NASA Astrophysics Data System (ADS)
Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.
2017-09-01
Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.
Hohenstein, Kurt; Griesmacher, Andrea; Weigel, Günter; Golderer, Georg; Ott, Helmut Werner
2011-06-01
Blue native electrophoresis (BNE) was applied to analyze the von Willebrand factor (vWF) multimers in their native state and to present a methodology to perform blue native electrophoresis on human plasma proteins, which has not been done before. The major difference between this method and the commonly used SDS-agarose gel electrophoresis is the lack of satellite bands in the high-resolution native gel. To further analyze this phenomenon, a second dimension was performed under denaturing conditions. Thereby, we obtained a pattern in which each protein sub-unit from the first dimension dissociates into three distinct sub-bands. These bands confirm the triplet structure, which consists of an intermediate band and two satellite bands. By introducing the second dimension, our novel method separates the triplet structure into a higher resolution than the commonly used SDS-agarose gel electrophoresis does. This helps considerably in the classification of ambiguous von Willebrand's disease subtypes. In addition, our method has the additional advantage of being able to resolve the triplet structure of platelet vWF multimers, which has not been identified previously through conventional SDS-agarose electrophoresis multimer analysis. This potential enables us to compare the triplet structure from platelet and plasmatic vWF, and may help to find out whether structural abnormalities concern the vWF molecule in the platelet itself, or whether they are due to the physiological processing of vWF shed into circulation. Owing to its resolution and sensitivity, this native separation technique offers a promising tool for the analysis and detection of von Willebrand disorder, and for the classification of von Willebrand's disease subtypes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy
2018-01-01
Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958
Multi-crystal native SAD analysis at 6 keV.
Liu, Qun; Guo, Youzhong; Chang, Yanqi; Cai, Zheng; Assur, Zahra; Mancia, Filippo; Greene, Mark I; Hendrickson, Wayne A
2014-10-01
Anomalous diffraction signals from typical native macromolecules are very weak, frustrating their use in de novo structure determination. Here, native SAD procedures are described to enhance signal to noise in anomalous diffraction by using multiple crystals in combination with synchrotron X-rays at 6 keV. Increased anomalous signals were obtained at 6 keV compared with 7 keV X-ray energy, which was used for previous native SAD analyses. A feasibility test of multi-crystal-based native SAD phasing was performed at 3.2 Å resolution for a known tyrosine protein kinase domain, and real-life applications were made to two novel membrane proteins at about 3.0 Å resolution. The three applications collectively serve to validate the robust feasibility of native SAD phasing at lower energy.
Dang, Bobo; Kubota, Tomoya; Mandal, Kalyaneswar; Bezanilla, Francisco; Kent, Stephen B H
2013-08-14
We have re-examined the utility of native chemical ligation at -Gln/Glu-Cys- [Glx-Cys] and -Asn/Asp-Cys- [Asx-Cys] sites. Using the improved thioaryl catalyst 4-mercaptophenylacetic acid (MPAA), native chemical ligation could be performed at -Gln-Cys- and Asn-Cys- sites without side reactions. After optimization, ligation at a -Glu-Cys- site could also be used as a ligation site, with minimal levels of byproduct formation. However, -Asp-Cys- is not appropriate for use as a site for native chemical ligation because of formation of significant amounts of β-linked byproduct. The feasibility of native chemical ligation at -Gln-Cys- enabled a convergent total chemical synthesis of the enantiomeric forms of the ShK toxin protein molecule. The D-ShK protein molecule was ~50,000-fold less active in blocking the Kv1.3 channel than the L-ShK protein molecule. Racemic protein crystallography was used to obtain high-resolution X-ray diffraction data for ShK toxin. The structure was solved by direct methods and showed significant differences from the previously reported NMR structures in some regions of the ShK protein molecule.
Low-resolution structure of Drosophila translin
Kumar, Vinay; Gupta, Gagan D.
2012-01-01
Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to Rwork (Rfree) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin–TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers. PMID:23650579
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Colin J.; Hadler, Kieran S.; Carr, Paul D.
2011-09-28
The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 {angstrom} to a final R factor of 17.1%. The structure was originally solved to 2.9 {angstrom} resolution using SAD phases from Zn{sup 2+} metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 {angstrom} resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activitymore » in the presence of Zn2+, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe{sup 2+} metal-ion preference are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Colin J.; Hadler, Kieran S.; Carr, Paul D.
2010-09-20
The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 {angstrom} to a final R factor of 17.1%. The structure was originally solved to 2.9 {angstrom} resolution using SAD phases from Zn{sup 2+} metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 {angstrom} resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activitymore » in the presence of Zn{sup 2+}, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe{sup 2+} metal-ion preference are discussed.« less
Cellular Electron Cryotomography: Toward Structural Biology In Situ.
Oikonomou, Catherine M; Jensen, Grant J
2017-06-20
Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.
Selectivity in L1 Attrition: Differential Object Marking in Spanish Near-Native Speakers of English
ERIC Educational Resources Information Center
Chamorro, Gloria; Sturt, Patrick; Sorace, Antonella
2016-01-01
Previous research has shown L1 attrition to be restricted to structures at the interfaces between syntax and pragmatics, but not to occur with syntactic properties that do not involve such interfaces ("Interface Hypothesis", Sorace and Filiaci in "Anaphora resolution in near-native speakers of Italian." "Second Lang…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, P.K.; Lee, Cheng S.; King, J.A.
1997-12-31
The use of capillary electrophoresis equipped with laser-induced tryptophan fluorescence detection is presented for monitoring the refolding pathway of phage P22 tailspike endorhamnosidase. Upon initiation of refolding, tailspike polypeptides rapidly fold into structured monomeric intermediates with a high content of secondary structure. These monomeric species associate to form the triple-chain defined folding intermediates, the protrimers. Conversion of the protrimer into the native, sodium dodecyl sulfate (SDS) resistant tailspike protein is the rate-limiting step in the refolding pathway. Refolding kinetics and yield measured by capillary electrophoresis are in good agreement with those obtained via native gel electrophoresis, SDS polyacrylamide gel electrophoresismore » (SDS-PAGE) and fluorescence spectrophotometry. To enhance separation resolution between protrimer and native protein in capillary electrophoresis, the use of poly(ethylene oxide) is investigated for the introduction of a sieving separation mechanism. The increased viscosity of the electrophoresis buffer may also play a role in resolution enhancement.« less
Native phasing of x-ray free-electron laser data for a G protein-coupled receptor.
Batyuk, Alexander; Galli, Lorenzo; Ishchenko, Andrii; Han, Gye Won; Gati, Cornelius; Popov, Petr A; Lee, Ming-Yue; Stauch, Benjamin; White, Thomas A; Barty, Anton; Aquila, Andrew; Hunter, Mark S; Liang, Mengning; Boutet, Sébastien; Pu, Mengchen; Liu, Zhi-Jie; Nelson, Garrett; James, Daniel; Li, Chufeng; Zhao, Yun; Spence, John C H; Liu, Wei; Fromme, Petra; Katritch, Vsevolod; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim
2016-09-01
Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of "diffraction-before-destruction." However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A 2A adenosine receptor at 1.9 Å resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.
Selenium Derivatization of Nucleic Acids for Crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang,J.; Sheng, J.; Carrasco, N.
2007-01-01
The high-resolution structure of the DNA (5'-GTGTACA-C-3') with the selenium derivatization at the 2'-position of T2 was determined via MAD and SAD phasing. The selenium-derivatized structure (1.28 {angstrom} resolution) with the 2'-Se modification in the minor groove is isomorphorous to the native structure (2.0 {angstrom}). To directly compare with the conventional bromine derivatization, we incorporated bromine into the 5-postion of T4, determined the bromine-derivatized DNA structure at 1.5 {angstrom} resolution, and found that the local backbone torsion angles and solvent hydration patterns were altered in the structure with the Br incorporation in the major groove. Furthermore, while the native andmore » Br-derivatized DNAs needed over a week to form reasonable-size crystals, we observed that the Se-derivatized DNAs grew crystals overnight with high-diffraction quality, suggesting that the Se derivatization facilitated the crystal formation. In addition, the Se-derivatized DNA sequences crystallized under a broader range of buffer conditions, and generally had a faster crystal growth rate. Our experimental results indicate that the selenium derivatization of DNAs may facilitate the determination of nucleic acid X-ray crystal structures in phasing and high-quality crystal growth. In addition, our results suggest that the Se derivatization can be an alternative to the conventional Br derivatization.« less
Raval, Alpan; Piana, Stefano; Eastwood, Michael P; Shaw, David E
2016-01-01
Molecular dynamics (MD) simulation is a well-established tool for the computational study of protein structure and dynamics, but its application to the important problem of protein structure prediction remains challenging, in part because extremely long timescales can be required to reach the native structure. Here, we examine the extent to which the use of low-resolution information in the form of residue-residue contacts, which can often be inferred from bioinformatics or experimental studies, can accelerate the determination of protein structure in simulation. We incorporated sets of 62, 31, or 15 contact-based restraints in MD simulations of ubiquitin, a benchmark system known to fold to the native state on the millisecond timescale in unrestrained simulations. One-third of the restrained simulations folded to the native state within a few tens of microseconds-a speedup of over an order of magnitude compared with unrestrained simulations and a demonstration of the potential for limited amounts of structural information to accelerate structure determination. Almost all of the remaining ubiquitin simulations reached near-native conformations within a few tens of microseconds, but remained trapped there, apparently due to the restraints. We discuss potential methodological improvements that would facilitate escape from these near-native traps and allow more simulations to quickly reach the native state. Finally, using a target from the Critical Assessment of protein Structure Prediction (CASP) experiment, we show that distance restraints can improve simulation accuracy: In our simulations, restraints stabilized the native state of the protein, enabling a reasonable structural model to be inferred. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex.
Ma, Jiong; Kelich, Joseph M; Junod, Samuel L; Yang, Weidong
2017-04-01
The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes. © 2017. Published by The Company of Biologists Ltd.
Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex
Ma, Jiong; Kelich, Joseph M.; Junod, Samuel L.
2017-01-01
ABSTRACT The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes. PMID:28202688
Gati, Cornelius; Oberthuer, Dominik; Yefanov, Oleksandr; Stellato, Francesco; Chiu, Elaine; Yeh, Shin-Mei; Aquila, Andrew; Basu, Shibom; Bean, Richard; Beyerlein, Kenneth R.; Botha, Sabine; Boutet, Sébastien; DePonte, Daniel P.; Doak, R. Bruce; Fromme, Raimund; Galli, Lorenzo; Grotjohann, Ingo; James, Daniel R.; Kupitz, Christopher; Lomb, Lukas; Messerschmidt, Marc; Nass, Karol; Rendek, Kimberly; Shoeman, Robert L.; Wang, Dingjie; Weierstall, Uwe; White, Thomas A.; Williams, Garth J.; Zatsepin, Nadia A.; Fromme, Petra; Spence, John C. H.; Goldie, Kenneth N.; Jehle, Johannes A.; Metcalf, Peter; Barty, Anton
2017-01-01
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach. PMID:28202732
Gati, Cornelius; Oberthuer, Dominik; Yefanov, Oleksandr; ...
2017-02-15
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm3 in volume, whereas the X-ray beam ismore » often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Furthermore, our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.« less
The Impact of Focus on Pronoun Resolution in Native and Non-Native Sentence Comprehension
ERIC Educational Resources Information Center
Patterson, Clare; Esaulova, Yulia; Felser, Claudia
2017-01-01
Non-native speakers' sensitivity to discourse-level cues in pronoun interpretation has not been widely researched. We carried out three antecedent-choice questionnaire experiments which investigate the impact of focus on within-sentence pronoun resolution in native and non-native speakers of German and native speakers of Russian. Focus was…
Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing.
Whatley, Benjamin R; Kuo, Jonathan; Shuai, Cijun; Damon, Brooke J; Wen, Xuejun
2011-03-01
A custom-designed three-dimensional additive manufacturing device was developed to fabricate scaffolds for intervertebral disk (IVD) regeneration. This technique integrated a computer with a device capable of 3D movement allowing for precise motion and control over the polymer scaffold resolution. IVD scaffold structures were designed using computer-aided design to resemble the natural IVD structure. Degradable polyurethane (PU) was used as an elastic scaffold construct to mimic the elastic nature of the native IVD tissue and was deposited at a controlled rate using ultra-fine micropipettes connected to a syringe pump. The elastic PU was extruded directly onto a collecting substrate placed on a freezing stage. The three-dimensional movement of the computer-controlled device combined with the freezing stage enabled precise control of polymer deposition using extrusion. The addition of the freezing stage increased the polymer solution viscosity and hardened the polymer solution as it was extruded out of the micropipette tip. This technique created scaffolds with excellent control over macro- and micro-structure to influence cell behavior, specifically for cell adhesion, proliferation, and alignment. Concentric lamellae were printed at a high resolution to mimic the native shape and structure of the IVD. Seeded cells aligned along the concentric lamellae and acquired cell morphology similar to native tissue in the outer portion of the IVD. The fabricated scaffolds exhibited elastic behavior during compressive and shear testing, proving that the scaffolds could support loads with proper fatigue resistance without permanent deformation. Additionally, the mechanical properties of the scaffolds were comparable to those of native IVD tissue.
Wittig, Ilka; Karas, Michael; Schägger, Hermann
2007-07-01
Clear native electrophoresis and blue native electrophoresis are microscale techniques for the isolation of membrane protein complexes. The Coomassie Blue G-250 dye, used in blue native electrophoresis, interferes with in-gel fluorescence detection and in-gel catalytic activity assays. This problem can be overcome by omitting the dye in clear native electrophoresis. However, clear native electrophoresis suffers from enhanced protein aggregation and broadening of protein bands during electrophoresis and therefore has been used rarely. To preserve the advantages of both electrophoresis techniques we substituted Coomassie dye in the cathode buffer of blue native electrophoresis by non-colored mixtures of anionic and neutral detergents. Like Coomassie dye, these mixed micelles imposed a charge shift on the membrane proteins to enhance their anodic migration and improved membrane protein solubility during electrophoresis. This improved clear native electrophoresis offers a high resolution of membrane protein complexes comparable to that of blue native electrophoresis. We demonstrate the superiority of high resolution clear native electrophoresis for in-gel catalytic activity assays of mitochondrial complexes I-V. We present the first in-gel histochemical staining protocol for respiratory complex III. Moreover we demonstrate the special advantages of high resolution clear native electrophoresis for in-gel detection of fluorescent labeled proteins labeled by reactive fluorescent dyes and tagged by fluorescent proteins. The advantages of high resolution clear native electrophoresis make this technique superior for functional proteomics analyses.
Eyrich, V A; Standley, D M; Friesner, R A
1999-05-14
We report the tertiary structure predictions for 95 proteins ranging in size from 17 to 160 residues starting from known secondary structure. Predictions are obtained from global minimization of an empirical potential function followed by the application of a refined atomic overlap potential. The minimization strategy employed represents a variant of the Monte Carlo plus minimization scheme of Li and Scheraga applied to a reduced model of the protein chain. For all of the cases except beta-proteins larger than 75 residues, a native-like structure, usually 4-6 A root-mean-square deviation from the native, is located. For beta-proteins larger than 75 residues, the energy gap between native-like structures and the lowest energy structures produced in the simulation is large, so that low RMSD structures are not generated starting from an unfolded state. This is attributed to the lack of an explicit hydrogen bond term in the potential function, which we hypothesize is necessary to stabilize large assemblies of beta-strands. Copyright 1999 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
X-ray microscopy can be used to image whole, unsectioned cells in their native hydrated state. It complements the higher resolution of electron microscopy for submicrometer thick specimens, and the molecule-specific imaging capabilites of fluorescence light microscopy. We describe here the first use of fast, continuous x-ray scanning of frozen hydrated cells for simultaneous sub-20 nm resolution ptychographic transmission imaging with high contrast, and sub-100 nm resolution deconvolved x-ray fluorescence imaging of diffusible and bound ions at native concentrations, without the need to add specific labels. Here, by working with cells that have been rapidly frozen without the use of chemicalmore » fixatives, and imaging them under cryogenic conditions, we are able to obtain images with well preserved structural and chemical composition, and sufficient stability against radiation damage to allow for multiple images to be obtained with no observable change.« less
Characterizing RNA Dynamics at Atomic Resolution Using Solution-state NMR Spectroscopy
Bothe, Jameson R.; Nikolova, Evgenia N.; Eichhorn, Catherine D.; Chugh, Jeetender; Hansen, Alexandar L.; Al-Hashimi, Hashim M.
2012-01-01
Many recently discovered non-coding RNAs do not fold into a single native conformation, but rather, sample many different conformations along their free energy landscape to carry out their biological function. Unprecedented insights into the RNA dynamic structure landscape are provided by solution-state NMR techniques that measure the structural, kinetic, and thermodynamic characteristics of motions spanning picosecond to second timescales at atomic resolution. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering. PMID:22036746
Kumar, Vibhor; Butcher, Sarah J; Öörni, Katariina; Engelhardt, Peter; Heikkonen, Jukka; Kaski, Kimmo; Ala-Korpela, Mika; Kovanen, Petri T
2011-05-09
Low-density lipoprotein (LDL) particles, the major carriers of cholesterol in the human circulation, have a key role in cholesterol physiology and in the development of atherosclerosis. The most prominent structural components in LDL are the core-forming cholesteryl esters (CE) and the particle-encircling single copy of a huge, non-exchangeable protein, the apolipoprotein B-100 (apoB-100). The shape of native LDL particles and the conformation of native apoB-100 on the particles remain incompletely characterized at the physiological human body temperature (37 °C). To study native LDL particles, we applied cryo-electron microscopy to calculate 3D reconstructions of LDL particles in their hydrated state. Images of the particles vitrified at 6 °C and 37 °C resulted in reconstructions at ~16 Å resolution at both temperatures. 3D variance map analysis revealed rigid and flexible domains of lipids and apoB-100 at both temperatures. The reconstructions showed less variability at 6 °C than at 37 °C, which reflected increased order of the core CE molecules, rather than decreased mobility of the apoB-100. Compact molecular packing of the core and order in a lipid-binding domain of apoB-100 were observed at 6 °C, but not at 37 °C. At 37 °C we were able to highlight features in the LDL particles that are not clearly separable in 3D maps at 6 °C. Segmentation of apoB-100 density, fitting of lipovitellin X-ray structure, and antibody mapping, jointly revealed the approximate locations of the individual domains of apoB-100 on the surface of native LDL particles. Our study provides molecular background for further understanding of the link between structure and function of native LDL particles at physiological body temperature.
High-resolution structure of infectious prion protein: the final frontier
Diaz-Espinoza, Rodrigo; Soto, Claudio
2014-01-01
Prions are the proteinaceous infectious agents responsible for the transmission of prion diseases. The main or sole component of prions is the misfolded prion protein (PrPSc), which is able to template the conversion of the host’s natively folded form of the protein (PrPC). The detailed mechanism of prion replication and the high-resolution structure of PrPSc are unknown. The currently available information on PrPSc structure comes mostly from low-resolution biophysical techniques, which have resulted in quite divergent models. Recent advances in the production of infectious prions, using very pure recombinant protein, offer new hope for PrPSc structural studies. This review highlights the importance of, challenges for and recent progress toward elucidating the elusive structure of PrPSc, arguably the major pending milestone to reach in understanding prions. PMID:22472622
X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning
Deng, Junjing; Vine, David J.; Chen, Si; ...
2017-03-27
X-ray microscopy can be used to image whole, unsectioned cells in their native hydrated state. It complements the higher resolution of electron microscopy for submicrometer thick specimens, and the molecule-specific imaging capabilites of fluorescence light microscopy. We describe here the first use of fast, continuous x-ray scanning of frozen hydrated cells for simultaneous sub-20 nm resolution ptychographic transmission imaging with high contrast, and sub-100 nm resolution deconvolved x-ray fluorescence imaging of diffusible and bound ions at native concentrations, without the need to add specific labels. Here, by working with cells that have been rapidly frozen without the use of chemicalmore » fixatives, and imaging them under cryogenic conditions, we are able to obtain images with well preserved structural and chemical composition, and sufficient stability against radiation damage to allow for multiple images to be obtained with no observable change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Zhen; Horton, John R.; Cheng, Xiadong
2009-11-02
Circular permutation of Candida antarctica lipase B yields several enzyme variants with substantially increased catalytic activity. To better understand the structural and functional consequences of protein termini reorganization, we have applied protein engineering and x-ray crystallography to cp283, one of the most active hydrolase variants. Our initial investigation has focused on the role of an extended surface loop, created by linking the native N- and C-termini, on protein integrity. Incremental truncation of the loop partially compensates for observed losses in secondary structure and the permutants temperature of unfolding. Unexpectedly, the improvements are accompanied by quaternary-structure changes from monomer to dimer.more » The crystal structures of one truncated variant (cp283{Delta}7) in the apo-form determined at 1.49 {angstrom} resolution and with a bound phosphonate inhibitor at 1.69 {angstrom} resolution confirmed the formation of a homodimer by swapping of the enzyme's 35-residue N-terminal region. Separately, the new protein termini at amino acid positions 282/283 convert the narrow access tunnel to the catalytic triad into a broad crevice for accelerated substrate entry and product exit while preserving the native active-site topology for optimal catalytic turnover.« less
Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx.
Romano, Christine A; Zhou, Mowei; Song, Yang; Wysocki, Vicki H; Dohnalkova, Alice C; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M
2017-09-29
Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.Significant challenges exist for structural characterization of enzymes responsible for biomineralization. Here the authors show that native mass spectrometry and high resolution electron microscopy can define the subunit topology and copper binding of a manganese oxidizing complex, and describe early stage formation of its mineral products.
Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR
Surana, Parag
2016-01-01
Abstract The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by nuclear magnetic resonance (NMR) spectroscopy. In the structure, the native secondary and tertiary structure is conserved for a major part of the protein. However, a long loop between the beta strands β3 and β5 is partially unfolded. The altered structure is supported by fluorescence data and the difference in free energies between the native state and the intermediate is reflected in the denaturant induced melting curves. The unfolded region includes amino acids that are critical for interaction with cofactors as well as for assembly of poly‐Ubiquitin chains. The structure at acidic pH resembles a late folding intermediate of Ubiquitin and indicates that upon stabilization of the protein's core, the long loop converges on the core in the final step of the folding process. PMID:27111887
Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS
NASA Technical Reports Server (NTRS)
Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.
1979-01-01
The chemical structures of thin SiO2 films, thin native oxides of GaAs (20-30 A), and the respective oxide-semiconductor interfaces, have been investigated using high-resolution X-ray photoelectron spectroscopy. Depth profiles of these structures have been obtained using argon ion bombardment and wet chemical etching techniques. The chemical destruction induced by the ion profiling method is shown by direct comparison of these methods for identical samples. Fourier transform data-reduction methods based on linear prediction with maximum entropy constraints are used to analyze the discrete structure in oxides and substrates. This discrete structure is interpreted by means of a structure-induced charge-transfer model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamir, Sagi; Eisenberg-Domovich, Yael; Conlan, Andrea R.
2014-06-01
NAF-1 has been shown to be related with human health and disease, is upregulated in epithelial breast cancer and suppression of its expression significantly suppresses tumor growth. It is shown that replacement of the single His ligand with Cys resulted in dramatic changes to the properties of its 2Fe-2S clusters without any global crystal structural changes. NAF-1 is an important [2Fe–2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression bymore » knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe–2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Å resolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe–2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Å resolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe–2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe–2S] cluster of NAF-1 in vivo.« less
NASA Astrophysics Data System (ADS)
Vedyaykin, A. D.; Gorbunov, V. V.; Sabantsev, A. V.; Polinovskaya, V. S.; Vishnyakov, I. E.; Melnikov, A. S.; Serdobintsev, P. Yu; Khodorkovskii, M. A.
2015-11-01
Localization microscopy allows visualization of biological structures with resolution well below the diffraction limit. Localization microscopy was used to study FtsZ organization in Escherichia coli previously in combination with fluorescent protein labeling, but the fact that fluorescent chimeric protein was unable to rescue temperature-sensitive ftsZ mutants suggests that obtained images may not represent native FtsZ structures faithfully. Indirect immunolabeling of FtsZ not only overcomes this problem, but also allows the use of the powerful visualization methods arsenal available for different structures in fixed cells. In this work we simultaneously obtained super-resolution images of FtsZ structures and diffraction-limited or super-resolution images of DNA and cell surface in E. coli, which allows for the study of the spatial arrangement of FtsZ structures with respect to the nucleoid positions and septum formation.
A discriminatory function for prediction of protein-DNA interactions based on alpha shape modeling.
Zhou, Weiqiang; Yan, Hong
2010-10-15
Protein-DNA interaction has significant importance in many biological processes. However, the underlying principle of the molecular recognition process is still largely unknown. As more high-resolution 3D structures of protein-DNA complex are becoming available, the surface characteristics of the complex become an important research topic. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and developed an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of protein-DNA interaction. The interface-atom curvature-dependent formalism captures atomic interaction details better than the atomic distance-based method. The proposed method provides good performance in discriminating the native structures from the docking decoy sets, and outperforms the distance-dependent formalism in terms of the z-score. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve a native z-score of -8.17 in discriminating the native structure from the highest surface-complementarity scored decoy set and a native z-score of -7.38 in discriminating the native structure from the lowest RMSD decoy set. The interface-atom curvature-dependent formalism can also be used to predict apo version of DNA-binding proteins. These results suggest that the interface-atom curvature-dependent formalism has a good prediction capability for protein-DNA interactions. The code and data sets are available for download on http://www.hy8.com/bioinformatics.htm kenandzhou@hotmail.com.
Hasegawa, K
2017-06-01
After resolution of habitat fragmentation by an erosion-control dam, non-native brown trout Salmo trutta invaded the upstream side of the dam and displaced native white-spotted charr Salvelinus leucomaenis in Monbetsu stream, Hokkaido, northern Japan. © 2017 The Fisheries Society of the British Isles.
Koparde, Vishal N.; Scarsdale, J. Neel; Kellogg, Glen E.
2011-01-01
Background The quality of X-ray crystallographic models for biomacromolecules refined from data obtained at high-resolution is assured by the data itself. However, at low-resolution, >3.0 Å, additional information is supplied by a forcefield coupled with an associated refinement protocol. These resulting structures are often of lower quality and thus unsuitable for downstream activities like structure-based drug discovery. Methodology An X-ray crystallography refinement protocol that enhances standard methodology by incorporating energy terms from the HINT (Hydropathic INTeractions) empirical forcefield is described. This protocol was tested by refining synthetic low-resolution structural data derived from 25 diverse high-resolution structures, and referencing the resulting models to these structures. The models were also evaluated with global structural quality metrics, e.g., Ramachandran score and MolProbity clashscore. Three additional structures, for which only low-resolution data are available, were also re-refined with this methodology. Results The enhanced refinement protocol is most beneficial for reflection data at resolutions of 3.0 Å or worse. At the low-resolution limit, ≥4.0 Å, the new protocol generated models with Cα positions that have RMSDs that are 0.18 Å more similar to the reference high-resolution structure, Ramachandran scores improved by 13%, and clashscores improved by 51%, all in comparison to models generated with the standard refinement protocol. The hydropathic forcefield terms are at least as effective as Coulombic electrostatic terms in maintaining polar interaction networks, and significantly more effective in maintaining hydrophobic networks, as synthetic resolution is decremented. Even at resolutions ≥4.0 Å, these latter networks are generally native-like, as measured with a hydropathic interactions scoring tool. PMID:21246043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagelueken, Gregor; Huang, Hexian; Harlos, Karl
2012-10-01
The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most onlymore » to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.« less
Eslick, Enid M; Beilby, Mary J; Moon, Anthony R
2014-04-01
A substantial proportion of the architecture of the plant cell wall remains unknown with a few cell wall models being proposed. Moreover, even less is known about the green algal cell wall. Techniques that allow direct visualization of the cell wall in as near to its native state are of importance in unravelling the spatial arrangement of cell wall structures and hence in the development of cell wall models. Atomic force microscopy (AFM) was used to image the native cell wall of living cells of Ventricaria ventricosa (V. ventricosa) at high resolution under physiological conditions. The cell wall polymers were identified mainly qualitatively via their structural appearance. The cellulose microfibrils (CMFs) were easily recognizable and the imaging results indicate that the V. ventricosa cell wall has a cross-fibrillar structure throughout. We found the native wall to be abundant in matrix polysaccharides existing in different curing states. The soft phase matrix polysaccharides susceptible by the AFM scanning tip existed as a glutinous fibrillar meshwork, possibly incorporating both the pectic- and hemicellulosic-type substances. The hard phase matrix producing clearer images, revealed coiled fibrillar structures associated with CMFs, sometimes being resolved as globular structures by the AFM tip. The coiling fibrillar structures were also seen in the images of isolated cell wall fragments. The mucilaginous component of the wall was discernible from the gelatinous cell wall matrix as it formed microstructural domains over the surface. AFM has been successful in imaging the native cell wall and revealing novel findings such as the 'coiling fibrillar structures' and cell wall components which have previously not been seen, that is, the gelatinous matrix phase.
High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE
Moriya, Toshio; Saur, Michael; Stabrin, Markus; Merino, Felipe; Voicu, Horatiu; Huang, Zhong; Penczek, Pawel A.; Raunser, Stefan; Gatsogiannis, Christos
2017-01-01
SPHIRE (SPARX for High-Resolution Electron Microscopy) is a novel open-source, user-friendly software suite for the semi-automated processing of single particle electron cryo-microscopy (cryo-EM) data. The protocol presented here describes in detail how to obtain a near-atomic resolution structure starting from cryo-EM micrograph movies by guiding users through all steps of the single particle structure determination pipeline. These steps are controlled from the new SPHIRE graphical user interface and require minimum user intervention. Using this protocol, a 3.5 Å structure of TcdA1, a Tc toxin complex from Photorhabdus luminescens, was derived from only 9500 single particles. This streamlined approach will help novice users without extensive processing experience and a priori structural information, to obtain noise-free and unbiased atomic models of their purified macromolecular complexes in their native state. PMID:28570515
Native top-down mass spectrometry for the structural characterization of human hemoglobin
Zhang, Jiang; Malmirchegini, G. Reza; Clubb, Robert T.; ...
2015-06-09
Native mass spectrometry (MS) has become an invaluable tool for the characterization of proteins and non-covalent protein complexes under near physiological solution conditions. Here we report the structural characterization of human hemoglobin (Hb), a 64 kDa oxygen-transporting protein complex, by high resolution native top-down mass spectrometry using electrospray ionization (ESI) and a 15-Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Native MS preserves the non-covalent interactions between the globin subunits, and electron capture dissociation (ECD) produces fragments directly from the intact Hb complex without dissociating the subunits. Using activated ion ECD, we observe the gradual unfolding process of themore » Hb complex in the gas phase. Without protein ion activation, the native Hb shows very limited ECD fragmentation from the N-termini, suggesting a tightly packed structure of the native complex and therefore low fragmentation efficiency. Precursor ion activation allows steady increase of N-terminal fragment ions, while the C-terminal fragments remain limited (38 c ions and 4 z ions on the α chain; 36 c ions and 2 z ions on the β chain). This ECD fragmentation pattern suggests that upon activation, the Hb complex starts to unfold from the N-termini of both subunits, whereas the C-terminal regions and therefore the potential regions involved in the subunit binding interactions remain intact. ECD-MS of the Hb dimer show similar fragmentation patterns as the Hb tetramer, providing further evidence for the hypothesized unfolding process of the Hb complex in the gas phase. Native top-down ECD-MS allows efficient probing of the Hb complex structure and the subunit binding interactions in the gas phase. Finally, it may provide a fast and effective means to probe the structure of novel protein complexes that are intractable to traditional structural characterization tools.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Malmirchegini, G. Reza; Clubb, Robert T.
Native mass spectrometry (MS) has become an invaluable tool for the characterization of proteins and non-covalent protein complexes under near physiological solution conditions. Here we report the structural characterization of human hemoglobin (Hb), a 64 kDa oxygen-transporting protein complex, by high resolution native top-down mass spectrometry using electrospray ionization (ESI) and a 15-Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Native MS preserves the non-covalent interactions between the globin subunits, and electron capture dissociation (ECD) produces fragments directly from the intact Hb complex without dissociating the subunits. Using activated ion ECD, we observe the gradual unfolding process of themore » Hb complex in the gas phase. Without protein ion activation, the native Hb shows very limited ECD fragmentation from the N-termini, suggesting a tightly packed structure of the native complex and therefore low fragmentation efficiency. Precursor ion activation allows steady increase of N-terminal fragment ions, while the C-terminal fragments remain limited (38 c ions and 4 z ions on the α chain; 36 c ions and 2 z ions on the β chain). This ECD fragmentation pattern suggests that upon activation, the Hb complex starts to unfold from the N-termini of both subunits, whereas the C-terminal regions and therefore the potential regions involved in the subunit binding interactions remain intact. ECD-MS of the Hb dimer show similar fragmentation patterns as the Hb tetramer, providing further evidence for the hypothesized unfolding process of the Hb complex in the gas phase. Native top-down ECD-MS allows efficient probing of the Hb complex structure and the subunit binding interactions in the gas phase. Finally, it may provide a fast and effective means to probe the structure of novel protein complexes that are intractable to traditional structural characterization tools.« less
Synthesis and Crystal Structure of 2’-Se-modified guanosine Containing DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salon, J.; Sheng, J; Gan, J
Selenium modification of nucleic acids is of great importance in X-ray crystal structure determination and functional study of nucleic acids. Herein, we describe a convenient synthesis of a new building block, the 2{prime}-SeMe-modified guanosine (G{sub Se}) phosphoramidite, and report the first incorporation of the 2{prime}-Se-G moiety into DNA. The X-ray crystal structure of the 2{prime}-Se-modified octamer DNA (5{prime}-GTG{sub Se}TACAC-3{prime}) was determined at a resolution of 1.20 {angstrom}. We also found that the 2{prime}-Se modification points to the minor groove and that the modified and native structures are virtually identical. Furthermore, we observed that the 2{prime}-Se-G modification can significantly facilitate themore » crystal growth with respect to the corresponding native DNA.« less
Modeling protein structure at near atomic resolutions with Gorgon.
Baker, Matthew L; Abeysinghe, Sasakthi S; Schuh, Stephen; Coleman, Ross A; Abrams, Austin; Marsh, Michael P; Hryc, Corey F; Ruths, Troy; Chiu, Wah; Ju, Tao
2011-05-01
Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 Å), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure. Copyright © 2011 Elsevier Inc. All rights reserved.
Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography.
Pentelute, Brad L; Mandal, Kalyaneswar; Gates, Zachary P; Sawaya, Michael R; Yeates, Todd O; Kent, Stephen B H
2010-11-21
Here we report the total synthesis of kaliotoxin by 'one pot' native chemical ligation of three synthetic peptides. A racemic mixture of D- and L-kaliotoxin synthetic protein molecules gave crystals in the centrosymmetric space group P1 that diffracted to atomic-resolution (0.95 Å), enabling the X-ray structure of kaliotoxin to be determined by direct methods.
Dong, Biqin; Almassalha, Luay M.; Stypula-Cyrus, Yolanda; Urban, Ben E.; Chandler, John E.; Nguyen, The-Quyen; Sun, Cheng; Zhang, Hao F.; Backman, Vadim
2016-01-01
Visualizing the nanoscale intracellular structures formed by nucleic acids, such as chromatin, in nonperturbed, structurally and dynamically complex cellular systems, will help expand our understanding of biological processes and open the next frontier for biological discovery. Traditional superresolution techniques to visualize subdiffractional macromolecular structures formed by nucleic acids require exogenous labels that may perturb cell function and change the very molecular processes they intend to study, especially at the extremely high label densities required for superresolution. However, despite tremendous interest and demonstrated need, label-free optical superresolution imaging of nucleotide topology under native nonperturbing conditions has never been possible. Here we investigate a photoswitching process of native nucleotides and present the demonstration of subdiffraction-resolution imaging of cellular structures using intrinsic contrast from unmodified DNA based on the principle of single-molecule photon localization microscopy (PLM). Using DNA-PLM, we achieved nanoscopic imaging of interphase nuclei and mitotic chromosomes, allowing a quantitative analysis of the DNA occupancy level and a subdiffractional analysis of the chromosomal organization. This study may pave a new way for label-free superresolution nanoscopic imaging of macromolecular structures with nucleotide topologies and could contribute to the development of new DNA-based contrast agents for superresolution imaging. PMID:27535934
Oursel, Stéphanie; Cholet, Sophie; Junot, Christophe; Fenaille, François
2017-12-15
Human milk oligosaccharides (HMOs) represent the third most abundant components of milk after lactose and lipids. HMOs are indigestible by the suckling infant but can act as prebiotics and have significant biological functions regarding the organism defense against pathogens (such as bacteria or viruses) by preventing interactions with their receptors. Although constituted of only five distinct monosaccharide building blocks, HMOs are highly structurally diverse compounds with many co-existing structural isomers. Here we report the development and comparison of two distinct glycomic platforms based on liquid chromatography coupled to high resolution mass spectrometry (LC-MS) for analyzing HMOs. We have implemented and thoroughly compared the LC-MS of permethylated and native HMOs on reversed phase (RP) and porous graphitic carbon (PGC) columns for their ability to resolve the natural heterogeneity of milk oligosaccharides at the highest sensitivity. Our data essentially underlines the usefulness of analyzing HMOs as permethylated derivatives especially for getting more precise structural information at high sensitivity. For instance, permethylation annihilates gas-phase fucose migration during MS/MS experiments, thus facilitating spectra interpretation and giving access to relevant information regarding oligosaccharide branching and isomer distinction. At the opposite, LC-MS profiling of native HMOs (using PGC) in milk performed best in terms of detected species, while also being much faster in terms of sample preparation. Although less efficient than PGC chromatography, RPLC proved successful for separating pairs of permethylated isomeric HMOs. A key advantage of RP over PGC liquid chromatography is that retention times can be correlated to molecular weights, which can greatly facilitate further HMO identification using retention time prediction. Altogether these data lead us to think that LC-MS analysis of native HMOs (using PGC) can be used as first-line profiling approach while permethylation can be performed afterwards for facilitating structural characterization. Copyright © 2017 Elsevier B.V. All rights reserved.
Single-Molecule Microscopy and Force Spectroscopy of Membrane Proteins
NASA Astrophysics Data System (ADS)
Engel, Andreas; Janovjak, Harald; Fotiadis, Dimtrios; Kedrov, Alexej; Cisneros, David; Müller, Daniel J.
Single-molecule atomic force microscopy (AFM) provides novel ways to characterize the structure-function relationship of native membrane proteins. High-resolution AFM topographs allow observing the structure of single proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. We will review these feasibilities illustrating examples of membrane proteins in native and reconstituted membranes. Classification of individual topographs of single proteins allows understanding the principles of motions of their extrinsic domains, to learn about their local structural flexibilities and to find the entropy minima of certain conformations. Combined with the visualization of functionally related conformational changes these insights allow understanding why certain flexibilities are required for the protein to function and how structurally flexible regions allow certain conformational changes. Complementary to AFM imaging, single-molecule force spectroscopy (SMFS) experiments detect molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to measure interactions that stabilize secondary structures such as transmembrane α-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the locations of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes.
NASA Astrophysics Data System (ADS)
Rao, V. S. R.; Biswas, Margaret; Mukhopadhyay, Chaitali; Balaji, P. V.
1989-03-01
The CCEM method (Contact Criteria and Energy Minimisation) has been developed and applied to study protein-carbohydrate interactions. The method uses available X-ray data even on the native protein at low resolution (above 2.4 Å) to generate realistic models of a variety of proteins with various ligands. The two examples discussed in this paper are arabinose-binding protein (ABP) and pea lectin. The X-ray crystal structure data reported on ABP-β- L-arabinose complex at 2.8, 2.4 and 1.7 Å resolution differ drastically in predicting the nature of the interactions between the protein and ligand. It is shown that, using the data at 2.4 Å resolution, the CCEM method generates complexes which are as good as the higher (1.7 Å) resolution data. The CCEM method predicts some of the important hydrogen bonds between the ligand and the protein which are missing in the interpretation of the X-ray data at 2.4 Å resolution. The theoretically predicted hydrogen bonds are in good agreement with those reported at 1.7 Å resolution. Pea lectin has been solved only in the native form at 3 Å resolution. Application of the CCEM method also enables us to generate complexes of pea lectin with methyl-α- D-glucopyranoside and methyl-2,3-dimethyl-α- D-glucopyranoside which explain well the available experimental data in solution.
ATOMIC RESOLUTION CRYO ELECTRON MICROSCOPY OF MACROMOLECULAR COMPLEXES
ZHOU, Z. HONG
2013-01-01
Single-particle cryo electron microscopy (cryoEM) is a technique for determining three-dimensional (3D) structures from projection images of molecular complexes preserved in their “native,” noncrystalline state. Recently, atomic or near-atomic resolution structures of several viruses and protein assemblies have been determined by single-particle cryoEM, allowing ab initio atomic model building by following the amino acid side chains or nucleic acid bases identifiable in their cryoEM density maps. In particular, these cryoEM structures have revealed extended arms contributing to molecular interactions that are otherwise not resolved by the conventional structural method of X-ray crystallography at similar resolutions. High-resolution cryoEM requires careful consideration of a number of factors, including proper sample preparation to ensure structural homogeneity, optimal configuration of electron imaging conditions to record high-resolution cryoEM images, accurate determination of image parameters to correct image distortions, efficient refinement and computation to reconstruct a 3D density map, and finally appropriate choice of modeling tools to construct atomic models for functional interpretation. This progress illustrates the power of cryoEM and ushers it into the arsenal of structural biology, alongside conventional techniques of X-ray crystallography and NMR, as a major tool (and sometimes the preferred one) for the studies of molecular interactions in supramolecular assemblies or machines. PMID:21501817
Kapoor, Abhijeet; Travesset, Alex
2014-03-01
We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described. Copyright © 2013 Wiley Periodicals, Inc.
Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser
DePonte, Daniel P.; White, Thomas A.; Rehders, Dirk; Barty, Anton; Stellato, Francesco; Liang, Mengning; Barends, Thomas R.M.; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Aquila, Andrew; Arnlund, David; Bajt, Sasa; Barth, Torsten; Bogan, Michael J.; Caleman, Carl; Chao, Tzu-Chiao; Doak, R. Bruce; Fleckenstein, Holger; Frank, Matthias; Fromme, Raimund; Galli, Lorenzo; Grotjohann, Ingo; Hunter, Mark S.; Johansson, Linda C.; Kassemeyer, Stephan; Katona, Gergely; Kirian, Richard A.; Koopmann, Rudolf; Kupitz, Chris; Lomb, Lukas; Martin, Andrew V.; Mogk, Stefan; Neutze, Richard; Shoeman, Robert L.; Steinbrener, Jan; Timneanu, Nicusor; Wang, Dingjie; Weierstall, Uwe; Zatsepin, Nadia A.; Spence, John C. H.; Fromme, Petra; Schlichting, Ilme; Duszenko, Michael; Betzel, Christian; Chapman, Henry N.
2013-01-01
The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals. PMID:23196907
Sen. Akaka, Daniel K. [D-HI
2012-09-19
Senate - 09/22/2012 Resolution agreed to in Senate without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Omari, Kamel; Iourin, Oleg; Kadlec, Jan
2014-08-01
The sulfur SAD phasing method was successfully used to determine the structure of the N-terminal domain of HCV E1 from low-resolution diffracting crystals by combining data from 32 crystals. Single-wavelength anomalous dispersion of S atoms (S-SAD) is an elegant phasing method to determine crystal structures that does not require heavy-atom incorporation or selenomethionine derivatization. Nevertheless, this technique has been limited by the paucity of the signal at the usual X-ray wavelengths, requiring very accurate measurement of the anomalous differences. Here, the data collection and structure solution of the N-terminal domain of the ectodomain of HCV E1 from crystals that diffractedmore » very weakly is reported. By combining the data from 32 crystals, it was possible to solve the sulfur substructure and calculate initial maps at 7 Å resolution, and after density modication and phase extension using a higher resolution native data set to 3.5 Å resolution model building was achievable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evdokimov, Artem G.; Mekel, Marlene; Hutchings, Kim
2008-07-08
In this article, we describe for the first time the high-resolution crystal structure of a phenylalanine tRNA synthetase from the pathogenic bacterium Staphylococcus haemolyticus. We demonstrate the subtle yet important structural differences between this enzyme and the previously described Thermus thermophilus ortholog. We also explain the structure-activity relationship of several recently reported inhibitors. The native enzyme crystals were of poor quality -- they only diffracted X-rays to 3--5 {angstrom} resolution. Therefore, we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein, diffracting to 2 {angstrom} or better. This methodology is discussed andmore » contrasted with the more traditional domain truncation approach.« less
3D Printing Variable Stiffness Foams Using Viscous Thread Instability
NASA Astrophysics Data System (ADS)
Lipton, Jeffrey I.; Lipson, Hod
2016-08-01
Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing.
Frankenstein, Ziv; Sperling, Joseph; Sperling, Ruth; Eisenstein, Miriam
2012-01-01
Summary The spliceosome is a mega-Dalton ribonucleoprotein (RNP) assembly that processes primary RNA transcripts, producing functional mRNA. The electron microscopy structures of the native spliceosome and of several spliceosomal subcomplexes are available but the spatial arrangement of the latter within the native spliceosome is not known. We designed a new computational procedure to efficiently fit thousands of conformers into the spliceosome envelope. Despite the low resolution limitations, we obtained only one model that complies with the available biochemical data. Our model localizes the five small nuclear RNPs (snRNPs) mostly within the large subunit of the native spliceosome, requiring only minor conformation changes. The remaining free volume presumably accommodates additional spliceosomal components. The constituents of the active core of the spliceosome are juxtaposed, forming a continuous surface deep within the large spliceosomal cavity, which provides a sheltered environment for the splicing reaction. PMID:22578543
Boundaries of mass resolution in native mass spectrometry.
Lössl, Philip; Snijder, Joost; Heck, Albert J R
2014-06-01
Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.
Imaging fully hydrated whole cells by coherent x-ray diffraction microscopy.
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Naitow, Hisashi; Kunishima, Naoki; Yoshida, Takashi; Ishikawa, Tetsuya; Song, Changyong
2013-03-01
Nanoscale imaging of biological specimens in their native condition is of long-standing interest, in particular with direct, high resolution views of internal structures of intact specimens, though as yet progress has been limited. Here we introduce wet coherent x-ray diffraction microscopy capable of imaging fully hydrated and unstained biological specimens. Whole cell morphologies and internal structures better than 25 nm can be clearly visualized without contrast degradation.
Arakawa, Takatoshi; Kawano, Yoshiaki; Kataoka, Shingo; Katayama, Yoko; Kamiya, Nobuo; Yohda, Masafumi; Odaka, Masafumi
2007-03-09
Thiocyanate hydrolase (SCNase) of Thiobacillus thioparus THI115 is a cobalt(III)-containing enzyme catalyzing the degradation of thiocyanate to carbonyl sulfide and ammonia. We determined the crystal structures of the apo- and native SCNases at a resolution of 2.0 A. SCNases in both forms had a conserved hetero-dodecameric structure, (alphabetagamma)(4). Four alphabetagamma hetero-trimers were structurally equivalent. One alphabetagamma hetero-trimer was composed of the core domain and the betaN domain, which was located at the center of the molecule and linked the hetero-trimers with novel quaternary interfaces. In both the apo- and native SCNases, the core domain was structurally conserved between those of iron and cobalt-types of nitrile hydratase (NHase). Native SCNase possessed the post-translationally modified cysteine ligands, gammaCys131-SO(2)H and gammaCys133-SOH like NHases. However, the low-spin cobalt(III) was found to be in the distorted square-pyramidal geometry, which had not been reported before in any protein. The size as well as the electrostatic properties of the substrate-binding pocket was totally different from NHases with respect to the charge distribution and the substrate accessibility, which rationally explains the differences in the substrate preference between SCNase and NHase.
The protein structure prediction problem could be solved using the current PDB library
Zhang, Yang; Skolnick, Jeffrey
2005-01-01
For single-domain proteins, we examine the completeness of the structures in the current Protein Data Bank (PDB) library for use in full-length model construction of unknown sequences. To address this issue, we employ a comprehensive benchmark set of 1,489 medium-size proteins that cover the PDB at the level of 35% sequence identity and identify templates by structure alignment. With homologous proteins excluded, we can always find similar folds to native with an average rms deviation (RMSD) from native of 2.5 Å with ≈82% alignment coverage. These template structures often contain a significant number of insertions/deletions. The tasser algorithm was applied to build full-length models, where continuous fragments are excised from the top-scoring templates and reassembled under the guide of an optimized force field, which includes consensus restraints taken from the templates and knowledge-based statistical potentials. For almost all targets (except for 2/1,489), the resultant full-length models have an RMSD to native below 6 Å (97% of them below 4 Å). On average, the RMSD of full-length models is 2.25 Å, with aligned regions improved from 2.5 Å to 1.88 Å, comparable with the accuracy of low-resolution experimental structures. Furthermore, starting from state-of-the-art structural alignments, we demonstrate a methodology that can consistently bring template-based alignments closer to native. These results are highly suggestive that the protein-folding problem can in principle be solved based on the current PDB library by developing efficient fold recognition algorithms that can recover such initial alignments. PMID:15653774
Advanced Methods in Fluorescence Microscopy
Fritzky, Luke; Lagunoff, David
2013-01-01
It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres. PMID:23271142
Advanced methods in fluorescence microscopy.
Fritzky, Luke; Lagunoff, David
2013-01-01
It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbe limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.
Advanced methods in fluorescence microscopy.
Fritzky, Luke; Lagunoff, David
2013-01-01
It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schalk-Hihi, Céline; Schubert, Carsten; Alexander, Richard
2011-12-22
A high-resolution structure of a ligand-bound, soluble form of human monoglyceride lipase (MGL) is presented. The structure highlights a novel conformation of the regulatory lid-domain present in the lipase family as well as the binding mode of a pharmaceutically relevant reversible inhibitor. Analysis of the structure lacking the inhibitor indicates that the closed conformation can accommodate the native substrate 2-arachidonoyl glycerol. A model is proposed in which MGL undergoes conformational and electrostatic changes during the catalytic cycle ultimately resulting in its dissociation from the membrane upon completion of the cycle. In addition, the study outlines a successful approach to transformmore » membrane associated proteins, which tend to aggregate upon purification, into a monomeric and soluble form.« less
The rate of cis-trans conformation errors is increasing in low-resolution crystal structures.
Croll, Tristan Ian
2015-03-01
Cis-peptide bonds (with the exception of X-Pro) are exceedingly rare in native protein structures, yet a check for these is not currently included in the standard workflow for some common crystallography packages nor in the automated quality checks that are applied during submission to the Protein Data Bank. This appears to be leading to a growing rate of inclusion of spurious cis-peptide bonds in low-resolution structures both in absolute terms and as a fraction of solved residues. Most concerningly, it is possible for structures to contain very large numbers (>1%) of spurious cis-peptide bonds while still achieving excellent quality reports from MolProbity, leading to concerns that ignoring such errors is allowing software to overfit maps without producing telltale errors in, for example, the Ramachandran plot.
3D Printing Variable Stiffness Foams Using Viscous Thread Instability
Lipton, Jeffrey I.; Lipson, Hod
2016-01-01
Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing. PMID:27503148
Sun, Yunxiang; Ming, Dengming
2014-01-01
Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.
Oikonomakos, N. G.; Zographos, S. E.; Tsitsanou, K. E.; Johnson, L. N.; Acharya, K. R.
1996-01-01
It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis. PMID:8976550
Ren, Jingshan; Wang, Xiangxi; Zhu, Ling; Hu, Zhongyu; Gao, Qiang; Yang, Pan; Li, Xuemei; Wang, Junzhi; Shen, Xinliang; Fry, Elizabeth E; Rao, Zihe; Stuart, David I
2015-10-01
Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the primary causes of the epidemics of hand-foot-and-mouth disease (HFMD) that affect more than a million children in China each year and lead to hundreds of deaths. Although there has been progress with vaccines for EV71, the development of a CVA16 vaccine has proved more challenging, and the EV71 vaccine does not give useful cross-protection, despite the capsid proteins of the two viruses sharing about 80% sequence identity. The structural details of the expanded forms of the capsids, which possess nonnative antigenicity, are now well understood, but high resolution information for the native antigenic form of CVA16 has been missing. Here, we remedy this with high resolution X-ray structures of both mature and natural empty CVA16 particles and also of empty recombinant viruslike particles of CVA16 produced in insect cells, a potential vaccine antigen. All three structures are unexpanded native particles and antigenically identical. The recombinant particles have recruited a lipid moiety to stabilize the native antigenic state that is different from the one used in a natural virus infection. As expected, the mature CVA16 virus is similar to EV71; however, structural and immunogenic comparisons highlight differences that may have implications for vaccine production. Hand-foot-and-mouth disease is a serious public health threat to children in Asian-Pacific countries, resulting in millions of cases. EV71 and CVA16 are the two dominant causative agents of the disease that, while usually mild, can cause severe neurological complications, leading to hundreds of deaths. EV71 vaccines do not provide protection against CVA16. A CVA16 vaccine or bivalent EV71/CVA16 vaccine is therefore urgently needed. We report atomic structures for the mature CVA16 virus, a natural empty particle, and a recombinant CVA16 virus-like particle that does not contain the viral genome. All three particles have similar structures and identical antigenicity. The recombinant particles, produced in insect cells (a system suitable for making vaccine antigen), are stabilized by recruiting from the insect cells a small molecule that is different from that used by the virus in a normal infection. We present structural and immunogenic comparisons with EV71 to facilitate structure-based drug design and vaccine development. Copyright © 2015, Ren et al.
Byron, Meg; Hall, Lisa L; Lawrence, Jeanne B
2013-01-01
Fluorescence in situ hybridization (FISH) is not a singular technique, but a battery of powerful and versatile tools for examining the distribution of endogenous genes and RNAs in precise context with each other and in relation to specific proteins or cell structures. This unit offers the details of highly sensitive and successful protocols that were initially developed largely in our lab and honed over a number of years. Our emphasis is on analysis of nuclear RNAs and DNA to address specific biological questions about nuclear structure, pre-mRNA metabolism, or the role of noncoding RNAs; however, cytoplasmic RNA detection is also discussed. Multifaceted molecular cytological approaches bring precise resolution and sensitive multicolor detection to illuminate the organization and functional roles of endogenous genes and their RNAs within the native structure of fixed cells. Solutions to several common technical pitfalls are discussed, as are cautions regarding the judicious use of digital imaging and the rigors of analyzing and interpreting complex molecular cytological results.
Covino, Roberto; Škrbić, Tatjana; Beccara, Silvio a; Faccioli, Pietro; Micheletti, Cristian
2014-01-01
For several decades, the presence of knots in naturally-occurring proteins was largely ruled out a priori for its supposed incompatibility with the efficiency and robustness of folding processes. For this very same reason, the later discovery of several unrelated families of knotted proteins motivated researchers to look into the physico-chemical mechanisms governing the concerted sequence of folding steps leading to the consistent formation of the same knot type in the same protein location. Besides experiments, computational studies are providing considerable insight into these mechanisms. Here, we revisit a number of such recent investigations within a common conceptual and methodological framework. By considering studies employing protein models with different structural resolution (coarse-grained or atomistic) and various force fields (from pure native-centric to realistic atomistic ones), we focus on the role of native and non-native interactions. For various unrelated instances of knotted proteins, non-native interactions are shown to be very important for favoring the emergence of conformations primed for successful self-knotting events. PMID:24970203
Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L
2016-08-22
Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.
Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.
Laverty, Duncan; Thomas, Philip; Field, Martin; Andersen, Ole J; Gold, Matthew G; Biggin, Philip C; Gielen, Marc; Smart, Trevor G
2017-11-01
γ-Aminobutyric acid receptors (GABA A Rs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABA A Rs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABA A R function requires high-resolution structures. Here we present the first atomic structures of a GABA A R chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABA A Rs in neurological disorders.
In-house zinc SAD phasing at Cu Kα edge.
Kim, Min-Kyu; Lee, Sangmin; An, Young Jun; Jeong, Chang-Sook; Ji, Chang-Jun; Lee, Jin-Won; Cha, Sun-Shin
2013-07-01
De novo zinc single-wavelength anomalous dispersion (Zn-SAD) phasing has been demonstrated with the 1.9 Å resolution data of glucose isomerase and 2.6 Å resolution data of Staphylococcus aureus Fur (SaFur) collected using in-house Cu Kα X-ray source. The successful in-house Zn-SAD phasing of glucose isomerase, based on the anomalous signals of both zinc ions introduced to crystals by soaking and native sulfur atoms, drove us to determine the structure of SaFur, a zinc-containing transcription factor, by Zn-SAD phasing using in-house X-ray source. The abundance of zinc-containing proteins in nature, the easy zinc derivatization of the protein surface, no need of synchrotron access, and the successful experimental phasing with the modest 2.6 Å resolution SAD data indicate that inhouse Zn-SAD phasing can be widely applicable to structure determination.
Towards native-state imaging in biological context in the electron microscope
Weston, Anne E.; Armer, Hannah E. J.
2009-01-01
Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039
Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers
Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J.; Brewster, Aaron S.; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; White, William E.; Schafer, Donald W.; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Glatzel, Pieter; Zwart, Petrus H.; Grosse-Kunstleve, Ralf W.; Bogan, Michael J.; Messerschmidt, Marc; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K.; Adams, Paul D.; Sauter, Nicholas K.
2014-01-01
X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and free from radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract statistically significant high-resolution signals from fewer diffraction measurements. PMID:24633409
Advantages of cortical surface reconstruction using submillimeter 7 T MEMPRAGE.
Zaretskaya, Natalia; Fischl, Bruce; Reuter, Martin; Renvall, Ville; Polimeni, Jonathan R
2018-01-15
Recent advances in MR technology have enabled increased spatial resolution for routine functional and anatomical imaging, which has created demand for software tools that are able to process these data. The availability of high-resolution data also raises the question of whether higher resolution leads to substantial gains in accuracy of quantitative morphometric neuroimaging procedures, in particular the cortical surface reconstruction and cortical thickness estimation. In this study we adapted the FreeSurfer cortical surface reconstruction pipeline to process structural data at native submillimeter resolution. We then quantified the differences in surface placement between meshes generated from (0.75 mm) 3 isotropic resolution data acquired in 39 volunteers and the same data downsampled to the conventional 1 mm 3 voxel size. We find that when processed at native resolution, cortex is estimated to be thinner in most areas, but thicker around the Cingulate and the Calcarine sulci as well as in the posterior bank of the Central sulcus. Thickness differences are driven by two kinds of effects. First, the gray-white surface is found closer to the white matter, especially in cortical areas with high myelin content, and thus low contrast, such as the Calcarine and the Central sulci, causing local increases in thickness estimates. Second, the gray-CSF surface is placed more interiorly, especially in the deep sulci, contributing to local decreases in thickness estimates. We suggest that both effects are due to reduced partial volume effects at higher spatial resolution. Submillimeter voxel sizes can therefore provide improved accuracy for measuring cortical thickness. Copyright © 2017 Elsevier Inc. All rights reserved.
Blankenship, Elise; Vahedi-Faridi, Ardeschir; Lodowski, David T
2015-12-01
Rhodopsin, a light-activated G protein coupled receptor (GPCR), has been the subject of numerous biochemical and structural investigations, serving as a model receptor for GPCRs and their activation. We present the 2.3-Å resolution structure of native source rhodopsin stabilized in a conformation competent for G protein binding. An extensive water-mediated hydrogen bond network linking the chromophore binding site to the site of G protein binding is observed, providing connections to conserved motifs essential for GPCR activation. Comparison of this extensive solvent-mediated hydrogen-bonding network with the positions of ordered solvent in earlier crystallographic structures of rhodopsin photointermediates reveals both static structural and dynamic functional water-protein interactions present during the activation process. When considered along with observations that solvent occupies similar positions in the structures of other GPCRs, these analyses strongly support an integral role for this dynamic ordered water network in both rhodopsin and GPCR activation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Day, Ryan; Qu, Xiaotao; Swanson, Rosemarie; Bohannan, Zach; Bliss, Robert
2011-01-01
Abstract Most current template-based structure prediction methods concentrate on finding the correct backbone conformation and then packing sidechains within that backbone. Our packing-based method derives distance constraints from conserved relative packing groups (RPGs). In our refinement approach, the RPGs provide a level of resolution that restrains global topology while allowing conformational sampling. In this study, we test our template-based structure prediction method using 51 prediction units from CASP7 experiments. RPG-based constraints are able to substantially improve approximately two-thirds of starting templates. Upon deeper investigation, we find that true positive spatial constraints, especially those non-local in sequence, derived from the RPGs were important to building nearer native models. Surprisingly, the fraction of incorrect or false positive constraints does not strongly influence the quality of the final candidate. This result indicates that our RPG-based true positive constraints sample the self-consistent, cooperative interactions of the native structure. The lack of such reinforcing cooperativity explains the weaker effect of false positive constraints. Generally, these findings are encouraging indications that RPGs will improve template-based structure prediction. PMID:21210729
2016-01-01
Many excellent methods exist that incorporate cryo-electron microscopy (cryoEM) data to constrain computational protein structure prediction and refinement. Previously, it was shown that iteration of two such orthogonal sampling and scoring methods – Rosetta and molecular dynamics (MD) simulations – facilitated exploration of conformational space in principle. Here, we go beyond a proof-of-concept study and address significant remaining limitations of the iterative MD–Rosetta protein structure refinement protocol. Specifically, all parts of the iterative refinement protocol are now guided by medium-resolution cryoEM density maps, and previous knowledge about the native structure of the protein is no longer necessary. Models are identified solely based on score or simulation time. All four benchmark proteins showed substantial improvement through three rounds of the iterative refinement protocol. The best-scoring final models of two proteins had sub-Ångstrom RMSD to the native structure over residues in secondary structure elements. Molecular dynamics was most efficient in refining secondary structure elements and was thus highly complementary to the Rosetta refinement which is most powerful in refining side chains and loop regions. PMID:25883538
State Legislation Relating to Native Americans, 1991.
ERIC Educational Resources Information Center
Reed, James B.
1991-01-01
This report summarizes legislative activities in states that enacted bills and resolutions relating to Native Americans in 1991. Conflicts between states and the Indian tribes within their borders were the subject of significant legislation in 1991. In all, 220 bills and resolutions were introduced in state legislatures; 77 passed and 20 are still…
Aghajari, N.; Feller, G.; Gerday, C.; Haser, R.
1998-01-01
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase. PMID:9541387
Aikawa, Yoshiki; Kida, Hiroshi; Nishitani, Yuichi; Miki, Kunio
2015-09-01
Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space group P21212, with unit-cell parameters a = 123.2, b = 152.4, c = 105.9 Å.
Pelling, Andrew E.; Li, Yinuo; Shi, Wenyuan; Gimzewski, James K.
2005-01-01
Multicellular microbial communities are the predominant form of existence for microorganisms in nature. As one of the most primitive social organisms, Myxococcus xanthus has been an ideal model bacterium for studying intercellular interaction and multicellular organization. Through previous genetic and EM studies, various extracellular appendages and matrix components have been found to be involved in the social behavior of M. xanthus, but none of them was directly visualized and analyzed under native conditions. Here, we used atomic force microscopy (AFM) imaging and in vivo force spectroscopy to characterize these cellular structures under native conditions. AFM imaging revealed morphological details on the extracellular ultrastructures at an unprecedented resolution, and in vivo force spectroscopy of live cells in fluid allowed us to nanomechanically characterize extracellular polymeric substances. The findings provide the basis for AFM as a useful tool for investigating microbial-surface ultrastructures and nanomechanical properties under native conditions. PMID:15840722
Crystallographic Phasing from Weak Anomalous Signals
Liu, Qun; Hendrickson, Wayne A.
2015-01-01
The exploitation of anomalous signals for biological structural solution is maturing. Single-wavelength anomalous diffraction (SAD) is dominant in de novo structure analysis. Nevertheless, for challenging structures where the resolution is low (dmin ≥ 3.5 Å) or where only lighter atoms (Z ≤ 20) are present, as for native macromolecules, solved SAD structures are still scarce. With the recent rapid development in crystal handling, beamline instrumentation, optimization of data collection strategies, use of multiple crystals and structure determination technologies, the weak anomalous diffraction signals are now robustly measured and should be used for routine SAD structure determination. The review covers these recent advances on weak anomalous signals measurement, analysis and utilization. PMID:26432413
Crystallographic phasing from weak anomalous signals.
Liu, Qun; Hendrickson, Wayne A
2015-10-01
The exploitation of anomalous signals for biological structural solution is maturing. Single-wavelength anomalous diffraction (SAD) is dominant in de novo structure analysis. Nevertheless, for challenging structures where the resolution is low (dmin≥3.5Å) or where only lighter atoms (Z≤20) are present, as for native macromolecules, solved SAD structures are still scarce. With the recent rapid development in crystal handling, beamline instrumentation, optimization of data collection strategies, use of multiple crystals and structure determination technologies, the weak anomalous diffraction signals are now robustly measured and should be used for routine SAD structure determination. The review covers these recent advances on weak anomalous signals measurement, analysis and utilization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tracking of Short Distance Transport Pathways in Biological Tissues by Ultra-Small Nanoparticles
NASA Astrophysics Data System (ADS)
Segmehl, Jana S.; Lauria, Alessandro; Keplinger, Tobias; Berg, John K.; Burgert, Ingo
2018-03-01
In this work, ultra-small europium-doped HfO2 nanoparticles were infiltrated into native wood and used as trackers for studying penetrability and diffusion pathways in the hierarchical wood structure. The high electron density, laser induced luminescence, and crystallinity of these particles allowed for a complementary detection of the particles in the cellular tissue. Confocal Raman microscopy and high-resolution synchrotron scanning wide-angle X-ray scattering (WAXS) measurements were used to detect the infiltrated particles in the native wood cell walls. This approach allows for simultaneously obtaining chemical information of the probed biological tissue and the spatial distribution of the integrated particles. The in-depth information about particle distribution in the complex wood structure can be used for revealing transport pathways in plant tissues, but also for gaining better understanding of modification treatments of plant scaffolds aiming at novel functionalized materials.
NASA Astrophysics Data System (ADS)
Plattner, Nuria; Doerr, Stefan; de Fabritiis, Gianni; Noé, Frank
2017-10-01
Protein-protein association is fundamental to many life processes. However, a microscopic model describing the structures and kinetics during association and dissociation is lacking on account of the long lifetimes of associated states, which have prevented efficient sampling by direct molecular dynamics (MD) simulations. Here we demonstrate protein-protein association and dissociation in atomistic resolution for the ribonuclease barnase and its inhibitor barstar by combining adaptive high-throughput MD simulations and hidden Markov modelling. The model reveals experimentally consistent intermediate structures, energetics and kinetics on timescales from microseconds to hours. A variety of flexibly attached intermediates and misbound states funnel down to a transition state and a native basin consisting of the loosely bound near-native state and the tightly bound crystallographic state. These results offer a deeper level of insight into macromolecular recognition and our approach opens the door for understanding and manipulating a wide range of macromolecular association processes.
Dutagaci, Bercem; Wittayanarakul, Kitiyaporn; Mori, Takaharu; Feig, Michael
2017-06-13
A scoring protocol based on implicit membrane-based scoring functions and a new protocol for optimizing the positioning of proteins inside the membrane was evaluated for its capacity to discriminate native-like states from misfolded decoys. A decoy set previously established by the Baker lab (Proteins: Struct., Funct., Genet. 2006, 62, 1010-1025) was used along with a second set that was generated to cover higher resolution models. The Implicit Membrane Model 1 (IMM1), IMM1 model with CHARMM 36 parameters (IMM1-p36), generalized Born with simple switching (GBSW), and heterogeneous dielectric generalized Born versions 2 (HDGBv2) and 3 (HDGBv3) were tested along with the new HDGB van der Waals (HDGBvdW) model that adds implicit van der Waals contributions to the solvation free energy. For comparison, scores were also calculated with the distance-scaled finite ideal-gas reference (DFIRE) scoring function. Z-scores for native state discrimination, energy vs root-mean-square deviation (RMSD) correlations, and the ability to select the most native-like structures as top-scoring decoys were evaluated to assess the performance of the scoring functions. Ranking of the decoys in the Baker set that were relatively far from the native state was challenging and dominated largely by packing interactions that were captured best by DFIRE with less benefit of the implicit membrane-based models. Accounting for the membrane environment was much more important in the second decoy set where especially the HDGB-based scoring functions performed very well in ranking decoys and providing significant correlations between scores and RMSD, which shows promise for improving membrane protein structure prediction and refinement applications. The new membrane structure scoring protocol was implemented in the MEMScore web server ( http://feiglab.org/memscore ).
ERIC Educational Resources Information Center
Arnold, Robert D.; And Others
Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…
Data-assisted protein structure modeling by global optimization in CASP12.
Joo, Keehyoung; Heo, Seungryong; Joung, InSuk; Hong, Seung Hwan; Lee, Sung Jong; Lee, Jooyoung
2018-03-01
In CASP12, 2 types of data-assisted protein structure modeling were experimented. Either SAXS experimental data or cross-linking experimental data was provided for a selected number of CASP12 targets that the CASP12 predictor could utilize for better protein structure modeling. We devised 2 separate energy terms for SAXS data and cross-linking data to drive the model structures into more native-like structures that satisfied the given experimental data as much as possible. In CASP11, we successfully performed protein structure modeling using simulated sparse and ambiguously assigned NOE data and/or correct residue-residue contact information, where the only energy term that folded the protein into its native structure was the term which was originated from the given experimental data. However, the 2 types of experimental data provided in CASP12 were far from being sufficient enough to fold the target protein into its native structure because SAXS data provides only the overall shape of the molecule and the cross-linking contact information provides only very low-resolution distance information. For this reason, we combined the SAXS or cross-linking energy term with our regular modeling energy function that includes both the template energy term and the de novo energy terms. By optimizing the newly formulated energy function, we obtained protein models that fit better with provided SAXS data than the X-ray structure of the target. However, the improvement of the model relative to the 1 modeled without the SAXS data, was not significant. Consistent structural improvement was achieved by incorporating cross-linking data into the protein structure modeling. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plomp, M; Malkin, A J
2008-06-02
Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneouslymore » acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.« less
West, Anthony P; Schamber, Michael; Gazumyan, Anna; Golijanin, Jovana; Seaman, Michael S; Fätkenheuer, Gerd; Klein, Florian; Nussenzweig, Michel C; Bjorkman, Pamela J
2016-01-01
HIV-1 vaccine design is informed by structural studies elucidating mechanisms by which broadly neutralizing antibodies (bNAbs) recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env). Variability in high-mannose and complex-type Env glycoforms leads to heterogeneity that usually precludes visualization of the native glycan shield. We present 3.5-Å- and 3.9-Å-resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation, revealing a glycan shield of high-mannose and complex-type N-glycans, which we used to define complete epitopes of two bNAbs. Env trimer was complexed with 10-1074 (against the V3-loop) and IOMA, a new CD4-binding site (CD4bs) antibody. Although IOMA derives from VH1-2*02, the germline gene of CD4bs-targeting VRC01-class bNAbs, its light chain lacks the short CDRL3 that defines VRC01-class bNAbs. Thus IOMA resembles 8ANC131-class/VH1-46–derived CD4bs bNAbs, which have normal-length CDRL3s. The existence of bNAbs that combine features of VRC01-class and 8ANC131-class antibodies has implications for immunization strategies targeting VRC01-like bNAbs. PMID:27617431
Gsponer, Joerg; Hopearuoho, Harri; Whittaker, Sara B-M; Spence, Graham R; Moore, Geoffrey R; Paci, Emanuele; Radford, Sheena E; Vendruscolo, Michele
2006-01-03
We present a detailed structural characterization of the intermediate state populated during the folding and unfolding of the bacterial immunity protein Im7. We achieve this result by incorporating a variety of experimental data available for this species in molecular dynamics simulations. First, we define the structure of the exchange-competent intermediate state of Im7 by using equilibrium hydrogen-exchange protection factors. Second, we use this ensemble to predict Phi-values and compare the results with the experimentally determined Phi-values of the kinetic refolding intermediate. Third, we predict chemical-shift measurements and compare them with the measured chemical shifts of a mutational variant of Im7 for which the kinetic folding intermediate is the most stable state populated at equilibrium. Remarkably, we found that the properties of the latter two species are predicted with high accuracy from the exchange-competent intermediate that we determined, suggesting that these three states are characterized by a similar architecture in which helices I, II, and IV are aligned in a native-like, but reorganized, manner. Furthermore, the structural ensemble that we obtained enabled us to rationalize the results of tryptophan fluorescence experiments in the WT protein and a series of mutational variants. The results show that the integration of diverse sets of experimental data at relatively low structural resolution is a powerful approach that can provide insights into the structural organization of this conformationally heterogeneous three-helix intermediate with unprecedented detail and highlight the importance of both native and non-native interactions in stabilizing its structure.
Markert, Sebastian Matthias; Britz, Sebastian; Proppert, Sven; Lang, Marietta; Witvliet, Daniel; Mulcahy, Ben; Sauer, Markus; Zhen, Mei; Bessereau, Jean-Louis; Stigloher, Christian
2016-10-01
Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses.
Koua, Faisal Hammad Mekky; Umena, Yasufumi; Kawakami, Keisuke; Shen, Jian-Ren
2013-03-05
Oxygen-evolving complex of photosystem II (PSII) is a tetra-manganese calcium penta-oxygenic cluster (Mn4CaO5) catalyzing light-induced water oxidation through several intermediate states (S-states) by a mechanism that is not fully understood. To elucidate the roles of Ca(2+) in this cluster and the possible location of water substrates in this process, we crystallized Sr(2+)-substituted PSII from Thermosynechococcus vulcanus, analyzed its crystal structure at a resolution of 2.1 Å, and compared it with the 1.9 Å structure of native PSII. Our analysis showed that the position of Sr was moved toward the outside of the cubane structure of the Mn4CaO5-cluster relative to that of Ca(2+), resulting in a general elongation of the bond distances between Sr and its surrounding atoms compared with the corresponding distances in the Ca-containing cluster. In particular, we identified an apparent elongation in the bond distance between Sr and one of the two terminal water ligands of Ca(2+), W3, whereas that of the Sr-W4 distance was not much changed. This result may contribute to the decrease of oxygen evolution upon Sr(2+)-substitution, and suggests a weak binding and rather mobile nature of this particular water molecule (W3), which in turn implies the possible involvement of this water molecule as a substrate in the O-O bond formation. In addition, the PsbY subunit, which was absent in the 1.9 Å structure of native PSII, was found in the Sr-PSII structure.
3D Structure Determination of Native Mammalian Cells using Cryo-FIB and Cryo-electron Tomography
Wang, Ke; Strunk, Korrinn; Zhao, Gongpu; Gray, Jennifer L.; Zhang, Peijun
2012-01-01
Cryo-electron tomography (cryo-ET) has enabled high resolution three-dimensional (3D) structural analysis of virus and host cell interactions and many cell signaling events; these studies, however, have largely been limited to very thin, peripheral regions of eukaryotic cells or to small prokaryotic cells. Recent efforts to make thin, vitreous sections using cryo-ultramicrotomy have been successful, however, this method is technically very challenging and with many artifacts. Here, we report a simple and robust method for creating in situ, frozen-hydrated cell lamellas using a focused ion beam at cryogenic temperature (cryo-FIB), allowing access to any interior cellular regions of interest. We demonstrate the utility of cryo-FIB with high resolution 3D cellular structures from both bacterial cells and large mammalian cells. The method will not only facilitate high-throughput 3D structural analysis of biological specimens, but is also broadly applicable to sample preparation of thin films and surface materials without the need for FIB “lift-out”. PMID:22796867
Fitting Multimeric Protein Complexes into Electron Microscopy Maps Using 3D Zernike Descriptors
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2012-01-01
A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root mean square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases. PMID:22417139
Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2012-06-14
A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.
Rottler, Jörg; Plotkin, Steven S.
2016-01-01
Mechanical unfolding of a single domain of loop-truncated superoxide dismutase protein has been simulated via force spectroscopy techniques with both all-atom (AA) models and several coarse-grained models having different levels of resolution: A Gō model containing all heavy atoms in the protein (HA-Gō), the associative memory, water mediated, structure and energy model (AWSEM) which has 3 interaction sites per amino acid, and a Gō model containing only one interaction site per amino acid at the Cα position (Cα-Gō). To systematically compare results across models, the scales of time, energy, and force had to be suitably renormalized in each model. Surprisingly, the HA-Gō model gives the softest protein, exhibiting much smaller force peaks than all other models after the above renormalization. Clustering to render a structural taxonomy as the protein unfolds showed that the AA, HA-Gō, and Cα-Gō models exhibit a single pathway for early unfolding, which eventually bifurcates repeatedly to multiple branches only after the protein is about half-unfolded. The AWSEM model shows a single dominant unfolding pathway over the whole range of unfolding, in contrast to all other models. TM alignment, clustering analysis, and native contact maps show that the AWSEM pathway has however the most structural similarity to the AA model at high nativeness, but the least structural similarity to the AA model at low nativeness. In comparison to the AA model, the sequence of native contact breakage is best predicted by the HA-Gō model. All models consistently predict a similar unfolding mechanism for early force-induced unfolding events, but diverge in their predictions for late stage unfolding events when the protein is more significantly disordered. PMID:27898663
Habibi, Mona; Rottler, Jörg; Plotkin, Steven S
2016-11-01
Mechanical unfolding of a single domain of loop-truncated superoxide dismutase protein has been simulated via force spectroscopy techniques with both all-atom (AA) models and several coarse-grained models having different levels of resolution: A Gō model containing all heavy atoms in the protein (HA-Gō), the associative memory, water mediated, structure and energy model (AWSEM) which has 3 interaction sites per amino acid, and a Gō model containing only one interaction site per amino acid at the Cα position (Cα-Gō). To systematically compare results across models, the scales of time, energy, and force had to be suitably renormalized in each model. Surprisingly, the HA-Gō model gives the softest protein, exhibiting much smaller force peaks than all other models after the above renormalization. Clustering to render a structural taxonomy as the protein unfolds showed that the AA, HA-Gō, and Cα-Gō models exhibit a single pathway for early unfolding, which eventually bifurcates repeatedly to multiple branches only after the protein is about half-unfolded. The AWSEM model shows a single dominant unfolding pathway over the whole range of unfolding, in contrast to all other models. TM alignment, clustering analysis, and native contact maps show that the AWSEM pathway has however the most structural similarity to the AA model at high nativeness, but the least structural similarity to the AA model at low nativeness. In comparison to the AA model, the sequence of native contact breakage is best predicted by the HA-Gō model. All models consistently predict a similar unfolding mechanism for early force-induced unfolding events, but diverge in their predictions for late stage unfolding events when the protein is more significantly disordered.
Aikawa, Yoshiki; Kida, Hiroshi; Nishitani, Yuichi; Miki, Kunio
2015-01-01
Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space group P21212, with unit-cell parameters a = 123.2, b = 152.4, c = 105.9 Å. PMID:26323306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gati, Cornelius; Oberthuer, Dominik; Yefanov, Oleksandr
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm3 in volume, whereas the X-ray beam ismore » often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Furthermore, our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.« less
Papanikolopoulou, Katerina; Teixeira, Susana; Belrhali, Hassan; Forsyth, V Trevor; Mitraki, Anna; van Raaij, Mark J
2004-09-03
Adenovirus fibres are trimeric proteins that consist of a globular C-terminal domain, a central fibrous shaft and an N-terminal part that attaches to the viral capsid. In the presence of the globular C-terminal domain, which is necessary for correct trimerisation, the shaft segment adopts a triple beta-spiral conformation. We have replaced the head of the fibre by the trimerisation domain of the bacteriophage T4 fibritin, the foldon. Two different fusion constructs were made and crystallised, one with an eight amino acid residue linker and one with a linker of only two residues. X-ray crystallographic studies of both fusion proteins shows that residues 319-391 of the adenovirus type 2 fibre shaft fold into a triple beta-spiral fold indistinguishable from the native structure, although this is now resolved at a higher resolution of 1.9 A. The foldon residues 458-483 also adopt their natural structure. The intervening linkers are not well ordered in the crystal structures. This work shows that the shaft sequences retain their capacity to fold into their native beta-spiral fibrous fold when fused to a foreign C-terminal trimerisation motif. It provides a structural basis to artificially trimerise longer adenovirus shaft segments and segments from other trimeric beta-structured fibre proteins. Such artificial fibrous constructs, amenable to crystallisation and solution studies, can offer tractable model systems for the study of beta-fibrous structure. They can also prove useful for gene therapy and fibre engineering applications.
NASA Astrophysics Data System (ADS)
Romo, Jaime E., Jr.
Optical microscopy, the most common technique for viewing living microorganisms, is limited in resolution by Abbe's criterion. Recent microscopy techniques focus on circumnavigating the light diffraction limit by using different methods to obtain the topography of the sample. Systems like the AFM and SEM provide images with fields of view in the nanometer range with high resolvable detail, however these techniques are expensive, and limited in their ability to document live cells. The Dino-Lite digital microscope coupled with the Zeiss Axiovert 25 CFL microscope delivers a cost-effective method for recording live cells. Fields of view ranging from 8 microns to 300 microns with fair resolution provide a reliable method for discovering native cell structures at the nanoscale. In this report, cultured HeLa cells are recorded using different optical configurations resulting in documentation of cell dynamics at high magnification and resolution.
Chemical structure of interfaces
NASA Technical Reports Server (NTRS)
Grunthaner, F. J.
1985-01-01
The interfacial structure of silicon/dielectric and silicon/metal systems is particularly amenable to analysis using a combination of surface spectroscopies together with a variety of chemical structures of Si/SiO2, Si/SiO2Si3N4, Si/Si2N2O, Si/SiO2/Al, and Si/Native Oxide interfaces using high resolution (0.350 eV FWHM) X ray photoelectron spectroscopy. The general structure of these dielectric interfaces entails a monolayer chemical transition layer at the Si/dielectric boundary. Amorphous Si substrates show a wide variety of hydrogenated Si and Si(OH) sub x states that are not observed in thermal oxidation of single crystal material. Extended SiO2 layers greater than 8 A in thickness are shown to be stoichiometric SiO2, but to exhibit a wide variety of local network structures. In the nitrogen containing systems, an approach to stoichiometric oxynitride compounds with interesting impurity and electron trapping properties are seen. In native oxides, substantial topographical nonuniformity in oxide thickness and composition are found. Analysis of metal/oxide interfacial layers is accomplished by analytical removal of the Si substrate by UHV XeF2 dry etching methods.
Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian
2011-01-01
Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782
Souda, Puneet; Ryan, Christopher M; Cramer, William A; Whitelegge, Julian
2011-12-01
Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein's native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electron-capture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. Copyright © 2011 Elsevier Inc. All rights reserved.
Sweet neutron crystallography.
Teixeira, S C M; Blakeley, M P; Leal, R M F; Gillespie, S M; Mitchell, E P; Forsyth, V T
2010-11-01
Extremely sweet proteins isolated from tropical fruit extracts are promising healthy alternatives to sugar and synthetic sweeteners. Sweetness and taste in general are, however, still poorly understood. The engineering of stable sweet proteins with tailored properties is made difficult by the lack of supporting high-resolution structural data. Experimental information on charge distribution, protonation states and solvent structure are vital for an understanding of the mechanism through which sweet proteins interact with taste receptors. Neutron studies of the crystal structures of sweet proteins allow a detailed study of these biophysical properties, as illustrated by a neutron study on the native protein thaumatin in which deuterium labelling was used to improve data quality.
High resolution approach to the native state ensemble kinetics and thermodynamics.
Wu, Sangwook; Zhuravlev, Pavel I; Papoian, Garegin A
2008-12-15
Many biologically interesting functions such as allosteric switching or protein-ligand binding are determined by the kinetics and mechanisms of transitions between various conformational substates of the native basin of globular proteins. To advance our understanding of these processes, we constructed a two-dimensional free energy surface (FES) of the native basin of a small globular protein, Trp-cage. The corresponding order parameters were defined using two native substructures of Trp-cage. These calculations were based on extensive explicit water all-atom molecular dynamics simulations. Using the obtained two-dimensional FES, we studied the transition kinetics between two Trp-cage conformations, finding that switching process shows a borderline behavior between diffusive and weakly-activated dynamics. The transition is well-characterized kinetically as a biexponential process. We also introduced a new one-dimensional reaction coordinate for the conformational transition, finding reasonable qualitative agreement with the two-dimensional kinetics results. We investigated the distribution of all the 38 native nuclear magnetic resonance structures on the obtained FES, analyzing interactions that stabilize specific low-energy conformations. Finally, we constructed a FES for the same system but with simple dielectric model of water instead of explicit water, finding that the results were surprisingly similar in a small region centered on the native conformations. The dissimilarities between the explicit and implicit model on the larger-scale point to the important role of water in mediating interactions between amino acid residues.
