, the seasonal variations and the secular trends of dust. It was found that the mean dust concentration was higher by one or two order of magnitudes in the Guliya and Dunde ice cores from the northern Tibetan Plateau than in the Dasuopu ice core from the southern Tibetan Plateau. During the year, the highest dust concentration occurs in the springtime in the northern Tibetan Plateau while in the non-monsoon season in the southern Tibetan Plateau. Over the last millennium, the Dasuopu ice core record shows that the 1270s~1380s and 1870s~1990s were the two epochs with high dust concentration. However, the Malan ice core from the northern Tibetan Plateau indicates that high dust concentration occurred in the 1130s~1550s and 1770s~1940s. Interestingly, climatic and environmental records of the ice cores from the Tibetan Plateau reflected that the correlation between dust concentration and air temperature was strongly positive in the southern Plateau while negative in the northern Plateau over the last millennium. This implies that climatic and environmental changes existed considerable differences in the different parts of the Plateau. Moreover, four Asian megadroughts occurred in 1638~1641, 1756~1758, 1790~1796 and 1876~1878, which caused more than tens millions people died, were revealed clearly by dust record in the Dasuopu ice core.
NASA Astrophysics Data System (ADS)
Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N. B.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.
2014-07-01
The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75°37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP (North Greenland Ice Core Project) ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
Motoyama, H.; Suzuki, T.; Fukui, K.; Ohno, H.; Hoshina, Y.; Hirabayashi, M.; Fujita, S.
2017-12-01
1. Introduction It is possible to reveal the past climate and environmental change from the ice core drilled in polar ice sheet and glaciers. The 54th Japanese Antarctic Research Expedition conducted several shallow core drillings up to 30 m depth in the inland and coastal areas of the East Antarctic ice sheet. Ice core sample was cut out at a thickness of about 5 cm in the cold room of the National Institute of Polar Research, and analyzed ion, water isotope, dust and so one. We also conducted dielectric profile measurement (DEP measurement). The age as a key layer of large-scale volcanic explosion was based on Sigl et al. (Nature Climate Change, 2014). 2. Inland ice core Ice cores were collected at the NDF site (77°47'14"S, 39°03'34"E, 3754 m.a.s.l.) and S80 site (80°00'00"S, 40°30'04"E, 3622 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. We determined the key layer with nssSO42 - peak corresponding to several large volcanic explosions. The accumulation rate was kept constant between the key layers. As a result, NDF was estimated to be around 1360 AD and S80 was estimated to be around 1400 AD in the deepest ice core. 3. Coastal ice core An ice core was collected at coastal H15 sites (69°04'10"S, 40°44'51"E, 1030 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from ice core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. Basically we decided to summer (December) and winter (June) due to the seasonal change of the water isotope (δD or δ18O). In addition to the seasonal change of isotope, confirm the following. Maximum of SO42- / Na +, which is earlier in time than the maximum of water isotope. Maximum of MSA at about the same time as the maximum of the water isotope. Na+ is maximal immediately after the local maximum of the water isotope. The deepest age was estimated to be around 1940 AD. 4. Example of results In the inland area, the annual average surface mass balance decreased from 1450 to 1850 AD, but it has increased since 1850 AD. The annual mass balance of coastal H15 is consistent with the result of snow stake measurement.
NASA Astrophysics Data System (ADS)
Huffman, L. T.
2017-12-01
Changing ice has urgent implications for people around the world. The Ice Drilling Program Office (IDPO) provides scientific leadership and oversight of ice coring and drilling activities funded by the US National Science Foundation and also has goals to enhance education and communication of current research information. In a time when misinformation is rampant and climate change science is suspect, it is essential that students receive accurate scientific information and engage in learning activities that model complex ideas through engaging and age appropriate ways, while also learning to validate and recognize reliable sources. The IDPO Education and Outreach (EO) office works to create resources, activities and professional development that bridge the gap between ice core science research and educators and their students. Ice core science is on the cutting edge of new discoveries about climate change and understanding better the past to predict the future. Hands-on inquiry activities based on ice core data allow teachers to lead their students to new discoveries about climate secrets hidden deep in the ice. Capitalizing on the inherent interest in the extremes of the Polar Regions, IDPO materials engage students in activities aligned with NGSS standards. Ice drilling technologies make an ideal platform for intertwining engineering concepts and practices with science research to meet the SEP (Science and Engineering Practices) in the NGSS. This session will highlight how the IDPO EO office has built a community of ice core scientists willing to take part in education and outreach projects and events and share some of the resources available to K-12 educators. We will highlight some of the successes and lessons learned as we continually evolve our work toward more effective science education and communication highlighting ice core and climate change science.
Glaciological reconstruction of Holocene ice margins in northwestern Greenland
NASA Astrophysics Data System (ADS)
Birkel, S. D.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.
2014-12-01
The past few decades of climate warming have brought overall margin retreat to the Greenland Ice Sheet. In order to place recent and projected changes in context, we are undertaking a collaborative field-modeling study that aims to reconstruct the Holocene history of ice-margin fluctuation near Thule (~76.5°N, 68.7°W), and also along the North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W). Fieldwork reported by Kelly et al. (2013) reveals that ice in the study areas was less extensive than at present ca. 4700 (GIS) and ca. 880 (NIC) cal. years BP, presumably in response to a warmer climate. We are now exploring Holocene ice-climate coupling using the University of Maine Ice Sheet Model (UMISM). Our approach is to first test what imposed climate anomalies can afford steady state ice margins in accord with field data. A second test encompasses transient simulation of the Holocene, with climate boundary conditions supplied by existing paleo runs of the Community Climate System Model version 4 (CCSM4), and a climate forcing signal derived from Greenland ice cores. In both cases, the full ice sheet is simulated at 10 km resolution with nested domains at 0.5 km for the study areas. UMISM experiments are underway, and results will be reported at the meeting.
WCRP's Climate and Cryosphere (CliC) Project: Climate Change and Middle and Low Latitude Glaciers
NASA Astrophysics Data System (ADS)
Dick, C. A.; Clic Project, W.
2004-12-01
The newest World Climate Research Programme (WCRP) Core Project, the Climate and Cryosphere (CliC) Project, is concerned with all aspects of the interactions between the cryosphere and climate. The cryosphere, defined as those portions of the Earth's surface where water exists in solid form, is an integral part of the climate system, both responding to, and influencing climate change. The cryosphere also provides many of the best indicators of climate variability and change. In addition to a range of direct physical indicators (e.g., snow/sea ice/glacier extent and thickness, river and lake freeze-up/break-up dates, etc.), ice cores from glaciers, ice caps and ice sheets have been shown to contain a wealth of information about past climate and environmental conditions. Ice cores are of particular value, since they often come from areas that are remote and poorly observed, yet have a major effect on the climate of the rest of the globe. General Circulation Models (GCMs) usually predict that the Earth's polar regions will warm fastest with the increasing levels of atmospheric greenhouse gases. However, models also indicate that continental interiors should warm more quickly than marine areas at non-polar latitudes. In fact, while some areas in the Arctic and Antarctic have warmed rapidly over the last few decades, it has generally been in the middle and low latitudes that the greatest effects of climate change have been observed. Particularly obvious has been the widespread retreat of glaciers. This retreat, and the warming which it implies, will have not only important scientific consequences but also socio-economic consequences in areas where glacier melt-water is an important component of the water supply. Glaciers preserve records of climate and the environment through both the isotopic composition of the water molecules, and through the chemicals 'trapped' in the snow, firn and ice layers. In polythermal (i.e., cold) glaciers where only limited melt occurs, the isotopic and chemical signals remain largely undisturbed, and ice cores can provide excellent high resolution records of past conditions. In temperate glaciers, where the ice is at its pressure melting point throughout, diffusion processes are much more rapid, and summer melt and run-off can drastically alter the chemical composition. Much of the climatic and environmental information is destroyed. This presentation will discuss the very serious concern that so many middle and low latitude glaciers are retreating and warming. The CliC Project recognizes an urgent need to recover ice cores from all non-polar glaciated regions before warming affects the glaciers and removes the information they contain. Without such information our ability to understand the climate changes that have occurred in the world's mountainous regions will be restricted, and our ability to model and predict future climate will be severely impaired.
Paleoenvironmental changes during the past 2000 years, evidence from Kongsfjorden, Svalbard
NASA Astrophysics Data System (ADS)
Jernas, P.; Kristensen, D.; Koc, N.; Skirbekk, K.
2009-04-01
Over the past decades the Arctic has received more attention due to the rapid warming that is more pronounced there than elsewhere on the globe. Instrumental time series are too short to capture the range of natural variability in the Arctic and we therefore have to rely on proxy records to describe the whole range of natural variability. In this context the late-Holocene climate variations are particularly important because natural forcings and the Earth's boundary conditions have been approximately similar to those operating today. Documenting past natural climate variability has therefore a vital role to play in understanding the present climate and predicting future change. Here we present a high resolution marine record from Kongsfjorden covering the last c. 2000 years. The core site is located in Kongsfjorden situated on the western coast of Spitsbergen (Svalbard). We focus on this region because it lies along the path of inflow of warmer and saline subsurface waters via the West Spitsbergen Current which is one of the important heat sources for the Arctic Ocean. This current is a major regulator of environmental changes and for example sea-ice distribution in the west Svalbard area. Therefore quantification of it's spatially and temporally variations through time are essential for understanding past environmental and climate changes. We have investigated faunal variations in benthic foraminifera from the upper 60 cm (covering the last two millennia) of a gravity core (510 cm total length) sampled with one-cm density. Chronology of the gravity core is established by AMS radiocarbon dating. The core was in addition investigated for grain size analysis and x-ray. The sediment analysis and x-ray show the upper part of the core contains large amounts of IRD from 7 cm - 25 cm corresponding to an age of 150-700 cal yr. It indicates that abundant icebergs melted over the core site depositing IRD. Further down core (1000-1800 cal yr) there is a significant dominance of fine grained sediment and decrease in ice rafting indicating less influence from glaciers. The foraminiferal species composition show decreasing content of agglutinated foraminifera down core caused by their low preservation potential. For this core site it confirms the importance of calcareous foraminifera as a fossil record tool. The two dominant species in the core are Elphidium excavatum and Nonionellina labradorica. During the last 2000 years the percentage of E. excavatum shows a general tendency to decrease while N. labradorica increases toward present. Elphidium excavatum is typical for arctic glaciomarine environments close to glaciers and ice caps, indicating harsh conditions (cold bottom waters temperatures, lower salinity) and probably extensive ice cover. Nonionellina labradorica indicates the vicinity of oceanographic fronts and high productivity. Another species Islandiella spp., often associated with increased productivity and presence of the sea ice edge, shows significant increase in percentage from 1000 to 800 cal yr BP. From 600 to 400 cal yr BP Bucella spp. start to decline suggesting increased sea ice cover and diminished influence of the Coastal Current on the inner shelf of Svalbard.
NASA Astrophysics Data System (ADS)
Velez Gonzalez, Jose A.
The development of preferred crystal orientation fabrics (COF) within the ice column can have a strong influence on the flow behavior of an ice sheet or glacier. Typically, COF information comes from ice cores. Observations of anisotropic seismic wave propagation and backscatter variation as a function of antenna orientation in GPR measurements have been proposed as methods to detect COF. For this investigation I evaluate the effectiveness of the GPR and seismic methods to detect COF by conducting a seismic and GPR experiment at the North Greenland Eemian Ice Drilling facility (NEEM) ice core location, where COF data is available. The seismic experiment was conducted 6.5 km North West of the NEEM facility and consisted of three multi-offset seismic gathers. The results of the anisotropy analysis conducted at NEEM yielded mean c-axes distributed over a conical region of I angle of 30 to 32 degrees. No internal ice reflectors were imaged. Direct COF measurements collected in the ice core are in agreement with the results from the seismic anisotropy analysis. The GPR experiment covered an area of 100 km2 and consisted of parallel, perpendicular, oblique and circular (radius: 35 m) acquisition patterns. Results show evidence for COF for the entire 100 km2 area. Furthermore, for the first time it was possible to image three different COF (random, disk and single maxima) and their respective transition zones. The interpretation of the GPR experiment showed a strong correlation with the ice core measurements. Glacier basal drag is also an important, and difficult to predict, property that influences glacier flow. For this investigation I re-processed a 10 km-long high-resolution reflection seismic line at Jakobshavn Isbrae, Greenland, using an iterative velocity determination approach for optimizing sub-glacier imaging. The resultant line imaged a sub-glacier sediment layer ranging in thickness between 35 and 200 meters. I interpret three distinct seismic facies based on the geometry of the reflectors as a basal till layer, accreted sediments and re-worked till. The basal till and accreted sediments vary in thickness between 4 and 93 meters and are thought to be water-saturated actively-deforming sub-glacier sediments. A polarity reversal observed at one location along the ice-sediment interface suggests the presence of water saturated sediments or water ponding 2-4 m thick spanning approximately 240 m across. Using information from the seismic line (bed geometry, ice thickness, till thickness) as well as information available for the area of study (ice surface elevation and ice flow velocity) we evaluate the effect of sub-glacier sediment viscosity on the basal drag using a linearly viscous model and the assumption of a deforming bed. Basal drag values estimated for the study area fall within the range of physically acceptable values. However, the analysis revealed that the assumption of a deforming bed might not be compatible for the area of study given the presence of water at the ice/bed interface.
Schüpbach, S; Fischer, H; Bigler, M; Erhardt, T; Gfeller, G; Leuenberger, D; Mini, O; Mulvaney, R; Abram, N J; Fleet, L; Frey, M M; Thomas, E; Svensson, A; Dahl-Jensen, D; Kettner, E; Kjaer, H; Seierstad, I; Steffensen, J P; Rasmussen, S O; Vallelonga, P; Winstrup, M; Wegner, A; Twarloh, B; Wolff, K; Schmidt, K; Goto-Azuma, K; Kuramoto, T; Hirabayashi, M; Uetake, J; Zheng, J; Bourgeois, J; Fisher, D; Zhiheng, D; Xiao, C; Legrand, M; Spolaor, A; Gabrieli, J; Barbante, C; Kang, J-H; Hur, S D; Hong, S B; Hwang, H J; Hong, S; Hansson, M; Iizuka, Y; Oyabu, I; Muscheler, R; Adolphi, F; Maselli, O; McConnell, J; Wolff, E W
2018-04-16
The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little.
NASA Astrophysics Data System (ADS)
Xiao, X.; Zhao, M.; Knudsen, K. L.; Eiriksson, J.; Gudmundsdottir, E. R.; Jiang, H.; Guo, Z.
2017-12-01
Sea ice, prevailing in the polar region and characterized by distinct seasonal and interannual variability, plays a pivotal role in Earth's climate system (Thomas and Dieckmann, 2010). Studies of spatial and temporal changes in modern and past sea-ice occurrence may help to understand the processes controlling the recent decrease in Arctic sea-ice cover. Here, we determined the concentrations of sea-ice diatom-derived biomarker "IP25" (monoene highly-branched isoprenoid with 25 carbon atom; Belt et al., 2007), phytoplankton-derived biomarker brassicasterol and terrigenous biomarker long-chain n-alkanols in a sediment core from the North Icelandic shelf to reconstruct the high-resolution sea-ice variability and the organic-matter sources during the past 15,000 years. During the Bølling/Allerød, the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence; the input of terrestrial and sea-ice organic matters was high while the marine organic matter derived from phytoplankton productivity was low. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas interrupted by a brief interval of enhanced Irminger Current; the organic carbon input from sea-ice productivity, terrestrial matter and phytoplankton productivity all decreased. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Therefore, the sea-ice productivity decreased but the phytoplankton productivity increased during this time interval. The biomarker records from this sediment core give insights into the variability in sea ice and organic-carbon sources in the Arctic marginal area during the last deglacial and Holocene. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Org. Geochem. 38, 16-27. Knudsen, K.L. and Eiriksson, J., 2002. Application of tephrochronology to the timing and correlation of palaeoceanographic events recorded in Holocene and Late Glacial shelf sediments off North Iceland. Marine Geology 191, 165-188. Thomas, D. N. and Dieckmann, G. S., 2010. Sea Ice, Blackwell Publ., Oxford, U. K.
NASA Astrophysics Data System (ADS)
Heinzeller, Dominikus; Duda, Michael G.; Kunstmann, Harald
2017-04-01
With strong financial and political support from national and international initiatives, exascale computing is projected for the end of this decade. Energy requirements and physical limitations imply the use of accelerators and the scaling out to orders of magnitudes larger numbers of cores then today to achieve this milestone. In order to fully exploit the capabilities of these Exascale computing systems, existing applications need to undergo significant development. The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric core, an ocean core, a land-ice core and a sea-ice core. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. Here, we present work towards the application of the atmospheric core (MPAS-A) on current and future high performance computing systems for problems at extreme scale. In particular, we address the issue of massively parallel I/O by extending the model to support the highly scalable SIONlib library. Using global uniform meshes with a convection-permitting resolution of 2-3km, we demonstrate the ability of MPAS-A to scale out to half a million cores while maintaining a high parallel efficiency. We also demonstrate the potential benefit of a hybrid parallelisation of the code (MPI/OpenMP) on the latest generation of Intel's Many Integrated Core Architecture, the Intel Xeon Phi Knights Landing.
ERIC Educational Resources Information Center
Krim, Jessica; Brody, Michael
2008-01-01
What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…
Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard
NASA Astrophysics Data System (ADS)
Granskog, Mats A.; Rösel, Anja; Dodd, Paul A.; Divine, Dmitry; Gerland, Sebastian; Martma, Tõnu; Leng, Melanie J.
2017-03-01
The salinity and water oxygen isotope composition (δ18O) of 29 first-year (FYI) and second-year (SYI) Arctic sea ice cores (total length 32.0 m) from the drifting ice pack north of Svalbard were examined to quantify the contribution of snow to sea ice mass. Five cores (total length 6.4 m) were analyzed for their structural composition, showing variable contribution of 10-30% by granular ice. In these cores, snow had been entrained in 6-28% of the total ice thickness. We found evidence of snow contribution in about three quarters of the sea ice cores, when surface granular layers had very low δ18O values. Snow contributed 7.5-9.7% to sea ice mass balance on average (including also cores with no snow) based on δ18O mass balance calculations. In SYI cores, snow fraction by mass (12.7-16.3%) was much higher than in FYI cores (3.3-4.4%), while the bulk salinity of FYI (4.9) was distinctively higher than for SYI (2.7). We conclude that oxygen isotopes and salinity profiles can give information on the age of the ice and enables distinction between FYI and SYI (or older) ice in the area north of Svalbard.
Chellman, Nathan; McConnell, Joseph R; Arienzo, Monica; Pederson, Gregory T; Aarons, Sarah M; Csank, Adam
2017-04-18
The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.
Chellman, Nathan J.; McConnell, Joseph R.; Arienzo, Monica; Pederson, Gregory T.; Aarons, Sarah; Csank, Adam
2017-01-01
The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.
ERIC Educational Resources Information Center
Kopaska-Merkel, David C.
1995-01-01
Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)
The extreme melt across the Greenland ice sheet in 2012
NASA Astrophysics Data System (ADS)
Nghiem, S. V.; Hall, D. K.; Mote, T. L.; Tedesco, M.; Albert, M. R.; Keegan, K.; Shuman, C. A.; DiGirolamo, N. E.; Neumann, G.
2012-10-01
The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors - including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder - are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research.
Timing and climate forcing of volcanic eruptions for the past 2,500 years.
Sigl, M; Winstrup, M; McConnell, J R; Welten, K C; Plunkett, G; Ludlow, F; Büntgen, U; Caffee, M; Chellman, N; Dahl-Jensen, D; Fischer, H; Kipfstuhl, S; Kostick, C; Maselli, O J; Mekhaldi, F; Mulvaney, R; Muscheler, R; Pasteris, D R; Pilcher, J R; Salzer, M; Schüpbach, S; Steffensen, J P; Vinther, B M; Woodruff, T E
2015-07-30
Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
Timing and climate forcing of volcanic eruptions for the past 2,500 years
NASA Astrophysics Data System (ADS)
Sigl, M.; Winstrup, M.; McConnell, J. R.; Welten, K. C.; Plunkett, G.; Ludlow, F.; Büntgen, U.; Caffee, M.; Chellman, N.; Dahl-Jensen, D.; Fischer, H.; Kipfstuhl, S.; Kostick, C.; Maselli, O. J.; Mekhaldi, F.; Mulvaney, R.; Muscheler, R.; Pasteris, D. R.; Pilcher, J. R.; Salzer, M.; Schüpbach, S.; Steffensen, J. P.; Vinther, B. M.; Woodruff, T. E.
2015-07-01
Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
Wang, Mo; Xu, B.; Cao, J.; ...
2015-02-02
High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia hasmore » the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.« less
Bereiter, Bernhard; Lüthi, Dieter; Siegrist, Michael; Schüpbach, Simon; Stocker, Thomas F.; Fischer, Hubertus
2012-01-01
Important elements of natural climate variations during the last ice age are abrupt temperature increases over Greenland and related warming and cooling periods over Antarctica. Records from Antarctic ice cores have shown that the global carbon cycle also plays a role in these changes. The available data shows that atmospheric CO2 follows closely temperatures reconstructed from Antarctic ice cores during these variations. Here, we present new high-resolution CO2 data from Antarctic ice cores, which cover the period between 115,000 and 38,000 y before present. Our measurements show that also smaller Antarctic warming events have an imprint in CO2 concentrations. Moreover, they indicate that during Marine Isotope Stage (MIS) 5, the peak of millennial CO2 variations lags the onset of Dansgaard/Oeschger warmings by 250 ± 190 y. During MIS 3, this lag increases significantly to 870 ± 90 y. Considerations of the ocean circulation suggest that the millennial variability associated with the Atlantic Meridional Overturning Circulation (AMOC) undergoes a mode change from MIS 5 to MIS 4 and 3. Ocean carbon inventory estimates imply that during MIS 3 additional carbon is derived from an extended mass of carbon-enriched Antarctic Bottom Water. The absence of such a carbon-enriched water mass in the North Atlantic during MIS 5 can explain the smaller amount of carbon released to the atmosphere after the Antarctic temperature maximum and, hence, the shorter lag. Our new data provides further constraints for transient coupled carbon cycle-climate simulations during the entire last glacial cycle. PMID:22675123
Southern Ocean dust-climate coupling over the past four million years.
Martínez-Garcia, Alfredo; Rosell-Melé, Antoni; Jaccard, Samuel L; Geibert, Walter; Sigman, Daniel M; Haug, Gerald H
2011-08-03
Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40 parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles. So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (refs 8, 9) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles, providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.
Bereiter, Bernhard; Lüthi, Dieter; Siegrist, Michael; Schüpbach, Simon; Stocker, Thomas F; Fischer, Hubertus
2012-06-19
Important elements of natural climate variations during the last ice age are abrupt temperature increases over Greenland and related warming and cooling periods over Antarctica. Records from Antarctic ice cores have shown that the global carbon cycle also plays a role in these changes. The available data shows that atmospheric CO(2) follows closely temperatures reconstructed from Antarctic ice cores during these variations. Here, we present new high-resolution CO(2) data from Antarctic ice cores, which cover the period between 115,000 and 38,000 y before present. Our measurements show that also smaller Antarctic warming events have an imprint in CO(2) concentrations. Moreover, they indicate that during Marine Isotope Stage (MIS) 5, the peak of millennial CO(2) variations lags the onset of Dansgaard/Oeschger warmings by 250 ± 190 y. During MIS 3, this lag increases significantly to 870 ± 90 y. Considerations of the ocean circulation suggest that the millennial variability associated with the Atlantic Meridional Overturning Circulation (AMOC) undergoes a mode change from MIS 5 to MIS 4 and 3. Ocean carbon inventory estimates imply that during MIS 3 additional carbon is derived from an extended mass of carbon-enriched Antarctic Bottom Water. The absence of such a carbon-enriched water mass in the North Atlantic during MIS 5 can explain the smaller amount of carbon released to the atmosphere after the Antarctic temperature maximum and, hence, the shorter lag. Our new data provides further constraints for transient coupled carbon cycle-climate simulations during the entire last glacial cycle.
NASA Astrophysics Data System (ADS)
Osterberg, Erich C.; Mayewski, Paul A.; Fisher, David A.; Kreutz, Karl J.; Maasch, Kirk A.; Sneed, Sharon B.; Kelsey, Eric
2014-10-01
Continuous, high-resolution paleoclimate records from the North Pacific region spanning the past 1500 years are rare; and the behavior of the Aleutian Low (ALow) pressure center, the dominant climatological feature in the Gulf of Alaska, remains poorly constrained. Here we present a continuous, 1500 year long, calibrated proxy record for the strength of the wintertime (December-March) ALow from the Mount Logan summit (PR Col; 5200 m asl) ice core soluble sodium time series. We show that ice core sodium concentrations are statistically correlated with North Pacific sea level pressure and zonal wind speed. Our ALow proxy record reveals a weak ALow from circa 900-1300 A.D. and 1575-1675 A.D., and a comparatively stronger ALow from circa 500-900 A.D., 1300-1575 A.D., and 1675 A.D. to present. The Mount Logan ALow proxy record shows strong similarities with tropical paleoclimate proxy records sensitive to the El Niño-Southern Oscillation and is consistent with the hypothesis that the Medieval Climate Anomaly was characterized by more persistent La Niña-like conditions while the Little Ice Age was characterized by at least two intervals of more persistent El Niño-like conditions. The Mount Logan ALow proxy record is significantly (p < 0.05) correlated and coherent with solar irradiance proxy records over various time scales, with stronger solar irradiance generally associated with a weaker ALow and La Niña-like tropical conditions. However, a step-like increase in ALow strength during the Dalton solar minimum circa 1820 is associated with enhanced Walker circulation. Furthermore, rising CO2 forcing or internal variability may be masking the twentieth century rise in solar irradiance.
NASA Astrophysics Data System (ADS)
Kokelj, S. V.; Tunnicliffe, J.; Lacelle, D.; Lantz, T. C.; Chin, K. S.; Fraser, R.
2015-06-01
It is anticipated that an increase in rainfall will have significant impacts on the geomorphology of permafrost landscapes. Field observations, remote sensing and historical climate data were used to investigate the drivers, processes and feedbacks that perpetuate the growth of large retrogressive thaw slumps. These "mega slumps" (5-40 ha) are now common in formerly glaciated, fluvially incised, ice-cored terrain of the Peel Plateau, NW Canada. Individual thaw slumps can persist for decades and their enlargement due to ground ice thaw can displace up to 106 m3 of materials from slopes to valley bottoms reconfiguring slope morphology and drainage networks. Analysis of Landsat images (1985-2011) indicate that the number and size of active slumps and debris tongue deposits has increased significantly with the recent intensification of rainfall. The analyses of high resolution climatic and photographic time-series for summers 2010 and 2012 shows strong linkages amongst temperature, precipitation and the downslope sediment flux from active slumps. Ground ice thaw supplies meltwater and sediments to the slump scar zone and drives diurnal pulses of surficial flow. Coherence in the timing of down valley debris tongue deposition and fine-scaled observations of sediment flux indicate that heavy rainfall stimulates major mass flow events. Evacuation of sediments from the slump scar zone can help to maintain a headwall of exposed ground ice, perpetuating slump growth and leading to larger disturbances. The development of debris tongue deposits divert streams and increase thermoerosion to initiate adjacent slumps. We conclude that higher rainfall can intensify thaw slump activity and rapidly alter the slope-sediment cascade in regions of ice-cored glaciogenic deposits.
Historical CO2 Records from the Law Dome DE08, DE08-2, and DSS Ice Cores (1006 A.D.-1978 A.D)
Etheridge, D. M. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Australia; Barnola, J. M. [Laboratoire de Glaciologie et Géophysique de l'Environnement, Saint Martin d'Hères-Cedex, France; Morgan, V. I. [Antarctic CRC and Australian Antarctic Division, Hobart, Tasmania, Australia; Steele, L. P. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Australia; Langenfelds, R. L. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Australia; Francey, R. J. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Australia; Martinez, Monica [Oak Ridge National Laboratory, Oak Ridge, TN (USA)
1998-01-01
The CO2 records presented here are derived from three ice cores obtained at Law Dome, East Antarctica from 1987 to 1993. The Law Dome site satisfies many of the desirable characteristics of an ideal ice core site for atmospheric CO2 reconstructions including negligible melting of the ice sheet surface, low concentrations of impurities, regular stratigraphic layering undisturbed at the surface by wind or at depth by ice flow, and high snow accumulation rate. Further details on the site, drilling, and cores are provided in Etheridge et al. (1996), Etheridge and Wookey (1989), and Morgan et al (1997).
Ocean interactions with the base of Amery Ice Shelf, Antarctica
NASA Technical Reports Server (NTRS)
Hellmer, Hartmut H.; Jacobs, Stanley S.
1992-01-01
Using a two-dimensional ocean themohaline circulation model, we varied the cavity shape beneath Amery Ice Shelf in an attempt to reproduce the 150-m-thick marine ice layer observed at the 'G1' ice core site. Most simulations caused melting rates which decrease the ice thickness by as much as 400 m between grounding line and G1, but produce only minor accumulation at the ice core site and closer to the ice front. Changes in the sea floor and ice topographies revealed a high sensitivity of the basal mass balance to water column thickness near the grounding line, to submarine sills, and to discontinuities in ice thickness. Model results showed temperature/salinity gradients similar to observations from beneath other ice shelves where ice is melting into seawater. Modeled outflow characteristics at the ice front are in general agreement with oceanographic data from Prydz Bay. We concur with Morgan's inference that the G1 core may have been taken in a basal crevasse filled with marine ice. This ice is formed from water cooled by ocean/ice shelf interactions along the interior ice shelf base.
Timing of Deglacial AMOC Variability From a High-Resolution Seawater Cadmium Reconstruction
NASA Astrophysics Data System (ADS)
Valley, Shannon; Lynch-Stieglitz, Jean; Marchitto, Thomas M.
2017-11-01
A new, high-resolution record of benthic seawater Cd (Cdw) was generated from a Florida Straits sediment core at 546 m water depth. The record provides additional evidence for Cdw below modern values in this channel during the Younger Dryas and Heinrich Stadial 1—climatological periods associated with ice sheet melt. Lower Cdw values are interpreted as a weakening of the Atlantic Meridional Overturning Circulation (AMOC), reflecting a decreased northward transport of southern sourced higher-nutrient intermediate waters by the surface return flow of AMOC. Comparison of this new Cdw record with previously published neodymium isotope and δ18O records from the same core shows synchronous transitions, further illustrating the connection between Cdw levels and AMOC strength in the Florida Straits. An increase in Cdw near 16 ka bolsters existing evidence for a resumption of upper branch AMOC strength approximately midway through Heinrich Stadial 1.
Ice Chemistry in Starless Molecular Cores
NASA Astrophysics Data System (ADS)
Kalvāns, J.
2015-06-01
Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H2O:CO:CO2:N2:NH3 ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H2O2 and O2H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H2CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH3 could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%-10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.
Wireless sensors for measuring sub-surface processes in firn
NASA Astrophysics Data System (ADS)
Bagshaw, Elizabeth; Karlsson, Nanna; Lishman, Ben; Bun Lok, Lai; Burrow, Stephen; Wadham, Jemma; Clare, Lindsay; Nicholls, Keith; Corr, Hugh; Brennan, Paul; Eisen, Olaf; Dahl-Jensson, Dorthe
2017-04-01
Subsurface processes exert controls on meltwater storage and densification within firn, which are, by their nature, challenging to measure. We present the results of proof-of-concept tests of wireless ETracer sensors with the East Greenland Ice Core Project (EGRIP) at the Northeast Greenland Ice Stream. ETracers equipped with temperature, pressure and electrical conductivity sensors were deployed in firn boreholes at the centre and the shear margins of the ice stream. Data were returned from a 60m deep test borehole, and continuously for 4 weeks from two 14m deep boreholes, to autonomous receivers at the surface. Two receivers were tested: a station using software radio and PC, and the BAS/UCL ApRES radar system. The sensors were used to track high resolution changes in temperature with depth, changes in densification rates in response to accumulation events and snow redistribution, and the presence of liquid water within the firn.
Using Firn Air for Facility Cooling at the WAIS Divide Site
2014-09-17
reduce logistics costs at remote field camps where it is critical to maintain proper temperatures to preserve sensitive deep ice cores. We assessed the...feasibility of using firn air for cooling at the West Antarc- tic Ice Sheet (WAIS) Divide ice core drilling site as a means to adequately and...efficiently refrigerate ice cores during storage and processing. We used estimates of mean annual temperature, temperature variations, and firn
NASA Astrophysics Data System (ADS)
Erhardt, T.; Capron, E.; Rasmussen, S.; Schuepbach, S.; Bigler, M.; Fischer, H.
2017-12-01
During the last glacial period proxy records throughout the Northern Hemisphere document a succession of rapid millennial-scale warming events, called Dansgaard Oeschger (DO) events. Marine proxy records from the Atlantic also reveal, that some of the warming events where preceded by large ice rafting events, referred to as Heinrich events. Different mechanisms have been proposed, that can produce DO-like warming in model experiments, however the progression and plausible trigger of the events and their possible interplay with the Heinrich events is still unknown. Because of their fast nature, the progression is challenging to reconstruct from paleoclimate data due to the temporal resolution achievable in many archives and cross-dating uncertainties between records. We use new high-resolution multi-proxy records of sea-salt and terrestrial aerosol concentrations over the period 10-60 ka from two Greenland deep ice cores in conjunction with local precipitation and temperature proxy records from one of the cores to investigate the progression of environmental changes at the onset of the individual warming events. The timing differences are then used to explore whether the DO warming events that terminate Heinrich-Stadials progressed differently in comparison to those after Non-Heinrich-Stadials. Our analysis indicates no difference in the progression of the warming terminating Heinrich-Stadials and Non-Heinrich-Stadials. Combining the evidence from all warming events in the period, our analysis shows a consistent lead of the changes in both local precipitation and terrestrial dust aerosol concentrations over the change in sea-salt aerosol concentrations and local temperature by approximately one decade. This implies that both the moisture transport to Greenland and the intensity of the Asian winter monsoon changed before the sea-ice cover in the North Atlantic was reduced, rendering a collapse of the sea-ice cover as a trigger for the DO events unlikely.
NASA Astrophysics Data System (ADS)
Horrocks, J.; Ó Cofaigh, C.; Lloyd, J. M.; Hillenbrand, C. D.; Kuhn, G.; Smith, J.; Ehrmann, W. U.; Esper, O.
2015-12-01
The Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is experiencing rapid mass loss and there is a pressing need to place the contemporary ice-sheet changes into a longer term context. The continental rise in this region is characterised by large sediment mounds that are shaped by westward flowing bottom currents and that resemble contouritic drifts existing offshore from the Antarctic Peninsula. Similar to the Antarctic Peninsula drifts, marine sediment cores from the poorly studied sediment mounds in the Amundsen Sea have the potential to provide reliable records of dynamical ice-sheet behaviour in West Antarctica and palaeoceanographic changes in the Southern Ocean during the Late Quaternary that can be reconstructed from their terrestrial, biogenic and authigenic components. Here we use multi-proxy data from three sediment cores recovered from two of the Amundsen Sea mounds to present the first high-resolution study of environmental changes on this part of the West Antarctic continental margin over the glacial-interglacial cycles of the Late Quaternary. Age constraints for the records are derived from biostratigraphy, AMS 14C dates and lithostratigraphy. We focus on the investigation of processes for drift formation, thereby using grain size and sortable silt data to reconstruct changes in bottom current speed and to identify episodes of current winnowing. Data on geochemical and mineralogical sediment composition and physical properties are used to infer both changes in terrigenous sediment supply in response to the advance and retreat of the WAIS across the Amundsen Sea shelf and changes in biological productivity that are mainly controlled by the duration of annual sea-ice coverage. We compare our data sets from the Amundsen Sea mounds to those from the well-studied Antarctic Peninsula drifts, thereby highlighting similarities and discrepancies in depositional processes and climatically-driven environmental changes.
Dynamic Antarctic ice sheet during the early to mid-Miocene
DeConto, Robert M.; Pollard, David; Levy, Richard H.
2016-01-01
Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate–ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet–climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52–0.66‰, or a sea level equivalent change of 30–36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability. PMID:26903645
NASA Technical Reports Server (NTRS)
Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.
2009-01-01
Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.
Greenland ice cores tell tales on past sea level changes
NASA Astrophysics Data System (ADS)
Dahl-Jensen, D.
2017-12-01
All the deep ice cores drilled to the base of the Greenland ice sheet contain ice from the previous warm climate period, the Eemian 130-115 thousand years before present. This demonstrates the resilience of the Greenland ice sheet to a warming of 5 oC. Studies of basal material further reveal the presence of boreal forest over Greenland before ice covered Greenland. Conditions for Boreal forest implies temperatures at this time has been more than 10 oC warmer than the present. To compare the paleo-behavior of the Greenland ice sheet to the present in relation to sea level rise knowledge gabs include the reaction of ice streams to climate changes. To address this the international EGRIP-project is drilling an ice core in the center of the North East Greenland Ice Stream (NEGIS). The first results will be presented.
Swimming Three Ice Miles within Fifteen Hours.
Stjepanovic, Mirko; Nikolaidis, Pantelis T.; Knechtle, Beat
2017-08-31
Ice Mile swimming (1608 m in water of below 5 °Celsius) is becoming increasingly popular. This case study aimed to identify body core temperature and selected haematological and biochemical parameters before and after repeated Ice Miles. An experienced ice swimmer completed three consecutive Ice Miles within 15 h. Swim times, body core temperatures, and selected urinary and haematological parameters were recorded. Body core temperature reached its maximum between 5, 8 and 15 min after immersion (37.7°C, 38.1°C, and 38.0°C, respectively). The swimmer suffered hypothermia during the first Ice Mile (35.4°C) and body core temperature dropped furthermore to 34.5°C during recovery after the first Ice Mile. He developed a metabolic acidosis in both the first and the last Ice Mile (pH 7.31 and pH 7.34, respectively). We observed hyperkalaemia ([K⁺] > 5.5 mM) after the second Ice Mile (6.9 mM). This was followed by a drop in [K⁺] to3.7 mM after the third Ice Mile. Anticipatory thermogenesis (i.e. an initial increase of body core temperature after immersion in ice cold water) seems to be a physiological response in a trained athlete. The results suggest that swimming in ice-cold water leads to a metabolic acidosis, which the swimmer compensates with hyperventilation (i.e. leading to respiratory alkalosis). The shift of serum [K⁺] could increase the risk of a cardiac arrhythmia. Further studies addressing the physiology and potential risks of Ice Mile swimming are required to substantiate this finding.
The isotopic composition of methane in polar ice cores
NASA Technical Reports Server (NTRS)
Craig, H.; Chou, C. C.; Welhan, J. A.; Stevens, C. M.; Engelkemeir, A.
1988-01-01
Air bubbles in polar ice cores indicate that about 300 years ago the atmospheric mixing ratio of methane began to increase rapidly. Today the mixing ratio is about 1.7 parts per million by volume, and, having doubled once in the past several hundred years, it will double again in the next 60 years if current rates continue. Carbon isotope ratios in methane up to 350 years in age have been measured with as little as 25 kilograms of polar ice recovered in 4-meter-long ice-core segments. The data show that: (1) in situ microbiology or chemistry has not altered the ice-core methane concentrations, and (2) that the carbon-13 to carbon-12 ratio of atmospheric CH4 in ice from 100 years and 300 years ago was about 2 per mil lower than at present. Atmospheric methane has a rich spectrum of isotopic sources: the ice-core data indicate that anthropogenic burning of the earth's biomass is the principal cause of the recent C-13H4 enrichment, although other factors may also contribute.
Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica
NASA Astrophysics Data System (ADS)
Paulina Vega, Carmen; Isaksson, Elisabeth; Schlosser, Elisabeth; Divine, Dmitry; Martma, Tõnu; Mulvaney, Robert; Eichler, Anja; Schwikowski-Gigar, Margit
2018-05-01
Major ions were analysed in firn and ice cores located at Fimbul Ice Shelf (FIS), Dronning Maud Land - DML, Antarctica. FIS is the largest ice shelf in the Haakon VII Sea, with an extent of approximately 36 500 km2. Three shallow firn cores (about 20 m deep) were retrieved in different ice rises, Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), while a 100 m long core (S100) was drilled near the FIS edge. These sites are distributed over the entire FIS area so that they provide a variety of elevation (50-400 m a.s.l.) and distance (3-42 km) to the sea. Sea-salt species (mainly Na+ and Cl-) generally dominate the precipitation chemistry in the study region. We associate a significant sixfold increase in median sea-salt concentrations, observed in the S100 core after the 1950s, to an enhanced exposure of the S100 site to primary sea-salt aerosol due to a shorter distance from the S100 site to the ice front, and to enhanced sea-salt aerosol production from blowing salty snow over sea ice, most likely related to the calving of Trolltunga occurred during the 1960s. This increase in sea-salt concentrations is synchronous with a shift in non-sea-salt sulfate (nssSO42-) toward negative values, suggesting a possible contribution of fractionated aerosol to the sea-salt load in the S100 core most likely originating from salty snow found on sea ice. In contrast, there is no evidence of a significant contribution of fractionated sea salt to the ice-rises sites, where the signal would be most likely masked by the large inputs of biogenic sulfate estimated for these sites. In summary, these results suggest that the S100 core contains a sea-salt record dominated by the proximity of the site to the ocean, and processes of sea ice formation in the neighbouring waters. In contrast, the ice-rises firn cores register a larger-scale signal of atmospheric flow conditions and a less efficient transport of sea-salt aerosols to these sites. These findings are a contribution to the understanding of the mechanisms behind sea-salt aerosol production, transport and deposition at coastal Antarctic sites, and the improvement of the current Antarctic sea ice reconstructions based on sea-salt chemical proxies obtained from ice cores.
Ice core carbonyl sulfide measurements from a new South Pole ice core (SPICECORE)
NASA Astrophysics Data System (ADS)
Aydin, M.; Nicewonger, M. R.; Saltzman, E. S.
2017-12-01
Carbonyl sulfide (COS) is the most abundant sulfur gas in the troposphere with a present-day mixing ratio of about 500 ppt. Direct and indirect emissions from the oceans are the predominant sources of atmospheric COS. The primary removal mechanism is uptake by terrestrial plants during photosynthesis. Because plants do not respire COS, atmospheric COS levels are linked to terrestrial gross primary productivity (GPP). Ancient air trapped in polar ice cores has been used to reconstruct COS records of the past atmosphere, which can be used to infer past GPP variability and potential changes in oceanic COS emission. We are currently analyzing samples from a newly drilled intermediate depth ice core from South Pole, Antarctica (SPICECORE). This core is advantageous for studying COS because the cold temperatures of South Pole ice lead to very slow rates of in situ loss due to hydrolysis. One hundred and eighty-four bubbly ice core samples have been analyzed to date with gas ages ranging from about 9.2 thousand (733 m depth) to 75 years (126 m depth) before present. After a 2% correction for gravitational enrichment in the firn, the mean COS mixing ratio for the data set is 312±15 ppt (±1s), with the data set median also equal to 312 ppt. The only significant long-term trend in the record is a 5-10% increase in COS during the last 2-3 thousand years of the Holocene. The SPICECORE data agree with previously published ice core COS records from other Antarctic sites during times of overlap, confirming earlier estimates of COS loss rates to in situ hydrolysis in ice cores. Antarctic ice core data place strict constraints on the COS mixing ratio and its range of variability in the southern hemisphere atmosphere during the last several millennia. Implications for the atmospheric COS budget will be discussed.
No nitrate spikes detectable in several polar ice cores following the largest known solar events
NASA Astrophysics Data System (ADS)
Mekhaldi, Florian; McConnell, Joseph R.; Adolphi, Florian; Arienzo, Monica; Chellman, Nathan J.; Maselli, Olivia; Sigl, Michael; Muscheler, Raimund
2017-04-01
Solar energetic particle (SEP) events are a genuine and recognized threat to our modern society which is increasingly relying on satellites and technological infrastructures. However, knowledge on the frequency and on the upper limit of the intensity of major solar storms is largely limited by the relatively short direct observation period. In an effort to extend the observation period and because atmospheric ionization induced by solar particles can lead to the production of odd nitrogen, spikes in the nitrate content of ice cores have been tentatively used to reconstruct both the occurrence and intensity of past SEP events. Yet the reliability of its use as such a proxy has been long debated. This is partly due to differing chemistry-climate model outputs, equivocal detection of nitrate spikes in single ice cores for single events, and possible alternative sources to explain nitrate spikes in ice cores. Here we present nitrate measurements from several Antarctic and Greenland ice cores for time periods covering the largest known solar events. More specifically, we use new highly-resolved nitrate and biomass burning proxy species data (e.g. black carbon) from continuous flow analysis following the largest known solar events from the paleo record - the SEP events of 775 and 994 AD. We also consider the historical Carrington event of 1859 as well as contemporary events from the past 60 years which were observed by satellites. Doing so we show that i) there are no reproducible nitrate spikes in Greenland and Antarctic ice cores following any of these major events and that ii) most nitrate spikes found in ice cores are related to biomass burning plumes. Our analysis thus suggests that ice-core nitrate data is not a reliable proxy for atmospheric ionization by SEP events. In light of our results, we advocate that nitrate spikes so far identified from single ice cores should not be used to assess the intensity and occurrence rate of extreme solar events.
MPAS-Ocean NESAP Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Mark Roger; Arndt, William; Keen, Noel
NESAP performance improvements on MPAS-Ocean have resulted in a 5% to 7% speed-up on each of the examined systems including Cori-KNL, Cori-Haswell, and Edison. These tests were configured to emulate a production workload by using 128 nodes and a high-resolution ocean domain. Overall, the gap between standard and many-core architecture performance has been narrowed, but Cori-KNL remains considerably under-performing relative to Edison. NESAP code alterations affected 600 lines of code, and most of these improvements will benefit other MPAS codes (sea ice, land ice) that are also components within ACME. Modifications are fully tested within MPAS. Testing in ACME acrossmore » many platforms is underway, and must be completed before the code is merged. In addition, a ten-year production ACME global simulation was conducted on Cori-KNL in late 2016 with the pre-NESAP code in order to test readiness and configurations for scientific studies. Next steps include assessing performance across a range of nodes, threads per node, and ocean resolutions on Cori-KNL.« less
NASA Astrophysics Data System (ADS)
Bory, A. J.; Skonieczny, C.; Bout-Roumazeilles, V.; Grousset, F. E.; Biscaye, P. E.