Cryo-electron microscopy of membrane proteins.
Goldie, Kenneth N; Abeyrathne, Priyanka; Kebbel, Fabian; Chami, Mohamed; Ringler, Philippe; Stahlberg, Henning
2014-01-01
Electron crystallography is used to study membrane proteins in the form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby at least secondary structure motifs could be identified.In order to conserve the structural details of delicate crystalline arrays, cryo-electron microscopy (cryo-EM) allows imaging and/or electron diffraction of membrane proteins in their close-to-native state within a lipid bilayer membrane.To achieve ultimate high-resolution structural information of 2D crystals, meticulous sample preparation for electron crystallography is of outmost importance. Beam-induced specimen drift and lack of specimen flatness can severely affect the attainable resolution of images for tilted samples. Sample preparations that sandwich the 2D crystals between symmetrical carbon films reduce the beam-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol.Data collection in the cryo-electron microscope using either the imaging or the electron diffraction mode has to be performed applying low-dose procedures. Spot-scanning further reduces the effects of beam-induced drift. Data collection using automated acquisition schemes, along with improved and user-friendlier data processing software, is increasingly being used and is likely to bring the technique to a wider user base.
He, Yi; Xiao, Yi; Liwo, Adam; Scheraga, Harold A
2009-10-01
We explored the energy-parameter space of our coarse-grained UNRES force field for large-scale ab initio simulations of protein folding, to obtain good initial approximations for hierarchical optimization of the force field with new virtual-bond-angle bending and side-chain-rotamer potentials which we recently introduced to replace the statistical potentials. 100 sets of energy-term weights were generated randomly, and good sets were selected by carrying out replica-exchange molecular dynamics simulations of two peptides with a minimal alpha-helical and a minimal beta-hairpin fold, respectively: the tryptophan cage (PDB code: 1L2Y) and tryptophan zipper (PDB code: 1LE1). Eight sets of parameters produced native-like structures of these two peptides. These eight sets were tested on two larger proteins: the engrailed homeodomain (PDB code: 1ENH) and FBP WW domain (PDB code: 1E0L); two sets were found to produce native-like conformations of these proteins. These two sets were tested further on a larger set of nine proteins with alpha or alpha + beta structure and found to locate native-like structures of most of them. These results demonstrate that, in addition to finding reasonable initial starting points for optimization, an extensive search of parameter space is a powerful method to produce a transferable force field. Copyright 2009 Wiley Periodicals, Inc.
Yuan Yj, Ying-jin; Wang Sh, Shu-hao; Song Zx, Zheng-xiao; Gao Rc, Rui-chang
2002-04-01
The conditions for immobilization of an l-aminoacylase-producing strain of Aspergillus oryzae in gelatin and the enzymic characteristics of the immobilized pellets were studied. The optimal concentrations of gelatin, glutaraldehyde and ethyldiamine and time of immobilization were determined. Scanning electron micrographs reveal the cross-linked structure differences between the native and immobilized pellets. Optimum pH and temperature of the native and immobilized pellets were determined. Effects of ionic strength and substrate concentration on relative activity of the native and immobilized pellets were investigated in detail. The immobilized pellets were more stable over broader temperature and pH ranges. In addition, the immobilized pellets showed stable activity under operational and storage conditions. The immobilized pellets lost about 20% of their initial activity after five cycles of reuse. The results reported in this paper show the potential for using the immobilized A. oryzae pellets to resolve d,l-methionine.
Marra, Vincenzo; Burden, Jemima J.; Thorpe, Julian R.; Smith, Ikuko T.; Smith, Spencer L.; Häusser, Michael; Branco, Tiago; Staras, Kevin
2012-01-01
Summary At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the terminal. PMID:23141069
Isolation, cryotomography, and three-dimensional reconstruction of centrioles.
Guichard, Paul; Hamel, Virginie; Neves, Aitana; Gönczy, Pierre
2015-01-01
Centrioles and basal bodies (referred to hereafter as centrioles for simplicity) are microtubule-based cylindrical organelles that are typically ∼450-nm long and ∼250nm in diameter. The centriole is composed of three distinct regions: the distal part characterized by microtubule doublets, the central core that harbors microtubule triplets, which are also present in the proximal part that also contains the cartwheel, a structure crucial for centriole assembly. The cartwheel was initially revealed by conventional electron microscopy of resin-embedded samples and is thought to impart the near universal ninefold symmetry of centrioles. Deciphering the native architecture of the cartwheel has proven challenging owing to its small dimensions and the difficulties in isolating it. Here, we present a method to purify and analyze the structure of the exceptionally long Trichonympha centriole by cryotomography and subtomogram averaging. Using this method, we revealed the native architecture of the proximal cartwheel-containing region at ∼40Å-resolution. This method can be applied as a general strategy for uncovering the structure of centrioles in other species. Copyright © 2015 Elsevier Inc. All rights reserved.
Structure Refinement of Protein Low Resolution Models Using the GNEIMO Constrained Dynamics Method
Park, In-Hee; Gangupomu, Vamshi; Wagner, Jeffrey; Jain, Abhinandan; Vaidehi, Nagara-jan
2012-01-01
The challenge in protein structure prediction using homology modeling is the lack of reliable methods to refine the low resolution homology models. Unconstrained all-atom molecular dynamics (MD) does not serve well for structure refinement due to its limited conformational search. We have developed and tested the constrained MD method, based on the Generalized Newton-Euler Inverse Mass Operator (GNEIMO) algorithm for protein structure refinement. In this method, the high-frequency degrees of freedom are replaced with hard holonomic constraints and a protein is modeled as a collection of rigid body clusters connected by flexible torsional hinges. This allows larger integration time steps and enhances the conformational search space. In this work, we have demonstrated the use of a constraint free GNEIMO method for protein structure refinement that starts from low-resolution decoy sets derived from homology methods. In the eight proteins with three decoys for each, we observed an improvement of ~2 Å in the RMSD to the known experimental structures of these proteins. The GNEIMO method also showed enrichment in the population density of native-like conformations. In addition, we demonstrated structural refinement using a “Freeze and Thaw” clustering scheme with the GNEIMO framework as a viable tool for enhancing localized conformational search. We have derived a robust protocol based on the GNEIMO replica exchange method for protein structure refinement that can be readily extended to other proteins and possibly applicable for high throughput protein structure refinement. PMID:22260550
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandao, T.; Robinson, H; Johnson, S
Catalysis by the Yersinia protein-tyrosine phosphatase YopH is significantly impaired by the mutation of the conserved Trp354 residue to Phe. Though not a catalytic residue, this Trp is a hinge residue in a conserved flexible loop (the WPD-loop) that must close during catalysis. To learn why this seemingly conservative mutation reduces catalysis by 2 orders of magnitude, we have solved high-resolution crystal structures for the W354F YopH in the absence and in the presence of tungstate and vanadate. Oxyanion binding to the P-loop in W354F is analogous to that observed in the native enzyme. However, the WPD-loop in the presencemore » of oxyanions assumes a half-closed conformation, in contrast to the fully closed state observed in structures of the native enzyme. This observation provides an explanation for the impaired general acid catalysis observed in kinetic experiments with Trp mutants. A 1.4 Angstroms structure of the W354F mutant obtained in the presence of vanadate reveals an unusual divanadate species with a cyclic [VO]2 core, which has precedent in small molecules but has not been previously reported in a protein crystal structure.« less
From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes
Kaftan, David; Brumfeld, Vlad; Nevo, Reinat; Scherz, Avigdor; Reich, Ziv
2002-01-01
Envelope-free chloroplasts were imaged in situ by contact and tapping mode scanning force microscopy at a lateral resolution of 3–5 nm and vertical resolution of ∼0.3 nm. The images of the intact thylakoids revealed detailed structural features of their surface, including individual protein complexes over stroma, grana margin and grana-end membrane domains. Structural and immunogold-assisted assignment of two of these complexes, photosystem I (PS I) and ATP synthase, allowed direct determination of their surface density, which, for both, was found to be highest in grana margins. Surface rearrangements and pigment– protein complex redistribution associated with salt-induced membrane unstacking were followed on native, hydrated specimens. Unstacking was accompanied by a substantial increase in grana diameter and, eventually, led to their merging with the stroma lamellae. Concomitantly, PS IIα effective antenna size decreased by 21% and the mean size of membrane particles increased substantially, consistent with attachment of mobile light-harvesting complex II to PS I. The ability to image intact photosynthetic membranes at molecular resolution, as demonstrated here, opens up new vistas to investigate thylakoid structure and function. PMID:12426386
Adaptive resolution simulation of an atomistic protein in MARTINI water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J., E-mail: s.j.marrink@rug.nl
2014-02-07
We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecularmore » dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.« less
Adaptive resolution simulation of an atomistic protein in MARTINI water.
Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J; Praprotnik, Matej
2014-02-07
We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.
Banigan, James R; Mandal, Kalyaneswar; Sawaya, Michael R; Thammavongsa, Vilasak; Hendrickx, Antoni P A; Schneewind, Olaf; Yeates, Todd O; Kent, Stephen B H
2010-10-01
The 50-residue snake venom protein L-omwaprin and its enantiomer D-omwaprin were prepared by total chemical synthesis. Radial diffusion assays were performed against Bacillus megaterium and Bacillus anthracis; both L- and D-omwaprin showed antibacterial activity against B. megaterium. The native protein enantiomer, made of L-amino acids, failed to crystallize readily. However, when a racemic mixture containing equal amounts of L- and D-omwaprin was used, diffraction quality crystals were obtained. The racemic protein sample crystallized in the centrosymmetric space group P2(1)/c and its structure was determined at atomic resolution (1.33 A) by a combination of Patterson and direct methods based on the strong scattering from the sulfur atoms in the eight cysteine residues per protein. Racemic crystallography once again proved to be a valuable method for obtaining crystals of recalcitrant proteins and for determining high-resolution X-ray structures by direct methods.
Goodrich, Katheryn M; Neilson, Andrew P
2014-05-01
Procyanidins have been extensively investigated for their potential health protective activities. However, the potential bioactivities of procyanidins are limited by their poor bioavailability. The majority of the ingested dose remains unabsorbed and reaches the colon where extensive microbial metabolism occurs. Most existing analytical methods measure either native compounds (catechins and procyanidins), or their microbial metabolites. The objectives of this study were to develop a high-throughput extraction and UPLC-MS/MS method for simultaneous measurement of both native procyanidins and their metabolites, facilitating high-throughput analysis of native and metabolite profiles in various regions of the colon. The present UPLC-MS/MS method facilitates simultaneous resolution and detection of authentic standards of 14 native catechin monomers and procyanidins, as well as 24 microbial metabolites. Detection and resolution of an additional 3 procyanidin dimers and 10 metabolites for which standards were not available was achieved. Elution and adequate resolution of both native compounds and metabolites were achieved within 10min. The intraday repeatability for native compounds was between 1.1 and 16.5%, and the interday repeatability for native compounds was between 2.2 and 25%. Intraday and interday repeatability for metabolites was between 0.6 and 24.1% and 1 and 23.9%, respectively. Observed lower limits of quantification for native compounds were ∼9-350fmol on-column, and for the microbial metabolites were ∼0.8-12,000fmol on-column. Observed lower limits of detection for native compounds were ∼4.5-190fmol on-column, and for metabolites were 0.304-6020fmol on-column. For native monomers and procyanidins, extraction recoveries ranged from 38 to 102%. Extraction recoveries for the 9 microbial metabolites tested ranged from 41 to 95%. Data from tissue analysis of rats gavaged with grape seed extract indicate fairly high accumulation of native compounds, primarily monomers and dimers, in the cecum and colon. Metabolite data indicate the progressive nature of microbial metabolism as the digesta moves through the lower GI tract. This method facilitates the high-throughput, sensitive, and simultaneous analysis of both native compounds and their microbial metabolites in biological samples and provides a more efficient means of extraction and analysis than previous methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Bhave, Devayani P.; Han, Wen-Ge; Pazicni, Samuel; Penner-Hahn, James E.; Carroll, Kate S.; Noodleman, Louis
2011-01-01
Adenosine-5’-phosphosulfate reductase (APSR) is an iron-sulfur protein that catalyses the reduction of adenosine-5’-phosphosulfate (APS) to sulfite. APSR coordinates to a [4Fe-4S] cluster via a conserved CC-X~80-CXXC motif and the cluster is essential for catalysis. Despite extensive functional, structural and spectroscopic studies, the exact role of the iron-sulfur cluster in APS reduction remains unknown. To gain an understanding into the role of the cluster, density functional theory (DFT) analysis and extended X-ray fine structure spectroscopy (EXAFS) have been performed to reveal insights into the coordination, geometry and electrostatics of the [4Fe-4S] cluster. XANES data confirms that the cluster is in the [4Fe-4S]2+ state in both native and substrate-bound APSR while EXAFS data recorded at ~0.1 Å resolution indicates that there is no significant change in the structure of the [4Fe-4S] cluster between the native and substrate-bound forms of the protein. On the other hand, DFT calculations provide an insight into the subtle differences between the geometry of the cluster in the native and APS-bound forms of APSR. A comparison between models with and without the tandem cysteine pair coordination of the cluster suggests a role for the unique coordination in facilitating a compact geometric structure and ‘fine-tuning’ the electronic structure to prevent reduction of the cluster. Further, calculations using models in which residue Lys144 is mutated to Ala confirm the finding that Lys144 serves as a crucial link in the interactions involving the [4Fe-4S] cluster and APS. PMID:21678934
NASA Astrophysics Data System (ADS)
Speir, Jeffrey Alan
Structural studies of the polymorphic cowpea chlorotic mottle virus have resulted in high resolution structures for two distinct icosahedral ribonucleoprotein particle conformations dependent upon whether acidic or basic pH conditions prevail. CCMV is stable below pH 6.5, however metal-free particles maintain a 10% increase in hydrodynamic volume at pH >=q 7.5. Identification of this swollen' form of CCMV, which can easily be disrupted with 1M NaCl, led to the first reassembly of an icosahedral virus in vitro from purified viral protein and RNA to form infectious particles, and its assembly has been the subject of biochemical and biophysical investigations for over twenty-five years. Under well defined conditions of pH, ionic strength and divalent metal ion concentration, CCMV capsid protein or capsid protein and RNA will reassemble to form icosahedral particles of various sizes, sheets, tubes, rosettes, and a variety of laminar structures which resemble virion structures from non-related virus families. Analysis of native particles at 3.2A resolution and swollen particles at 28A resolution has suggested that the chemical basis for the formation of polymorphic icosahedral and anisometric structures is: (i) hexamers formed of beta-barrel subunits stabilized by an unusual hexameric parallel beta structure made up of their N-termini, (ii) the location of protein-RNA interactions, (iii) divalent metal cation binding sites that regulate quasi-symmetrical subunit associations, (iv) charge repulsion across the same interfaces when lacking divalent metal ions at basic pH, which induces the formation of sixty 20A diameter portals for RNA release, and (v) a novel, C-terminal-based, subunit dimer assembly unit. The use of C- and N-terminal arms in CCMV has not been observed in other icosahedral RNA virus structures determined at near atomic resolution, however, their detailed interactions and roles in stabilizing the quaternary organization of CCMV are related to that found in the atomic structures of the DNA tumor papovaviruses (SV40 and polyoma). The swollen structure is closely similar to the expanded form of tomato bushy stunt virus (TBSV) previously determined at 8A resolution by X-ray crystallography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yan-Feng; Li, Lan-Fen; Yang, Cheng
2008-01-01
SMU.573 from S. mutans was expressed in E. coli and crystallized. The crystals belong to space group I4 and 2.5 Å resolution diffraction data were collected at an in-house chromium radiation source. SMU.573 from Streptococcus mutans is a structurally and functionally uncharacterized protein that was selected for structural biology studies. Native and SeMet-labelled proteins were expressed with an N-His tag in Escherichia coli BL21 (DE3) and purified by Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals of the SeMet-labelled protein were obtained by the hanging-drop vapour-diffusion method and a 2.5 Å resolution diffraction data set was collected using an in-house chromium radiationmore » source. The crystals belong to space group I4, with unit-cell parameters a = b = 96.53, c = 56.26 Å, α = β = γ = 90°.« less
Zhang, Zhe; Schindler, Christina E. M.; Lange, Oliver F.; Zacharias, Martin
2015-01-01
The high-resolution refinement of docked protein-protein complexes can provide valuable structural and mechanistic insight into protein complex formation complementing experiment. Monte Carlo (MC) based approaches are frequently applied to sample putative interaction geometries of proteins including also possible conformational changes of the binding partners. In order to explore efficiency improvements of the MC sampling, several enhanced sampling techniques, including temperature or Hamiltonian replica exchange and well-tempered ensemble approaches, have been combined with the MC method and were evaluated on 20 protein complexes using unbound partner structures. The well-tempered ensemble method combined with a 2-dimensional temperature and Hamiltonian replica exchange scheme (WTE-H-REMC) was identified as the most efficient search strategy. Comparison with prolonged MC searches indicates that the WTE-H-REMC approach requires approximately 5 times fewer MC steps to identify near native docking geometries compared to conventional MC searches. PMID:26053419
Sun, Rong; Zhang, Bin; Qi, Lei; Shivakoti, Sakar; Tian, Chong-Li; Lau, Pak-Ming
2018-01-01
As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25–60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABAA receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions. SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows that inhibitory synapses contain uniform thin sheet-like postsynaptic densities (PSDs), while excitatory synapses contain previously known mesh-like PSDs. We discovered “discus-shaped” ellipsoidal synaptic vesicles, and their distributions along with regular spherical vesicles in synaptic types are characterized. High-resolution tomograms further allowed identification of putative neurotransmitter receptors and their heterogeneous interaction with synaptic scaffolding proteins. The specificity and resolution of our approach enables precise in situ analysis of ultrastructural organization underlying distinct synaptic functions. PMID:29311144
Crystal structure of p44, a constitutively active splice variant of visual arrestin.
Granzin, Joachim; Cousin, Anneliese; Weirauch, Moritz; Schlesinger, Ramona; Büldt, Georg; Batra-Safferling, Renu
2012-03-09
Visual arrestin specifically binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. In contrast, the p44 splice variant can terminate phototransduction by binding to nonphosphorylated light-activated rhodopsin. Here we report the crystal structure of bovine p44 at a resolution of 1.85 Å. Compared to native arrestin, the p44 structure reveals significant differences in regions crucial for receptor binding, namely flexible loop V-VI and polar core regions. Additionally, electrostatic potential is remarkably positive on the N-domain and the C-domain. The p44 structure represents an active conformation that serves as a model to explain the 'constitutive activity' found in arrestin variants. Copyright © 2012 Elsevier Ltd. All rights reserved.
Spatial patterns of native freshwater mussels in the Upper Mississippi River
Ries, Patricia R.; DeJager, Nathan R.; Zigler, Steven J.; Newton, Teresa
2016-01-01
Multiple physical and biological factors structure freshwater mussel communities in large rivers, and their distributions have been described as clumped or patchy. However, few surveys of mussel populations have been conducted over areas large enough and at resolutions fine enough to quantify spatial patterns in their distribution. We used global and local indicators of spatial autocorrelation (i.e., Moran’s I) to quantify spatial patterns of adult and juvenile (≤5 y of age) freshwater mussels across multiple scales based on survey data from 4 reaches (navigation pools 3, 5, 6, and 18) of the Upper Mississippi River, USA. Native mussel densities were sampled at a resolution of ∼300 m and across distances ranging from 21 to 37 km, making these some of the most spatially extensive surveys conducted in a large river. Patch density and the degree and scale of patchiness varied by river reach, age group, and the scale of analysis. In all 4 pools, some patches of adults overlapped patches of juveniles, suggesting spatial and temporal persistence of adequate habitat. In pools 3 and 5, patches of juveniles were found where there were few adults, suggesting recent emergence of positive structuring mechanisms. Last, in pools 3, 5, and 6, some patches of adults were found where there were few juveniles, suggesting that negative structuring mechanisms may have replaced positive ones, leading to a lack of localized recruitment. Our results suggest that: 1) the detection of patches of freshwater mussels requires a multiscaled approach, 2) insights into the spatial and temporal dynamics of structuring mechanisms can be gained by conducting independent analyses of adults and juveniles, and 3) maps of patch distributions can be used to guide restoration and management actions and identify areas where mussels are most likely to influence ecosystem function.
Shevchenko, Vitaly; Gushchin, Ivan; Polovinkin, Vitaly; Round, Ekaterina; Borshchevskiy, Valentin; Utrobin, Petr; Popov, Alexander; Balandin, Taras; Büldt, Georg; Gordeliy, Valentin
2014-01-01
Bacteriorhodopsins are a large family of seven-helical transmembrane proteins that function as light-driven proton pumps. Here, we present the crystal structure of a new member of the family, Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant, at the resolution of 2.5 Å. While the HmBRI retinal-binding pocket and proton donor site are similar to those of other archaeal proton pumps, its proton release region is extended and contains additional water molecules. The protein's fold is reinforced by three novel inter-helical hydrogen bonds, two of which result from double substitutions relative to Halobacterium salinarum bacteriorhodopsin and other similar proteins. Despite the expression in Escherichia coli and consequent absence of native lipids, the protein assembles as a trimer in crystals. The unique extended loop between the helices D and E of HmBRI makes contacts with the adjacent protomer and appears to stabilize the interface. Many lipidic hydrophobic tail groups are discernible in the membrane region, and their positions are similar to those of archaeal isoprenoid lipids in the crystals of other proton pumps, isolated from native or native-like sources. All these features might explain the HmBRI properties and establish the protein as a novel model for the microbial rhodopsin proton pumping studies.
Crystallization of the Nonameric Small Terminase Subunit of Bacteriophage P22
DOE Office of Scientific and Technical Information (OSTI.GOV)
A Roy; A Bhardwaj; G Cingolani
2011-12-31
The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometrymore » of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.« less
Crystallization of the Nonameric Small Terminase Subunit of bacteriophage P22
DOE Office of Scientific and Technical Information (OSTI.GOV)
A Roy; A Bhardwaj; G Cingoloni
2011-12-31
The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometrymore » of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.« less
Pozzi, Cecilia; De Luca, Filomena; Benvenuti, Manuela; Poirel, Laurent; Nordmann, Patrice; Rossolini, Gian Maria
2016-01-01
BEL-1 is an acquired class A extended-spectrum β-lactamase (ESBL) found in Pseudomonas aeruginosa clinical isolates from Belgium which is divergent from other ESBLs (maximum identity of 54% with GES-type enzymes). This enzyme is efficiently inhibited by clavulanate, imipenem, and moxalactam. Crystals of BEL-1 were obtained at pH 5.6, and the structure of native BEL-1 was determined from orthorhombic and monoclinic crystal forms at 1.60-Å and 1.48-Å resolution, respectively. By soaking native BEL-1 crystals, complexes with imipenem (monoclinic form, 1.79-Å resolution) and moxalactam (orthorhombic form, 1.85-Å resolution) were also obtained. In the acyl-enzyme complexes, imipenem and moxalactam differ by the position of the α-substituent and of the carbonyl oxygen (in or out of the oxyanion hole). More surprisingly, the Ω-loop, which includes the catalytically relevant residue Glu166, was found in different conformations in the various subunits, resulting in the Glu166 side chain being rotated out of the active site or even in displacement of its Cα atom up to approximately 10 Å. A BEL-1 variant showing the single Leu162Phe substitution (BEL-2) confers a higher level of resistance to CAZ, CTX, and FEP and shows significantly lower Km values than BEL-1, especially with oxyiminocephalosporins. BEL-1 Leu162 is located at the beginning of the Ω-loop and is surrounded by Phe72, Leu139, and Leu148 (contact distances, 3.5 to 3.9 Å). This small hydrophobic cavity could not reasonably accommodate the bulkier Phe162 found in BEL-2 without altering neighboring residues or the Ω-loop itself, thus likely causing an important alteration of the enzyme kinetic properties. PMID:27671060
Zingsheim, H P; Neugebauer, D C; Frank, J; Hänicke, W; Barrantes, F J
1982-01-01
The acetylcholine receptor protein (AChR) from the electric organ of Torpedo marmorata is studied in its membrane-bound form by electron microscopy and single-particle image averaging. About half the molecule protrudes from the membrane surface by approximately 5 nm. The low-resolution 3-D structure of this hydrated portion, including its handedness, can be deduced from averaged axial and lateral projections and from freeze-etched membrane surfaces. In native membrane fragments, a dimeric form of the AChR is observed and the relative orientation of the AChR monomers within the dimer is established. The dimers disappear upon disulfide reduction of the membrane preparations, whereas the average axial projections of the AChR monomer remain unaffected. Since the existence of disulfide bonds linking AChR monomers between their respective delta-subunits is well documented, the approximate position of the delta-subunit within the low-resolution structure of the AChR molecule can be deduced from the structure of the dimers. Images Fig. 1. Fig. 2. Fig. 3. PMID:7188351
Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia; Stojanoff, Vivian; Rodríguez-Sanoja, Romina; Rudiño-Piñera, Enrique; Sánchez, Sergio
2015-09-01
Labdane-related diterpenoids are natural products with potential pharmaceutical applications that are rarely found in bacteria. Here, a putative class I labdane-related diterpene synthase (LrdC) identified by genome mining in a streptomycete was successfully crystallized using the microbatch method. Crystals of the LrdC enzyme were obtained in a holo form with its natural cofactor Mg(2+) (LrdC-Mg(2+)) and in complex with inorganic pyrophosphate (PPi) (LrdC-Mg(2+)-PPi). Crystals of native LrdC-Mg(2+) diffracted to 2.50 Å resolution and belonged to the trigonal space group P3221, with unit-cell parameters a = b = 107.1, c = 89.2 Å. Crystals of the LrdC-Mg(2+)-PPi complex grown in the same conditions as the native enzyme with PEG 8000 diffracted to 2.36 Å resolution and also belonged to the trigonal space group P3221. Crystals of the LrdC-Mg(2+)-PPi complex grown in a second crystallization condition with PEG 3350 diffracted to 2.57 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 49.9, b = 104.1, c = 66.5 Å, β = 111.4°. The structure was determined by the single-wavelength anomalous dispersion (SAD) technique using the osmium signal from a potassium hexachloroosmate (IV) derivative.
Gomis-Rüth, F X; Gómez, M; Bode, W; Huber, R; Avilés, F X
1995-01-01
The metalloexozymogen procarboxypeptidase A is mainly secreted in ruminants as a ternary complex with zymogens of two serine endoproteinases, chymotrypsinogen C and proproteinase E. The bovine complex has been crystallized, and its molecular structure analysed and refined at 2.6 A resolution to an R factor of 0.198. In this heterotrimer, the activation segment of procarboxypeptidase A essentially clamps the other two subunits, which shield the activation sites of the former from tryptic attack. In contrast, the propeptides of both serine proproteinases are freely accessible to trypsin. This arrangement explains the sequential and delayed activation of the constituent zymogens. Procarboxypeptidase A is virtually identical to the homologous monomeric porcine form. Chymotrypsinogen C displays structural features characteristic for chymotrypsins as well as elastases, except for its activation domain; similar to bovine chymotrypsinogen A, its binding site is not properly formed, while its surface located activation segment is disordered. The proproteinase E structure is fully ordered and strikingly similar to active porcine elastase; its specificity pocket is occluded, while the activation segment is fixed to the molecular surface. This first structure of a native zymogen from the proteinase E/elastase family does not fundamentally differ from the serine proproteinases known so far. Images PMID:7556081
A high throughput spectral image microscopy system
NASA Astrophysics Data System (ADS)
Gesley, M.; Puri, R.
2018-01-01
A high throughput spectral image microscopy system is configured for rapid detection of rare cells in large populations. To overcome flow cytometry rates and use of fluorophore tags, a system architecture integrates sample mechanical handling, signal processors, and optics in a non-confocal version of light absorption and scattering spectroscopic microscopy. Spectral images with native contrast do not require the use of exogeneous stain to render cells with submicron resolution. Structure may be characterized without restriction to cell clusters of differentiation.
Crystal structure of triosephosphate isomerase from Trypanosoma cruzi in hexane
Gao, Xiu-Gong; Maldonado, Ernesto; Pérez-Montfort, Ruy; Garza-Ramos, Georgina; de Gómez-Puyou, Marietta Tuena; Gómez-Puyou, Armando; Rodríguez-Romero, Adela
1999-01-01
To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2-Å resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 Å from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design. PMID:10468562
Crystal structure of triosephosphate isomerase from Trypanosoma cruzi in hexane.
Gao, X G; Maldonado, E; Pérez-Montfort, R; Garza-Ramos, G; de Gómez-Puyou, M T; Gómez-Puyou, A; Rodríguez-Romero, A
1999-08-31
To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2-A resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 A from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design.
ALS-causing profilin-1-mutant forms a non-native helical structure in membrane environments.
Lim, Liangzhong; Kang, Jian; Song, Jianxing
2017-11-01
Despite having physiological functions completely different from superoxide dismutase 1 (SOD1), profilin 1 (PFN1) also carries mutations causing amyotrophic lateral sclerosis (ALS) with a striking similarity to that triggered by SOD1 mutants. Very recently, the C71G-PFN1 has been demonstrated to cause ALS by a gain of toxicity and the acceleration of motor neuron degeneration preceded the accumulation of its aggregates. Here by atomic-resolution NMR determination of conformations and dynamics of WT-PFN1 and C71G-PFN1 in aqueous buffers and in membrane mimetics DMPC/DHPC bicelle and DPC micelle, we deciphered that: 1) the thermodynamic destabilization by C71G transforms PFN1 into coexistence with the unfolded state, which is lacking of any stable tertiary/secondary structures as well as restricted ps-ns backbone motions, thus fundamentally indistinguishable from ALS-causing SOD1 mutants. 2) Most strikingly, while WT-PFN1 only weakly interacts with DMPC/DHPC bicelle without altering the native structure, C71G-PFN1 acquires abnormal capacity in strongly interacting with DMPC/DHPC bicelle and DPC micelle, energetically driven by transforming the highly disordered unfolded state into a non-native helical structure, similar to what has been previously observed on ALS-causing SOD1 mutants. Our results imply that one potential mechanism for C71G-PFN1 to initiate ALS might be the abnormal interaction with membranes as recently established for SOD1 mutants. Copyright © 2017 Elsevier B.V. All rights reserved.
Future directions of electron crystallography.
Fujiyoshi, Yoshinori
2013-01-01
In biological science, there are still many interesting and fundamental yet difficult questions, such as those in neuroscience, remaining to be answered. Structural and functional studies of membrane proteins, which are key molecules of signal transduction in neural and other cells, are essential for understanding the molecular mechanisms of many fundamental biological processes. Technological and instrumental advancements of electron microscopy have facilitated comprehension of structural studies of biological components, such as membrane proteins. While X-ray crystallography has been the main method of structure analysis of proteins including membrane proteins, electron crystallography is now an established technique to analyze structures of membrane proteins in the lipid bilayer, which is close to their natural biological environment. By utilizing cryo-electron microscopes with helium-cooled specimen stages, structures of membrane proteins were analyzed at a resolution better than 3 Å. Such high-resolution structural analysis of membrane proteins by electron crystallography opens up the new research field of structural physiology. Considering the fact that the structures of integral membrane proteins in their native membrane environment without artifacts from crystal contacts are critical in understanding their physiological functions, electron crystallography will continue to be an important technology for structural analysis. In this chapter, I will present several examples to highlight important advantages and to suggest future directions of this technique.
Sen. Cantwell, Maria [D-WA
2013-11-20
Senate - 11/20/2013 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
Sen. Akaka, Daniel K. [D-HI
2011-11-16
Senate - 11/16/2011 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
Sen. Tester, Jon [D-MT
2014-11-20
Senate - 11/20/2014 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
Self-interference 3D super-resolution microscopy for deep tissue investigations.
Bon, Pierre; Linarès-Loyez, Jeanne; Feyeux, Maxime; Alessandri, Kevin; Lounis, Brahim; Nassoy, Pierre; Cognet, Laurent
2018-06-01
Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues.
Zernike phase contrast cryo-electron tomography of whole bacterial cells
Guerrero-Ferreira, Ricardo C.; Wright, Elizabeth R.
2014-01-01
Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. PMID:24075950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latypov, Ramil F.; Liu, Dingjiang; Jacob, Jaby
2010-01-12
Conformational properties of the folded and unfolded ensembles of human interleukin-1 receptor antagonist (IL-1ra) are strongly denaturant-dependent as evidenced by high-resolution two-dimensional nuclear magnetic resonance (NMR), limited proteolysis, and small-angle X-ray scattering (SAXS). The folded ensemble was characterized in detail in the presence of different urea concentrations by 1H-15N HSQC NMR. The {beta}-trefoil fold characteristic of native IL-1ra was preserved until the unfolding transition region beginning at 4 M urea. At the same time, a subset of native resonances disappeared gradually starting at low denaturant concentrations, indicating noncooperative changes in the folded state. Additional evidence of structural perturbations came frommore » the chemical shift analysis, nonuniform and bell-shaped peak intensity profiles, and limited proteolysis. In particular, the following nearby regions of the tertiary structure became progressively destabilized with increasing urea concentrations: the {beta}-hairpin interface of trefoils 1 and 2 and the H2a-H2 helical region. These regions underwent small-scale perturbations within the native baseline region in the absence of populated molten globule-like states. Similar regions were affected by elevated temperatures known to induce irreversible aggregation of IL-1ra. Further evidence of structural transitions invoking near-native conformations came from an optical spectroscopy analysis of its single-tryptophan variant W17A. The increase in the radius of gyration was associated with a single equilibrium unfolding transition in the case of two different denaturants, urea and guanidine hydrochloride (GuHCl). However, the compactness of urea- and GuHCl-unfolded molecules was comparable only at high denaturant concentrations and deviated under less denaturing conditions. Our results identified the role of conformational flexibility in IL-1ra aggregation and shed light on the nature of structural transitions within the folded ensembles of other {beta}-trefoil proteins, such as IL-1{beta} and hFGF-1.« less
Ogura, Toshihiko; Okada, Tomoko
2017-09-30
Recently, aqueous nanoparticles have been used in drug-delivery systems for new type medicines. In particular, milk-casein micelles have been used as drug nanocarriers for targeting cancer cells. Therefore, nanostructure observation of particles and micelles in their native liquid condition is indispensable for analysing their function and mechanisms. However, traditional optical and scanning electron microscopy have difficulty observing the nanostructures of aqueous micelles. Recently, we developed a novel imaging technique called scanning electron-assisted dielectric microscopy (SE-ADM) that enables observation of various biological specimens in water with very little radiation damage and high-contrast imaging without staining or fixation at an 8-nm spatial resolution. In this study, for the first time, we show that the SE-ADM system is capable of high-resolution observation of whole-milk specimens in their natural state. Moreover, we successfully observe the casein micelles and milk-fat globules in an intact liquid condition. Our SE-ADM system can be applied to various biological particles and micelles in a native liquid state. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Free-energy landscape of the villin headpiece in an all-atom force field.
Herges, Thomas; Wenzel, Wolfgang
2005-04-01
We investigate the landscape of the internal free-energy of the 36 amino acid villin headpiece with a modified basin hopping method in the all-atom force field PFF01, which was previously used to predictively fold several helical proteins with atomic resolution. We identify near native conformations of the protein as the global optimum of the force field. More than half of the twenty best simulations started from random initial conditions converge to the folding funnel of the native conformation, but several competing low-energy metastable conformations were observed. From 76,000 independently generated conformations we derived a decoy tree which illustrates the topological structure of the entire low-energy part of the free-energy landscape and characterizes the ensemble of metastable conformations. These emerge as similar in secondary content, but differ in tertiary arrangement.
Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve
2014-01-01
Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.
Assessing the Chemical Accuracy of Protein Structures via Peptide Acidity
Anderson, Janet S.; Hernández, Griselda; LeMaster, David M.
2012-01-01
Although the protein native state is a Boltzmann conformational ensemble, practical applications often require a representative model from the most populated region of that distribution. The acidity of the backbone amides, as reflected in hydrogen exchange rates, is exquisitely sensitive to the surrounding charge and dielectric volume distribution. For each of four proteins, three independently determined X-ray structures of differing crystallographic resolution were used to predict exchange for the static solvent-exposed amide hydrogens. The average correlation coefficients range from 0.74 for ubiquitin to 0.93 for Pyrococcus furiosus rubredoxin, reflecting the larger range of experimental exchange rates exhibited by the latter protein. The exchange prediction errors modestly correlate with the crystallographic resolution. MODELLER 9v6-derived homology models at ~60% sequence identity (36% identity for chymotrypsin inhibitor CI2) yielded correlation coefficients that are ~0.1 smaller than for the cognate X-ray structures. The most recently deposited NOE-based ubiquitin structure and the original NMR structure of CI2 fail to provide statistically significant predictions of hydrogen exchange. However, the more recent RECOORD refinement study of CI2 yielded predictions comparable to the X-ray and homology model-based analyses. PMID:23182463
Andreoletti, Pierre; Pernoud, Anaïs; Sainz, Germaine; Gouet, Patrice; Jouve, Hélène Marie
2003-12-01
The structure of Proteus mirabilis catalase in complex with an inhibitor, formic acid, has been solved at 2.3 A resolution. Formic acid is a key ligand of catalase because of its ability to react with the ferric enzyme, giving a high-spin iron complex. Alternatively, it can react with two transient oxidized intermediates of the enzymatic mechanism, compounds I and II. In this work, the structures of native P. mirabilis catalase (PMC) and compound I have also been determined at high resolution (2.0 and 2.5 A, respectively) from frozen crystals. Comparisons between these three PMC structures show that a water molecule present at a distance of 3.5 A from the haem iron in the resting state is absent in the formic acid complex, but reappears in compound I. In addition, movements of solvent molecules are observed during formation of compound I in a cavity located away from the active site, in which a glycerol molecule is replaced by a sulfate. These results give structural insights into the movement of solvent molecules, which may be important in the enzymatic reaction.
Vajpai, Navratna; Nisius, Lydia; Wiktor, Maciej; Grzesiek, Stephan
2013-01-29
Proteins denature not only at high, but also at low temperature as well as high pressure. These denatured states are not easily accessible for experiment, because usually heat denaturation causes aggregation, whereas cold or pressure denaturation occurs at temperatures well below the freezing point of water or pressures above 5 kbar, respectively. Here we have obtained atomic details of the pressure-assisted, cold-denatured state of ubiquitin at 2,500 bar and 258 K by high-resolution NMR techniques. Under these conditions, a folded, native-like and a disordered state exist in slow exchange. Secondary chemical shifts show that the disordered state has structural propensities for a native-like N-terminal β-hairpin and α-helix and a nonnative C-terminal α-helix. These propensities are very similar to the previously described alcohol-denatured (A-)state. Similar to the A-state, (15)N relaxation data indicate that the secondary structure elements move as independent segments. The close similarity of pressure-assisted, cold-denatured, and alcohol-denatured states with native and nonnative secondary elements supports a hierarchical mechanism of folding and supports the notion that similar to alcohol, pressure and cold reduce the hydrophobic effect. Indeed, at nondenaturing concentrations of methanol, a complete transition from the native to the A-state can be achieved at ambient temperature by varying the pressure from 1 to 2,500 bar. The methanol-assisted pressure transition is completely reversible and can also be induced in protein G. This method should allow highly detailed studies of protein-folding transitions in a continuous and reversible manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry
Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechainmore » conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.« less
Beassoni, Paola R; Berti, Federico Pérez de; Otero, Lisandro H; Risso, Valeria A; Ferreyra, Raul G; Lisa, Angela T; Domenech, Carlos E; Ermácora, Mario R
2010-06-01
Pseudomonas aeruginosa infections constitute a widespread health problem with high economical and social impact, and the phosphorylcholine phosphatase (PchP) of this bacterium is a potential target for antimicrobial treatment. However, drug design requires high-resolution structural information and detailed biophysical knowledge not available for PchP. An obstacle in the study of PchP is that current methods for its expression and purification are suboptimal and allowed only a preliminary kinetic characterization of the enzyme. Herein, we describe a new procedure for the efficient preparation of recombinant PchP overexpressed in Escherichia coli. The enzyme is purified from urea solubilized inclusion bodies and refolded by dialysis. The product of PchP refolding is a mixture of native PchP and a kinetically-trapped, alternatively-folded aggregate that is very slowly converted into the native state. The properly folded and fully active enzyme is isolated from the refolding mixture by size-exclusion chromatography. PchP prepared by the new procedure was subjected to chemical and biophysical characterization, and its basic optical, hydrodynamic, metal-binding, and catalytic properties are reported. The unfolding of the enzyme was also investigated, and its thermal stability was determined. The obtained information should help to compare PchP with other phosphatases and to obtain a better understanding of its catalytic mechanism. In addition, preliminary trials showed that PchP prepared by the new protocol is suitable for crystallization, opening the way for high-resolution studies of the enzyme structure.
In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.
Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf
2016-05-01
High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.
Mishra, Avinash; Rana, Prashant Singh; Mittal, Aditya; Jayaram, B
2014-10-01
Root-mean-square-deviation (RMSD), of computationally-derived protein structures from experimentally determined structures, is a critical index to assessing protein-structure-prediction-algorithms (PSPAs). The development of PSPAs to obtain 0Å RMSD from native structures is considered central to computational biology. However, till date it has been quite challenging to measure how far a predicted protein structure is from its native - in the absence of a known experimental/native structure. In this work, we report the development of a metric "D2N" (distance to the native) - that predicts the "RMSD" of any structure without actually knowing the native structure. By combining physico-chemical properties and known universalities in spatial organization of soluble proteins to develop D2N, we demonstrate the ability to predict the distance of a proposed structure to within ±1.5Ǻ error with a remarkable average accuracy of 93.6% for structures below 5Ǻ from the native. We believe that this work opens up a completely new avenue towards assigning reliable structures to whole proteomes even in the absence of experimentally determined native structures. The D2N tool is freely available at http://www.scfbio-iitd.res.in/software/d2n.jsp. Copyright © 2014 Elsevier B.V. All rights reserved.
Molecular structure of leucine aminopeptidase at 2. 7- angstrom resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burley, S.K.; David, P.R.; Lipscomb, W.N.
1990-09-01
The three-dimensional structure of bovine lens leucine aminopeptidase complexed with bestatin, a slow-binding inhibitor, has been solved to 3.0-{angstrom} resolution by the multiple isomorphous replacement method with phase combination and density modification. In addition, the structure of the isomorphous native enzyme has been refined at 2.7-{angstrom} resolution, and the current crystallographic R factor is 0.169 for a model that includes the two zinc ions and all 487 amino acid residues comprising the asymmetric unit. The enzyme is physiologically active as a hexamer, which has 32 symmetry and is triangular in shape with a triangle edge length of 115 {angstrom} andmore » maximal thickness of 90 {angstrom}. The monomers are crystallographically equivalent and each is folded into two unequal {alpha}/{beta} domains connected by an {alpha}-helix to give a comma-like shape with approximate maximal dimensions of 90 x 55 x 55 {angstrom}{sup 3}. The secondary structural composition is 40% {alpha}-helix and 19% {beta}-strand. The active site also contains two positively charged residues, Lys-250 and Arg-336. The six active sites are themselves located in the interior of the hexamer, where they line a disk-shaped cavity of radius 15 {angstrom} and thickness 10 {angstrom}. Access to this cavity is provided by solvent channels that run along the twofold symmetry axes.« less
A Structural Study of Escherichia coli Cells Using an In Situ Liquid Chamber TEM Technology.
Wang, Yibing; Chen, Xin; Cao, Hongliang; Deng, Chao; Cao, Xiaodan; Wang, Ping
2015-01-01
Studying cell microstructures and their behaviors under living conditions has been a challenging subject in microbiology. In this work, in situ liquid chamber TEM was used to study structures of Escherichia coli cells in aqueous solutions at a nanometer-scale resolution. Most of the cells remained intact under electron beam irradiation, and nanoscale structures were observed during the TEM imaging. The analysis revealed structures of pili surrounding the E. coli cells; the movements of the pili in the liquid were also observed during the in situ tests. This technology also allowed the observation of features of the nucleoid in the E. coli cells. Overall, in situ TEM can be applied as a valuable tool to study real-time microscopic structures and processes in microbial cells residing in native aqueous solutions.
Solid state NMR: The essential technology for helical membrane protein structural characterization
Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna
2014-01-01
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099
Solid state NMR: The essential technology for helical membrane protein structural characterization
NASA Astrophysics Data System (ADS)
Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna
2014-02-01
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.
A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Bent, Andrew F; Mann, Greg; Houssen, Wael E; Mykhaylyk, Vitaliy; Duman, Ramona; Thomas, Louise; Jaspars, Marcel; Wagner, Armin; Naismith, James H
2016-11-01
Determination of protein crystal structures requires that the phases are derived independently of the observed measurement of diffraction intensities. Many techniques have been developed to obtain phases, including heavy-atom substitution, molecular replacement and substitution during protein expression of the amino acid methionine with selenomethionine. Although the use of selenium-containing methionine has transformed the experimental determination of phases it is not always possible, either because the variant protein cannot be produced or does not crystallize. Phasing of structures by measuring the anomalous diffraction from S atoms could in theory be almost universal since almost all proteins contain methionine or cysteine. Indeed, many structures have been solved by the so-called native sulfur single-wavelength anomalous diffraction (S-SAD) phasing method. However, the anomalous effect is weak at the wavelengths where data are normally recorded (between 1 and 2 Å) and this limits the potential of this method to well diffracting crystals. Longer wavelengths increase the strength of the anomalous signal but at the cost of increasing air absorption and scatter, which degrade the precision of the anomalous measurement, consequently hindering phase determination. A new instrument, the long-wavelength beamline I23 at Diamond Light Source, was designed to work at significantly longer wavelengths compared with standard synchrotron beamlines in order to open up the native S-SAD method to projects of increasing complexity. Here, the first novel structure, that of the oxidase domain involved in the production of the natural product patellamide, solved on this beamline is reported using data collected to a resolution of 3.15 Å at a wavelength of 3.1 Å. The oxidase is an example of a protein that does not crystallize as the selenium variant and for which no suitable homology model for molecular replacement was available. Initial attempts collecting anomalous diffraction data for native sulfur phasing on a standard macromolecular crystallography beamline using a wavelength of 1.77 Å did not yield a structure. The new beamline thus has the potential to facilitate structure determination by native S-SAD phasing for what would previously have been regarded as very challenging cases with modestly diffracting crystals and low sulfur content.
Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cingolani, Gino, E-mail: cingolag@upstate.edu; Andrews, Dewan; Casjens, Sherwood
2006-05-01
The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26more » forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.« less
Using Local States To Drive the Sampling of Global Conformations in Proteins
2016-01-01
Conformational changes associated with protein function often occur beyond the time scale currently accessible to unbiased molecular dynamics (MD) simulations, so that different approaches have been developed to accelerate their sampling. Here we investigate how the knowledge of backbone conformations preferentially adopted by protein fragments, as contained in precalculated libraries known as structural alphabets (SA), can be used to explore the landscape of protein conformations in MD simulations. We find that (a) enhancing the sampling of native local states in both metadynamics and steered MD simulations allows the recovery of global folded states in small proteins; (b) folded states can still be recovered when the amount of information on the native local states is reduced by using a low-resolution version of the SA, where states are clustered into macrostates; and (c) sequences of SA states derived from collections of structural motifs can be used to sample alternative conformations of preselected protein regions. The present findings have potential impact on several applications, ranging from protein model refinement to protein folding and design. PMID:26808351
Structural and interaction parameters of thermosensitive native α-elastin biohybrid microgel
NASA Astrophysics Data System (ADS)
Balaceanu, Andreea; Singh, Smriti; Demco, Dan E.; Möller, Martin
2014-09-01
The structural and water interaction parameters for native, α-elastin biohybrid microgel crosslinked with hydrophilic and hydrophobic crosslinkers are obtained from the volume phase transition temperature behaviour, 1H high-resolution magic-angle sample spinning transverse magnetization relaxation NMR, and modified Flory-Rehner swelling theory. Firstly, considering a homogeneous morphology the number of subchains in the biohybrid microgel, the residual water in deswollen state as a function of crosslink density and the temperature dependence of the Flory biopolymer-water interaction parameters are reported for the biohybrid microgels prepared with hydrophilic (PEG-DGE) and hydrophobic (BS3) crosslinkers. The Flory-Rehner classical approach is subsequently modified taking into account the heterogeneities observed by NMR transverse relaxation measurements. Two differently mobile regions are determined, a hydrophobic domain and a crosslinking domain with relative reduced mobility. For the first time, the influence of chain mobility on the Flory interaction parameter is investigated through a modified Flory state equation. The contributions of amino-acids located in the hydrophobic and crosslinking domains in the polypeptide sequence are separated while analyzing the biopolymer-water interaction.
Using Local States To Drive the Sampling of Global Conformations in Proteins.
Pandini, Alessandro; Fornili, Arianna
2016-03-08
Conformational changes associated with protein function often occur beyond the time scale currently accessible to unbiased molecular dynamics (MD) simulations, so that different approaches have been developed to accelerate their sampling. Here we investigate how the knowledge of backbone conformations preferentially adopted by protein fragments, as contained in precalculated libraries known as structural alphabets (SA), can be used to explore the landscape of protein conformations in MD simulations. We find that (a) enhancing the sampling of native local states in both metadynamics and steered MD simulations allows the recovery of global folded states in small proteins; (b) folded states can still be recovered when the amount of information on the native local states is reduced by using a low-resolution version of the SA, where states are clustered into macrostates; and (c) sequences of SA states derived from collections of structural motifs can be used to sample alternative conformations of preselected protein regions. The present findings have potential impact on several applications, ranging from protein model refinement to protein folding and design.
NASA Astrophysics Data System (ADS)
Zhou, Mowei; Yan, Jing; Romano, Christine A.; Tebo, Bradley M.; Wysocki, Vicki H.; Paša-Tolić, Ljiljana
2018-01-01
Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. [Figure not available: see fulltext.
Dynamic Folding Pathway Models of the Trp-Cage Protein
Kim, Seung-Yeon
2013-01-01
Using action-derived molecular dynamics (ADMD), we study the dynamic folding pathway models of the Trp-cage protein by providing its sequential conformational changes from its initial disordered structure to the final native structure at atomic details. We find that the numbers of native contacts and native hydrogen bonds are highly correlated, implying that the native structure of Trp-cage is achieved through the concurrent formations of native contacts and native hydrogen bonds. In early stage, an unfolded state appears with partially formed native contacts (~40%) and native hydrogen bonds (~30%). Afterward, the folding is initiated by the contact of the side chain of Tyr3 with that of Trp6, together with the formation of the N-terminal α-helix. Then, the C-terminal polyproline structure docks onto the Trp6 and Tyr3 rings, resulting in the formations of the hydrophobic core of Trp-cage and its near-native state. Finally, the slow adjustment processes of the near-native states into the native structure are dominant in later stage. The ADMD results are in agreement with those of the experimental folding studies on Trp-cage and consistent with most of other computational studies. PMID:23865078
Sen. Dorgan, Byron L. [D-ND
2010-11-19
Senate - 11/19/2010 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
Sen. Dorgan, Byron L. [D-ND
2009-11-05
Senate - 11/05/2009 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
A scoring function based on solvation thermodynamics for protein structure prediction
Du, Shiqiao; Harano, Yuichi; Kinoshita, Masahiro; Sakurai, Minoru
2012-01-01
We predict protein structure using our recently developed free energy function for describing protein stability, which is focused on solvation thermodynamics. The function is combined with the current most reliable sampling methods, i.e., fragment assembly (FA) and comparative modeling (CM). The prediction is tested using 11 small proteins for which high-resolution crystal structures are available. For 8 of these proteins, sequence similarities are found in the database, and the prediction is performed with CM. Fairly accurate models with average Cα root mean square deviation (RMSD) ∼ 2.0 Å are successfully obtained for all cases. For the rest of the target proteins, we perform the prediction following FA protocols. For 2 cases, we obtain predicted models with an RMSD ∼ 3.0 Å as the best-scored structures. For the other case, the RMSD remains larger than 7 Å. For all the 11 target proteins, our scoring function identifies the experimentally determined native structure as the best structure. Starting from the predicted structure, replica exchange molecular dynamics is performed to further refine the structures. However, we are unable to improve its RMSD toward the experimental structure. The exhaustive sampling by coarse-grained normal mode analysis around the native structures reveals that our function has a linear correlation with RMSDs < 3.0 Å. These results suggest that the function is quite reliable for the protein structure prediction while the sampling method remains one of the major limiting factors in it. The aspects through which the methodology could further be improved are discussed. PMID:27493529
Yoshida, Toru; Tsuge, Hideaki; Konno, Hiroki; Hisabori, Toru; Sugano, Yasushi
2011-07-01
The dye-decolorizing peroxidase (DyP)-type peroxidase family is a unique heme peroxidase family. The primary and tertiary structures of this family are obviously different from those of other heme peroxidases. However, the details of the structure-function relationships of this family remain poorly understood. We show four high-resolution structures of DyP (EC1.11.1.19), which is representative of this family: the native DyP (1.40 Å), the D171N mutant DyP (1.42 Å), the native DyP complexed with cyanide (1.45 Å), and the D171N mutant DyP associated with cyanide (1.40 Å). These structures contain four amino acids forming the binding pocket for hydrogen peroxide, and they are remarkably conserved in this family. Moreover, these structures show that OD2 of Asp171 accepts a proton from hydrogen peroxide in compound I formation, and that OD2 can swing to the appropriate position in response to the ligand for heme iron. On the basis of these results, we propose a swing mechanism in compound I formation. When DyP reacts with hydrogen peroxide, OD2 swings towards an optimal position to accept the proton from hydrogen peroxide bound to the heme iron. © 2011 The Authors Journal compilation © 2011 FEBS.
Solution structure of a small protein containing a fluorinated side chain in the core
Cornilescu, Gabriel; Hadley, Erik B.; Woll, Matthew G.; Markley, John L.; Gellman, Samuel H.; Cornilescu, Claudia C.
2007-01-01
We report the first high-resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe → F5-Phe) mutants for the 35-residue chicken villin headpiece subdomain (c-VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe → F5-Phe mutations are interesting because aryl–perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl–aryl or perfluoroaryl–perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 → F5-Phe, was found to provide enhanced tertiary structural stability relative to the native core (by ∼1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe → F5-Phe mutations offer the possibility of greater tertiary structural stability from side chain–side chain attraction and/or side chain desolvation, the constraints associated with the native c-VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability. PMID:17123960
Crystal Structure of the Minimalist Max-E47 Protein Chimera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmadpour, Faraz; Ghirlando, Rodolfo; De Jong, Antonia T.
Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47more » dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts.« less
Kalkhan, M.A.; Stohlgren, T.J.
2000-01-01
Land managers need better techniques to assess exoticplant invasions. We used the cross-correlationstatistic, IYZ, to test for the presence ofspatial cross-correlation between pair-wisecombinations of soil characteristics, topographicvariables, plant species richness, and cover ofvascular plants in a 754 ha study site in RockyMountain National Park, Colorado, U.S.A. Using 25 largeplots (1000 m2) in five vegetation types, 8 of 12variables showed significant spatial cross-correlationwith at least one other variable, while 6 of 12variables showed significant spatial auto-correlation. Elevation and slope showed significant spatialcross-correlation with all variables except percentcover of native and exotic species. Percent cover ofnative species had significant spatialcross-correlations with soil variables, but not withexotic species. This was probably because of thepatchy distributions of vegetation types in the studyarea. At a finer resolution, using data from ten1 m2 subplots within each of the 1000 m2 plots, allvariables showed significant spatial auto- andcross-correlation. Large-plot sampling was moreaffected by topographic factors than speciesdistribution patterns, while with finer resolutionsampling, the opposite was true. However, thestatistically and biologically significant spatialcorrelation of native and exotic species could only bedetected with finer resolution sampling. We foundexotic plant species invading areas with high nativeplant richness and cover, and in fertile soils high innitrogen, silt, and clay. Spatial auto- andcross-correlation statistics, along with theintegration of remotely sensed data and geographicinformation systems, are powerful new tools forevaluating the patterns and distribution of native andexotic plant species in relation to landscape structure.
Zernike phase contrast cryo-electron tomography of whole bacterial cells.
Guerrero-Ferreira, Ricardo C; Wright, Elizabeth R
2014-01-01
Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. Copyright © 2013 Elsevier Inc. All rights reserved.
Schmidt, Andrea; Gruber, Karl; Kratky, Christoph; Lamzin, Victor S
2008-08-01
Hydroxynitrile lyases are versatile enzymes that enantiospecifically cope with cyanohydrins, important intermediates in the production of various agrochemicals or pharmaceuticals. We determined four atomic resolution crystal structures of hydroxynitrile lyase from Hevea brasiliensis: one native and three complexes with acetone, isopropyl alcohol, and thiocyanate. We observed distinct distance changes among the active site residues related to proton shifts upon substrate binding. The combined use of crystallography and ab initio quantum chemical calculations allowed the determination of the protonation states in the enzyme active site. We show that His(235) of the catalytic triad must be protonated in order for catalysis to proceed, and we could reproduce the cyanohydrin synthesis in ab initio calculations. We also found evidence for the considerable pK(a) shifts that had been hypothesized earlier. We envision that this knowledge can be used to enhance the catalytic properties and the stability of the enzyme for industrial production of enantiomerically pure cyanohydrins.
Nahmani, Marc; Lanahan, Conor; DeRosier, David; Turrigiano, Gina G.
2017-01-01
Superresolution microscopy has fundamentally altered our ability to resolve subcellular proteins, but improving on these techniques to study dense structures composed of single-molecule-sized elements has been a challenge. One possible approach to enhance superresolution precision is to use cryogenic fluorescent imaging, reported to reduce fluorescent protein bleaching rates, thereby increasing the precision of superresolution imaging. Here, we describe an approach to cryogenic photoactivated localization microscopy (cPALM) that permits the use of a room-temperature high-numerical-aperture objective lens to image frozen samples in their native state. We find that cPALM increases photon yields and show that this approach can be used to enhance the effective resolution of two photoactivatable/switchable fluorophore-labeled structures in the same frozen sample. This higher resolution, two-color extension of the cPALM technique will expand the accessibility of this approach to a range of laboratories interested in more precise reconstructions of complex subcellular targets. PMID:28348224
Replica Exchange Improves Sampling in Low-Resolution Docking Stage of RosettaDock
Zhang, Zhe; Lange, Oliver F.
2013-01-01
Many protein-protein docking protocols are based on a shotgun approach, in which thousands of independent random-start trajectories minimize the rigid-body degrees of freedom. Another strategy is enumerative sampling as used in ZDOCK. Here, we introduce an alternative strategy, ReplicaDock, using a small number of long trajectories of temperature replica exchange. We compare replica exchange sampling as low-resolution stage of RosettaDock with RosettaDock's original shotgun sampling as well as with ZDOCK. A benchmark of 30 complexes starting from structures of the unbound binding partners shows improved performance for ReplicaDock and ZDOCK when compared to shotgun sampling at equal or less computational expense. ReplicaDock and ZDOCK consistently reach lower energies and generate significantly more near-native conformations than shotgun sampling. Accordingly, they both improve typical metrics of prediction quality of complex structures after refinement. Additionally, the refined ReplicaDock ensembles reach significantly lower interface energies and many previously hidden features of the docking energy landscape become visible when ReplicaDock is applied. PMID:24009670
The beginning of kinesin's force-generating cycle visualized at 9-Å resolution
Sindelar, Charles V.; Downing, Kenneth H.
2007-01-01
We have used cryo-electron microscopy of kinesin-decorated microtubules to resolve the structure of the motor protein kinesin's crucial nucleotide response elements, switch I and the switch II helix, in kinesin's poorly understood nucleotide-free state. Both of the switch elements undergo conformational change relative to the microtubule-free state. The changes in switch I suggest a role for it in “ejecting” adenosine diphosphate when kinesin initially binds to the microtubule. The switch II helix has an N-terminal extension, apparently stabilized by conserved microtubule contacts, implying a microtubule activation mechanism that could convey the state of the bound nucleotide to kinesin's putative force-delivering element (the “neck linker”). In deriving this structure, we have adapted an image-processing technique, single-particle reconstruction, for analyzing decorated microtubules. The resulting reconstruction visualizes the asymmetric seam present in native, 13-protofilament microtubules, and this method will provide an avenue to higher-resolution characterization of a variety of microtubule- binding proteins, as well as the microtubule itself. PMID:17470637
Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser
Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; ...
2015-06-11
Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data revealmore » the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.« less
NASA Astrophysics Data System (ADS)
D'Urzo, Annalisa; Konijnenberg, Albert; Rossetti, Giulia; Habchi, Johnny; Li, Jinyu; Carloni, Paolo; Sobott, Frank; Longhi, Sonia; Grandori, Rita
2015-03-01
Intrinsically disordered proteins (IDPs) form biologically active complexes that can retain a high degree of conformational disorder, escaping structural characterization by conventional approaches. An example is offered by the complex between the intrinsically disordered NTAIL domain and the phosphoprotein X domain (PXD) from measles virus (MeV). Here, distinct conformers of the complex are detected by electrospray ionization-mass spectrometry (ESI-MS) and ion mobility (IM) techniques yielding estimates for the solvent-accessible surface area (SASA) in solution and the average collision cross-section (CCS) in the gas phase. Computational modeling of the complex in solution, based on experimental constraints, provides atomic-resolution structural models featuring different levels of compactness. The resulting models indicate high structural heterogeneity. The intermolecular interactions are predominantly hydrophobic, not only in the ordered core of the complex, but also in the dynamic, disordered regions. Electrostatic interactions become involved in the more compact states. This system represents an illustrative example of a hydrophobic complex that could be directly detected in the gas phase by native mass spectrometry. This work represents the first attempt to modeling the entire NTAIL domain bound to PXD at atomic resolution.
Szober, Christoph M; Hauck, Stefanie M; Euler, Kerstin N; Fröhlich, Kristina J H; Alge-Priglinger, Claudia; Ueffing, Marius; Deeg, Cornelia A
2012-10-31
The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses' vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.
Atomic force microscopy studies of native photosynthetic membranes.
Sturgis, James N; Tucker, Jaimey D; Olsen, John D; Hunter, C Neil; Niederman, Robert A
2009-05-05
In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the basic requirements for efficient collection, transmission, and trapping of radiant energy. A highly organized architecture was observed with fused preparations of the pseudocrystalline ICM of Blastochloris viridis, consiting of hexagonally packed monomeric reaction center light-harvesting 1 (RC-LH1) core complexes. Among strains which also form a peripheral LH2 antenna, images of ICM patches from Rhodobacter sphaeroides exhibited well-ordered, interconnected networks of dimeric RC-LH1 core complexes intercalated by rows of LH2, coexisting with LH2-only domains. Other peripheral antenna-containing species, notably Rhodospirillum photometricum and Rhodopseudomonas palustris, showed a less regular organization, with mixed regions of LH2 and RC-LH1 cores, intermingled with large, paracrystalline domains. The ATP synthase and cytochrome bc(1) complex were not observed in any of these topographs and are thought to be localized in the adjacent cytoplasmic membrane or in inaccessible ICM regions separated from the flat regions imaged by AFM. The AFM images have served as a basis for atomic-resolution modeling of the ICM vesicle surface, as well as forces driving segregation of photosynthetic complexes into distinct domains. Docking of atomic-resolution molecular structures into AFM topographs of Rsp. photometricum membranes generated precise in situ structural models of the core complex surrounded by LH2 rings and a region of tightly packed LH2 complexes. A similar approach has generated a model of the highly curved LH2-only membranes of Rba. sphaeroides which predicts that sufficient space exists between LH2 complexes for quinones to diffuse freely. Measurement of the intercomplex distances between adjacent LH2 rings of Phaeospirillum molischianum has permitted the first calculation of the separation of bacteriochlorophyll a molecules in the native ICM. A recent AFM analysis of the organization of green plant photosystem II (PSII) in grana thylakoids revealed the protruding oxygen-evolving complex, crowded together in parallel alignment at three distinct levels of stacked membranes over the lumenal surface. The results also confirmed that PSII-LHCII supercomplexes are displaced relative to one another in opposing grana membranes.
Tao, Chang-Lu; Liu, Yun-Tao; Sun, Rong; Zhang, Bin; Qi, Lei; Shivakoti, Sakar; Tian, Chong-Li; Zhang, Peijun; Lau, Pak-Ming; Zhou, Z Hong; Bi, Guo-Qiang
2018-02-07
As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25-60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABA A receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions. SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows that inhibitory synapses contain uniform thin sheet-like postsynaptic densities (PSDs), while excitatory synapses contain previously known mesh-like PSDs. We discovered "discus-shaped" ellipsoidal synaptic vesicles, and their distributions along with regular spherical vesicles in synaptic types are characterized. High-resolution tomograms further allowed identification of putative neurotransmitter receptors and their heterogeneous interaction with synaptic scaffolding proteins. The specificity and resolution of our approach enables precise in situ analysis of ultrastructural organization underlying distinct synaptic functions. Copyright © 2018 Tao, Liu et al.
von Knobelsdorff-Brenkenhoff, Florian; Gruettner, Henriette; Trauzeddel, Ralf F; Greiser, Andreas; Schulz-Menger, Jeanette
2014-06-01
To omit risks of contrast agent administration, native magnetic resonance angiography (MRA) is desired for assessing the thoracic aorta. The aim was to evaluate a native steady-state free precession (SSFP) three-dimensional (3D) MRA in comparison with contrast-enhanced MRA as the gold standard. Seventy-six prospective patients with known or suspicion of thoracic aortic disease underwent MRA at 1.5 T using (i) native 3D SSFP MRA with ECG and navigator gating and high isotropic spatial resolution (1.3 × 1.3 × 1.3 mm(3)) and (ii) conventional contrast-enhanced ECG-gated gradient-echo 3D MRA (1.3 × 0.8 × 1.8 mm(3)). Datasets were compared at nine aortic levels regarding image quality (score 0-3: 0 = poor, 3 = excellent) and aortic diameters, as well as observer dependency and final diagnosis. Statistical tests included paired t-test, correlation analysis, and Bland-Altman analysis. Native 3D MRA was acquired successfully in 70 of 76 subjects (mean acquisition time 8.6 ± 2.7 min), while irregular breathing excluded 6 of 76 subjects. Aortic diameters agreed close between both methods at all aortic levels (r = 0.99; bias ± SD -0.12 ± 1.2 mm) with low intra- and inter-observer dependency (intraclass correlation coefficient 0.99). Native MRA studies resulted in the same final diagnosis as the contrast-enhanced MRA. The mean image quality score was superior with native compared with contrast-enhanced MRA (2.4 ± 0.6 vs. 1.6 ± 0.5; P < 0.001). Accuracy of aortic size measurements, certainty in defining the diagnosis and benefits in image quality at the aortic root, underscore the use of the tested high-resolution native 3D SSFP MRA as an appropriate alternative to contrast-enhanced MRA to assess the thoracic aorta. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
2014-01-01
Background The advent of human genome sequencing project has led to a spurt in the number of protein sequences in the databanks. Success of structure based drug discovery severely hinges on the availability of structures. Despite significant progresses in the area of experimental protein structure determination, the sequence-structure gap is continually widening. Data driven homology based computational methods have proved successful in predicting tertiary structures for sequences sharing medium to high sequence similarities. With dwindling similarities of query sequences, advanced homology/ ab initio hybrid approaches are being explored to solve structure prediction problem. Here we describe Bhageerath-H, a homology/ ab initio hybrid software/server for predicting protein tertiary structures with advancing drug design attempts as one of the goals. Results Bhageerath-H web-server was validated on 75 CASP10 targets which showed TM-scores ≥0.5 in 91% of the cases and Cα RMSDs ≤5Å from the native in 58% of the targets, which is well above the CASP10 water mark. Comparison with some leading servers demonstrated the uniqueness of the hybrid methodology in effectively sampling conformational space, scoring best decoys and refining low resolution models to high and medium resolution. Conclusion Bhageerath-H methodology is web enabled for the scientific community as a freely accessible web server. The methodology is fielded in the on-going CASP11 experiment. PMID:25521245
The individual structures of native celluloses
R. H. Atalla
1999-01-01
Our understanding of the diversity of native celluloses has been limited by the fact that studies of their structures have sought to establish ideal crystal lattice forms for the native state. Departures from ideal structures in the native state are viewed as defects in the ideal lattice. In most instances real celluloses have been regarded as departing from the ideal...
Navarro, Marcos Vicente de A. S.; Vierira, Débora F.; Nagem, Ronaldo A. P.; de Araújo, Ana Paula U.; Oliva, Maria Luiza V.; Garratt, Richard C.
2005-01-01
A Kunitz-type protease inhibitor (BbKI) found in Bauhinia bauhinioides seeds has been overexpressed in Escherichia coli and crystallized at 293 K using PEG 4000 as the precipitant. X-ray diffraction data have been collected to 1.87 Å resolution using an in-house X-ray generator. The crystals of the recombinant protein (rBbKI) belong to the orthorhombic space group P212121, with unit-cell parameters a = 46.70, b = 64.14, c = 59.24 Å. Calculation of the Matthews coefficient suggests the presence of one monomer of rBbKI in the asymmetric unit, with a corresponding solvent content of 51% (V M = 2.5 Å3 Da−1). Iodinated crystals were prepared and a derivative data set was also collected at 2.1 Å resolution. Crystals soaked for a few seconds in a cryogenic solution containing 0.5 M NaI were found to be reasonably isomorphous to the native crystals. Furthermore, the presence of iodide anions could be confirmed in the NaI-derivatized crystal. Data sets from native and derivative crystals are being evaluated for use in crystal structure determination by means of the SIRAS (single isomorphous replacement with anomalous scattering) method. PMID:16511193
Combining Physicochemical and Evolutionary Information for Protein Contact Prediction
Schneider, Michael; Brock, Oliver
2014-01-01
We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function. Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts. We then use this representation to train an support vector machine classifier to identify most likely native contacts in otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources of information—evolutionary and physicochemical—we maintain prediction accuracy even when only few sequence homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is available at http://compbio.robotics.tu-berlin.de/epc-map/. PMID:25338092
Nakano, Shogo; Motoyama, Tomoharu; Miyashita, Yurina; Ishizuka, Yuki; Matsuo, Naoya; Tokiwa, Hiroaki; Shinoda, Suguru; Asano, Yasuhisa; Ito, Sohei
2018-05-22
The expansion of protein sequence databases has enabled us to design artificial proteins by sequence-based design methods, such as full consensus design (FCD) and ancestral sequence reconstruction (ASR). Artificial proteins with enhanced activity levels compared with native ones can potentially be generated by such methods, but successful design is rare because preparing a sequence library by curating the database and selecting a method is difficult. Utilizing a curated library prepared by reducing conservation energies, we successfully designed two artificial L-threonine 3-dehydrogenase (SDR-TDH) with higher activity levels than native SDR-TDH, FcTDH-N1 and AncTDH, using FCD and ASR, respectively. The artificial SDR-TDHs had excellent thermal stability and NAD+ recognition compared to native SDR-TDH from Cupriavidus necator (CnTDH): the melting temperatures of FcTDH-N1 and AncTDH were about 10 and 5°C higher than CnTDH, respectively, and the dissociation constants toward NAD+ of FcTDH-N1 and AncTDH were two- and seven-fold lower than that of CnTDH, respectively. Enzymatic efficiency of the artificial SDR-TDHs were comparable to that of CnTDH. Crystal structures of FcTDH-N1 and AncTDH were determined at 2.8 and 2.1 Å resolution, respectively. Structural and MD simulation analysis of the SDR-TDHs indicated that only the flexibility at specific regions was changed, suggesting that multiple mutations introduced in the artificial SDR-TDHs altered their flexibility and thereby affected their enzymatic properties. Benchmark analysis of the SDR-TDHs indicated that both FCD and ASR can generate highly functional proteins if a curated library is prepared appropriately.
Native flexibility of structurally homologous proteins: insights from anisotropic network model.
Sarkar, Ranja
2017-01-01
Single-molecule microscopic experiments can measure the mechanical response of proteins to pulling forces applied externally along different directions (inducing different residue pairs in the proteins by uniaxial tension). This response to external forces away from equilibrium should in principle, correlate with the flexibility or stiffness of proteins in their folded states. Here, a simple topology-based atomistic anisotropic network model (ANM) is shown which captures the protein flexibility as a fundamental property that determines the collective dynamics and hence, the protein conformations in native state. An all-atom ANM is used to define two measures of protein flexibility in the native state. One measure quantifies overall stiffness of the protein and the other one quantifies protein stiffness along a particular direction which is effectively the mechanical resistance of the protein towards external pulling force exerted along that direction. These measures are sensitive to the protein sequence and yields reliable values through computations of normal modes of the protein. ANM at an atomistic level (heavy atoms) explains the experimental (atomic force microscopy) observations viz., different mechanical stability of structurally similar but sequentially distinct proteins which, otherwise were implied to possess similar mechanical properties from analytical/theoretical coarse-grained (backbone only) models. The results are exclusively demonstrated for human fibronectin (FN) protein domains. The topology of interatomic contacts in the folded states of proteins essentially determines the native flexibility. The mechanical differences of topologically similar proteins are captured from a high-resolution (atomic level) ANM at a low computational cost. The relative trend in flexibility of such proteins is reflected in their stability differences that they exhibit while unfolding in atomic force microscopic (AFM) experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Mowei; Yan, Jing; Romano, Christine A.
Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase Mnx from Bacillus sp. PL-12 has been successfully overexpressed in active form, unexpectedly, as a protein complex with a molecular weight of 211 kDa with no homology to known proteins in the database. We have recently used surface induced dissociation (SID) and ion mobility – mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data frommore » the native mass spectrometry experiment led to a plausible model of this unknown multicopper oxidase which has been difficult to study by conventional structural biology methods. However, because each subunit of Mnx binds copper ions as cofactor at varying ratios, there were remaining ambiguities in assigning some of the observed peaks to metal-binding species because of the sample heterogeneity and limited mass resolution. In this study, we performed SID in a modified Fourier transform – ion cyclotron resonance (FT-ICR) mass spectrometer for obtaining the ultimate resolution on the released subcomplexes of Mnx. The high mass accuracy and resolution unveiled unexpected artificial modifications in the protein that have been previously thought to be iron bound species based on lower resolution data. Additionally, most released subcomplexes were isotopically resolved for defining metal binding stoichiometry at each structural level. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes.« less
Native sulfur/chlorine SAD phasing for serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakane, Takanori; Song, Changyong; POSTECH, Pohang 790-784
Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.
Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan
2015-12-01
Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.
Maciag, Joseph J.; Mackenzie, Sarah H.; Tucker, Matthew B.; Schipper, Joshua L.; Swartz, Paul; Clark, A. Clay
2016-01-01
The native ensemble of caspases is described globally by a complex energy landscape where the binding of substrate selects for the active conformation, whereas targeting an allosteric site in the dimer interface selects an inactive conformation that contains disordered active-site loops. Mutations and posttranslational modifications stabilize high-energy inactive conformations, with mostly formed, but distorted, active sites. To examine the interconversion of active and inactive states in the ensemble, we used detection of related solvent positions to analyze 4,995 waters in 15 high-resolution (<2.0 Å) structures of wild-type caspase-3, resulting in 450 clusters with the most highly conserved set containing 145 water molecules. The data show that regions of the protein that contact the conserved waters also correspond to sites of posttranslational modifications, suggesting that the conserved waters are an integral part of allosteric mechanisms. To test this hypothesis, we created a library of 19 caspase-3 variants through saturation mutagenesis in a single position of the allosteric site of the dimer interface, and we show that the enzyme activity varies by more than four orders of magnitude. Altogether, our database consists of 37 high-resolution structures of caspase-3 variants, and we demonstrate that the decrease in activity correlates with a loss of conserved water molecules. The data show that the activity of caspase-3 can be fine-tuned through globally desolvating the active conformation within the native ensemble, providing a mechanism for cells to repartition the ensemble and thus fine-tune activity through conformational selection. PMID:27681633
What transmission electron microscopes can visualize now and in the future.
Müller, Shirley A; Aebi, Ueli; Engel, Andreas
2008-09-01
Our review concentrates on the progress made in high-resolution transmission electron microscopy (TEM) in the past decade. This includes significant improvements in sample preparation by quick-freezing aimed at preserving the specimen in a close-to-native state in the high vacuum of the microscope. Following advances in cold stage and TEM vacuum technology systems, the observation of native, frozen hydrated specimens has become a widely used approach. It fostered the development of computer guided, fully automated low-dose data acquisition systems allowing matched pairs of images and diffraction patterns to be recorded for electron crystallography, and the collection of entire tilt-series for electron tomography. To achieve optimal information transfer to atomic resolution, field emission electron guns combined with acceleration voltages of 200-300 kV are now routinely used. The outcome of these advances is illustrated by the atomic structure of mammalian aquaporin-O and by the pore-forming bacterial cytotoxin ClyA resolved to 12 A. Further, the Yersinia injectisome needle, a bacterial pseudopilus and the binding of phalloidin to muscle actin filaments were chosen to document the advantage of the high contrast offered by dedicated scanning transmission electron microscopy (STEM) and/or the STEM's ability to measure the mass of protein complexes and directly link this to their shape. Continued progress emerging from leading research laboratories and microscope manufacturers will eventually enable us to determine the proteome of a single cell by electron tomography, and to more routinely solve the atomic structure of membrane proteins by electron crystallography.
Maciag, Joseph J; Mackenzie, Sarah H; Tucker, Matthew B; Schipper, Joshua L; Swartz, Paul; Clark, A Clay
2016-10-11
The native ensemble of caspases is described globally by a complex energy landscape where the binding of substrate selects for the active conformation, whereas targeting an allosteric site in the dimer interface selects an inactive conformation that contains disordered active-site loops. Mutations and posttranslational modifications stabilize high-energy inactive conformations, with mostly formed, but distorted, active sites. To examine the interconversion of active and inactive states in the ensemble, we used detection of related solvent positions to analyze 4,995 waters in 15 high-resolution (<2.0 Å) structures of wild-type caspase-3, resulting in 450 clusters with the most highly conserved set containing 145 water molecules. The data show that regions of the protein that contact the conserved waters also correspond to sites of posttranslational modifications, suggesting that the conserved waters are an integral part of allosteric mechanisms. To test this hypothesis, we created a library of 19 caspase-3 variants through saturation mutagenesis in a single position of the allosteric site of the dimer interface, and we show that the enzyme activity varies by more than four orders of magnitude. Altogether, our database consists of 37 high-resolution structures of caspase-3 variants, and we demonstrate that the decrease in activity correlates with a loss of conserved water molecules. The data show that the activity of caspase-3 can be fine-tuned through globally desolvating the active conformation within the native ensemble, providing a mechanism for cells to repartition the ensemble and thus fine-tune activity through conformational selection.
Exposing hidden alternative backbone conformations in X-ray crystallography using qFit
Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; ...
2015-10-27
Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechainmore » conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.« less
Analysis of the Free-Energy Surface of Proteins from Reversible Folding Simulations
Allen, Lucy R.; Krivov, Sergei V.; Paci, Emanuele
2009-01-01
Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical λ-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins. PMID:19593364
3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.
Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet
2015-07-03
Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.
Analysis of the free-energy surface of proteins from reversible folding simulations.
Allen, Lucy R; Krivov, Sergei V; Paci, Emanuele
2009-07-01
Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical lambda-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins.
NASA Astrophysics Data System (ADS)
Li, Huilin; Wongkongkathep, Piriya; Van Orden, Steve L.; Ogorzalek Loo, Rachel R.; Loo, Joseph A.
2014-12-01
"Native" mass spectrometry (MS) has been proven to be increasingly useful for structural biology studies of macromolecular assemblies. Using horse liver alcohol dehydrogenase (hADH) and yeast alcohol dehydrogenase (yADH) as examples, we demonstrate that rich information can be obtained in a single native top-down MS experiment using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Beyond measuring the molecular weights of the protein complexes, isotopic mass resolution was achieved for yeast ADH tetramer (147 kDa) with an average resolving power of 412,700 at m/z 5466 in absorption mode, and the mass reflects that each subunit binds to two zinc atoms. The N-terminal 89 amino acid residues were sequenced in a top-down electron capture dissociation (ECD) experiment, along with the identifications of the zinc binding site at Cys46 and a point mutation (V58T). With the combination of various activation/dissociation techniques, including ECD, in-source dissociation (ISD), collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD), 40% of the yADH sequence was derived directly from the native tetramer complex. For hADH, native top-down ECD-MS shows that both E and S subunits are present in the hADH sample, with a relative ratio of 4:1. Native top-down ISD of the hADH dimer shows that each subunit (E and S chains) binds not only to two zinc atoms, but also the NAD/NADH ligand, with a higher NAD/NADH binding preference for the S chain relative to the E chain. In total, 32% sequence coverage was achieved for both E and S chains.
Pozzi, Cecilia; De Luca, Filomena; Benvenuti, Manuela; Poirel, Laurent; Nordmann, Patrice; Rossolini, Gian Maria; Mangani, Stefano; Docquier, Jean-Denis
2016-12-01
BEL-1 is an acquired class A extended-spectrum β-lactamase (ESBL) found in Pseudomonas aeruginosa clinical isolates from Belgium which is divergent from other ESBLs (maximum identity of 54% with GES-type enzymes). This enzyme is efficiently inhibited by clavulanate, imipenem, and moxalactam. Crystals of BEL-1 were obtained at pH 5.6, and the structure of native BEL-1 was determined from orthorhombic and monoclinic crystal forms at 1.60-Å and 1.48-Å resolution, respectively. By soaking native BEL-1 crystals, complexes with imipenem (monoclinic form, 1.79-Å resolution) and moxalactam (orthorhombic form, 1.85-Å resolution) were also obtained. In the acyl-enzyme complexes, imipenem and moxalactam differ by the position of the α-substituent and of the carbonyl oxygen (in or out of the oxyanion hole). More surprisingly, the Ω-loop, which includes the catalytically relevant residue Glu166, was found in different conformations in the various subunits, resulting in the Glu166 side chain being rotated out of the active site or even in displacement of its Cα atom up to approximately 10 Å. A BEL-1 variant showing the single Leu162Phe substitution (BEL-2) confers a higher level of resistance to CAZ, CTX, and FEP and shows significantly lower K m values than BEL-1, especially with oxyiminocephalosporins. BEL-1 Leu162 is located at the beginning of the Ω-loop and is surrounded by Phe72, Leu139, and Leu148 (contact distances, 3.5 to 3.9 Å). This small hydrophobic cavity could not reasonably accommodate the bulkier Phe162 found in BEL-2 without altering neighboring residues or the Ω-loop itself, thus likely causing an important alteration of the enzyme kinetic properties. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Gülbakan, Basri; Barylyuk, Konstantin; Schneider, Petra; Pillong, Max; Schneider, Gisbert; Zenobi, Renato
2018-06-20
Aptamers are oligonucleotide receptors obtained through an iterative selection process from random-sequence libraries. Though many aptamers for a broad range of targets with high affinity and selectivity have been generated, a lack of high-resolution structural data and the limitations of currently available biophysical tools greatly impede understanding of the mechanisms of aptamer-ligand interactions. Here we demonstrate that an approach based on native electrospray ionization mass spectrometry (ESI-MS) can be successfully applied to characterize aptamer-ligand complexes in all details. We studied an adenosine-binding aptamer (ABA), a l-argininamide-binding aptamer (LABA), and a cocaine-binding aptamer (CBA) and their noncovalent interactions with ligands by native ESI-MS and complemented these measurements by ion mobility spectrometry (IMS), isothermal titration calorimetry (ITC), and circular dichroism (CD) spectroscopy. The ligand selectivity of the aptamers and the respective complex stoichiometry could be determined by the native ESI-MS approach. The ESI-MS data can also help refining the binding model for aptamer-ligand complexes and deliver accurate aptamer-ligand binding affinities for specific and nonspecific binding events. For specific ligands, we found K d1 = 69.7 μM and K d2 = 5.3 μM for ABA (two binding sites); K d1 = 22.04 μM for LABA; and K d1 = 8.5 μM for CBA.