2011-12-01
Dust records retrieved from ice and sediment cores represent some of our most valuable evidence for modifications of atmospheric circulation on various times scales over the last few Pleistocene glacial and interglacial climate cycles. These data also contribute to the documentation of changes in continental paleo-environments (e.g., changes in aridity), changes in iron inputs to the ocean, as well as changes in the hydrological cycle. Interpreting ice and sediment-core dust records, and using them for modelling purposes, requires firstly a good understanding of the dust provenance and its possible temporal variability. Specific intrinsic tracers such as clay mineralogy, major and trace elements, and radiogenic isotopes (strontium, neodymium, lead) have been used for this purpose, with variable effectiveness. One difficulty lies in the fact that these measurements require significant amount of mineral particles and can thus only be obtained at low temporal resolution, either because of the low dust concentration in ice cores or because of the low mass accumulation rates and bioturbation in marine sediments. As a result, dust samples extracted from ice and sediment cores for provenance investigation average long periods of time and may reflect mixtures from various source areas, complicating the interpretation of the data. Still, provenance tracers (clay mineralogy and Sr-Nd isotopes in particular) made possible for instance the discrimination of which continents provided most of the dust deposited in remote locations such as Greenland and Antarctica during the dusty glacial stages. The locations of the contributing source areas, however, were not precisely identified. During the low-dust, interglacial periods, provenance has proven more difficult to establish unambiguously, even at broad (i.e., continental) geographic scales. In other aeolian deposits, such as Asian loess or marine sediments off West Africa, the provenance of the dust is still poorly constrained, despite the fact that these archives are located close to the highest dust-emission areas in the world. Characterization of dust provenance (using mineralogical and isotopic fingerprints) at present, which can be achieved at much higher resolution and benefit from remote sensing data and well-constrained GMC outputs, may provide valuable clues for our understanding of dust provenance in paleoclimate records. We review some investigations carried out in Greenland and Antarctica over the last decade, and present new results from the West African margin. We discuss the extent to which these present-day time series may help us calibrating our paleo-dust provenance proxies, and improving our understanding of dust provenance in paleoclimate records.
Timing of Glacial Lake Missoula Outburst Floods and the southwestern Cordilleran Ice Sheet retreat.
NASA Astrophysics Data System (ADS)
Hendy, I. L.; Bervid, H. D.; Carlson, A. E.
2017-12-01
Glacial Lake Missoula formed when the Purcell Trench Lobe dammed the Clark Fork River in Montana and catastrophically collapsed repeatedly through the last glacial period as the southern Cordilleran Ice Sheet advanced and retreated. A well-dated 50-kyr jumbo piston core MD02-2496 (48.97˚ N, 127.04˚ W, water depth of 1243 m) collected from the continental slope 75 km off Vancouver Island contains evidence of these floods. The in-situ bulk elemental composition of the 35-m core was determined at 1 mm intervals using an ITRAX X-ray Fluorescence (XRF) Core Scanner (Cox Analytical Instruments) at the Sediment Geochemistry Lab of the College of Earth, Ocean, and Atmospheric Sciences at Oregon State University. With 40 mixed planktonic foraminifera and bulk organic carbon 14C ages, the core provides a high-resolution resolution record of glaciomarine sedimentation during deglaciation. A series of >81 layers of fine-grained sediments with ancient (K/Ar ages of 300 Ma and eNd of -8) shale-like (high Rb counts) composition can be found between 19.6 and 9.2 m below coretop. These layers are interspersed by coarser grained, young (K/Ar ages of 100 Ma and eNd of -3) sediments containing ice-rafted debris (IRD). The composition and age of the layers indicates the sediments originated in Glacial Lake Missoula and were transported by ocean currents 250 miles north along the west coast of North America. The flood layers begin at 19.5 ka with five thin (<5 cm thick) layers before thick flood layers (>5 cm thick) appear after 19.3 ka. At 17.1 ka, IRD concentrations increase from <1 grain g-1 to 20 grains g-1, and remain >50 grains g-1 from 16.5-16.35 ka, except in flood layers, as the Juan de Fuca Strait deglaciated. Another 16 flood layers occur from 16.3-15.65 ka; however, the base and top of these layers are diffuse rather than abrupt like earlier flood layers suggesting enhanced mixing between flood and melt waters. The final flood layers from 14.9-14.5 ka are thin (<2 cm thick) suggesting that the final floods were small events similar to the initial floods. This well-dated sequence displays how Glacial Lake Missoula flood sedimentation changed during the advance and retreat of the Cordilleran Ice Sheet.
Present-day Circum-Antarctic Simulations using the POPSICLES Coupled Ice Sheet-Ocean Model
NASA Astrophysics Data System (ADS)
Asay-Davis, X.; Martin, D. F.; Price, S. F.; Maltrud, M. E.; Collins, W.
2014-12-01
We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1o (~5 km) ocean resolution and with adaptive ice-sheet model resolution as fine as 500 m. We compare time-averaged melt rates below a number of major ice shelves with those reported by Rignot et al. (2013) as well as other recent studies. We also present seasonal variability and decadal trends in submarine melting from several Antarctic regions. Finally, we explore the influence on basal melting and system dynamics resulting from two different choices of climate forcing: a "normal-year" climatology and the CORE v. 2 forcing data (Large and Yeager 2008).POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh (2009) to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3D; Pattyn et al., 2013) and realistic configurations (Favier et al. 2014).A companion presentation, "Response of the Antarctic Ice Sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model" in session C024 covers the ice-sheet response to these melt rates in the coupled simulation. The figure shows eddy activity in the vertically integrated (barotropic) velocity nearly six years into a POPSICLES simulation of the Antarctic region.
The implementation of sea ice model on a regional high-resolution scale
NASA Astrophysics Data System (ADS)
Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter
2015-09-01
The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.
NASA Astrophysics Data System (ADS)
Yang, X.
2011-12-01
Temperature variation in the past 2000 years on the plateau is reconstructed from Puruogangri ice core d18O, and compared before compositing with other three ice core records as the Dunde ice core (northeast Plateau), Guliya ice core (northwest Plateau) and Dasuopu ice core (south Plateau). The comparison reveals the synchroneity of large-scale climate events, and the composition highlights the warming in the 7th century and 12-13th centuries, and the cold in the 19th century. We searched for historical documentary about Tibet since A.D. 620, extracting record of human activities and social development directly determined or indirectly influenced by climate, and categorizing it into five aspects as basic resources, economic development, military strength, national coherence, and cultural and religious development, to quantify Tibetan development till A.D. 1900. Curve based upon the sum of the five aspects shows Tibetan national strength variation in the past 2000 years. The composited ice core record and Tibetan national strength variation shows consistency, especially during the Songtsen Gampo reign, medieval warm period and the 19th century cold period, thus suggesting the dominative role of climate change in Tibetan civilization before modern ages, as well as proposing the potential application of historical record in paleoclimate reconstruction on the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Halkides, D. J.; Larour, E. Y.; Perez, G.; Petrie, K.; Nguyen, L.
2013-12-01
Statistics indicate that most Americans learn what they will know about science within the confines of our public K-12 education system and the media. Next Generation Science Standards (NGSS) aim to remedy science illiteracy and provide guidelines to exceed the Common Core State Standards that most U.S. state governments have adopted, by integrating disciplinary cores with crosscutting ideas and real life practices. In this vein, we present a prototype ';Virtual Ice Sheet Laboratory' (I-Lab), geared to K-12 students, educators and interested members of the general public. I-Lab will allow users to perform experiments using a state-of-the-art dynamical ice sheet model and provide detailed downloadable lesson plans, which incorporate this model and are consistent with NGSS Physical Science criteria for different grade bands (K-2, 3-5, 6-8, and 9-12). The ultimate goal of this website is to improve public climate science literacy, especially in regards to the crucial role of the polar ice sheets in Earth's climate and sea level. The model used will be the Ice Sheet System Model (ISSM), an ice flow model developed at NASA's Jet Propulsion Laboratory and UC Irvine, that simulates the near-term evolution of polar ice sheets (Greenland and Antarctica) and includes high spatial resolution capabilities and data assimilation to produce realistic simulations of ice sheet dynamics at the continental scale. Open sourced since 2011, ISSM is used in cutting edge cryosphere research around the globe. Thru I-Lab, students will be able to access ISSM using a simple, online graphical interface that can be launched from a web browser on a computer, tablet or smart phone. The interface will allow users to select different climate conditions and watch how the polar ice sheets evolve in time under those conditions. Lesson contents will include links to background material and activities that teach observation recording, concept articulation, hypothesis formulation and testing, and critical problem solving appropriate to grade level.
NASA Astrophysics Data System (ADS)
Spector, P. E.; Stone, J.; Hillebrand, T.; Gombiner, J. H.
2017-12-01
To investigate the response of the West Antarctic Ice Sheet (WAIS) to climatic conditions warmer than present, we are analyzing cosmogenic nuclides in a bedrock core from beneath 150 m of ice at a site near the Pirrit Hills. Our aim is to determine whether the WAIS has thinned in the past, exposing bedrock at this site, and if so, when. This will help to determine the vulnerability of the ice sheet to future warming, and identify climatic thresholds capable of inducing WAIS collapse. We selected a site where the ice-sheet surface lies at 1300 m, approximately halfway from the ice-sheet divide to the grounding line. We expect ice thickness at the site to reflect WAIS dynamics, rather than local meteorology or topography. Ice flow speeds are moderate and ice above the core site is thin enough to remain cold-based, limiting the possibility of subglacial erosion which would compromise the cosmogenic nuclide record. We targeted a subglacial ridge adjacent to an exposed granite nunatak. This lithology provides minerals suitable for analysis of multiple cosmogenic nuclides with different half-lives. Although we aimed to collect two cores from different depths to compare exposure histories, hydrofracture of the basal ice prevented us from reaching the bed at the first drill site. The second hole produced 5.5 m of discontinuous ice core above 8 m of bedrock core. Initial analyses of quartz from the bedrock show low levels of Be-10. Further analyses of Be-10, Al-26, Cl-36 and Ne-21 from the full length of the core will be required to determine whether this is because the surface has never been exposed, or because the cosmogenic nuclide profile has been truncated by glacial erosion. We will present comprehensive cosmogenic nuclide data, and discuss implications for WAIS deglaciation history, at the meeting. Supported by US National Science Foundation awards ANT-1142162 and PLR-1341728.
NASA Astrophysics Data System (ADS)
Watts, W. A.; Allen, J. R. M.; Huntley, B.
A high-resolution palynological study of a 51 m core from Lago Grande di Monticchio, southern Italy, has provided a palaeonvironmental record for the last glacill. A annual lamination based chronology, supported by radiometric and tephrochronological dates, provides an absolute timescale for this record that spans 76,300 years. Correlations are established between the pollen stratigraphy, the GRIP ice core δ18O record and foraminiferal assemblages from Atlantic core V23-81. Both Dansgaard-Oeschger and Heinrich events are reflected by changes in the pollen stratigraphy. Revised dates are estimated for Heinrich events H1-H6. A quantitative palaeoclimate reconstruction based upon the pollen data provides evidence of the climate changes in southern Italy associated with these and other fluctuations during the last glacial.
NASA Astrophysics Data System (ADS)
Neff, P. D.; Steig, E. J.; Clark, D. H.; McConnell, J. R.; Pettit, E. C.; Menounos, B.
2011-12-01
We recovered a 141 m ice core from Combatant Col (51.39°N, 125.22°W, 3000 m asl) on the flank of Mt. Waddington, southern Coast Mountains, British Columbia, Canada. Aerosols and other impurities in the ice show unambiguous seasonal variations, allowing for annual dating of the core. Clustered melt layers, originating from summer surface heating, also aid in the dating of the core. Seasonality in water stable isotopes is preserved throughout the record, showing little evidence of diffusion at depth, and serves as an independent verification of the timescale. The annual signal of deuterium excess is especially well preserved. The record of lead deposition in the core agrees with those of ice cores from Mt. Logan and from Greenland, with a sharp drop-off in concentration in the 1970s and early 1980s, further validating the timescales. Despite significant summertime melt at this mid-latitude site, these data collectively reveal a continuous and annually resolved 36-year record of snow accumulation. We derived an accumulation time series from the Mt. Waddington ice core, after correcting for ice flow. Years of anomalously high or low snow accumulation in the core correspond with extremes in precipitation data and geopotential height anomalies from reanalysis data that make physical sense. Specifically, anomalously high accumulation years at Mt. Waddington correlate with years where "Pineapple Express" atmospheric river events bring large amounts of moisture from the tropical Pacific to western North America. The Mt. Waddington accumulation record thus reflects regional-scale climate. These results demonstrate the potential of ice core records from temperate glaciers to provide meaningful paleoclimate information. A longer core to bedrock (250-300 m) at the Mt. Waddington site could yield ice with an age of several hundred to 1000 years.
NASA Astrophysics Data System (ADS)
Nakagawa, T.
2014-12-01
High-resolution pollen-derived climate records from Lake Suigetsu varved sediment core were compared with climate archives from other regions and revealed a particular spatio-temporal structure of the monsoon climate change during so-called D-O events. Leads and lags of the climate change between different regions hold the key to understand the climate system. However, robust assessment of the relative timing of the climate change is often very challenging because correlation of the climatic archives from different regions often has inevitable uncertainties. Greenland and Cariaco basin, for example, provide two of the most frequently sited palaeoclimatic proxy data representative of the high- and low-latitudinal Atlantic regions. However, robust correlation of the records from those regions is difficult because of the uncertainties in layer countings, lack of the radiocarbon age control from ice cores, marine reservoir age of the Cariaco sediments, and the absence of the tephra layers shared by both cites. Similarly, Speleothem and ice core records are not robustly correlated to each other, either for the dead carbon fraction in the speleothems and lack of reliable correlation markers. The generally accepted hypothesis of synchronous climate change between China and the Greenland is, therefore, essentially hypothetical. Lake Suigetsu provides solution to this problem. The lake Suigetsu chronology is supposed to be coherent to the speleothems' U-Th age scale. Suigetsu's semi-continuous radiocarbon dataset, which constitutes major component of the IntCal13 radiocarbon calibration model, also provides opportunity to correlate lake Suigetsu and the Greenland and Antarctic ice cores using cosmogenic isotopes as the correlation key. Results of the correlation and timing comparison, which cast new lights to the mechanism of the monsoon change, will be presented.
Greenland-Wide Seasonal Temperatures During the Last Deglaciation
NASA Astrophysics Data System (ADS)
Buizert, C.; Keisling, B. A.; Box, J. E.; He, F.; Carlson, A. E.; Sinclair, G.; DeConto, R. M.
2018-02-01
The sensitivity of the Greenland ice sheet to climate forcing is of key importance in assessing its contribution to past and future sea level rise. Surface mass loss occurs during summer, and accounting for temperature seasonality is critical in simulating ice sheet evolution and in interpreting glacial landforms and chronologies. Ice core records constrain the timing and magnitude of climate change but are largely limited to annual mean estimates from the ice sheet interior. Here we merge ice core reconstructions with transient climate model simulations to generate Greenland-wide and seasonally resolved surface air temperature fields during the last deglaciation. Greenland summer temperatures peak in the early Holocene, consistent with records of ice core melt layers. We perform deglacial Greenland ice sheet model simulations to demonstrate that accounting for realistic temperature seasonality decreases simulated glacial ice volume, expedites the deglacial margin retreat, mutes the impact of abrupt climate warming, and gives rise to a clear Holocene ice volume minimum.
Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard.
Zeng, Yin-Xin; Yan, Ming; Yu, Yong; Li, Hui-Rong; He, Jian-Feng; Sun, Kun; Zhang, Fang
2013-05-01
Two 16S rRNA gene clone libraries Cores 1U and 2U were constructed using two ice core samples collected from Austre Lovénbreen glacier in Svalbard. The two libraries yielded a total of 262 clones belonging to 59 phylotypes. Sequences fell into 10 major lineages of the domain Bacteria, including Proteobacteria (alpha, beta, gamma and delta subdivisions), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, Chloroflexi, Planctomycetes, Cyanobacteria and candidate division TM7. Among them, Bacteroidetes, Actinobacteria, Alphaproteobacteria and Cyanobacteria were most abundant. UniFrac data showed no significant differences in community composition between the two ice cores. A total of nineteen bacterial strains from the genera Pseudoalteromonas and Psychrobacter were isolated from the ice cores. Phylogenetic and phenotypic analyses revealed a close relationship between the ice core isolates and bacteria in marine environments, indicating a wide distribution of some bacterial phylotypes in both terrestrial and marine ecosystems.
DeWayne, Cecil L.; Green, J.R.; Vogt, S.; Michel, R.; Cottrell, G.
1998-01-01
Meltwater runoff from glaciers can result from various sources, including recent precipitation and melted glacial ice. Determining the origin of the meltwater from glaciers through isotopic analysis can provide information about such things as the character and distribution of ablation on glaciers. A 9.4 m ice core and meltwater were collected in 1995 and 1996 at the glacigenic Galena Creek rock glacier in Wyoming's Absaroka Mountains. Measurements of chlorine-36 (36Cl), tritium (3H), sulphur-35 (35S), and delta oxygen-18 (??18O) were compared to similar measurements from an ice core taken from the Upper Fremont Glacier in the Wind River Range of Wyoming collected in 1991-95. Meltwater samples from three sites on the rock glacier yielded 36Cl concentrations that ranged from 2.1 ?? 1.0 X 106 to 5.8??0.3 X 106 atoms/l. The ice-core 36Cl concentrations from Galena Creek ranged from 3.4??0.3 X 105 to 1.0??0.1 X 106 atoms/l. Analysis of an ice core from the Upper Fremont Glacier yielded 36Cl concentrations of 1.2??0.2 X 106 and 5.2??0.2 X 106 atoms/l for pre- 1940 ice and between 2 X 106 and 3 X 106 atoms/l for post-1980 ice. Purdue's PRIME Lab analyzed the ice from the Upper Fremont Glacier. The highest concentration of 36Cl in the ice was 77 ?? 2 X 106 atoms/l and was deposited during the peak of atmospheric nuclear weapons testing in the late 1950s. This is an order of magnitude greater than the largest measured concentration from both the Upper Fremont Glacier ice core that was not affected by weapons testing fallout and the ice core collected from the Galena Creek rock glacier. Tritium concentrations from the rock glacier ranged from 9.2??0.6 to 13.2??0.8 tritium units (TU) in the meltwater to -1.3??1.3 TU in the ice core. Concentrations of 3H in the Upper Fremont Glacier ice core ranged from 0 TU in the ice older than 50 years to 6-12 TU in the ice deposited in the last 10 years. The maximum 3H concentration in ice from the Upper Fremont Glacier deposited in the early 1960s during peak weapons testing fallout for this isotope was 360 TU. One meltwater sample from the rock glacier was analyzed for 35S with a measured concentration of 5.4??1.0 millibecquerel per liter (mBeq/l). Modern precipitation in the Rocky Mountains contains 35S from 10 to 40 mBeq/L. The ??18O results in meltwater from the Galena Creek rock glacier (-17.40??0.1 to -17.98??0.1 per mil) are similar to results for modern precipitation in the Rocky Mountains. Comparison of these isotopic concentrations from the two glaciers suggest that the meltwater at the Galena Creek site is composed mostly of melted snow and rain that percolates through the rock debris that covers the glacier. Additionally, this water from the rock debris is much younger (less than two years) than the reported age of about 2000 years for the subsurface ice at the mid-glacier coring site. Thus the meltwater from the Galena Creek rock glacier is composed primarily of melted surface snow and rain water rather than melted glacier ice, supporting previous estimates of slow ablation rates beneath the surface debris of the rock glacier.
New ice core records on the glacial/interglacial change in atmospheric δ13CO2
NASA Astrophysics Data System (ADS)
Fischer, H.; Schmitt, J.; Schneider, R.; Elsig, J.; Lourantou, A.; Leuenberger, M.; Stocker, T. F.; Koehler, P.; Lavric, J.; Raynaud, D. P.; Chappellaz, J. A.
2010-12-01
The reconstruction of δ13CO2 using Antarctic ice cores promises a deeper understanding on the causes of past atmospheric CO2 changes. Previous measurements on the Taylor Dome ice core over the last 30,000 years (Smith et al., 1999) indicated marine processes to be dominating the significant δ13CO2 changes over the transition, whereas glacial δ13CO2 was only slightly depleted relative to the Holocene (Leuenberger et al., 1992; Smith et al., 1999). However, significant uncertainty and the low temporal resolution of the Taylor Dome δ13CO2 data prevented a more detailed interpretation. Recently, substantial improvements have been made in the analysis and the resolution of ice core δ13CO2 records (Elsig et al., 2009; Lourantou et al., 2010). With these and new measurements presented here, three independent δ13CO2 data sets over the last glacial/interglacial transition have now been derived from the two EPICA and the Talos Dome ice cores. Two of the methods use traditional dry extraction techniques with a reproducibility of 0.07-0.1‰. The third method uses a novel sublimation technique with a reproducibility of 0.05‰. Here we compare the data sets, their analytical setups and discuss their joint information as well as their differences. The three records provide a more detailed picture on the temporal evolution of δ13CO2 and confirm two pronounced isotope minima between 18-12,000 years BP in parallel to the two major phases of CO2 increase (Lourantou et al., 2010; Smith et al., 1999) as also reflected in marine sediments (Marchitto et al., 2007; Skinner et al., 2010). Accordingly, a release of old carbon from the deep ocean is most likely responsible for a large part of the long-term increase in atmospheric CO2 in this time interval. However, the fast CO2 jumps at a round 12,000 and 14,000 years BP may be partly of terrestrial origin (Elsig, 2009; Köhler et al., 2010b). The new sublimation data set provides also unambiguous δ13CO2 data for clathrate ice in the LGM. This shows a rather constant δ13CO2 level, which is only about 0.1‰ lower than the Holocene, despite significant changes in the terrestrial and marine carbon storage. Accordingly, during the LGM the changes in the different processes acting on the glacial carbon cycle largely compensate each other with respect to δ13CO2 as predicted by carbon cycle modeling (Köhler et al., 2010a). References: Elsig, J. (2009), PhD thesis, University of Bern. Elsig, J. et al. (2009), Nature 461, 507-510. Köhler, P. et al. (2010a), Paleoceanogr. 25, doi:10.1029/2008PA001703. Köhler, P. et al. (2010b), Climate of the Past Disc. 6, 1473-1501. Leuenberger et al. (1992), Nature 357, 488-490. Lourantou, A. et al. (2010), Global Biogeochem. Cycles 24, doi:10.1029/2009GB003545. Marchitto et al. (2007), Science 316, 1456-1459. Skinner, L. C. et al. (2010), Science 328, 1147-1151. Smith, H. J. et al. (1999), Nature 400, 248-250.
Snow and Ice Products from the Moderate Resolution Imaging Spectroradiometer
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Klein, Andrew G.
2003-01-01
Snow and sea ice products, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, flown on the Terra and Aqua satellites, are or will be available through the National Snow and Ice Data Center Distributed Active Archive Center (DAAC). The algorithms that produce the products are automated, thus providing a consistent global data set that is suitable for climate studies. The suite of MODIS snow products begins with a 500-m resolution, 2330-km swath snow-cover map that is then projected onto a sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to daily and 8-day composite climate-modeling grid (CMG) products at 0.05 resolution. A daily snow albedo product will be available in early 2003 as a beta test product. The sequence of sea ice products begins with a swath product at 1-km resolution that provides sea ice extent and ice-surface temperature (IST). The sea ice swath products are then mapped onto the Lambert azimuthal equal area or EASE-Grid projection to create a daily and 8-day composite sea ice tile product, also at 1 -km resolution. Climate-Modeling Grid (CMG) sea ice products in the EASE-Grid projection at 4-km resolution are planned for early 2003.
NASA Astrophysics Data System (ADS)
Shigeyama, Wataru; Nagatsuka, Naoko; Homma, Tomoyuki; Takata, Morimasa; Goto-Azuma, Kumiko; Weikusat, Ilka; Drury, Martyn R.; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Mateiu, Ramona V.; Azuma, Nobuhiko; Dahl-Jensen, Dorthe
2017-04-01
Dynamics of ice sheets is governed by the flow of the ice and this flow results from the internal deformation of the ice aggregate. The deformation properties of the ice are known to be dependent on several factors, such as microstructure (e.g. crystal grain size and orientation) and impurities. It is well known that ice from glacial periods in ice sheets has a high impurity concentration, and the deformation is reported to be faster than that of non-glacial ice (Faria et al., 2014). However, the mechanisms of the deformation are still not well understood. For a better understanding of ice sheet dynamics, it is a prerequisite to elucidate deformation mechanisms of such impurity-rich ice. The microstructure of a material is a factor that influences mechanical properties and is also an indicator of the dominant deformation mechanisms. The effects of impurities on the deformation and the microstructure depend on chemical compositions, states (viz. insoluble inclusions or soluble ions) and locations of the impurities in the crystal lattice. Therefore, in order to better understand the deformation mechanisms in ice, investigation of relationship between the microstructure and characteristics of the impurities is important. We examined the relationship between grain boundaries and inclusions. Light microscopy (LM) is commonly used to map grain boundary structures on a large area of the ice samples (up to 10 × 10 cm); however, observation of small inclusions < 1 µm is limited due to the spatial resolution of LM. For observations of small impurities in ice cores, scanning electron microscopy (SEM) is useful although limited area (1 × 1 cm) can be examined, and sublimation/surface diffusion on ice in the SEM could move the impurities from their original locations. In order to examine the relationship between the grain boundary and the inclusions, we have combined LM and SEM. We first mapped large areas of the ice samples with LM, and then chose several smaller areas within the mapped area for SEM observations. Energy dispersive X-ray spectroscopy (EDS) was also performed during SEM observations to characterize the chemical composition. Our approach was applied to NEEM glacial ice (1548 m depth, 19.2 kyr BP). The initial results show inclusions observed by LM formed aggregates of sub-micrometer-sized particles, whose main constituents were silicates. Reference Faria, S. H., I. Weikusat and N. Azuma (2014). The microstructure of polar ice. Part II: State of the art, Journal of Structural Geology 61: 21-49.
NASA Astrophysics Data System (ADS)
LaBrecque, Taylor S.; Kaufman, Darrell S.
2016-01-01
Physical and biological characteristics of lacustrine sediment from Emerald Lake were used to reconstruct the Holocene glacier history of Grewingk Glacier, southern Alaska. Emerald Lake is an ice-marginal threshold lake, receiving glaciofluvial sediment when Grewingk Glacier overtops the topographic divide that separates it from the lake. Sub-bottom acoustical profiles were used to locate core sites to maximize both the length and resolution of the sedimentary sequence recovered in the 4-m-long cores. The age model for the composite sequence is based on 13 14C ages and a 210Pb profile. A sharp transition from the basal inorganic mud to organic-rich mud at 11.4 ± 0.2 ka marks the initial retreat of Grewingk Glacier below the divide of Emerald Lake. The overlaying organic-rich mud is interrupted by stony mud that records a re-advance between 10.7 ± 0.2 and 9.8 ± 0.2 ka. The glacier did not spill meltwater into the lake again until the Little Ice Age, consistent with previously documented Little Ice Ages advances on the Kenai Peninsula. The retreat of Grewingk Glacier at 11.4 ka took place as temperature increased following the Younger Dryas, and the subsequent re-advance corresponds with a climate reversal beginning around 11 ka across southern Alaska.
NASA Astrophysics Data System (ADS)
Dyez, K. A.; Hoenisch, B.
2015-12-01
Atmospheric CO2 concentrations in the late Pleistocene have been characterized from ancient air bubbles trapped within polar ice sheets. Ice-core records clearly demonstrate the glacial-interglacial relationship between the global carbon cycle and climate, but they are so far limited to the last 800 ky, when glacial cycles occurred approximately every 100-ky. Boron isotope ratios (δ11B) recorded in the tests of fossil planktic foraminifera offer an opportunity to extend the atmospheric pCO2 record into the early Pleistocene, when glacial cycles instead occurred approximately every 41-ky. We present a new high-resolution record of planktic foraminiferal d11B, Mg/Ca (a sea surface temperature proxy) and salinity estimates from the deconvolution of δ18O and Mg/Ca. Combined with reasonable assumptions of ocean alkalinity, these data allow us to estimate pCO2 over three of the 41-ky climate cycles at ~1.5 Ma. Our results confirm the hypothesis that climate and atmospheric pCO2 were coupled beyond ice core records and provide new constraints for studies of long-term CO2 storage and release, regional controls on the early Pleistocene carbon cycle, and estimating climate sensitivity before the mid-Pleistocene transition.
Historical Carbon Dioxide Record from the Vostok Ice Core (417,160 - 2,342 years BP)
Barnola, J. M. [CNRS, Saint Martin d'Heres Cedex, France; Raynaud, D. [CNRS, Saint Martin d'Heres Cedex, France; Lorius, C. [CNRS, Saint Martin d'Heres Cedex, France; Barkov, N. I.
2003-01-01
In January 1998, the collaborative ice-drilling project between Russia, the United States, and France at the Russian Vostok station in East Antarctica yielded the deepest ice core ever recovered, reaching a depth of 3,623 m (Petit et al. 1997, 1999). Ice cores are unique with their entrapped air inclusions enabling direct records of past changes in atmospheric trace-gas composition. Preliminary data indicate the Vostok ice-core record extends through four climate cycles, with ice slightly older than 400 kyr (Petit et al. 1997, 1999). Because air bubbles do not close at the surface of the ice sheet but only near the firn-ice transition (that is, at ~90 m below the surface at Vostok), the air extracted from the ice is younger than the surrounding ice (Barnola et al. 1991). Using semiempirical models of densification applied to past Vostok climate conditions, Barnola et al. (1991) reported that the age difference between air and ice may be ~6000 years during the coldest periods instead of ~4000 years, as previously assumed. Ice samples were cut with a bandsaw in a cold room (at about -15°C) as close as possible to the center of the core in order to avoid surface contamination (Barnola et al. 1983). Gas extraction and measurements were performed with the "Grenoble analytical setup," which involved crushing the ice sample (~40 g) under vacuum in a stainless steel container without melting it, expanding the gas released during the crushing in a pre-evacuated sampling loop, and analyzing the CO2 concentrations by gas chromatography (Barnola et al. 1983). The analytical system, except for the stainless steel container in which the ice was crushed, was calibrated for each ice sample measurement with a standard mixture of CO2 in nitrogen and oxygen. For further details on the experimental procedures and the dating of the successive ice layers at Vostok, see Barnola et al. (1987, 1991), Lorius et al. (1985), and Petit et al. (1999).
Dansgaard Oeschger Dynamics: Clearly Revealed in a Comprehensive Model of Glacial Climate
NASA Astrophysics Data System (ADS)
Peltier, W. Richard; Vettoretti, Guido
2017-04-01
More than 30 years ago, Willi Dansgaard in Copenhagen and Hans Oeschger in Bern established the existence of millennium timescale oscillations in oxygen isotope stratigraphies from Greenland ice cores. This isotopic signal was interpreted as implying large amplitude variations in surface air temperature. Until the publication of Peltier and Vettoretti (2014, GRL) the prevalent view had been that this exclusively ice-age phenomenon, thought to be linked to variability in the strength of the Atlantic MOC, was considered to be forced by the episodic release of freshwater from the continental ice sheets, each oscillation requiring its own freshwater input. In Peltier and Vettoretti (2014) this phenomenon was recovered for the first time in a comprehensive model of glacial climate, specifically the CESM1 model of the NCAR laboratory. Attention was drawn to the fact that individual D-O oscillations, or Bond Cycle clusters of such oscillations, were inevitably preceded by individual Heinrich events. In Peltier and Vettoretti (2014) it was shown that, following the "spin-up" of CESM1 into the glacial state, with continental ice sheet volume held fixed, a sequence of nonlinear unforced and therefor "free" oscillations of the MOC occurred, following a sharp Heinrich event-like sharp suppression of MOC strength. All of the salient characteristics of the D-O process inferred on the basis of ice core evidence from both hemispheres were fully captured in these high (CMIP5) resolution simulations, namely: (i) the pulse shape of the individual oscillations characterized by an extremely rapid shift from cold stadial to warm interstadial conditions followed by a slow return to the stadial state, (ii) the peak-to-peak variations in Greenland surface air temperature of 10-15 degrees Centigrade during individual oscillations, (iii) the "bi-polar see saw" connection between this Northern Hemisphere process and that recorded in the EDML and WAIS Divide ice cores from Antarctica, (iv) the reduced amplitude of the oxygen isotopic swings in the Antarctic ice cores, by approximately a factor of 10, from those in Greenland cores. Because the coupled climate model fully captures the phenomenon, it has been possible to fully understand the dynamical mechanism involved. In Peltier and Vettoretti (2014) this was described as a "kicked" salt oscillator, in which individual D-O cycles involved an oscillatory out of phase relationship between the salinity of the North Atlantic sub-tropical gyre and the salinity of a North Atlantic halocline. As shown more recently by Vettoretti and Peltier (2016, GRL), transitions from cold stadial to warm interstadial conditions involve the opening of a massive "super polynya" north of the southern edge of the sea ice front which, under stadial conditions, extends as far south as the south coast of the Bay of Biscaye. This polynya is opened by the onset of a thermohaline convective instability of the water column beneath the sea ice, which is accompanied by a sharp re-invigoration of the intensity of the MOC, thereby initiating a sharp rise of air temperature over Greenland. Several further issues remain with this now fully articulated theory of the D-O process and these will be summarized.
Miteva, Vanya; Burlingame, Caroline; Sowers, Todd; Brenchley, Jean
2014-08-01
Demonstrating that the detected microbial diversity in nonaseptically drilled deep ice cores is truly indigenous is challenging because of potential contamination with exogenous microbial cells. The NEEM Greenland ice core project provided a first-time opportunity to determine the origin and extent of contamination throughout drilling. We performed multiple parallel cultivation and culture-independent analyses of five decontaminated ice core samples from different depths (100-2051 m), the drilling fluid and its components Estisol and Coasol, and the drilling chips collected during drilling. We created a collection of diverse bacterial and fungal isolates (84 from the drilling fluid and its components, 45 from decontaminated ice, and 66 from drilling chips). Their categorization as contaminants or intrinsic glacial ice microorganisms was based on several criteria, including phylogenetic analyses, genomic fingerprinting, phenotypic characteristics, and presence in drilling fluid, chips, and/or ice. Firmicutes and fungi comprised the dominant group of contaminants among isolates and cloned rRNA genes. Conversely, most Proteobacteria and Actinobacteria originating from the ice were identified as intrinsic. This study provides a database of potential contaminants useful for future studies of NEEM cores and can contribute toward developing standardized protocols for contamination detection and ensuring the authenticity of the microbial diversity in deep glacial ice. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
INTIMATE: Integration of Ice-core Marine and Terrestrial records
NASA Astrophysics Data System (ADS)
Turney, C. S. M.; Hoek, W. Z.; Intimate Group
2009-04-01
The principal aim of the INTIMATE Project is to synthesize high-resolution ice, terrestrial and marine records spanning the period 60,000 to 8000 years ago (henceforth given as 60-8 ka) to better understand the impact and mechanisms of rapid and extreme climate change, thereby reducing the uncertainty of future predictions. The specific objectives of the INTIMATE Project are to: • lead the development of highly-precise and accurate age-depth models in ice-core, marine, and terrestrial records (including identification and validation of time-stratigraphic marker horizons) over the period 60-8 ka; • promote the development of quantified climate reconstruction methods; • determine the timing, rates of change, spatial variability and climate gradients during key periods at the regional, hemispheric and global level (in collaboration with the INQUA-recognized Australasian INTIMATE Project and future regional INTIMATE projects); • determine the environmental impact of rapid and extreme climate changes in the North Atlantic region (focusing on megafauna and vegetation); and develop climate and environmental reconstructions of change that may be used in climate modeling to better determine the mechanisms of change and how signals are propagated globally. For correlation, precise dating of the records from the different realms is imperative. The development of an event-stratigraphy for the Last Glacial-Interglacial Transition (Björck et al., 1998) provided a template to compare other, independently dated, palaeoclimate records with the high-resolution Greenland oxygen isotope records. The event-stratigraphy has recently been refined and updated to the new NGRIP record using the GICC05 timescale (Lowe et al., 2008), which will be outlined in this paper. References: Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.J., Wohlfarth, B. and INTIMATE members (1998) An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group, Journal of Quaternary Science 13, 283-292. Lowe, J.J., Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., Yu, Z. and INTIMATE group (2008) Precise dating and correlation of events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews, 27, 6-17.
Devon island ice cap: core stratigraphy and paleoclimate.
Koerner, R M
1977-04-01
Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.
Core drilling through the ross ice shelf (antarctica) confirmed Basal freezing.
Zotikov, I A; Zagorodnov, V S; Raikovsky, J V
1980-03-28
New techniques that have been used to obtain a continuous ice core through the whole 416-meter thickness of the Ross Ice Shelf at Camp J-9 have demonstrated that the bottom 6 meters of the ice shelf consists of sea ice. The rate of basal freezing that is forming this ice is estimated by different methods to be 2 centimeters of ice per year. The sea ice is composed of large vertical crystals, which form the waffle-like lower boundary of the shelf. A distinct alignment of the crystals throughout the sea ice layer suggests the presence of persistent long-term currents beneath the ice shelf.
Pre-cometary ice composition from hot core chemistry.
Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe
2005-10-01
Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.
SIZE AND SURFACE AREA OF ICY DUST AGGREGATES AFTER A HEATING EVENT AT A PROTOPLANETARY NEBULA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirono, Sin-iti
2013-03-01
The activity of a young star rises abruptly during an FU Orionis outburst. This event causes a temporary temperature increase in the protoplanetary nebula. H{sub 2}O icy grains are sublimated by this event, and silicate cores embedded inside the ice are ejected. During the high-temperature phase, the silicate grains coagulate to form silicate core aggregates. After the heating event, the temperature drops, and the ice recondenses onto the aggregates. I determined numerically the size distribution of the ice-covered aggregates. The size of the aggregates exceeds 10 {mu}m around the snow line. Because of the migration of the ice to largemore » aggregates, only a small fraction of the silicate core aggregate is covered with H{sub 2}O ice. After the heating event, the surface of an ice-covered aggregate is totally covered by silicate core aggregates. This might reduce the fragmentation velocity of aggregates when they collide. It is possible that the covering silicate cores shield the UV radiation field which induces photodissociation of H{sub 2}O ice. This effect may cause the shortage of cold H{sub 2}O vapor observed by Herschel.« less
Heteogeneities During Deformation of Polycrystalline Ice, Recent Advances in Cryo-EBSD Analyses
NASA Astrophysics Data System (ADS)
Journaux, B.; Montagnat, M.; Chauve, T.; Barou, F.; Tommasi, A.; Mainprice, D.
2017-12-01
Microstructural heterogeneities come into play at various scales during deformation of polycrystalline materials. In particular, intra-granular heterogeneities such as subgrain boundaries, and dislocations sub-structures play a crucial role during dynamic recrystallization (DRX) mechanisms. The latter are active in ice, minerals and metals deformed at medium to high temperature, and enable a relaxation of strain energy. They regroup nucleation of new grains and grain boundary migration, which can drastically modify the microstructure and texture (crystallographic preferred orientations) during deformation in natural conditions or in the laboratory. Since ice has a strong viscoplastic anisotropy (with dislocations gliding mostly on the basal planes of its hexagonal crystalline structure), texture play a crucial role in the response of ice deformed naturally at low strain-rate. Texture evolution along natural ice cores has been studied for a long time but the bases DRX mechanisms were, up to recently, only offered a simplistic characterization due to the lack of resolution of the classical optical based technics. Since a few years, Electron BackScattering Diffraction (EBSD) imaging has been adapted for ice study. In particular, the EBSD of Geosciences Montpellier offers an unique opportunity to explore large samples of ice (2x3 cm2), at a relatively high resolution (20 to 5 μm), and a very good indexation (> 90%). We will present an overview of the type of informations made available by this technique, from a set of torsion and compression laboratory tests performed on ice polycrystals. The strong intra-granular heterogeneities measured were Geometrically Necessary Dislocations (GNDs), analyzed by the mean of the Weighted Burgers Vectors (Wheeler et al. 2009, J. of Microscopy 233).Our results clearly point out the complexity of the mechanisms (especially nucleation), and question up to the classical paradigm of the non-existence of non-basal dislocations with a c-axis component in ice. We therefore highlight the necessity to implement viscoplastic laws that correctly integrate a minimum of this complexity in full-field or mean-field modeling approaches that aim at simulating the mechanical response and texture evolution of ice.
Differences in community composition of bacteria in four deep ice sheets in western China
NASA Astrophysics Data System (ADS)
An, L.; Chen, Y.; Xiang, S.-R.; Shang, T.-C.; Tian, L.-De
2010-02-01
Microbial community patterns vary in glaciers world wide, presenting unique responses to global climatic and environmental changes. Four bacterial clone libraries were established by 16S rRNA gene amplification from four ice layers along the 42-m-long ice core MuztB drilled from the Muztag Ata Glacier. A total of 152 bacterial sequences obtained from the ice core MuztB were phylogenetically compared with the 71 previously reported sequences from three ice cores extracted from ice caps Malan, Dunde, and Puruoganri. The six functional clusters Flavisolibacter, Flexibacter (Bacteroidetes), Acinetobacter, Enterobacter (Gammaproteobacteria), Planococcus/Anoxybacillus (Firmicutes), and Propionibacter/Luteococcus (Actinobacteria) frequently occurred along the Muztag Ata Glacier profile. Sequence analysis showed that most of the sequences from the ice core clustered with those from cold environments, and the sequences from the same glacier formed a distinct cluster. Moreover, bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. In a summary, the findings provide preliminary evidence of zone distribution of microbial community, support our hypothesis of the spatial and temporal biogeography of microorganisms in glacial ice.
NASA Astrophysics Data System (ADS)
Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.
2014-01-01
The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75° 37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that a deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
Bond, G. C.; Dwyer, G. S.; Bauch, H. A.
2002-12-01
At the end of the last glacial, the Earth's climate system abruptly shifted into the Younger Dryas, a 1500-year long cold snap known in the popular media as the Big Chill. Following an abrupt warming ending the Younger Dryas about 11,600 years ago, the climate system has remained in an interglacial state, thought to have been relatively stable and devoid, with possibly one or two exceptions, of abrupt climate change. A growing amount of evidence suggests that this benign view of interglacial climate is incorrect. High resolution records of North Atlantic ice rafted sediment, now regarded as evidence of extreme multiyear sea ice drift, reveal abrupt shifts on centennial and millennial time scales. These have been traced from the end of the Younger Dryas to the present, revealing evidence of significant climate variability through all of the last two millennia. Correlatives of these events have been found in drift ice records from the Arctic's Laptev Sea, in the isotopic composition of North Grip ice, and in dissolved K from the GISP2 ice core, attesting to their regional extent and imprint in proxies of very different origins. Measurements of Mg/Ca ratios in planktic foraminifera over the last two millennia in the eastern North Atlantic demonstrate that increases in drifting multiyear sea ice were accompanied by abrupt decreases in sea surface temperatures, especially during the Little Ice Age. Estimated rates of temperature change are on the order of two degrees centigrade, more than thirty percent of the regional glacial to interglacial change, within a few decades. When compared at the same resolution, these interglacial variations are as abrupt as the last glacial's Dansgaard-Oeschger cycles. The interglacial abrupt changes are especially striking because they occurred within the core of the warm North Atlantic Current. The changes may have been triggered by variations in solar irradiance, but if so their large magnitude and regional extent requires amplifying mechanisms that have not yet been identified. While the Younger Dryas event is dramatic, the Big Chills of the Holocene are clearly significant abrupt changes in their own right. Because they were a recurring feature of the interglacial climate we live in presently, they are especially relevant to the prediction of sudden changes in the future, more so probably than abrupt changes during the last glacial which took place within boundary conditions that are not likely to occur again soon, perhaps within tens of thousands of years.
Litwin, Ronald J.; Smoot, Joseph P.; Pavich, Milan J.; Markewich, Helaine Walsh; Brook, George; Durika, Nancy J.
2013-01-01
We document frequent, rapid, strong, millennial-scale paleovegetation shifts throughout the late Pleistocene, within a 100,000+ yr interval (~ 115–15 ka) of terrestrial sediments from the mid-Atlantic Region (MAR) of North America. High-resolution analyses of fossil pollen from one core locality revealed a continuously shifting sequence of thermally dependent forest assemblages, ranging between two endmembers: subtropical oak-tupelo-bald cypress-gum forest and high boreal spruce-pine forest. Sedimentary textural evidence indicates fluvial, paludal, and loess deposition, and paleosol formation, representing sequential freshwater to subaerial environments in which this record was deposited. Its total age"depth model, based on radiocarbon and optically stimulated luminescence ages, ranges from terrestrial oxygen isotope stages (OIS) 6 to 1. The particular core sub-interval presented here is correlative in trend and timing to that portion of the oxygen isotope sequence common among several Greenland ice cores: interstades GI2 to GI24 (≈ OIS2–5 d). This site thus provides the first evidence for an essentially complete series of "Dansgaard"Oeschger" climate events in the MAR. These data reveal that the ~ 100,000 yr preceding the Late Glacial and Holocene in the MAR of North America were characterized by frequently and dynamically changing climate states, and by vegetation shifts that closely tracked the Greenland paleoclimate sequence.
The role of acids in electrical conduction through ice
NASA Astrophysics Data System (ADS)
Stillman, David E.; MacGregor, Joseph A.; Grimm, Robert E.
2013-03-01
Electrical conduction through meteoric polar ice is controlled by soluble impurities that originate mostly from sea salt, biomass burning, and volcanic eruptions. The strongest conductivity response is to acids, yet the mechanism causing this response has been unclear. Here we elucidate conduction mechanisms in ice using broadband dielectric spectroscopy of meteoric polar ice cores. We find that conduction through polycrystalline polar ice is consistent with Jaccard theory for migration of charged protonic point defects through single ice crystals, except that bulk DC conduction is impeded by grain boundaries. Neither our observations nor modeling using Archie's Law support the hypothesis that grain-boundary networks of unfrozen acids cause significant electrolytic conduction. Common electrical logs of ice cores (by electrical conductivity measurement [ECM] or dielectric profiling [DEP]) and the attenuation of radio waves in ice sheets thus respond to protonic point defects only. This response implies that joint interpretation of electrical and chemical logs can determine impurity partitioning between the lattice and grain boundaries or inclusions. For example, in the Greenland Ice Core Project (GRIP) ice core from central Greenland, on average more than half of the available lattice-soluble impurities (H+, Cl-, NH4+) create defects. Understanding this partitioning could help further resolve the nature of past changes in atmospheric chemistry.
Beaudon, Emilie; Gabrielli, Paolo; Sierra-Hernández, M Roxana; Wegner, Anna; Thompson, Lonnie G
2017-12-01
A ~500-year section of ice core (1497-1992) from the Puruogangri ice cap has been analyzed at high resolution for 28 trace elements (TEs: Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mg, Mn, Na, Nb, Ni, Pb, Rb, Sb, Sn, Sr, Ti, Tl, U, V and Zn) to assess different atmospheric contributions to the ice and provide a temporal perspective on the diverse atmospheric influences over the central Tibetan Plateau (TP). At least two volcanic depositions have significantly impacted the central TP over the past 500years, possibly originating from the Billy Mitchell (1580, Papua New Guinea) and the Parker Peak (1641, Philippines) eruptions. A decreasing aeolian dust input to the ice cap allowed the detection of an atmospheric pollution signal. The anthropogenic pollution contribution emerges in the record since the early 1900s (for Sb and Cd) and increases substantially after 1935 (for Ag, Zn, Pb, Cd and Sb). The metallurgy (Zn, Pb and steel smelting) emission products (Cd, Zn, Pb and Ag) from the former Soviet Union and especially from central Asia (e.g., Kyrgyzstan, Kazakhstan) likely enhanced the anthropogenic deposition to the Puruogangri ice cap between 1935 and 1980, suggesting that the westerlies served as a conveyor of atmospheric pollution to central Tibet. The impact of this industrial pollution cumulated with that of the hemispheric coal and gasoline combustion which are respectively traced by Sb and Pb enrichment in the ice. The Chinese steel production accompanying the Great Leap Forward (1958-1961) and the Chinese Cultural Revolution (1966-1976) is proposed as a secondary but proximal source of Pb pollution affecting the ice cap between 1958 and 1976. The most recent decade (1980-1992) of the enrichment time series suggests that Puruogangri ice cap recorded the early Sb, Cd, Zn, Pb and Ag pollution originating from developing countries of South (i.e., India) and East (i.e., China) Asia and transported by the summer monsoonal circulation. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Freitag, Johannes; Schaller, Christoph; Kipfstuhl, Sepp; Hörhold, Maria; Schaidt, Maximilian; Sander, Merle; Moser, Dorothea
2017-04-01
Interpreting polar ice as climate archive requires profound knowledge about the formation of climate-proxies within the upper snow column. In order to investigate different impact factors on signal formation we performed a multiproxy- approach for 2m deep snow profiles by continuously measuring the 3D-microstructure using core-scale X-CT and the isotopic composition and impurity load in discrete samples of 1.1cm spatial resolution. The study includes profiles from a low-accumulation site on the East Antarctic plateau (Kohnen Station, DML), a typical medium-accumulation site on the North-East-Greenland ice sheet (EGRIP drilling camp) and a high-accumulation site on the Renland ice cap (East-coast of Greenland, RECAP drilling camp). Major observations are the tooth-shaped imprint of structural anisotropy and sulfate concentrations at the low accumulation site, the clear isotopic inter-annual variations that are in line with distinct impurity peaks at the high-accumulation site and the unexpected missing footprint of ice crusts and refrozen melt layers within the impurity- and isotope records for all sites.
Abrupt drainage cycles of the Fennoscandian Ice Sheet
Soulet, Guillaume; Ménot, Guillemette; Bayon, Germain; Rostek, Frauke; Ponzevera, Emmanuel; Toucanne, Samuel; Lericolais, Gilles; Bard, Edouard
2013-01-01
Continental ice sheets are a key component of the Earth’s climate system, but their internal dynamics need to be further studied. Since the last deglaciation, the northern Eurasian Fennoscandian Ice Sheet (FIS) has been connected to the Black Sea (BS) watershed, making this basin a suitable location to investigate former ice-sheet dynamics. Here, from a core retrieved in the BS, we combine the use of neodymium isotopes, high-resolution elemental analysis, and biomarkers to trace changes in sediment provenance and river runoff. We reveal cyclic releases of meltwater originating from Lake Disna, a proglacial lake linked to the FIS during Heinrich Stadial 1. Regional interactions within the climate–lake–FIS system, linked to changes in the availability of subglacial water, led to abrupt drainage cycles of the FIS into the BS watershed. This phenomenon raised the BS water level by ∼100 m until the sill of the Bosphorus Strait was reached, flooding the vast northwestern BS shelf and deeply affecting the hydrology and circulation of the BS and, probably, of the Marmara and Aegean Seas. PMID:23569264
Abrupt drainage cycles of the Fennoscandian Ice Sheet.
Soulet, Guillaume; Ménot, Guillemette; Bayon, Germain; Rostek, Frauke; Ponzevera, Emmanuel; Toucanne, Samuel; Lericolais, Gilles; Bard, Edouard
2013-04-23
Continental ice sheets are a key component of the Earth's climate system, but their internal dynamics need to be further studied. Since the last deglaciation, the northern Eurasian Fennoscandian Ice Sheet (FIS) has been connected to the Black Sea (BS) watershed, making this basin a suitable location to investigate former ice-sheet dynamics. Here, from a core retrieved in the BS, we combine the use of neodymium isotopes, high-resolution elemental analysis, and biomarkers to trace changes in sediment provenance and river runoff. We reveal cyclic releases of meltwater originating from Lake Disna, a proglacial lake linked to the FIS during Heinrich Stadial 1. Regional interactions within the climate-lake-FIS system, linked to changes in the availability of subglacial water, led to abrupt drainage cycles of the FIS into the BS watershed. This phenomenon raised the BS water level by ∼100 m until the sill of the Bosphorus Strait was reached, flooding the vast northwestern BS shelf and deeply affecting the hydrology and circulation of the BS and, probably, of the Marmara and Aegean Seas.
Terrestrial Ice Sheets: Studies of Climate History, Internal Structure, Surface, and Bedrock
NASA Astrophysics Data System (ADS)
Thorsteinsson, Th.; Kipfstuhl, J.; Nixdorf, U.; Oerter, H.; Miller, H.; Fritsche, D.; Jung-Rothenhaeusler, F.; Mayer, C.; Schwager, M.; Wilhelms, F.; Steinhage, D.; Goektas, F.
1998-01-01
Recently drilled deep ice cores from Central Greenland (GRIP and GISP2) provide the most detailed results available on climatic variation in the northern hemisphere during the last 100,000 years, a period that includes the Holocene (0-11.5 ka) and most of the Wisconsin glacial period. Summer-winter variation in various physical and chemical properties of polar ice allows dating of ice cores by annual layer counting. Several such methods are currently being employed on an ice core drilled by the new North Greenland Ice Core Project (NGRIP), which is aimed at extending the Greenland ice palaeoclimatic record through the last interglacial, the Eemian. Two examples will be presented: (1) visual and photographic studies of seasonal variation in stratigraphic layering, crystal size, air bubble and clathrate concentration, and (2) studies of electric stratigraphy, using the method of dielectric profiling (DEP). This method records the AC conductivity of ice cores, which is negatively correlated with the concentration of airborne dust in the ice but positively correlated with volcanic and marine aerosols. Comprehensive surface traverse programs, which include shallow coring and ice velocity measurements, have recently been carried out by the Alfred Wegener Institute in previously little-investigated regions of Greenland and Antarctica. Serving partly as reconnaissance prior to deep drilling projects, such studies also help to reduce considerable uncertainties in the mass balance of the two large polar ice sheets and thus in their estimated response to climate change. Main results of a recent traverse in North Greenland include the following: (1) A new map of the accumulation distribution on the ice sheet indicates a large low-accumulation region in Northeast-Greenland; (2) North Greenland records show significantly greater climatic variability during the last 500 yr than corresponding records from the southern part of the ice sheet; and (3) data on variation in accumulation rates do not indicate a definite trend in the region during this century. The Alfred Wegener Institute has in recent years employed both airborne and ground-penetrating ice radar systems to map the bedrock around deep drilling sites in Central and North Greenland, as well as in a planned Antarctic site in Dronning Maud Land. The radar also records shallow and deep internal echoes, caused by rapid variation in density and ice acidity in layers of certain ages, allowing isochrones to be traced over wide reaches of the ice sheet. Disturbances in regular stratigraphic layering, due to ice flow over an irregular bed, were observed in the lowest 200-300 m of the GRIP and GISP2 ice cores. Since the aim of the new NGRIP coring program is to obtain an ice core reaching further back in time than the Central Greenland cores, this site was chosen in a region where the bedrock is relatively flat. Echo-sounding surveys between GRIP and NGREP show that the isochrones lie 100-200 in higher above the bed at NGRIP, indicating that the Eemian layer is unlikely to have been disturbed by ice flow at this location. Due to the flow pattern of ice sheets, layers forming a vertical sequence in the interior regions of an ice sheet can, under favorable conditions, be traced on horizontal profiles at the margins. Some meaningful correlations have already been established between Greenland deep ice core climatic records and corresponding records from ice margins. In these regions, a clear contrast is observed between ice of Holocene origin and significantly darker-looking ice dating from the Wisconsin glacial period, which displays summertime ablation rates 2-4x higher than the Holocene ice. This difference is due to higher concentrations of dust and other impurities in the Wisconsin ice, by 1-2 orders of magnitude, leading to reduced albedo. Furthermore, smaller crystal sizes in the Wisconsin ice lead to a more homogeneous distribution of impurities on the surface, which probably contributes to lowering the albedo. Comprehensive studies of ice crystal size and c-axis orientations on the GRIP and NGRIP deep cores provide detailed information on recrystallization processes in polar ice sheets. Based on the GRIP results, the Central-Greenland ice sheet can be vertically divided into three different recrystallization regimes: (1) normal grain growth regime (0-700 in), in which the average crystal size increases steadily to 4mm diameter; (2) polygonization regime (700-2800m), in which crystals are subdivided due to increasing strain and no further increase in crystal size is observed; and (3) migration recrystallization regime (2800-3050m), where higher temperatures (-10C) cause rapid crystal growth with average diameters increasing to 30 mm in the bottom layers. Higher impurity content in ice dating from glacial periods is seen to exert a strong inhibitive effect on crystal growth. The data on c-axis fabrics demonstrate the development of crystalline anisotropy with depth, leading to significant variation in flow properties. In particular, strong rheological contrasts are observed between glacial and interglacial ice, with fine-grained ice dating from glacial periods deforming more rapidly under conditions of simple shear than more coarse-grained interglacial ice. When the dynamics of ice masses are addressed by modeling, special attention must be given to the transition zone between ice resting on bedrock and floating ice shelves. One application for numerical ice-dynamics models that deal with such transition zones is the investigation of areas with special mass balance characteristics, like ice streams entering ice shelves or ice sheet areas over subglacial lakes. Recent results from a model applied to the ice above Lake Vostok in East Antarctica indicate that comparatively strong basal melting and adjacent refreezing occur close to the western shore of the lake.
NASA Astrophysics Data System (ADS)
Baccolo, Giovanni; Delmonte, Barbara; Clemenza, Massimiliano; Previtali, Ezio; Maggi, Valter
2015-04-01
Assessing the elemental composition of atmospheric dust entrapped in polar ice cores is important for the identification of the potential dust sources and thus for the reconstruction of past atmospheric circulation, at local, regional and global scale. Accurate determination of major and trace elements in the insoluble fraction of dust extracted from ice cores is also useful to better understand some geochemical and biogeochemical mechanisms which are linked with the climate system. The extremely reduced concentration of dust in polar ice (typical Antarctic concentrations during interglacials are in the range of 10 ppb), the limited availability of such samples and the high risk of contamination make these analyses a challenge. A new method based on low background Instrumental Neutron Activation Analysis (INAA) was specifically developed for this kind of samples. The method allows the determination of the concentration of up to 35 elements in extremely reduced dust samples (20-30 μg). These elements span from major to trace and ultra-trace elements. Preliminary results from TALDICE (TALos Dome Ice CorE, East Antarctica, Pacific-Ross Sea Sector) ice core are presented along with results from potential source areas in Victoria Land. A set of 5 samples from Talos Dome, corresponding to the last termination, MIS3, MIS4 and MIS6 were prepared and analyzed by INAA.
NASA Astrophysics Data System (ADS)
Pokhrel, Ambarish; Kawamura, Kimitaka; Ono, Kaori; Seki, Osamu; Fu, Pingqing; Matoba, Sumio; Shiraiwa, Takayuki
2016-04-01
Monoterpene and isoprene secondary organic aerosol (SOA) tracers are reported for the first time in an Alaskan ice core to better understand the biological source strength before and after the industrial revolution in the Northern Hemisphere. We found significantly high concentrations of monoterpene- and isoprene-SOA tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylerythritol) in the ice core, which show historical trends with good correlation to each other since 1660s. They show positive correlations with sugar compounds (e.g., mannitol, fructose, glucose, inositol and sucrose), and anti-correlations with α-dicarbonyls (glyoxal and methylglyoxal) and fatty acids (e.g., C18:1) in the same ice core. These results suggest similar sources and transport pathways for monoterpene- and isoprene-SOA tracers. In addition, we found that concentrations of C5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) in the ice core have increased after the Great Pacific Climate Shift (late 1970s). They show positive correlations with α-dicarbonyls and fatty acids (e.g., C18:1) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the marine boundary layer are recorded in the ice core from Alaska. Photochemical oxidation process for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations and retreat of sea ice in the Northern Hemisphere.
NASA Astrophysics Data System (ADS)
Melentyev, Konstantin V.; Chernook, Vladimir I.
Types of hydrological hazards are various but its agencies are especially diversified . At this study hazard effects will be assessed for White Sea population of Greenland seals - a representatives of high level of marine fodder chains and the prime part of the Arctic nature. Number of population and type of their migration are strongly depended from different meteorological and hydrological parameters and processes, climate change and anthropogenical press, including pollution and fur-seal fishery, create additional problems. Especially hard situation happens now with the ice- associated sea mammals (p olar bear, seal, walrus, etc.). Mass destruction of seals in the White Sea (ecological catastrophe) which happens periodically is close connected with different kind of meteorological and hydrological hazard. Greenland seals selected these water areas for whelping where a rookeries are organized on pack ice. But severe winter conditions (long-run severe frosts and NE winds) can modify ice regime of the White Sea which lead to effect "blocking" of pack ice (and whelping rookeries) inside the "Basin". These features stimulated strong reduction number ofseals (especially pups). Marine biology use modelling of the system "sea mammal-media", study "behavior factors" and mammals biodiversity at the different natural conditions. But the main critical goal is the development of special observational network for the White Sea and contiguous regions. A contemporary technologies assume integration of remote sensing and in situ hydro-chemical measurements. Airborne IR and visible observation of the marginal Arctic seas became now an indispensable part of marine ecological investigations. Application of satellite data for monitoring of sea mammals has been attractive also but practical use is restrained by its small spatial resolution, daytime illumination and cloud influence in the Arctic. Launching ERS synthetic aperture radar (SAR) in 1991, which provides global all- weather soundig with resolution 20-25 m, changed situation. High transparency of snow and relatively deep penetration of signals in ice is basis of sub-surface sounding. SAR images allow fix documentary different ice parameters: development and arrangement, ice type, shape of floes, ice concentration and compactness. Unfortunately time being resolution couldn't resolve individual sea mammal. In order to investigate the ice regime, estimate number of seals at the different winter conditions and forecast the future tendency of population decrease we perform regularly ice reconnaissance. Accomplish these observations and computations more precisely could be done at the time of mass accumulation of seals, that is whelping and moulting period. Aerial inspection is difficult task: weather conditions and masking coloration obstructs the problems, sometimes mammals couldn't be quite founded. Comprehensive study of ERS SAR signatures for diagnosis type of winter hydrology of the Arctic seas and ice conditions produced by severe winter , assessment of possibility forecast of future development of ice and studying ice as non-biotic factor of ecology of Pagophilus groenladicus and other ice-associated forms of sea mammals is a new interdisciplinary approach in marine biology. First experience of such application SAR data for diagnosis of hydrological hazard produced by severe winter has been undertaken in the White Sea and contiguous seas in 1996. Sub-satellite experiments onboard nuclear icebreaker "Taymir" provided validation program, ice cores and water samples were gathered and evaluated using chemi-luminiscent methods in connection with seal' behavior patterns. Since then aircraft Antonov-26 «Arktika» provided ice and seals investigations systematically. Helicopter is employed for in situ observations, ice cores and water samples are investigated in laboratory for measurement of different pollutant , dissolved organic matter and other hydro-chemical and radio-physical paramet ers. European Space Agency (ESA) supported this work in 1998-2000. Results of comprehensive study of hydrological hazard and ecological catastrophe in the White Sea produced by 1998/99 severe winter season are demonstrated. Satellite diagnostic and situation forecast is fulfilled for the different winter severity: results of airborne charting of seals are compared for the different ice and weather conditions . 1999/2000 winter is analyzed as mean-climatic winter season.
Environmental responses of the Northeast Antarctic Peninsula to the Holocene climate variability
NASA Astrophysics Data System (ADS)
Barbara, Loïc.; Crosta, Xavier; Leventer, Amy; Schmidt, Sabine; Etourneau, Johan; Domack, Eugene; Massé, Guillaume
2016-01-01
In this study, we present a unique high-resolution Holocene record of oceanographic and climatic change based on analyses of diatom assemblages combined with biomarker data from a sediment core collected from the Vega Drift, eastern Antarctic Peninsula (EAP). These data add to the climate framework already established by high-resolution marine sedimentary records from the Palmer Deep, western Antarctic Peninsula (WAP). Heavy sea ice conditions and reduced primary productivity were observed prior to 7.4 ka B.P. in relation with the proximity of the glacial ice melt and calving. Subsequent Holocene oceanographic conditions were controlled by the interactions between the Westerlies-Antarctic Circumpolar Current (ACC)-Weddell Gyre dynamics. A warm period characterized by short seasonal sea ice duration associated with a southern shift of both ACC and Westerlies field persisted until 5 ka B.P. This warm episode was then followed by climate deterioration during the middle-to-late Holocene (5 to 1.9 ka B.P.) with a gradual increase in annual sea ice duration triggered by the expansion of the Weddell Gyre and a strong oceanic connection from the EAP to the WAP. Increase of benthic diatom species during this period was indicative of more summer/autumn storms, which was consistent with changes in synoptic atmospheric circulation and the establishment of low- to high-latitude teleconnections. Finally, the multicentennial scale variability of the Weddell Gyre intensity and storm frequency during the late Holocene appeared to be associated with the increased El Niño-Southern Oscillation frequency.
NASA Astrophysics Data System (ADS)
Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.
2016-01-01
We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.
New radiocarbon ages from cirques in Colorado Front Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, P.T.; Birkeland, P.W.; Caine, N.
The authors recovered sediment cores 3.1 m long from Blue Lake ([approximately]37m water depth, [approximately]3,445m a.s.l., 40[degree]5 minutes 20 seconds N, 105[degree]37 minutes 08 seconds W) and 2.7m long from Lake Dorothy ([approximately]35m water depth, [approximately]3,675m a.s.l., 40[degree]00 minutes 46 seconds N, 105[degree]41 minutes 11 seconds W). A light-weight percussion coring system suspended from perlon ropes was used because of sediment thicknesses, water depths, and ski-backpacking requirements. Lake ice provided a stable coring platform. One purpose of the project is provision of a high-resolution record of environmental change in the subalpine/alpine ecotone during the Holocene, under the auspices of themore » Niwot Ridge Long-Term Ecological Research program. The sediment cores also provide minimum-limiting radiocarbon ages for deglaciation of cirques and the deposits that impound their tarns. Here the authors report on this second purpose. The Blue Lake core bottomed in sandy, gray, inorganic sediment, presumably glacial diamict. A bulk sample from 2.8--2.9m depth yielded a conventional radiocarbon age of 12,275[+-]345 yrs BP. Thus, ice retreated from the site by 12 ka. Since 12 ka both glacial and rock-glacial sediments have been deposited upvalley; some of these events may be recognized in the core. In contrast, the Lake Dorothy core did not penetrate gray inorganic diamict and is entirely organic-rich. A bulk sample from 2.65--2.7m depth yielded a conventional radiocarbon age of 10,910 [+-] 320 yrs BP. Thus, the moraines impounding the lake are 2--3 times older than suggested by a combination of relative-age methods and one radiocarbon age from surface sediments.« less
NASA Astrophysics Data System (ADS)
Kopera, M. A.; Maslowski, W.; Giraldo, F.
2015-12-01
One of the key outstanding challenges in modeling of climate change and sea-level rise is the ice-sheet/ocean interaction in narrow, elongated and geometrically complicated fjords around Greenland. To address this challenge we propose a new approach, a separate fjord model using discontinuous Galerkin (DG) methods, or FDG. The goal of this project is to build a separate, high-resolution module for use in Earth System Models (ESMs) to realistically represent the fjord bathymetry, coastlines, exchanges with the outside ocean, circulation and fine-scale processes occurring within the fjord and interactions at the ice shelf interface. FDG is currently at the first stage of development. The DG method provides FDG with high-order accuracy as well as geometrical flexibility, including the capacity to handle non-conforming adaptive mesh refinement to resolve the processes occurring near the ice-sheet/ocean interface without introducing prohibitive computational costs. Another benefit of this method is its excellent performance on multi- and many-core architectures, which allows for utilizing modern high performance computing systems for high-resolution simulations. The non-hydrostatic model of the incompressible Navier-Stokes equation will account for the stationary ice-shelf with sub-shelf ocean interaction, basal melting and subglacial meltwater influx and with boundary conditions at the surface to account for floating sea ice. The boundary conditions will be provided to FDG via a flux coupler to emulate the integration with an ESM. Initially, FDG will be tested for the Sermilik Fjord settings, using real bathymetry, boundary and initial conditions, and evaluated against available observations and other model results for this fjord. The overarching goal of the project is to be able to resolve the ice-sheet/ocean interactions around the entire coast of Greenland and two-way coupling with regional and global climate models such as the Regional Arctic System Model (RASM), Community Earth System Model (CESM) or Advanced Climate Model for Energy (ACME).
CUDA GPU based full-Stokes finite difference modelling of glaciers
NASA Astrophysics Data System (ADS)
Brædstrup, C. F.; Egholm, D. L.
2012-04-01
Many have stressed the limitations of using the shallow shelf and shallow ice approximations when modelling ice streams or surging glaciers. Using a full-stokes approach requires either large amounts of computer power or time and is therefore seldom an option for most glaciologists. Recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists. Our full-stokes ice sheet model implements a Red-Black Gauss-Seidel iterative linear solver to solve the full stokes equations. This technique has proven very effective when applied to the stokes equation in geodynamics problems, and should therefore also preform well in glaciological flow probems. The Gauss-Seidel iterator is known to be robust but several other linear solvers have a much faster convergence. To aid convergence, the solver uses a multigrid approach where values are interpolated and extrapolated between different grid resolutions to minimize the short wavelength errors efficiently. This reduces the iteration count by several orders of magnitude. The run-time is further reduced by using the GPGPU technology where each card has up to 448 cores. Researchers utilizing the GPGPU technique in other areas have reported between 2 - 11 times speedup compared to multicore CPU implementations on similar problems. The goal of these initial investigations into the possible usage of GPGPU technology in glacial modelling is to apply the enhanced resolution of a full-stokes solver to ice streams and surging glaciers. This is a area of growing interest because ice streams are the main drainage conjugates for large ice sheets. It is therefore crucial to understand this streaming behavior and it's impact up-ice.
NASA Astrophysics Data System (ADS)
Thompson, Lonnie G.; Yao, Tandong; Davis, Mary E.; Mosley-Thompson, Ellen; Wu, Guangjian; Porter, Stacy E.; Xu, Baiqing; Lin, Ping-Nan; Wang, Ninglian; Beaudon, Emilie; Duan, Keqin; Sierra-Hernández, M. Roxana; Kenny, Donald V.
2018-05-01
Records of recent climate from ice cores drilled in 2015 on the Guliya ice cap in the western Kunlun Mountains of the Tibetan Plateau, which with the Himalaya comprises the Third Pole (TP), demonstrate that this region has become warmer and moister since at least the middle of the 19th century. Decadal-scale linkages are suggested between ice core temperature and snowfall proxies, North Atlantic oceanic and atmospheric processes, Arctic temperatures, and Indian summer monsoon intensity. Correlations between annual-scale oxygen isotopic ratios (δ18O) and tropical western Pacific and Indian Ocean sea surface temperatures are also demonstrated. Comparisons of climate records during the last millennium from ice cores acquired throughout the TP illustrate centennial-scale differences between monsoon and westerlies dominated regions. Among these records, Guliya shows the highest rate of warming since the end of the Little Ice Age, but δ18O data over the last millennium from TP ice cores support findings that elevation-dependent warming is most pronounced in the Himalaya. This, along with the decreasing precipitation rates in the Himalaya region, is having detrimental effects on the cryosphere. Although satellite monitoring of glaciers on the TP indicates changes in surface area, only a few have been directly monitored for mass balance and ablation from the surface. This type of ground-based study is essential to obtain a better understanding of the rate of ice shrinkage on the TP.
Integrating expert- and algorithm-derived data to generate a hemispheric ice edge
NASA Astrophysics Data System (ADS)
Tsatsoulis, C.; Komp, E.
The Arctic ice edge is the area of the Arctic where sea ice concentration is less than 15%, and is considered navigable by most vessels. Experts at the National Ice Center generate a daily ice edge product that is available to the public. Data of preference is that of active, high resolution satellite sensors such as RADARSAT which yields all-weather images of 100m resolution, and a second source is OLS data with 550m resolution. Unfortunately, RADARSAT does not provide full, daily coverage of the Arctic and OLS can be obscured by clouds. The SSM/I sensor provides complete coverage of the Arctic at 25km resolution and is independent of cloud cover and solar illumination during the Arctic winter. SSM/I data is analyzed by the NASA Team algorithm to establish ice concentration. Our work integrates the ice edge created by experts using high resolution data with the ice edge generated out of the coarser SSM/I microwave data. The result is a product that combines human and algorithmic outputs, deals with gross differences in resolution of the underlying data sets, and results in a useful, operational product.
NASA Technical Reports Server (NTRS)
Sigurdsson, Haraldur; Laj, Paolo
1990-01-01
Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.
Differences in community composition of bacteria in four glaciers in western China
NASA Astrophysics Data System (ADS)
An, L. Z.; Chen, Y.; Xiang, S.-R.; Shang, T.-C.; Tian, L.-D.
2010-06-01
Microbial community patterns vary in glaciers worldwide, presenting unique responses to global climatic and environmental changes. Four bacterial clone libraries were established by 16S rRNA gene amplification from four ice layers along the 42-m-long ice core MuztB drilled from the Muztag Ata Glacier. A total of 151 bacterial sequences obtained from the ice core MuztB were phylogenetically compared with the 71 previously reported sequences from three ice cores extracted from ice caps Malan, Dunde, and Puruogangri. Six phylogenetic clusters Flavisolibacter, Flexibacter (Bacteroidetes), Acinetobacter, Enterobacter (Gammaproteobacteria), Planococcus/Anoxybacillus (Firmicutes), and Propionibacter/Luteococcus (Actinobacteria) frequently occurred along the Muztag Ata Glacier profile, and their proportion varied by seasons. Sequence analysis showed that most of the sequences from the ice core clustered with those from cold environments, and the sequence clusters from the same glacier more closely grouped together than those from the geographically isolated glaciers. Moreover, bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. In summary, the findings provide preliminary evidence of zonal distribution of microbial community, and suggest biogeography of microorganisms in glacier ice.
NASA Astrophysics Data System (ADS)
Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Schwikowski, M.
2014-12-01
The exploitation of the extended polymetallic deposits of the Altiplano in South America led to significant emissions of the neurotoxic Pb into the atmosphere already since pre-Colonial times. Long-term histories of Pb pollution in Eastern and Western Europe, Asia, and North America suggest that within the Northern Hemisphere emissions from metallurgy and coal combustion are minor compared to that from leaded gasoline during the second half of the 20th century. However, there is no equivalent data for Southern America. Here we present the first comprehensive, high-resolution two millennia Pb emission history for South America, based on an ice core record from Illimani glacier in Bolivia. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Bolivian Altiplano. The 2000 year ice-core based decadal Pb deposition history revealed highest Pb Enrichment Factors (EFs) during the period 1965-85. Metallurgical processing for silver production during periods of the Tiwanaku culture (400-900 AD), the Inca empire (1450-1532 AD), colonial times (1532-1900 AD), and the tin production at the beginning of the 20th century were identified as major sources for enhanced Pb EFs before the 1960s. Gasoline related Pb emissions in 1965-85, however, led to a threefold increase of the Pb EFs compared to the emission level from metal production, considerably preceding those of the past 2000 years. This finding is complementary to the local air pollution signal preserved in lake sediments and in good agreement with various studies from the Northern Hemisphere.
Atlantic Ocean Circulation at the Last Glacial Maximum: Inferences from Data and Models
2012-09-01
available. Uncertainties in proxies themselves, and in the dating of the proxy records, are generally lower for the LGM than for periods further back...proven useful in understanding new aspects of the modern ocean circulation. Due to the poor dating resolution of sediment cores from the LGM period, and...Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPI- LOG) project was an effort to reconstruct the state of the Earth in glacial states; a
NASA Astrophysics Data System (ADS)
Hörner, T.; Stein, R.; Fahl, K.; Birgel, D.
2016-07-01
Multi-proxy biomarker measurements were applied on two sediment cores (PS51/154, PS51/159) to reconstruct sea ice cover (IP25), biological production (brassicasterol, dinosterol) and river run-off (campesterol, β-sitosterol) in the western Laptev Sea over the last ∼17 ka with unprecedented temporal resolution. The absence of IP25 from 17.2 to 15.5 ka, in combination with minimum concentration of phytoplankton biomarkers, suggests that the western Laptev Sea shelf was mostly covered with permanent sea ice. Very minor river run-off and restricted biological production occurred during this cold interval. From ∼16 ka until 7.5 ka, a long-term decrease of terrigenous (riverine) organic matter and a coeval increase of marine organic matter reflect the gradual establishment of fully marine conditions in the western Laptev Sea, caused by the onset of the post-glacial transgression. Intensified river run-off and reduced sea ice cover characterized the time interval between 15.2 and 12.9 ka, including the Bølling/Allerød warm period (14.7-12.9 ka). Prominent peaks of the DIP25 Index coinciding with maximum abundances of subpolar foraminifers, are interpreted as pulses of Atlantic water inflow on the western Laptev Sea shelf. After the warm period, a sudden return to severe sea ice conditions with strongest ice-coverage between 11.9 and 11 ka coincided with the Younger Dryas (12.9-11.6 ka). At the onset of the Younger Dryas, a distinct alteration of the ecosystem (reflected in a distinct drop in terrigenous and phytoplankton biomarkers) was detected. During the last 7 ka, the sea ice proxies reflect a cooling of the Laptev Sea spring/summer season. This cooling trend was superimposed by a short-term variability in sea ice coverage, probably representing Bond cycles (1500 ± 500 ka) that are related to solar activity changes. Hence, atmospheric circulation changes were apparently able to affect the sea ice conditions on the Laptev Sea shelf under modern sea level conditions.
Detection of Organic Matter in Greenland Ice Cores by Deep-UV Fluorescence
NASA Astrophysics Data System (ADS)
Willis, M.; Malaska, M.; Wanger, G.; Bhartia, R.; Eshelman, E.; Abbey, W.; Priscu, J. C.
2017-12-01
The Greenland Ice Sheet is an Earthly analog for icy ocean worlds in the outer Solar System. Future missions to such worlds including Europa, Enceladus, and Titan may potentially include spectroscopic instrumentation to examine the surface/subsurface. The primary goal of our research is to test deep UV/Raman systems for in the situ detection and localization of organics in ice. As part of this effort we used a deep-UV fluorescence instrument able to detect naturally fluorescent biological materials such as aromatic molecules found in proteins and whole cells. We correlated these data with more traditional downstream analyses of organic material in natural ices. Supraglacial ice cores (2-4 m) were collected from several sites on the southwest outlet of the Greenland Ice Sheet using a 14-cm fluid-free mechanical coring system. Repeat spectral mapping data were initially collected longitudinally on uncut core sections. Cores were then cut into 2 cm thick sections along the longitudinal axis, slowly melted and analyzed for total organic carbon (TOC), total dissolved nitrogen (TDN), and bacterial density. These data reveal a spatial correlation between organic matter concentration, cell density, and the deep UV fluorescence maps. Our results provide a profile of the organics embedded within the ice from the top surface into the glacial subsurface, and the TOC:TDN data from the clean interior of the cores are indicative of a biological origin. This work provides a background dataset for future work to characterize organic carbon in the Greenland Ice Sheet and validation of novel instrumentation for in situ data collection on icy bodies.
Dating a tropical ice core by time-frequency analysis of ion concentration depth profiles
NASA Astrophysics Data System (ADS)
Gay, M.; De Angelis, M.; Lacoume, J.-L.
2014-09-01
Ice core dating is a key parameter for the interpretation of the ice archives. However, the relationship between ice depth and ice age generally cannot be easily established and requires the combination of numerous investigations and/or modelling efforts. This paper presents a new approach to ice core dating based on time-frequency analysis of chemical profiles at a site where seasonal patterns may be significantly distorted by sporadic events of regional importance, specifically at the summit area of Nevado Illimani (6350 m a.s.l.), located in the eastern Bolivian Andes (16°37' S, 67°46' W). We used ion concentration depth profiles collected along a 100 m deep ice core. The results of Fourier time-frequency and wavelet transforms were first compared. Both methods were applied to a nitrate concentration depth profile. The resulting chronologies were checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points. With this first experiment, we demonstrated the efficiency of Fourier time-frequency analysis when tracking the nitrate natural variability. In addition, we were able to show spectrum aliasing due to under-sampling below 70 m. In this article, we propose a method of de-aliasing which significantly improves the core dating in comparison with annual layer manual counting. Fourier time-frequency analysis was applied to concentration depth profiles of seven other ions, providing information on the suitability of each of them for the dating of tropical Andean ice cores.
An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120-800 ka
NASA Astrophysics Data System (ADS)
Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Veres, D.; Parrenin, F.; Martinerie, P.; Ritz, C.; Capron, E.; Lipenkov, V.; Loutre, M.-F.; Raynaud, D.; Vinther, B.; Svensson, A.; Rasmussen, S. O.; Severi, M.; Blunier, T.; Leuenberger, M.; Fischer, H.; Masson-Delmotte, V.; Chappellaz, J.; Wolff, E.
2013-08-01
An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120-800 ka. In this framework, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11-12 on EDC and a complete δ18Oatm record of the TALDICE ice cores permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous ice core reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one.
An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120-800 ka
NASA Astrophysics Data System (ADS)
Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Veres, D.; Parrenin, F.; Martinerie, P.; Ritz, C.; Capron, E.; Lipenkov, V.; Loutre, M.-F.; Raynaud, D.; Vinther, B.; Svensson, A.; Rasmussen, S. O.; Severi, M.; Blunier, T.; Leuenberger, M.; Fischer, H.; Masson-Delmotte, V.; Chappellaz, J.; Wolff, E.
2012-11-01
An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale has been developed based on an inverse dating method (Datice) combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousand of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2012), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120-800 ka. In this frame, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11-12 on EDC and a complete δ18Oatm record of the TALDICE ice cores permit us to derive new orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology shows only small differences, well within the original uncertainty range, when compared with the previous ice core reference age scale EDC3. For instance, the duration of the last four interglacial periods is not affected by more than 5%. The largest deviation between AICC2012 and EDC3 (4.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one.
NASA Astrophysics Data System (ADS)
Friedrich, Michael; Kromer, Bernd; Kaiser, Klaus F.; Spurk, Marco; Hughen, Konrad A.; Johnsen, Sigfus J.
2001-05-01
Lateglacial and Holocene tree-ring chronologies are unique archives, which provide various information on past environments on a true annual time scale. Changes in ring-width can be related to past climate anomalies and dendrodated wood provides an ideal source for radiocarbon calibration. We present a 1051 year tree-ring chronology from the Late Glacial, built from subfossil Scots pines (Pinus sylvestris) that grew in different regions of Central and Southern Europe. Through a series of high-precision radiocarbon measurements we obtained a floating radiocarbon chronology, which allowed accurate wiggle-matching to the INTCAL98 calibration curve. The trees show a coherent pattern in ring-width variations throughout Central Europe, and extending into the Mediterranean, which indicates a strong external climatic factor, most probably temperature during the growing season. We identified major growth events, which appear synchronous with events seen in isotopic and tracer signals in the Greenland ice cores and with changes in the strength of upwelling in the Cariaco Basin.
Thermokarst in pingos and adjacent collapse scar bogs in interior Alaska
NASA Astrophysics Data System (ADS)
Douglas, T. A.; Turetsky, M. R.
2017-12-01
A region of discontinuous permafrost 50 kilometers southeast of Fairbanks, Alaska exhibits rapid thermokarst and landscape change. The area contains a dozen pingos (hydrolaccoliths), mounds of ice covered by earth material typically 100 meters across and 20 meters above the surrounding ground surface. The pingos have sunken craters in their centers formed through melting and collapse of an inner ice lens core. Adjacent to the pingos are collapse scar bogs in various states of formation and ice wedge terrain undergoing thaw subsidence to polygons and thermokarst mounds (baydzherakhs). With a mean annual temperature of -1 degree C the area contains warm ecosystem-protected permafrost vulnerable to thaw. We analyzed historical imagery to the 1970s to track water features in a subset of pingos. The craters have expanded over the past few decades suggesting melting and collapse of the ice cored center and potential permafrost degradation along pingo margins. Collapse scar bogs in adjacent low-elevation terrain are roughly the same size as the pingos but have little vertical elevation gradient compared to the surrounding terrain. Electrical resistivity tomography (ERT) measurements, high resolution GPS surveys, SIPRE coring, and thaw depth probing were focused along nine 400 meter transects across three of the pingos to identify relationships between geophysical properties, permafrost composition, seasonal thaw, and ecological state. A large ( 40 meters across and 20 meters thick) lens shaped region of thawed permafrost is evident in the ERT results about 10 meters below the ground surface in the center of one pingo we surveyed in detail. This is believed to be the original ice cored region of the pingo that has melted. A thin (1-5 meters thick) layer of permafrost is present above this thawed region while the rampart margins surrounding the pingo are underlain by thick (10-30 m) permafrost. The pingo and thermokarst features reside in a location where rapid permafrost thaw in response to warming or changing hydrology could provide a hot spot for landscape change, particularly given a projected climate warming of 5 degrees C over the next 80 years in the area. Their future thermal, geomorphological, and ecological states may be a harbinger for how discontinuous permafrost in the region responds to projected climate warming.
NASA Astrophysics Data System (ADS)
Yan, Y.; Ng, J.; Higgins, J. A.; Kurbatov, A.; Clifford, H.; Spaulding, N. E.; Mayewski, P. A.; Brook, E.; Bender, M. L.; Severinghaus, J. P.
2017-12-01
Antarctic efforts are underway to find and retrieve ice cores older than 800 thousand years (kyr) by both shallow drilling in "blue ice" areas and classic deep ice coring. Ice stratigraphy at "blue ice" sites is typically disordered, and the high cost of deep drilling mandates rapid reconnaissance drilling (e.g. RAID) with very small sample size. Both approaches therefore require methods of absolute dating on a single piece of ice without stratigraphic context. Here we present a dating method modified from Bender et al. (2008; PNAS) to precisely measure the isotopic composition of argon (36Ar, 38Ar, and 40Ar) in air bubbles trapped in the ice, which changes over time in a known way. Our method has an analytical uncertainty of 110 kyr (1σ) or 10% of the age of the sample, whichever is greater. We measured Ar isotopes from the Allan Hills blue ice areas, East Antarctica, where 1 Ma ice was previously found by Higgins et al. (2015; PNAS). Results show ice as old as 2.7±0.3 million years, but the ice column is stratigraphically disturbed. Hence Allan Hills ice core records should be viewed as a series of "climate snapshots" rather than a continuum. Xenon-to-krypton (Xe/Kr) ratios are also measured in the same aliquot of extracted gas to reconstruct mean ocean temperature (Shackleton et al., 2016; Fall AGU). Preliminary mean ocean temperature in ice older than 1 Ma ranges from -0.3 to -1.2 deg. colder than present with an uncertainty of 0.24 deg., which agrees well with other Pleistocene ocean temperature records (e.g. Rohling et al., 2014; Nature and Elderfield et al., 2012; Science). The observed range is 40% of the glacial-interglacial variability in the 100-kyr climate cycles ( 2 deg.), close to the 50% reduction in the glacial-interglacial δ18O amplitude across the Mid-Pleistocene Transition. Finally, Xe/Kr ratios are found to correlate positively with δD of the ice, implying a coupling between the global ocean temperature and Antarctic temperature throughout the Pleistocene.
NASA Astrophysics Data System (ADS)
Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin
2018-01-01
The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.
Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations
NASA Astrophysics Data System (ADS)
Kerch, Johanna; Diez, Anja; Weikusat, Ilka; Eisen, Olaf
2018-05-01
One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s-1 for P-wave and 200 m s-1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s-1 for the alpine ice core and 59 m s-1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s-1 for P-wave and 280 m s-1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s-1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s-1 for P wave and more than 200 m s-1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s-1 per 10 cm). Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy, without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.
Holocene evolution of Hans Tausen Iskappe (Greenland): merging constraints and models
NASA Astrophysics Data System (ADS)
Zekollari, Harry; Lecavalier, Benoit S.; Huybrechts, Philippe
2017-04-01
In this study the Holocene evolution of Hans Tausen Iskappe (western Peary Land, Greenland) is investigated. Constraints on the ice cap evolution are combined with climatic records in a numerical ice flow - surface mass balance (SMB) model to better understand the palaeoenvironmental and climatic evolution of this region. Our simulations suggest that after disconnecting from the Greenland Ice Sheet (GrIS) the ice cap had roughly its present-day size and geometry around 8.5-9 ka ago. An ice core drilled to the bed indicates that the southern part of the ice cap subsequently disappeared during the Holocene Thermal Maximum (HTM) and this collapse can be reproduced, but the model suggests that the northern part of the ice cap most likely survived this warmer period. The late Holocene growth of the ice cap to its Little Ice Age (LIA) maximum neoglacial extent can be reproduced from the temperature reconstruction. The simulations suggest that over the last millennia the local precipitation may have been up to 70-80% higher than at present. By coupling the pre-industrial temperature forcing to a post-LIA warming trend, it is concluded that the warming between the end of the LIA and the period 1961-1990 was between 1 and 2°C. In all experiments the ice flow model complexity and horizontal resolution have only a minor effect on the long-term evolution of the ice cap, which is largely driven by SMB changes. On the other hand the glacial isostatic adjustments (GIA) need to be accounted for in a detailed manner, as this has a large impact on the modelled Holocene ice cap evolution.
Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles
NASA Astrophysics Data System (ADS)
Chambers, John
2017-11-01
In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2-5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1-3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.
Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations
Seki, Osamu; Kawamura, Kimitaka; Bendle, James A. P.; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki
2015-01-01
Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m3) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research. PMID:26411576
Climatic Changes on Tibetan Plateau Based on Ice Core Records
NASA Astrophysics Data System (ADS)
Yao, T.
2008-12-01
Climatic changes have been reconstructed for the Tibetan Plateau based on ice core records. The Guliya ice core on the Tibetan Plateau presents climatic changes in the past 100,000 years, thus is comparative with that from Vostok ice core in Antarctica and GISP2 record in Arctic. These three records share an important common feature, i.e., our climate is not stable. It is also evident that the major patterns of climatic changes are similar on the earth. Why does climatic change over the earth follow a same pattern? It might be attributed to solar radiation. We found that the cold periods correspond to low insolation periods, and warm periods to high insolation periods. We found abrupt climatic change in the ice core climatic records, which presented dramatic temperature variation of as much as 10 °C in 50 or 60 years. Our major challenge in the study of both climate and environment is that greenhouse gases such as CO2, CH4 are possibly amplifying global warming, though at what degree remains unclear. One of the ways to understand the role of greenhouse gases is to reconstruct the past greenhouse gases recorded in ice. In 1997, we drilled an ice core from 7100 m a.s.l. in the Himalayas to reconstruct methane record. Based on the record, we found seasonal cycles in methane variation. In particular, the methane concentration is high in summer, suggestiing active methane emission from wet land in summer. Based on the seasonal cycle, we can reconstruct the methane fluctuation history in the past 500 years. The most prominent feature of the methane record in the Himalayan ice core is the abrupt increase since 1850 A.D.. This is closely related to the industrial revolution worldwide. We can also observe sudden decrease in methane concentration during the World War I and World War II. It implies that the industrial revolution has dominated the atmospheric greenhouse gas emission for about 100 years. Besides, the average methane concentration in the Himalayan ice core is higher than that in polar regions, indicating that the low latitude wet land is a major natural source of atmospheric methane.
NASA Astrophysics Data System (ADS)
Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.