Wang, Guanbo; Kaltashov, Igor A
2014-08-05
Top-down hydrogen/deuterium exchange (HDX) with mass spectrometric (MS) detection has recently matured to become a potent biophysical tool capable of providing valuable information on higher order structure and conformational dynamics of proteins at an unprecedented level of structural detail. However, the scope of the proteins amenable to the analysis by top-down HDX MS still remains limited, with the protein size and the presence of disulfide bonds being the two most important limiting factors. While the limitations imposed by the physical size of the proteins gradually become more relaxed as the sensitivity, resolution and dynamic range of modern MS instrumentation continue to improve at an ever accelerating pace, the presence of the disulfide linkages remains a much less forgiving limitation even for the proteins of relatively modest size. To circumvent this problem, we introduce an online chemical reduction step following completion and quenching of the HDX reactions and prior to the top-down MS measurements of deuterium occupancy of individual backbone amides. Application of the new methodology to the top-down HDX MS characterization of a small (99 residue long) disulfide-containing protein β2-microglobulin allowed the backbone amide protection to be probed with nearly a single-residue resolution across the entire sequence. The high-resolution backbone protection pattern deduced from the top-down HDX MS measurements carried out under native conditions is in excellent agreement with the crystal structure of the protein and high-resolution NMR data, suggesting that introduction of the chemical reduction step to the top-down routine does not trigger hydrogen scrambling either during the electrospray ionization process or in the gas phase prior to the protein ion dissociation.
Unique structural modulation of a non-native substrate by cochaperone DnaJ.
Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik; Mapa, Koyeli
2013-02-12
The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.
The Resolution of Visual Noise in Word Recognition
ERIC Educational Resources Information Center
Pae, Hye K.; Lee, Yong-Won
2015-01-01
This study examined lexical processing in English by native speakers of Korean and Chinese, compared to that of native speakers of English, using normal, alternated, and inverse fonts. Sixty four adult students participated in a lexical decision task. The findings demonstrated similarities and differences in accuracy and latency among the three L1…
Remote sensing of native and invasive species in Hawaiian forests
Gregory P. Asner; Matthew O. Jones; Roberta E. Martin; David E. Knapp; R. Flint Hughes
2008-01-01
Detection and mapping of invasive species is an important component of conservation and management efforts in Hawai'i, but the spectral separability of native, introduced, and invasive species has not been established. We used high spatial resolution airborne imaging spectroscopy to analyze the canopy hyperspectral reflectance properties of 37 distinct species or...
SAGE III/ISS L2 Solar Event Species Profiles (Native) V5 (g3bsspb)
Atmospheric Science Data Center
2017-12-21
SAGE III/ISS L2 Solar Event Species Profiles (Native) V5 (g3bsspb) Project ... present Temporal Resolution: 1 file per event File Format: BINARY Tools: Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data: ...
SAGE III/ISS L2 Lunar Event Species Profiles (Native) V5 (g3blspb)
Atmospheric Science Data Center
2018-01-08
SAGE III/ISS L2 Lunar Event Species Profiles (Native) V5 (g3blspb) Project ... present Temporal Resolution: 1 file per event File Format: BINARY Tools: Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data: ...
Crystallization and preliminary X-ray analysis of gene product 44 from bacteriophage Mu
Kondou, Youhei; Kitazawa, Daisuke; Takeda, Shigeki; Yamashita, Eiki; Mizuguchi, Mineyuki; Kawano, Keiichi; Tsukihara, Tomitake
2005-01-01
Bacteriophage Mu baseplate protein gene product 44 (gp44) is an essential protein required for the assembly of viable phages. To investigate the roles of gp44 in baseplate assembly and infection, gp44 was crystallized at pH 6.0 in the presence of 20% 2-methyl-2,4-pentanediol. The crystals belong to space group R3, with unit-cell parameters a = b = 127.47, c = 63.97 Å. The crystals diffract X-rays to at least 2.1 Å resolution and are stable in the X-ray beam and are therefore appropriate for structure determination. Native data have been collected to 2.1 Å resolution using a DIP6040 image-plate system at beamline BL44XU at the SPring-8 facility in Japan. PMID:16508104
Ding, Shi-You; Xu, Qi; Ali, Mursheda K; Baker, John O; Bayer, Edward A; Barak, Yoav; Lamed, Raphael; Sugiyama, Junji; Rumbles, Garry; Himmel, Michael E
2006-10-01
The innate binding specificity of different carbohydrate-binding modules (CBMs) offers a versatile approach for mapping the chemistry and structure of surfaces that contain complex carbohydrates. We have employed the distinct recognition properties of a double His-tagged recombinant CBM tagged with semiconductor quantum dots for direct imaging of crystalline cellulose at the molecular level of resolution, using transmission and scanning transmission electron microscopy. In addition, three different types of CBMs from families 3, 6, and 20 that exhibit different carbohydrate specificities were each fused with either green fluorescent protein (GFP) or red fluorescent protein (RFP) and employed for double-labeling fluorescence microscopy studies of primary cell walls and various mixtures of complex carbohydrate target molecules. CBM probes can be used for characterizing both native complex carbohydrates and engineered biomaterials.
Mittelstaedt, Daniel
2015-01-01
Objective A quantitative contrast-enhanced micro–computed tomography (qCECT) method was developed to investigate the depth dependency and heterogeneity of the glycosaminoglycan (GAG) concentration of ex vivo cartilage equilibrated with an anionic radiographic contrast agent, Hexabrix. Design Full-thickness fresh native (n = 19 in 3 subgroups) and trypsin-degraded (n = 6) articular cartilage blocks were imaged using micro–computed tomography (μCT) at high resolution (13.4 μm3) before and after equilibration with various Hexabrix bathing concentrations. The GAG concentration was calculated depth-dependently based on Gibbs-Donnan equilibrium theory. Analysis of variance with Tukey’s post hoc was used to test for statistical significance (P < 0.05) for effect of Hexabrix bathing concentration, and for differences in bulk and zonal GAG concentrations individually and compared between native and trypsin-degraded cartilage. Results The bulk GAG concentration was calculated to be 74.44 ± 6.09 and 11.99 ± 4.24 mg/mL for native and degraded cartilage, respectively. A statistical difference was demonstrated for bulk and zonal GAG between native and degraded cartilage (P < 0.032). A statistical difference was not demonstrated for bulk GAG when comparing Hexabrix bathing concentrations (P > 0.3214) for neither native nor degraded cartilage. Depth-dependent GAG analysis of native cartilage revealed a statistical difference only in the radial zone between 30% and 50% Hexabrix bathing concentrations. Conclusions This nondestructive qCECT methodology calculated the depth-dependent GAG concentration for both native and trypsin-degraded cartilage at high spatial resolution. qCECT allows for more detailed understanding of the topography and depth dependency, which could help diagnose health, degradation, and repair of native and contrived cartilage. PMID:26425259
On the influence of crystal size and wavelength on native SAD phasing.
Liebschner, Dorothee; Yamada, Yusuke; Matsugaki, Naohiro; Senda, Miki; Senda, Toshiya
2016-06-01
Native SAD is an emerging phasing technique that uses the anomalous signal of native heavy atoms to obtain crystallographic phases. The method does not require specific sample preparation to add anomalous scatterers, as the light atoms contained in the native sample are used as marker atoms. The most abundant anomalous scatterer used for native SAD, which is present in almost all proteins, is sulfur. However, the absorption edge of sulfur is at low energy (2.472 keV = 5.016 Å), which makes it challenging to carry out native SAD phasing experiments as most synchrotron beamlines are optimized for shorter wavelength ranges where the anomalous signal of sulfur is weak; for longer wavelengths, which produce larger anomalous differences, the absorption of X-rays by the sample, solvent, loop and surrounding medium (e.g. air) increases tremendously. Therefore, a compromise has to be found between measuring strong anomalous signal and minimizing absorption. It was thus hypothesized that shorter wavelengths should be used for large crystals and longer wavelengths for small crystals, but no thorough experimental analyses have been reported to date. To study the influence of crystal size and wavelength, native SAD experiments were carried out at different wavelengths (1.9 and 2.7 Å with a helium cone; 3.0 and 3.3 Å with a helium chamber) using lysozyme and ferredoxin reductase crystals of various sizes. For the tested crystals, the results suggest that larger sample sizes do not have a detrimental effect on native SAD data and that long wavelengths give a clear advantage with small samples compared with short wavelengths. The resolution dependency of substructure determination was analyzed and showed that high-symmetry crystals with small unit cells require higher resolution for the successful placement of heavy atoms.
Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia; ...
2015-08-25
Here, labdane-related diterpenoids are natural products with potential pharmaceutical applications that are rarely found in bacteria. Here, a putative class I labdane-related diterpene synthase (LrdC) identified by genome mining in a streptomycete was successfully crystallized using the microbatch method. Crystals of the LrdC enzyme were obtained in a holo form with its natural cofactor Mg 2+ (LrdC-Mg 2+) and in complex with inorganic pyrophosphate (PP i) (LrdC-Mg 2+–PP i). Crystals of native LrdC-Mg 2+ diffracted to 2.50 Å resolution and belonged to the trigonal space group P3 221, with unit-cell parameters a = b = 107.1, c = 89.2 Å.more » Crystals of the LrdC-Mg 2+–PP i complex grown in the same conditions as the native enzyme with PEG 8000 diffracted to 2.36 Å resolution and also belonged to the trigonal space group P3 221. Crystals of the LrdC-Mg 2+–PP i complex grown in a second crystallization condition with PEG 3350 diffracted to 2.57 Å resolution and belonged to the monoclinic space group P2 1, with unit-cell parameters a = 49.9, b = 104.1, c = 66.5 Å, β = 111.4°. The structure was determined by the single-wavelength anomalous dispersion (SAD) technique using the osmium signal from a potassium hexachloroosmate (IV) derivative.« less
Grutters, Bart M. C.; Pollux, Bart J. A.; Verberk, Wilco C. E. P.; Bakker, Elisabeth S.
2015-01-01
Non-native species introductions are widespread and can affect ecosystem functioning by altering the structure of food webs. Invading plants often modify habitat structure, which may affect the suitability of vegetation as refuge and could thus impact predator-prey dynamics. Yet little is known about how the replacement of native by non-native vegetation affects predator-prey dynamics. We hypothesize that plant refuge provisioning depends on (1) the plant’s native status, (2) plant structural complexity and morphology, (3) predator identity, and (4) prey identity, as well as that (5) structurally similar living and artificial plants provide similar refuge. We used aquatic communities as a model system and compared the refuge provided by plants to macroinvertebrates (Daphnia pulex, Gammarus pulex and damselfly larvae) in three short-term laboratory predation experiments. Plant refuge provisioning differed between plant species, but was generally similar for native (Myriophyllum spicatum, Ceratophyllum demersum, Potamogeton perfoliatus) and non-native plants (Vallisneria spiralis, Myriophyllum heterophyllum, Cabomba caroliniana). However, plant refuge provisioning to macroinvertebrate prey depended primarily on predator (mirror carp: Cyprinus carpio carpio and dragonfly larvae: Anax imperator) and prey identity, while the effects of plant structural complexity were only minor. Contrary to living plants, artificial plant analogues did improve prey survival, particularly with increasing structural complexity and shoot density. As such, plant rigidity, which was high for artificial plants and one of the living plant species evaluated in this study (Ceratophyllum demersum), may interact with structural complexity to play a key role in refuge provisioning to specific prey (Gammarus pulex). Our results demonstrate that replacement of native by structurally similar non-native vegetation is unlikely to greatly affect predator-prey dynamics. We propose that modification of predator-prey interactions through plant invasions only occurs when invading plants radically differ in growth form, density and rigidity compared to native plants. PMID:25885967
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, Irimpan I.; Allison, Kim; Robbins, Thomas
The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for sample delivery directly into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes on polyketide synthase reaction dynamics are discussed.
Mathews, Irimpan I.; Allison, Kim; Robbins, Thomas; ...
2017-08-23
The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for sample delivery directly into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes on polyketide synthase reaction dynamics are discussed.
Gavel, Olga Yu.; Kladova, Anna V.; Bursakov, Sergey A.; Dias, João M.; Texeira, Susana; Shnyrov, Valery L.; Moura, José J. G.; Moura, Isabel; Romão, Maria J.; Trincão, José
2008-01-01
Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 Å resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes. PMID:18607083
The Structure of an Infectious Human Polyomavirus and Its Interactions with Cellular Receptors.
Hurdiss, Daniel L; Frank, Martin; Snowden, Joseph S; Macdonald, Andrew; Ranson, Neil A
2018-06-05
BK polyomavirus (BKV) causes polyomavirus-associated nephropathy and hemorrhagic cystitis in immunosuppressed patients. These are diseases for which we currently have limited treatment options, but potential therapies could include pre-transplant vaccination with a multivalent BKV vaccine or therapeutics which inhibit capsid assembly or block attachment and entry into target cells. A useful tool in such efforts would be a high-resolution structure of the infectious BKV virion and how this interacts with its full repertoire of cellular receptors. We present the 3.4-Å cryoelectron microscopy structure of native, infectious BKV in complex with the receptor fragment of GT1b ganglioside. We also present structural evidence that BKV can utilize glycosaminoglycans as attachment receptors. This work highlights features that underpin capsid stability and provides a platform for rational design and development of urgently needed pharmacological interventions for BKV-associated diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Actinic imaging and evaluation of phase structures on EUV lithography masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochi, Iacopo; Goldberg, Kenneth; Huh, Sungmin
2010-09-28
The authors describe the implementation of a phase-retrieval algorithm to reconstruct phase and complex amplitude of structures on EUV lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of themore » object phase from two or more high-resolution intensity measurements. For the first time, phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plomp, M; Leighton, T; Wheeler, K
2005-02-18
We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereusmore » was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.« less
Qin, Ling; Hiser, Carrie; Mulichak, Anne; Garavito, R. Michael; Ferguson-Miller, Shelagh
2006-01-01
Well ordered reproducible crystals of cytochrome c oxidase (CcO) from Rhodobacter sphaeroides yield a previously unreported structure at 2.0 Å resolution that contains the two catalytic subunits and a number of alkyl chains of lipids and detergents. Comparison with crystal structures of other bacterial and mammalian CcOs reveals that the positions occupied by native membrane lipids and detergent substitutes are highly conserved, along with amino acid residues in their vicinity, suggesting a more prevalent and specific role of lipid in membrane protein structure than often envisioned. Well defined detergent head groups (maltose) are found associated with aromatic residues in a manner similar to phospholipid head groups, likely contributing to the success of alkyl glycoside detergents in supporting membrane protein activity and crystallizability. Other significant features of this structure include the following: finding of a previously unreported crystal contact mediated by cadmium and an engineered histidine tag; documentation of the unique His–Tyr covalent linkage close to the active site; remarkable conservation of a chain of waters in one proton pathway (D-path); and discovery of an inhibitory cadmium-binding site at the entrance to another proton path (K-path). These observations provide important insight into CcO structure and mechanism, as well as the significance of bound lipid in membrane proteins. PMID:17050688
NASA Astrophysics Data System (ADS)
Yilmaz, Lutfu Safak; Atilgan, Ali Rana
2000-09-01
A low-resolution structural model based on the packing geometry of α-carbons is utilized to establish a connection between the flexible and rigid parts of a folded protein. The former commonly recognizes a complementing molecule for making a complex, while the latter manipulates the necessary conformational change for binding. We attempt analytically to distinguish this control architecture that intrinsically exists in globular proteins. First with two-dimensional simple models, then for a native protein, bovine pancreatic trypsin inhibitor, we explicitly demonstrate that inserting fluctuations in tertiary contacts supported by the stable core, one can regulate the displacement of residues on loop regions. The positional fluctuations of the flexible regions are annihilated by the rest of the protein in conformity with the Le Chatelier-Braun principle. The results indicate that the distortion of the principal nonbonded contacts between highly packed residues is accompanied by that of the slavery fluctuations that are widely distributed over the native structure. These positional arrangements do not appear in a reciprocal relation between a perturbation and the associated response; the effect of a movement of residue i on residue j is not equal to that of the same movement of residue j on residue i.
Medina-Ramírez, Max; Garces, Fernando; Escolano, Amelia; ...
2017-08-28
Induction of broadly neutralizing antibodies (bNAbs) by HIV-1 envelope glycoprotein immunogens would be a major advance toward an effective vaccine. A critical step in this process is the activation of naive B cells expressing germline (gl) antibody precursors that have the potential to evolve into bNAbs. Here, we reengineered the BG505 SOSIP.664 glycoprotein to engage gl precursors of bNAbs that target either the trimer apex or the CD4-binding site. The resulting BG505 SOSIP.v4.1-GT1 trimer binds multiple bNAb gl precursors in vitro. Immunization experiments in knock-in mice expressing gl-VRC01 or gl-PGT121 show that this trimer activates B cells in vivo, resultingmore » in the secretion of specific antibodies into the sera. A crystal structure of the gl-targeting trimer at 3.2-Å resolution in complex with neutralizing antibodies 35O22 and 9H+109L reveals a native-like conformation and the successful incorporation of design features associated with binding of multiple gl-bNAb precursors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina-Ramírez, Max; Garces, Fernando; Escolano, Amelia
Induction of broadly neutralizing antibodies (bNAbs) by HIV-1 envelope glycoprotein immunogens would be a major advance toward an effective vaccine. A critical step in this process is the activation of naive B cells expressing germline (gl) antibody precursors that have the potential to evolve into bNAbs. Here, we reengineered the BG505 SOSIP.664 glycoprotein to engage gl precursors of bNAbs that target either the trimer apex or the CD4-binding site. The resulting BG505 SOSIP.v4.1-GT1 trimer binds multiple bNAb gl precursors in vitro. Immunization experiments in knock-in mice expressing gl-VRC01 or gl-PGT121 show that this trimer activates B cells in vivo, resultingmore » in the secretion of specific antibodies into the sera. A crystal structure of the gl-targeting trimer at 3.2-Å resolution in complex with neutralizing antibodies 35O22 and 9H+109L reveals a native-like conformation and the successful incorporation of design features associated with binding of multiple gl-bNAb precursors.« less
LowKam, Clotilde; Liotard, Brigitte; Sygusch, Jurgen
2010-07-02
Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a (alpha/beta)(8) fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys(205), different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2-C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase.
Structure of a Class I Tagatose-1,6-bisphosphate Aldolase
LowKam, Clotilde; Liotard, Brigitte; Sygusch, Jurgen
2010-01-01
Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a (α/β)8 fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys205, different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2–C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase. PMID:20427286
Reanalysis comparisons of upper tropospheric-lower stratospheric jets and multiple tropopauses
NASA Astrophysics Data System (ADS)
Manney, Gloria L.; Hegglin, Michaela I.; Lawrence, Zachary D.; Wargan, Krzysztof; Millán, Luis F.; Schwartz, Michael J.; Santee, Michelle L.; Lambert, Alyn; Pawson, Steven; Knosp, Brian W.; Fuller, Ryan A.; Daffer, William H.
2017-09-01
The representation of upper tropospheric-lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern-Era Retrospective analysis for Research and Applications), ERA-I (ERA-Interim; the European Centre for Medium-Range Weather Forecasts, ECMWF, interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution - for example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 (the Japanese 55-year Reanalysis) a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterizations. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude Southern Hemisphere (SH) winter upper tropospheric jets and multiple tropopauses as well as in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large-scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry-climate models.
Mooers, Blaine H. M.
2016-03-24
Using direct methods starting from random phases, the crystal structure of a 32-base-pair RNA (675 non-H RNA atoms in the asymmetric unit) was determined using only the native diffraction data (resolution limit 1.05 Å) and the computer program SIR2014. The almost three helical turns of the RNA in the asymmetric unit introduced partial or imperfect translational pseudosymmetry (TPS) that modulated the intensities when averaged by the lMiller indices but still escaped automated detection. Almost six times as many random phase sets had to be tested on average to reach a correct structure compared with a similar-sized RNA hairpin (27 nucleotides,more » 580 non-H RNA atoms) without TPS. Lastly, more sensitive methods are needed for the automated detection of partial TPS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooers, Blaine H. M.
Using direct methods starting from random phases, the crystal structure of a 32-base-pair RNA (675 non-H RNA atoms in the asymmetric unit) was determined using only the native diffraction data (resolution limit 1.05 Å) and the computer program SIR2014. The almost three helical turns of the RNA in the asymmetric unit introduced partial or imperfect translational pseudosymmetry (TPS) that modulated the intensities when averaged by the lMiller indices but still escaped automated detection. Almost six times as many random phase sets had to be tested on average to reach a correct structure compared with a similar-sized RNA hairpin (27 nucleotides,more » 580 non-H RNA atoms) without TPS. Lastly, more sensitive methods are needed for the automated detection of partial TPS.« less
The structure and inhibition of human diamine oxidase†,‡
McGrath, Aaron P; Hilmer, Kimberly M; Collyer, Charles A; Shepard, Eric M; Elmore, Bradley O.; Brown, Doreen E; Dooley, David M; Guss, J Mitchell
2009-01-01
Humans have three functioning genes that code for copper-containing amine oxidases. The product of the AOC1 gene is a so-called diamine oxidase (hDAO), named for its substrate preference for diamines, particularly histamine. hDAO has been cloned and expressed in insect cells and the structure of the native enzyme determined by X-ray crystallography to a resolution of 1.8 Å. The homodimeric structure has the archetypal amine oxidase fold. Two active sites, one in each subunit, are characterized by the presence of a copper ion and a topaquinone residue formed by the post-translational modification of a tyrosine. Although hDAO shares 37.9 % sequence identity with another human copper amine oxidase, semicarbazide sensitive amine oxidase or vascular adhesion protein-1, its substrate binding pocket and entry channel are distinctly different in accord with the different substrate specificities. The structures of two inhibitor complexes of hDAO, berenil and pentamidine, have been refined to resolutions of 2.1 Å and 2.2 Å, respectively. They bind non-covalently in the active site channel. The inhibitor binding suggests that an aspartic acid residue, conserved in all diamine oxidases but absent from other amine oxidases, is responsible for the diamine specificity by interacting with the second amino group of preferred diamine substrates. PMID:19764817
SAGE III/ISS L1B Solar Event Transmission Data (Native) V5 (g3btb)
Atmospheric Science Data Center
2017-12-21
SAGE III/ISS L1B Solar Event Transmission Data (Native) V5 (g3btb) Project Title: ... present Temporal Resolution: 1 file per event File Format: BINARY Tools: Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data: ...
Structure and hydration of membranes embedded with voltage-sensing domains.
Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J
2009-11-26
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.
Structure and hydration of membranes embedded with voltage-sensing domains
Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J. Alfredo; Schow, Eric V.; Worcester, David L.; Gawrisch, Klaus; Tobias, Douglas; White, Stephen H.; Swartz, Kenton J.
2009-01-01
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1–S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1–S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field. PMID:19940918
Rescore protein-protein docked ensembles with an interface contact statistics.
Mezei, Mihaly
2017-02-01
The recently developed statistical measure for the type of residue-residue contact at protein complex interfaces, based on a parameter-free definition of contact, has been used to define a contact score that is correlated with the likelihood of correctness of a proposed complex structure. Comparing the proposed contact scores on the native structure and on a set of model structures the proposed measure was shown to generally favor the native structure but in itself was not able to reliably score the native structure to be the best. Adjusting the scores of redocking experiments with the contact score showed that the adjusted score was able to move up the ranking of the native-like structure among the proposed complexes when the native-like was not ranked the best by the respective program. Tests on docking of unbound proteins compared the contact scores of the complexes with the contact score of the crystal structure again showing the tendency of the contact score to favor native-like conformations. The possibility of using the contact score to improve the determination of biological dimers in a crystal structure was also explored. Proteins 2017; 85:235-241. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Expression, purification and crystallization of a lyssavirus matrix (M) protein
Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.
2008-01-01
The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6122 or P6522, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress. PMID:18391421
Effect of defects on reaction of NiO surface with Pb-contained solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jongjin; Hou, Binyang; Park, Changyong
In order to understand the role of defects in chemical reactions, we used two types of samples, which are molecular beam epitaxy (MBE) grown NiO(001) film on Mg(001) substrate as the defect free NiO prototype and NiO grown on Ni(110) single crystal as the one with defects. In-situ observations for oxide-liquid interfacial structure and surface morphology were performed for both samples in water and Pb-contained solution using high-resolution X-ray reflectivity and atomic force microscopy. For the MBE grown NiO, no significant changes were detected in the high-resolution X-ray reflectivity data with monotonic increase in roughness. Meanwhile, in the case ofmore » native grown NiO on Ni(110), significant changes in both the morphology and atomistic structure at the interface were observed when immersed in water and Pb-contained solution. Our results provide simple and direct experimental evidence of the role of the defects in chemical reaction of oxide surfaces with both water and Pb-contained solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor
The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimalmore » frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.« less
Native sulfur/chlorine SAD phasing for serial femtosecond crystallography.
Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro
2015-12-01
Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.
NASA Astrophysics Data System (ADS)
Jaworsky, Mark; Brauner, Joseph W.; Mendelsohn, Richard
Fourier transform i.r. spectroscopy has been used to monitor structural alterations induced by thermal denaturation of the intrinsic membrane protein CaATPase in aqueous media. The protein has been isolated, purified and studied in five forms: (i) In its native lipid environment after isolation from rabbit sarcoplasmic reticulum, both in H 2O and D 2O suspensions. (ii) After both mild and extensive tryptic digestion has cleaved those residues external to the membrane bilayer. (iii) Reconstituted in vesicle form with bovine brain sphingomyelin. Fourier deconvolution techniques have been used to enhance the resolution of the intrinsically overlapped Amide I and Amide II spectral regions. Large spectral alterations apparent in the deconvoluted spectra occur in these regions upon thermal denaturation of the protein which are consistent with the formation of a large proportion of β-antiparallel sheet form. The alteration parallels the loss in ATPase activity. A mild tryptic digestion increases slightly the proportion of α-helix and/or random coil secondary structure. A thermal transition to a form containing a high proportion of β structure is still evident. Extensive tryptic digestion nearly abolishes the alpha helical plus random coil secondary structure, while producing a high proportion of β form which is resistant to further thermally induced structural alterations. Studies of CaATPase reconstituted into vesicles with bovine brain sphingomyelin reveal a higher proportion of β structure than the native enzyme, with further introduction of β structure on thermal denaturation. Both the utility of deconvolution techniques and the necessity for caution in their application are apparent from the current experiments.
The structures of native celluloses, and the origin of their variability
R. H. Atalla
1999-01-01
The structures of native celluloses have traditionally been presented in terms of two-domain models consisting of crystalline and non-crystalline fractions. Such models have been of little help in advancing understanding of enzyme-substrate interactions. In this report we first address issues that complicate characterization of the structure of native celluloses...
Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.
Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J
2012-06-27
The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.
Structure and possible mechanism of the CcbJ methyltransferase from Streptomyces caelestis.
Bauer, Jacob; Ondrovičová, Gabriela; Najmanová, Lucie; Pevala, Vladimír; Kameník, Zdeněk; Koštan, Július; Janata, Jiří; Kutejová, Eva
2014-04-01
The S-adenosyl-L-methionine (SAM)-dependent methyltransferase CcbJ from Streptomyces caelestis catalyzes one of the final steps in the biosynthesis of the antibiotic celesticetin, methylation of the N atom of its proline moiety, which greatly enhances the activity of the antibiotic. Since several celesticetin variants exist, this enzyme may be able to act on a variety of substrates. The structures of CcbJ determined by MAD phasing at 3.0 Å resolution, its native form at 2.7 Å resolution and its complex with S-adenosyl-L-homocysteine (SAH) at 2.9 Å resolution are reported here. Based on these structures, three point mutants, Y9F, Y17F and F117G, were prepared in order to study its behaviour as well as docking simulations of both CcbJ-SAM-substrate and CcbJ-SAH-product complexes. The structures show that CcbJ is a class I SAM-dependent methyltransferase with a wide active site, thereby suggesting that it may accommodate a number of different substrates. The mutation results show that the Y9F and F117G mutants are almost non-functional, while the Y17F mutant has almost half of the wild-type activity. In combination with the docking studies, these results suggest that Tyr9 and Phe117 are likely to help to position the substrate for the methyl-transfer reaction and that Tyr9 may also facilitate the reaction by removing an H(+) ion. Tyr17, on the other hand, seems to operate by helping to stabilize the SAM cofactor.
NASA Astrophysics Data System (ADS)
Kravchenko, Alexandra; Grandy, Stuart A.
2014-05-01
Understanding chemical structure of soil organic matter (SOM) and factors that affect it are vital for gaining understanding of mechanisms of C sequestration by soil. Physical protection of C by adsorption to mineral particles and physical disconnection between C sources and microbial decomposers is now regarded as the key component of soil C sequestration. Both of the processes are greatly influenced by micro-scale structure and distribution of soil pores. However, because SOM chemical structure is typically studied in disturbed (ground and sieved) soil samples the experimental evidence of the relationships between soil pore structure and chemical structure of SOM are still scarce. Our study takes advantage of the X-ray computed micro-tomography (µ-CT) tools that enable non-destructive analysis of pore structure in intact soil samples. The objective of this study is to examine the relationship between SOM chemical structure and pore-characteristics in intact soil macro-aggregates from two contrasting long-term land uses. The two studied land use treatments are a conventionally tilled corn-soybean-wheat rotation treatment and a native succession vegetation treatment removed from agricultural use >20 years ago. The study is located in southwest Michigan, USA, on sandy-loam Typic Hapludalfs. For this study we used soil macro-aggregates 4-6 mm in size collected at 0-15 cm depth. The aggregate size was selected so as both to enable high resolution of µ-CT and to provide sufficient amount of soil for C measurements. X-ray µ-CT scanning was conducted at APS Argonne at a scanning resolution of 14 µm. Two scanned aggregates (1 per treatment) were used in this preliminary study. Each aggregate was cut into 7 "geo-referenced" sections. Analyses of pore characteristics in each section were conducted using 3DMA and ImageJ image analysis tools. SOM chemistry was analyzed using pyrolysis/gas chromatography-mass spectroscopy. Results demonstrated that the relationships between SOM chemical structure and pore characteristics differed in the aggregates of the two treatments. For example, in the agricultural treatment, the aggregate sections with prevalence of small pores had lower relative lignin abundance, while higher lignin abundances occurred in aggregate sections with more large pores. This relationship could be reflecting the low accessibility of the sections dominated by small pores to plant roots. It is interesting to note that no relationship between pores and lignin were observed in the aggregate from the native succession treatment. In the native succession aggregate we found that a larger presence of protein and N-bearing compounds was associated with sections with greater presence of 35-90 µm pores. This could be a result of fungal activities, as pores of this size constitute a primary fungal habitat and fungi are known for secreting proteins. Fewer fungi in the soil under agricultural management are likely the reason that no such relationship was observed in the aggregate from the agricultural treatment. Our preliminary results indicate that substantial spatial variability patterns in SOM chemical structure can exist even within a single macro-aggregate and that pores are likely a main driver of intra-aggregate SOM chemistry.
NASA Astrophysics Data System (ADS)
Witwicki, Maciej; Jezierska, Julia
2012-06-01
Organic radicals are known to be an indispensable component of the humic acids (HA) structure. In HA two forms of radicals, stable (native) and short-lived (transient), are identified. Importantly, these radical forms can be easily differentiated by electron paramagnetic resonance (EPR) spectroscopy. This article provides a DFT-based insight into the electronic and molecular structure of the native radicals. The molecular models including an increase of the radical aromaticity and the hydrogen bonding between the radical and other functional groups of HA are taken under investigation. In consequence the interesting pieces of information on the structure of the native radical centers in HA are revealed and discussed, especially in terms of differences between the electronic structure of the native and transient forms.
Vervaet, Nele; Kallio, Juha Pekka; Meier, Susanne; Salmivaara, Emilia; Eberhardt, Maike; Zhang, Shuangmin; Sun, Xi; Wu, Zhongdao; Kursula, Petri; Kursula, Inari
2013-01-01
Helminthic parasites of the genus Schistosoma contain a tegumental membrane, which is of crucial importance for modulation of the host immune response and parasite survival. The actin cytoskeleton plays an important role in the function of the tegument. Profilins are among the most important proteins regulating actin dynamics. Schistosoma japonicum possesses one profilin-like protein, which has been characterized as a potential vaccine candidate. Notably, profilins are highly immunogenic molecules in many organisms. Here, the profilin from S. japonicum was expressed, purified and crystallized. A native data set to 1.91 Å resolution and a single-wavelength anomalous diffraction (SAD) data set to a resolution of 2.2 Å were collected. The crystals belonged to space group P212121, with unit-cell parameters a = 31.82, b = 52.17, c = 59.79 Å and a = 35.29, b = 52.15, c = 59.82 Å, respectively. PMID:24192365
Vervaet, Nele; Kallio, Juha Pekka; Meier, Susanne; Salmivaara, Emilia; Eberhardt, Maike; Zhang, Shuangmin; Sun, Xi; Wu, Zhongdao; Kursula, Petri; Kursula, Inari
2013-11-01
Helminthic parasites of the genus Schistosoma contain a tegumental membrane, which is of crucial importance for modulation of the host immune response and parasite survival. The actin cytoskeleton plays an important role in the function of the tegument. Profilins are among the most important proteins regulating actin dynamics. Schistosoma japonicum possesses one profilin-like protein, which has been characterized as a potential vaccine candidate. Notably, profilins are highly immunogenic molecules in many organisms. Here, the profilin from S. japonicum was expressed, purified and crystallized. A native data set to 1.91 Å resolution and a single-wavelength anomalous diffraction (SAD) data set to a resolution of 2.2 Å were collected. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 31.82, b = 52.17, c = 59.79 Å and a = 35.29, b = 52.15, c = 59.82 Å, respectively.
A Native to Amyloidogenic Transition Regulated by a Backbone Trigger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eakin,C.; Berman, A.; Miranker, A.
2006-01-01
Many polypeptides can self-associate into linear, aggregated assemblies termed amyloid fibers. High-resolution structural insights into the mechanism of fibrillogenesis are elusive owing to the transient and mixed oligomeric nature of assembly intermediates. Here, we report the conformational changes that initiate fiber formation by beta-2-microglobulin (beta2m) in dialysis-related amyloidosis. Access of beta2m to amyloidogenic conformations is catalyzed by selective binding of divalent cations. The chemical basis of this process was determined to be backbone isomerization of a conserved proline. On the basis of this finding, we designed a beta2m variant that closely adopts this intermediate state. The variant has kinetic, thermodynamicmore » and catalytic properties consistent with its being a fibrillogenic intermediate of wild-type beta2m. Furthermore, it is stable and folded, enabling us to unambiguously determine the initiating conformational changes for amyloid assembly at atomic resolution.« less
Fully Hydrated Yeast Cells Imaged with Electron Microscopy
Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels
2011-01-01
We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. PMID:21575587
Fully hydrated yeast cells imaged with electron microscopy.
Peckys, Diana B; Mazur, Peter; Gould, Kathleen L; de Jonge, Niels
2011-05-18
We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Direct microCT imaging of non-mineralized connective tissues at high resolution.
Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve
2014-01-01
The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.
Nakane, Takanori; Hanashima, Shinya; Suzuki, Mamoru; Saiki, Haruka; Hayashi, Taichi; Kakinouchi, Keisuke; Sugiyama, Shigeru; Kawatake, Satoshi; Matsuoka, Shigeru; Matsumori, Nobuaki; Nango, Eriko; Kobayashi, Jun; Shimamura, Tatsuro; Kimura, Kanako; Mori, Chihiro; Kunishima, Naoki; Sugahara, Michihiro; Takakyu, Yoko; Inoue, Shigeyuki; Masuda, Tetsuya; Hosaka, Toshiaki; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Inoue, Tsuyoshi; Nureki, Osamu; Iwata, So; Murata, Michio; Mizohata, Eiichi
2016-01-01
The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams. PMID:27799539
Nakane, Takanori; Hanashima, Shinya; Suzuki, Mamoru; Saiki, Haruka; Hayashi, Taichi; Kakinouchi, Keisuke; Sugiyama, Shigeru; Kawatake, Satoshi; Matsuoka, Shigeru; Matsumori, Nobuaki; Nango, Eriko; Kobayashi, Jun; Shimamura, Tatsuro; Kimura, Kanako; Mori, Chihiro; Kunishima, Naoki; Sugahara, Michihiro; Takakyu, Yoko; Inoue, Shigeyuki; Masuda, Tetsuya; Hosaka, Toshiaki; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Inoue, Tsuyoshi; Nureki, Osamu; Iwata, So; Murata, Michio; Mizohata, Eiichi
2016-11-15
The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Grace H.; Rana, Ambar S. J. B.; Korkmaz, E. Nihal
Ubiquitin (Ub) chains regulate a wide range of biological processes, and Ub chain connectivity is a critical determinant of the many regulatory roles that this post-translational modification plays in cells. To understand how distinct Ub chains orchestrate different biochemical events, we and other investigators have developed enzymatic and non-enzymatic methods to synthesize Ub chains of well-defined length and connectivity. A number of chemical approaches have been used to generate Ub oligomers connected by non-native linkages; however, few studies have examined the extent to which non-native linkages recapitulate the structural and functional properties associated with native isopeptide bonds. Here, we comparemore » the structure and function of Ub dimers bearing native and non-native linkages. Using small-angle X-ray scattering (SAXS) analysis, we show that scattering profiles for the two types of dimers are similar. Moreover, using an experimental structural library and atomistic simulations to fit the experimental SAXS profiles, we find that the two types of Ub dimers can be matched to analogous structures. An important application of non-native Ub oligomers is to probe the activity and selectivity of deubiquitinases. Through steady-state kinetic analyses, we demonstrate that different families of deubiquitinases hydrolyze native and non-native isopeptide linkages with comparable efficiency and selectivity. Considering the significant challenges associated with building topologically diverse native Ub chains, our results illustrate that chains harboring non-native linkages can serve as surrogate substrates for explorations of Ub function.« less
Kheirabadi, Mitra; Sharafian, Zohreh; Naderi-Manesh, Hossein; Heineman, Udo; Gohlke, Ulrich; Hosseinkhani, Saman
2013-12-01
Firefly bioluminescence reaction in the presence of Mg(2+), ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350-359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7Å and 2.2Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351-359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P
2009-04-06
Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6more » of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.« less
Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P; Pai, Emil F
2009-04-17
Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6 of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.
Xia, Bing; Mamonov, Artem; Leysen, Seppe; Allen, Karen N; Strelkov, Sergei V; Paschalidis, Ioannis Ch; Vajda, Sandor; Kozakov, Dima
2015-07-30
The protein-protein docking server ClusPro is used by thousands of laboratories, and models built by the server have been reported in over 300 publications. Although the structures generated by the docking include near-native ones for many proteins, selecting the best model is difficult due to the uncertainty in scoring. Small angle X-ray scattering (SAXS) is an experimental technique for obtaining low resolution structural information in solution. While not sufficient on its own to uniquely predict complex structures, accounting for SAXS data improves the ranking of models and facilitates the identification of the most accurate structure. Although SAXS profiles are currently available only for a small number of complexes, due to its simplicity the method is becoming increasingly popular. Since combining docking with SAXS experiments will provide a viable strategy for fairly high-throughput determination of protein complex structures, the option of using SAXS restraints is added to the ClusPro server. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Structure and Self-Assembly of the Calcium Binding Matrix Protein of Human Metapneumovirus
Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T.; Grimes, Jonathan M.
2014-01-01
Summary The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca2+ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca2+ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses. PMID:24316400
A Neutron View of Proteins in Lipid Bilayers
NASA Astrophysics Data System (ADS)
White, Stephen
2012-02-01
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.
Pöpsel, Christian; Becker, Jonathan; Jeon, Nari; Döblinger, Markus; Stettner, Thomas; Gottschalk, Yeanitza Trujillo; Loitsch, Bernhard; Matich, Sonja; Altzschner, Marcus; Holleitner, Alexander W; Finley, Jonathan J; Lauhon, Lincoln J; Koblmüller, Gregor
2018-06-13
Core-shell semiconductor nanowires (NW) with internal quantum heterostructures are amongst the most complex nanostructured materials to be explored for assessing the ultimate capabilities of diverse ultrahigh-resolution imaging techniques. To probe the structure and composition of these materials in their native environment with minimal damage and sample preparation calls for high-resolution electron or ion microscopy methods, which have not yet been tested on such classes of ultrasmall quantum nanostructures. Here, we demonstrate that scanning helium ion microscopy (SHeIM) provides a powerful and straightforward method to map quantum heterostructures embedded in complex III-V semiconductor NWs with unique material contrast at ∼1 nm resolution. By probing the cross sections of GaAs-Al(Ga)As core-shell NWs with coaxial GaAs quantum wells as well as short-period GaAs/AlAs superlattice (SL) structures in the shell, the Al-rich and Ga-rich layers are accurately discriminated by their image contrast in excellent agreement with correlated, yet destructive, scanning transmission electron microscopy and atom probe tomography analysis. Most interestingly, quantitative He-ion dose-dependent SHeIM analysis of the ternary AlGaAs shell layers and of compositionally nonuniform GaAs/AlAs SLs reveals distinct alloy composition fluctuations in the form of Al-rich clusters with size distributions between ∼1-10 nm. In the GaAs/AlAs SLs the alloy clustering vanishes with increasing SL-period (>5 nm-GaAs/4 nm-AlAs), providing insights into critical size dimensions for atomic intermixing effects in short-period SLs within a NW geometry. The straightforward SHeIM technique therefore provides unique benefits in imaging the tiniest nanoscale features in topography, structure and composition of a multitude of diverse complex semiconductor nanostructures.
Allison, Kim; Robbins, Thomas; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Khosla, Chaitan; DeMirci, Hasan; McPhillips, Scott E.; Hollenbeck, Michael; Soltis, Michael; Cohen, Aina E.
2017-01-01
The crystal structure of the trans-acyltrans-ferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for the direct delivery of the sample into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes for polyketide synthase reaction dynamics are discussed. PMID:28832129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skálová, Tereza, E-mail: skalova@imc.cas.cz; Dohnálek, Jan; Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6
2007-12-01
The expression, purification and crystallization of the small laccase from S. coelicolor are reported. Diffraction data were collected to 3 Å resolution. The small bacterial laccase from the actinobacterium Streptomyces coelicolor which lacks the second of the three domains of the laccases structurally characterized to date was crystallized. This multi-copper phenol oxidase crystallizes in a primitive tetragonal lattice, with unit-cell parameters a = b = 179.8, c = 175.3 Å. The crystals belong to either space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2. The self-rotation function shows the presence of a noncrystallographic threefold axis in the structure. Phases willmore » be determined from the anomalous signal of the natively present copper ions.« less
Flynn, Brendan P.; Tilburey, Graham E.