2017-12-01
The behavior of the Indo-Pacific climate system across the last deglaciation is widely debated. Resolving these debates requires long term and continuous climate proxy records. Here, we use an ultra-high resolution and continuous water isotope record from an ice core in the Pacific sector of West Antarctica. In conjunction with the HadCM3 coupled ocean-atmosphere GCM, we demonstrate that the climate of both West Antarctica and the Indo-Pacific were substantially altered during the last deglaciation by the same forcing mechanism. Critically, these changes are not dependent on ENSO strength, but rather the location of deep tropical convection, which shifts at 16 ka in response to climate perturbations induced by the Laurentide Ice Sheet. The changed rainfall patterns in the tropics explain the deglacial shift from expanded-grasslands to rainforest-dominated ecosystems in Indonesia. High-frequency climate variability in the Southern Hemisphere is also changed, through a tropical Pacific teleconnection link dependent on the propogration of Rossby Waves.
NASA Astrophysics Data System (ADS)
Tian, J.; Xie, X.; Jin, H.; Wang, P.; Jian, Z.
2009-12-01
Energy dispersive X-ray fluorescence (XRF) scanning technology provides the most accurate and most economic analytical methods for the determination of major and minor elements of the deep-sea sediment ranging from sodium (11) to uranium (92). Scanning on the smooth core surface by XRF Core scanner is reliable and non-destructive to the sediment, requiring little or no time to prepare the core. This method overcomes the drawback of the traditional analytical method by ICP-AES or ICP-MS which requires long time for sample preparation. Thus, it makes it viable to reconstruct long and high-resolution elemental time series from sediment cores. We have performed relatively elemental concentration analyses on the deep sea sediment cores from ODP site 1143 (southern SCS) down to 190.77 mcd (meters composite depth) by XRF core scanner. The depth resolution of the scanning is 1 cm, equivalent to a time resolution of ~250 years. The age model is based on tuning the benthic foraminiferal d18O at Site 1143 to obliquity and precession (Tian et al., 2002) which indicates that the 190.77 meters long sediment spans the past 5 Myr. We compared the records between 99.5 and 136.46 mcd with the elemental records from the same site obtained by Philips PW 2400 X-ray spectrometer (Wehausen et al., online publication). Comparison reveals, regardless of the absolute changes of the elements, that the elemental records (Si, Ti, Al, Fe, Mn, Ca, K, P, Ba, Rb, Sr) obtained by two methods are nearly the same. Results show that the relative concentration variations of the productivity related elements such as Ba and Ca display distinctive glacial-interglacial cycles for the past 5 Myr. These productivity cycles recorded show one-on-one relationship with the glacial-interglacial cycles of the global ice volume change recorded in the benthic foraminiferal d18O. The glacial-interglacial cycles in productivity and global ice volume changes are consistent with each other not only in amplitude but also in secular variations. The benthic d18O implies the final formation of the northern hemisphere glaciation between ~2.5 Ma and ~3.3 Ma, as indicated by gradually increased values of d18O. During this period, both Ba and Ca show gradually increased values of relative concentration, indicating increased productivity which was probably caused by intensified East Asia summer monsoon. The close relationship of the productivity related elemental variations with benthic foraminiferal d18O reveals that the Plio-Pleistocene variations of the East Asian monsoon have been greatly dominated by global ice volume change. Although the elements related to terrigenous detrital matter composition of site 1143 such as Ti, Fe, As, Co and Ni display distinct glacial-interglacial cycles for the past 5 Myr, they display different patterns in secular variation with that of the benthic foraminiferal d18O. The mismatch indicates that besides northern hemisphere glaciation other multiple processes including changes in provenance and weathering intensity caused by monsoonal climate variability and sea level fluctuations could have affected the terrigenous detrital matter composition of site 1143.
A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core
NASA Astrophysics Data System (ADS)
D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.
2017-05-01
Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation-emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0-18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0-11.5 kyr BP), to the mid-Holocene (11.5-6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation-emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response.
Toward unified ice core chronologies with the DatIce tool
NASA Astrophysics Data System (ADS)
Toye Mahamadou Kele, H.; Lemieux-Dudon, B.; Blayo, E.
2012-04-01
Antarctic and Greenland ice cores provide a means to study the phase relationships of climate changes in both hemispheres. They also enable to study the timing between climate, and greenhouse gases or orbital forcings. One key step for such studies is to improve the absolute and relative precisions of ice core age scales (for ice and trapped gas), and beyond that, to try to reach the best consistency between chronologies of paleo records of any kind. The DatIce tool is designed to increase the consistency between pre-existing (also called background) core chronologies. It formulates a variational inverse problem which aims at correcting three key quantities that uniquely define the core age scales: the accumulation rate, the total thinning function, and the close-off depth. For that purpose, it integrates paleo data constraints of many types among which age markers (with for instance documented volcanoes eruptions), and stratigraphic links (with for instance abrupt changes in methane concentration). A cost function is built that enables to calculate new chronologies by making a trade-off between all the constraints (background chronologies and paleo data). The method presented in Lemieux-Dudon et al (2010) has already been applied simultaneously to EPICA EDML and EDC, Vostok and NGRIP. Currently, on going works are conducted at LSCE Saclay and LGGE Grenoble laboratories to construct unified Antarctic chronologies by applying the DatIce tool with new ice cores and new sets of paleo measurements. We here present the DatIce tool, the underlying methodology, and its potential applications. We further show some improvements that have been made recently. We especially adress the issue related to the calibration of the error of pre-existing core chronologies. They are inputs that may have a strong impact on the results. However these uncertainties are uneasy to analyze, since prior chronologies are most of the time assessed on the basis of glaciological models (firn densification and ice flow models) which still face large uncertainties (forcing fields, model parameters, mechanic and physic formulation). For that reason, we chose to calibrate errors by applying consistency diagnostics, a classical method in data assimilation (Desrozier et al, 2009).
NASA Astrophysics Data System (ADS)
Judge, S. A.; Wilson, T. J.
2005-12-01
The International Polar Year (IPY) provides an excellent opportunity for highlighting polar research in education. The ultimate goal of our outreach and education program is to develop a series of modules that are focused on societally-relevant topics being investigated in Antarctic earth science, while teaching basic geologic concepts that are standard elements of school curricula. For example, we envision a university-level, undergraduate, introductory earth science class with the entire semester/quarter laboratory program focused on polar earth science research during the period of the International Polar Year. To attain this goal, a series of modules will be developed, including inquiry-based exercises founded on imagery (video, digital photos, digital core scans), GIS data layers, maps, and data sets available from OSU research groups. Modules that highlight polar research are also suitable for the K-12 audience. Scaleable/grade appropriate modules that use some of the same data sets as the undergraduate modules can be outlined for elementary through high school earth science classes. An initial module is being developed that focuses on paleoclimate data. The module provides a hands-on investigation of the climate history archived in both ice cores and sedimentary rock cores in order to understand time scales, drivers, and processes of global climate change. The paleoclimate module also demonstrates the types of polar research that are ongoing at OSU, allowing students to observe what research the faculty are undertaking in their respective fields. This will link faculty research with student education in the classroom, enhancing learning outcomes. Finally, this module will provide a direct link to U.S. Antarctic Program research related to the International Polar Year, when new ice and sedimentary rock cores will be obtained and analyzed. As a result of this laboratory exercise, the students will be able to: (1) Define an ice core and a sedimentary rock core. (Knowledge) (2) Identify climate indicators in each type of core by using digital core images. These include layers of particulate material (such as volcanic tephra) in ice cores and layers of larger grains (such as ice-rafted debris) in sedimentary rock cores. (Knowledge) (3) Describe how cores are taken in extreme environments, such as Antarctica. (Comprehension) (4) Use actual data from proxies in the ice and sedimentary records to graph changes through time in the cores. (Application) (5) Recognize variances in data sets that might illustrate periods of climate change. (Analysis) (6) Integrate data results from several proxies in order to construct a climate record for both ice cores and sedimentary rock cores. (Synthesis) (7) Interpret both the ice core and sedimentary rock core records to ascertain the effectiveness of both of these tools in archiving climate records. (Evaluation)
The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation
NASA Astrophysics Data System (ADS)
Lofverstrom, Marcus; Liakka, Johan
2018-04-01
Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.
Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting
NASA Astrophysics Data System (ADS)
Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; Zwinger, Thomas; Greve, Ralf
2017-01-01
Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at a coarser resolution than currently thought necessary.
NASA Technical Reports Server (NTRS)
Downes, Stephanie M.; Farneti, Riccardo; Uotila, Petteri; Griffies, Stephen M.; Marsland, Simon J.; Bailey, David; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne;
2015-01-01
We characterise the representation of the Southern Ocean water mass structure and sea ice within a suite of 15 global ocean-ice models run with the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) protocol. The main focus is the representation of the present (1988-2007) mode and intermediate waters, thus framing an analysis of winter and summer mixed layer depths; temperature, salinity, and potential vorticity structure; and temporal variability of sea ice distributions. We also consider the interannual variability over the same 20 year period. Comparisons are made between models as well as to observation-based analyses where available. The CORE-II models exhibit several biases relative to Southern Ocean observations, including an underestimation of the model mean mixed layer depths of mode and intermediate water masses in March (associated with greater ocean surface heat gain), and an overestimation in September (associated with greater high latitude ocean heat loss and a more northward winter sea-ice extent). In addition, the models have cold and fresh/warm and salty water column biases centred near 50 deg S. Over the 1988-2007 period, the CORE-II models consistently simulate spatially variable trends in sea-ice concentration, surface freshwater fluxes, mixed layer depths, and 200-700 m ocean heat content. In particular, sea-ice coverage around most of the Antarctic continental shelf is reduced, leading to a cooling and freshening of the near surface waters. The shoaling of the mixed layer is associated with increased surface buoyancy gain, except in the Pacific where sea ice is also influential. The models are in disagreement, despite the common CORE-II atmospheric state, in their spatial pattern of the 20-year trends in the mixed layer depth and sea-ice.
How scaling fluctuation analyses can transform our view of the climate
NASA Astrophysics Data System (ADS)
Lovejoy, Shaun; Schertzer, Daniel
2013-04-01
There exist a bewildering diversity of proxy climate data including tree rings, ice cores, lake varves, boreholes, ice cores, pollen, foraminifera, corals and speleothems. Their quantitative use raises numerous questions of interpretation and calibration. Even in classical cases - such as the isotope signal in ice cores - the usual assumption of linear dependence on ambient temperature is only a first approximation. In other cases - such as speleothems - the isotope signals arise from multiple causes (which are not always understood) and this hinders their widespread use. We argue that traditional interpretations and calibrations - based on essentially deterministic comparisons between instrumental data, model outputs and proxies (albeit with the help of uncertainty analyses) - have been both overly ambitious while simultaneously underexploiting the data. The former since comparisons typically involve series at different temporal resolutions and from different geographical locations - one does not expect agreement in a deterministic sense, while with respect to climate models, one only expects statistical correspondences. The proxies are underexploited since comparisons are done at unique temporal and / or spatial resolutions whereas the fluctuations they describe provide information over wide ranges of scale. A convenient method of overcoming these difficulties is the use of fluctuation analysis systematically applied over the full range of available scales to determine the scaling proeprties. The new transformative element presented here, is to define fluctuations ΔT in a series T(t) at scale Δt not by differences (ΔT(Δt) = T(t+Δt) - T(t)) but rather by the difference in the means over the first and second halves of the lag Δt . This seemingly minor change - technically from "poor man's" to "Haar" wavelets - turns out to make a huge difference since for example, it is adequate for analysing temperatures from seconds to hundreds of millions of years yet remaining simple to interpret [Lovejoy and Schertzer, 2012]. It has lead for example to the discovery of the new "macroweather" regime between weather (Δt <≈ 10days) and climate (Δt ≈> 30 yrs) in which fluctuations decrease rather than increase with scale [Lovejoy, 2013]. We illustrate the transformative power of combining such fluctuation analysis with scaling by giving numerous examples from instrumental data, multiproxies, ice core proxies, corals, speleothems and GCM outputs [Lovejoy and Schertzer, 2013]. References: Lovejoy, S. (2013), What is climate?, EOS, 94, (1), 1 January, p1-2. Lovejoy, S., and D. Schertzer (2012), Haar wavelets, fluctuations and structure functions: convenient choices for geophysics, Nonlinear Proc. Geophys. , 19, 1-14 doi: 10.5194/npg-19-1-2012. Lovejoy, S., and D. Schertzer (2013), The Weather and Climate: Emergent Laws and Multifractal Cascades, 480 pp., Cambridge University Press, Cambridge.
Holocene thinning of the Greenland ice sheet.
Vinther, B M; Buchardt, S L; Clausen, H B; Dahl-Jensen, D; Johnsen, S J; Fisher, D A; Koerner, R M; Raynaud, D; Lipenkov, V; Andersen, K K; Blunier, T; Rasmussen, S O; Steffensen, J P; Svensson, A M
2009-09-17
On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS ice cores with delta(18)O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of delta(18)O evidence from ice cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our delta(18)O-based results are corroborated by the air content of ice cores, a proxy for surface elevation. State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.
NASA Astrophysics Data System (ADS)
Jansen, Daniela; Weikusat, Ilka; Kleiner, Thomas; Wilhelms, Frank; Dahl-Jensen, Dorthe; Frenzel, Andreas; Binder, Tobias; Eichler, Jan; Faria, Sergio H.; Sheldon, Simon; Panton, Christian; Kipfstuhl, Sepp; Miller, Heinrich
2017-04-01
The European Project for Ice Coring in Antarctica (EPICA) ice core was drilled between 2001 and 2006 at the Kohnen Station, Antarctica. During the drilling process the borehole was logged repeatedly. Repeated logging of the borehole shape is a means of directly measuring the deformation of the ice sheet not only on the surface but also with depth, and to derive shear strain rates for the lower part, which control the volume of ice transported from the inner continent towards the ocean. The logging system continuously recorded the tilt of the borehole with respect to the vertical (inclination) as well as the heading of the borehole with respect to magnetic north (azimuth) by means of a compass. This dataset provides the basis for a 3-D reconstruction of the borehole shape, which is changing over time according to the predominant deformation modes with depth. The information gained from this analysis can then be evaluated in combination with lattice preferred orientation, grain size and grain shape derived by microstructural analysis of samples from the deep ice core. Additionally, the diameter of the borehole, which was originally circular with a diameter of 10 cm, was measured. As the ice flow velocity at the position of the EDML core is relatively slow (about 0.75 m/a), the changes of borehole shape between the logs during the drilling period were very small and thus difficult to interpret. Thus, the site has been revisited in the Antarctic summer season 2016 and logged again using the same measurement system. The change of the borehole inclination during the time period of 10 years clearly reveals the transition from a pure shear dominated deformation in the upper part of the ice sheet to shear deformation at the base. We will present a detailed analysis of the borehole parameters and the deduced shear strain rates in the lower part of the ice sheet. The results are discussed with respect to ice microstructural data derived from the EDML ice core. Microstructural data directly reflect the deformation conditions, as the ice polycrystal performs the deformation which leads e.g. to characteristic lattice orientation distributions and grain size and shape appearance. Though overprinted by recrystallization (due to the hot environment for the ice) and the slow deformation, analysis of statistically significant grain numbers reveals indications typical for the changing deformation regimes with depth. Additionally we compare our results with strain rates derived from a simulation with a model for large scale ice deformation, the Parallel Ice Sheet Model (PISM).
Methodological synergies for glaciological constraints to find Oldest Ice
NASA Astrophysics Data System (ADS)
Eisen, Olaf
2017-04-01
The Beyond EPICA - Oldest Ice (BE-OI) consortium and its international partners unite a globally unique concentration of scientific expertise and infrastructure for ice-core investigations. It delivers the technical, scientific and financial basis for a comprehensive plan to retrieve an ice core up to 1.5 million years old. The consortium takes care of the pre-site surveys for site selection around Dome C and Dome Fuji, both potentially appropriate regions in East Antarctica. Other science consortia will investigate other regions under the umbrella of the International Partnerships in Ice Core Sciences (IPICS). Of major importance to obtain reliable estimates of the age of the ice in the basal layers of the ice sheet are the physical boundary conditions and ice-flow dynamics: geothermal heat flux, advection and layer integrity to avoid layer overturning and the formation of folds. The project completed the first field season at both regions of interest. This contribution will give an overview how the combined application of various geophysical, geodetical and glaciological methods applied in the field in combination with ice-flow modelling can constrain the glaciological boundary conditions and thus age at depth.
Ice Cores Dating With a New Inverse Method Taking Account of the Flow Modeling Errors
NASA Astrophysics Data System (ADS)
Lemieux-Dudon, B.; Parrenin, F.; Blayo, E.
2007-12-01
Deep ice cores extracted from Antarctica or Greenland recorded a wide range of past climatic events. In order to contribute to the Quaternary climate system understanding, the calculation of an accurate depth-age relationship is a crucial point. Up to now ice chronologies for deep ice cores estimated with inverse approaches are based on quite simplified ice-flow models that fail to reproduce flow irregularities and consequently to respect all available set of age markers. We describe in this paper, a new inverse method that takes into account the model uncertainty in order to circumvent the restrictions linked to the use of simplified flow models. This method uses first guesses on two flow physical entities, the ice thinning function and the accumulation rate and then identifies correction functions on both flow entities. We highlight two major benefits brought by this new method: first of all the ability to respect large set of observations and as a consequence, the feasibility to estimate a synchronized common ice chronology for several cores at the same time. This inverse approach relies on a bayesian framework. To respect the positive constraint on the searched correction functions, we assume lognormal probability distribution on one hand for the background errors, but also for one particular set of the observation errors. We test this new inversion method on three cores simultaneously (the two EPICA cores : DC and DML and the Vostok core) and we assimilate more than 150 observations (e.g.: age markers, stratigraphic links,...). We analyze the sensitivity of the solution with respect to the background information, especially the prior error covariance matrix. The confidence intervals based on the posterior covariance matrix calculation, are estimated on the correction functions and for the first time on the overall output chronologies.
NASA Astrophysics Data System (ADS)
Diez, A.; Eisen, O.; Hofstede, C.; Lambrecht, A.; Mayer, C.; Miller, H.; Steinhage, D.; Binder, T.; Weikusat, I.
2015-02-01
We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded travel times. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. We make use of abrupt changes in COF as a common reflection mechanism for seismic and radar data below the firn-ice transition to determine COF-induced reflections in either data set by joint comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic experiments to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous ice viscosity from preferred crystal orientations.
NASA Astrophysics Data System (ADS)
Petit, Jean Robert; Narcisi, Biancamaria; Batanova, Valentina G.; Joël, Savarino; Komorowski, Jean Christophe; Michel, Agnes; Metrich, Nicole; Besson, Pascale; Vidal, Celine; Sobolev, Alexander V.
2016-04-01
A wealth of valuable data about the history of explosive volcanic history can be extracted from polar ice successions. Both the volatile by-products and the solid silicate (tephra) components of volcanic plumes can be incorporated into snow layers, providing tools for chronostratigraphic correlations and for interpretation of climate-volcanism interactions. Volcanic events from low-latitude regions are of particular interest as the related sulphate aerosol travelling through the stratosphere can reach the polar sheets forming inter-hemispheric (Greenland and Antarctica) signals preserved in the ice. Within the glaciological record of globally significant volcanic markers, the AD1259 signal represents one of most prominent events over the last thousands years. Its source has been long debated. On the basis of recent field investigations (Lavigne et al., 2013; Vidal et al., 2015), it has been proposed that Mount Samalas on Lombok Island (Indonesia) represents the source responsible for the polar event. With the goal of bringing distal tephrochronological evidence to source identification, we have attempted to identify volcanic ash associated to the AD 1259 sulphate pulse. To this purpose we used firn and ice-core samples from two East Antarctic Plateau sites: Concordia-Dome C (75°06' S, 123°20' E, 3233 m) and Talos Dome (72°49'S, 159°11'E, 2315 m). Our high-resolution studies included sample processing in a Class 100 clean room using established ultra-clean procedures for insoluble microparticle analyses, Coulter counter grain size measurements, scanning electron microscope observations and the geochemical (major elements) composition from the recently set ISTERRE Jeol JXA 8230 Superprobe and calibrated for small particles analysis. Despite the difficulty of studying such minute fragments, within both cores we located and characterised multiple tiny (micron-size) glass shards concomitant with the volcanic peak. We present preliminary results alongside comparison with geochemical analysis of juvenile volcanic materials from potential sources.
1400 yr multiproxy record of climate variability from the northern Gulf of Mexico
Richey, J.N.; Poore, R.Z.; Flower, B.P.; Quinn, T.M.
2007-01-01
A continuous decadal-scale resolution record of climate variability over the past 1400 yr in the northern Gulf of Mexico was constructed from a box core recovered in the Pigmy Basin, northern Gulf of Mexico. Proxies include paired analyses of Mg/Ca and δ18O in the white variety of the planktic foraminifer Globigerinoides ruber and relative abundance variations of G. sacculifer in the foraminifer assemblages. Two multi-decadal intervals of sustained high Mg/Ca indicate that Gulf of Mexico sea surface temperatures (SSTs) were as warm or warmer than near-modern conditions between 1000 and 1400 yr B.P. Foraminiferal Mg/Ca during the coolest interval of the Little Ice Age (ca. 250 yr B.P.) indicate that SST was 2–2.5 °C below modern SST. Four minima in the Mg/Ca record between 900 and 250 yr B.P. correspond with the Maunder, Spörer, Wolf, and Oort sunspot minima, suggesting a link between changes in solar insolation and SST variability in the Gulf of Mexico. An abrupt shift recorded in both δ18Ocalcite and relative abundance of G. sacculifer occurred ca. 600 yr B.P. The shift in the Pigmy Basin record corresponds with a shift in the sea-salt-sodium (ssNa) record from the Greenland Ice Sheet Project 2 ice core, linking changes in high-latitude atmospheric circulation with the subtropical Atlantic Ocean.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa
2016-01-01
The Goddard microphysics was recently improved by adding a fourth ice class (frozen dropshail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of icesnow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries.
Eemian interglacial reconstructed from a Greenland folded ice core.
2013-01-24
Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 ± 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 ± 250 metres, reaching surface elevations 122,000 years ago of 130 ± 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.
IceCube sensitivity for low-energy neutrinos from nearby supernovae
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K. H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jakobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richard, A. S.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration
2011-11-01
This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of ~1 km3 in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of \\barνe's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.
IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae
NASA Technical Reports Server (NTRS)
Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.;
2012-01-01
This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.
Weikusat, Ilka; Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas
2017-02-13
Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450-1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700-2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030-2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural observations are compared with results from a numerical ice sheet model (PISM, isotropic) for comparison of strain rate trends predicted from the large-scale geometry of the ice sheet and borehole logging data. This comparison confirms the segmentation into these depth regions and in turn provides a wider view of the ice sheet.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Authors.
NASA Astrophysics Data System (ADS)
Weikusat, Ilka; Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H.; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas
2017-02-01
Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450-1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700-2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030-2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural observations are compared with results from a numerical ice sheet model (PISM, isotropic) for comparison of strain rate trends predicted from the large-scale geometry of the ice sheet and borehole logging data. This comparison confirms the segmentation into these depth regions and in turn provides a wider view of the ice sheet. This article is part of the themed issue 'Microdynamics of ice'.
IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere
NASA Astrophysics Data System (ADS)
Andrén, T.; Barker Jørgensen, B.; Cotterill, C.; Green, S.; IODP expedition 347 scientific party, the
2015-12-01
The Integrated Ocean Drilling Program (IODP) expedition 347 cored sediments from different settings of the Baltic Sea covering the last glacial-interglacial cycle. The main aim was to study the geological development of the Baltic Sea in relation to the extreme climate variability of the region with changing ice cover and major shifts in temperature, salinity, and biological communities. Using the Greatship Manisha as a European Consortium for Ocean Research Drilling (ECORD) mission-specific platform, we recovered 1.6 km of core from nine sites of which four were additionally cored for microbiology. The sites covered the gateway to the North Sea and Atlantic Ocean, several sub-basins in the southern Baltic Sea, a deep basin in the central Baltic Sea, and a river estuary in the north. The waxing and waning of the Scandinavian ice sheet has profoundly affected the Baltic Sea sediments. During the Weichselian, progressing glaciers reshaped the submarine landscape and displaced sedimentary deposits from earlier Quaternary time. As the glaciers retreated they left a complex pattern of till, sand, and lacustrine clay, which in the basins has since been covered by a thick deposit of Holocene, organic-rich clay. Due to the stratified water column of the brackish Baltic Sea and the recurrent and widespread anoxia, the deeper basins harbor laminated sediments that provide a unique opportunity for high-resolution chronological studies. The Baltic Sea is a eutrophic intra-continental sea that is strongly impacted by terrestrial runoff and nutrient fluxes. The Holocene deposits are recorded today to be up to 50 m deep and geochemically affected by diagenetic alterations driven by organic matter degradation. Many of the cored sequences were highly supersaturated with respect to methane, which caused strong degassing upon core recovery. The depth distributions of conservative sea water ions still reflected the transition at the end of the last glaciation from fresh-water clays to Holocene brackish mud. High-resolution sampling and analyses of interstitial water chemistry revealed the intensive mineralization and zonation of the predominant biogeochemical processes. Quantification of microbial cells in the sediments yielded some of the highest cell densities yet recorded by scientific drilling.
Evidence for a link between atmospheric thermonuclear detonations and nitric acid.
Holdsworth, G
1986-12-11
Suitably located glacier cores, obtained from high-altitude, low-temperature sites, can reveal detailed information about atmospheric air chemistry at sub-annual resolution 1 . Such data may provide input to climate-change models, the study of acid precipitation patterns and many other phenomena. Here I present data from an ice core which show that during the era of intense atmospheric thermonuclear weapons testing (ATWT) a significant part of the nitrate content in the snow was modulated by the intensity of the nuclear detonations. The fixation of nitrogen by nuclear fireballs leads to NO x gases in the atmosphere 2 and ultimately to nitric acid in precipitation. At certain concentrations, these gases and the associated aerosols may perturb the climate 3,4 .
NASA Astrophysics Data System (ADS)
Medioli, B. E.; Dallimore, S. R.; Nixon, F. M.; Dallimore, A.; Blasco, S.; Paull, C. K.; McLaughlin, F.; Ussler, W.; Davies, E.
2004-12-01
Pingo-like features (PLFs) are rounded positive relief features commonly found on Beaufort Sea shelf, NWT. PLFs occur in water depths from 20 to 200m, are typically a few hundred meters in diameter and rise 10 to 35m above the seafloor. In the fall of 2003, an MBARI-USGS-GSC-DFO coring and geophysical study was undertaken of a number of PLFs. The crests, flanks and moats of 8 PLFs, as well as background shelf sites, were vibra-cored. Upon recovery, core temperatures of moat sediments ranged from 2.0 to -0.5 deg C and no ice bonding was observed. Sediments consisted of dark-olive-grey to black muds with shells. Sedimentary structures were rare with some finely laminated to finely-color-banded beds. Intense bioturbation, in situ marine shells and a lack of terriginous macrofossils suggest moat sediments were deposited in a shallow coastal environment. In some instances, a down core grain size coarsening was observed with higher organic content suggesting a gradational environment towards more lagoonal conditions. Core temperatures from the 8 PLFs were 0 to -1.7 deg C, significantly colder than the moat sediments. Ice-bonded permafrost was encountered within 1m of the seabed with visible ice content up to 40% by volume. Several ice-bonded intervals were preserved frozen for detailed investigation in the lab. The observed ground ice in the cores was quite unique when compared with visible ice forms commonly seen in regional terrestrial sections. The ice gave the core a vuggy texture with individual ice-filled vugs 10 to 200 mm3. Vugs were typically flattened to ovoid. When thawed, the ice produced excess water resulting in a very soft texture. In many cases the vuggy texture was maintained with sediment voids forming where the ice was. PLF crest sediments were massive silty clays with clayey silts and muddy fine sand interbeds. They generally lack sedimentary structures, although this may have been due to sediment structure loss upon thawing. The background seafloor sediments consisted of unfrozen, massive silty sands and sandy silts and were distinct from the crest and moat sediments. In several cores, a sharp transition was noted to well-sorted sands. This lower unit may represent a transgressed terrestrial sequence. Research continues to determine the origin of the PLFs and quantify the role of permafrost and ice formation.
cm-scale variations of crystal orientation fabric in cold Alpine ice core from Colle Gnifetti
NASA Astrophysics Data System (ADS)
Kerch, Johanna; Weikusat, Ilka; Eisen, Olaf; Wagenbach, Dietmar; Erhardt, Tobias
2015-04-01
Analysis of the microstructural parameters of ice has been an important part of ice core analyses so far mainly in polar cores in order to obtain information about physical processes (e.g. deformation, recrystallisation) on the micro- and macro-scale within an ice body. More recently the influence of impurities and climatic conditions during snow accumulation on these processes has come into focus. A deeper understanding of how palaeoclimate proxies interact with physical properties of the ice matrix bears relevance for palaeoclimatic interpretations, improved geophysical measurement techniques and the furthering of ice dynamical modeling. Variations in microstructural parameters e.g. crystal orientation fabric or grain size can be observed on a scale of hundreds and tens of metres but also on a centimetre scale. The underlying processes are not necessarily the same on all scales. Especially for the short-scale variations many questions remain unanswered. We present results from a study that aims to investigate following hypotheses: 1. Variations in grain size and fabric, i.e. strong changes of the orientation of ice crystals with respect to the vertical, occur on a centimetre scale and can be observed in all depths of an ice core. 2. Palaeoclimate proxies like dust and impurities have an impact on the microstructural processes and thus are inducing the observed short-scale variations in grain size and fabric. 3. The interaction of proxies with the ice matrix leads to depth intervals that show correlating behaviour as well as ranges with anticorrelation between microstructural parameters and palaeoclimatic proxies. The respective processes need to be identified. Fabric Analyser measurements were conducted on more than 80 samples (total of 8 m) from different depth ranges of a cold Alpine ice core (72 m length) drilled in 2013 at Colle Gnifetti, Switzerland/Italy. Results were obtained by automatic image processing, providing estimates for grain size distributions and crystal orientation fabric, and comparison with data from continuous flow analysis of chemical impurities. A microstructural characterisation of the analysed core is presented with emphasis on the observed variations in crystal orientation fabric. The relevance of these results for palaeoclimate reconstruction and geophysical applications in ice are discussed.
NASA Astrophysics Data System (ADS)
Philippe, Morgane; Tison, Jean-Louis; Fjøsne, Karen; Hubbard, Bryn; Kjær, Helle A.; Lenaerts, Jan T. M.; Drews, Reinhard; Sheldon, Simon G.; De Bondt, Kevin; Claeys, Philippe; Pattyn, Frank
2016-10-01
Ice cores provide temporal records of surface mass balance (SMB). Coastal areas of Antarctica have relatively high and variable SMB, but are under-represented in records spanning more than 100 years. Here we present SMB reconstruction from a 120 m-long ice core drilled in 2012 on the Derwael Ice Rise, coastal Dronning Maud Land, East Antarctica. Water stable isotope (δ18O and δD) stratigraphy is supplemented by discontinuous major ion profiles and continuous electrical conductivity measurements. The base of the ice core is dated to AD 1759 ± 16, providing a climate proxy for the past ˜ 250 years. The core's annual layer thickness history is combined with its gravimetric density profile to reconstruct the site's SMB history, corrected for the influence of ice deformation. The mean SMB for the core's entire history is 0.47 ± 0.02 m water equivalent (w.e.) a-1. The time series of reconstructed annual SMB shows high variability, but a general increase beginning in the 20th century. This increase is particularly marked during the last 50 years (1962-2011), which yields mean SMB of 0.61 ± 0.01 m w.e. a-1. This trend is compared with other reported SMB data in Antarctica, generally showing a high spatial variability. Output of the fully coupled Community Earth System Model (CESM) suggests that, although atmospheric circulation is the main factor influencing SMB, variability in sea surface temperatures and sea ice cover in the precipitation source region also explain part of the variability in SMB. Local snow redistribution can also influence interannual variability but is unlikely to influence long-term trends significantly. This is the first record from a coastal ice core in East Antarctica to show an increase in SMB beginning in the early 20th century and particularly marked during the last 50 years.
Modeling of water isotopes in polar regions and application to ice core studies
NASA Astrophysics Data System (ADS)
Jouzel, J.
2012-04-01
Willi Dansgaard spear-headed the use of the stable isotopes of water in climatology and palaeoclimatology especially as applied to deep ice cores for which measurements of the oxygen and hydrogen isotope ratios remain the key tools for reconstructing continuous palaeotemperature records. In the line of his pioneering work on "Stable isotopes in precipitation" published in Tellus in 1964, I will review how isotopic models, either Rayleigh type or based on the implementation of water isotopes in General Circulation Models, have developed and been used for applications in polar ice core studies. This will include a discussion of the conventional approach for interpreting water isotopes in ice cores and of additional information provided by measurements of the deuterium excess and more recently of the 17O-excess.
The Last Interglacial History of the Antarctic Ice sheet
NASA Astrophysics Data System (ADS)
Bradley, Sarah; Siddall, Mark; Milne, Glenn A.; Masson-Delmotte, Valerie; Wolff, Eric; Hindmarsh, Richard C. A.
2014-05-01
In this paper we present a summary of the work which was conducted as part of the 'PAST4FUTURE -WP4.1: Sea Level and Ice sheets' project. The overall aim of this study was to understand the response of the Antarctic Ice sheet (AIS) to climate forcing during the Last interglacial (LIG) and its contribution to the observed higher than present sea level during this period. The study involved the application and development of a novel technique which combined East Antarctic stable isotope ice core data with the output from a Glacial Isostatic Adjustment (GIA) model [Bradley et al., 2012]. We investigated if the stable isotope ice core data are sensitive to detecting isostatically driven changes in the surface elevation driven by changes in the ice-loading history of the AIS and if so, could we address some key questions relating to the LIG history of the AIS. Although it is believed that the West Antarctic Ice sheet (WAIS) reduced in size during the LIG compared to the Holocene, major uncertainties and unknowns remain unresolved: Did the WAIS collapse? What would the contribution of such a collapse be the higher than present LIG eustatic sea level (ESL)? We will show that a simulated collapse of the WAIS does not generate a significant elevation driven signal at the EAIS LIG ice core sites, and as such, these ice core records cannot be used to assess WAIS stability over this period. However, we will present 'treasure maps' [Bradley et al., 2012] to identify regions of the AIS where results from geological studies and/or new paleoclimate data may be sensitive to detecting a WAIS collapse. These maps can act as a useful tool for the wider science community/field scientists as a guide to highlight sites suitable to constrain the evolution of the WAIS during the LIG. Studies have proposed that the surface temperature across the East Antarctic Ice Sheet (EAIS) was significantly warmer, 2-5°C during the LIG compared to present [Lang and Wolff, 2011]. These higher temperatures are estimated primarily using the difference in the δD peak in the LIG stable isotope ice core data relative to the records for the present interglacial; a feature which is referred to as the 'LIG overshoot'. Generally studies have attributed most of this signal to changes in the Antarctic climate [Masson-Delmotte et al., 2011]. However, a previously overlooked contribution is the influence of changes in surface elevation driven by changes in ice-loading history of the EAIS [Bradley et al., 2013]. We will show that introducing a relatively moderate reduction in the amount of thickening of the EAIS over the LIG, can generate a significant elevation driven δD signal at the EAIS ice core sites, and as such elevation effects can account for a significant fraction of the LIG overshoot. We will conclude that the potential contribution of this process must be considered when using the EAIS stable isotope ice core data to make estimated of the LIG surface temperature. Finally, we will provide estimates of the contribution of the AIS to both ESL and to the higher than observed relative sea level during the LIG. Bradley, S. L., M. Siddall, G. A. Milne, V. Masson-Delmotte, and E. Wolff (2012), Where might we find evidence of a Last Interglacial West Antarctic Ice Sheet collapse in Antarctic ice core records?, Global and Planetary Change, 88-89(0), 64-75. Bradley, S. L., M. Siddall, G. A. Milne, V. Masson-Delmotte, and E. Wolff (2013), Combining ice core records and ice sheet models to explore the evolution of the East Antarctic Ice sheet during the Last Interglacial period, Global and Planetary Change, 100, 278-290. Lang, N., and E. W. Wolff (2011), Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives, Clim. Past., 7(2), 361-380. Masson-Delmotte, V., et al. (2011), A comparison of the present and last interglacial periods in six Antarctic ice cores, Clim. Past., 7(2), 397-423.
3D anatomy of Heinrich Layer 2
NASA Astrophysics Data System (ADS)
van Rooij, D.; Zaazi, N.; Fagel, N.; Boone, M.; Cnudde, V.; Dewanckele, J.; Pirlet, H.; Rohl, U.; Blamart, D.; Henriet, J.-P.; Jacobs, P.; Houbrechts, H.; Duyck, P.; Swennen, R.
2009-04-01
Heinrich Layers are found in the North Atlantic Ocean as well-constrained markers of catastrophic iceberg surges from the Pan-Atlantic ice sheets during the last glacial cycle. Their physical and geochemical characteristics allow for relatively fast diagnostics using the state-of-the-art core scanners such as a Multi-Sensor Core Logger and an XRF core scanner. The nature of these characteristics are predominantly due to the source sediments of the ice-rafted debris (IRD) on the one hand (magnetic susceptibility, color, carbonate content) and the response of the palaeo-environment on the other hand (carbonate content, foraminiferal assemblage). However, changes in (gamma) bulk density of the sediment within a Heinrich Layer cannot solely be explained due to the higher content of IRD. Sediment cores in the Porcupine Seabight (West off Ireland) have shown the presence of Heinrich Events without the diagnostic changes in magnetic susceptibility (MS), suggesting a more drastic change in oceanography which could cause widespread diagenesis on the seabed during Heinrich Events. In order to better understand the physical behavior of a Heinrich Layer, 2 cores were studied taken from the northern Porcupine Seabight by R/V Marion Dufresne campaign MD123 in September 2001. More specifically HL2 was studied since it carries the most typical HL signature. The main anatomical information, with a resolution of 0.5 mm, was obtained by means of medical computed tomography of half-core sections of 50 cm length from the Ghent University Hospital. This information was used for detailed sampling for mineralogy, grainsize measurements and palaeoenvironmental analyses. On one core section, XRF core scanning was performed at a 0.5 cm interval. Higher-resolution information was obtained from five 8 cc subsamples which underwent µCT scanning and cold-cathode luminescence microscopy. The results of this unique approach show a rather surprising 3D view of a Heinrich Layer. As expected, the concentration of ice-rafted debris (commonly referred to as the fraction > 150 µm) increases towards the culmination of HL2, marked by an increase in MS, XRF Ca and the percentage of N. pachyderma s. However, the zone where the density increases is marked by a cloud of fine and highly dense particles surrounding the IRD. It seems as if the fine clayey "background" matrix throughout the core consolidates near the centre of HL2. The same feature has been observed within the µCT samples, where the cold-cathode luminescence microscopy has indicated the presence of zoned dolomites. These dolomites might be the result of a diagenetic process that might explain the elevated density. Moreover, the mineralogical analyses show for a predominant volcanic source for the magnetic susceptibility. Contrastingly, both XRF Fe and Ti show significant decreases near the HL culmination, which calls again for diagenetic alteration of the sediment during or just after the Heinrich Event. At this stage of the research, the mechanisms of these diagenetic processes remain unclear. Nevertheless, these results call for a wider view on the depositional processes of Heinrich Layers and their impact upon the seabed geochemistry.
NASA Astrophysics Data System (ADS)
Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.
2012-12-01
Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent/divergent ice zones, (ii) provide datasets that support enhanced parameterizations in numerical models as well as model initialization and validation, (iii) parameters of interest to Arctic stakeholders for marine navigation and ice engineering studies, and (iv) statistics that support algorithm development for the next-generation of airborne and satellite altimeters, including NASA's ICESat-2 mission. We describe the potential contribution our results can make towards the improvement of coupled ice-ocean numerical models, and discuss how data synthesis and integration with high-resolution models may improve our understanding of sea ice variability and our capabilities in predicting the future state of the ice pack.
Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, John, E-mail: jchambers@carnegiescience.edu
In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planetsmore » with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2–5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1–3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.« less
NASA Astrophysics Data System (ADS)
Forster, R. R.; Miege, C.; Box, J. E.; McConnell, J.; Spikes, V. B.; Burgess, E. W.
2010-12-01
The Greenland Ice Sheet plays an important role in Earth’s climate system evolution. The snow accumulation rate is the largest single mass budget term. With only 14% of the ice sheet area, Southeast Greenland contains the highest accumulation rates, accounting for one third of the total snow accumulation and annual variability. The high accumulation rates have made the region less desirable for long climate record ice cores and therefore, contain relatively very few in situ measurements to constrain the ice sheet mass budget. We present annual snow accumulation rates from the Arctic Circle Traverse 2010 (ACT-10). During April and May 2010 we acquired three 50 m firn cores connected by surface-based 400 MHz ground penetrating radar (GPR) in Southeast Greenland. The traverse repeated and extended the original Arctic Circle Traverse in 2004 (Spikes et al., 2004). Dating is achieved using geochemical analysis of the cores to identify isochronal layers detected by the GPR yielding annual accumulation estimates along the traverse between the core sites. The 300 km ACT-10 GPR snowmobile traverse extended the ACT-04 path 80 km to the lowest elevation core site at 1776 m. Meanwhile, airborne radars, operating as part of NASA’s Operation IceBridge also acquired data over the full length of the ACT-10 path, simultaneously with a portion of the traverse and within days for the remaining segments. The IceBridge and ACT-10 data are to be combined in a calibration effort such that snow accumulation rates may be mapped elsewhere in Greenland and even in Antarctica.
NASA Astrophysics Data System (ADS)
Faria, S. H.; Kipfstuhl, S.; Garbe, C. S.; Bendel, V.; Weikusat, C.; Weikusat, I.
2010-12-01
The great value of polar deep ice cores stems mainly from two essential features of polar ice: its crystalline structure and its impurities. They determine the physical properties of the ice matrix and provide proxies for the investigation of past climates. Experience shows that these two essential features of polar ice manifest themselves in a multiscale diversity of dynamic structures, including dislocations, grain boundaries, solid particles, air bubbles, clathrate hydrates and cloudy bands, among others. The fact that these structures are dynamic implies that they evolve with time through intricate interactions between the crystalline structure, impurities, and the ice flow. Records of these interactions have been carefully investigated in samples of the EPICA deep ice core drilled in Dronning Maud Land, Antarctica (75°S, 0°E, 2882 m elevation, 2774.15 m core length). Here we show how the distributions of sizes and shapes of air bubbles correlate with impurities and the crystalline structure, how the interaction between moving grain boundaries and micro-inclusions changes with ice depth and temperature, as well as the possible causes for the abrupt change in ice rheology observed in the MIS6-MIS5e transition. We also discuss how these observations may affect the flow of the ice sheet and the interpretation of paleoclimate records. Micrograph of an EDML sample from 555m depth. One can identify air bubbles (dark, round objects), microinclusions (tiny defocused spots), and a grain boundary pinned by a bubble. The width of the image is 700 micrometers.
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
NASA Astrophysics Data System (ADS)
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
Warm ocean surface led to ice margin retreat in central-eastern Baffin Bay during the Younger Dryas
NASA Astrophysics Data System (ADS)
Oksman, Mimmi; Weckström, Kaarina; Miettinen, Arto; Juggins, Stephen; Divine, Dmitry; Jackson, Rebecca; Korsgaard, Niels J.; Telford, Richard; Kucera, Michal
2017-04-01
The Greenland ice sheet stability is linked to fast-flowing ice streams that are influenced by sea surface temperatures (SSTs) at their front. One of the largest ice streams in West Greenland is the Jakobshavn Isbræ, which has been shown to have collapsed at ca. 12.2 kyr BP in the middle of the Younger Dryas (YD) cold period (12.9-11.7 kyr BP). The cause for this collapse is still unknown yet hypotheses, such as warm Atlantic water inflow, have been put forward to explain it. Here we present the first diatom-based high-resolution reconstruction of sea surface conditions in the central-eastern Baffin Bay between 14.0 and 10.2 kyr BP. The sea surface temperatures reveal warmer conditions beginning at ca. 13.4 kyr BP and leading to intensive calving and iceberg discharge from Jakobshavn Isbræ visible as increased sedimentation rates and deposition of coarse-grained material in our sediment stratigraphy. The warm YD ocean surface conditions in Baffin Bay are out of phase with the δ18O record from the North Greenland Ice Core Project (NGRIP) and other SST records from northern North-Atlantic. We show that the ocean has had significant interactions with the Greenland ice sheet in the past and emphasize its importance under the current warming of the North Atlantic.
NASA Astrophysics Data System (ADS)
Graham, Russell; Stafford, Thomas, Jr.; Semken, Holmes, Jr.
2010-05-01
Advances in AMS physics and organic geochemistry have revolutionized our ability to establish absolute chronologies on vertebrate fossils. Highly purified collagen, which provides extremely accurate 14C ages, can be extracted from single bones and teeth as small as 50 mg. Combined with measurement precisions of ±15 to 25 years for ages of < 20,000 yr, the direct AMS 14C technique enables fossil deposits to be chronologically dissected at the level of single animals. Analysis of data from a variety of sites in the United States indicates that most excavation levels (analysis units) as small as 10 cm can be time averaged by several thousand years at a minimum, even with the greatest care in excavation and processing of sediments. Time averaging of this magnitude has important implications for fine-scale paleoecological analysis of faunas, especially when compared to high-resolution climate records like those derived from speleothems, ice cores, or marine cores. To this end, we propose saturation dating of indicative taxa and plotting dates of individual specimens against high-resolution climate records rather than analysis of complete faunas or faunules. This technique provides even higher resolution of paleoenvironments than pollen spectra.
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Henrichs, John
2006-01-01
The Marginal sea Ice Zone (MIZ) and the sea ice edge are the most dynamic areas of the sea ice cover. Knowledge of the sea ice edge location is vital for routing shipping in the polar regions. The ice edge is the location of recurrent plankton blooms, and is the habitat for a number of animals, including several which are under severe ecological threat. Polar lows are known to preferentially form along the sea ice edge because of induced atmospheric baroclinicity, and the ice edge is also the location of both vertical and horizontal ocean currents driven by thermal and salinity gradients. Finally, sea ice is both a driver and indicator of climate change and monitoring the position of the ice edge accurately over long time periods enables assessment of the impact of global and regional warming near the poles. Several sensors are currently in orbit that can monitor the sea ice edge. These sensors, though, have different spatial resolutions, different limitations, and different repeat frequencies. Satellite passive microwave sensors can monitor the ice edge on a daily or even twice-daily basis, albeit with low spatial resolution - 25 km for the Special Sensor Microwave Imager (SSM/I) or 12.5 km for the Advanced Microwave Scanning Radiometer (AMSR-E). Although special methods exist that allow the detection of the sea ice edge at a quarter of that nominal resolution (PSSM). Visible and infrared data from the Advanced Very High Resolution Radiometer (AVHRR) and from the Moderate Resolution Imaging Spectroradiometer (MODIS) provide daily coverage at 1 km and 250 m, respectively, but the surface observations me limited to cloud-free periods. The Landsat 7 Enhanced Thematic Mapper (ETM+) has a resolution of 15 to 30 m but is limited to cloud-free periods as well, and does not provide daily coverage. Imagery from Synthetic Aperture Radar (SAR) instruments has resolutions of tens of meters to 100 m, and can be used to distinguish open water and sea ice on the basis of surface and volume scattering characteristics. The Canadian RADARSAT C-band SAR provides data that cover the Arctic Ocean and the MIZ every 3 days. A change-point detection approach was utilized to obtain an ice edge estimate from the RADARSAT data The Quickscat scatterometer provides ice edge information with a resolution of a few kilometers on a near-daily basis. During portions of March and April of 2003 a series of aircraft flights were conducted over the ice edge in the Bering Sea carrying the Polarimetric Scanning Radiometer (PSR), which provides spectral coverage identical with the AMSR-E instrument at a resolution of 500 meters. In this study we investigated these different data sets and analyzed differences in their definition of the sea ice edge and the marginal ice zone and how these differences as well as their individual limitations affect the monitoring of the ice edge dynamics. We also examined how the nature of the sea ice edge, including its location, compactness and shape, changes over the seasons. Our approach was based on calculation of distances between ice edges derived from the satellite and aircraft data sets listed above as well as spectral coherence methods and shape parameters such as tortuosity, curvature, and fractional dimension.
Historical Carbon Dioxide Record from the Siple Station Ice Core (1734-1983)
Neftel, A. [Physics Institute, University of Bern, Bern, Switzerland; Friedli, H. [Physics Institute, University of Bern, Bern, Switzerland; Moor, E. [Physics Institute, University of Bern, Bern, Switzerland; Lotscher, H. [Physics Institute, University of Bern, Bern, Switzerland; Oeschger, H. [Physics Institute, University of Bern, Bern, Switzerland; Siegenthaler, U. [Physics Institute, University of Bern, Bern, Switzerland; Stauffer, B. [Physics Institute, University of Bern, Bern, Switzerland
1994-09-01
Determinations of ancient atmospheric CO2 concentrations for Siple Station, located in West Antarctica, were derived from measurements of air occluded in a 200-m core drilled at Siple Station in the Antarctic summer of 1983-84. The core was drilled by the Polar Ice Coring Office in Nebraska and the Physics Institute at the University of Bern. The ice could be dated with an accuracy of approximately ±2 years to a depth of 144 m (which corresponds to the year 1834) by counting seasonal variations in electrical conductivity. Below that depth, the core was dated by extrapolation (Friedli et al. 1986). The gases from ice samples were extracted by a dry-extraction system, in which bubbles were crushed mechanically to release the trapped gases, and then analyzed for CO2 by infrared laser absorption spectroscopy or by gas chromatography (Neftel et al. 1985). After the ice samples were crushed, the gas expanded over a cold trap, condensing the water vapor at -80°C in the absorption cell. The analytical system was calibrated for each ice sample measurement with a standard mixture of CO2 in nitrogen and oxygen. For further details on the experimental and dating procedures, see Neftel et al. (1985), Friedli et al. (1986), and Schwander and Stauffer (1984).
NASA Astrophysics Data System (ADS)
Thompson, L. G.; Mosley-Thompson, E. S.; Davis, M. E.; Kenny, D. V.; Lin, P.
2013-12-01
In the last few decades numerous studies have linked pandemic influenza, cholera, malaria, and viral pneumonia, as well as droughts, famines and global crises, to the El Niño-Southern Oscillation (ENSO). Two annually resolved ice core records, one from Dasuopu Glacier in the Himalaya and one from the Quelccaya Ice Cap in the tropical Peruvian Andes provide an opportunity to investigate these relationships on opposite sides of the Pacific Basin for the last 1000 years. The Dasuopu record provides an annual history from 1440 to 1997 CE and a decadally resolved record from 1000 to 1440 CE while the Quelccaya ice core provides annual resolution over the last 1000 years. Major ENSO events are often recorded in the oxygen isotope, insoluble dust, and chemical records from these cores. Here we investigate outbreaks of diseases, famines and global crises during two of the largest events recorded in the chemistry of these cores, particularly large peaks in the concentrations of chloride (Cl-) and fluoride (Fl-). One event is centered on 1789 to 1800 CE and the second begins abruptly in 1345 and tapers off after 1360 CE. These Cl- and F- peaks represent major droughts and reflect the abundance of continental atmospheric dust, derived in part from dried lake beds in drought stricken regions upwind of the core sites. For Dasuopu the likely sources are in India while for Quelccaya the sources would be the Andean Altiplano. Both regions are subject to drought conditions during the El Niño phase of the ENSO cycle. These two events persist longer (10 to 15 years) than today's typical ENSO events in the Pacific Ocean Basin. The 1789 to 1800 CE event was associated with a very strong El Niño event and was coincidental with the Boji Bara famine resulting from extended droughts that led to over 600,000 deaths in central India by 1792. Similarly extensive droughts are documented in Central and South America. Likewise, the 1345 to 1360 CE event, although poorly documented historically in South America, is concomitant with major droughts in India, the collapse of the Yang Dynasty and the Black Death that eliminated roughly one third of the global population. Understanding the characteristics and drivers of these 'natural' events is critical to design adaptive measures for a world with over seven billion people and a climate system now influenced by human activities.
NASA Astrophysics Data System (ADS)
Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.
2012-12-01
Correct estimate of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice cores studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: output of a firn densification model and measurements of δ15N of N2 in air trapped in ice core. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available δ15N measurements performed from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rate and temperature conditions. While firn densification simulations are able to correctly represent most of the δ15N trends over the last deglaciation measured in the EDC, BI, TALDICE and EDML ice cores, they systematically fail to capture BI and EDML δ15N glacial levels, a mismatch previously seen for Central East Antarctic ice cores. Using empirical constraints of the EDML gas-ice depth offset during the Laschamp event (~ 41 ka), we can rule out the existence of a large convective zone as the explanation of the glacial firn model-δ15N data mismatch for this site. The good match between modelled and measured δ15N at TALDICE as well as the lack of any clear correlation between insoluble dust concentration in snow and δ15N records in the different ice cores suggest that past changes in loads of impurities are not the only main driver of glacial-interglacial changes in firn lock-in depth. We conclude that firn densification dynamics may instead be driven mostly by accumulation rate changes. The mismatch between modelled and measured δ15N may be due to inaccurate reconstruction of past accumulation rate or underestimated influence of accumulation rate in firnification models.
NASA Astrophysics Data System (ADS)
Xiao, Xiaotong; Zhao, Meixun; Knudsen, Karen Luise; Sha, Longbin; Eiríksson, Jón; Gudmundsdóttir, Esther; Jiang, Hui; Guo, Zhigang
2017-08-01
Sea-ice conditions on the North Icelandic shelf constitute a key component for the study of the climatic gradients between the Arctic and the North Atlantic Oceans at the Polar Front between the cold East Icelandic Current delivering Polar surface water and the relatively warm Irminger Current derived from the North Atlantic Current. The variability of sea ice contributes to heat reduction (albedo) and gas exchange between the ocean and the atmosphere, and further affects the deep-water formation. However, lack of long-term and high-resolution sea-ice records in the region hinders the understanding of palaeoceanographic change mechanisms during the last glacial-interglacial cycle. Here, we present a sea-ice record back to 15 ka (cal. ka BP) based on the sea-ice biomarker IP25, phytoplankton biomarker brassicasterol and terrestrial biomarker long-chain n-alkanols in piston core MD99-2272 from the North Icelandic shelf. During the Bølling/Allerød (14.7-12.9 ka), the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence, as well as strong meltwater input in the area. This pattern showed an anti-phase relationship with the ice-free/less ice conditions in marginal areas of the eastern Nordic Seas, where the Atlantic Water inflow was strong, and contributed to an enhanced deep-water formation. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas (12.9-11.7 ka) interrupted by a brief interval of enhanced Irminger Current and deposition of the Vedde Ash, as opposed to abruptly increased sea-ice conditions in the eastern Nordic Seas. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Ice-free conditions and sea surface warming were observed for the Early Holocene, followed by expansion of sea ice during the Mid-Holocene.
Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate
Cornford, S. L.; Martin, D. F.; Payne, A. J.; ...
2015-03-23
We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet. Each of the simulations begins with a geometry and velocity close to present day observations, and evolves according to variation in meteoric ice accumulation, ice shelf melting, and mesh resolution. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rates anomalies that remove most of the ice shelves overmore » a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions, ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Sensitivity to mesh resolution is spurious, and we find that sub-kilometer resolution is needed along most regions of the grounding line to avoid systematic under-estimates of the retreat rate, although resolution requirements are more stringent in some regions – for example the Amundsen Sea Embayment – than others – such as the Möller and Institute ice streams.« less
NASA Astrophysics Data System (ADS)
Pokhrel, A.; Kawamura, K.; Seki, O.; Ono, K.; Matoba, S.; Shiraiwa, T.
2015-12-01
180 m long ice core (ca. 343 years old) was drilled in the saddle of the Aurora Peak of Alaska, which is located southeast of Fairbanks (63.52°N; 146.54°W, elevation: 2,825 m). Samples were directly transported to the Institute of Low Temperature Science, Hokkaido University and have been analyzed for monoterpene- and isoprene-SOA tracers using gas chromatograph (GC; HP 6890) and mass spectrometry system (GC/MS; Agilent). Ice core collected from mountain glacier has not been explored for SOA yet. We found significantly high concentrations of these tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylrythritol), which show historical trends with good correlation with each other since 1665-2008. They show positive correlations with sugar compounds (e.g., mannitol, glucose, fructose, inositol, and sucrose), and anti-correlations with diacids (e.g., C9), w-oxocarboxylic (wC4-wC9), a-dicarbonyls and low molecular weight fatty acids (LFAs) (e.g., C18:1). LFAs show strong correlations with MSA- and nss-SO42- in the same ice core. These results suggest source regions of SOA tracers and ice core chemistry of Alaska. Concentrations of C5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) have increased in the ice core after the Great Pacific Climate Shift (late 1970's). They show positive correlations with a-dicarbonyls and LFAs (e.g., C18:1) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the surface microlayer are recorded in the ice core. Photochemical oxidation processes for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations (e.g., North Pacific Index) and we can look at a whole range of environmental parameters in parallel with the robust reconstructed temperature changes in the Northern Hemisphere.
Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland
Willerslev, Eske; Cappellini, Enrico; Boomsma, Wouter; Nielsen, Rasmus; Hebsgaard, Martin B.; Brand, Tina B.; Hofreiter, Michael; Bunce, Michael; Poinar, Hendrik N.; Dahl-Jensen, Dorthe; Johnsen, Sigfus; Steffensen, Jørgen Peder; Bennike, Ole; Schwenninger, Jean-Luc; Nathan, Roger; Armitage, Simon; de Hoog, Cees-Jan; Alfimov, Vasily; Christl, Marcus; Beer, Juerg; Muscheler, Raimund; Barker, Joel; Sharp, Martin; Penkman, Kirsty E.H.; Haile, James; Taberlet, Pierre; Gilbert, M. Thomas P.; Casoli, Antonella; Campani, Elisa; Collins, Matthew J.
2009-01-01
One of the major difficulties in paleontology is the acquisition of fossil data from the 10% of Earth’s terrestrial surface that is covered by thick glaciers and ice sheets. Here we reveal that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores and allow reconstructions of past flora and fauna. We show that high altitude southern Greenland, currently lying below more than two kilometers of ice, was once inhabited by a diverse array of conifer trees and insects that may date back more than 450 thousand years. The results provide the first direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections. PMID:17615355
From Abrupt Change to the Future (Hans Oeschger Medal Lecture)
NASA Astrophysics Data System (ADS)
Stocker, T.
2009-04-01
The award of the Oeschger Medal 2009 is a particular honor and pleasure for me as I was given the chance to take over from Hans Oeschger the lead of a wonderful Institute at the University of Bern in 1993. Very apprehensive first, in front of the huge expectations and challenges, I quickly found dear colleagues, close collaborators and extremely supportive staff who all dedicated their time and creativity to work for the common goal of better understanding the Earth System, its variations in the past and its sensitivity to perturbations that man is inflicting on it today. Although met with innate skepticism first by the experimental physicists, our efforts in modelling, particularly the approach of using climate models of reduced complexity, quickly paid off and provided added value to the hard won data and measurements from polar ice cores. It is clear that modelling in such a diverse environment is so much more stimulating and enriching than working on a sophisticated parameterisation in a big modelling centre. Simple models have suggested that the Earth System may have limited stability and that rather fundamental changes could be triggered by the increase of greenhouse gases. However, it is the unique results from polar ice cores, particularly from Greenland that showed that, indeed, the Earth System has limited stability and can react in extremely abrupt ways to changes in forcing. Likewise, the Antarctic ice cores have provided one of the corner stones of our knowledge about climate change: Concentrations of CO2 are today 29% higher than ever during the last 800,000 years. These two fundamental insights from the paleoclimatic archive call for accelerated research into the sensitivity of the climate system and its components to perturbations, as well as the investigation of feedback mechanisms in the biogeochemical cycles that are disturbed by the input of CO2 into the atmosphere by burning fossil fuels and land use change. Our research has only scratched the surface and many questions are still unresolved. A consistent simulation of ice age cycles including the remarkable transition from the 40 kyr to 100 kyr world is still missing. Evidence for interhemispheric connection, a persistent feature of the last ice age, remains circumstantial during earlier ice ages. Recent ice core analyses suggest extremely rapid climate change in the high latitude which is faster than any model has suggested. Sea ice changes must play an important role in that they may operate as an efficient accelerator. Modelling results are reviewed which suggest that instabilities in sea ice coverage can occur in response to relatively slow changes of the background climate. Such behaviour has been demonstrated in simulations of future climate, but it may well apply to past abrupt climate change. The paleoclimate record may therefore hold much more and more detailed information about instabilities and surprises if marine and atmospheric proxies are combined. However, only through the combination of highest-resolution paleoclimatic data and a clever hierarchy of models are we able to address and resolve these questions.
NASA Astrophysics Data System (ADS)
Richter, C.; Adesiyun, O.; Acton, G.; Sidorovskaia, N.; Sierro, F. J.; Xuan, C.; Verosub, K. L.
2015-12-01
We present high-resolution paleomagnetic and rock magnetic results from the lower part of the APC-cored section (36 - 107 meters composite depth) of Integrated Ocean Drilling Program (IODP) Site U1389 (36º 25.515'N; 7º 16.683'W, 644 m water depth). This site was cored as part of the IODP Mediterranean Outflow Expedition to address paleoceanographic questions about the evolution of the North Atlantic Mediterranean and climate system over the past 6 million years. The recovered section at Site U1389 consists of a thick, rapidly accumulated (~40 cm/kyr), and very uniform series of contouritic sediment. Ages were obtained by tuning the planktonic foraminifer oxygen isotope data to the NGRIP ice core record. We collected rock magnetic and paleomagnetic measurements at 1-cm resolution on 71-m of U-channel samples (representing ~145 k.yr.), with the goal of extracting a high-resolution record of paleoenvironmental variability, relative geomagnetic paleointensity, and paleosecular variation. Stepwise demagnetization of the natural remanence (NRM) demonstrates the successful removal of a secondary, predominantly drill-string induced, magnetization and identification of a stable and strong primary magnetization carried by the sediment samples (average MAD calculated by principal component analysis: ~1º). Excellent behavior of the samples during alternating field demagnetization and isothermal remanent magnetization (IRM) acquisition suggest magnetite as the main carrier of magnetic remanence. Relative paleointensity estimates were determined by normalizing the NRM by the ARM, IRM, and magnetic susceptibility. Time-frequency analyses of high-resolution concentration and grain-size dependent paleomagnetic proxy data for the entire 107-m (200 k.yr.) long APC section of Site U1389 will be presented with the goal of identifying the driver of cyclic changes in the sedimentary section.
Oceanographic Influences on Ice Shelves and Drainage in the Amundsen Sea
NASA Astrophysics Data System (ADS)
Minzoni, R. T.; Anderson, J. B.; Majewski, W.; Yokoyama, Y.; Fernandez, R.; Jakobsson, M.
2016-12-01
Marine sediment cores collected during the IB OdenSouthern Ocean 2009-2010 cruise are used to reconstruct the Holocene history of the Cosgrove Ice Shelf, which today occupies Ferrero Bay, a large embayment of eastern Pine Island Bay. Detailed sedimentology, geochemistry, and micropaleontology of cores, in conjunction with subbottom profiles, reveal an unexpected history of recession. Presence of planktic foraminifera at the base of Kasten Core-15 suggests an episode of enhanced circulation beneath a large ice shelf that covered the Amundsen Sea during the Early Holocene, and relatively warm water incursion has been interpreted as a potential culprit for major recession and ice mass loss by 10.7 cal kyr BP from radiocarbon dating. Fine sediment deposition and low productivity throughout the Mid Holocene indicate long-lived stability of the Cosgrove Ice Shelf in Ferrero Bay, despite regional warming evident from ice core data and ice shelf loss in the Antarctic Peninsula. High productivity and diatom abundance signify opening of Ferrero Bay and recession of the Cosgrove Ice Shelf to its present day configuration by 2.0 cal kyr BP. This coincides with deglaciation of an island near Canisteo Peninsula according to published cosmogenic exposure ages. Presence of benthic foraminifera imply that warm deep water influx beneath the extended Cosgrove Ice Shelf was a mechanism for under-melting the ice shelf and destabilizing the grounding line. Major ice shelf recession may also entail continental ice mass loss from the eastern sector of the Amundsen Sea during the Late Holocene. Oceanographic forcing remains a key concern for the current stability of the Antarctic Ice Sheet, especially along the tidewater margins of West Antarctica. Ongoing work on diatom and foraminiferal assemblages of the Late Holocene in Ferrero Bay and other fjord settings will improve our understanding of recent oceanographic changes and their potential influence on ice shelves and outlet glaciers that contribute to the mass balance of the West Antarctic Ice Sheet.
NASA Technical Reports Server (NTRS)
Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.
2016-01-01
The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates the quantitative interpretation of ice core signals but also makes the stable ice isotope signal a more robust regional indicator of climate, speakers noted. Meeting participants agreed that to further our understanding of these relationships, we need more process-focused field and laboratory campaigns.
Automated Laser-Light Scattering measurements of Impurities, Bubbles, and Imperfections in Ice Cores
NASA Astrophysics Data System (ADS)
Stolz, M. R.; Ram, M.
2004-12-01
Laser- light scattering (LLS) on polar ice, or on polar ice meltwater, is an accepted method for measuring the concentration of water insoluble aerosol deposits (dust) in the ice. LLS on polar ice can also be used to measure water soluble aerosols, as well as imperfections (air bubbles and cavities) in the ice. LLS was originally proposed by Hammer (1977a, b) as a method for measuring the dust concentration in polar ice meltwater. Ram et al. (1995) later advanced the method and applied it to solid ice, measuring the dust concentration profile along the deep, bubble-free sections of the Greenland Ice Sheet Projetct 2 (GISP2) ice core (Ram et al., 1995, 2000) from central Greenland. In this paper, we will put previous empirical findings (Ram et al., 1995, 2000) on a theoretical footing, and extend the usability of LLS on ice into the realm of the non-transparent, bubbly polar ice. For LLS on clear, bubble-free polar ice, we studied numerically the scattering of light by soluble and insoluble (dust) aerosol particles embedded in the ice to complement previous experimental studies (Ram et al., 2000). For air bubbles in polar ice, we calculated the effects of multiple light scattering using Mie theory and Monte Carlo simulations, and found a method for determining the bubble number size and concentration using LLS on bubbly ice. We also demonstrated that LLS can be used on bubbly ice to measure annual layers rapidly in an objective manner. Hammer, C. U. (1977a), Dating of Greenland ice cores by microparticle concentration analyses., in International Symposium on Isotopes and Impurities in Snow and Ice, pp. 297-301, IAHS publ. no. 118. Hammer, C. U. (1977b), Dust studies on Greenland ice cores, in International Symposium on Isotopes and Impurities in Snow and Ice, pp. 365-370, IAHS publ. no. 118. Ram, M., M. Illing, P. Weber, G. Koenig, and M. Kaplan (1995), Polar ice stratigraphy from laser-light scattering: Scattering from ice, Geophys. Res. Lett., 22(24), 3525-3527. Ram, M., J. Donarummo, M. R. Stolz, and G. Koenig (2000), Calibration of laser-light scattering measurements of dust concentration for Wisconsinan GISP2 ice using instrumental neutron activation analysis of aluminum: Results and discussion, J. Geophys. Res., 105(D20), 24,731--24,738.
Improvements in the chronology, geochemistry and correlation techniques of tephra in Antarctic ice
NASA Astrophysics Data System (ADS)
Iverson, N. A.; Dunbar, N. W.; McIntosh, W. C.; Pearce, N. J.; Kyle, P. R.
2013-12-01
Visible and crypto tephra layers found in West Antarctic ice provide an excellent record of Antarctic volcanism over the past 100ka. Tephra layers are deposited almost instantaneously across wide areas creating horizons that, if found in several locations, provide 'pinning points' to adjust ice time scales that may otherwise be lacking detailed chronology. Individual tephra layers can have distinct chemical fingerprints allowing them to correlate over great distances. Advances in sample preparation, geochemical analyses (major and trace elements) of fine grained tephra and higher precision 40Ar/39Ar dating of young (<100ka) proximal volcanic deposits are improving an already established tephra record in West Antarctica. Forty three of the potential hundreds of silicate layers found in a recently drilled deep West Antarctic Ice Sheet Divide core (WDC06A) have been analyzed for major elements and a subset for trace elements. Of these layers, at least 16 are homogenous tephra that could be correlated to other ice cores (e.g. Siple Dome, SDMA) and/or to source volcanoes found throughout Antarctica and even extra-continental eruptions (e.g. Sub-Antarctic islands and South America). Combining ice core tephra with those exposed in blue ice areas provide more locations to correlate widespread eruptions. For example, a period of heightened eruptive activity at Mt. Berlin, West Antarctica between 24 and 28ka produced a set of tephra layers that are found in WDC06A and SDMA ice cores, as well as at a nearby blue ice area at Mt. Moulton (BIT-151 and BIT-152). Possible correlative tephra layers are found at ice ages of 26.4, 26.9 and 28.8ka in WDC06A and 26.5, 27.0, and 28.7ka in SDMA cores. The geochemical similarities of major elements in these layers mean that ongoing trace element analyses will be vital to decipher the sequence of events during this phase of activity at Mt. Berlin. Sample WDC06A-2767.117 (ice age of 28.6×1.0ka) appears to correlate to blue ice tephra BIT-152 and to tephra layer SDMA-5683 (ice age of 28.5ka). This tephra layer also appears to be present in blue ice at Mt. Terra Nova on Ross Island, 1400km away, suggesting that it may be a possible to link ice cores in East Antarctica (e.g. Talos Dome and Law Dome). The amount of feldspar in ice core tephra is typically too small to be directly dated by 40Ar/39Ar method, making it very important to geochemically correlate these layers to proximal deposits where more and larger feldspar can be sampled. The correlation of WDC06A-2767.117 to the coarse, proximal BIT-152 provides one such link. The New Mexico Geochronology Research Lab (NMGRL) has two new multi-collector ARGUS VI mass spectrometers that can provide single crystal laser fusion ages that are approximately an order of magnitude more precise than the previous determinations. With these advancements in analytical technology, we hope to improve precision on 'pinning points' in the deep ice cores where annual layer counting becomes less precise.
NASA Astrophysics Data System (ADS)
Newton, Kate; Bendle, James; McKay, Robert; Albot, Anya; Moossen, Heiko; Seki, Osamu; Willmott, Veronica; Schouten, Stefan; Riesselman, Christina; Dunbar, Robert
2016-04-01
Antarctica's coastal oceans play a vital role in controlling both the global carbon cycle and climate change, through variations in primary production, ocean stratification and ice melt. Yet, the Southern Ocean remains the least studied region on Earth with respect to Holocene climate variability. The few Antarctic proximal marine sedimentary records available tend to be short, low resolution, and discontinuous. However, sediments recovered from the Adélie drift during IODP Expedition 318 present a new opportunity to study East Antarctic Holocene climatic evolution, at a resolution that facilitates direct comparison with ice-cores. A 171m core of Holocene laminated diatom ooze was recovered from site U1357, representing continuous Holocene accumulation in a climatically-sensitive coastal polynya. We present results of biomarker analyses (TEX86-L and compound specific fatty acid delta-D and delta-13C, and sterol delta-D) and grain size from throughout the Holocene, revealing the complexities of this climatically sensitive environment. Carbon isotopes are interpreted predominantly as a productivity signal via CO2 drawdown, whilst hydrogen isotopes reflect inputs of isotopically-depleted glacial meltwater from the large Mertz glacier tongue and other proximal glaciers. Both upwelling, as shown by TEX86-L and grain size, and glacial meltwater inputs, indicated by biomarker delta-D, appear to have an important control on productivity on various time scales. The latter may be forced by warm subsurface temperatures through basal melting of the Mertz glacier tongue, indicating both direct and indirect effects of upwelling on productivity. The post-glacial, Early Holocene appears to be characterized by a highly variable system, due to both strong upwelling and meltwater inputs, followed by a more stable and highly productive Middle Holocene under a warmer climate. During the Late Holocene, characterized by a sea-ice expansion, temperature-induced sea-ice melt may have become a more important control on productivity. Millennial and centennial-scale isotopic excursions are also superimposed on the long-term trend. Productivity in particularly appears to follow some cyclicity, similar to that identified in other Antarctic productivity records, which may indicate a sensitivity of the environment to solar activity. Notably, a cyclicity of 2.3 ka is significant throughout the delta-13C record, closely resembling the previously recognised 'Hallstattzeit' solar cycle. Despite the strong importance of local forcing factors on the polynya system, our data suggest that, globally recognised, rapid climate changes are recorded in the site U1357 record.
Juck, D F; Whissell, G; Steven, B; Pollard, W; McKay, C P; Greer, C W; Whyte, L G
2005-02-01
Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-microm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses.
Juck, D. F.; Whissell, G.; Steven, B.; Pollard, W.; McKay, C. P.; Greer, C. W.; Whyte, L. G.
2005-01-01
Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-μm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses. PMID:15691963
The alkenone method for pCO2 reconstructions: challenges and strategies
NASA Astrophysics Data System (ADS)
Zhang, Y.; Pearson, A.; Benthien, A.; Dong, L.; Henderiks, J.; Huybers, P. J.
2016-12-01
The alkenone-pCO2 method is one of the most widely used approaches to reconstruct atmospheric CO2 in the Cenozoic. The method depends upon fractionation of stable carbon isotopes, expressed as ɛp37:2, and a physiological scaling parameter, b, that accounts for algal growth rate and cell size. Alkenone-derived CO2 records for the late Pleistocene, however, often are poorly correlated with ice core CO2 records. We show that poor correlation largely results from (1) systematic overestimation of b and (2) low sensitivity of ɛp37:2 to atmospheric CO2 variations at low-productivity sites [1]. Records are presented from two sites with high ɛp37:2 sensitivity: the South China Sea (SCS) and the tropical Altantic Ocean. Values of b are back calculated to determine their full range over glacial-interglacial cycles using ɛp37:2, ice core pCO2 records, and ocean temperature reconstructions. Air-sea equilibrium of CO2 is assumed at both sites, and the high-resolution temperature record from the SCS site is tuned to ice core pCO2 to eliminate age model discrepancies. The mean value of b is applied to obtain pCO2 estimates. By definition, this approach must yield the correct mean value for pCO2, but observed amplitudes are also reproduced. We further explore the relationship between coccolithophore cell size and growth rate using coccolith size measurements and back-calculated values of b, which suggests a potential proxy to constrain the history of phytoplankton growth rate and b. [1] Zhang, Y.G., Pearson, A., Huybers, P. and Pagani, M, 2016, Refining the alkenone-pCO2 method: The role of algal growth conditions, Paleoceanography, in review
Application of composite flow laws to grain size distributions derived from polar ice cores
NASA Astrophysics Data System (ADS)
Binder, Tobias; de Bresser, Hans; Jansen, Daniela; Weikusat, Ilka; Garbe, Christoph; Kipfstuhl, Sepp
2014-05-01
Apart from evaluating the crystallographic orientation, focus of microstructural analysis of natural ice during the last decades has been to create depth-profiles of mean grain size. Several ice flow models incorporated mean grain size as a variable. Although such a mean value may coincide well with the size of a large proportion of the grains, smaller/larger grains are effectively ignored. These smaller/larger grains, however, may affect the ice flow modeling. Variability in grain size is observed on centimeter, meter and kilometer scale along deep polar ice cores. Composite flow laws allow considering the effect of this variability on rheology, by weighing the contribution of grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep mechanisms taking the full grain size distribution into account [1]. Extraction of hundreds of grain size distributions for different depths along an ice core has become relatively easy by automatic image processing techniques [2]. The shallow ice approximation is widely adopted in ice sheet modeling and approaches the full-Stokes solution for small ratios of vertical to horizontal characteristic dimensions. In this approximation shear stress in the vertical plain dominates the strain. This assumption is not applicable at ice divides or dome structures, where most deep ice core drilling sites are located. Within the upper two thirds of the ice column longitudinal stresses are not negligible and ice deformation is dominated by vertical strain. The Dansgaard-Johnsen model [3] predicts a dominating, constant vertical strain rate for the upper two thirds of the ice sheet, whereas in the lower ice column vertical shear becomes the main driver for ice deformation. We derived vertical strain rates from the upper NEEM ice core (North-West Greenland) and compared them to classical estimates of strain rates at the NEEM site. Assuming intervals of constant accumulation rates, we found a variation of vertical strain rates by a factor 2-3 in the upper ice column. We discuss the current applicability of composite flow laws to grain size distributions extracted from ice cores drilled at sites where the flow direction rotates by 90 degrees with depth (i.e. ice divide). An interesting finding is that a transition to a glacial period in future would be associated with a decrease in vertical strain rate (due to a reduced accumulation rate) and an increase of the frequency of small grains (due to an enhanced impurity content). Composite flow laws assign an enhanced contribution of GSS creep to this transition. It is currently unclear which factor would have a greater influence. [1] Herwegh et al., 2005, J. Struct. Geol., 27, 503-521 [2] T. Binder et al., 2013, J. Microsc., 250, 130-141 [3] W. Dansgaard & S.J. Johnsen, 1969, J. Glaciol., 8, 215-223
Exploring Arctic history through scientific drilling
NASA Astrophysics Data System (ADS)
ODP Leg 151 Shipboard Scientific Party
During the brief Arctic summer of 1993, the Ocean Drilling Program's research vessel JOIDES Resolution recovered the first scientific drill cores from the eastern Arctic Ocean. Dodging rafts of pack ice shed from the Arctic ice cap, the science party sampled sediments north of 80°N latitude from the Yermak Plateau, as well as from sites in Fram Strait, the northeastern Greenland margin, and the Iceland Plateau (Figure 1).The sediments collected reveal the earliest history of the connection between the North Atlantic and Arctic Oceans through the Nordic Seas. The region between Greenland and Norway first formed a series of isolated basins, sometimes with restricted deep circulation, that eventually joined and allowed deep and surface Arctic Ocean water to invade the region. A record was also retrieved that shows major glaciation in the region began about 2.5 m.y.a.
NASA Astrophysics Data System (ADS)
Kouwenberg, L. L. R.; Kurschner, W. M.; Wagner, F.; Visscher, H.
An inverse relation of stomatal frequency in leaves of many plant taxa and atmospheric CO2 concentration has been repeatedly demonstrated. Response curves based on this species-specific relation are increasingly used to reconstruct paleo-CO2 levels from stomatal frequency analysis on fossil leaves. This type of atmospheric CO2 records have been produced for a large part of geological history, varying from the Paleozoic to the Holocene. Quaternary glaciochemical records from Antarctica and Greenland suggest that CO2 concentration and temperature are strongly linked, in general CO2 appears to lag temperature change. However, in order to assess this relation, high res- olution records with a precise chronology are needed. During the Holocene, several century-scale climatic fluctuations took place, such as the 8.2 kyr event and the Lit- tle Ice age. Linking these temperature fluctuations to paleo-CO2 concentrations in glaciochemical records can be difficult, because the resolution of ice-cores is gen- erally low and the ice-gas age difference complicates accurate dating. An excellent alternative tool for high-resolution Holocene CO2 reconstructions can be provided by stomatal frequency analysis of leaves from Holocene peat and lake sediments. In this study, it is demonstrated that the western hemlock (Tsuga heterophylla) also ad- justs its stomatal frequency to the historical CO2 rise. After careful proxy-validation, a high resolution paleo-atmospheric CO2 record over the last 2000 years based on subfossil Tsuga heterophylla needles from Mount Rainier (Washington, USA) was re- constructed. Chronology is provided by a suite of AMS carbon isotope dates and the presence of tephra layers from nearby Mt. St Helens. The record reproduces CO2 lev- els around 280 ppmv for the Little Ice Age and the CO2 rise to 365 ppmv over the last 150 years. A prominent feature is a marked rise in CO2 at 350 years AD, gradu- ally declining over the next centuries. The CO2 record will be discussed in terms of its relation to local volcanic CO2 production, paleoclimate data and changes in the terrestrial and marine carbon sources and sinks.
The significance of volcanic ash in Greenland ice cores during the Common Era
NASA Astrophysics Data System (ADS)
Plunkett, G.; Pilcher, J. R.; McConnell, J. R.; Sigl, M.; Chellman, N.
2017-12-01
Volcanic forcing is now widely regarded as a leading natural factor in short-term climate variability. Polar ice cores provide an unrivalled and continuous record of past volcanism through their chemical and particulate content. With an almost annual precision for the Common Era, the ice core volcanic record can be combined with historical data to investigate the climate and social impacts of the eruptions. The sulfate signature in ice cores is critical for determining the possible climate effectiveness of an eruption, but the presence and characterization of volcanic ash (tephra) in the ice is requisite for establishing the source eruption so that location and eruptive style can be better factored in to climate models. Here, we review the Greenland tephra record for the Common Era, and present the results of targeted sampling for tephra of volcanic events that are of interest either because of their suspected climate and societal impacts or because of their potential as isochrons in paleoenvironmental (including ice core) archives. The majority of identifiable tephras derive from Northern Hemisphere mid- to high latitude eruptions, demonstrating the significance of northern extra-tropical volcanic regions as a source of sulfates in Greenland. A number of targets are represented by sparse or no tephra, or shards that cannot be firmly correlated with a source. We consider the challenges faced in isolating and characterizing tephra from low latitude eruptions, and the implications for accurately modelling climate response to large, tropical events. Finally, we compare the ice core tephra record with terrestrial tephrostratigraphies in the circum-North Atlantic area to evaluate the potential for intercontinental tephra linkages and the refinement of volcanic histories.
NASA Astrophysics Data System (ADS)
More, A.; Chaplin, J. E.
2017-12-01
A transdisciplinary approach to study the impact of climate change and air pollution has already yielded significant results, where the detail afforded by historical records has linked glaciochemical data with major economic, epidemiological and climatic events (e.g. More et al., Geohealth, 2017). Historical data has allowed for more accurate calibration of ice-core chronologies, reaching sub-annual accuracy. In turn, more precise chronologies and higher resolution glaciochemical data has added a new dimension to our understanding of the environment and human experience in the last millennium of the Common Era. In this paper we propose examples of the benefits of linking highly detailed and large historical datasets with ultra-high-resolution glaciochemical data obtained through laser ablation, inductively coupled mass spectrometry. We will first examine the signature left in the ice-core record by documented, catastrophic epidemiological and economic events. Epidemics reduced population size, thus affecting economic productivity and therefore atmospheric pollution, especially from labor intensive activities such as the mining of metals (copper, iron, silver, lead), or the consumption of firewood. We will then turn our attention to the impact of increased precipitation and severe climate change on human subsistence and stability. We link glaciochemical signals associated with increased precipitation and temperature decreases with multiple, large datasets of historical records of population collapse and increased civil strife in the middle of the Little Ice Age. In particular, we will focus on how in concomitance with severe climate deterioration European countries began prosecuting citizens—by the thousands—for crimes associated with poor harvests. These prosecutions were often the result of an increase in baseless accusations of supernatural influences of thousands of individuals on phenomena such as incessant rain, unseasonal temperature decreases, frosts, and droughts. This paper will thus show the human impact on the atmosphere's composition and the impact of atmospheric conditions on human behavior, serving as a template for understanding similar reactions to severe climate change in the present.
NASA Technical Reports Server (NTRS)
Jennings, Anne E.
1993-01-01
The goals of the marine geology part of WAIS include reconstructing the chronology and areal extent of ice-sheet fluctuations and understanding the climatic and oceanographic influences on ice-sheet history. As an initial step toward attaining these goals, down-core volume magnetic susceptibility (MS) logs of piston cores from three N-S transects in the western Ross Sea are compared. The core transects are within separate petrographic provinces based on analyses of till composition. The provinces are thought to reflect the previous locations of ice streams on the shelf during the last glaciation. Magnetic susceptibility is a function of magnetic mineral composition, sediment texture, and sediment density. It is applied in the western Ross Sea for two purposes: (1) to determine whether MS data differentiates the three transects (i.e., flow lines), and thus can be used to make paleodrainage reconstructions of the late Wisconsinan ice sheet; and (2) to determine whether the MS data can aid in distinguishing basal till diamictons from diamictons of glacial-marine origin and thus, aid paleoenvironmental interpretations. A comparison of the combined data of cores in each transect is presented.
A 50-year record of NOx and SO2 sources in precipitation in the Northern Rocky Mountains, USA
Naftz, D.L.; Schuster, P.F.; Johnson, C.A.
2011-01-01
Ice-core samples from Upper Fremont Glacier (UFG), Wyoming, were used as proxy records for the chemical composition of atmospheric deposition. Results of analysis of the ice-core samples for stable isotopes of nitrogen (??15N, NO3-) and sulfur (??34SO42-), as well as NO3- and SO42- deposition rates from the late-1940s thru the early-1990s, were used to enhance and extend existing National Atmospheric Deposition Program/National Trends Network (NADP/NTN) data in western Wyoming. The most enriched ??34S value in the UFG ice-core samples coincided with snow deposited during the 1980 eruption of Mt. St. Helens, Washington. The remaining ??34S values were similar to the isotopic composition of coal from southern Wyoming. The ??15N values in ice-core samples representing a similar period of snow deposition were negative, ranging from -5.9 to -3.2 % and all fall within the ??15N values expected from vehicle emissions. Ice-core nitrate and sulfate deposition data reflect the sharply increasing U.S. emissions data from 1950 to the mid-1970s. ?? 2011 Naftz et al; licensee Chemistry Central Ltd.
Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data
NASA Technical Reports Server (NTRS)
Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie
2016-01-01
We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.
Characteristics of basal ice and subglacial water at Dome Fuji, Antarctica ice sheet
NASA Astrophysics Data System (ADS)
Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.
2008-12-01
(Introduction): The second deep ice coring project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered ice cores contain records of global environmental changes going back about 720,000 years. (Estimation of basal ice melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of ice sheet. Some error was included in ice temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the ice sheet was calculated using the vertical temperature gradient of the ice sheet and rate of heat conductivity of ice. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the ice sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by ice sheet model (P. Huybrechts, 2006). Then the heat flux for basal ice melt was about 10mW/m2. This value was equaled to melting of 1.1mm of ice thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of ice thickness. So the annual layer thickness and melting rate of basal ice was the same in ordering way. Or ice equivalent in annual layer is melting every year. The age of the deepest part of ice core is guessed at 720,000 years old and the ice older than basal ice has melted away. (The state of basal ice): When the ice core drilling depth passed 3031.44m, amount of ice chip more abundant than the cutting chips has been collected. When the drilling passed 3033.46m, the amount of ice chip was decreased. But the amount of ice chip collected increase again from 3034.59m and many large ices have taken the upper part of ice core. The temperature of ice sheet near the bedrock is the pressure melting point. So the liquid water can exist easy there. The water like groundwater infiltrated into the borehole and froze in drilling liquid from 3031.44m to 3033.46m. Under 3034.59m, the subglacial water infiltrated into the borehole and froze in drilling liquid. The existence of water channel in the ice core was found. We think that the liquid water has been flowing through the boundary of ice crystal. (Characteristics of chemical constituents): The melted ice was analyzed every 10cm per 50cm from 2400m to 3028m and continuously every 10cm from 3028m to 3034m. The analytical items were water isotopes (d18O and dD), micro particles (dust) and major ion components. The variations of water isotope and dust in ice near the bedrock have no conspicuous change. But, the concentrations of Cl- and Na+ ions had interesting behavior. The concentration of Cl- ion increased and Na+ ion was decreased deeper than 3020m. Further the concentrations of all ions were decreased suddenly deeper than 3034m. The concentration of ions will be decrease in turn according to the solubility of the ion. home/
C-band Joint Active/Passive Dual Polarization Sea Ice Detection
NASA Astrophysics Data System (ADS)
Keller, M. R.; Gifford, C. M.; Winstead, N. S.; Walton, W. C.; Dietz, J. E.
2017-12-01
A technique for synergistically-combining high-resolution SAR returns with like-frequency passive microwave emissions to detect thin (<30 cm) ice under the difficult conditions of late melt and freeze-up is presented. As the Arctic sea ice cover thins and shrinks, the algorithm offers an approach to adapting existing sensors monitoring thicker ice to provide continuing coverage. Lower resolution (10-26 km) ice detections with spaceborne radiometers and scatterometers are challenged by rapidly changing thin ice. Synthetic Aperture Radar (SAR) is high resolution (5-100m) but because of cross section ambiguities automated algorithms have had difficulty separating thin ice types from water. The radiometric emissivity of thin ice versus water at microwave frequencies is generally unambiguous in the early stages of ice growth. The method, developed using RADARSAT-2 and AMSR-E data, uses higher-ordered statistics. For the SAR, the COV (coefficient of variation, ratio of standard deviation to mean) has fewer ambiguities between ice and water than cross sections, but breaking waves still produce ice-like signatures for both polarizations. For the radiometer, the PRIC (polarization ratio ice concentration) identifies areas that are unambiguously water. Applying cumulative statistics to co-located COV levels adaptively determines an ice/water threshold. Outcomes from extensive testing with Sentinel and AMSR-2 data are shown in the results. The detection algorithm was applied to the freeze-up in the Beaufort, Chukchi, Barents, and East Siberian Seas in 2015 and 2016, spanning mid-September to early November of both years. At the end of the melt, 6 GHz PRIC values are 5-10% greater than those reported by radiometric algorithms at 19 and 37 GHz. During freeze-up, COV separates grease ice (<5 cm thick) from water. As the ice thickens, the COV is less reliable, but adding a mask based on either the PRIC or the cross-pol/co-pol SAR ratio corrects for COV deficiencies. In general, the dual-sensor detection algorithm reports 10-15% higher total ice concentrations than operational scatterometer or radiometer algorithms, mostly from ice edge and coastal areas. In conclusion, the algorithm presented combines high-resolution SAR returns with passive microwave emissions for automated ice detection at SAR resolutions.
NASA Astrophysics Data System (ADS)
Hass, H. Christian; Schröder, Simon; Kuhn, Gerhard
2017-04-01
Climate fluctuations of the past two millennia such as the Little Ice Age and the Medieval Warm Period are reported mainly from the Northern Hemisphere. Evidence from Antarctica is comparably sparse and reveals regional and temporal differences, which are particularly evident at the western and eastern sides of the Antarctic Peninsula. High-resolution coastal-marine sediment cores from the northernmost tip of the West Antarctic Peninsula reveal periods dominated by finer sediments between periods that lack the finer sediment component. In Maxwell Bay this fine sediment (grain size mode around 16 µm) has been traced back to sediment related to the occurrence of glacial meltwater. It was found in sheltered places and meltwater creeks of Potter Cove, a small tributary fjord to Maxwell Bay. In the sediment core this sediment occurs predominantly between 600 and 1250 AD (Medieval Warm Period) whereas it is only sparsely affecting the record between 1450 and 1900 AD (Little Ice Age). The temporal pattern is very similar to global-temperature reconstructions and even resembles temperature reconstructions from the Northern Hemisphere. To avoid local effects that may occur in Maxwell Bay more sediment cores were taken from bays and straits further south of King George Island during Cruise PS97 of RV "Polarstern" in 2016. A core from English Strait reveals completely different sedimentary conditions with no detectable meltwater signal (16 µm). However, the mean grain size record resembles that of the cores from Maxwell Bay. The lack of a clear-cut meltwater sediment class as it occurs further north is likely the result of a much smaller hinterland (Greenwich and Robert islands) when compared to Maxwell Bay between Nelson Island and the much bigger King George Island where glaciers and ice sheets discharge large quantities of very turbid meltwater directly into the bay. It is concluded that during the warmer climate periods a large amount of meltwater was released along the NW Antarctic Peninsula. The related plume sediments were distributed downstream to overprint coastal sediments even though the amount was likely not sufficient to produce a discrete sediment class.