2013-01-01
It has been established that the enzyme susceptibility of collagen, the predominant load-bearing protein in vertebrates, is altered by applied tension. However, whether tensile force increases or decreases the susceptibility to enzyme is a matter of contention. It is critical to establish a definitive understanding of the direction and magnitude of the force versus catalysis rate (kC) relationship if we are to properly interpret connective tissue development, growth, remodeling, repair, and degeneration. In this investigation, we examine collagen/enzyme mechanochemistry at the smallest scale structurally relevant to connective tissue: the native collagen fibril. A single-fibril mechanochemical erosion assay with nN force resolution was developed which permits detection of the loss of a few layers of monomer from the fibril surface. Native type I fibrils (bovine) held at three levels of tension were exposed to Clostridium histolyticum collagenase A. Fibrils held at zero-load failed rapidly and consistently (20 min) while fibrils at 1.8 pN/monomer failed more slowly (35–55 min). Strikingly, fibrils at 23.9 pN/monomer did not exhibit detectable degradation. The extracted force versus kC data were combined with previous single-molecule results to produce a “master curve” which suggests that collagen degradation is governed by an extremely sensitive mechanochemical switch. PMID:22584606
Crystal structure of the mutant D52S hen egg white lysozyme with an oligosaccharide product.
Hadfield, A T; Harvey, D J; Archer, D B; MacKenzie, D A; Jeenes, D J; Radford, S E; Lowe, G; Dobson, C M; Johnson, L N
1994-11-11
The crystal structure of a mutant hen egg white lysozyme, in which the key catalytic residue aspartic acid 52 has been changed to a serine residue (D52S HEWL), has been determined and refined to a crystallographic R value of 0.173 for all data F > 0 between 8 and 1.9 A resolution. The D52S HEWL structure is very similar to the native HEWL structure (r.m.s. deviation of main-chain atoms 0.20 A). Small shifts that result from the change in hydrogen bonding pattern on substitution of Asp by Ser were observed in the loop between beta-strands in the region of residues 46 to 49. D52S HEWL exhibits less than 1% activity against the bacterial cell wall substrate. Cocrystallisation experiments with the hexasaccharide substrate beta(1-4) polymer of N-acetyl-D-glucosamine (GlcNAc6) resulted in crystals between 5 days and 14 days after the initial mixing of enzyme and substrate. Analysis by laser absorption mass spectrometry of the oligosaccharides present after incubation with native and D52S HEWL under conditions similar to those used for crystal growth showed that after 14 days with native HEWL complete catalysis to GlcNAc3. GlcNAc2 and GlcNac had occurred but with D52S HEWL only partial catalysis to the major products GlcNAc4 and GlcNAc2 had occurred and at least 50% of the GlcNAc6 remained intact. X-ray analysis of the D52S-oligosaccharide complex crystals showed that they contained the product GlcNAc4. The structure of the D52S HEWL-GlcNAc4 complex has been determined and refined to an R value of 0.160 for data between 8 and 2 A resolution. GlcNAc4 occupies sites A to D in the active site cleft. Careful refinement and examination of 2Fo-Fc electron density maps showed that the sugar in site D has the sofa conformation, a conformation previously observed with the HEWL complex with tetra-N-acetylglucosamine lactone transition state analogue, the HEWL complex with the cell wall trisaccharide and the phage T4 lysozyme complex with a cell wall product. The semi-axial C(5)-C(6) geometry of the sofa is stabilised by hydrogen bonds from the O-6 hydroxyl group to the main-chain N of Val109 and main-chain O of Ala107. The sugar in site D adopts the alpha configuration, seemingly in conflict with the observation that the hydrolysis of beta (1-4) glycosidie linkage by HEWL proceeds with 99.9% retention of beta-configuration.(ABSTRACT TRUNCATED AT 400 WORDS)
Gao, Ling; Kupfer, Molly E; Jung, Jangwook P; Yang, Libang; Zhang, Patrick; Da Sie, Yong; Tran, Quyen; Ajeti, Visar; Freeman, Brian T; Fast, Vladimir G; Campagnola, Paul J; Ogle, Brenda M; Zhang, Jianyi
2017-04-14
Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact. Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell-derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction. The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell-derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increased significantly over the next 7 days. When tested in mice with surgically induced myocardial infarction, measurements of cardiac function, infarct size, apoptosis, both vascular and arteriole density, and cell proliferation at week 4 after treatment were significantly better in animals treated with the hCMPs than in animals treated with cell-free scaffolds, and the rate of cell engraftment in hCMP-treated animals was 24.5% at week 1 and 11.2% at week 4. Thus, the novel multiphoton-excited 3D printing technique produces extracellular matrix-based scaffolds with exceptional resolution and fidelity, and hCMPs fabricated with these scaffolds may significantly improve recovery from ischemic myocardial injury. © 2017 American Heart Association, Inc.
Robustness of atomistic Gō models in predicting native-like folding intermediates
NASA Astrophysics Data System (ADS)
Estácio, S. G.; Fernandes, C. S.; Krobath, H.; Faísca, P. F. N.; Shakhnovich, E. I.
2012-08-01
Gō models are exceedingly popular tools in computer simulations of protein folding. These models are native-centric, i.e., they are directly constructed from the protein's native structure. Therefore, it is important to understand up to which extent the atomistic details of the native structure dictate the folding behavior exhibited by Gō models. Here we address this challenge by performing exhaustive discrete molecular dynamics simulations of a Gō potential combined with a full atomistic protein representation. In particular, we investigate the robustness of this particular type of Gō models in predicting the existence of intermediate states in protein folding. We focus on the N47G mutational form of the Spc-SH3 folding domain (x-ray structure) and compare its folding pathway with that of alternative native structures produced in silico. Our methodological strategy comprises equilibrium folding simulations, structural clustering, and principal component analysis.
Sheng, Jia; Hassan, Abdalla E A; Zhang, Wen; Zhou, Jianfeng; Xu, Bingqian; Soares, Alexei S; Huang, Zhen
2011-05-01
We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation. © The Author(s) 2011. Published by Oxford University Press.
Sheng, Jia; Hassan, Abdalla E. A.; Zhang, Wen; Zhou, Jianfeng; Xu, Bingqian; Soares, Alexei S.; Huang, Zhen
2011-01-01
We report here the first synthesis of 5-phenyl–telluride–thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation. PMID:21245037
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Sheng; A Hassan; W Zhang
2011-12-31
We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNAmore » duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, J.; Soares, A.; Hassan, A. E. A.
2011-05-01
We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNAmore » duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.« less
The simulation approach to lipid-protein interactions.
Paramo, Teresa; Garzón, Diana; Holdbrook, Daniel A; Khalid, Syma; Bond, Peter J
2013-01-01
The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader
Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less
Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader; ...
2015-04-07
Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less
Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel
NASA Astrophysics Data System (ADS)
Long, Stephen B.; Campbell, Ernest B.; MacKinnon, Roderick
2005-08-01
Voltage-dependent potassium ion (K+) channels (Kv channels) conduct K+ ions across the cell membrane in response to changes in the membrane voltage, thereby regulating neuronal excitability by modulating the shape and frequency of action potentials. Here we report the crystal structure, at a resolution of 2.9 angstroms, of a mammalian Kv channel, Kv1.2, which is a member of the Shaker K+ channel family. This structure is in complex with an oxido-reductase β subunit of the kind that can regulate mammalian Kv channels in their native cell environment. The activation gate of the pore is open. Large side portals communicate between the pore and the cytoplasm. Electrostatic properties of the side portals and positions of the T1 domain and β subunit are consistent with electrophysiological studies of inactivation gating and with the possibility of K+ channel regulation by the β subunit.
Free-Energy Landscape of Protein-Ligand Interactions Coupled with Protein Structural Changes.
Moritsugu, Kei; Terada, Tohru; Kidera, Akinori
2017-02-02
Protein-ligand interactions are frequently coupled with protein structural changes. Focusing on the coupling, we present the free-energy surface (FES) of the ligand-binding process for glutamine-binding protein (GlnBP) and its ligand, glutamine, in which glutamine binding accompanies large-scale domain closure. All-atom simulations were performed in explicit solvents by multiscale enhanced sampling (MSES), which adopts a multicopy and multiscale scheme to achieve enhanced sampling of systems with a large number of degrees of freedom. The structural ensemble derived from the MSES simulation yielded the FES of the coupling, described in terms of both the ligand's and protein's degrees of freedom at atomic resolution, and revealed the tight coupling between the two degrees of freedom. The derived FES led to the determination of definite structural states, which suggested the dominant pathways of glutamine binding to GlnBP: first, glutamine migrates via diffusion to form a dominant encounter complex with Arg75 on the large domain of GlnBP, through strong polar interactions. Subsequently, the closing motion of GlnBP occurs to form ligand interactions with the small domain, finally completing the native-specific complex structure. The formation of hydrogen bonds between glutamine and the small domain is considered to be a rate-limiting step, inducing desolvation of the protein-ligand interface to form the specific native complex. The key interactions to attain high specificity for glutamine, the "door keeper" existing between the two domains (Asp10-Lys115) and the "hydrophobic sandwich" formed between the ligand glutamine and Phe13/Phe50, have been successfully mapped on the pathway derived from the FES.
2016-01-01
The function of bioenergetic membranes is strongly influenced by the spatial arrangement of their constituent membrane proteins. Atomic force microscopy (AFM) can be used to probe protein organization at high resolution, allowing individual proteins to be identified. However, previous AFM studies of biological membranes have typically required that curved membranes are ruptured and flattened during sample preparation, with the possibility of disruption of the native protein arrangement or loss of proteins. Imaging native, curved membranes requires minimal tip–sample interaction in both lateral and vertical directions. Here, long-range tip–sample interactions are reduced by optimizing the imaging buffer. Tapping mode AFM with high-resonance-frequency small and soft cantilevers, in combination with a high-speed AFM, reduces the forces due to feedback error and enables application of an average imaging force of tens of piconewtons. Using this approach, we have imaged the membrane organization of intact vesicular bacterial photosynthetic “organelles”, chromatophores. Despite the highly curved nature of the chromatophore membrane and lack of direct support, the resolution was sufficient to identify the photosystem complexes and quantify their arrangement in the native state. Successive imaging showed the proteins remain surprisingly static, with minimal rotation or translation over several-minute time scales. High-order assemblies of RC-LH1-PufX complexes are observed, and intact ATPases are successfully imaged. The methods developed here are likely to be applicable to a broad range of protein-rich vesicles or curved membrane systems, which are an almost ubiquitous feature of native organelles. PMID:28114766
ERIC Educational Resources Information Center
Grogan, A.; Parker Jones, O.; Ali, N.; Crinion, J.; Orabona, S.; Mechias, M. L.; Ramsden, S.; Green, D. W.; Price, C. J.
2012-01-01
We used structural magnetic resonance imaging (MRI) and voxel based morphometry (VBM) to investigate whether the efficiency of word processing in the non-native language (lexical efficiency) and the number of non-native languages spoken (2+ versus 1) were related to local differences in the brain structure of bilingual and multilingual speakers.…
Kisielowski, C.; Frei, H.; Specht, P.; ...
2016-11-02
This article summarizes core aspects of beam-sample interactions in research that aims at exploiting the ability to detect single atoms at atomic resolution by mid-voltage transmission electron microscopy. Investigating the atomic structure of catalytic Co 3O 4 nanocrystals underscores how indispensable it is to rigorously control electron dose rates and total doses to understand native material properties on this scale. We apply in-line holography with variable dose rates to achieve this goal. Genuine object structures can be maintained if dose rates below ~100 e/Å 2s are used and the contrast required for detection of single atoms is generated by capturing largemore » image series. Threshold doses for the detection of single atoms are estimated. An increase of electron dose rates and total doses to common values for high resolution imaging of solids stimulates object excitations that restructure surfaces, interfaces, and defects and cause grain reorientation or growth. We observe a variety of previously unknown atom configurations in surface proximity of the Co 3O 4 spinel structure. These are hidden behind broadened diffraction patterns in reciprocal space but become visible in real space by solving the phase problem. Finallly, an exposure of the Co 3O 4 spinel structure to water vapor or other gases induces drastic structure alterations that can be captured in this manner.« less
Entropic Elasticity in the Giant Muscle Protein Titin
NASA Astrophysics Data System (ADS)
Morgan, Ian; Saleh, Omar
Intrinsically disordered proteins (IDPs) are a large and functionally important class of proteins that lack a fixed three-dimensional structure. Instead, they adopt a conformational ensemble of states which facilitates their biological function as molecular linkers, springs, and switches. Due to their conformational flexibility, it can be difficult to study IDPs using typical experimental methods. To overcome this challenge, we use a high-resolution single-molecule magnetic stretching technique to quantify IDP flexibility. We apply this technique to the giant muscle protein titin, measuring its elastic response at low forces. We present results demonstrating that titin's native elastic response derives from the combined entropic elasticity of its ordered and disordered domains.
XPS Study of Oxide/GaAs and SiO2/Si Interfaces
NASA Technical Reports Server (NTRS)
Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.
1982-01-01
Concepts developed in study of SiO2/Si interface applied to analysis of native oxide/GaAs interface. High-resolution X-ray photoelectron spectroscopy (XPS) has been combined with precise chemical-profiling technique and resolution-enhancement methods to study stoichiometry of transitional layer. Results are presented in report now available.
Rose, John P; Wang, Bi-Cheng; Weiss, Manfred S
2015-07-01
Native SAD phasing uses the anomalous scattering signal of light atoms in the crystalline, native samples of macromolecules collected from single-wavelength X-ray diffraction experiments. These atoms include sodium, magnesium, phosphorus, sulfur, chlorine, potassium and calcium. Native SAD phasing is challenging and is critically dependent on the collection of accurate data. Over the past five years, advances in diffraction hardware, crystallographic software, data-collection methods and strategies, and the use of data statistics have been witnessed which allow 'highly accurate data' to be routinely collected. Today, native SAD sits on the verge of becoming a 'first-choice' method for both de novo and molecular-replacement structure determination. This article will focus on advances that have caught the attention of the community over the past five years. It will also highlight both de novo native SAD structures and recent structures that were key to methods development.
Folding a Protein with Equal Probability of Being Helix or Hairpin
Lin, Chun-Yu; Chen, Nan-Yow; Mou, Chung Yu
2012-01-01
We explore the possibility for the native structure of a protein being inherently multiconformational in an ab initio coarse-grained model. Based on the Wang-Landau algorithm, the complete free energy landscape for the designed sequence 2DX4: INYWLAHAKAGYIVHWTA is constructed. It is shown that 2DX4 possesses two nearly degenerate native structures: one is a helix structure with the other a hairpinlike structure, and their free energy difference is <2% of that of local minima. Two degenerate native structures are stabilized by an energy barrier of ∼10 kcal/mol. Furthermore, the hydrogen-bond and dipole-dipole interactions are found to be two major competing interactions in transforming one conformation into the other. Our results indicate that two degenerate native structures are stabilized by subtle balance between different interactions in proteins. In particular, for small proteins, balance between the hydrogen-bond and dipole-dipole interactions happens for proteins of sizes being ∼18 amino acids and is shown to the main driving mechanism for the occurrence of degeneracy. These results provide important clues to the study of native structures of proteins. PMID:22828336
Rusu, Mirabela; Birmanns, Stefan
2010-04-01
A structural characterization of multi-component cellular assemblies is essential to explain the mechanisms governing biological function. Macromolecular architectures may be revealed by integrating information collected from various biophysical sources - for instance, by interpreting low-resolution electron cryomicroscopy reconstructions in relation to the crystal structures of the constituent fragments. A simultaneous registration of multiple components is beneficial when building atomic models as it introduces additional spatial constraints to facilitate the native placement inside the map. The high-dimensional nature of such a search problem prevents the exhaustive exploration of all possible solutions. Here we introduce a novel method based on genetic algorithms, for the efficient exploration of the multi-body registration search space. The classic scheme of a genetic algorithm was enhanced with new genetic operations, tabu search and parallel computing strategies and validated on a benchmark of synthetic and experimental cryo-EM datasets. Even at a low level of detail, for example 35-40 A, the technique successfully registered multiple component biomolecules, measuring accuracies within one order of magnitude of the nominal resolutions of the maps. The algorithm was implemented using the Sculptor molecular modeling framework, which also provides a user-friendly graphical interface and enables an instantaneous, visual exploration of intermediate solutions. (c) 2009 Elsevier Inc. All rights reserved.
García, Margarita; Apolinar-Valiente, Rafael; Williams, Pascale; Esteve-Zarzoso, Braulio; Arroyo, Teresa; Crespo, Julia; Doco, Thierry
2017-08-09
Polysaccharides and oligosaccharides released into Malvar white wines elaborated through pure, mixed, and sequential cultures with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 native yeasts from D.O. "Vinos de Madrid" were studied. Both fractions from different white wines were separated by high-resolution size-exclusion chromatography. Glycosyl composition and wine polysaccharide linkages were determined by GC-EI-MS chromatography. Molar-mass distributions were determined by SEC-MALLS, and intrinsic viscosity was determined by differential viscometer. Yeast species and type of inoculation have a significant impact on wine carbohydrate composition and structure. Mannose residues from mannoproteins were significantly predominant in those cultures where T. delbrueckii was present in the fermentation process in comparison with when pure cultures of S. cerevisiae were present in the fermenation process. Galactose residues from polysaccharides rich in arabinose and galactose presented greater values in pure cultures of S. cerevisiae, indicating that S. cerevisiae released fewer mannoproteins than T. delbrueckii. Moreover, we reported structural differences between mannoproteins released by T. delbrueckii CLI 918 and those released by S. cerevisiae CLI 889. These findings help to provide important information about the polysaccharides and oligosaccharides released from the cell walls of Malvar grapes and the carbohydrates released from each yeast species.
Automated 3D structure composition for large RNAs
Popenda, Mariusz; Szachniuk, Marta; Antczak, Maciej; Purzycka, Katarzyna J.; Lukasiak, Piotr; Bartol, Natalia; Blazewicz, Jacek; Adamiak, Ryszard W.
2012-01-01
Understanding the numerous functions that RNAs play in living cells depends critically on knowledge of their three-dimensional structure. Due to the difficulties in experimentally assessing structures of large RNAs, there is currently great demand for new high-resolution structure prediction methods. We present the novel method for the fully automated prediction of RNA 3D structures from a user-defined secondary structure. The concept is founded on the machine translation system. The translation engine operates on the RNA FRABASE database tailored to the dictionary relating the RNA secondary structure and tertiary structure elements. The translation algorithm is very fast. Initial 3D structure is composed in a range of seconds on a single processor. The method assures the prediction of large RNA 3D structures of high quality. Our approach needs neither structural templates nor RNA sequence alignment, required for comparative methods. This enables the building of unresolved yet native and artificial RNA structures. The method is implemented in a publicly available, user-friendly server RNAComposer. It works in an interactive mode and a batch mode. The batch mode is designed for large-scale modelling and accepts atomic distance restraints. Presently, the server is set to build RNA structures of up to 500 residues. PMID:22539264
Fukuda, Yohta; Tse, Ka Man; Nakane, Takanori; Nakatsu, Toru; Suzuki, Mamoru; Sugahara, Michihiro; Inoue, Shigeyuki; Masuda, Tetsuya; Yumoto, Fumiaki; Matsugaki, Naohiro; Nango, Eriko; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Murphy, Michael E P; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi
2016-03-15
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.
Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution
Hu, Zhongjun; Taylor, Dianne W.; Reedy, Michael K.; Edwards, Robert J.; Taylor, Kenneth A.
2016-01-01
We describe a cryo–electron microscopy three-dimensional image reconstruction of relaxed myosin II–containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin’s long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation. PMID:27704041
Victimization and Substance Use among Native American College Students
ERIC Educational Resources Information Center
Fish, Jillian; Livingston, Jennifer A.; VanZile-Tamsen, Carol; Patterson Silver Wolf, David A.
2017-01-01
According to Tribal Critical Race Theory, Native American students have low retention rates due to the structural barriers and racism inherent in colleges and universities. Similarly, structural barriers and racism could put Native American students at risk for victimization and substance use, thus influencing their academic success. The purposes…
Non-native plants and wildlife in the Intermountain West
Andrea R. Litt; Dean E. Pearson
2013-01-01
Non-native plant invasions can change communities and ecosystems by altering the structure and composition of native vegetation. Changes in native plant communities caused by non-native plants can influence native wildlife species in diverse ways, but the outcomes and underlying mechanisms are poorly understood. Here, we review and synthesize current information for...
Peptide-surfactant interactions: A combined spectroscopic and molecular dynamics simulation approach
NASA Astrophysics Data System (ADS)
Roussel, Guillaume; Caudano, Yves; Matagne, André; Sansom, Mark S.; Perpète, Eric A.; Michaux, Catherine
2018-02-01
In the present contribution, we report a combined spectroscopic and computational approach aiming to unravel at atomic resolution the effect of the anionic SDS detergent on the structure of two model peptides, the α-helix TrpCage and the β-stranded TrpZip. A detailed characterization of the specific amino acids involved is performed. Monomeric (single molecules) and micellar SDS species differently interact with the α-helix and β-stranded peptides, emphasizing the different mechanisms occurring below and above the critical aggregation concentration (CAC). Below the CAC, the α-helix peptide is fully unfolded, losing its hydrophobic core and its Asp-Arg salt bridge, while the β-stranded peptide keeps its native structure with its four Trp well oriented. Above the CAC, the SDS micelles have the same effect on both peptides, that is, destabilizing the tertiary structure while keeping their secondary structure. Our studies will be helpful to deepen our understanding of the action of the denaturant SDS on peptides and proteins.
Park, Dayoung; Arabyan, Narine; Williams, Cynthia C.; Song, Ting; Mitra, Anupam; Weimer, Bart C.; Lebrilla, Carlito B.
2016-01-01
Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion. PMID:27754876
NASA Technical Reports Server (NTRS)
Wurzbach, J. A.; Grunthaner, F. J.
1983-01-01
It is pointed out that there is no report of an unambiguous analysis of the composition and interfacial structure of MNOS (metal-nitride oxide semiconductor) systems, despite the technological importance of these systems. The present investigation is concerned with a study of an MNOS structure on the basis of a technique involving the use of X-ray photoelectron spectroscopy (XPS) with a controlled stopped-flow chemical-etching procedure. XPS is sensitive to the structure of surface layers, while stopped-flow etching permits the controlled removal of overlying material on a scale of atomic layers, to expose new surface layers as a function of thickness. Therefore, with careful analysis of observed intensities at measured depths, this combination of techniques provides depth resolution between 5 and 10 A. According to the obtained data there is intact SiO2 at the substrate interface. There appears to be a thin layer containing excess bonds to silicon on top of the SiO2.
Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Christine A.; Zhou, Mowei; Song, Yang
Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase, Mnx, in Bacillus sp. PL-12 is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. However, MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant tomore » crystallization, so its structure is unknown. In this study, native mass spectrometry defines the subunit topology and copper binding of the Mnx complex, while high resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for conceptualizing how Mnx produces nanoparticulate Mn oxides.« less
Finke, John M; Cheung, Margaret S; Onuchic, José N
2004-09-01
Modeling the structure of natively disordered peptides has proved difficult due to the lack of structural information on these peptides. In this work, we use a novel application of the host-guest method, combining folding theory with experiments, to model the structure of natively disordered polyglutamine peptides. Initially, a minimalist molecular model (C(alpha)C(beta)) of CI2 is developed with a structurally based potential and captures many of the folding properties of CI2 determined from experiments. Next, polyglutamine "guest" inserts of increasing length are introduced into the CI2 "host" model and the polyglutamine is modeled to match the resultant change in CI2 thermodynamic stability between simulations and experiments. The polyglutamine model that best mimics the experimental changes in CI2 thermodynamic stability has 1), a beta-strand dihedral preference and 2), an attractive energy between polyglutamine atoms 0.75-times the attractive energy between the CI2 host Go-contacts. When free-energy differences in the CI2 host-guest system are correctly modeled at varying lengths of polyglutamine guest inserts, the kinetic folding rates and structural perturbation of these CI2 insert mutants are also correctly captured in simulations without any additional parameter adjustment. In agreement with experiments, the residues showing structural perturbation are located in the immediate vicinity of the loop insert. The simulated polyglutamine loop insert predominantly adopts extended random coil conformations, a structural model consistent with low resolution experimental methods. The agreement between simulation and experimental CI2 folding rates, CI2 structural perturbation, and polyglutamine insert structure show that this host-guest method can select a physically realistic model for inserted polyglutamine. If other amyloid peptides can be inserted into stable protein hosts and the stabilities of these host-guest mutants determined, this novel host-guest method may prove useful to determine structural preferences of these intractable but biologically relevant protein fragments.
Amyloidogenesis of Natively Unfolded Proteins
Uversky, Vladimir N.
2009-01-01
Aggregation and subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. The accumulated data support the model where protein fibrillogenesis proceeds via the formation of a relatively unfolded amyloidogenic conformation, which shares many structural properties with the pre-molten globule state, a partially folded intermediate first found during the equilibrium and kinetic (un)folding studies of several globular proteins and later described as one of the structural forms of natively unfolded proteins. The flexibility of this structural form is essential for the conformational rearrangements driving the formation of the core cross-beta structure of the amyloid fibril. Obviously, molecular mechanisms describing amyloidogenesis of ordered and natively unfolded proteins are different. For ordered protein to fibrillate, its unique and rigid structure has to be destabilized and partially unfolded. On the other hand, fibrillogenesis of a natively unfolded protein involves the formation of partially folded conformation; i.e., partial folding rather than unfolding. In this review recent findings are surveyed to illustrate some unique features of the natively unfolded proteins amyloidogenesis. PMID:18537543
Rose, John P.; Wang, Bi-Cheng; Weiss, Manfred S.
2015-01-01
Native SAD phasing uses the anomalous scattering signal of light atoms in the crystalline, native samples of macromolecules collected from single-wavelength X-ray diffraction experiments. These atoms include sodium, magnesium, phosphorus, sulfur, chlorine, potassium and calcium. Native SAD phasing is challenging and is critically dependent on the collection of accurate data. Over the past five years, advances in diffraction hardware, crystallographic software, data-collection methods and strategies, and the use of data statistics have been witnessed which allow ‘highly accurate data’ to be routinely collected. Today, native SAD sits on the verge of becoming a ‘first-choice’ method for both de novo and molecular-replacement structure determination. This article will focus on advances that have caught the attention of the community over the past five years. It will also highlight both de novo native SAD structures and recent structures that were key to methods development. PMID:26175902
Boeri Erba, Elisabetta; Petosa, Carlo
2015-01-01
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called “native conditions” (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein−ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes. PMID:25676284
Cooperative alpha-helix formation of beta-lactoglobulin induced by sodium n-alkyl sulfates.
Chamani, J; Moosavi-Movahedi, A A; Rajabi, O; Gharanfoli, M; Momen-Heravi, M; Hakimelahi, G H; Neamati-Baghsiah, A; Varasteh, A R
2006-01-01
It is generally assumed that folding intermediates contain partially formed native-like secondary structures. However, if we consider the fact that the conformational stability of the intermediate state is simpler than that of the native state, it would be expected that the secondary structures in a folding intermediate would not necessarily be similar to those of the native state. beta-Lactoglobulin is a predominantly beta-sheet protein, although it has a markedly high intrinsic preference for alpha-helical structure. The formation of non-native alpha-helical intermediate of beta-lactoglobulin was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS at special condition. The effect of n-alkyl sulfates on the structure of native beta-lactoglobulin at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of non-native alpha-helical intermediate. The addition of various concentrations of n-alkyl sulfates to the native state of beta-lactoglobulin (pH 2) appears to support the stabilized form of non-native alpha-helical intermediate at pH 2. The m values of the intermediate state of beta-lactoglobulin by SOS, SDeS, SDS and STS showed substantial variation. The enhancement of m values as the stability criterion of non-native alpha-helical intermediate state corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the folding reaction of beta-lactoglobulin follows a non-hierarchical mechanism and hydrophobic interactions play important roles in stabilizing the non-native alpha-helical intermediate state.
Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function
NASA Astrophysics Data System (ADS)
Moerner, W. E.
2011-03-01
Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on a double-helix point spread function enables quantitative tracking of single mRNA particles in living yeast cells with 15 ms time resolution and 25-50 nm spatial precision (PNAS {107}, 17864 (2010)). These examples illustrate the power of single-molecule optical imaging in extracting new structural and functional information in living cells.
Structural studies of human glioma pathogenesis-related protein 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu; Koski, Raymond A.; Bonafé, Nathalie
2011-10-01
Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structuresmore » of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.« less
Ayuso-Tejedor, Sara; Angarica, Vladimir Espinosa; Bueno, Marta; Campos, Luis A; Abián, Olga; Bernadó, Pau; Sancho, Javier; Jiménez, M Angeles
2010-07-23
Partly unfolded protein conformations close to the native state may play important roles in protein function and in protein misfolding. Structural analyses of such conformations which are essential for their fully physicochemical understanding are complicated by their characteristic low populations at equilibrium. We stabilize here with a single mutation the equilibrium intermediate of apoflavodoxin thermal unfolding and determine its solution structure by NMR. It consists of a large native region identical with that observed in the X-ray structure of the wild-type protein plus an unfolded region. Small-angle X-ray scattering analysis indicates that the calculated ensemble of structures is consistent with the actual degree of expansion of the intermediate. The unfolded region encompasses discontinuous sequence segments that cluster in the 3D structure of the native protein forming the FMN cofactor binding loops and the binding site of a variety of partner proteins. Analysis of the apoflavodoxin inner interfaces reveals that those becoming destabilized in the intermediate are more polar than other inner interfaces of the protein. Natively folded proteins contain hydrophobic cores formed by the packing of hydrophobic surfaces, while natively unfolded proteins are rich in polar residues. The structure of the apoflavodoxin thermal intermediate suggests that the regions of natively folded proteins that are easily responsive to thermal activation may contain cores of intermediate hydrophobicity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Marcoux, Julien; Champion, Thierry; Colas, Olivier; Wagner-Rousset, Elsa; Corvaïa, Nathalie; Van Dorsselaer, Alain; Beck, Alain; Cianférani, Sarah
2015-08-01
Antibody-drug conjugates (ADCs) are biochemotherapeutics consisting of a cytotoxic chemical drug linked covalently to a monoclonal antibody. Two main classes of ADCs, namely cysteine and lysine conjugates, are currently available on the market or involved in clinical trials. The complex structure and heterogeneity of ADCs makes their biophysical characterization challenging. For cysteine conjugates, hydrophobic interaction chromatography is the gold standard technique for studying drug distribution, the naked antibody content, and the average drug to antibody ratio (DAR). For lysine ADC conjugates on the other hand, which are not amenable to hydrophobic interaction chromatography because of their higher heterogeneity, denaturing mass spectrometry (MS) and UV/Vis spectroscopy are the most powerful approaches. We report here the use of native MS and ion mobility (IM-MS) for the characterization of trastuzumab emtansine (T-DM1, Kadcyla(®)). This lysine conjugate is currently being considered for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and combines the anti-HER2 antibody trastuzumab (Herceptin(®)), with the cytotoxic microtubule-inhibiting maytansine derivative, DM1. We show that native MS combined with high-resolution measurements and/or charge reduction is beneficial in terms of the accurate values it provides of the average DAR and the drug load profiles. The use of spectral deconvolution is discussed in detail. We report furthermore the use of native IM-MS to directly determine DAR distribution profiles and average DAR values, as well as a molecular modeling investigation of positional isomers in T-DM1. © 2015 The Protein Society.
NASA Astrophysics Data System (ADS)
Canino, Lawrence S.; Shen, Tongye; McCammon, J. Andrew
2002-12-01
We extend the self-consistent pair contact probability method to the evaluation of the partition function for a protein complex at thermodynamic equilibrium. Specifically, we adapt the method for multichain models and introduce a parametrization for amino acid-specific pairwise interactions. This method is similar to the Gaussian network model but allows for the adjusting of the strengths of native state contacts. The method is first validated on a high resolution x-ray crystal structure of bovine Pancreatic Phospholipase A2 by comparing calculated B-factors with reported values. We then examine binding-induced changes in flexibility in protein-protein complexes, comparing computed results with those obtained from x-ray crystal structures and molecular dynamics simulations. In particular, we focus on the mouse acetylcholinesterase:fasciculin II and the human α-thrombin:thrombomodulin complexes.
Regional native plant strategies
Wendell G. Hassell
1999-01-01
Because of increasing public interest in native plants, regional groups have been cooperating to develop native species. The Federal Native Plants Initiative was formed in 1994 to coordinate and encourage the development and use of native plants. The program they developed includes public involvement, organizational structure, technical work groups, implementation...
ERIC Educational Resources Information Center
Andringa, Sible; Olsthoorn, Nomi; van Beuningen, Catherine; Schoonen, Rob; Hulstijn, Jan
2012-01-01
The goal of this study was to explain individual differences in both native and non-native listening comprehension; 121 native and 113 non-native speakers of Dutch were tested on various linguistic and nonlinguistic cognitive skills thought to underlie listening comprehension. Structural equation modeling was used to identify the predictors of…
Salazar, Daniela A; Fontúrbel, Francisco E
2016-09-01
Habitat structure determines species occurrence and behavior. However, human activities are altering natural habitat structure, potentially hampering native species due to the loss of nesting cavities, shelter or movement pathways. The South American temperate rainforest is experiencing an accelerated loss and degradation, compromising the persistence of many native species, and particularly of the monito del monte (Dromiciops gliroides Thomas, 1894), an arboreal marsupial that plays a key role as seed disperser. Aiming to compare 2 contrasting habitats (a native forest and a transformed habitat composed of abandoned Eucalyptus plantations and native understory vegetation), we assessed D. gliroides' occurrence using camera traps and measured several structural features (e.g. shrub and bamboo cover, deadwood presence, moss abundance) at 100 camera locations. Complementarily, we used radio telemetry to assess its spatial ecology, aiming to depict a more complete scenario. Moss abundance was the only significant variable explaining D. gliroides occurrence between habitats, and no structural variable explained its occurrence at the transformed habitat. There were no differences in home range, core area or inter-individual overlapping. In the transformed habitats, tracked individuals used native and Eucalyptus-associated vegetation types according to their abundance. Diurnal locations (and, hence, nesting sites) were located exclusively in native vegetation. The landscape heterogeneity resulting from the vicinity of native and Eucalyptus-associated vegetation likely explains D. gliroides occurrence better than the habitat structure itself, as it may be use Eucalyptus-associated vegetation for feeding purposes but depend on native vegetation for nesting. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Protein-protein structure prediction by scoring molecular dynamics trajectories of putative poses.
Sarti, Edoardo; Gladich, Ivan; Zamuner, Stefano; Correia, Bruno E; Laio, Alessandro
2016-09-01
The prediction of protein-protein interactions and their structural configuration remains a largely unsolved problem. Most of the algorithms aimed at finding the native conformation of a protein complex starting from the structure of its monomers are based on searching the structure corresponding to the global minimum of a suitable scoring function. However, protein complexes are often highly flexible, with mobile side chains and transient contacts due to thermal fluctuations. Flexibility can be neglected if one aims at finding quickly the approximate structure of the native complex, but may play a role in structure refinement, and in discriminating solutions characterized by similar scores. We here benchmark the capability of some state-of-the-art scoring functions (BACH-SixthSense, PIE/PISA and Rosetta) in discriminating finite-temperature ensembles of structures corresponding to the native state and to non-native configurations. We produce the ensembles by running thousands of molecular dynamics simulations in explicit solvent starting from poses generated by rigid docking and optimized in vacuum. We find that while Rosetta outperformed the other two scoring functions in scoring the structures in vacuum, BACH-SixthSense and PIE/PISA perform better in distinguishing near-native ensembles of structures generated by molecular dynamics in explicit solvent. Proteins 2016; 84:1312-1320. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Aminoacyl-tRNA Synthetase Complex.
Mirande, Marc
2017-01-01
Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.
Oikawa, Hiroyuki; Takahashi, Takumi; Kamonprasertsuk, Supawich; Takahashi, Satoshi
2018-01-31
Single-molecule (sm) fluorescence time series measurements based on the line confocal optical system are a powerful strategy for the investigation of the structure, dynamics, and heterogeneity of biological macromolecules. This method enables the detection of more than several thousands of fluorescence photons per millisecond from single fluorophores, implying that the potential time resolution for measurements of the fluorescence resonance energy transfer (FRET) efficiency is 10 μs. However, the necessity of using imaging photodetectors in the method limits the time resolution in the FRET efficiency measurements to approximately 100 μs. In this investigation, a new photodetector called a hybrid photodetector (HPD) was incorporated into the line confocal system to improve the time resolution without sacrificing the length of the time series detection. Among several settings examined, the system based on a slit width of 10 μm and a high-speed counting device made the best of the features of the line confocal optical system and the HPD. This method achieved a time resolution of 10 μs and an observation time of approximately 5 ms in the sm-FRET time series measurements. The developed device was used for the native state of the B domain of protein A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assenberg, René; Delmas, Olivier; Graham, Stephen C.
The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number ofmore » factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.« less
Hagen, Wim J H; Wan, William; Briggs, John A G
2017-02-01
Cryo-electron tomography (cryoET) allows 3D structural information to be obtained from cells and other biological samples in their close-to-native state. In combination with subtomogram averaging, detailed structures of repeating features can be resolved. CryoET data is collected as a series of images of the sample from different tilt angles; this is performed by physically rotating the sample in the microscope between each image. The angles at which the images are collected, and the order in which they are collected, together are called the tilt-scheme. Here we describe a "dose-symmetric tilt-scheme" that begins at low tilt and then alternates between increasingly positive and negative tilts. This tilt-scheme maximizes the amount of high-resolution information maintained in the tomogram for subsequent subtomogram averaging, and may also be advantageous for other applications. We describe implementation of the tilt-scheme in combination with further data-collection refinements including setting thresholds on acceptable drift and improving focus accuracy. Requirements for microscope set-up are introduced, and a macro is provided which automates the application of the tilt-scheme within SerialEM. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Putman, William; Nattala, J.
2014-01-01
This document describes the gridded output files produced by a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2006 produced with the non-hydrostatic version of GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. A description of the GEOS-5 model configuration used for this simulation can be found in Putman et al. (2014). The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (approximately 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625 deg grid that approximately matches the native cubed-sphere resolution, and another 0.5 deg reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model's native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. Information of the model surface representation can be found in Appendix B. The GEOS-5 product is organized into file collections that are described in detail in Appendix C. Additional details about variables listed in this file specification can be found in a separate document, the GEOS-5 File Specification Variable Definition Glossary. Documentation about the current access methods for products described in this document can be found on the GEOS-5 Nature Run portal: http://gmao.gsfc.nasa.gov/projects/G5NR. Information on the scientific quality of this simulation will appear in a forthcoming NASA Technical Report Series on Global Modeling and Data Assimilation to be available from http://gmao.gsfc.nasa.gov/pubs/tm/.
Kim, Chang-Yub; Webster, Cecelia; Roberts, Justin K M; Moon, Jin Ho; Alipio Lyon, Emily Z; Kim, Heungbok; Yu, Minmin; Hung, Li-Wei; Terwilliger, Thomas C
2009-12-01
We show that Cibacron Blue F3GA dye resin chromatography can be used to identify ligands that specifically interact with proteins from Mycobacterium tuberculosis, and that the identification of these ligands can facilitate structure determination by enhancing the quality of crystals. Four native Mtb proteins of the aldehyde dehydrogenase (ALDH) family were previously shown to be specifically eluted from a Cibacron Blue F3GA dye resin with nucleosides. In this study we characterized the nucleoside-binding specificity of one of these ALDH isozymes (recombinant Mtb Rv0223c) and compared these biochemical results with co-crystallization experiments with different Rv0223c-nucleoside pairings. We found that the strongly interacting ligands (NAD and NADH) aided formation of high-quality crystals, permitting solution of the first Mtb ALDH (Rv0223c) structure. Other nucleoside ligands (AMP, FAD, adenosine, GTP and NADP) exhibited weaker binding to Rv0223c, and produced co-crystals diffracting to lower resolution. Difference electron density maps based on crystals of Rv0223c with various nucleoside ligands show most share the binding site where the natural ligand NAD binds. From the high degree of similarity of sequence and structure compared to human mitochondrial ALDH-2 (BLAST Z-score = 53.5 and RMSD = 1.5 A), Rv0223c appears to belong to the ALDH-2 class. An altered oligomerization domain in the Rv0223c structure seems to keep this protein as monomer whereas native human ALDH-2 is a multimer.
Chen, Kewei; Ríos, José Julián; Roca, María; Pérez-Gálvez, Antonio
2015-09-18
Dephytylated chlorophylls (chlorophyllides and pheophorbides) are the starting point of the chlorophyll catabolism in green tissues, components of the chlorophyll pattern in storage/processed food vegetables, as well as the favoured structural arrangement for chlorophyll absorption. In addition, dephytylated native chlorophylls are prone to several modifications of their structure yielding pyro-, 13(2)-hydroxy- and 15(1)-hydroxy-lactone derivatives. Despite of these outstanding remarks only few of them have been analysed by MS(n). Besides new protocols for obtaining standards, we have developed a new high throughput methodology able to determine the fragmentation pathway of 16 dephytylated chlorophyll derivatives, elucidating the structures of the new product ions and new mechanisms of fragmentation. The new methodology combines, by first time, high resolution time-of-flight mass spectrometry and powerful post-processing software. Native chlorophyllides and pheophorbides mainly exhibit product ions that involve the fragmentation of D ring, as well as additional exclusive product ions. The introduction of an oxygenated function at E ring enhances the progress of fragmentation reactions through the β-keto ester group, developing also exclusive product ions for 13(2)-hydroxy derivatives and for 15(1)-hydroxy-lactone ones. Consequently, while MS(2)-based reactions of phytylated chlorophyll derivatives point to fragmentations at the phytyl and propionic chains, dephytylated chlorophyll derivatives behave different as the absence of phytyl makes β-keto ester group and E ring more prone to fragmentation. Proposals of the key reaction mechanisms underlying the origin of new product ions have been made. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Quiquet, Aurélien; Roche, Didier M.; Dumas, Christophe; Paillard, Didier
2018-02-01
This paper presents the inclusion of an online dynamical downscaling of temperature and precipitation within the model of intermediate complexity iLOVECLIM v1.1. We describe the following methodology to generate temperature and precipitation fields on a 40 km × 40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is not grid specific and conserves energy and moisture in the same way as the original climate model. We show that we are able to generate a high-resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Although the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature include the improvement of ice sheet model coupling and high-resolution land surface models.