NASA Astrophysics Data System (ADS)
Thompson, L. G.; Yao, T.; Beaudon, E.; Mosley-Thompson, E.; Davis, M. E.; Kenny, D. V.; Lin, P. N.
2016-12-01
The Third Pole (TP) is a rapidly warming region containing 100,000 km2 of ice cover that collectively holds one of Earth's largest stores of freshwater that feeds Asia's largest rivers and helps sustain 1.5 billion people. Information on the accelerating warming in the region, its impact on the glaciers and subsequently on future water resources is urgently needed to guide mitigation and adaptation policies. Ice core histories collected over the last three decades across the TP demonstrate its climatic complexity and diversity. Here we present preliminary results from the flagship project of the Third Pole Environment Program, the 2015 Sino-American cooperative ice core drilling of the Guliya ice cap in the Kunlun Mountains in the western TP near the northern limit of the region influenced by the southwest monsoon. Three ice cores, each 51 meters in length, were recovered from the summit ( 6700 masl) while two deeper cores, one to bedrock ( 310 meters), were recovered from the plateau ( 6200 masl). Across the ice cap the net balance (accumulation) has increased annually by 2.3 cm of water equivalent from 1963-1992 to 1992-2015, and average oxygen isotopic ratios (δ18O) have enriched by 2‰. This contrasts with the recent ablation on the Naimona'nyi glacier located 540 km south of Guliya in the western Himalaya. Borehole temperatures in 2015 on the Guliya plateau have warmed substantially in the upper 30 meters of the ice compared to temperatures in 1992, when the first deep-drilling of the Guliya plateau was conducted. Compared with glaciers in the northern and western TP, the Himalayan ice fields are more sensitive to both fluctuations in the South Asian Monsoon and rising temperatures in the region. We examine the climatic changes of the last century preserved in ice core records from sites throughout the TP and compare them with those reconstructed for earlier warm epochs, such as the Medieval Climate Anomaly ( 950-1250 AD), the early Holocene "Hypsithermal" ( 5 to 9 kyr BP) and the Eemian (present only in Guliya). The latter epoch is the latest period when Earth may have been as warm as today and thus serves as an analog for the developing greenhouse world.
NASA Astrophysics Data System (ADS)
D'Andrilli, J.
2017-12-01
Excitation emission matrix fluorescence spectroscopy is widely applied for rapid dissolved organic matter (DOM) characterization in aquatic systems. Fluorescent DOM surveys are booming, not only as a central focus in aquatic environments, but also as an important addition to interdisciplinary research (e.g., DOM analysis in concert with ice core paleoclimate reconstructions, stream metabolism, hydrologic regimes, agricultural developments, and biological activity), opening new doors, not just for novelty, but also for more challenges with chemical interpretations. Recently, the commonly used protein- versus humic-like classifications of DOM have been ineffective at describing DOM chemistry in various systems (e.g., ice cores, wastewaters, incubations/engineered). Moreover, the oversimplification of such classifications used to describe fluorescing components, without further scrutiny, has become commonplace, ultimately producing vague reporting. For example, West Antarctic ice core DOM was shown to contain fluorescence in the low excitation/emission wavelength region, however resolved fluorophores depicting tyrosine- and tryptophan-like DOM were not observed. At first, as literature suggested, we reported this result as protein-like, and concluded that microbial contributions were dominant in deep ice. That initial interpretation would disintegrate the conservation paradigm of atmospheric composition during deposition, the crux of ice core research, and contradict other lines of evidence. This begged the question, "How can we describe DOM chemistry without distinct fluorophores?" Antarctic ice core DOM was dominated by neither tyrosine- nor tryptophan-like fluorescence, causing "unusual" looking fluorescent components. After further examination, deep ice DOM was reported to contain fluorescent species most similar to monolignols and tannin-like phenols, describing the precursors of lignin from low carbon producing environments, consistent with marine sediment records. Currently, we are working towards more detailed descriptions of fluorescence, thus accepting variation in and around protein- and humic-like regions, and achieving robust chemical interpretations of DOM chemistry, ultimately providing insight to its interwoven nature in the environment.
NASA Astrophysics Data System (ADS)
Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J. A.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.
2013-12-01
Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air- δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial-interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML - a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas-ice depth offset during the Laschamp event (41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model- δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.
NASA Astrophysics Data System (ADS)
Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.
2013-05-01
Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air-δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial-interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML - a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas-ice depth offset during the Laschamp event (~41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model-δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.
NASA Astrophysics Data System (ADS)
Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Frederick, B.; Saustrup, S., Sr.; Domack, E. W.; Lavoie, C.; Shevenell, A.; Blankenship, D. D.; Leventer, A.
2014-12-01
In 2014, the R/V Nathaniel B. Palmer (NBP1402) sailed to a virtually unexplored continental shelf along the Sabrina Coast, East Antarctica. The shelf contains the sedimentary record of environmental and ice volume changes within the Aurora Subglacial Basin (ASB), which is presently occupied by ~7 m sea level-rise equivalent of ice. We acquired 750 km of high-resolution seismic data proximal to the Reynolds Trough and Moscow University Ice Shelf glacial systems west of the Dalton Ice Tongue using dual 45/45 cu. in. G.I. guns and a 24 ch. streamer with 3.125 m groups providing a vertical resolution of ~3 m simultaneously with CHIRP data. These are the first images of this margin acquired and show a remarkable set of sequence stratigraphic transitions. Crystalline basement is at the seafloor landward and buried seaward with a transition to smoother reflection interface. Reflective sedimentary strata overlie the basement, dip seaward, and are capped by a landward-dipping regional angular unconformity. Above this are a series of transparent seismic facies that, along with the middle to outer shelf seafloor, dip landward towards a shelf-oblique glacial trough. The older, seaward-dipping strata include a deeper series of units that display at least three stratal architectures interpreted to be shelf deltas implying a pre-glacial, fluvial environment within the drainage basin. Above these sequences, the seismic facies transition to surfaces exhibiting significant erosion, small u-shaped valleys, and channel fill sequences, all of which are reminiscent of temperate glacial features. We interpret these sequences as including sub-ice tunnel valleys and grounding zone wedges with interspersed non-glacial to pro-glacial deposits. Increasing glaciogenic facies upsection suggests a gradual fluvial to glacial transition and increasing glacial extent with time. The subsequent transition to ice sheets is marked by erosion to basement landward and the angular unconformity seaward. The unconformity is overlain by glacial diamict, representing an incomplete record of cold-based glaciations after the ASB became ice-filled. Correlations with cores collected above and below the unconformity and deltaic unit should allow us to determine the ages of these transitions from fluvial to polythermal to ice sheets in East Antarctica.
NASA Astrophysics Data System (ADS)
Rebesco, M.; Liu, Y.; Camerlenghi, A.; Winsborrow, M. C.; Laberg, J.; Caburlotto, A.; Diviacco, P.; Accettella, D.; Sauli, C.; Wardell, N.
2010-12-01
IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. We describe here the EGLACOM data collected within the Kveithola Trough, an E-W trending glacial trough in the NW Barents Sea, NW of the Bear Island. Swath bathymetry shows that the seafloor is characterised by E-W trending mega-scale glacial lineations (MSGL) that record a fast flowing ice stream draining the Svalbard/Barents Sea Ice Sheet (SBIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase axial profile of the trough. Such transverse ridges are interpreted as grounding-zone wedges (GZW) formed by deposition of unconsolidated, saturated subglacial till during episodic ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that present-day morphology is largely inherited from the palaeo-seafloor topography at the time of deposition of the transverse ridges, overlain by a draping glaciomarine unit up to over 15 m thick. Our data allow the reconstruction of depositional processes that accompanied the deglaciation of the Spitsbergen Bank area. The sedimentary drape deposited on top of the GZWs which accumulated at a very high rate in the order of 1-1.5 m ka-1 has a potential to preserve a high resolution palaeoclimatic record of the deglaciation and post-glacial condition in this sector of the Barents Sea.
POLLiCE (POLLen in the iCE): climate history from Adamello ice cores
NASA Astrophysics Data System (ADS)
Cristofori, Antonella; Festi, Daniela; Maggi, Valter; Casarotto, Christian; Bertoni, Elena; Vernesi, Cristiano
2017-04-01
Glaciers can be viewed as the most complete and effective past climate and environment archives severely threatened by climate change. These threats are particularly dramatic across European Alps. The Adamello glacier is the largest, 16.4 km2, and deepest, 270 m, Italian glacier. We aim at estimating biodiversity changes over the last centuries in relation to climate and human activities in the Adamello catchment area. We, therefore, recently launched the POLLiCE project (pollice.fmach.it) for specifically targeting the biological component (e.g. pollen, leaves, plant remains) trapped in ice cores. Classical morphological pollen analysis will be accompanied by DNA metabarcoding. This approach has the potential to provide a detailed taxonomical identification - at least genus level- thus circumventing the limitations of microscopic analysis such as time-consuming procedures and shared features of pollen grains among different taxa. Moreover, ice cores are subjected to chemical and physical analyses - stable isotopes, ions, hyperspectral imaging, etc.- for stratigraphic and climatic determination of seasonality. A pilot drilling was conducted on March 2015 and the resulting 5 m core has been analysed in terms of pollen spectrum, stable isotopes and ions in order to demonstrate the feasibility of the study. The first encouraging results showed that even in this superficial core a stratigraphy is evident with indication of seasonality as highlighted by both by pollen taxa and stable isotopes. Finally, DNA has been successfully extracted and amplified with specific DNA barcodes. A medium drilling was performed on April 2016 with the extraction of a 45 m ice core. The analysis of this core constitutes the subject of a specific research project, CALICE*, just funded by Euregio Science Fund (IPN57). The entire depth, 270 m, of the Adamello glacier is scheduled to be drilled in 2018 winter to secure the unique memory archived by the ice. * See EGU2017 poster by Festi et al. CALICE: Calibrating Plant Biodiversity in Glacier Ice
Chronology of Pu isotopes and 236U in an Arctic ice core.
Wendel, C C; Oughton, D H; Lind, O C; Skipperud, L; Fifield, L K; Isaksson, E; Tims, S G; Salbu, B
2013-09-01
In the present work, state of the art isotopic fingerprinting techniques are applied to an Arctic ice core in order to quantify deposition of U and Pu, and to identify possible tropospheric transport of debris from former Soviet Union test sites Semipalatinsk (Central Asia) and Novaya Zemlya (Arctic Ocean). An ice core chronology of (236)U, (239)Pu, and (240)Pu concentrations, and atom ratios, measured by accelerator mass spectrometry in a 28.6m deep ice core from the Austfonna glacier at Nordaustlandet, Svalbard is presented. The ice core chronology corresponds to the period 1949 to 1999. The main sources of Pu and (236)U contamination in the Arctic were the atmospheric nuclear detonations in the period 1945 to 1980, as global fallout, and tropospheric fallout from the former Soviet Union test sites Novaya Zemlya and Semipalatinsk. Activity concentrations of (239+240)Pu ranged from 0.008 to 0.254 mBq cm(-2) and (236)U from 0.0039 to 0.053 μBq cm(-2). Concentrations varied in concordance with (137)Cs concentrations in the same ice core. In contrast to previous published results, the concentrations of Pu and (236)U were found to be higher at depths corresponding to the pre-moratorium period (1949 to 1959) than to the post-moratorium period (1961 and 1962). The (240)Pu/(239)Pu ratio ranged from 0.15 to 0.19, and (236)U/(239)Pu ranged from 0.18 to 1.4. The Pu atom ratios ranged within the limits of global fallout in the most intensive period of nuclear atmospheric testing (1952 to 1962). To the best knowledge of the authors the present work is the first publication on biogeochemical cycles with respect to (236)U concentrations and (236)U/(239)Pu atom ratios in the Arctic and in ice cores. Copyright © 2013 Elsevier B.V. All rights reserved.
Organic molecules in the polar ice: from chemical analysis to environmental proxies
NASA Astrophysics Data System (ADS)
Barbante, Carlo; Zennaro, Piero; Giorio, Chiara; Kehrwald, Natalie; Benton, Alisa K.; Wolff, Eric W.; Kalberer, Markus; Kirchgeorg, Torben; Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea
2015-04-01
The molecular and isotopic compositions of organic matter buried in ice contains information that helps reconstruct past environmental conditions, evaluate histories of climate change, and assess impacts of humans on ecosystems. In recent years novel analytical techniques were developed to quantify molecular compounds in ice cores. As an example, biomass burning markers, including monosaccharide anhydrides, lightweight carboxylic acids, lignin and resin pyrolysis products, black carbon, and charcoal records help in reconstructing past fire activity across seasonal to millennial time scales. Terrestrial biomarkers, such as plant waxes (e.g. long-chain n-alkanes) are also a promising paleo vegetation proxy in ice core studies. Polycyclic aromatic hydrocarbons are ubiquitous pollutants recently detected in ice cores. These hydrocarbons primarily originate from incomplete combustion of organic matter and fossil fuels (e.g. diesel engines, domestic heating, industrial combustion) and therefore can be tracers of past combustion activities. In order to be suitable for paloeclimate purposes, organic molecular markers detected in ice cores should include the following important features. Markers have to be stable under oxidizing atmospheric conditions, and ideally should not react with hydroxyl radicals, during their transport to polar regions. Organic markers must be released in large amounts in order to be detected at remote distances from the sources. Proxies must be specific, in order to differentiate them from other markers with multiple sources. The extraction of glaciochemical information from ice cores is challenging due to the low concentrations of some impurities, thereby demanding rigorous control of external contamination sources and sensitive analytical techniques. Here, we review the analysis and use of organic molecules in ice as proxies of important environmental and climatic processes.
NASA Astrophysics Data System (ADS)
Stein, R. H.; Niessen, F.; Fahl, K.; Forwick, M.; Kudriavtseva, A.; Ponomarenko, E.; Prim, A. K.; Quatmann-Hense, A.; Spielhagen, R. F.; Zou, H.
2016-12-01
The Arctic Ocean and surrounding continents are key areas within the Earth system and very sensitive to present and past climate change. In this context, the timing and extent of circum-Arctic ice sheets and its interaction with oceanic and sea-ice dynamics are major interest and focus of international research. New sediment cores recovered during the Polarstern Expeditions PS87 (Lomonosov Ridge/2014) and PS93.1 (Fram Strait/2015) together with several sediment cores available from previous Polarstern expeditions allow to carry out a detailed sedimentological and geochemical study that may help to unravel the changes in Arctic sea ice and circum-Arctic ice sheets during late Quaternary times. Our new data include biomarkers indicative for past sea-ice extent, phytoplankton productivity and terrigenous input as well as grain size, physical property, XRD and XRF data indicative for sources and pathways of terrigenous sediments (ice-rafted debris/IRD) related to glaciations in Eurasia, East Siberia, Canada and Greenland. Here, we present examples from selected sediment cores that give new insights into the timing and extent of sea ice and glaciations during MIS 6 to MIS 2. To highlight one example: SE-NW oriented, streamlined landforms have been mapped on top of the southern Lomonosov Ridge (LR) at water depths between 800 and 1000 m over long distances during Polarstern Expedition PS87, interpreted to be glacial lineations that formed beneath grounded ice sheets and ice streams. The orientations of the lineations identified are similar to those on the East Siberian continental margin, suggesting an East Siberian Chukchi Ice Sheet extended far to the north on LR during times of extreme Quaternary glaciations. Based on our new biomarker records from Core PS2757 (located on LR near 81°N) indicating a MIS 6 ice-edge situation with some open-water phytoplankton productivity, the glacial erosional event should have been older than MIS 6 (e.g., MIS 12?).
NASA Astrophysics Data System (ADS)
Veres, D.; Bazin, L.; Landais, A.; Toyé Mahamadou Kele, H.; Lemieux-Dudon, B.; Parrenin, F.; Martinerie, P.; Blayo, E.; Blunier, T.; Capron, E.; Chappellaz, J.; Rasmussen, S. O.; Severi, M.; Svensson, A.; Vinther, B.; Wolff, E. W.
2013-08-01
The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120-800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on δ15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores.
NASA Astrophysics Data System (ADS)
Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.
2012-12-01
Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.
Bartos, I; Beloborodov, A M; Hurley, K; Márka, S
2013-06-14
Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory.
Dean, W.E.; Forester, R.M.; Bradbury, J.P.
2002-01-01
Elk Lake, in northwestern Minnesota, contains numerous proxy records of climatic and environmental change contained in varved sediments with annual resolution for the last 10,000 years. These proxies show that about 8200 calendar years ago (8.2 cal. ka; 7300 radiocarbon years) Elk Lake went from a well-stratified lake that was wind-protected in a boreal forest to a well-mixed lake in open prairie savanna receiving northwesterly wind-blown dust, probably from the dry floor of Lake Agassiz. This change in climate marks the initiation of the widely recognized mid-Holocene "altithermal" in central North America. The coincidence of this change with the so-called 8.2 cal. ka cold event, recognized in ice-core and other records from the circum-North Atlantic, and thought by some to be caused by catastrophic discharge of freshwater from proglacial lakes Agassiz and Ojibway, suggests that the two "events" might be related. Our interpretation of the Elk Lake proxy records, and of other records from less accurately dated sites, suggests that change in climate over North America was the result of a fundamental change in atmospheric circulation in response to marked changes in the relative proportions of land, water, and, especially, glacial ice in North America during the early Holocene. This change in circulation probably post-dates the final drainage of proglacial lakes along the southern margin of the Laurentide ice sheet, and may have produced a minor perturbation in climate over Greenland that resulted in a brief cold pulse detected in ice cores. ?? 2002 Elsevier Science Ltd. All rights reserved.
A century of Amazon burning driven by Atlantic climate
NASA Astrophysics Data System (ADS)
Makou, M.; Thompson, L. G.; Davis, M. E.; Eglinton, T. I.
2011-12-01
Very little is known about annual burning trends in the Amazon Basin prior to remote sensing of fires beginning in the late 1970's. Fires reduce Amazon forest biomass and species richness, release pollutant aerosols, and impact the carbon cycle, compelling further investigation of fire-climate dynamics. We measured organic compounds derived from vegetation burning in ice core samples from the Quelccaya Ice Cap in Peru at better than annual resolution to reconstruct wet and dry season burning throughout the Twentieth Century. Variations in the abundance of methyl hexadecanoate, which is produced by thermal alteration of vascular plant alkanoic acids, were used as a proxy for past fire activity. Concentrations of this compound in Quelccaya ice varied strongly on seasonal, interannual, and decadal time scales over the last 100 years, with high-amplitude dry season variability and muted, decadal-scale changes in wet season fire activity. Decade-long periods of repeatedly enhanced burning occurred during the 1930's and 1960's when dry season precipitation was perpetually reduced, as evidenced by low stages of the Rio Negro. These decadal trends suggest that changes in dry season precipitation drive fire activity in the western Amazon and highlight the potential of Amazon forests to undergo repeated strong burning. Fires occurred during years when sea surface temperatures (SSTs) in the north tropical Atlantic were elevated and the north-south tropical Atlantic SST gradient was enhanced; this SST pattern likely displaced the intertropical convergence zone northward, driving subsidence and drought in the western and southern Amazon basin. Thus, our novel ice core record suggests that Amazon forest fire activity during the Twentieth Century was driven primarily by Atlantic climate processes, and future forest health will depend heavily on the evolution of tropical climate.
Recent Increase in Black Carbon Concentrations from a Mt. Everest Ice Core Spanning 1860-2000 AD
NASA Astrophysics Data System (ADS)
Kaspari, S.; Schwikowski, M.; Gysel, M.; Mayewski, P. A.; Kang, S.; Hou, S.
2009-12-01
Black carbon produced by the incomplete combustion of biomass, coal and diesel fuels can significantly contribute to climate change by altering the Earth’s radiative balance. Black carbon in the atmosphere absorbs light and causes atmospheric heating, whereas black carbon deposited on snow and ice can significantly reduce the surface albedo, resulting in rapid melting of snow and ice. Historical records of black carbon concentration and distribution in the atmosphere are needed to determine the role of black carbon in climate change, however most studies have relied on estimated inventories based on wood and/or fossil fuel consumption data. Reconstructing black carbon concentrations in Asia is particularly important because this region has some of the largest black carbon sources globally, which negatively impact climate, water resources, agriculture and human health. We analyzed a Mt. Everest ice core for black carbon using a single particle soot photometer (SP2). The high-resolution black carbon data demonstrates strong seasonality, with peak concentrations during the winter-spring, and low concentrations during the summer monsoon season. Black carbon concentrations from 1975-2000 relative to 1860-1975 have increased approximately threefold, and the timing of this increase is consistent with black carbon emission inventory data from South Asia. It is notable that there is no increasing trend in iron (used as a proxy for dust) since 1860. This is significant because it suggests that if the recent retreat of glaciers in the region is due, at least in part, to the effect of impurities on snow albedo, the reduced albedo is due to changes in black carbon emissions, not dust.
Poore, Richard Z.; Dowsett, H.J.; Barron, J.A.; Heusser, L.; Ravelo, A.C.; Mix, A.
2000-01-01
Environmental and climatic conditions during the last interglacial (about 125,000 years ago) along the Central and Northern California coastal region are interpreted from study of marine cores recovered by the Ocean Drilling Program at sites 1018 and 1020. Marine microfossil and pollen assemblages, oxygen isotopes in benthic foraminifers, physical properties, and calcium carbonate contents of cored sediments are proxies indicating strong links between the marine and terrestrial environments during marine isotope stage 5 (MIS 5). At the beginning of the last interglacial (MIS 5e), reduction in global ice volume, increase in surface temperature, and warming of air temperature along the Central and Northern California coast were synchronous within the resolution of our sampling record.
NASA Technical Reports Server (NTRS)
Koehler, Peter; Muscheler, Raimund; Fischer, Hubertus
2006-01-01
A main caveat in the interpretation of observed changes in atmospheric (Delta)C-l4 during the last 50,000 years is the unknown variability of the carbon cycle, which together with changes in the C-14 production rates determines the C-14 dynamics. A plausible scenario explaining glacial/interglacial dynamics seen in atmospheric CO2 and (delta)C-13 was proposed recently (Kohler et al., 2005a). A similar approach that expands its interpretation to the C-14 cycle is an important step toward a deeper understanding of (Delta)C-14 variability. This approach is based on an ocean/atmosphere/biosphere box model of the global carbon cycle (BICYCLE) to reproduce low-frequency changes in atmospheric CO2 as seen in Antarctic ice cores. The model is forced forward in time by various paleoclimatic records derived from ice and sediment cores. The simulation results of our proposed scenario match a compiled CO2 record from various ice cores during the last 120,000 years with high accuracy (r(sup 2) = 0.89). We analyze scenarios with different C-14 production rates, which are either constant or based on Be-10 measured in Greenland ice cores or the recent high-resolution geomagnetic field reconstruction GLOPIS-75 and compare them with the available (Delta)C-14 data covering the last 50,000 years. Our results suggest that during the last glacial cycle in general less than 110%0o f the increased atmospheric (Delta)C-14 is based on variations in the carbon cycle, while the largest part (5/6) of the variations has to be explained by other factors. Glacial atmospheric (Delta)C-14 larger than 700% cannot not be explained within our framework, neither through carbon cycle-based changes nor through variable C-14 production. Superimposed on these general trends might lie positive anomalies in atmospheric (Delta)C-14 of approx. 50% caused by millennial-scale variability of the northern deep water production during Heinrich events and Dansgaard/Oeschger climate fluctuations. According to our model, the dominant processes that increase glacial (Delta)C-14 are a reduced glacial ocean circulation (+ approx.40%0), a restricted glacial gas exchange between the atmosphere and the surface ocean through sea ice coverage (+ approx. 20%), and the enrichment of dissolved inorganic carbon with C-14 in the surface waters through isotopic fractionation during higher glacial marine export production caused by iron fertilization (+ approx.10%).
NASA Astrophysics Data System (ADS)
Schwanck, Franciele; Simões, Jefferson C.; Handley, Michael; Mayewski, Paul A.; Bernardo, Ronaldo T.; Aquino, Francisco E.
2016-01-01
Arsenic variability records are preserved in snow and ice cores and can be utilized to reconstruct air pollution history. The Mount Johns ice core (79°55‧S; 94°23‧W and 91.2 m depth) was collected from the West Antarctic Ice Sheet in the 2008/09 austral summer. Here, we report the As concentration variability as determined by 2137 samples from the upper 45 m of this core using ICP-SFMS (CCI, University of Maine, USA). The record covers approximately 125 years (1883-2008) showing a mean concentration of 4.32 pg g-1. The arsenic concentration in the core follows global copper mining evolution, particularly in Chile (the largest producer of Cu). From 1940 to 1990, copper-mining production increased along with arsenic concentrations in the MJ core, from 1.92 pg g-1 (before 1900) to 7.94 pg g-1 (1950). In the last two decades, environmental regulations for As emissions have been implemented, forcing smelters to treat their gases to conform to national and international environmental standards. In Chile, decontamination plants required by the government started operating from 1993 to 2000. Thereafter, Chilean copper production more than doubled while As emission levels declined, and the same reduction was observed in the Mount Johns ice core. After 1999, arsenic concentrations in our samples decreased to levels comparable to the period before 1900.
Identification of contrasting seasonal sea ice conditions during the Younger Dryas
NASA Astrophysics Data System (ADS)
Cabedo-Sanz, P.; Belt, S. T.; Knies, J.
2012-12-01
The presence of the sea ice diatom biomarker IP25 in Arctic marine sediments has been used in previous studies as a proxy for past spring sea ice occurrence and as an indicator of wider palaeoenvironmental conditions for different regions of the Arctic over various timescales [e.g. 1, 2]. The current study focuses on high-resolution palaeo sea ice reconstructions for northern Norway during the last ca. 15 cal. kyr BP. Within this study, particular emphasis has been placed on the identification of the sea ice conditions during the Younger Dryas and the application of different biomarker-based proxies to both identify and quantify seasonal sea ice conditions. Firstly, the appearance of the specific sea ice diatom proxy IP25 at ca. 12.9 cal. kyr BP in a marine sediment core (JM99-1200) obtained from Andfjorden has provided an unambiguous but qualitative measure of seasonal sea ice and thus the onset of the Younger Dryas stadial. The near continuous occurrence of IP25 for the next ca. 1400 yr demonstrates seasonal sea ice during this interval, although variable abundances suggest that the recurrent conditions in the early-mid Younger Dryas (ca. 12.9 - 11.9 cal. kyr BP) changed significantly from stable to highly variable sea ice conditions at ca. 11.9 cal. kyr BP and this instability in sea ice prevailed for the subsequent ca. 400 yr. At ca. 11.5 cal. kyr BP, IP25 disappeared from the record indicating ice-free conditions that signified the beginning of the Holocene. Similarly, a high resolution record from the Kveithola Through, western Barents Sea, showed clearly higher IP25 concentrations during the Younger Dryas stadial compared to the Holocene. For both marine records, the IP25 concentrations were also combined with those of the open water phytoplankton biomarker brassicasterol to generate PBIP25 data from which more quantitative measurements of sea ice were determined. The contrasting seasonal sea ice conditions during the Younger Dryas were further verified through a comparison of the concentrations of IP25 with those of another highly branched isoprenoid (HBI) alkene that is di-unsaturated and believed to also be produced by sea ice diatoms. The ratio of the HBI diene to IP25, termed DIP25, is believed to provide a useful indicator of stability or variability in sea ice conditions and complements the outcomes from the IP25 and PBIP25 index data. 1. Belt, S.T., Vare, L.L., Massé, G., Manners, H.R., Price, J.C., MacLachlan, S.E., Andrews, J.T. , Schmidt, S., 2010. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years. Quaternary Science Reviews 29, 3489-3504. 2. Müller, J., Massé, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nature Geoscience 2, 772-776.
Exposed Ice in the Northern Mid-Latitudes of Mars
NASA Technical Reports Server (NTRS)
Allen, Carlton C.
2007-01-01
Ice-Rich Layer: Polygonal features with dimensions of approximately 100 meters, bounded by cracks, are commonly observed on the martian northern plains. These features are generally attributed to thermal cracking of ice-rich sediments, in direct analogy to polygons in terrestrial polar regions. We mapped polygons in the northern mid-latitudes (30 to 65 N) using MOC and HiRISE images. Polygons are scattered across the northern plains, with a particular concentration in western Utopia Planitia. This region largely overlaps the Late Amazonian Astapus Colles unit, characterized by polygonal terrain and nested pits consistent with periglacial and thermokarst origins. Bright and Dark Polygonal Cracks: An examination of all MOC images (1997 through 2003) covering the study area demonstrated that, at latitudes of 55 to 65 N, most of the imaged polygons show bright bounding cracks. We interpret these bright cracks as exposed ice. Between 40 and 55 N, most of the imaged polygons show dark bounding cracks. These are interpreted as polygons from which the exposed ice has been removed by sublimation. The long-term stability limit for exposed ice, even in deep cracks, apparently lies near 55 N. Bright and Dark Spots: Many HiRISE and MOC frames showing polygons in the northern plains also show small numbers of bright and dark spots, particularly in western Utopia Planitia. Many of the spots are closely associated with collapse features suggestive of thermokarst. The spots range from tens to approximately 100 meters in diameter. The bright spots are interpreted as exposed ice, due to their prevalence on terrain mapped as ice rich. The dark spots are interpreted as former bright spots, which have darkened as the exposed ice is lost by sublimation. The bright spots may be the martian equivalents of pingos, ice-cored mounds found in periglacial regions on Earth. Terrestrial pingos from which the ice core has melted often collapse to form depressions similar to the martian dark spots. Future Observations: The SHARAD radar should be able to confirm the presence and measure the depth of the interpreted ice-rich layer that forms the Astapus Colles unit. If this layer is confirmed it will strengthen the interpretation of bright polygon cracks and bright spots as exposed ice. HiRISE images of the northern plains are showing unprecedented details of the polygonal cracks. Future HiRISE images that include bright spots, compared to MOC images taken years earlier, will illustrate the temporal stability of the spots. The CRISM spectrometer, with multiple spectral bands and a spatial resolution around 20 meters, should allow mineralogical identification of the material exposed in the polygonal bounding cracks and in the bright spots.
Aromatic acids in an Arctic ice core from Svalbard: a proxy record of biomass burning
NASA Astrophysics Data System (ADS)
Grieman, Mackenzie M.; Aydin, Murat; Isaksson, Elisabeth; Schwikowski, Margit; Saltzman, Eric S.
2018-05-01
This study presents vanillic acid and para-hydroxybenzoic acid levels in an Arctic ice core from Lomonosovfonna, Svalbard covering the past 800 years. These aromatic acids are likely derived from lignin combustion in wildfires and long-range aerosol transport. Vanillic and para-hydroxybenzoic acid are present throughout the ice core, confirming that these compounds are preserved on millennial timescales. Vanillic and para-hydroxybenzoic acid concentrations in the Lomonosovfonna ice core ranged from below the limits of detection to 0.2 and 0.07 ppb, respectively (1 ppb = 1000 ng L-1). Vanillic acid levels are high (maximum of 0.1 ppb) from 1200 to 1400 CE, then gradually decline into the twentieth century. The largest peak in the vanillic acid in the record occurs from 2000 to 2008 CE. In the para-hydrobenzoic acid record, there are three centennial-scale peaks around 1300, 1550, and 1650 CE superimposed on a long-term decline in the baseline levels throughout the record. Ten-day air mass back trajectories for a decade of fire seasons (March-November, 2006-2015) indicate that Siberia and Europe are the principle modern source regions for wildfire emissions reaching the Lomonosovfonna site. The Lomonosovfonna data are similar to those from the Eurasian Arctic Akademii Nauk ice core during the early part of the record (1220-1400 CE), but the two ice cores diverge markedly after 1400 CE. This coincides with a shift in North Atlantic climate marked by a change of the North Atlantic Oscillation from a positive to a more negative state.
A TEM analysis of nanoparticulates in a Polar ice core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esquivel, E.V.; Murr, L.E
2004-03-15
This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar withmore » some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.« less
NASA Astrophysics Data System (ADS)
Carbonneau, A.; Allard, M.; L'Hérault, E.; LeBlanc, A.
2011-12-01
A study of permafrost conditions was undertaken in the Hamlet of Pangnirtung, Nunavut, by the Geological Survey of Canada (GSC) and Université Laval's Centre d'études nordiques (CEN) to support decision makers in their community planning work. The methods used for this project were based on geophysical and geomorphological approaches, including permafrost cores drilled in surficial deposits and ground penetrating radar surveys using a GPR Pulse EKKO 100 extending to the complete community area and to its projected expansion sector. Laboratory analysis allowed a detailed characterization of permafrost in terms of water contents, salinity and grain size. Cryostratigraphic analysis was done via CT-Scan imagery of frozen cores using medical imaging softwares such as Osiris. This non destructive method allows a 3D imaging of the entire core in order to locate the amount of the excess ice, determine the volumetric ice content and also interpret the ice-formation processes that took place during freezing of the permafrost. Our new map of the permafrost conditions in Pangnirtung illustrates that the dominant mapping unit consist of ice-rich colluvial deposits. Aggradationnal ice formed syngenitically with slope sedimentation. Buried soils were found imbedded in this colluvial layer and demonstrates that colluviation associated with overland-flow during snowmelt occurred almost continuously since 7080 cal. BP. In the eastern sector of town, the 1 to 4 meters thick colluviums cover till and a network of ice wedges that were revealed as spaced hyperbolic reflectors on GPR profiles. The colluviums also cover ice-rich marine silt and bedrock in the western sector of the hamlet; marine shells found in a permafrost core yielded a radiocarbon date of 9553 cal. BP which provides a revised age for the local deglaciation and also a revised marine submergence limit. Among the applied methods, shallow drilling in coarse grained permafrost, core recovery and CT-Scan allowed the discovery of the importance of Holocene slope processes on shaping the surface of the terrain and leading to the observed cryostructures and ice contents in the near surface permafrost.
NASA Astrophysics Data System (ADS)
Stuhne, G. R.; Peltier, W. R.
2017-12-01
We analyze the effects of nudging 100 kyr numerical simulations of the Laurentide and Fennoscandian ice sheets toward the glacial isostatic adjustment-based (GIA-based) ICE-6G_C reconstruction of the most recent ice age cycle. Starting with the ice physics approximations of the PISM ice sheet model and the SeaRISE simulation protocols, we incorporate nudging at characteristic time scales, τf, through anomalous mass balance terms in the ice mass conservation equation. As should be expected, these mass balances exhibit physically unrealistic details arising from pure GIA-based reconstruction geometry when nudging is very strong (τf=20 years for North America), while weakly nudged (τf=1,000 years) solutions deviate from ICE-6G_C sufficiently to degrade its observational fit quality. For reasonable intermediate time scales (τf=100 years and 200 years), we perturbatively analyze nudged ice dynamics as a superposition of "leading-order smoothing" that diffuses ICE-6G_C in a physically and observationally consistent manner and "higher-order" deviations arising, for instance, from biases in the time dependence of surface climate boundary conditions. Based upon the relative deviations between respective nudged simulations in which these biases follow surface temperature from ice cores and eustatic sea level from marine sediment cores, we compute "ice core climate adjustments" that suggest how local paleoclimate observations may be applied to the systematic refinement of ICE-6G_C. Our results are consistent with a growing body of evidence suggesting that the geographical origins of Meltwater Pulse 1B (MWP1b) may lie primarily in North America as opposed to Antarctica (as reconstructed in ICE-6G_C).
NASA Astrophysics Data System (ADS)
Finney, B. P.; Jaeger, J. M.; Mix, A. C.; Cowan, E. A.; Gulick, S. S.; Mayer, L. A.; Pisias, N. G.; Powell, R. D.; Prahl, F.; Stoner, J. S.
2004-12-01
We are investigating sediments from the fjords and continental margin of southern Alaska to develop high-resolution climatic and oceanographic records for the Late Quaternary. Our goal is to better understand linkages between climatic, terrestrial and oceanic systems in this tectonically active and biologically productive region. A field program was conducted aboard the R/V Maurice Ewing in August/September 2004 utilizing geophysical surveys (high-resolution swath bathymetric and backscatter imaging, shallow sub-bottom profiling, and where permitted, high-resolution seismic reflection profiling), piston and multi-coring, and CTD/water sampling at about 30 sites in this region. Cores are being analyzed for sedimentological, microfossil, geochemical and stable isotopic proxies, with chronologies constrained by Pb-210, AMS radiocarbon, tephrochronolgic and paleomagnetic dating. Our preliminary results demonstrate that these rapidly accumulating sedimentary archives can resolve environmental changes on annual to decadal timescales. Records of recent changes in lithogenic sediment accumulation and biological productivity on the Gulf of Alaska shelf track historical climatic data that extends to the early 20th century in this region. The records also correlate with multi-decadal climate regimes during the Little Ice Age as suggested by tree-ring, glacial advance and salmon abundance records from nearby coastal sites. Jack Dymond's enthusiasm for collaborative, interdisciplinary research will help guide us in unraveling the fingerprints of key processes in this relatively unexplored region.
NASA Astrophysics Data System (ADS)
Stenni, B.; Buiron, D.; Masson-Delmotte, V.; Bonazza, M.; Braida, M.; Chappellaz, J.; Frezzotti, M.; Falourd, S.; Minster, B.; Selmo, E.
2010-12-01
Paleotemperature reconstructions from Antarctic ice cores rely mainly on δD and δ18O records and the main key factors controlling the observed distribution of δD and δ18O in Antarctic surface snow are mainly related to the condensation temperature of the precipitation and the origin of moisture. The deuterium excess, d = δD - 8*δ18O, contains information about climate conditions prevailing in the source regions of precipitation and can be used as an integrated tracer of past hydrological cycle changes. In the framework of the TALos Dome Ice CorE (TALDICE) project, a deep ice core (1620 m) has been drilled at Talos Dome, a peripheral dome of East Antarctica facing the Ross Sea, about 550 km north of Taylor Dome and 1100 km East from the EPICA Dome C drilling site. The TALDICE coring site (159°11'E 72°49'S; 2315 m; T -41°C; www.taldice.org) is located near the dome summit and is characterised by an annual snow accumulation rate of 80 mm water equivalent. Backtrajectory analyses suggest that Talos Dome is mainly influenced by air masses arriving both from the Pacific (Ross Sea) and Indian Ocean sectors. A preliminary dating based on an ice flow model and an inverse method suggests for the upper 1580 m an age of about 300,000 years BP. The full TALDICE δ18O record obtained from the bag samples as well as δD and deuterium excess data are presented here. The δ18O and δD measurements were carried out in Italy and France on a continuous basis of 1 m. These new records will be compared to the ones obtained from the EDC ice core as well as with other East Antarctic ice core records. In particular, we will focus on the whole isotopic profiles, in good agreement with other inland deep ice cores, and on the last deglaciation, showing climatic changes at Talos Dome in phase with the Antarctic plateau and suggesting that the bipolar see saw with Greenland temperature is also valid for this new coastal site facing the Ross Sea sector.
NASA Astrophysics Data System (ADS)
Frelikh, Renata; Murray-Clay, Ruth
2018-04-01
We report on our recent theoretical work, where we suggest that a protoplanetary disk dynamical instability may have played a crucial role in determining the atmospheric size of the solar system’s ice giants. In contrast to the gas giants, the intermediate-size ice giants never underwent runaway gas accretion in a full gas disk. However, as their substantial core masses are comparable to those of the gas giants, they would have gone runaway, given enough time. In the standard scenario, the ice giants stay at roughly their current size for most of the disk lifetime, undergoing period of slow gas accretion onto ~full-sized cores that formed early-on. The gas disk dissipates before the ice giants accumulate too much gas, but we believe this is fine tuned. A considerable amount of solids is observed in outer disks in mm-to-cm sized particles (pebbles). Assisted by gas drag, these pebbles rapidly accrete onto cores. This would cause the growing ice giants to exceed their current core masses, and quickly turn into gas giants. To resolve this problem, we propose that Uranus and Neptune stayed small for the bulk of the disk lifetime. They only finished their core and atmospheric growth in a short timeframe just as the disk gas dissipated, accreting most of their gas from a disk depleted to ~1% of its original mass. The ice giants have atmospheric mass fractions comparable to the disk gas-to-solid ratio of this depleted disk. This coincides with a disk dynamical upheaval onset by the depletion of gas. We propose that the cores started growing closer-in, where they were kept small by proximity to Jupiter and Saturn. As the gas cleared, the cores were kicked out by the gas giants. Then, they finished their core growth and accreted their atmospheres from the remaining, sparse gas at their current locations. We predict that the gas giants may play a key role in forming intermediate-size atmospheres in the outer disk.
Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP)
NASA Astrophysics Data System (ADS)
Svensson, A.; Bigler, M.; Blunier, T.; Clausen, H. B.; Dahl-Jensen, D.; Fischer, H.; Fujita, S.; Goto-Azuma, K.; Johnsen, S. J.; Kawamura, K.; Kipfstuhl, S.; Kohno, M.; Parrenin, F.; Popp, T.; Rasmussen, S. O.; Schwander, J.; Seierstad, I.; Severi, M.; Steffensen, J. P.; Udisti, R.; Uemura, R.; Vallelonga, P.; Vinther, B. M.; Wegner, A.; Wilhelms, F.; Winstrup, M.
2013-03-01
The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM-19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic context.
Post-17th-century changes of European lead emissions recorded in high-altitude alpine snow and ice.
Schwikowski, Margit; Barbante, Carlo; Doering, Thomas; Gaeggeler, Heinz W; Boutron, Claude; Schotterer, Ulrich; Tobler, Leo; van de Velde, Katja; Ferrari, Christophe; Cozzi, Giulio; Rosman, Kevin; Cescon, Paolo
2004-02-15
Lead concentrations and lead isotope ratios were analyzed in two firn/ice cores covering the period from 1650 to 1994, which were obtained from the 4450 m high glacier saddle Colle Gnifetti located in the Monte Rosa massif at the Swiss-Italian border. This study presents the first glaciochemical time series with annual resolution, spanning several centuries of lead concentrations and lead isotopic compositions in precipitation in Europe. Lead concentrations in firn dated from the 1970s are approximately 25 times higher than in ice dated from the 17th century, confirming the massive rise in lead pollution in Europe during the last few centuries. A decline of the lead concentration is then observed during the last two decades, i.e., from 1975 to 1994. The lead isotope ratio 206Pb/207Pb decreased from about 1.18 in the 17th and 18th centuries to about 1.12 in the 1970s. These variations are in good agreement with available information on variations in anthropogenic lead emissions from West European countries, especially from the use of lead additives in gasoline.
NASA Astrophysics Data System (ADS)
Gkinis, Vasileios; Simonsen, Sebastian B.; Buchardt, Susanne L.; Vinther, Bo M.; White, James W. C.
2013-04-01
The Holocene epoch as seen in the water isotopic records of polar ice cores is described by a relatively stable climate characterized by minimal fluctuations in temperature. Arguably, the most commonly used proxy in ice core studies, the ratios of water's stable isotopes, provide an insight in past temperatures via a linear relationship with temperature, commonly referred to as the isotope slope. However, the validity of this slope has been extensively debated. Based on borehole thermometry and gas isotope fractionation studies, it has been shown that temperature changes over the Bølling - Allerød and Younger Dryas transitions as well as several interstadial events have been underestimated by the water isotope slope. Additionally, isotopic artifacts related to ice sheet elevation changes, apparent between 6 and 10 ka b2k, result in a poor or even absent representation of the Holocene climatic optimum in the δ18O record from Greenland ice cores, contrary to what other paleoclimatic records from Northern latitudes indicate. In this study we present ongoing work on the use of the firn isotopic diffusion lengths as a high resolution proxy of the snow and firn temperature. Our reconstruction is based on the high resolution δ18O dataset from NGRIP. Water isotope diffusion is a process that occurs after deposition of the precipitation and takes place in the porous space of the firn until the close off depth. Assuming a diffusivity parameterization and based on a densification and strain rate history, it is possible to investigate the effects of temperature and accumulation on the diffusion length. By inverting the model we produce a temperature reconstruction for the last 15 ka. This temperature signal is independent of factors like the water vapor source location and temperature, the intensity of the atmospheric inversion over the deposition site and the presence or not of clear sky precipitation. In order for the reconstruction to reproduce the long term climate signal, a correction for the thinning function is required. Under the assumption that the GICC05 chronology is the best available estimate for the age - depth relationship in the ice, that would require about 10 - 15% lower accumulation rates at the time of the climatic optimum. The temperature reconstruction is able to infer a Younger Dryas warming signal very close to what previous borehole thermometry and gas isotope fractionation studies indicate. A strong 8.2 ky event can be seen in the record and seems to occur in a two stage fashion and last longer than the raw δ18O signal indicates. Overall, the inferred temperature signal reveals a significant variance with climatic events that are initially not reflected in the δ18O record. Some of those events are supported by the findings of other northern hemispheric climatic or historical records (Medieval and Roman warm periods). The most profound of those events is a rapid warming occurring between 4 and 5 ky b2k, indicating a clear mid - Holocene optimum and ending with a rapid cooling at approximately 4.2 ky b2k. We will comment on the validity of those results as well as the feasibility of the magnitude of the temperature shifts and propose ways to constrain the findings further.
NASA Astrophysics Data System (ADS)
Hayden, T. G.; Kominz, M. A.; Magens, D.; Niessen, F.
2009-12-01
We have estimated ice thicknesses at the AND-1B core during the Last Glacial Maximum by adapting an existing technique to calculate overburden. As ice thickness at Last Glacial Maximum is unknown in existing ice sheet reconstructions, this analysis provides constraint on model predictions. We analyze the porosity as a function of depth and lithology from measurements taken on the AND-1B core, and compare these results to a global dataset of marine, normally compacted sediments compiled from various legs of ODP and IODP. Using this dataset we are able to estimate the amount of overburden required to compact the sediments to the porosity observed in AND-1B. This analysis is a function of lithology, depth and porosity, and generates estimates ranging from zero to 1,000 meters. These overburden estimates are based on individual lithologies, and are translated into ice thickness estimates by accounting for both sediment and ice densities. To do this we use a simple relationship of Xover * (ρsed/ρice) = Xice; where Xover is the overburden thickness, ρsed is sediment density (calculated from lithology and porosity), ρice is the density of glacial ice (taken as 0.85g/cm3), and Xice is the equalivant ice thickness. The final estimates vary considerably, however the “Best Estimate” behavior of the 2 lithologies most likely to compact consistently is remarkably similar. These lithologies are the clay and silt units (Facies 2a/2b) and the diatomite units (Facies 1a) of AND-1B. These lithologies both produce best estimates of approximately 1,000 meters of ice during Last Glacial Maximum. Additionally, while there is a large range of possible values, no combination of reasonable lithology, compaction, sediment density, or ice density values result in an estimate exceeding 1,900 meters of ice. This analysis only applies to ice thicknesses during Last Glacial Maximum, due to the overprinting effect of Last Glacial Maximum on previous ice advances. Analysis of the AND-2A core is underway, and results will be compared to those of AND-1B.
Centennial to millennial variations of atmospheric methane during the early Holocene
NASA Astrophysics Data System (ADS)
Yang, Ji-Woong; Ahn, Jinho; Brook, Edward
2015-04-01
Atmospheric CH4 is one of the most important greenhouse gases. Ice core studies revealed strong correlations between millennial CH4 variations and Greenland climate during the last glacial period. However, millennial to sub-millennial CH4 variations during interglacial periods are not well studied. Recently, several high-resolution data sets have been produced for the late Holocene, but it is difficult to distinguish natural- from anthropogenic changes. In contrast, the methane budget of the early Holocene is not affected by anthropogenic disturbances, thus may help us better understand natural CH4 control mechanisms under interglacial climate boundary conditions. Here we present our new high-precision and high-resolution atmospheric CH4 record from Siple Dome ice core, Antarctica that covers the early Holocene. We used our new wet extraction system at Seoul National University that shows a good precision of ~1 ppb. Our data show several tens of ppb of centennial- to millennial CH4 variations and an anti-correlative evolution with Greenland climate on the millennial time scale. The CH4 record could have been affected by many different types of forcing, including temperature, precipitation (monsoon intensity), biomass burning, sea surface temperature, and solar activity. According to our data, early Holocene CH4 is well correlated with records of hematite stained grains (HSG) in North Atlantic sediment records, within age uncertainties. A red-noise spectral analysis yields peaks at frequencies of ~1270 and ~80 years, which are similar to solar frequencies, but further investigations are needed to determine major controlling factor of atmospheric CH4during the early Holocene.
Late MIS3 to modern central Arctic Paleoceanography based on Ostracode Faunal Assemblages
NASA Astrophysics Data System (ADS)
Gemery, L.; Cronin, T. M.; Jakobsson, M.; Poirier, R. K.; Pearce, C.; Barrientos, N.
2016-12-01
Continuous, highly abundant and well preserved fossil ostracodes were studied in one to two centimeter intervals from AMS-dated cores collected on the Lomonosov Ridge that indicate varying oceanographic conditions during the last 40 ka. Ostracode assemblages from cores taken during the SWERUS 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions including changes in sea-ice cover and inflow of Atlantic-derived water into the Eurasian Basin. Notably, SWERUS 2014 obtained ridge, slope and shelf cores in relatively poorly studied regions of the Arctic. The composition of benthic ostracode assemblages from a multicore and complimentary gravity core (32 MUC4; 85.14, 151.59, in 837mwd and 32 GC2, section 1, 85.15, 151.66 in 826mwd), were analyzed and compared to prior results from various central Arctic expeditions to the Mendeleev, Northwind and Lomonosov Ridges. Key taxa used as indicators of specific water masses include: Acetabulastoma arcticum and Pseudocythere caudata (perennial sea ice), Polycope spp. (productivity and sea ice), Krithe hunti (partially sea-ice free conditions, deep water formation), and Rabilimis mirabilis (Atlantic water influx). Results indicate seasonally sea-ice free conditions during MIS 3 and less LGM ice cover than in more central regions of the Arctic. Intermittent periods of perennial sea ice began to develop during the late Holocene.
All-year-round aerosol chemical composition at Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Udisti, Roberto; Becagli, Silvia; Frosini, Daniele; Galli, Gaia; Ghedini, Costanza; Rugi, Francesco; Severi, Mirko; Traversi, Rita
2010-05-01
Since 2005, continuous, all-year-round aerosol sampling was carried out at Dome C (Central East Antarctica, 3233 m a.s.l., about 1100 km far from the coastline), in the framework of "Station Concordia" project, an Italian PNRA - French IPEV joint program. Size-segregated aerosol samples were collected in summer and winter periods by using different low- and medium-volume systems, including pre-selected cut-off samplers (with PM10, PM2.5 and PM1 cut-off heads) and multi-stage (Andersen 8-stage and Dekati 4-stage) impactors. Sampling resolution and volumes ranged from 1 day to 1 month and from 2.3 to 12 m3/h, respectively. Aerosol study at Dome C is expected improving our knowledge on present-day source intensity, transport efficiency and pathways (including stratosphere-troposphere interchanges) of particles reaching internal sites of Antarctica. Besides, more detailed information on atmosphere-snow interactions, including depositional and post-depositional processes, as well as the effect of sublimation/condensation processes on snow surface, will be used for improving the reconstruction of past atmosphere composition from ice core chemical stratigraphies (EPICA Dome C ice core). Here we report major results from the chemical composition of the Antarctic background aerosol reaching Dome C, pointing out the seasonal pattern and the temporal trend of some ionic components used as tracers of sea spray, marine biogenic and crustal emissions. Oxidised sulfur compounds are assumed to affect the climate system by influencing the Earth's radiative budget, both directly (solar light scattering) and indirectly (acting as cloud condensation nuclei). Among these compounds, methanesulphonic acid (MSA) and H2SO4 (arising from the atmospheric oxidation of phytoplanktonic dimethylsulphide - DMS), are considered the best tracers of marine productivity. Their use as reliable markers of oceanic biogenic emissions is hindered by poorly known mechanisms (temperature and photochemistry induced) controlling the MSA-H2SO4 ratio from DMS. Since, in summer, DMS in route toward central Antarctica is subjected to larger atmospheric concentrations of OH (and/or BrO) radical, lower temperatures and lower humidity, all conditions promoting the preferential H2SO4 formation, non-sea-salt sulphate is assumed to be the most reliable biogenic marker at Dome C. A further insight from ice-core stratigraphies is concerning the sea salt sodium (ssNa) content in snow precipitation as a reliable marker of sea-ice extent, via frost-flower formation at the pack-ice seasonal growth. This interpretation faces with the classical view that consider higher sea-spray production as caused by an increase in zonal wind intensity. Sea spray originated from frost flowers can be distinguished from sea spray coming from bulk sea-water by the lower sulphate/sodium ratio (caused by mirabilite - Na2SO4 10H20 - precipitation occurring when sea-ice temperature falls below -8°C). High resolution aerosol measurement can allow to identify different sea-spray sources and quantify frost flowers contribution to the annual ssNa budget. Finally, dust recorded in ice cores can be used as a valuable proxy for changes in hydrological cycles in the dust source areas and transport processes (pathways and scavenging). The geochemical characterization of dust in the present-day aerosol, compared with chemical composition of soils collected in South America and Australia, allows identifying the major dust source area (South America) and reconstructing pathways of atmospheric circulation. South America role in feeding dust aerosol at Dome C was supported also by comparing aerosol composition with satellite observations (dust plumes on the source sites) and back-trajectory analysis (air masses reaching Antarctica) during massive dust-storm events.
Global ice-core research: Understanding and applying environmental records of the past
Cecil, L. DeWayne; Green, Jaromy R.; Naftz, David L.
2000-01-01
Environmental changes are of major concern at low- or mid-latitude regions of our Earth simply because this is where 80 to 90 percent of the world’s human population live. Ice cores collected from isolated polar regions are, at best, proxy indicators of low- and mid-latitude environmental changes. Because polar icecore research is limiting in this sense, ice cores from low- and mid-latitude glaciers are being used to study past environmental changes in order to better understand and predict future environmental changes that may affect the populated regions of the world.
Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations
NASA Astrophysics Data System (ADS)
Dunbar, Nelia W.; Zielinski, Gregory A.; Voisins, Daniel T.
2003-08-01
Volcanic ash, or tephra layers, are found in the Taylor Dome, Siple Dome A, and Siple Dome B ice cores. Significant shard concentrations are found at a number of depths in all three cores. Electron and ion microprobe analyses indicate that the geochemical composition of most layers is basaltic, basanitic, or trachytic, and the geochemical signatures of the layers suggest derivation from the Pleiades volcanic center, Mt. Melbourne volcano, or small mafic centers, probably in the Royal Society Range area. Presence of tephra layers suggests an episode of previously unrecognized Antarctic volcanic activity between 1776 and 1805 A.D., from at least two volcanic centers. A strong geochemical correlation (D = 3.49 and 3.97 with a value of 4 considered identical) is observed between tephra layers at depth of 79.2 m in the Taylor Dome ice core, and layers between 97.2 and 97.7 m depth in the Siple B core. This correlation, and the highly accurate depth-age scale of the Siple B core suggest that the age of this horizon in the Taylor Dome ice core presented by [1998a, 2000] should be revised downward, to the younger age of 675 ± 25 years before 1995. This revised chronology is consistent with vertical strain measurements presented by [2003].
Radiostratigraphy and age structure of the Greenland Ice Sheet
MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Paden, John D; Prasad Gogineni, S; Young, S Keith; Rybarski, Susan C; Mabrey, Alexandria N; Wagman, Benjamin M; Morlighem, Mathieu
2015-01-01
Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet. Key Points Phase information predicts reflection slope and simplifies reflection tracing Reflections can be dated away from ice cores using a simple ice flow model Radiostratigraphy is often disrupted near the onset of fast ice flow PMID:26213664
NASA Astrophysics Data System (ADS)
Udisti, R.; Barbante, C.; Cozzi, G.; Fattori, I.; Largiuni, O.; Magaldi, L.; Traversi, R.
2003-04-01
Aerosol load of Al and Fe allows estimating the crustal contribution to the primary aerosol sources. While continental dust is the only significant source for Al, Fe takes part also to metabolic processes of living species as an essential oligo-element. For this reason, it has been assumed that atmospheric deposition of desert dust on the oceanic surface can constitute a phytoplanktonic growth factor. Besides, Fe content in aerosol during glacial/interglacial transitions is believed to play a relevant role in controlling oceanic phytoplanktonic uptake of atmospheric CO2. A detailed stratigraphy of Al and Fe in ice cores is basic in understanding the correlation between environmental and climatic changes. Here we report preliminary results of CFA methods able to determine, in field, the "available" (free form and labile complexes) fraction of Al and Fe in ice cores with high sensitivity (D.L. of 10 ppt for Al and 300 ppt for Fe) and reproducibility (around 2 % at ppb level). The two methods were applied to 32 selected sections coming from the EPICA-Dome C ice core (EDC96): 10 sections belonging to Holocene, 10 to the transition and 12 to the LGM. Though Al and Fe determined by CFA is representative of the only soluble fraction (or "available" in the measurement conditions after filtration on 5.0 um), a comparison with the Al and Fe "total" content, as measured by ICP-MS, was made. "Available" fractions represent a minor contribution to the ICP-MS Fe and Al content in the LGM, but this contribution increases during the transition. In the Holocene, the two different analytical methods give similar values. Anyway, also CFA Fe and Al profiles show a sharp concentration decrease in the glacial/interglacial transition, reflecting the lowering dust aerosol load. Fe, especially, shows a very high sensitivity for the ACR climatic change. Whereas CFA-Fe in the LGM is more than 10 times lower than ICP-MS-Fe, ACR values are similar. This evidence could be explained considering that during the LGM the insoluble continental dust is the main Fe source, while a sort of oceanic-recycled Fe, mainly distributed in the fine particles and as more soluble species, becomes more important during the ACR and in the Holocene. Further measurements, with a very higher temporal resolution, are necessary to confirm the observed behaviour.
NASA Astrophysics Data System (ADS)
Eichler, Anja; Gramlich, Gabriela; Kellerhals, Thomas; Tobler, Leonhard; Schwikowski, Margit
2015-04-01
Lead (Pb) is highly neurotoxic and, in contrast to many other heavy metals including cobalt, copper, and zinc, it has no beneficial effects to humans even at low concentrations. The introduction of leaded gasoline in the 1920s initiated a period of unabated growth in the global emissions of Pb. Prior to the onset of leaded gasoline phase-out in the 1970s, atmospheric Pb levels increased dramatically. Long-term histories of Pb pollution in Eastern and Western Europe, Asia, and North America suggest that emissions from leaded gasoline within the Northern Hemisphere are dominant compared to that from metallurgy and coal combustion during the second half of the 20th century. However, there is no equivalent data for Southern America. Although exploitation of the extensive polymetallic deposits of the Andean Altiplano in South America since pre-colonial times has caused substantial emissions of neurotoxic Pb into the atmosphere, its historical significance compared to recent Pb pollution from leaded gasoline is not yet resolved. Here we present the first comprehensive, high-resolution two millennia Pb emission history for South America, based on ice core records of Pb concentrations, Pb enrichment factors (EFs), and Pb isotope ratios from Illimani glacier in Bolivia. Complementary to local air pollution recorded in lake sediments, ice cores from mid latitude glaciers provide information about more extended source areas. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Bolivian Altiplano. The ice core Pb deposition history revealed enhanced Pb EFs due to metallurgical processing for silver production during periods of the Tiwanaku/Wari culture (AD 450-950), the Inca empires (AD 1450-1532), colonial times (AD 1532-1900), and tin production at the beginning of the 20th century. After the 1960s 208Pb/207Pb ratios decreased significantly, whereas Pb EFs increased by a factor of three compared to the emission level from metal production, which we attribute to gasoline related Pb emissions. Our results show that anthropogenic Pb pollution levels from road traffic in South America exceed those of any historical metallurgy in the last two millennia, even in regions with exceptional high local metallurgical activity.
Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H.; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas
2017-01-01
Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450–1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700–2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030–2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural observations are compared with results from a numerical ice sheet model (PISM, isotropic) for comparison of strain rate trends predicted from the large-scale geometry of the ice sheet and borehole logging data. This comparison confirms the segmentation into these depth regions and in turn provides a wider view of the ice sheet. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025296
Geochemistry of East Antarctic Margin Sediments Spanning the Eocene Oligocene Transition.
NASA Astrophysics Data System (ADS)
Light, J. J.; Passchier, S.
2016-12-01
The Eocene Oligocene Transition (EOT) 34 million years ago (Ma), marked the global climate change from greenhouse to icehouse, and the full establishment of the East Antarctic Ice Sheet (EAIS). The initiation of the EAIS during the EOT is believed to have been a step-wise transition; however, data resolution is low and merits the need for further study. The purpose of this study is to expand upon existing knowledge of EAIS dynamics spanning the EOT by creating a higher resolution geochemical record of cores taken from continental shelf sites 1166 in Prydz Bay and U1360 from the Wilkes Land margin. We used Inductively Coupled Plasma Optical Emission Spectrometry and Mass Spectrometry (ICP-OES/ ICP-MS) to determine the bulk chemical composition of samples. Results were used to calculate the Chemical Index of Alteration (CIA), Al2O3/TiO2 ratios, and trace elemental variation down core. CIA values for the early Oligocene in Site U1360 indicate an arid colder environment less likely to be chemically weathered. In contrast, Hole 1166A shows values similar to average shales that increase up core and abruptly decrease at the overlying Neogene diamict, suggesting a warmer more humid environment at Prydz Bay during the late Eocene. Al2O3/TiO2 ratios were used to evaluate mud provenance changes at each site. At site 1166 redox sensitive elements (Cr, Ni, and V) show similar down core distributions to one another. The changes in elemental intensities are likely being controlled by factors such as sediment provenance, changes in redox conditions and surficial weathering. We expect the outcomes of this study to allow us to interpret regional depositional environments at a higher resolution, as well as to shed light on the EAIS's step-wise initiation.
Fire impacts on the cryosphere
NASA Astrophysics Data System (ADS)
Kehrwald, N. M.; Zennaro, P.; Skiles, M.; Barbante, C.
2015-12-01
Continental-scale smog clouds and massive boreal smoke plumes deposit dark particles on glaciers, darkening their surfaces and altering surface albedo. These atmospheric brown clouds are primarily comprised of both fossil fuel and biomass burning combustion products. Here, we examine the biomass burning contribution to aerosols trapped in the cryosphere through investigating the specific molecular marker levoglucosan (1,6-anhydro-β-D-glucopyranose) in ice cores. Levoglucosan is only produced by cellulose combustion, and therefore is an ideal comparison for multi-proxy investigations incorporating other markers with multiple sources. Wildfire combustion products are a major component of dark aerosols deposited on the Greenland ice sheet during the 2012 melt event. Levoglucosan concentrations that demonstrate the biomass burning contribution are similar to black carbon concentrations that record both fossil fuel and biomass burning during this same event. This similarity is especially important as levoglucosan and black carbon trends differ during the industrial era in the NEEM, Greenland ice core, demonstrating different contributions of fossil fuel and biomass burning to the Greenland ice sheet. These differences are also present in the EPICA Dome C Antarctic ice core. Low-latitude ice cores such as Kilimanjaro, Tanzania and Muztag, Tibet demonstrate that climate is still the primary control over fire activity in these regions, even with increased modern biomass burning and the possible impacts of atmospheric brown clouds.
Pavlova, Pavlina Aneva; Jenk, Theo Manuel; Schmid, Peter; Bogdal, Christian; Steinlin, Christine; Schwikowski, Margit
2015-12-15
In Alpine regions, glaciers act as environmental archives and can accumulate significant amounts of atmospherically derived pollutants. Due to the current climate-warming-induced accelerated melting, these pollutants are being released at correspondingly higher rates. To examine the effect of melting on the redistribution of legacy pollutants in Alpine glaciers, we analyzed polychlorinated biphenyls in an ice core from the temperate Silvretta glacier, located in eastern Switzerland. This glacier is affected by surface melting in summer. As a result, liquid water percolates down and particles are enriched in the current annual surface layer. Dating the ice core was a challenge because meltwater percolation also affects the traditionally used parameters. Instead, we counted annual layers of particulate black carbon in the ice core, adding the years with negative glacier mass balance, that is, years with melting and subsequent loss of the entire annual snow accumulation. The analyzed samples cover the time period 1930-2011. The concentration of indicator PCBs (iPCBs) in the Silvretta ice core follows the emission history, peaking in the 1970s (2.5 ng/L). High PCB values in the 1990s and 1930s are attributed to meltwater-induced relocation within the glacier. The total iPCB load at the Silvretta ice core site is 5 ng/cm(2). A significant amount of the total PCB burden in the Silvretta glacier has been released to the environment.
Barron, John A.; Bukry, David B.; Hendy, Ingrid L.
2015-01-01
Diatom and silicoflagellate assemblages documented in a high-resolution time series spanning 800 to 1600 AD in varved sediment recovered in Kasten core SPR0901-02KC (34°16.845’ N, 120°02.332’ W, water depth 588 m) from the Santa Barbara Basin (SBB) reveal that SBB surface water conditions during the Medieval Climate Anomaly (MCA) and the early part of the Little Ice Age (LIA) were not extreme by modern standards, mostly falling within one standard deviation of mean conditions during the pre anthropogenic interval of 1748 to 1900. No clear differences between the character of MCA and the early LIA conditions are apparent. During intervals of extreme droughts identified by terrigenous proxy scanning XRF analyses, diatom and silicoflagellate proxies for coastal upwelling typically exceed one standard deviation above mean values for 1748-1900, supporting the hypothesis that droughts in southern California are associated with cooler (or La Niña-like) sea surface temperatures (SSTs). Increased percentages of diatoms transported downslope generally coincide with intervals of increased siliciclastic flux to the SBB identified by scanning XRF analyses. Diatom assemblages suggest only two intervals of the MCA (at ~897 to 922 and ~1151 to 1167) when proxy SSTs exceeded one standard deviation above mean values for 1748 to 1900. Conversely, silicoflagellates imply extreme warm water events only at ~830 to 860 (early MCA) and ~1360 to 1370 (early LIA) that are not supported by the diatom data. Silicoflagellates appear to be more suitable for characterizing average climate during the 5 to 11 year-long sample intervals studied in the SPR0901-02KC core than diatoms, probably because diatom relative abundances may be dominated by seasonal blooms of a particular year.
NASA Astrophysics Data System (ADS)
Gabrielli, P.; Barbante, C.; Carturan, L.; Davis, M. E.; Dalla Fontana, G.; Dreossi, G.; Dinale, R.; Draga, G.; Gabrieli, J.; Kehrwald, N. M.; Mair, V.; Mikhalenko, V.; Oeggl, K.; Schotterer, U.; Seppi, R.; Spolaor, A.; Stenni, B.; Thompson, L. G.; Tonidandel, D.
2013-12-01
Atmospheric temperatures in the Alps are increasing at twice the global rate and this change may be amplified at the highest elevations. There is a scarcity of paleo-climate information from high altitudes to place this current rapid climate change in a paleo-perspective. The 'Ortles Project' is an international scientific effort gathering institutes from six nations with the primary goal of obtaining a high altitude paleo-climate record in the Mediterranean area. In 2011 four ice cores were extracted from Alto dell'Ortles (3859 m, South Tyrol, Italy) the highest glacier in the eastern Alps. This site is located ~30 km away from where the famous ~5.2 kyr old Tyrolean Ice Man was discovered emerging from an ablating ice field (Hauslabjoch, 3210 m) in 1991. The good state of conservation of this mummy suggested that the current warming trend is unprecedented in South Tyrol during the late Holocene and that unique prehistoric ice was still present in this region. During the ice core drilling operations we found that the glacier Alto dell'Ortles shows a very unusual thermic behavior as it is transitioning from a cold to a temperate state. In fact, below a 30 meter thick temperate firn portion, we observed cold ice layers sitting on a frozen bedrock (-2.8 C). These represent remnants of the colder climate before ~1980 AD, when an instrumental record indicates a ~2 C lower temperature in this area during the period 1864-1980 AD. By analyzing one of the Ortles cores for stable isotopes, dust and major ions, we found an annually preserved climatic signal embedded in the deep cold ice of this glacier. Alto dell'Ortles is therefore the first low-accumulation (850 mm w.e. per year) alpine drilling site where both winter and summer layers can be identified. Preliminary annual layer counting and two absolute time markers suggest that the time period covered by the Ortles ice cores spans from several centuries to a few millennia. In particular, a Larix (larch) leaf discovered at 74 m depth suggests a 14C bottom ice age of 2664 ×166 years (early European Iron Age) supporting the idea that exceptional prehistoric ice is still present at the highest elevations of South Tyrol. Here we present the records of the first Ortles core analyzed in terms of δ18O (proxy of mid-tropospheric temperature), major ions and dust. We found that δ18O measured in the shallowest layers of this glacier exceeds the average deeper values indicating that the Ortles cores capture the recent increase in atmospheric temperatures at high elevation and that this is anomalous over a time scale that extends from hundreds to thousands of years.
High Resolution Simulations of Arctic Sea Ice, 1979-1993
2003-01-01
William H. Lipscomb * PO[ARISSP To evaluate improvements in modelling Arctic sea ice, we compare results from two regional models at 1/120 horizontal...resolution. The first is a coupled ice-ocean model of the Arctic Ocean, consisting of an ocean model (adapted from the Parallel Ocean Program, Los...Alamos National Laboratory [LANL]) and the "old" sea ice model . The second model uses the same grid but consists of an improved "new" sea ice model (LANL
NASA Astrophysics Data System (ADS)
Döring, Michael; Kobashi, Takuro; Leuenberger, Markus
2017-04-01
In order to study Northern Hemisphere climate interactions and variability during the Holocene, access to high resolution surface temperature records of the Greenland ice sheet is an integral condition. Surface temperature reconstruction relies on firn densification combined with gas and heat diffusion [Severinghaus et al. (1998)]. In this study we use the model developed by Schwander et al. (1997). A theoretical δ15N record is generated for different temperature scenarios and compared with measurements by minimizing the mean squared error (MSE). The goal of the presented study is an automatization of this inverse modelling procedure. To solve the inverse problem, the Holocene temperature reconstruction is implemented in three steps. First a rough first guess temperature input (prior) is constructed which serves as the starting point for the optimization. Second, a smooth solution which transects the δ15N measurement data is generated following a Monte Carlo approach. It is assumed that the smooth solution contains all long term temperature trends and (together with the accumulation rate input) drives changes in firn column height, which generate the gravitational background signal in δ15N. Finally, the smooth solution is superimposed with high frequency information directly extracted from the δ15N measurement data. Following the approach, a high resolution Holocene temperature history for the Gisp2 site was extracted (posteriori), which leads to modelled δ15N data that fits the measurements in the low permeg level (MSE) and shows excellent agreement in timing and strength of the measurement variability. To evaluate the reconstruction procedure different synthetic data experiments were conducted underlining the quality of the method. Additionally, a second firn model [Goujon et al. (2003)] was used, which leads to very similar results, that shows the robustness of the presented approach. References: Goujon, C., Barnola, J.-M., Ritz, C. (2003). Modeling the densification of polar firn including heat diffusion: Application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. J. Geophys. Res.,108, NO. D24, 4792. Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., and Bender, M. L. (1998). Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391:141-146. Schwander, J., Sowers, T., Barnola, J., Blunier, T., Fuchs, A., and Malaizé, B. (1997). Age scale of the air in the summit ice: implication for glacial-interglacial temperature change. J. Geophys. Res-Atmos., 102(D16):19483-19493.
Identifying deformation mechanisms in the NEEM ice core using EBSD measurements
NASA Astrophysics Data System (ADS)
Kuiper, Ernst-Jan; Weikusat, Ilka; Drury, Martyn R.; Pennock, Gill M.; de Winter, Matthijs D. A.
2015-04-01
Deformation of ice in continental sized ice sheets determines the flow behavior of ice towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural ice, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar ice is critical in predicting the response of ice sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic ice core (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) ice core¹². Here, we present the first results obtained from EBSD measurements performed on the NEEM ice core samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML core, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common. ¹Weikusat, I.; de Winter, D. A. M.; Pennock, G. M.; Hayles, M.; Schneijdenberg, C. T. W. M. Drury, M. R. Cryogenic EBSD on ice: preserving a stable surface in a low pressure SEM. J. Microsc., 2010, doi: 10.1111/j.1365-2818.2010.03471.x ²Weikusat, I.; Miyamoto, A.; Faria, S. H.; Kipfstuhl, S.; Azuma, N.; Hondoh. T. Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction. J. of Glaciol., 2011, 57, 85-94
Modelling West Antarctic ice sheet growth and collapse through the past five million years.
Pollard, David; DeConto, Robert M
2009-03-19
The West Antarctic ice sheet (WAIS), with ice volume equivalent to approximately 5 m of sea level, has long been considered capable of past and future catastrophic collapse. Today, the ice sheet is fringed by vulnerable floating ice shelves that buttress the fast flow of inland ice streams. Grounding lines are several hundred metres below sea level and the bed deepens upstream, raising the prospect of runaway retreat. Projections of future WAIS behaviour have been hampered by limited understanding of past variations and their underlying forcing mechanisms. Its variation since the Last Glacial Maximum is best known, with grounding lines advancing to the continental-shelf edges around approximately 15 kyr ago before retreating to near-modern locations by approximately 3 kyr ago. Prior collapses during the warmth of the early Pliocene epoch and some Pleistocene interglacials have been suggested indirectly from records of sea level and deep-sea-core isotopes, and by the discovery of open-ocean diatoms in subglacial sediments. Until now, however, little direct evidence of such behaviour has been available. Here we use a combined ice sheet/ice shelf model capable of high-resolution nesting with a new treatment of grounding-line dynamics and ice-shelf buttressing to simulate Antarctic ice sheet variations over the past five million years. Modelled WAIS variations range from full glacial extents with grounding lines near the continental shelf break, intermediate states similar to modern, and brief but dramatic retreats, leaving only small, isolated ice caps on West Antarctic islands. Transitions between glacial, intermediate and collapsed states are relatively rapid, taking one to several thousand years. Our simulation is in good agreement with a new sediment record (ANDRILL AND-1B) recovered from the western Ross Sea, indicating a long-term trend from more frequently collapsed to more glaciated states, dominant 40-kyr cyclicity in the Pliocene, and major retreats at marine isotope stage 31 ( approximately 1.07 Myr ago) and other super-interglacials.
Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice
Ewing, Stephanie A.; Paces, James B.; O'Donnell, J.A.; Jorgenson, M.T.; Kanevskiy, M.Z.; Aiken, George R.; Shur, Y.; Harden, Jennifer W.; Striegl, Robert G.
2015-01-01
The residence time of ice in permafrost is an indicator of past climate history, and of the resilience and vulnerability of high-latitude ecosystems to global change. Development of geochemical indicators of ground-ice residence times in permafrost will advance understanding of the circumstances and evidence of permafrost formation, preservation, and thaw in response to climate warming and other disturbance. We used uranium isotopes to evaluate the residence time of segregated ground ice from ice-rich loess permafrost cores in central Alaska. Activity ratios of 234U vs. 238U (234U/238U) in water from thawed core sections ranged between 1.163 and 1.904 due to contact of ice and associated liquid water with mineral surfaces over time. Measured (234U/238U) values in ground ice showed an overall increase with depth in a series of five neighboring cores up to 21 m deep. This is consistent with increasing residence time of ice with depth as a result of accumulation of loess over time, as well as characteristic ice morphologies, high segregated ice content, and wedge ice, all of which support an interpretation of syngenetic permafrost formation associated with loess deposition. At the same time, stratigraphic evidence indicates some past sediment redistribution and possibly shallow thaw among cores, with local mixing of aged thaw waters. Using measures of surface area and a leaching experiment to determine U distribution, a geometric model of (234U/238U) evolution suggests mean ages of up to ∼200 ky BP in the deepest core, with estimated uncertainties of up to an order of magnitude. Evidence of secondary coatings on loess grains with elevated (234U/238U) values and U concentrations suggests that refinement of the geometric model to account for weathering processes is needed to reduce uncertainty. We suggest that in this area of deep ice-rich loess permafrost, ice bodies have been preserved from the last glacial period (10–100 ky BP), despite subsequent fluctuations in climate, fire disturbance and vegetation. Radiocarbon (14C) analysis of dissolved organic carbon (DOC) in thaw waters supports ages greater than ∼40 ky BP below 10 m. DOC concentrations in thaw waters increased with depth to maxima of >1000 ppm, despite little change in ice content or cryostructures. These relations suggest time-dependent production of old DOC that will be released upon permafrost thaw at a rate that is mediated by sediment transport, among other factors.
A Paleo Perspective on Arctic and Mid-latitude Linkages from a Southeast Alaska Ice Core
NASA Astrophysics Data System (ADS)
Porter, S. E.; Mosley-Thompson, E.; Thompson, L. G.; Bolzan, J. F.
2017-12-01
Recent extreme weather events in the Northern Hemisphere have been linked to anomalously amplified jet stream patterns, North Pacific marine heatwaves, retreating Arctic sea ice extent, and/or the combination thereof. The role of the Arctic in influencing mid-latitude weather and extreme events is a burgeoning topic of climate research that is limited primarily to the recent decades in which Arctic amplification and shrinking Arctic sea ice extent are occurring. Paleo-proxy data afford an opportunity to place the changing Arctic and its far-reaching climatic consequences in the longer context of Earth's climate history and allow identification of time periods with conditions analogous to the present. Ice core-derived annual net accumulation from the Bona-Churchill (BC) ice core, retrieved in 2002 from the Wrangell-St. Elias mountain range in southeast Alaska, is used to explore the historical characteristics of the regional North Pacific climate and the further afield teleconnections. Variability of accumulation on BC is driven primarily by shifts in the position of the Aleutian Low which influences the available moisture sources for the drill site. The accumulation record is also related to sea surface temperatures in the Gulf of Alaska, defined here by the North Pacific Mode and somewhat colloquially as the North Pacific "blob". Thus due to its connection with the Aleutian Low and North Pacific sea surface temperatures, this uniquely situated ice core record indirectly captures the phasing of troughs and ridges in the polar jet stream over North America, and thereby facilitates examination of the atmospheric wave structure prior to the instrumental record. The relationships among the ice core accumulation record and various North Pacific climate features are presented along with evidence identifying specific time periods possibly characterized by persistently amplified wave patterns.
NASA Astrophysics Data System (ADS)
Becker, L. W. M.; Sejrup, H. P.; Hjelstuen, B. O. B.; Haflidason, H.
2016-12-01
The extent of the NW European ice sheet during the Last Glacial Maximum is fairly well constrained to, at least in periods, the shelf edge. However, the exact timing and varying activity of the largest ice stream, the Norwegian Channel Ice Stream (NCIS), remains uncertain. We here present three sediment records, recovered proximal and distal to the upper NW European continental slope. All age models for the cores are constructed in the same way and based solely on 14C dating of planktonic foraminifera. The sand-sized sediments in the discussed cores is believed to be primarily transported by ice rafting. All records suggest ice streaming activity between 25.8 and 18.5 ka BP. However, the core proximal to the mouth of the Norwegian Channel (NC) shows distinct periods of activity and periods of very little coarse sediment input. Out of this there appear to be at least three well-defined periods of ice streaming activity which lasted each for 1.5 to 2 ka, with "pauses" of several hundred years in between. The same core shows a conspicuous variation in several proxies and sediment colour within the first peak of ice stream activity, compared to the second and third peak. The light grey colour of the sediment was earlier attributed to Triassic chalk grains, yet all "chalk" grains are in fact mollusc fragments. The low magnetic susceptibility values, the high Ca, high Sr and low Fe content compared to the other peaks suggests a different provenance for the material of the first peak. We suggest therefore, that the origin of this material is rather the British Irish Ice Sheet (BIIS) and not the Fennoscandian Ice Sheet (FIS). Earlier studies have shown an extent of the BIIS at least to the NC, whereas ice from the FIS likely stayed within the boundaries of the NC. A possible scenario for the different provenance could therefore be the build-up of the BIIS into the NC until it merged with the FIS. At this point the BIIS calved off the shelf edge southwest of the mouth of the NC, delivering material with BIIS origin to the proximal cores. The NCIS became as such possibly only active from the second `push' of material ( 23.0 to 18.5 ka BP). This is in agreement with the relatively low accumulation rates during the first peak and the input of coarse sediments in a southern, slightly more distal core, only during the first peak.
Stress and deformation characteristics of sea ice in a high resolution numerical sea ice model.
NASA Astrophysics Data System (ADS)
Heorton, Harry; Feltham, Daniel; Tsamados, Michel
2017-04-01
The drift and deformation of sea ice floating on the polar oceans is due to the applied wind and ocean currents. The deformations of sea ice over ocean basin length scales have observable patterns; cracks and leads in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between observable deformation characteristics and the underlying internal sea ice stresses and force balance using the Los Alamos numerical sea ice climate model. In order to mimic laboratory experiments on the deformation of small cubes of sea ice we have developed an idealised square domain that tests the model response at spatial resolutions of up to 500m. We use the Elastic Anisotropic Plastic and Elastic Viscous Plastic rheologies, comparing their stability over varying resolutions and time scales. Sea ice within the domain is forced by idealised winds in order to compare the confinement of wind stresses and internal sea ice stresses. We document the characteristic deformation patterns of convergent, divergent and rotating stress states.
NASA Astrophysics Data System (ADS)
Rashid, H.; Piper, D.
2017-12-01
Several ice-streams on the southeastern sector of the Laurentide Ice Sheet discharged icebergs, meltwater, and fine-grained sediments into the North Atlantic during Heinrich (H) events. The principal contribution was through Hudson Strait, which is the only source clearly identified in H ice-rafted layers in the central North Atlantic. The role of direct supply of meltwater in modifying the Atlantic meridional circulation generally has been regarded as secondary. The relative chronology of discharge in different ice-streams is poorly known. Here, we re-assess these questions using continental margin cores constrained by high-resolution seismic profiles and multibeam bathymetry data. Relative importance of ice streams likely scales with cross-sectional area of their erosional troughs. On that basis, the Hudson Strait ice stream was twice as large as that in the Laurentian Channel and 3-4 times larger than smaller troughs. Several ice streams supplied petrographically and geochemically distinct sediment including black shales from Cumberland Sound, limestone and dolomite in particular proportions from Frobisher Bay and Hudson Strait, and red sandstones and shales ± carbonates from NE Newfoundland and Laurentian Channel. In several cases, detrital carbonate H layers derived predominantly from Hudson Strait are preceded by enhanced IRD deposition from smaller ice streams, e.g. deposits from Cumberland Sound on the Labrador slope, from NE Newfoundland in Orphan Basin, and from Laurentian Channel on the Nova Scotian margin. Gravel petrology indicates that Hudson Strait sources make up >90% of the ice-rafted component of distal H layers. H layers proximal to the Hudson Strait ice-streams are 4 to 12 meters thick compared to a few centimeters thick seaward of the Trinity Trough and Laurentian ice-streams, comparable to the thickness of the North Atlantic. This underscores the great importance of meltwater and suspended sediment close to ice stream outlets. Morphological features and plume deposits show that meltwater becomes much more abundant in more southerly ice streams and some local plume deposits contribute to the thickness of H layers. The contribution of freshwater from melting icebergs and from direct meltwater discharge are approximately similar during H events.
Starratt, Scott W.; Anderson, R. Scott
2013-01-01
Swamp Lake, Yosemite National Park, is the only known lake in California containing long sequences of varved sediments and thus has the potential to provide a high-resolution record of climate variability. This preliminary analysis of the diatom assemblages from a 947-cm-long composite sediment core (freeze core FZ02–05; 0–67 cm, Livingstone core 02–05; 53–947 cm) shows that the lake has been freshwater, oligotrophic, and circumneutral to alkaline throughout its ~16,000-year-long history. The first sediments deposited in the lake show that the vegetation in the watershed was sparse, allowing organic matter-poor silt and clay to be deposited in the basin. The basin filled quickly to a depth of at least 5 m and remained at least that deep for most of the sediment record. Several short intervals provided evidence of large fluctuations in lake level during the Holocene. The upper 50 cm of the core contains evidence of the Medieval Climate Anomaly and Little Ice Age.
Cai, J.; Powell, R.D.; Cowan, E.A.; Carlson, P.R.
1997-01-01
High-resolution seismic-reflection profiles of sediment fill within Tart Inlet of Glacier Bay, Alaska, show seismic facies changes with increasing distance from the glacial termini. Five types of seismic facies are recognized from analysis of Huntec and minisparker records, and seven lithofacies are determined from detailed sedimentologic study of gravity-, vibro- and box-cores, and bottom grab samples. Lithofacies and seismic facies associations, and fjord-floor morphology allow us to divide the fjord into three sedimentary environments: ice-proximal, iceberg-zone and ice-distal. The ice-proximal environment, characterized by a morainal-bank depositional system, can be subdivided into bank-back, bank-core and bank-front subenvironments, each of which is characterized by a different depositional subsystem. A bank-back subsystem shows chaotic seismic facies with a mounded surface, which we infer consists mainly of unsorted diamicton and poorly sorted coarse-grained sediments. A bank-core depositional subsystem is a mixture of diamicton, rubble, gravel, sand and mud. Seismic-reflection records of this subsystem are characterized by chaotic seismic facies with abundant hyperbolic diffractions and a hummocky surface. A bank-front depositional subsystem consists of mainly stratified and massive sand, and is characterized by internal hummocky facies on seismic-reflection records with significant surface relief and sediment gravity flow channels. The depositional system formed in the iceberg-zone environment consists of rhythmically laminated mud interbedded with thin beds of weakly stratified diamicton and stratified or massive sand and silt. On seismic-reflection profiles, this depositional system is characterized by discontinuously stratified facies with multiple channels on the surface in the proximal zone and a single channel on the largely flat sediment surface in the distal zone. The depositional system formed in the ice-distal environment consists of interbedded homogeneous or laminated mud and massive or stratified sand and coarse silt. This depositional system shows continuously stratified seismic facies with smooth and flat surfaces on minisparker records, and continuously stratified seismic facies which are interlayered with thin weakly stratified facies on Huntec records.
NASA Astrophysics Data System (ADS)
Masson-Delmotte, V.
2006-12-01
The detailed deuterium record of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from East Antarctica has been measured at a 55 cm resolution down to a depth of 3260 m, covering ~800 000 years. Several lines of evidence support a reliable use of deuterium fluctuations in central Antarctic ice to reconstruct past temperature changes. The magnitude of the temperature fluctuations range between -9°C and +5°C compared to the late Holocene level. At the orbital scale, the imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and V published in 2004 corresponds to a phasing of the obliquity signals. A relationship is observed between an index of interglacial intensity and the cumulative annual mean insolation at high latitudes, mainly as a result of the modulation of amplitude of obliquity fluctuations. We suggest that this long term changes in obliquity may be involved in the change in magnitude of glacial-interglacial fluctuations between the first and second halves of the EPICA Dome C record. At the high frequency scale, the detailed EPICA Dome C deuterium record clearly shows a one-to-one correspondence between each Greenland ice core Dansgaard-Oeschger event and their smoothed Antarctic counterparts. A methodology to detect objectively rapid events from the EPICA Dome C records is developed and applied for the earlier glacial periods, suggesting a stable magnitude and pacing of Antarctic rapid events along the EPICA Dome C record.
δ13Catm and [CO2] measurements in Antarctic ice cores, 160 kyrBP - present
NASA Astrophysics Data System (ADS)
Eggleston, Sarah; Schmitt, Jochen; Schneider, Robert; Joos, Fortunat; Fischer, Hubertus
2014-05-01
Measurements from Antarctic ice cores allow us to reconstruct atmospheric concentrations of climatically important gases including CO2 over the past 800 kyr. Such measurements show that [CO2] has varied in parallel with Antarctic temperatures on glacial-interglacial timescales. Knowledge of the variations of the stable carbon isotope of CO2, δ13Catm, can help us better understand the processes involved in these fluctuations. Here, we present a first complete δ13Catmrecord extending from 160 kyrBP to the present accompanied by δ15N2 measurements during Marine Isotope Stage 3 (MIS 3, 57 - 29 kyrBP). The present record, measured primarily on ice from the EPICA Dome C and Talos Dome ice cores, has an average resolution of 500 yr, focused mainly on the Last Glacial Maximum and termination (180 yr; Schmitt et al., 2012), MIS 3 (660 yr), and Termination II through MIS 5.4 (590 yr; Schneider et al., 2013). Throughout the record, δ13Catm varies between approximately -6.8 and -6.4‰Following a period of relatively constant δ13Catm at the end of MIS 6 (around -6.8), the boundaries of MIS 5 correspond roughly with the beginning and end of a gradual enrichment in this isotope. In comparison, the more recent record depicts three more abrupt excursions to lighter values around 63 - 59, 46, and 17 kyrBP, in each case followed by a slower return (0.4o over the course of 5 - 15 kyr) to more enriched isotopic values. These coincide with Heinrich events 6, 5, and 1, respectively. No direct correlation is observed between the concentration and carbon isotope of CO2 over the last 160 kyr. The data indicate rather that numerous processes, such as uptake and release of atmospheric CO2 by the ocean and land biosphere, perhaps influenced by regions of growing permafrost during MIS 3 and 4, acting on a variety of timescales must be considered in explaining the evolution of δ13Catm on glacial-interglacial timescales. References: Schmitt, J. et al. Science 336, 711-714 (2012) Schneider, R. et al. Clim. Past, 9, 2507-2523 (2013)
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Birkel, S. D.; Kreutz, K. J.; Wake, C. P.; Campbell, S. W.; Winski, D.
2015-12-01
Researchers from the University of Maine, University of New Hampshire, and Dartmouth College supported by NSF recently recovered two ice cores from the Mt. Hunter Plateau in the Alaska Range of Denali National Park. Ongoing analyses of snow accumulation, snowmelt, stable isotopes, and chemistry within the core are providing proxy information for ~1000 years of regional climate variability. Broader context to link circulation across the North Pacific and western North America can be obtained by using climate reanalysis. In this vein, we are using monthly, daily, and sub-daily meteorological fields from the NCEP Climate Forecasting System Reanalysis (CFSR) to characterize large-scale circulation associated with notable events in the ice core record onward from 1979. One goal is to assess the relationship between annual snow accumulation spikes and storm frequency and magnitude. A second goal is to relate these observations to events during the Little Ice Age and Medieval Warm Period. Work is in progress, and results will be presented at the fall meeting.
Possible Geological Records of the Symbiotic Binary R Aquarii's Historical Outbursts
NASA Astrophysics Data System (ADS)
Tanabe, Kenji
2015-08-01
R Aquarii, known as one of the most enigmatic variable stars, seems to experience several outbursts as suggested by its surrounding nebulosity. Fortunately,in Korean ancient official books two outbursts in A.D.1073 and 1074 are recorded precisely (both its position and brightness). These two events possibly coincide with the two prominent spikes of nitrate ion frozen in the ice core extracted in 2001 from the top of Dome Fuji(3810 mheight) at the Japanese Antarctic station.We shall discuss whether such a coincidence is plausible or not from the point of viw of time resolution and age determination.
Green, J.R.; Cecil, L.D.; Synal, H.-A.; Kreutz, K.J.; Wake, C.P.; Naftz, D.L.; Frape, S.K.
2000-01-01
Chlorine-36 (36Cl) concentrations, 36Cl/Cl ratios, and 36Cl fluxes in ice-core samples collected from the Upper Fremont Glacier (UFG) in the Wind River Mountain Range, Wyoming, United States and the Nangpai Gosum Glacier (NGG) in the Himalayan Mountains, Nepal, were determined and compared with published results from the Dye-3 ice-core drilling site on the Greenland Ice Sheet. Cesium-137 (137Cs) concentrations in the NGG also were determined. The background fluxes for 36Cl for each glacial site were similar: (1.6??0.3)??10-2 atoms/cm2 s for the UFG samples, (0.7??0.1)??10-2 atoms/cm2 s for the NGG samples, and (0.4??0.1)??10-2 atoms/cm2 s for the Dye-3 samples. The 36Cl fluxes in ice that was deposited as snow during peak atmospheric nuclear weapon test (1957-1958) were (33??1)??10-2 atoms/cm2 s for the UFG site, (291??3)??10-2 atoms/cm2 s for the NGG site, and (124??5)??10-2 atoms/ cm2 s for the Dye-3 site. A weapon test period 137Cs concentration of 0.79??0.05 Bq/kg in the NGG ice core also was detected in the same section of ice that contained the largest 36Cl concentration. ?? 2000 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hatvani, István Gábor; Leuenberger, Markus; Kohán, Balázs; Kern, Zoltán
2017-09-01
Water stable isotopes preserved in ice cores provide essential information about polar precipitation. In the present study, multivariate regression and variogram analyses were conducted on 22 δ2H and 53 δ18O records from 60 ice cores covering the second half of the 20th century. Taking the multicollinearity of the explanatory variables into account, as also the model's adjusted R2 and its mean absolute error, longitude, elevation and distance from the coast were found to be the main independent geographical driving factors governing the spatial δ18O variability of firn/ice in the chosen Antarctic macro region. After diminishing the effects of these factors, using variography, the weights for interpolation with kriging were obtained and the spatial autocorrelation structure of the dataset was revealed. This indicates an average area of influence with a radius of 350 km. This allows the determination of the areas which are as yet not covered by the spatial variability of the existing network of ice cores. Finally, the regional isoscape was obtained for the study area, and this may be considered the first step towards a geostatistically improved isoscape for Antarctica.
Evidence for propagation of cold-adapted yeast in an ice core from a Siberian Altai glacier
NASA Astrophysics Data System (ADS)
Uetake, Jun; Kohshima, Shiro; Nakazawa, Fumio; Takeuchi, Nozomu; Fujita, Koji; Miyake, Takayuki; Narita, Hideki; Aizen, Vladimir; Nakawo, Masayoshi
2011-03-01
Cold environments, including glacier ice and snow, are known habitats for cold-adapted microorganisms. We investigated the potential for cold-adapted yeast to have propagated in the snow of the high-altitude Belukha glacier. We detected the presence of highly concentrated yeast (over 104 cells mL-1) in samples of both an ice core and firn snow. Increasing yeast cell concentrations in the same snow layer from July 2002 to July 2003 suggests that the yeast cells propagated in the glacier snow. A cold-adapted Rhodotorula sp. was isolated from the snow layer and found to be related to psychrophilic yeast previously found in other glacial environments (based on the D1/D2 26S rRNA domains). 26S rRNA clonal analysis directly amplified from meltwater within the ice core also revealed the presence of genus Rhodotorula. Analyses of the ice core showed that all peaks in yeast concentration corresponded to the peaks in indices of surface melting. These results support the hypothesis that occasional surface melting in an accumulation area is one of the major factors influencing cold-adapted yeast propagation.
Two-dimensional ice mapping of molecular cores
NASA Astrophysics Data System (ADS)
Noble, J. A.; Fraser, H. J.; Pontoppidan, K. M.; Craigon, A. M.
2017-06-01
We present maps of the column densities of H2O, CO2 and CO ices towards the molecular cores B 35A, DC 274.2-00.4, BHR 59 and DC 300.7-01.0. These ice maps, probing spatial distances in molecular cores as low as 2200 au, challenge the traditional hypothesis that the denser the region observed, the more ice is present, providing evidence that the relationships between solid molecular species are more varied than the generic picture we often adopt to model gas-grain chemical processes and explain feedback between solid phase processes and gas phase abundances. We present the first combined solid-gas maps of a single molecular species, based upon observations of both CO ice and gas phase C18O towards B 35A, a star-forming dense core in Orion. We conclude that molecular species in the solid phase are powerful tracers of 'small-scale' chemical diversity, prior to the onset of star formation. With a component analysis approach, we can probe the solid phase chemistry of a region at a level of detail greater than that provided by statistical analyses or generic conclusions drawn from single pointing line-of-sight observations alone.
Retreat of the Coalescent Greenland and Innuitian Ice Sheets from Nares Strait
NASA Astrophysics Data System (ADS)
Jennings, A. E.; Bailey, E.; Oliver, B.; Andrews, J. T.; Prins, M. A.; Troelstra, S.; Stoner, J. S.; Reilly, B. T.; Davies-Walczak, M.; Mix, A. C.
2015-12-01
Nares Strait, which forms one of the main connections between the Arctic Ocean and Baffin Bay was blocked by coalescent Innuitian and Greenland ice sheets during the LGM. Nares Strait opened ca. 9000 cal ka BP when the connection between the two ice sheets was finally severed. Our research focuses on the events and processes leading up to the opening of the strait and the response of the glacier and marine systems to establishment of the throughflow. The study at present involves new analysis of two sediment cores: 2001LSSL-163PC from Smith Sound, at the southern end of Nares Strait, and 2001LSSL-079PC from the mouth of Petermann Fjord at the northern end of the strait. X-radiography and core photographs were studied to establish basic lithofacies and stratigraphy. Foraminiferal faunas provide insight into changes in ice margin proximity, Atlantic Water advection and sea-ice conditions and are used to develop the radiocarbon chronologies. Quantitative X-ray diffraction analysis of bulk sediments aids in determining sediment provenance and the establishment of a north to south connection. Grain size analysis allows sediment processes and sedimentary environments, such as iceberg rafting, current deposition, and sub ice-shelf deposition to be evaluated. A radiocarbon date of >50 kyr was obtained from foraminifera in an overconsolidated, gray diamicton in core 163PC. The diamicton is overlain by a red deglacial sequence of barren laminated sediments followed by gray pebbly mud. Two radiocarbon dates submitted from near the base of the pebbly mud constrain the timing of ice retreat from Smith Sound. The chronology of core 079PC indicates that it captures the opening of Nares Strait, but 4 submitted radiocarbon dates will further constrain its chronology. The goal of the work on these two cores is to lay a framework for extensive marine fieldwork to study ice sheet-ocean interactions in the Petermann Glacier in late summer 2015.
NASA Astrophysics Data System (ADS)
Pokhrel, Ambarish; Kawamura, Kimitaka; Seki, Osamu; Matoba, Sumio; Shiraiwa, Takayuki
2015-01-01
An ice core drilled at Aurora Peak in southeast Alaska was analyzed for homologous series of straight chain fatty acids (C12:0-C30:0) including unsaturated fatty acid (oleic acid) using gas chromatography (GC/FID) and GC/mass spectrometry (GC/MS). Molecular distributions of fatty acids are characterized by even carbon number predominance with a peak at palmitic acid (C16:0, av. 20.3 ± SD. 29.8 ng/g-ice) followed by oleic acid (C18:1, 19.6 ± 38.6 ng/g-ice) and myristic acid (C14:0, 15.3 ± 21.9 ng/g-ice). The historical trends of short-chain fatty acids, together with correlation analysis with inorganic ions and organic tracers suggest that short-chain fatty acids (except for C12:0 and C15:0) were mainly derived from sea surface micro layers through bubble bursting mechanism and transported over the glacier through the atmosphere. This atmospheric transport process is suggested to be linked with Kamchatka ice core δD record from Northeast Asia and Greenland Temperature Anomaly (GTA). In contrast, long-chain fatty acids (C20:0-C30:0) are originated from terrestrial higher plants, soil organic matter and dusts, which are also linked with GTA. Hence, this study suggests that Alaskan fatty acids are strongly influenced by Pacific Decadal Oscillation/North Pacific Gyre Oscillation and/or extra tropical North Pacific surface climate and Arctic oscillation. We also found that decadal scale variability of C18:1/C18:0 ratios in the Aurora Peak ice core correlate with the Kamchatka ice core δD, which reflects climate oscillations in the North Pacific. This study suggests that photochemical aging of organic aerosols could be controlled by climate periodicity.
NASA Astrophysics Data System (ADS)
Tin, Tina
Antarctic sea ice thickness data obtained from drilling on sea ice floes were examined with the goal of enhancing our capability to estimate ice thickness remotely, especially from air- or space-borne altimetry and shipboard visual observations. The state of hydrostatic equilibrium of deformed ice features and the statistical relationships between ice thickness and top surface roughness were examined. Results indicate that ice thickness may be estimated fairly reliably from surface measurements of snow elevation on length scales of ≥100 m. Examination of the morphology of deformed ice features show that Antarctic pressure ridges are flatter and less massive than Arctic pressure ridges and that not all surface features (ridge sails) are associated with features underwater (ridge keels). I propose that the differences in morphology are due to differences in sampling strategies, parent ice characteristics and the magnitude and duration of driving forces. As a result of these findings, the existing methodology used to estimate ice thickness from shipboard visual observations was modified to incorporate the probability that a sail is associated with a keel underwater, and the probability that keels may be found under level surfaces. Using the improved methodology, ice thickness was estimated from ship observations data obtained during two cruises in the Ross Sea, Antarctica. The dynamic and thermodynamic processes involved in the development of the ice prior to their observation were examined employing a regional sea ice-mixed layer-pycnocline model. Both our model results and previously published ice core data indicate that thermodynamic thickening is the dominant process that determines the thickness of first year ice in the central Ross Sea, although dynamic thickening also plays a significant role. Ice core data also indicate that snow ice forms a significant proportion of the total ice mass. For ice in the northeast Ross Sea in the summer, model results and evidence from ice core and oceanographic data indicate that dynamic thickening, snow ice formation and bottom melting compete to determine the ice thickness during mid and late winter.
Ice core evidence for extensive melting of the greenland ice sheet in the last interglacial.
Koerner, R M
1989-05-26
Evidence from ice at the bottom of ice cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland ice sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal ice has previously been thought to indicate that the base of the ice sheets had melted and that the evidence for the time of original growth of these ice masses had been destroyed. However, the particles most likely blew onto the ice when the dimensions of the ice caps and ice sheets were much smaller. Ice texture, gas content, and other evidence also suggest that the basal ice at each drill site is superimposed ice, a type of ice typical of the early growth stages of an ice cap or ice sheet. If the present-day ice masses began their growth during the last interglacial, the ice sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic ice sheet, as has been suggested.
EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice
NASA Astrophysics Data System (ADS)
Weikusat, Ilka; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Kipfstuhl, Sepp; Drury, Martyn R.
2017-09-01
Ice has a very high plastic anisotropy with easy dislocation glide on basal planes, while glide on non-basal planes is much harder. Basal glide involves dislocations with the Burgers vector b = 〈a〉, while glide on non-basal planes can involve dislocations with b = 〈a〉, b = [c], and b = 〈c + a〉. During the natural ductile flow of polar ice sheets, most of the deformation is expected to occur by basal slip accommodated by other processes, including non-basal slip and grain boundary processes. However, the importance of different accommodating processes is controversial. The recent application of micro-diffraction analysis methods to ice, such as X-ray Laue diffraction and electron backscattered diffraction (EBSD), has demonstrated that subgrain boundaries indicative of non-basal slip are present in naturally deformed ice, although so far the available data sets are limited. In this study we present an analysis of a large number of subgrain boundaries in ice core samples from one depth level from two deep ice cores from Antarctica (EPICA-DML deep ice core at 656 m of depth) and Greenland (NEEM deep ice core at 719 m of depth). EBSD provides information for the characterization of subgrain boundary types and on the dislocations that are likely to be present along the boundary. EBSD analyses, in combination with light microscopy measurements, are presented and interpreted in terms of the dislocation slip systems. The most common subgrain boundaries are indicative of basal 〈a〉 slip with an almost equal occurrence of subgrain boundaries indicative of prism [c] or 〈c + a〉 slip on prism and/or pyramidal planes. A few subgrain boundaries are indicative of prism 〈a〉 slip or slip of 〈a〉 screw dislocations on the basal plane. In addition to these classical polygonization processes that involve the recovery of dislocations into boundaries, alternative mechanisms are discussed for the formation of subgrain boundaries that are not related to the crystallography of the host grain.The finding that subgrain boundaries indicative of non-basal slip are as frequent as those indicating basal slip is surprising. Our evidence of frequent non-basal slip in naturally deformed polar ice core samples has important implications for discussions on ice about plasticity descriptions, rate-controlling processes which accommodate basal glide, and anisotropic ice flow descriptions of large ice masses with the wider perspective of sea level evolution.
NASA Astrophysics Data System (ADS)
Stein, Ruediger; Fahl, Kirsten
2013-04-01
Recently, a novel and promising biomarker proxy for reconstruction of Arctic sea-ice conditions was developed and is based on the determination of a highly branched isoprenoid with 25 carbons (IP25; Belt et al., 2007). Following this pioneer IP25 study by Belt and colleagues, several IP25 studies of marine surface sediments and sediment cores as well as sediment trap samples from northpolar areas were carried out successfully and allowed detailed reconstruction of modern and late Quaternary sea ice variability in these regions (e.g., Massé et al., 2008; Müller et al., 2009, 2011; Vare et al., 2009; Belt et al., 2010; Fahl and Stein, 2012; for review see Stein et al., 2012). Here, we present new (low-resolution) biomarker records from Ocean Drilling Program (ODP) Sites 911 and 912, representing the Pliocene-Pleistocene time interval (including the interval of major intensification of Northern Hemisphere Glaciation near 2.7 Ma). These data indicate that sea ice of variable extent was present in the Fram Strait/southern Yermak Plateau area during most of the time period under investigation. In general, an increase in sea-ice cover seems to correlate with phases of extended late Pliocene-Pleistocene continental ice-sheets. At ODP Site 912, a significant increase in sea-ice extension occurred near 1.2 Ma (Stein and Fahl, 2012). Furthermore, our data support the idea that a combination of IP25 and open water, phytoplankton biomarker data ("PIP25 index"; Müller et al., 2011) may give more reliable and quantitative estimates of past sea-ice cover (at least for the study area). This study reveals that the novel IP25/PIP25 biomarker approach has potential for semi-quantitative paleo-sea ice studies covering the entire Quaternary and motivate to carry out further detailed high-resolution research on ODP/IODP material using this proxy. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38, 16-27. Belt, S.T., Vare, L.L., Massé, G., Manners, H.R., Price, J.C., MacLachlan, S.E., Andrews, J.T., Schmidt, S., 2010. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years. Quaternary Science Reviews 29, 3489-3504. Fahl, K. and Stein, R., 2012. Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: New insights from biomarker proxy records. Earth Planetary Science Letters 351-352C, 123-133, doi:10.1016/j.epsl.2012.07.009. Massé, G., Rowland, S.J., Sicre, M.-A., Jacob, J., Jansen, E., Belt, S.T., 2008. Abrupt climate changes for Iceland during the last millennium: Evidence from high resolution sea ice reconstructions. Earth Planetary Science Letters 269, 565-569. Müller, J., Massé, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nature Geoscience 2, 772-776. Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., Lohmann, G., 2011. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach. Earth Planetary Science Letters 306, 137-148. Stein, R. and Fahl, K., 2012. Biomarker proxy IP25 shows potential for studying entire Quaternary Arctic sea-ice history. Organic Geochemistry; doi: 10.1016/j.orggeochem.2012.11.005. Stein, R., Fahl, K., and Müller, J., 2012. Proxy reconstruction of Arctic Ocean sea ice history: "From IRD to IP25". Polarforschung 82, 37-71. Vare, L.L., Massé, G., Gregory, T.R., Smart, C.W., Belt, S.T., 2009. Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quaternary Science Reviews 28, 1354-1366.
Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle
NASA Technical Reports Server (NTRS)
Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.
PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2013-01-01
I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.
Eastern Ross Ice Sheet Deglacial History inferred from the Roosevelt Island Ice Core
NASA Astrophysics Data System (ADS)
Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.
2017-12-01
The Ross Ice Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross Ice Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross area where there is no exposed rock and the Ross Ice Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old ice, can be used to infer the establishment of grounded ice and be used to infer past ice thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an ice core to bedrock. Using ice-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer ice thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active ice streams throughout the Ross Ice Sheet advance during the LGM.
Operational multisensor sea ice concentration algorithm utilizing Sentinel-1 and AMSR2 data
NASA Astrophysics Data System (ADS)
Dinessen, Frode
2017-04-01
The Norwegian Ice Service provide ice charts of the European part of the Arctic every weekday. The charts are produced from a manually interpretation of satellite data where SAR (Synthetic Aperture Radar) data plays a central role because of its high spatial resolution and Independence of cloud cover. A new chart is produced every weekday and the charts are distributed through the CMEMS portal. After the launch of Sentinel-1A and B the number of available SAR data have significant increased making it difficult to utilize all the data in a manually process. This in combination with a user demand for a more frequent update of the ice conditions, also during the weekends, have made it important to focus the development on utilizing the high resolution Sentinel-1 data in an automatic sea ice concentration analysis. The algorithm developed here is based on a multi sensor approach using an optimal interpolation to combine sea ice concentration products derived from Sentinel-1 and passive microwave data from AMSR2. The Sentinel-1 data is classified with a Bayesian SAR classification algorithm using data in extra wide mode dual polarization (HH/HV) to separate ice and water in the full 40x40 meter spatial resolution. From the classification of ice/water the sea ice concentration is estimated by calculating amount of ice within an area of 1x1 km. The AMSR2 sea ice concentration are produced as part of the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) project and utilize the 89 GHz channel to produce a concentration product with a 3km spatial resolution. Results from the automatic classification will be presented.
NASA Astrophysics Data System (ADS)
MacLean, B.; Blasco, S.; Bennett, R.; Lakeman, T.; Pieńkowski, A. J.; Furze, M. F. A.; Hughes Clarke, J.; Patton, E.
2017-03-01
Multibeam imagery and 3.5 kHz sub-bottom profiles acquired from CCGS Amundsen between 2003 and 2013 by ArcticNet and the Ocean Mapping Group at the University of New Brunswick provide information on seafloor features, geology, bathymetry and morphology in eastern Parry Channel and the adjoining large channels in the Canadian Arctic Archipelago. Together these include Peel Sound, Barrow Strait, Lancaster Sound, Wellington Channel, Prince Regent Inlet, Admiralty Inlet and Navy Board Inlet. Those data are in part complemented by high resolution single channel seismic reflection profiles acquired by the Geological Survey of Canada in the 1970s and 1980s and by sediment cores that provide chronological and depositional information. The occurrence and pattern of streamlined mega-scale ridge and groove lineations (MSGLs) indicate that these waterways were occupied by glacial ice streams in the past. Chronological information from marine and adjoining terrestrial areas suggests a long history of glacial events ranging in time from Early Pleistocene to Late Wisconsinan. Seafloor morphology and MSGL trends together with terrestrial ice flow patterns indicate that ice streams flowed into Barrow Strait from Peel Sound and Wellington Channel, and ice streams in Prince Regent, Admiralty and Navy Board inlets flowed northward into and eastward along Lancaster Sound. Recession of the ice stream westward along Parry Channel occurred ∼16 cal ka BP to 10.8 cal ka BP. Thick ice-contact sediments deposited by a late ice advance from Prince Regent Inlet constitute the seabed across a large area of western Lancaster Sound. Timing for that late ice advance appears to be bracketed between the 11.5 cal ka BP lift-off of the eastern Parry ice stream north of Prince Leopold Island and the ∼10.0 cal ka BP deglaciation of Prince Regent Inlet. Seafloor morphology and lineation trends suggest that ice delivered by the ice stream in Peel Sound was the westernmost tributary to the ice stream occupying Lancaster Sound during the late Wisconsinan glaciation. Bathymetric data and MSGLs indicate that the ice stream emanating from M'Clintock Channel flowed westward.
NASA Astrophysics Data System (ADS)
Richter, C.; Jensen, S. R.; Acton, G. D.; Evans, H. F.
2017-12-01
We present new paleomagnetic results from Quaternary sediment samples recovered during the Baffin Bay Scientific Coring Expedition conducted by the JOIDES Resolution in 2012. The expedition recovered well-preserved core material from the Arctic Basin, providing an outstanding opportunity for the study of the behavior of the geomagnetic field at high latitude. We analyzed material from 12 sites cored at latitudes between 74°45.32'N and 75°46.68'N in the Melville Bay region (Cape York and Melville Ridge) of Baffin Bay located at an average water depth of 394 m. The Quaternary glaciomarine sediments are up to 150 m thick and consist of very soft diatom-bearing muds to clast-rich sandy and muddy diamicts, which suggest deposition in a subglacial to ice-procimal environment. We carried out paleomagnetic and rock magnetic measurements on the shipboard cryogenic magnetometer at 5-cm resolution on 32 split-core sections and a selected number of discrete samples, and recently processed measurements taken at 1-cm resolution on eight U-channel samples from the uppermost Holocene part of the section. Stepwise demagnetization of the NRM demonstrates excellent demagnetization behavior, with a viscous isothermal remanent magnetization overprint, induced by the coring and sampling process, and typically removed by the 20 mT demagnetization step. The magnetic inclination data are characterized by steep, 80°, normal inclinations, consistent with the site position near the North Pole. Thermal demagnetization, magnetic susceptibility, isothermal remanent magnetization, and hysteresis parameters indicate that the primary magnetic carrier consists of a low-coercivity mineral, e.g., magnetite and/or titanomagnetite, with minor traces of higher-coercivity minerals. Well-developed geomagnetic excursions in the upper part of the section can be correlated between several sites. Although dating of these sediments remains a challenge because of the lack of carbonates we will discuss possible age models and use them to assign ages to the geomagnetic excursions.
A novel fast ion chromatographic method for the analysis of fluoride in Antarctic snow and ice.
Severi, Mirko; Becagli, Silvia; Frosini, Daniele; Marconi, Miriam; Traversi, Rita; Udisti, Roberto
2014-01-01
Ice cores are widely used to reconstruct past changes of the climate system. For instance, the ice core record of numerous water-soluble and insoluble chemical species that are trapped in snow and ice offer the possibility to investigate past changes of various key compounds present in the atmosphere (i.e., aerosol, reactive gases). We developed a new method for the quantitative determination of fluoride in ice cores at sub-μg L(-1) levels by coupling a flow injection analysis technique with a fast ion chromatography separation based on the "heart cut" column switching technology. Sensitivity, linear range (up to 60 μg L(-1)), reproducibility, and detection limit (0.02 μg L(-1)) were evaluated for the new method. This method was successfully applied to the analysis of fluoride at trace levels in more than 450 recent snow samples collected during the 1998-1999 International Trans-Antarctica Scientific Expedition traverse in East Antarctica at sites located between 170 and 850 km from the coastline.
The last forests in Greenland, and the age of the ice sheet
NASA Astrophysics Data System (ADS)
Funder, Svend; Schmidt, Astrid M. Z.; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder; Willerslev, Eske
2014-05-01
Recently ancient DNA (aDNA) studies of the basal ice in the Camp Century ice core, northern Greenland, have shown that mixed coniferous-deciduous forest grew here before the area was invaded and permanently covered by the ice sheet. The coring site is situated only 100 km from the present ice margin and more than 500 km from the ice divide, indicating that since this last inception the northern part of the ice sheet never receded more than 100 km from its present margin. Dating of the basal ice and obtaining an age for the forest and for the beginning of the ice sheet's permanency has been attempted by analyzing for optically stimulated luminescence (OSL), meteoric 10Be/36Cl cosmogenic nuclides, 234U/238U recoil. These methods all provide only minimum ages and show that the forest at Cap Century is older than 500 ka. Comparison with other Pleistocene "forest sites" in Greenland - the Kap København Formation in northernmost Greenland, the DYE-3 ice core in the south, the ODP boring 646 south of Greenland, as well as results from basal ice in the GRIP ice core - extends the minimum age to c. 1 ma. The maximum age is provided by the Kap København Formation, which must be older - or contemporaneous. The formation has recently been confirmed to date within the interval 2-2.5 ma, with a preferred age of 2.3-2.4 ma. Surprisingly, application of the molecular clock of insect COI sequences on the Camp Century aDNA now seem to push the minimum age just as far back - to 2.4 ma, suggesting that the timberline boreal forest at Kap København is contemporaneous with the mixed forest at Camp Century, 600 km to the south. From this we conclude that the northern ice sheet dome, which today contains 85% of the total ice sheet volume, has remained within 100 km of its present margin for at least 1 ma, and possibly may go back as far as 2.4 ma. The ice sheet has therefore survived both interglacials and "super interglacials" that were both warmer and longer than the present. This may give us some hope for the future.
Sensitivity of an Antarctic Ice Sheet Model to Sub-Ice-Shelf Melting
NASA Astrophysics Data System (ADS)
Lipscomb, W. H.; Leguy, G.; Urban, N. M.; Berdahl, M.
2017-12-01
Theory and observations suggest that marine-based sectors of the Antarctic ice sheet could retreat rapidly under ocean warming and increased melting beneath ice shelves. Numerical models of marine ice sheets vary widely in sensitivity, depending on grid resolution and the parameterization of key processes (e.g., calving and hydrofracture). Here we study the sensitivity of the Antarctic ice sheet to ocean warming and sub-shelf melting in standalone simulations of the Community Ice Sheet Model (CISM). Melt rates either are prescribed based on observations and high-resolution ocean model output, or are derived from a plume model forced by idealized ocean temperature profiles. In CISM, we vary the model resolution (between 1 and 8 km), Stokes approximation (shallow-shelf, depth-integrated higher-order, or 3D higher-order) and calving scheme to create an ensemble of plausible responses to sub-shelf melting. This work supports a broader goal of building statistical and reduced models that can translate large-scale Earth-system model projections to changes in Antarctic ocean temperatures and ice sheet discharge, thus better quantifying uncertainty in Antarctic-sourced sea-level rise.
Is Ice-Rafted Sediment in a North Pole Marine Record Evidence for Perennial Sea-ice Cover?
NASA Technical Reports Server (NTRS)
Tremblay, L.B.; Schmidt, G.A.; Pfirman, S.; Newton, R.; DeRepentigny, P.
2015-01-01
Ice-rafted sediments of Eurasian and North American origin are found consistently in the upper part (13 Ma BP to present) of the Arctic Coring Expedition (ACEX) ocean core from the Lomonosov Ridge, near the North Pole (approximately 88 degrees N). Based on modern sea-ice drift trajectories and speeds, this has been taken as evidence of the presence of a perennial sea-ice cover in the Arctic Ocean from the middle Miocene onwards. However, other high latitude land and marine records indicate a long-term trend towards cooling broken by periods of extensive warming suggestive of a seasonally ice-free Arctic between the Miocene and the present. We use a coupled sea-ice slab-ocean model including sediment transport tracers to map the spatial distribution of ice-rafted deposits in the Arctic Ocean. We use 6 hourly wind forcing and surface heat fluxes for two different climates: one with a perennial sea-ice cover similar to that of the present day and one with seasonally ice-free conditions, similar to that simulated in future projections. Model results confirm that in the present-day climate, sea ice takes more than 1 year to transport sediment from all its peripheral seas to the North Pole. However, in a warmer climate, sea-ice speeds are significantly faster (for the same wind forcing) and can deposit sediments of Laptev, East Siberian and perhaps also Beaufort Sea origin at the North Pole. This is primarily because of the fact that sea-ice interactions are much weaker with a thinner ice cover and there is less resistance to drift. We conclude that the presence of ice-rafted sediment of Eurasian and North American origin at the North Pole does not imply a perennial sea-ice cover in the Arctic Ocean, reconciling the ACEX ocean core data with other land and marine records.
NASA Astrophysics Data System (ADS)
Aizen, V. B.; Aizen, E. M.; Joswiak, D. R.; Surazakov, A. B.; Takeuchi, N.
2007-12-01
The vast arid and semi-arid regions of central Asia, Mongolia, and Northern China are the world's second largest source of atmospheric mineral dust. In recent years, severe dust storms in Asia have intensified in frequency, duration, and areal coverage. However, limited spatial and temporal extent of aerosol measurements precludes definitive statements to be made regarding relationship between the Asian aerosol generation and climate. It has been well known that glaciers are the natural archives of environmental records related to past climate and aerosol generation. In our research, we utilized central Asian and western Siberia shallow ice-core records recovered from Altai, Tien Shan and Pamir mountain glaciers. Despite the fact that ice-core data may extend climate/aerosol records back in time, their sparse coverage is inadequate to document aerosol spatial distribution. The NASA products from Aura, Terra and Aqua satellite missions address this gap identifying aerosol sources, transport pathways, and area of deposition. The main objective of our research is to evaluate an affect of climate variability on dynamics of Asian aerosol loading to atmosphere and changes in aerosol transport pathways. Dust particle, major and rare earth element analysis from dust aerosols deposited and accumulated in Altai, Tien Shan and Pamir glaciers suggests that loess from Tajikistan, Afghanistan and north-western China are main sources of aerosol loading into the upper troposphere over the central Asia and western Siberia. At the same time, the soluble ionic component of the ice-cores, related to aerosol generated from evaporate deposits, demonstrated both anthropogenic and natural impacts on atmospheric chemistry over these regions. Large perturbations of Ca2+ derived from CaCO3- rich dust transported from Goby Desert to Altai and Tien Shan. Origin and pathway of the ice-core aerosol depositions for the last 10-years were identified through calibrating ice-core records with dust storm land surface records and remote sensing aerosol data at the monthly/seasonal/annual to event/daily scale. For instance, in southwestern Asia, severe drought developed from 1998 to 2002 has intensified the frequency, duration, and spatial coverage of large dust storms originated in Iran, Afghanistan, Tajikistan, Taklimakan and Goby Deserts. The Pamir and Tien Shan ice-core records revealed, that concentration of major and REE elements during summer is about two times greater in period of 1998-2002 than at the following years. Our qualitative analysis based on ice-core records, the MODIS and SeaWiFS images and determined the origin of dust, transport pathways and aerosol spatial distribution over central Asia and western Siberia in summer 2000, 2001 and 2002. The transport pathways were reconstructed on the basis of visibility observations and NCAR MM5-predicted winds with further validation against of satellite data and isotope- geochemical ice-core data analysis.
A model of the Greenland ice sheet deglaciation
NASA Astrophysics Data System (ADS)
Lecavalier, Benoit
The goal of this thesis is to improve our understanding of the Greenland ice sheet (GrIS) and how it responds to climate change. This was achieved using ice core records to infer elevation changes of the GrIS during the Holocene (11.7 ka BP to Present). The inferred elevation changes show the response of the ice sheet interior to the Holocene Thermal Maximum (HTM; 9-5 ka BP) when temperatures across Greenland were warmer than present. These ice-core derived thinning curves act as a new set of key constraints on the deglacial history of the GrIS. Furthermore, a calibration was conducted on a three-dimensional thermomechanical ice sheet, glacial isostatic adjustment, and relative sea-level model of GrIS evolution during the most recent deglaciation (21 ka BP to present). The model was data-constrained to a variety of proxy records from paleoclimate archives and present-day observations of ice thickness and extent.
Elevational and Spatial Gradients of Atmospheric Metal Pollution in the North Pacific
NASA Astrophysics Data System (ADS)
Jongebloed, U. A.; Osterberg, E. C.; Kreutz, K. J.; Ferris, D. G.; Campbell, S.; Saylor, P. L.; Winski, D.; Handley, M.
2017-12-01
The industrial revolution has led to a several-fold increase in the atmospheric concentrations of heavy metals and metalloids including Pb, Cd, Cu, Zn, Hg and As. Modern emissions inventories identify Asia as the largest emitter of many of these toxic pollutants, which are subsequently transported eastwards across the North Pacific Ocean by prevailing westerly winds in the mid-upper troposphere. Previous ice cores collected from the Yukon Territory in the eastern North Pacific reveal evolution-dependent metal pollution histories; the highest (5300 m elevation) core from Mt. Logan records a nearly pure trans-Pacific Asian pollution record, whereas cores from lower sites like the Eclipse Icefield (3017 m) record a complex combination of Asian and more local North American emission. However, it is unclear if this elevation gradient of pollution sources is found in other regions of the North Pacific. Furthermore, the previous ice core records end in the late 1990's, before efforts by some Asian nations to reduce metal pollution, and it is unknown if North Pacific atmospheric metal concentrations have declined in response to these efforts. Here we investigate metal and metalloid concentrations and sources recorded in ice core and snow pit samples recovered from a vertical transect spanning 2200 - 5242 m within Denali National Park in the Central Alaska Range. We compare these metal concentrations and crustal enrichment factors to data from the Yukon Territory to investigate North Pacific regional metal gradients. We also present preliminary results from a new 60 m ice core from the Eclipse Icefield to evaluate recent trends in metal concentrations since the end of the Mt. Logan and original Eclipse records in 1998, and compare this to the recent metal pollution history recorded in the 2013 Denali Ice Core collected from the summit plateau (3900 m) of Mt. Hunter.
NASA Astrophysics Data System (ADS)
Udisti, Roberto; Becagli, Silvia; Frosini, Daniele; Galli, Gaia; Ghedini, Costanza; Rugi, Francesco; Severi, Mirko; Traversi, Rita
2010-05-01
Ice-core stratigraphies of chemical components of atmospheric gases and aerosols trapped in the snow layers by scavenging processes are a powerful tool in understanding past climatic and environmental changes. The deep ice core drilled at Dome C in the framework of the EPICA project allowed reconstructing the last 8 glacial-interglacial cycles and highlightened the complex relationships between climatic forcings and environmental feedback processes. In interpreting ice core records as a function of past climatic variations, some difficulties arise from uncertainties in considering selected chemical species as reliable markers of climatic and environmental processes and in attributing the different load and composition of aerosols over Antarctica to changes in source intensity (such as aridity, wind strength, emersion of continental platform by sea-level lowering etc..) and/or to variations in atmospheric processes (such as meridional and zonal atmospheric circulation, polar vortex intensity, scavenging efficiency, transport pathways etc..). Besides, two new aspects are actually under discussions: the possible use of Na as sea-ice cover marker (via frost flower formation on the sea-ice surface during the pack-ice formation) and the identification of continental source areas for mineral dust reaching internal regions of Antarctica during glacial and interglacial periods. In order to better address such controversial issues, since 2005 a continuous, high temporal resolution size-segregated aerosol and surface snow sampling has been performed at Dome C (central East Antarctic Plateau, 75° 06' S, 123° 23' E), in the framework of "Station Concordia" Project (a Italian PNRA- French IPEV joint program). The chemical analysis of size-segregated aerosol and daily superficial snow samples, collected all year-round for more than 4 years, can contribute to clarify some of the above mentioned topics. In particular: the possible seasonal pattern of sea spray aerosol could be related to sea-ice formation timing and/or to changes in zonal wind intensity and atmospheric pathway; the mineralogical analysis of insoluble dust particles can allow the identification of continental sources, by comparison with soils collected in the potential source areas (PSAs); finally, the seasonal pattern of biogenic markers (such as methanesulphonic acid and non-sea-salt sulphate) can be linked to sea surface temperature, sea-ice cover and southern-hemisphere circulation modes (e.g., SOI, AAO or SAM and ACW). As regard as depositional and post-depositional processes, the analysis of chemical markers in aerosol, superficial snow and hoar crystals, sampled contemporaneously, will allow understanding the key factors (e.g., snow acidity, solar irradiation) affecting the preservation of components reversibly fixed in the snow layers (such as, for instance, methanesulphonic acid, nitrate and chloride). A summary of the major results from the chemical analysis of aerosol and snow collected at Dome C is here presented.
NASA Astrophysics Data System (ADS)
Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.
2016-02-01
Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.
NASA Astrophysics Data System (ADS)
Muscheler, Raimund; Adolphi, Florian; Bronk Ramsey, Christopher; Rasmussen, Sune; Hughen, Konrad; Cooper, Alan; Turney, Chris
2017-04-01
The production rates of cosmogenic radionuclides (such as 10Be and 14C) are modulated by the solar and geomagnetic shielding of galactic cosmic rays. In addition, 14C and 10Be are influenced by the carbon cycle and the atmospheric transport and deposition, respectively. Isolating and identifying the common production signal allows us to synchronize ice core 10Be and tree ring 14C records during the Holocene (Adolphi and Muscheler, 2016), thereby connecting ice core climate records with 14C-dated records. Extending this comparison further back in time is challenging due to deteriorating quality of the 14C calibration record, IntCal13, (Reimer et al., 2013) and possible unidentified climate influences on the ice-core 10Be records. Nevertheless, by focusing on the most prominent production-rate features this comparison can be extended far back into the last glacial where, for example, the linkage of tree-ring based Kauri 14C data and the Greenland ice-core time scale (GICC05) suggested unresolved data and/or time scale differences around the period of the Laschamp geomagnetic field minimum at about 42000 yrs BP (Muscheler et al., 2014). Here we show that the data underlying the IntCal13 14C record and the ice-core 10Be records exhibit common variability that allows us to tentatively link the ice core GICC05 time scale to the radiocarbon time scale for almost the complete radiocarbon dating range. The observed time scale differences could be related to uncertainties in both the U/Th-based dating of the IntCal13 calibration data set and the GICC05 time scale, and we show that the two can be reconciled within the uncertainties of the ice-core layer counting. This direct comparison between IntCal13 and 10Be also suggests that the 14C differences shown in (Muscheler et al., 2014) around the Laschamp geomagnetic field minimum can be reduced by moderate adjustments to the GICC05 time scale. References: Adolphi, F., and Muscheler, R., 2016, Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene - Bayesian wiggle-matching of cosmogenic radionuclide records: Clim. Past. , v. 12, p. 15-30. Muscheler, R., Adolphi, F., and Svensson, A., 2014, Challenges in 14C dating towards the limit of the method inferred from anchoring a floating tree ring radiocarbon chronology to ice core records around the Laschamp geomagnetic field minimum: Earth Planet. Sci. Lett., v. 394, p. 209-215. Reimer, P., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P., Guilderson, T. P., Haflidison, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J., Staff, R. A., Turney, C. S. M., and van der Plicht, J., 2013, IntCal13 AND Marine13 radiocarbon age calibration curves 0-50,000 years cal BP: Radiocarbon, v. 55, No. 4, p. 1869-1887.
Rapid ice drilling with continual air transport of cuttings and cores: General concept
NASA Astrophysics Data System (ADS)
Wang, Rusheng; An, Liu; Cao, Pinlu; Chen, Baoyi; Sysoev, Mikhail; Fan, Dayou; Talalay, Pavel G.
2017-12-01
This article describes the investigation of the feasibility of rapid drilling in ice sheets and glaciers to depths of up to 600 m, with cuttings and cores continually transported by air reverse circulation. The method employs dual wall drill rods. The inner tubes provide a continuous pathway for the chips and cores from the drill bit face to the surface. To modify air reverse circulation drilling technology according to the conditions of a specific glacier, original cutter drill bits and air processing devices (air-cooled aftercoolers, air receivers, coalescing filters, desiccant dryers) should be used. The airflow velocity for conveying a 60-mm diameter and 200-mm long ice core should not be lower than 22.5 m/s, and the minimal airflow rate for continual chip and cores transport is 6.8 m3/min at 2.3-2.6 MPa. Drilling of a 600-m deep hole can be accomplished within 1.5 days in the case of 24 h drilling operations. However, to avoid sticking while drilling through ice, the drilling depth should to be limited to 540 m at a temperature of -20 °C and to 418 m at a temperature of -10 °C.
Low-latitude ice cores and freshwater availability
NASA Astrophysics Data System (ADS)
Kehrwald, Natalie Marie
2009-12-01
Recent retreat of Tibetan Plateau glaciers affects at least half a billion people. Himalayan glaciers seasonally release meltwater into tributaries of the Indus, Ganges, and Brahmaputra Rivers and supply freshwater necessary to support agricultural and economic practices. Tibetan Plateau glaciers are retreating more rapidly than mountain glaciers elsewhere in the world, and this retreat is accelerating. The Naimona'nyi (30°27'N; 81°91'E, 6050 m a.s.l), Guliya (35°17'N; 81°29'E, 6710 m a.s.l.) and Dasuopu (28°23'N; 85°43'E, 7200 m a.s.l.) ice cores place this recent retreat into a longer time perspective through quantifying climate parameters such as past temperature, aridity, and atmospheric chemistry. Naimona'nyi has not accumulated mass since at least 1950, as evidenced by the virtual lack of radiogenic isotopes (36Cl, 3 H, and beta radioactivity) present in the ice core. These isotopes were produced by U.S. and Soviet atmospheric thermonuclear bomb tests conducted in the 1950s and 1960s and provide independent dating horizons for the ice cores. Lead-210 dates imply that the uppermost preserved glacial ice on Naimona'nyi formed during the 1940s. While this is the highest documented glacial thinning in the world other glaciers at elevations similar to that of Naimona'nyi, such as Kilimanjaro (3°4'S; 37°21'E, 5893 m a.s.l.), are also losing mass at their summits. The global scope of high-elevation glacial thinning suggests that ablation on the Earth's highest ice fields may be more prevalent as global mean temperatures continue to increase. Glacial thinning has not been taken into account in future projections of regional freshwater availability, and the net mass loss indicates that Himalayan glaciers currently store less freshwater than assumed in models. The acceleration of Tibetan Plateau glacial retreat has been hypothesized to be due in part to deposition of black carbon (BC) from biomass burning on to ice fields, thereby lowering the reflectivity of the glacier surface and melting the upper ice. The application of a novel technique of measuring and radiocarbon-dating ultra-small samples (< 100mug) of the BC and total organic carbon (TOC) fractions of Naimona'nyi demonstrates a decrease (˜12 to 14 ka versus ˜7 ka) in the composite age of BC in the upper 40 m and lowest 20 m of the 137 m ice core, suggesting the incorporation of radiocarbon-dead BC. Precambrian black shale in the Lesser Himalaya provide a natural source material which may be operationally defined as black carbon and which may incorporate radiocarbon-dead sediments into the bulk 14C measurements, yet as the mean 14C age is ˜10 ka, modern BC from biomass burning must also be incorporated into the ice core record. While the uppermost sample (5 m) contains 38% BC, 210 Pb dates show that this depth corresponds to an age before 1850 AD, or before the regional Industrial Revolution. As BC is a hydrophobic substance, the BC is unlikely to have migrated through the firn and glacial ice. Therefore, the high-elevation thinning on Naimona'nyi appears to be a response to increased temperatures rather than primarily driven by changes in surface albedo. This technique was applied to the annually-dated ice core from the accumulating summit of the Quleccaya ice cap, Peru (13'56'S; 70°50'W; 5670 m a.s.l.). A marked increase in modern BC and TOC was measured since 1880 AD. No increase in radiocarbon-dead (> 60,000 ka) BC or TOC was noted, suggesting that the source of the carbon was from biomass burning, with a possible contribution of Amazon slash and burn clearing, rather than the input of fossil fuel combustion. The age of the BC and TOC is thousands of years older than the age of the surrounding ice, and should not be used to date the ice core. Although Naimona'nyi provides challenges for constructing an ice core chronology due to its lack of independent horizons such as volcanic activity, methane gas measurements, 14C dates, 3H, 36Cl, or beta radioactivity, the oxygen isotopic record can be correlated with the neighboring Dasuopu and Guliya ice cores. Naimona'nyi contains a pronounced positive ˜10‰ shift in delta18O in the basal 37 m of the core which mimics similar isotopic shifts in regional speleothems, lacustrian sediments, and planktonic foraminifera proxy records. This distinct shift is attributed to amplified monsoon intensity caused by increased summer insolation at 30°N. This correlation between regional proxy records results in a basal age of ˜8.6 ka for Naimona'nyi, suggesting that the ice field grew as a response to tropical rather than polar climate forcings.
NASA Astrophysics Data System (ADS)
Lucchi, Renata G.; Camerlenghi, Angelo; Colmenero-Hidalgo, Elena; Sierro, Francisco J.; Bárcena, Maria Angeles; Flores, José-Abel; Urgeles, Roger; Macrı, Patrizia; Sagnotti, Leonardo; Caburlotto, Andrea
2010-05-01
The continental margin of the Southern Storfjorden trough-mouth fan was investigated within the SVAIS project (BIO Hesperides cruise, August 2007) as a Spanish contribution to IPY Activity N. 367 (Neogene ice streams and sedimentary processes on high- latitude continental margins - NICE STREAMS). The objectives were to investigate the glacially-dominated late-Neogene-Quaternary sedimentary architecture of the NW Barents Sea continental margin and reconstruct its sedimentary system in response to natural climate change. The paleo-ice streams in Storfjorden had a small catchment area draining ice from the southern Spitsbergen and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. Here ground truthing recovered the last few thousands years sedimentary sequence thought to represent last deglaciation phase. Detailed palaeostratigraphic investigations together with paleomagnetic and rock magnetic analyses and AMS dating define the constraints for high-resolution inter-core correlation and dating. Most of the cores contain at the base gravity-mass deposits including debris flows and over-consolidated glacigenic diamicton. Mass deposits are overlain by an oxidized interval originated at the release and sink of fresh, cold and oxygenated melt-waters at the inception of the deglaciation phase. On the upper slope the oxidized interval is overlain by several meters of finely-stratified sediments composed of sandy-silt layers cyclically recurring within finer-grained laminated silty-clay sediments. Textural and compositional analyses suggest preferential deposition by settling from meltwater sediment-laden plumes (plumites) occurred during deglaciation with coarser layers representing episodes of subglacial meltwater discharge (glacial hyperpycnal flows) accompanying the ice streams retreat. The laminated sequence is truncated at uppermost part by a more recent gravity-mass deposit that possibly removed part of the younger sequence. In the deeper part of the slope the plumites consist of crudely laminated, terrigenous and almost barren sediments. Here the sedimentary sequence is topped by intensively bioturbated, bioclasts-bearing silty-clays representing the most recent interglacial sedimentation. On the continental shelf, the upper sedimentary sequence contains dispersed cm-thick bivalve's shells suggesting an oxygenated and nutrient-rich environment (interglacial) overlaying an interval of terrigenous, barren sediments (deglaciation). Here the short core's length suggests the presence of stiffer/coarser sediments at the base that could not be sampled. The seismic stratigraphy indicates that the slope is formed by alternating debris flow deposits and layered sediments corresponding into our cores to the fast-deposited, low-density, terrigenous plumites. Bathymetric and seismic data revealed the presence of widespread submarine landslides restricted to the southernmost part of Storfjorden continental slope. Geotechnical investigation are in progress in order to understand if such layered deposits can act on the slope as a possible preferential weak horizon favoring sediment failure.