Strecker, Angela L.; Olden, Julian D.
2014-01-01
Despite long-standing interest of terrestrial ecologists, freshwater ecosystems are a fertile, yet unappreciated, testing ground for applying community phylogenetics to uncover mechanisms of species assembly. We quantify phylogenetic clustering and overdispersion of native and non-native fishes of a large river basin in the American Southwest to test for the mechanisms (environmental filtering versus competitive exclusion) and spatial scales influencing community structure. Contrary to expectations, non-native species were phylogenetically clustered and related to natural environmental conditions, whereas native species were not phylogenetically structured, likely reflecting human-related changes to the basin. The species that are most invasive (in terms of ecological impacts) tended to be the most phylogenetically divergent from natives across watersheds, but not within watersheds, supporting the hypothesis that Darwin's naturalization conundrum is driven by the spatial scale. Phylogenetic distinctiveness may facilitate non-native establishment at regional scales, but environmental filtering restricts local membership to closely related species with physiological tolerances for current environments. By contrast, native species may have been phylogenetically clustered in historical times, but species loss from contemporary populations by anthropogenic activities has likely shaped the phylogenetic signal. Our study implies that fundamental mechanisms of community assembly have changed, with fundamental consequences for the biogeography of both native and non-native species. PMID:24452027
Ferrada, Evandro; Vergara, Ismael A; Melo, Francisco
2007-01-01
The correct discrimination between native and near-native protein conformations is essential for achieving accurate computer-based protein structure prediction. However, this has proven to be a difficult task, since currently available physical energy functions, empirical potentials and statistical scoring functions are still limited in achieving this goal consistently. In this work, we assess and compare the ability of different full atom knowledge-based potentials to discriminate between native protein structures and near-native protein conformations generated by comparative modeling. Using a benchmark of 152 near-native protein models and their corresponding native structures that encompass several different folds, we demonstrate that the incorporation of close non-bonded pairwise atom terms improves the discriminating power of the empirical potentials. Since the direct and unbiased derivation of close non-bonded terms from current experimental data is not possible, we obtained and used those terms from the corresponding pseudo-energy functions of a non-local knowledge-based potential. It is shown that this methodology significantly improves the discrimination between native and near-native protein conformations, suggesting that a proper description of close non-bonded terms is important to achieve a more complete and accurate description of native protein conformations. Some external knowledge-based energy functions that are widely used in model assessment performed poorly, indicating that the benchmark of models and the specific discrimination task tested in this work constitutes a difficult challenge.
Syntactic Constraints and Individual Differences in Native and Non-Native Processing of Wh-Movement
Johnson, Adrienne; Fiorentino, Robert; Gabriele, Alison
2016-01-01
There is a debate as to whether second language (L2) learners show qualitatively similar processing profiles as native speakers or whether L2 learners are restricted in their ability to use syntactic information during online processing. In the realm of wh-dependency resolution, research has examined whether learners, similar to native speakers, attempt to resolve wh-dependencies in grammatically licensed contexts but avoid positing gaps in illicit contexts such as islands. Also at issue is whether the avoidance of gap filling in islands is due to adherence to syntactic constraints or whether islands simply present processing bottlenecks. One approach has been to examine the relationship between processing abilities and the establishment of wh-dependencies in islands. Grammatical accounts of islands do not predict such a relationship as the parser should simply not predict gaps in illicit contexts. In contrast, a pattern of results showing that individuals with more processing resources are better able to establish wh-dependencies in islands could conceivably be compatible with certain processing accounts. In a self-paced reading experiment which examines the processing of wh-dependencies, we address both questions, examining whether native English speakers and Korean learners of English show qualitatively similar patterns and whether there is a relationship between working memory, as measured by counting span and reading span, and processing in both island and non-island contexts. The results of the self-paced reading experiment suggest that learners can use syntactic information on the same timecourse as native speakers, showing qualitative similarity between the two groups. Results of regression analyses did not reveal a significant relationship between working memory and the establishment of wh-dependencies in islands but we did observe significant relationships between working memory and the processing of licit wh-dependencies. As the contexts in which these relationships emerged differed for learners and native speakers, our results call for further research examining individual differences in dependency resolution in both populations. PMID:27148152
Syntactic Constraints and Individual Differences in Native and Non-Native Processing of Wh-Movement.
Johnson, Adrienne; Fiorentino, Robert; Gabriele, Alison
2016-01-01
There is a debate as to whether second language (L2) learners show qualitatively similar processing profiles as native speakers or whether L2 learners are restricted in their ability to use syntactic information during online processing. In the realm of wh-dependency resolution, research has examined whether learners, similar to native speakers, attempt to resolve wh-dependencies in grammatically licensed contexts but avoid positing gaps in illicit contexts such as islands. Also at issue is whether the avoidance of gap filling in islands is due to adherence to syntactic constraints or whether islands simply present processing bottlenecks. One approach has been to examine the relationship between processing abilities and the establishment of wh-dependencies in islands. Grammatical accounts of islands do not predict such a relationship as the parser should simply not predict gaps in illicit contexts. In contrast, a pattern of results showing that individuals with more processing resources are better able to establish wh-dependencies in islands could conceivably be compatible with certain processing accounts. In a self-paced reading experiment which examines the processing of wh-dependencies, we address both questions, examining whether native English speakers and Korean learners of English show qualitatively similar patterns and whether there is a relationship between working memory, as measured by counting span and reading span, and processing in both island and non-island contexts. The results of the self-paced reading experiment suggest that learners can use syntactic information on the same timecourse as native speakers, showing qualitative similarity between the two groups. Results of regression analyses did not reveal a significant relationship between working memory and the establishment of wh-dependencies in islands but we did observe significant relationships between working memory and the processing of licit wh-dependencies. As the contexts in which these relationships emerged differed for learners and native speakers, our results call for further research examining individual differences in dependency resolution in both populations.
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...
2015-08-11
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanzoni, Serena; D'Onofrio, Mariapina; Molinari, Henriette
2012-10-26
Highlights: Black-Right-Pointing-Pointer Bile acid binding proteins from different constructs retain structural integrity. Black-Right-Pointing-Pointer NMR {sup 15}N-T{sub 1} relaxation data of BABPs show differences if LVPR extension is present. Black-Right-Pointing-Pointer Deviations from a {sup 15}N-T{sub 1}/molecular-weight calibration curve indicate aggregation. -- Abstract: The use of a recombinant protein to investigate the function of the native molecule requires that the former be obtained with the same amino acid sequence as the template. However, in many cases few additional residues are artificially introduced for cloning or purification purposes, possibly resulting in altered physico-chemical properties that may escape routine characterization. For example, increased aggregationmore » propensity without visible protein precipitation is hardly detected by most analytical techniques but its investigation may be of great importance for optimizing the yield of recombinant protein production in biotechnological and structural biology applications. In this work we show that bile acid binding proteins incorporating the common C-terminal LeuValProArg extension display different hydrodynamic properties from those of the corresponding molecules without such additional amino acids. The proteins were produced enriched in nitrogen-15 for analysis via heteronuclear NMR spectroscopy. Residue-specific spin relaxation rates were measured and related to rotational tumbling time and molecular size. While the native-like recombinant proteins show spin-relaxation rates in agreement with those expected for monomeric globular proteins of their mass, our data indicate the presence of larger adducts for samples of proteins with very short amino acid extensions. The used approach is proposed as a further screening method for the quality assessment of biotechnological protein products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.
2015-01-01
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423
Cell patterning by laser-assisted bioprinting.
Devillard, Raphaël; Pagès, Emeline; Correa, Manuela Medina; Kériquel, Virginie; Rémy, Murielle; Kalisky, Jérôme; Ali, Muhammad; Guillotin, Bertrand; Guillemot, Fabien
2014-01-01
The aim of tissue engineering is to produce functional three-dimensional (3D) tissue substitutes. Regarding native organ and tissue complexity, cell density and cell spatial 3D organization, which influence cell behavior and fate, are key parameters in tissue engineering. Laser-Assisted Bioprinting (LAB) allows one to print cells and liquid materials with a cell- or picoliter-level resolution. Thus, LAB seems to be an emerging and promising technology to fabricate tissue-like structures that have the physiological functionality of their native counterparts. This technology has additional advantages such as automation, reproducibility, and high throughput. It makes LAB compatible with the (industrial) fabrication of 3D constructs of physiologically relevant sizes. Here we present exhaustively the numerous steps that allow printing of viable cells with a well-preserved micrometer pattern. To facilitate the understanding of the whole cell patterning experiment using LAB, it is discussed in two parts: (1) preprocessing: laser set-up, bio-ink cartridge and bio-paper preparation, and pattern design; and (2) processing: bio-ink printing on the bio-paper. Copyright © 2014 Elsevier Inc. All rights reserved.
Stepwise evolution of protein native structure with electrospray into the gas phase, 10−12 to 102 s
Breuker, Kathrin; McLafferty, Fred W.
2008-01-01
Mass spectrometry (MS) has been revolutionized by electrospray ionization (ESI), which is sufficiently “gentle” to introduce nonvolatile biomolecules such as proteins and nucleic acids (RNA or DNA) into the gas phase without breaking covalent bonds. Although in some cases noncovalent bonding can be maintained sufficiently for ESI/MS characterization of the solution structure of large protein complexes and native enzyme/substrate binding, the new gaseous environment can ultimately cause dramatic structural alterations. The temporal (picoseconds to minutes) evolution of native protein structure during and after transfer into the gas phase, as proposed here based on a variety of studies, can involve side-chain collapse, unfolding, and refolding into new, non-native structures. Control of individual experimental factors allows optimization for specific research objectives. PMID:19033474
CERT tribal internship program. Final intern report: Melinda Jacquez, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
The purpose of the intern project was to write a comprehensive booklet on all state legislation proposed in 1995 on Native American issues. A second purpose was to contact tribal governments and request an ordinance, law or resolution on hazardous and nuclear waste transportation. This intern report contains a summary of bills proposed in 37 state legislatures pertaining to Native American issues. Time ran out before the second project objective could be met.
Mandacaru, Samuel C; do Vale, Luis H F; Vahidi, Siavash; Xiao, Yiming; Skinner, Owen S; Ricart, Carlos A O; Kelleher, Neil L; de Sousa, Marcelo Valle; Konermann, Lars
2017-03-21
Royal jelly (RJ) triggers the development of female honeybee larvae into queens. This effect has been attributed to the presence of major royal jelly protein 1 (MRJP1) in RJ. MRJP1 isolated from royal jelly is tightly associated with apisimin, a 54-residue α-helical peptide that promotes the noncovalent assembly of MRJP1 into multimers. No high-resolution structural data are available for these complexes, and their binding stoichiometry remains uncertain. We examined MRJP1/apisimin using a range of biophysical techniques. We also investigated the behavior of deglycosylated samples, as well as samples with reduced apisimin content. Our mass spectrometry (MS) data demonstrate that the native complexes predominantly exist in a (MRJP1 4 apisimin 4 ) stoichiometry. Hydrogen/deuterium exchange MS reveals that MRJP1 within these complexes is extensively disordered in the range of residues 20-265. Marginally stable secondary structure (likely antiparallel β-sheet) exists around residues 266-432. These weakly structured regions interchange with conformers that are extensively unfolded, giving rise to bimodal (EX1) isotope distributions. We propose that the native complexes have a "dimer of dimers" quaternary structure in which MRJP1 chains are bridged by apisimin. Specifically, our data suggest that apisimin acts as a linker that forms hydrophobic contacts involving the MRJP1 segment 316 VLFFGLV 322 . Deglycosylation produces large soluble aggregates, highlighting the role of glycans as aggregation inhibitors. Samples with reduced apisimin content form dimeric complexes with a (MRJP1 2 apisimin 1 ) stoichiometry. The information uncovered in this work will help pave the way toward a better understanding of the unique physiological role played by MRJP1 during queen differentiation.
Mapping Chinese tallow with color-infrared photography
Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.; Seeger, E.B.; Martella, K.D.
2002-01-01
Airborne color-infrared photography (CIR) (1:12,000 scale) was used to map localized occurrences of the widespread and aggressive Chinese tallow (Sapium sebiferum), an invasive species. Photography was collected during senescence when Chinese tallow's bright red leaves presented a high spectral contrast within the native bottomland hardwood and upland forests and marsh land-cover types. Mapped occurrences were conservative because not all senescing tallow leaves are bright red simultaneously. To simulate low spectral but high spatial resolution satellite/airborne image and digital video data, the CIR photography was transformed into raster images at spatial resolutions approximating 0.5 in and 1.0 m. The image data were then spectrally classified for the occurrence of bright red leaves associated with senescing Chinese tallow. Classification accuracies were greater than 95 percent at both spatial resolutions. There was no significant difference in either forest in the detection of tallow or inclusion of non-tallow trees associated with the two spatial resolutions. In marshes, slightly more tallow occurrences were mapped with the lower spatial resolution, but there were also more misclassifications of native land covers as tallow. Combining all land covers, there was no difference at detecting tallow occurrences (equal omission errors) between the two resolutions, but the higher spatial resolution was associated with less inclusion of non-tallow land covers as tallow (lower commission error). Overall, these results confirm that high spatial (???1 m) but low spectral resolution remote sensing data can be used for mapping Chinese tallow trees in dominant environments found in coastal and adjacent upland landscapes.
Matveev, Vladimir V
2010-06-09
According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity."One of the principal objects of theoretical research in any department of knowledge is to find the point of view from which the subject appears in its greatest simplicity."Josiah Willard Gibbs (1839-1903).
Mellor, Liliana F.; Huebner, Pedro; Cai, Shaobo; Taylor, Michael A.; Spang, Jeffrey
2017-01-01
Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fiber and pore architecture in a single build. However, this approach generally lacks the ability to achieve submicron resolution features to mimic native tissue. The goal of this study was to fabricate and evaluate 3D printed, electrospun, and combination of 3D printed/electrospun scaffolds to mimic the native architecture of heterogeneous tissue. We assessed their ability to support viability and proliferation of human adipose derived stem cells (hASC). Cells had increased proliferation and high viability over 21 days on all scaffolds. We further tested implantation of stacked-electrospun scaffold versus combined electrospun/3D scaffold on a cadaveric pig knee model and found that stacked-electrospun scaffold easily delaminated during implantation while the combined scaffold was easier to implant. Our approach combining these two commonly used scaffold fabrication technologies allows for the creation of a scaffold with more close resemblance to heterogeneous tissue architecture, holding great potential for tissue engineering and regenerative medicine applications of osteochondral tissue and other heterogeneous tissues. PMID:28536700
NASA Astrophysics Data System (ADS)
Bhattacharya, Susmita; Ghosh, Sudeshna; Dasgupta, Swagata; Roy, Anushree
2013-10-01
The difference in molecular structure of native HEWL and its fibrils, grown at a pH value near physiological pH 7.4 and at a pH value just above the pI, 10.7 in presence and absence of Cu(II) ions, is discussed. We focus on differences between the molecular structure of the native protein and fibrils using principal component analysis of their Raman spectra. The overlap areas of the scores of each species are used to quantify the difference in the structure of the native HEWL and fibrils in different environments. The overall molecular structures are significantly different for fibrils grown at two pH values. However, in presence of Cu(II) ions, the fibrils have similarities in their molecular structures at these pH environments. Spectral variation within each species, as obtained from the standard deviations of the scores in PCA plots, reveals the variability in the structure within a particular species.
Relation between native ensembles and experimental structures of proteins
Best, Robert B.; Lindorff-Larsen, Kresten; DePristo, Mark A.; Vendruscolo, Michele
2006-01-01
Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of “high-sequence similarity Protein Data Bank” (HSP) structures and consider the extent to which such ensembles represent the structural heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest that even a modest number of structures of a protein determined under different conditions, or with small variations in sequence, capture a representative subset of the true native-state ensemble. PMID:16829580
Culturally appropriate HIV/AIDS and substance abuse prevention programs for urban Native youth.
Aguilera, Solis; Plasencia, Ana Vanesa
2005-09-01
This article will examine HIV/AIDS and substance abuse prevention for urban Native youth in Oakland, California. It will highlight the Native American Health Center's Youth Services programs. These programs incorporate solutions based on a traditional value system rooted in Native culture and consisting of youth empowerment, leadership training, prevention activities, traditional cultural activities and wellness and life skills education. They aim to reduce HIV/AIDS and substance abuse risk for American Indian/Alaska Native (AI/AN) youth through structured, community-based interventions. The Youth Services Program's events, such as the Seventh Native American Generation and the Gathering of Native Americans, offer effective and culturally relevant ways of teaching youth about American Indian/Alaska Native history, intergenerational trauma, and traditional Native culture. Satisfaction surveys gathered from these youth provide invaluable data on the positive effects of these prevention efforts. The need for culturally relevant and culturally appropriate HIV/AIDS and substance abuse prevention programs for urban AI/AN youth is apparent. These prevention efforts must be creatively integrated into the multidimensional and complex social structures of Native American youth.
Sen. Johnson, Tim [D-SD
2013-11-13
House - 11/18/2013 On motion to suspend the rules and agree to the resolution Agreed to by voice vote. (All Actions) Tracker: This bill has the status Agreed to in HouseHere are the steps for Status of Legislation:
Yao, Xiaobin; Tan, Timothy Thatt Yang; Wang, Yong
2014-01-24
This work is the first demonstration of a simple thiol-ene click chemistry to anchor vinyl imidazolium β-CD onto thiol silica to form a novel cationic native cyclodextrin (CD) chiral stationary phase (CSP). The CSP afforded high enantioseparation ability towards dansyl (Dns) amino acids, carboxylic aryl compounds and flavonoids in chiral HPLC. The current CSP demonstrates the highest resolving ability (selectivity >1.1, resolution >1.5) towards Dns amino acids in a mobile phase buffered at pH=6.5, with the resolution of Dns-dl-leucine as high as 6.97. 2,4-dichloride propionic acid (2,4-ClPOPA) was well resolved with the selectivity and resolution of 1.37 and 4.88, respectively. Compared to a previously reported native CD-CSP based on a triazole linkage, the current cationic CD-CSP shows a stronger retention and higher resolution towards acidic chiral compounds, ascribed to the propitious strong electrostatic attraction. Stability evaluation results indicated that thiol-ene reaction can provide a facile and robust approach for the preparation of positively charged CD CSPs. Copyright © 2013 Elsevier B.V. All rights reserved.
Structure and self-assembly of the calcium binding matrix protein of human metapneumovirus.
Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M
2014-01-07
The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca²⁺ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca²⁺ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Crystallization and preliminary X-ray analysis of gene product 44 from bacteriophage Mu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondou, Youhei; Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama; Kitazawa, Daisuke
2005-01-01
Bacteriophage Mu baseplate protein gene product 44 was crystallized. The crystal belongs to space group R3, with unit-cell parameters a = b = 126.6, c = 64.2 Å. Bacteriophage Mu baseplate protein gene product 44 (gp44) is an essential protein required for the assembly of viable phages. To investigate the roles of gp44 in baseplate assembly and infection, gp44 was crystallized at pH 6.0 in the presence of 20% 2-methyl-2,4-pentanediol. The crystals belong to space group R3, with unit-cell parameters a = b = 127.47, c = 63.97 Å. The crystals diffract X-rays to at least 2.1 Å resolution andmore » are stable in the X-ray beam and are therefore appropriate for structure determination. Native data have been collected to 2.1 Å resolution using a DIP6040 image-plate system at beamline BL44XU at the SPring-8 facility in Japan.« less
Coherent Raman scattering microscopy for label-free imaging of live amphioxus
NASA Astrophysics Data System (ADS)
Yu, Zhilong; Chen, Tao; Zhang, Xiannian; Shen, Jie; Chen, Junyuan; Huang, Yanyi
2012-03-01
The existence of notochord distinguishes chordates from other phyla. Amphioxus is the only animal that keeps notochord during the whole life. Notochord is a unique organ for amphioxus, with its vertically arranged muscular notochordal plates, which is different from notochords in embryos of other chordates. We use stimulated Raman scattering (SRS) microscopy as a non-invasive technique to image the chemical components in amphioxus notochord. SRS provides chemical specificity as spontaneous Raman does and offers a higher sensitivity for fast acquisition. Unlike coherent anti- Stokes Raman scattering (CARS) microscopy, SRS microscopy doesn't have non-resonant background and can better differentiate different components in the specimen. We verify that the notochord is a protein-rich organ, which agrees well with the result of conventional staining methods. Detailed structures in notochordal plates and notochordal sheath are revealed by SRS microscopy with diffraction limited resolution. Our experiment shows that SRS microscopy is an excellent imaging tool for biochemical research with its intrinsic chemical selectivity, high spatiotemporal resolution and native 3D optical sectioning ability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordeiro, Artur T.; Feliciano, Patricia R.; Nonato, M. Cristina, E-mail: cristy@fcfrp.usp.br
2006-10-01
Dihydroorotate dehydrogenase from L. major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitant agent. A complete data set from a native crystal has been collected to 2.0 Å resolution using an in-house rotating-anode generator. Dihydroorotate dehydrogenases (DHODHs) are flavin-containing enzymes that catalyze the oxidation of l-dihydroorotate to orotate, the fourth step in the de novo pyrimidine nucleotide synthesis pathway. In this study, DHODH from Leishmania major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitating agent. The crystals belong to space group P6{sub 1}, with unit-cell parameters a = 143.7, cmore » = 69.8 Å. X-ray diffraction data were collected to 2.0 Å resolution using an in-house rotating-anode generator. Analysis of the solvent content and the self-rotation function indicate the presence of two molecules in the asymmetric unit. The structure has been solved by the molecular-replacement technique.« less
Folding and Stabilization of Native-Sequence-Reversed Proteins
Zhang, Yuanzhao; Weber, Jeffrey K; Zhou, Ruhong
2016-01-01
Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols. PMID:27113844
Folding and Stabilization of Native-Sequence-Reversed Proteins
NASA Astrophysics Data System (ADS)
Zhang, Yuanzhao; Weber, Jeffrey K.; Zhou, Ruhong
2016-04-01
Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols.
Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model
NASA Astrophysics Data System (ADS)
O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.
2015-12-01
Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.
Is the isolated ligand binding domain a good model of the domain in the native receptor?
Deming, Dustin; Cheng, Qing; Jayaraman, Vasanthi
2003-05-16
Numerous studies have used the atomic level structure of the isolated ligand binding domain of the glutamate receptor to elucidate the agonist-induced activation and desensitization processes in this group of proteins. However, no study has demonstrated the structural equivalence of the isolated ligand binding fragments and the protein in the native receptor. In this report, using visible absorption spectroscopy we show that the electronic environment of the antagonist 6-cyano-7-nitro-2,3-dihydroxyquinoxaline is identical for the isolated protein and the native glutamate receptors expressed in cells. Our results hence establish that the local structure of the ligand binding site is the same in the two proteins and validate the detailed structure-function relationships that have been developed based on a comparison of the structure of the isolated ligand binding domain and electrophysiological consequences in the native receptor.
Zhou, Ren-Bin; Lu, Hui-Meng; Liu, Jie; Shi, Jian-Yu; Zhu, Jing; Lu, Qin-Qin; Yin, Da-Chuan
2016-01-01
Recombinant expression of proteins has become an indispensable tool in modern day research. The large yields of recombinantly expressed proteins accelerate the structural and functional characterization of proteins. Nevertheless, there are literature reported that the recombinant proteins show some differences in structure and function as compared with the native ones. Now there have been more than 100,000 structures (from both recombinant and native sources) publicly available in the Protein Data Bank (PDB) archive, which makes it possible to investigate if there exist any proteins in the RCSB PDB archive that have identical sequence but have some difference in structures. In this paper, we present the results of a systematic comparative study of the 3D structures of identical naturally purified versus recombinantly expressed proteins. The structural data and sequence information of the proteins were mined from the RCSB PDB archive. The combinatorial extension (CE), FATCAT-flexible and TM-Align methods were employed to align the protein structures. The root-mean-square distance (RMSD), TM-score, P-value, Z-score, secondary structural elements and hydrogen bonds were used to assess the structure similarity. A thorough analysis of the PDB archive generated five-hundred-seventeen pairs of native and recombinant proteins that have identical sequence. There were no pairs of proteins that had the same sequence and significantly different structural fold, which support the hypothesis that expression in a heterologous host usually could fold correctly into their native forms.
Zhou, Ren-Bin; Lu, Hui-Meng; Liu, Jie; Shi, Jian-Yu; Zhu, Jing; Lu, Qin-Qin; Yin, Da-Chuan
2016-01-01
Recombinant expression of proteins has become an indispensable tool in modern day research. The large yields of recombinantly expressed proteins accelerate the structural and functional characterization of proteins. Nevertheless, there are literature reported that the recombinant proteins show some differences in structure and function as compared with the native ones. Now there have been more than 100,000 structures (from both recombinant and native sources) publicly available in the Protein Data Bank (PDB) archive, which makes it possible to investigate if there exist any proteins in the RCSB PDB archive that have identical sequence but have some difference in structures. In this paper, we present the results of a systematic comparative study of the 3D structures of identical naturally purified versus recombinantly expressed proteins. The structural data and sequence information of the proteins were mined from the RCSB PDB archive. The combinatorial extension (CE), FATCAT-flexible and TM-Align methods were employed to align the protein structures. The root-mean-square distance (RMSD), TM-score, P-value, Z-score, secondary structural elements and hydrogen bonds were used to assess the structure similarity. A thorough analysis of the PDB archive generated five-hundred-seventeen pairs of native and recombinant proteins that have identical sequence. There were no pairs of proteins that had the same sequence and significantly different structural fold, which support the hypothesis that expression in a heterologous host usually could fold correctly into their native forms. PMID:27517583
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozar, O.; Filip, C.; Tripon, C.
The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.
Sen. Cardin, Benjamin L. [D-MD
2011-05-17
Senate - 05/17/2011 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
NASA Technical Reports Server (NTRS)
Kim, E. J.; Walker, J. P.; Panciera, R.; Kalma, J. D.
2006-01-01
Spatially-distributed soil moisture observations have applications spanning a wide range of spatial resolutions from the very local needs of individual farmers to the progressively larger areas of interest to weather forecasters, water resource managers, and global climate modelers. To date, the most promising approach for space-based remote sensing of soil moisture makes use of passive microwave emission radiometers at L-band frequencies (1-2 GHz). Several soil moisture-sensing satellites have been proposed in recent years, with the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission scheduled to be launched first in a couple years. While such a microwave-based approach has the advantage of essentially allweather operation, satellite size limits spatial resolution to 10's of km. Whether used at this native resolution or in conjunction with some type of downscaling technique to generate soil moisture estimates on a finer-scale grid, the effects of subpixel spatial variability play a critical role. The soil moisture variability is typically affected by factors such as vegetation, topography, surface roughness, and soil texture. Understanding and these factors is the key to achieving accurate soil moisture retrievals at any scale. Indeed, the ability to compensate for these factors ultimately limits the achievable spatial resolution and/or accuracy of the retrieval. Over the last 20 years, a series of airborne campaigns in the USA have supported the development of algorithms for spaceborne soil moisture retrieval. The most important observations involved imagery from passive microwave radiometers. The early campaigns proved that the retrieval worked for larger and larger footprints, up to satellite-scale footprints. These provided the solid basis for proposing the satellite missions. More recent campaigns have explored other aspects such as retrieval performance through greater amounts of vegetation. All of these campaigns featured extensive ground truth collection over a range of grid spacings, to provide a basis for examining the effects of subpixel variability. However, the native footprint size of the airborne L-band radiometers was always a few hundred meters. During the recently completed (November, 2005) National Airborne Field Experiment (NAFE) campaign in Australia, a compact L-band radiometer was deployed on a small aircraft. This new combination permitted routine observations at native resolutions as high as 60 meters, substantially finer than in previous airborne soil moisture campaigns, as well as satellite footprint areal coverage. The radiometer, the Polarimetric L-band Microwave Radiometer (PLMR) performed extremely well and operations included extensive calibration-related observations. Thus, along with the extensive fine-scale ground truth, the NAFE dataset includes all the ingredients for the first scaling studies involving very-high-native resolution soil moisture observations and the effects of vegetation, roughness, etc. A brief overview of the NAFE will be presented, then examples of the airborne observations with resolutions from 60 m to 1 km will be shown, and early results from scaling studies will be discussed.
Ptáčková, Renata; Ječmen, Tomáš; Novák, Petr; Hudeček, Jiří; Stiborová, Marie; Šulc, Miroslav
2014-01-01
Protein–protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8–Met78). The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr). The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis) to map the protein-protein interface or regions with a flexible structure. PMID:24865487
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javid-Majd, Farah; Yang, Dong; Ioerger, Thomas R.
2008-06-23
Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target for tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 {angstrom}. The structure of the apoenzyme reveals that the protein is composed of five -helicesmore » with connecting loops and is a member of the {alpha}-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between {alpha}-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.« less
Dias, José; Renault, Louis; Pérez, Javier; Mirande, Marc
2013-08-16
In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex.
Progressive Stochastic Reconstruction Technique (PSRT) for cryo electron tomography.
Turoňová, Beata; Marsalek, Lukas; Davidovič, Tomáš; Slusallek, Philipp
2015-03-01
Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.
Isupov, Michail N; Schröder, Ewald; Gibson, Robert P; Beecher, Jean; Donadio, Giuliana; Saneei, Vahid; Dcunha, Stephlina A; McGhie, Emma J; Sayer, Christopher; Davenport, Colin F; Lau, Peter C; Hasegawa, Yoshie; Iwaki, Hiroaki; Kadow, Maria; Balke, Kathleen; Bornscheuer, Uwe T; Bourenkov, Gleb; Littlechild, Jennifer A
2015-11-01
The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer-Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.
Kameche, Farid; Ngo, Anh-Tu; Salzemann, Caroline; Cordeiro, Marco; Sutter, Eli; Petit, Christophe
2015-11-14
Co(x)Pt(100-x) nanoalloys have been synthesized by two different chemical processes either at high or at low temperature. Their physical properties and the order/disorder phase transition induced by annealing have been investigated depending on the route of synthesis. It is demonstrated that the chemical synthesis at high temperature allows stabilization of the fcc structure of the native nanoalloys while the soft chemical approach yields mainly poly or non crystalline structure. As a result the approach of the order/disorder phase transition is strongly modified as observed by high-resolution transmission electron microscopy (HR-TEM) studies performed during in situ annealing of the different nanoalloys. The control of the nanocrystallinity leads to significant decrease in the chemical ordering temperature as the ordered structure is observed at temperatures as low as 420 °C. This in turn preserves the individual nanocrystals and prevents their coalescence usually observed during the annealing necessary for the transition to an ordered phase.
Gold, Matthew G.; Fowler, Douglas M.; Means, Christopher K.; Pawson, Catherine T.; Stephany, Jason J.; Langeberg, Lorene K.; Fields, Stanley; Scott, John D.
2013-01-01
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces. PMID:23625929
Maslennikov, Innokentiy; Choe, Senyon; Riek, Roland
2013-01-01
Because membrane proteins need to be extracted from their natural environment and reconstituted in artificial milieus for the 3D structure determination by X-ray crystallography or NMR, the search for membrane mimetic that conserve the native structure and functional activities remains challenging. We demonstrate here a detergent/nanodisc screening study by NMR of the bacterial α-helical membrane protein YgaP containing a cytoplasmic rhodanese domain. The analysis of 2D [15N,1H]-TROSY spectra shows that only a careful usage of low amounts of mixed detergents did not perturb the cytoplasmic domain while solubilizing in parallel the transmembrane segments with good spectral quality. In contrast, the incorporation of YgaP into nanodiscs appeared to be straightforward and yielded a surprisingly high quality [15N,1H]-TROSY spectrum opening an avenue for the structural studies of a helical membrane protein in a bilayer system by solution state NMR. PMID:23349867
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.M.; Saxena, A.; Mok, H. Y.-K.
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein ({Delta}PilS), which makes the pilus, was determined at 1.9 {angstrom} resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of {Delta}PilS and a target CFTR peptide, determined at 1.8 {angstrom}, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
Electronic polarization stabilizes tertiary structure prediction of HP-36.
Duan, Li L; Zhu, Tong; Zhang, Qing G; Tang, Bo; Zhang, John Z H
2014-04-01
Molecular dynamic (MD) simulations with both implicit and explicit solvent models have been carried out to study the folding dynamics of HP-36 protein. Starting from the extended conformation, the secondary structure of all three helices in HP-36 was formed in about 50 ns and remained stable in the remaining simulation. However, the formation of the tertiary structure was difficult. Although some intermediates were close to the native structure, the overall conformation was not stable. Further analysis revealed that the large structure fluctuation of loop and hydrophobic core regions was devoted mostly to the instability of the structure during MD simulation. The backbone root-mean-square deviation (RMSD) of the loop and hydrophobic core regions showed strong correlation with the backbone RMSD of the whole protein. The free energy landscape indicated that the distribution of main chain torsions in loop and turn regions was far away from the native state. Starting from an intermediate structure extracted from the initial AMBER simulation, HP-36 was found to generally fold to the native state under the dynamically adjusted polarized protein-specific charge (DPPC) simulation, while the peptide did not fold into the native structure when AMBER force filed was used. The two best folded structures were extracted and taken into further simulations in water employing AMBER03 charge and DPPC for 25 ns. Result showed that introducing polarization effect into interacting potential could stabilize the near-native protein structure.
Greenwood, M J; Hunt, G L
1995-04-01
The authors use Standard Metropolitan Statistical Area (SMSA) data constructed from 1980 census microdata files and other sources to estimate a structural model of native/foreign-born labor demand and labor supply which distinguishes the effects upon real wages of each type of labor and on the employment of natives. The authors specify, econometrically estimate, and simulate the structural model which incorporates not only a production structure channel through which immigrants influence area real wages and employment, but also demand and native labor supply channels. It is noted that while these are not the only channels through which immigrants may affect native workers, the model nonetheless constitutes a step in the direction of a general equilibrium approach. In the production structure channel, immigrants and natives are found to be substitutes in production. Immigration lowers foreign-born wage rates and leads to lower wages for natives. The negative effects of the production channel usually are ameliorated through the demand channel. Further, immigrants add to local demand through their earnings and potentially through non-labor income, while also lowering unit costs and local prices which enhances real incomes and potentially net exports, and thus the demands for local output and area labor. The author discusses findings of interest from the simulation results based upon an analysis of all areas.
Cooperative Tertiary Interaction Network Guides RNA Folding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrouzi, Reza; Roh, Joon Ho; Kilburn, Duncan
2013-04-08
Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends onmore » the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.« less
Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arber, J.M.; de Boer, E.; Garner, C.D.
Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure datamore » confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.« less
Force generation by titin folding.
Mártonfalvi, Zsolt; Bianco, Pasquale; Naftz, Katalin; Ferenczy, György G; Kellermayer, Miklós
2017-07-01
Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (<10 pN), extension fluctuated without resolvable discrete events. In position-clamp experiments, the time-dependent force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles. © 2017 The Protein Society.
Resolution of the unfolded state.
NASA Astrophysics Data System (ADS)
Beaucage, Gregory
2008-03-01
The unfolded states in proteins and nucleic acids remain weakly understood despite their importance to protein folding; misfolding diseases (Parkinson's & Alzheimer's); natively unfolded proteins (˜ 30% of eukaryotic proteins); and to understanding ribozymes. Research has been hindered by the inability to quantify the residual (native) structure present in an unfolded protein or nucleic acid. Here, a scaling model is proposed to quantify the degree of folding and the unfolded state (Beaucage, 2004, 2007). The model takes a global view of protein structure and can be applied to a number of analytic methods and to simulations. Three examples are given of application to small-angle scattering from pressure induced unfolding of SNase (Panick, 1998), from acid unfolded Cyt c (Kataoka, 1993) and from folding of Azoarcus ribozyme (Perez-Salas, 2004). These examples quantitatively show 3 characteristic unfolded states for proteins, the statistical nature of a folding pathway and the relationship between extent of folding and chain size during folding for charge driven folding in RNA. Beaucage, G., Biophys. J., in press (2007). Beaucage, G., Phys. Rev. E. 70, 031401 (2004). Kataoka, M., Y. Hagihara, K. Mihara, Y. Goto J. Mol. Biol. 229, 591 (1993). Panick, G., R. Malessa, R. Winter, G. Rapp, K. J. Frye, C. A. Royer J. Mol. Biol. 275, 389 (1998). Perez-Salas U. A., P. Rangan, S. Krueger, R. M. Briber, D. Thirumalai, S. A. Woodson, Biochemistry 43 1746 (2004).
Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin.
Sommer, Martha E; Elgeti, Matthias; Hildebrand, Peter W; Szczepek, Michal; Hofmann, Klaus Peter; Scheerer, Patrick
2015-01-01
In this chapter, we describe a set of complementary techniques that we use to study the activation of rhodopsin, a G protein-coupled receptor (GPCR), and its functional interactions with G protein and arrestin. The protein reagents used for these studies come from native disc membranes or heterologous expression, and G protein and arrestin are often replaced with less complex synthetic peptides derived from key interaction sites of these binding partners (BPs). We first report on our approach to protein X-ray crystallography and describe how protein crystals from native membranes are obtained. The crystal structures provide invaluable resolution, but other techniques are required to assess the dynamic equilibria characteristic for active GPCRs. The simplest approach is "Extra Meta II," which uses UV/Vis absorption spectroscopy to monitor the equilibrium of photoactivated states. Site-specific information about the BPs (e.g., arrestin) is added by fluorescence techniques employing mutants labeled with reporter groups. All functional changes in both the receptor and interacting proteins or peptides are seen with highest precision using Fourier transform infrared (FTIR) difference spectroscopy. In our approach, the lack of site-specific information in FTIR is overcome by parallel molecular dynamics simulations, which are employed to interpret the results and to extend the timescale down to the range of conformational substates. © 2015 Elsevier Inc. All rights reserved.
Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase.
Franklin, A E; McElver, J; Sunjevaric, I; Rothstein, R; Bowen, B; Cande, W Z
1999-01-01
An open question in meiosis is whether the Rad51 recombination protein functions solely in meiotic recombination or whether it is also involved in the chromosome homology search. To address this question, we have performed three-dimensional high-resolution immunofluorescence microscopy to visualize native Rad51 structures in maize male meiocytes. Maize has two closely related RAD51 genes that are expressed at low levels in differentiated tissues and at higher levels in mitotic and meiotic tissues. Cells and nuclei were specially fixed and embedded in polyacrylamide to maintain both native chromosome structure and the three dimensionality of the specimens. Analysis of Rad51 in maize meiocytes revealed that when chromosomes condense during leptotene, Rad51 is diffuse within the nucleus. Rad51 foci form on the chromosomes at the beginning of zygotene and rise to approximately 500 per nucleus by mid-zygotene when chromosomes are pairing and synapsing. During chromosome pairing, we consistently found two contiguous Rad51 foci on paired chromosomes. These paired foci may identify the sites where DNA sequence homology is being compared. During pachytene, the number of Rad51 foci drops to seven to 22 per nucleus. This higher number corresponds approximately to the number of chiasmata in maize meiosis. These observations are consistent with a role for Rad51 in the homology search phase of chromosome pairing in addition to its known role in meiotic recombination. PMID:10330467
Intercalation complex of proflavine with DNA: Structure and dynamics by solid-state NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Pei; Juang, Chilong; Harbison, G.S.
1990-07-06
The structure of the complex formed between the intercalating agent proflavine and fibrous native DNA was studied by one- and two-dimensional high-resolution solid-state nuclear magnetic resonance (NMR). Carbon-13-labeled proflavine was used to show that the drug is stacked with the aromatic ring plane perpendicular to the fiber axis and that it is essentially immobile. Natural abundance carbon-13 NMR of the DNA itself shows that proflavine binding does not change the puckering of the deoxyribose ring. However, phosphorus-31 NMR spectra show profound changes in the orientation of the phosphodiester grouping on proflavine binding, with some of the phosphodiesters tilting almost parallelmore » to the helix axis, and a second set almost perpendicular. The first group to the phosphodiesters probably spans the intercalation sites, whereas the tilting of the second set likely compensates for the unwinding of the DNA by the intercalator.« less
Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides.
Garcia, Mario Daniel; Wang, Jian-Guo; Lonhienne, Thierry; Guddat, Luke William
2017-07-01
Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the first enzyme in the branched-chain amino acid biosynthesis pathway. Five of the most widely used commercial herbicides (i.e. sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinyl-benzoates and sulfonylamino-cabonyl-triazolinones) target this enzyme. Here we have determined the first crystal structure of a plant AHAS in the absence of any inhibitor (2.9 Å resolution) and it shows that the herbicide-binding site adopts a folded state even in the absence of an inhibitor. This is unexpected because the equivalent regions for herbicide binding in uninhibited Saccharomyces cerevisiae AHAS crystal structures are either disordered, or adopt a different fold when the herbicide is not present. In addition, the structure provides an explanation as to why some herbicides are more potent inhibitors of Arabidopsis thaliana AHAS compared to AHASs from other species (e.g. S. cerevisiae). The elucidation of the native structure of plant AHAS provides a new platform for future rational structure-based herbicide design efforts. The coordinates and structure factors for uninhibited AtAHAS have been deposited in the Protein Data Bank (www.pdb.org) with the PDB ID code 5K6Q. © 2017 Federation of European Biochemical Societies.
Gardberg, Anna; Abendroth, Jan; Bhandari, Janhavi; Sankaran, Banumathi; Staker, Bart
2011-09-01
Fructose bisphosphate aldolase (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources, including the bacterium Brucella melitensis and the protozoan Babesia bovis. Bioinformatic analysis of the Bartonella henselae genome revealed an FBPA homolog. The B. henselae FBPA enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme crystallized in the apo form but failed to diffract; however, well diffracting crystals could be obtained by cocrystallization in the presence of the native substrate fructose 1,6-bisphosphate. A data set to 2.35 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a=72.39, b=127.71, c=157.63 Å. The structure was refined to a final free R factor of 22.2%. The structure shares the typical barrel tertiary structure and tetrameric quaternary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site.
Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses.
Suga, Michihiro; Akita, Fusamichi; Hirata, Kunio; Ueno, Go; Murakami, Hironori; Nakajima, Yoshiki; Shimizu, Tetsuya; Yamashita, Keitaro; Yamamoto, Masaki; Ago, Hideo; Shen, Jian-Ren
2015-01-01
Photosynthesis converts light energy into biologically useful chemical energy vital to life on Earth. The initial reaction of photosynthesis takes place in photosystem II (PSII), a 700-kilodalton homodimeric membrane protein complex that catalyses photo-oxidation of water into dioxygen through an S-state cycle of the oxygen evolving complex (OEC). The structure of PSII has been solved by X-ray diffraction (XRD) at 1.9 ångström resolution, which revealed that the OEC is a Mn4CaO5-cluster coordinated by a well defined protein environment. However, extended X-ray absorption fine structure (EXAFS) studies showed that the manganese cations in the OEC are easily reduced by X-ray irradiation, and slight differences were found in the Mn-Mn distances determined by XRD, EXAFS and theoretical studies. Here we report a 'radiation-damage-free' structure of PSII from Thermosynechococcus vulcanus in the S1 state at a resolution of 1.95 ångströms using femtosecond X-ray pulses of the SPring-8 ångström compact free-electron laser (SACLA) and hundreds of large, highly isomorphous PSII crystals. Compared with the structure from XRD, the OEC in the X-ray free electron laser structure has Mn-Mn distances that are shorter by 0.1-0.2 ångströms. The valences of each manganese atom were tentatively assigned as Mn1D(III), Mn2C(IV), Mn3B(IV) and Mn4A(III), based on the average Mn-ligand distances and analysis of the Jahn-Teller axis on Mn(III). One of the oxo-bridged oxygens, O5, has significantly longer distances to Mn than do the other oxo-oxygen atoms, suggesting that O5 is a hydroxide ion instead of a normal oxygen dianion and therefore may serve as one of the substrate oxygen atoms. These findings provide a structural basis for the mechanism of oxygen evolution, and we expect that this structure will provide a blueprint for the design of artificial catalysts for water oxidation.
Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution.
Betzel, C; Klupsch, S; Papendorf, G; Hastrup, S; Branner, S; Wilson, K S
1992-01-20
Savinase (EC3.4.21.14) is secreted by the alkalophilic bacterium Bacillus lentus and is a representative of that subgroup of subtilisin enzymes with maximum stability in the pH range 7 to 10 and high activity in the range 8 to 12. It is therefore of major industrial importance for use in detergents. The crystal structure of the native form of Savinase has been refined using X-ray diffraction data to 1.4 A resolution. The starting model was that of subtilisin Carlsberg. A comparison to the structures of the closely related subtilisins Carlsberg and BPN' and to the more distant thermitase and proteinase K is presented. The structure of Savinase is very similar to those of homologous Bacillus subtilisins. There are two calcium ions in the structure, equivalent to the strong and the weak calcium-binding sites in subtilisin Carlsberg and subtilisin BPN', well known for their stabilizing effect on the subtilisins. The structure of Savinase shows novel features that can be related to its stability and activity. The relatively high number of salt bridges in Savinase is likely to contribute to its high thermal stability. The non-conservative substitutions and deletions in the hydrophobic binding pocket S1 result in the most significant structural differences from the other subtilisins. The different composition of the S1 binding loop as well as the more hydrophobic character of the substrate-binding region probably contribute to the alkaline activity profile of the enzyme. The model of Savinase contains 1880 protein atoms, 159 water molecules and two calcium ions. The crystallographic R-factor [formula; see text].
Baker, Bo Y; Shi, Wuxian; Wang, Benlian; Palczewski, Krzysztof
2014-01-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of d-glyceraldehyde 3-phosphate (G3P) into 1,3-diphosphoglycerate (BGP) in the presence of the NAD cofactor. GAPDH is an important drug target because of its central role in glycolysis, and nonglycolytic processes such as nuclear RNA transport, DNA replication/repair, membrane fusion and cellular apoptosis. Recent studies found that GAPDH participates in the development of diabetic retinopathy and its progression after the cessation of hyperglycemia. Here, we report two structures for native bovine photoreceptor GAPDH as a homotetramer with differing occupancy by NAD, bGAPDH(NAD)4, and bGAPDH(NAD)3. The bGAPDH(NAD)4 was solved at 1.52 Å, the highest resolution for GAPDH. Structural comparison of the bGAPDH(NAD)4 and bGAPDH(NAD)3 models revealed novel details of conformational changes induced by cofactor binding, including a loop region (residues 54–56). Structure analysis of bGAPDH confirmed the importance of Phe34 in NAD binding, and demonstrated that Phe34 was stabilized in the presence of NAD but displayed greater mobility in its absence. The oxidative state of the active site Cys149 residue is regulated by NAD binding, because this residue was found oxidized in the absence of dinucleotide. The distance between Cys149 and His176 decreased upon NAD binding and Cys149 remained in a reduced state when NAD was bound. These findings provide an important structural step for understanding the mechanism of GAPDH activity in vision and its pathological role in retinopathies. PMID:25176140
Interplay of secondary structures and side-chain contacts in the denatured state of BBA1
NASA Astrophysics Data System (ADS)
Wen, Edward Z.; Luo, Ray
2004-08-01
The denatured state of a miniprotein BBA1 is studied under the native condition with the AMBER/Poisson-Boltzmann energy model and with the self-guided enhanced sampling technique. Forty independent trajectories are collected to sample the highly diversified denatured structures. Our simulation data show that the denatured BBA1 contains high percentage of native helix and native turn, but low percentage of native hairpin. Conditional population analysis indicates that the native helix formation and the native hairpin formation are not cooperative in the denatured state. Side-chain analysis shows that the native hydrophobic contacts are more preferred than the non-native hydrophobic contacts in the denatured BBA1. In contrast, the salt-bridge contacts are more or less nonspecific even if their populations are higher than those of hydrophobic contacts. Analysis of the trajectories shows that the native helix mostly initiates near the N terminus and propagates to the C terminus, and mostly forms from 310-helix/turn to α helix. The same analysis shows that the native turn is important but not necessary in its formation in the denatured BBA1. In addition, the formations of the two strands in the native hairpin are rather asymmetric, demonstrating the likely influence of the protein environment. Energetic analysis shows that the native helix formation is largely driven by electrostatic interactions in denatured BBA1. Further, the native helix formation is associated with the breakup of non-native salt-bridge contacts and the accumulation of native salt-bridge contacts. However, the native hydrophobic contacts only show a small increase upon the native helix formation while the non-native hydrophobic contacts stay essentially the same, different from the evolution of hydrophobic contacts observed in an isolated helix folding.
Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi
2015-01-01
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.
Schmidt, Franziska; Kühbacher, Markus; Gross, Ulrich; Kyriakopoulos, Antonius; Schubert, Helmut; Zehbe, Rolf
2011-03-01
3D imaging at a subcellular resolution is a powerful tool in the life sciences to investigate cells and their interactions with native tissues or artificial objects. While a tomographic experimental setup achieving a sufficient structural resolution can be established with either X-rays or electrons, the use of electrons is usually limited to very thin samples in transmission electron microscopy due to the poor penetration depths of electrons. The combination of a serial sectioning approach and scanning electron microscopy in state of the art dual beam experimental setups therefore offers a means to image highly resolved spatial details using a focused ion beam for slicing and an electron beam for imaging. The advantage of this technique over X-ray μCT or X-ray microscopy attributes to the fact that absorption is not a limiting factor in imaging and therefore even strong absorbing structures can be spatially reconstructed with a much higher possible resolution. This approach was used in this study to elucidate the effect of an electric potential on the morphology of cells from a hippocampal cell line (HT22) deposited on gold microelectrodes. While cells cultivated on two different controls (gold and polymer substrates) did show the expected stretched morphology, cells on both the anode and the cathode differed significantly. Cells deposited on the anode part of the electrode exhibited the most extreme deviation, being almost spherical and showed signs of chromatin condensation possibly indicating cell death. Furthermore, EDX was used as supplemental methodology for combined chemical and structural analyses. Copyright © 2010 Elsevier B.V. All rights reserved.
Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.
2010-01-01
Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.
Optimizing physical energy functions for protein folding.
Fujitsuka, Yoshimi; Takada, Shoji; Luthey-Schulten, Zaida A; Wolynes, Peter G
2004-01-01
We optimize a physical energy function for proteins with the use of the available structural database and perform three benchmark tests of the performance: (1) recognition of native structures in the background of predefined decoy sets of Levitt, (2) de novo structure prediction using fragment assembly sampling, and (3) molecular dynamics simulations. The energy parameter optimization is based on the energy landscape theory and uses a Monte Carlo search to find a set of parameters that seeks the largest ratio deltaE(s)/DeltaE for all proteins in a training set simultaneously. Here, deltaE(s) is the stability gap between the native and the average in the denatured states and DeltaE is the energy fluctuation among these states. Some of the energy parameters optimized are found to show significant correlation with experimentally observed quantities: (1) In the recognition test, the optimized function assigns the lowest energy to either the native or a near-native structure among many decoy structures for all the proteins studied. (2) Structure prediction with the fragment assembly sampling gives structure models with root mean square deviation less than 6 A in one of the top five cluster centers for five of six proteins studied. (3) Structure prediction using molecular dynamics simulation gives poorer performance, implying the importance of having a more precise description of local structures. The physical energy function solely inferred from a structural database neither utilizes sequence information from the family of the target nor the outcome of the secondary structure prediction but can produce the correct native fold for many small proteins. Copyright 2003 Wiley-Liss, Inc.
Sen. Cardin, Benjamin L. [D-MD
2013-05-16
Senate - 05/16/2013 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
1994-11-24
complexes with reversible ligands, including edrophonium, d-tubocurarine and huperzine A , diffracting to similar resolution. The X26c Laue beam line...The EMBL-DESY synchrotron facility at Hamburg was employed to collect a complete 2.3 A data set for a crystal of native Torpedo AChE, as well as for...at the NSLS synchrotron facility at Brookhaven National Laboratory (BNL) was used to obtain a Laue diffraction pattern for a crystal of native Torpedo
Subhadarshanee, Biswamaitree; Mohanty, Abhinav; Jagdev, Manas Kumar; Vasudevan, Dileep; Behera, Rabindra K
2017-10-01
Preparation of modified and hybrid ferritin provides a great opportunity to understand the mechanisms of iron loading/unloading, protein self-assembly, size constrained nanomaterial synthesis and targeted drug delivery. However, the large size (M.W.=490kDa) has been limiting the separation of different modified and/or hybrid ferritin nanocages from each other in their intact assembled form and further characterization. Native polyacrylamide gel electrophoresis (PAGE) separates proteins on the basis of both charge and mass, while maintaining their overall native structure and activity. Altering surface charge distribution by substitution of amino acid residues located at the external surface of ferritin (K104E & D40A) affected the migration rate in native PAGE while internal modification had little effect. Crystal structures confirmed that ferritin nanocages made up of subunits with single amino acid substitutions retain the overall structure of ferritin nanocage. Taking advantage of K104E migration behavior, formation of hybrid ferritins with subunits of wild type (WT) and K104E were confirmed and separated in native PAGE. Cage integrity and iron loading ability (ferritin activity) were also tested. The migration pattern of hybrid ferritins in native PAGE depends on the subunit ratio (WT: K104E) in the ferritin cage. Our work shows that native PAGE can be exploited in nanobiotechnology, by analyzing modifications of large proteins like ferritin. Native PAGE, a simple, straight-forward technique, can be used to analyze small modification (by altering external surface charge) in large proteins like ferritin, without disintegrating its self-assembled nanocage structure. In doing so, native PAGE can complement the information obtained from mass spectrometry. The confirmation and separation of modified and hybrid ferritin protein nanocages in native PAGE, opens up various prospects of bio-conjugation, which can be useful in targeted drug delivery, nanobiotechnology and in understanding nature's idea of synthesizing hybrid ferritins in different human tissues. Copyright © 2017 Elsevier B.V. All rights reserved.
Han, Wei; Schulten, Klaus
2013-01-01
In this study, we apply a hybrid-resolution model, namely PACE, to characterize the free energy surfaces (FESs) of trp-cage and a WW domain variant along with the respective folding mechanisms. Unbiased, independent simulations with PACE are found to achieve together multiple folding and unfolding events for both proteins, allowing us to perform network analysis of the FESs to identify folding pathways. PACE reproduces for both proteins expected complexity hidden in the folding FESs, in particular, meta-stable non-native intermediates. Pathway analysis shows that some of these intermediates are, actually, on-pathway folding intermediates and that intermediates kinetically closest to the native states can be either critical on-pathway or off-pathway intermediates, depending on the protein. Apart from general insights into folding, specific folding mechanisms of the proteins are resolved. We find that trp-cage folds via a dominant pathway in which hydrophobic collapse occurs before the N-terminal helix forms; full incorporation of Trp6 into the hydrophobic core takes place as the last step of folding, which, however, may not be the rate-limiting step. For the WW domain variant studied we observe two main folding pathways with opposite orders of formation of the two hairpins involved in the structure; for either pathway, formation of hairpin 1 is more likely to be the rate-limiting step. Altogether, our results suggest that PACE combined with network analysis is a computationally efficient and valuable tool for the study of protein folding. PMID:23915394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soriano, Erika V.; McCloskey, Diane E.; Kinsland, Cynthia
2008-04-01
The crystal structures of two arginine decarboxylase mutant proteins provide insights into the mechanisms of pyruvoyl-group formation and the decarboxylation reaction. Pyruvoyl-dependent arginine decarboxylase (PvlArgDC) catalyzes the first step of the polyamine-biosynthetic pathway in plants and some archaebacteria. The pyruvoyl group of PvlArgDC is generated by an internal autoserinolysis reaction at an absolutely conserved serine residue in the proenzyme, resulting in two polypeptide chains. Based on the native structure of PvlArgDC from Methanococcus jannaschii, the conserved residues Asn47 and Glu109 were proposed to be involved in the decarboxylation and autoprocessing reactions. N47A and E109Q mutant proteins were prepared and themore » three-dimensional structure of each protein was determined at 2.0 Å resolution. The N47A and E109Q mutant proteins showed reduced decarboxylation activity compared with the wild-type PvlArgDC. These residues may also be important for the autoprocessing reaction, which utilizes a mechanism similar to that of the decarboxylation reaction.« less
Crystallographic snapshots of active site metal shift in E. coli fructose 1,6-bisphosphate aldolase.
Tran, Huyen-Thi; Lee, Seon-Hwa; Ho, Thien-Hoang; Hong, Seung-Hye; Huynh, Kim-Hung; Ahn, Yeh-Jin; Oh, Deok-Kun; Kang, Lin-Woo
2016-12-01
Fructose 1,6-bisphosphate aldolase (FBA) is important for both glycolysis and gluconeogenesis in life. Class II (zinc dependent) FBA is an attractive target for the development of antibiotics against protozoa, bacteria, and fungi, and is also widely used to produce various high-value stereoisomers in the chemical and pharmaceutical industry. In this study, the crystal structures of class II Escherichia coli FBA (EcFBA) were determined from four different crystals, with resolutions between 1.8 Å and 2.0 Å. Native EcFBA structures showed two separate sites of Zn1 (interior position) and Zn2 (active site surface position) for Zn2+ ion. Citrate and TRIS bound EcFBA structures showed Zn2+ position exclusively at Zn2. Crystallographic snapshots of EcFBA structures with and without ligand binding proposed the rationale of metal shift at the active site, which might be a hidden mechanism to keep the trace metal cofactor Zn2+ within EcFBA without losing it. [BMB Reports 2016; 49(12): 681-686].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.; Saxena, A; Mok, H
2009-01-01
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.; Saxena, A; Mok, H
2009-01-01
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
Olson, Mark A; Lee, Michael S
2014-01-01
A central problem of computational structural biology is the refinement of modeled protein structures taken from either comparative modeling or knowledge-based methods. Simulations are commonly used to achieve higher resolution of the structures at the all-atom level, yet methodologies that consistently yield accurate results remain elusive. In this work, we provide an assessment of an adaptive temperature-based replica exchange simulation method where the temperature clients dynamically walk in temperature space to enrich their population and exchanges near steep energetic barriers. This approach is compared to earlier work of applying the conventional method of static temperature clients to refine a dataset of conformational decoys. Our results show that, while an adaptive method has many theoretical advantages over a static distribution of client temperatures, only limited improvement was gained from this strategy in excursions of the downhill refinement regime leading to an increase in the fraction of native contacts. To illustrate the sampling differences between the two simulation methods, energy landscapes are presented along with their temperature client profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Jarrod B.; Ealick, Steven E., E-mail: see3@cornell.edu
The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined.more » KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.« less
The neuronal porosome complex in health and disease
Naik, Akshata R; Lewis, Kenneth T
2015-01-01
Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate the precision release of intravesicular material from cells. Membrane-bound secretory vesicles transiently dock and fuse at the base of porosomes facing the cytosol to expel pressurized intravesicular contents from the cell during secretion. The structure, isolation, composition, and functional reconstitution of the neuronal porosome complex have greatly progressed, providing a molecular understanding of its function in health and disease. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins, compared to the 120 nm nuclear pore complex composed of >500 protein molecules. Membrane proteins compose the porosome complex, making it practically impossible to solve its atomic structure. However, atomic force microscopy and small-angle X-ray solution scattering studies have provided three-dimensional structural details of the native neuronal porosome at sub-nanometer resolution, providing insights into the molecular mechanism of its function. The participation of several porosome proteins previously implicated in neurotransmission and neurological disorders, further attest to the crosstalk between porosome proteins and their coordinated involvement in release of neurotransmitter at the synapse. PMID:26264442
Trevino, R J; Gliubich, F; Berni, R; Cianci, M; Chirgwin, J M; Zanotti, G; Horowitz, P M
1999-05-14
The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R. J., Tsalkova, T., Dramer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P. M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and non-native conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate. X-ray crystallography showed that Delta1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.
TOUCHSTONE II: a new approach to ab initio protein structure prediction.
Zhang, Yang; Kolinski, Andrzej; Skolnick, Jeffrey
2003-08-01
We have developed a new combined approach for ab initio protein structure prediction. The protein conformation is described as a lattice chain connecting C(alpha) atoms, with attached C(beta) atoms and side-chain centers of mass. The model force field includes various short-range and long-range knowledge-based potentials derived from a statistical analysis of the regularities of protein structures. The combination of these energy terms is optimized through the maximization of correlation for 30 x 60,000 decoys between the root mean square deviation (RMSD) to native and energies, as well as the energy gap between native and the decoy ensemble. To accelerate the conformational search, a newly developed parallel hyperbolic sampling algorithm with a composite movement set is used in the Monte Carlo simulation processes. We exploit this strategy to successfully fold 41/100 small proteins (36 approximately 120 residues) with predicted structures having a RMSD from native below 6.5 A in the top five cluster centroids. To fold larger-size proteins as well as to improve the folding yield of small proteins, we incorporate into the basic force field side-chain contact predictions from our threading program PROSPECTOR where homologous proteins were excluded from the data base. With these threading-based restraints, the program can fold 83/125 test proteins (36 approximately 174 residues) with structures having a RMSD to native below 6.5 A in the top five cluster centroids. This shows the significant improvement of folding by using predicted tertiary restraints, especially when the accuracy of side-chain contact prediction is >20%. For native fold selection, we introduce quantities dependent on the cluster density and the combination of energy and free energy, which show a higher discriminative power to select the native structure than the previously used cluster energy or cluster size, and which can be used in native structure identification in blind simulations. These procedures are readily automated and are being implemented on a genomic scale.
Lewney, Sarah; Smith, Lorna J
2012-03-01
Bovine α-lactalbumin (αLA) forms a misfolded disulfide bond shuffled isomer, X-αLA. This X-αLA isomer contains two native disulfide bridges (Cys 6-Cys 120 and Cys 28-Cys 111) and two non-native disulfide bridges (Cys 61-Cys 73 and Cys 77-Cys 91). MD simulations have been used to characterize the X-αLA isomer and its formation via disulfide bond shuffling and to compare it with the native fold of αLA. In the simulations of the X-αLA isomer the structure of the α-domain of native αLA is largely retained in agreement with experimental data. However, there are significant rearrangements in the β-domain, including the loss of the native β-sheet and calcium binding site. Interestingly, the energies of X-αLA and native αLA in simulations in the absence of calcium are closely similar. Thus, the X-αLA isomer represents a different low energy fold for the protein. Calcium binding to native αLA is shown to help preserve the structure of the β-domain of the protein limiting possibilities for disulfide bond shuffling. Hence, binding calcium plays an important role in both maintaining the native structure of αLA and providing a mechanism for distinguishing between folded and misfolded species. Copyright © 2011 Wiley Periodicals, Inc.
Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica
Hanna, Cause; Cook, Erin D.; Thompson, Ariel R.; Dare, Lyndzey E.; Palaski, Amanda L.; Foote, David; Goodisman, Michael A. D.
2014-01-01
Social insects rank among the most invasive of terrestrial species. The success of invasive social insects stems, in part, from the flexibility derived from their social behaviors. We used genetic markers to investigate if the social system of the invasive wasp, Vespula pensylvanica, differed in its introduced and native habitats in order to better understand variation in social phenotype in invasive social species. We found that (1) nestmate workers showed lower levels of relatedness in introduced populations than native populations, (2) introduced colonies contained workers produced by multiple queens whereas native colonies contained workers produced by only a single queen, (3) queen mate number did not differ significantly between introduced and native colonies, and (4) workers from introduced colonies were frequently produced by queens that originated from foreign nests. Thus, overall, native and introduced colonies differed substantially in social phenotype because introduced colonies more frequently contained workers produced by multiple, foreign queens. In addition, the similarity in levels of genetic variation in introduced and native habitats, as well as observed variation in colony social phenotype in native populations, suggest that colony structure in invasive populations may be partially associated with social plasticity. Overall, the differences in social structure observed in invasive V. pensylvanica parallel those in other, distantly related invasive social insects, suggesting that insect societies often develop similar social phenotypes upon introduction into new habitats.
Muster, Christoph; Meyer, Marc; Sattler, Thomas
2014-01-01
Understanding how space affects the occurrence of native and non-native species is essential for inferring processes that shape communities. However, studies considering spatial and environmental variables for the entire community - as well as for the native and non-native assemblages in a single study - are scarce for animals. Harvestmen communities in central Europe have undergone drastic turnovers during the past decades, with several newly immigrated species, and thus provide a unique system to study such questions. We studied the wall-dwelling harvestmen communities from 52 human settlements in Luxembourg and found the assemblages to be largely dominated by non-native species (64% of specimens). Community structure was analysed using Moran's eigenvector maps as spatial variables, and landcover variables at different radii (500 m, 1000 m, 2000 m) in combination with climatic parameters as environmental variables. A surprisingly high portion of pure spatial variation (15.7% of total variance) exceeded the environmental (10.6%) and shared (4%) components of variation, but we found only minor differences between native and non-native assemblages. This could result from the ecological flexibility of both, native and non-native harvestmen that are not restricted to urban habitats but also inhabit surrounding semi-natural landscapes. Nevertheless, urban landcover variables explained more variation in the non-native community, whereas coverage of semi-natural habitats (forests, rivers) at broader radii better explained the native assemblage. This indicates that some urban characteristics apparently facilitate the establishment of non-native species. We found no evidence for competitive replacement of native by invasive species, but a community with novel combination of native and non-native species.
Muster, Christoph; Meyer, Marc; Sattler, Thomas
2014-01-01
Understanding how space affects the occurrence of native and non-native species is essential for inferring processes that shape communities. However, studies considering spatial and environmental variables for the entire community – as well as for the native and non-native assemblages in a single study – are scarce for animals. Harvestmen communities in central Europe have undergone drastic turnovers during the past decades, with several newly immigrated species, and thus provide a unique system to study such questions. We studied the wall-dwelling harvestmen communities from 52 human settlements in Luxembourg and found the assemblages to be largely dominated by non-native species (64% of specimens). Community structure was analysed using Moran's eigenvector maps as spatial variables, and landcover variables at different radii (500 m, 1000 m, 2000 m) in combination with climatic parameters as environmental variables. A surprisingly high portion of pure spatial variation (15.7% of total variance) exceeded the environmental (10.6%) and shared (4%) components of variation, but we found only minor differences between native and non-native assemblages. This could result from the ecological flexibility of both, native and non-native harvestmen that are not restricted to urban habitats but also inhabit surrounding semi-natural landscapes. Nevertheless, urban landcover variables explained more variation in the non-native community, whereas coverage of semi-natural habitats (forests, rivers) at broader radii better explained the native assemblage. This indicates that some urban characteristics apparently facilitate the establishment of non-native species. We found no evidence for competitive replacement of native by invasive species, but a community with novel combination of native and non-native species. PMID:24595309
Native State Volume Fluctuations in Proteins as a Mechanism for Dynamic Allostery.
Law, Anthony B; Sapienza, Paul J; Zhang, Jun; Zuo, Xiaobing; Petit, Chad M
2017-03-15
Allostery enables tight regulation of protein function in the cellular environment. Although existing models of allostery are firmly rooted in the current structure-function paradigm, the mechanistic basis for allostery in the absence of structural change remains unclear. In this study, we show that a typical globular protein is able to undergo significant changes in volume under native conditions while exhibiting no additional changes in protein structure. These native state volume fluctuations were found to correlate with changes in internal motions that were previously recognized as a source of allosteric entropy. This finding offers a novel mechanistic basis for allostery in the absence of canonical structural change. The unexpected observation that function can be derived from expanded, low density protein states has broad implications for our understanding of allostery and suggests that the general concept of the native state be expanded to allow for more variable physical dimensions with looser packing.
Amporndanai, Kangsa; O’Neill, Paul M.
2018-01-01
Cytochrome bc 1, a dimeric multi-subunit electron-transport protein embedded in the inner mitochondrial membrane, is a major drug target for the treatment and prevention of malaria and toxoplasmosis. Structural studies of cytochrome bc 1 from mammalian homologues co-crystallized with lead compounds have underpinned structure-based drug design to develop compounds with higher potency and selectivity. However, owing to the limited amount of cytochrome bc 1 that may be available from parasites, all efforts have been focused on homologous cytochrome bc 1 complexes from mammalian species, which has resulted in the failure of some drug candidates owing to toxicity in the host. Crystallographic studies of the native parasite proteins are not feasible owing to limited availability of the proteins. Here, it is demonstrated that cytochrome bc 1 is highly amenable to single-particle cryo-EM (which uses significantly less protein) by solving the apo and two inhibitor-bound structures to ∼4.1 Å resolution, revealing clear inhibitor density at the binding site. Therefore, cryo-EM is proposed as a viable alternative method for structure-based drug discovery using both host and parasite enzymes. PMID:29765610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton
The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c =more » 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.« less
Structural basis for the slow digestion property of native cereal starches.
Zhang, Genyi; Venkatachalam, Mahesh; Hamaker, Bruce R
2006-11-01
Native cereal starches are ideal slowly digestible starches (SDS), and the structural basis for their slow digestion property was investigated. The shape, size, surface pores and channels, and degree of crystallinity of starch granules were not related to the proportion of SDS, while semicrystalline structure was critical to the slow digestion property as evidenced by loss of SDS after cooking. The high proportion of SDS in cereal starches, as compared to potato starch, was related to their A-type crystalline structure with a lower degree of perfection as indicated by a higher amount of shortest A chains with a degree of polymerization (DP) of 5-10. The A-type amorphous lamellae, an important component of crystalline regions of native cereal starches, also affect the amount of SDS as shown by a reduction of SDS in lintnerized maize starches. These observations demonstrate that the supramolecular A-type crystalline structure, including the distribution and perfection of crystalline regions (both crystalline and amorphous lamellae), determines the slow digestion property of native cereal starches.
The counting of native blood cells by digital microscopy
NASA Astrophysics Data System (ADS)
Torbin, S. O.; Doubrovski, V. A.; Zabenkov, I. V.; Tsareva, O. E.
2017-03-01
An algorithm for photographic images processing of blood samples in its native state was developed to determine the concentration of erythrocytes, leukocytes and platelets without individual separate preparation of cells' samples. Special "photo templates" were suggested to use in order to identify red blood cells. The effect of "highlighting" of leukocytes, which was found by authors, was used to increase the accuracy of this type of cells counting. Finally to raise the resolution of platelets from leukocytes the areas of their photo images were used, but not their sizes. It is shown that the accuracy of cells counting for native blood samples may be comparable with the accuracy of similar studies for smears. At the same time the proposed native blood analysis simplifies greatly the procedure of sample preparation in comparison to smear, permits to move from the detection of blood cells ratio to the determination of their concentrations in the sample.
Koukos, Panagiotis I; Glykos, Nicholas M
2014-08-28
Folding molecular dynamics simulations amounting to a grand total of 4 μs of simulation time were performed on two peptides (with native and mutated sequences) derived from loop 3 of the vammin protein and the results compared with the experimentally known peptide stabilities and structures. The simulations faithfully and accurately reproduce the major experimental findings and show that (a) the native peptide is mostly disordered in solution, (b) the mutant peptide has a well-defined and stable structure, and (c) the structure of the mutant is an irregular β-hairpin with a non-glycine β-bulge, in excellent agreement with the peptide's known NMR structure. Additionally, the simulations also predict the presence of a very small β-hairpin-like population for the native peptide but surprisingly indicate that this population is structurally more similar to the structure of the native peptide as observed in the vammin protein than to the NMR structure of the isolated mutant peptide. We conclude that, at least for the given system, force field, and simulation protocol, folding molecular dynamics simulations appear to be successful in reproducing the experimentally accessible physical reality to a satisfactory level of detail and accuracy.
Taking It Down: Notetaking Practices of L1 and L2 Students.
ERIC Educational Resources Information Center
Clerehan, Rosemary
1995-01-01
This study examined notes taken by 29 undergraduate native and non-native speakers of English during a lecture on commercial law. It found that native speakers took more detailed notes and more accurately recorded the hierarchical structure and principal elements of the lecture than non-native speakers. (48 references) (MDM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lokanath, Neratur K.; Kunishima, Naoki, E-mail: kunisima@spring8.or.jp
2006-08-01
The archaeal phosphoglycerate mutase PH0037 from P. horikoshii OT3 has been crystallized in space group R32, with unit-cell parameters a = 155.62, c = 230.35 Å. A 2.2 Å resolution data was collected at SPring-8 beamline BL26B1. Phosphoglycerate mutases catalyze the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in glycolysis and gluconeogenesis pathways. The archaeal phosphoglycerate mutase PH0037 from Pyrococcus horikoshii OT3 has been overexpressed in Escherichia coli and purified. Crystals were obtained using the oil-microbatch method at 291 K. A native data set extending to a resolution of 2.2 Å has been collected and processed in space group R32. Assuming themore » presence of a dimer in the asymmetric unit, the V{sub M} value is calculated to be 3.0 Å{sup 3} Da{sup −1}, consistent with the dynamic light-scattering experiment result, which shows a dimeric state of the protein in solution. Molecular-replacement trials using the crystal structure of Bacilllus stearothermophilus phosphoglycerate mutase as a search model did not provide a satisfactory solution, indicating substantially different structures of these two phophoglycerate mutases.« less
High resolution in-vivo imaging of skin with full field optical coherence tomography
NASA Astrophysics Data System (ADS)
Dalimier, E.; Bruhat, Alexis; Grieve, K.; Harms, F.; Martins, F.; Boccara, C.
2014-03-01
Full-field OCT (FFOCT) has the ability to provide en-face images with a very good axial sectioning as well as a very high transverse resolution (about 1 microns in all directions). Therefore it offers the possibility to visualize biological tissues with very high resolution both on the axial native view, and on vertical reconstructed sections. Here we investigated the potential dermatological applications of in-vivo skin imaging with FFOCT. A commercial FFOCT device was adapted for the in-vivo acquisition of stacks of images on the arm, hand and finger. Several subjects of different benign and pathological skin conditions were tested. The images allowed measurement of the stratum corneum and epidermis thicknesses, measurement of the stratum corneum refractive index, size measurement and count of the keratinocytes, visualization of the dermal-epidermal junction, and visualization of the melanin granules and of the melanocytes. Skins with different pigmentations could be discriminated and skin pathologies such as eczema could be identified. The very high resolution offered by FFOCT both on axial native images and vertical reconstructed sections allows for the visualization and measurement of a set of parameters useful for cosmetology and dermatology. In particular, FFOCT is a potential tool for the understanding and monitoring of skin hydration and pigmentation, as well as skin inflammation.
Akif, Mohd; Georgiadis, Dimitris; Mahajan, Aman; Dive, Vincent; Sturrock, Edward D; Isaac, R Elwyn; Acharya, K Ravi
2010-07-16
Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE. 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javid-Majd, Farah; Yang, Dong; Ioerger, Thomas R.
2008-06-01
The crystal structure of M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase, the second enzyme in the histidine-biosynthetic pathway, is presented. The structural and inferred functional relationships between M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase and other members of the nucleoside-triphosphate pyrophosphatase-fold family are described. Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target formore » tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 Å. The structure of the apoenzyme reveals that the protein is composed of five α-helices with connecting loops and is a member of the α-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between α-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.« less
The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Vincenzo A.; Shepherd, Sharon M.; English, Grant
2011-12-01
The high-resolution crystal structure of S. marcescens Lip reveals a new member of the transthyretin family of proteins. Lip, a core component of the type VI secretion apparatus, is localized to the outer membrane and is positioned to interact with other proteins forming this complex system. Lip is a membrane-bound lipoprotein and a core component of the type VI secretion system found in Gram-negative bacteria. The structure of a Lip construct (residues 29–176) from Serratia marcescens (SmLip) has been determined at 1.92 Å resolution. Experimental phases were derived using a single-wavelength anomalous dispersion approach on a sample cocrystallized with iodide.more » The membrane localization of the native protein was confirmed. The structure is that of the globular domain lacking only the lipoprotein signal peptide and the lipidated N-terminus of the mature protein. The protein fold is dominated by an eight-stranded β-sandwich and identifies SmLip as a new member of the transthyretin family of proteins. Transthyretin and the only other member of the family fold, 5-hydroxyisourate hydrolase, form homotetramers important for their function. The asymmetric unit of SmLip is a tetramer with 222 symmetry, but the assembly is distinct from that previously noted for the transthyretin protein family. However, structural comparisons and bacterial two-hybrid data suggest that the SmLip tetramer is not relevant to its role as a core component of the type VI secretion system, but rather reflects a propensity for SmLip to participate in protein–protein interactions. A relatively low level of sequence conservation amongst Lip homologues is noted and is restricted to parts of the structure that might be involved in interactions with physiological partners.« less
Characterization of virus-like particles by atomic force microscopy in ambient conditions
NASA Astrophysics Data System (ADS)
Oropesa, Reinier; Ramos, Jorge R.; Falcón, Viviana; Felipe, Ariel
2013-06-01
Recombinant virus-like particles (VLPs) are attractive candidates for vaccine design since they resemble native viroids in size and morphology, but they are non-infectious due to the absence of a viral genome. The visualization of surface morphologies and structures can be used to deepen the understanding of physical, chemical, and biological phenomena. Atomic force microscopy (AFM) is a useful tool for the visualization of soft biological samples in a nanoscale resolution. In this work we have investigated the morphology of recombinant surface antigens of hepatitis B (rHBsAg) VLPs from Cuban vaccine against hepatitis B. The rHBsAg VLPs sizes estimated by AFM between 15 and 30 nm are similar to those reported on previous transmission electron microscopy (TEM) studies.
Nguyen, Xuan Hong Thy; Juvik, Ole Johan; Øvstedal, Dag Olav; Fossen, Torgils
2014-06-01
Metasequoia glyptostroboides, a tree native to China, is described as a living fossil and has existed for millions of years. The oldest fossils recorded have been dated to the late Cretaceous era. During the time of its existence, the molecular defence system of the tree has apparently resisted millions of generations of pathogens, which encouraged search for novel natural product from this source. Eight compounds have been characterised from needles of M. glyptostroboides, including the novel natural product 6-carboxydihydroresveratrol 3-O-β-glucopyranoside. The structure determinations were based on extensive use of 2D NMR spectroscopic techniques and high-resolution mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.
Three key residues form a critical contact network in a protein folding transition state
NASA Astrophysics Data System (ADS)
Vendruscolo, Michele; Paci, Emanuele; Dobson, Christopher M.; Karplus, Martin
2001-02-01
Determining how a protein folds is a central problem in structural biology. The rate of folding of many proteins is determined by the transition state, so that a knowledge of its structure is essential for understanding the protein folding reaction. Here we use mutation measurements-which determine the role of individual residues in stabilizing the transition state-as restraints in a Monte Carlo sampling procedure to determine the ensemble of structures that make up the transition state. We apply this approach to the experimental data for the 98-residue protein acylphosphatase, and obtain a transition-state ensemble with the native-state topology and an average root-mean-square deviation of 6Å from the native structure. Although about 20 residues with small positional fluctuations form the structural core of this transition state, the native-like contact network of only three of these residues is sufficient to determine the overall fold of the protein. This result reveals how a nucleation mechanism involving a small number of key residues can lead to folding of a polypeptide chain to its unique native-state structure.
Blind test of physics-based prediction of protein structures.
Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A
2009-02-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.
Blind Test of Physics-Based Prediction of Protein Structures
Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.
2009-01-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130
A Novel Method for Sampling Alpha-Helical Protein Backbones
DOE R&D Accomplishments Database
Fain, Boris; Levitt, Michael
2001-01-01
We present a novel technique of sampling the configurations of helical proteins. Assuming knowledge of native secondary structure, we employ assembly rules gathered from a database of existing structures to enumerate the geometrically possible 3-D arrangements of the constituent helices. We produce a library of possible folds for 25 helical protein cores. In each case the method finds significant numbers of conformations close to the native structure. In addition we assign coordinates to all atoms for 4 of the 25 proteins. In the context of database driven exhaustive enumeration our method performs extremely well, yielding significant percentages of structures (0.02%--82%) within 6A of the native structure. The method's speed and efficiency make it a valuable contribution towards the goal of predicting protein structure.
Li, Jiayao; Zheng, Changxi; Liu, Boyin; Chou, Tsengming; Kim, Yeonuk; Qiu, Shi; Li, Jian; Yan, Wenyi; Fu, Jing
2018-06-11
High-resolution single-cell imaging in their native or near-native state has received considerable interest for decades. In this research, we present an innovative approach that can be employed to study both morphological and nano-mechanical properties of hydrated single bacterial cells. The proposed strategy is to encapsulate wet cells with monolayer graphene with a newly developed water membrane approach, followed by imaging with both electron microscopy (EM) and atomic force microscopy (AFM). A computational framework was developed to provide additional insights, with the detailed nanoindentation process on graphene modeled based on finite element method. The model was first validated by calibration with polymer materials of known properties, and the contribution of graphene was then studied and corrected to determine the actual moduli of the encapsulated hydrated sample. Aapplication of the proposed approach was performed on hydrated bacterial cells (Klebsiella pneumoniae) to correlate the structural and mechanical information. EM and EDS (energy-dispersive X-ray spectroscopy) imaging confirmed that the cells in their near-native stage can be studied inside the miniatured environment enabled with graphene encapsulation. The actual moduli of the encapsulated hydrated cells were determined based on the developed computational model in parallel, with results comparable with those acquired with Wet-AFM. It is expected that the successful establishment of controlled graphene encapsulation offers a new route for probing liquid/live cells with scanning probe microscopy, as well as correlative imaging of hydrated samples for both biological and material sciences. © 2018 IOP Publishing Ltd.
Parikh, Hardik I; Kellogg, Glen E
2014-06-01
Characterizing the nature of interaction between proteins that have not been experimentally cocrystallized requires a computational docking approach that can successfully predict the spatial conformation adopted in the complex. In this work, the Hydropathic INTeractions (HINT) force field model was used for scoring docked models in a data set of 30 high-resolution crystallographically characterized "dry" protein-protein complexes and was shown to reliably identify native-like models. However, most current protein-protein docking algorithms fail to explicitly account for water molecules involved in bridging interactions that mediate and stabilize the association of the protein partners, so we used HINT to illuminate the physical and chemical properties of bridging waters and account for their energetic stabilizing contributions. The HINT water Relevance metric identified the "truly" bridging waters at the 30 protein-protein interfaces and we utilized them in "solvated" docking by manually inserting them into the input files for the rigid body ZDOCK program. By accounting for these interfacial waters, a statistically significant improvement of ∼24% in the average hit-count within the top-10 predictions the protein-protein dataset was seen, compared to standard "dry" docking. The results also show scoring improvement, with medium and high accuracy models ranking much better than incorrect ones. These improvements can be attributed to the physical presence of water molecules that alter surface properties and better represent native shape and hydropathic complementarity between interacting partners, with concomitantly more accurate native-like structure predictions. © 2013 Wiley Periodicals, Inc.
Morphological properties of collagen fibers in porcine lamina propria
Johanes, Iecun; Mihelc, Elaine; Sivasankar, Mahalakshmi; Ivanisevic, Albena
2009-01-01
Objectives Collagen influences the biomechanical properties of vocal folds. Altered collagen morphology has been implicated in dysphonia associated with aging and scarring. Documenting the morphological properties of native collagen in healthy vocal folds is essential to understand the structural and functional alterations to collagen with aging and disease. Our primary objective was to quantify the morphological properties of collagen in the vocal fold lamina propria. Our secondary exploratory objective was to investigate the effects of pepsin exposure on the morphological properties of collagen in the lamina propria. Design Experimental, in vitro study with porcine model. Methods Lamina propria was dissected from 26 vocal folds and imaged with Atomic Force Microscopy (AFM). Morphological data on d-periodicity, diameter, and roughness of collagen fibers were obtained. To investigate the effects of pepsin exposure on collagen morphology, vocal fold surface was exposed to pepsin or sham challenge prior to lamina propria dissection and AFM imaging. Results The d-periodicity, diameter, and roughness values for native vocal fold collagen are consistent with literature reports for collagen fibers in other body tissue. Pepsin exposure on vocal fold surface did not appear to change the morphological properties of collagen fibers in the lamina propria. Conclusions Quantitative data on collagen morphology were obtained at nanoscale resolution. Documenting collagen morphology in healthy vocal folds is critical for understanding the physiological changes to collagen with aging and scarring, and for designing biomaterials that match the native topography of lamina propria. PMID:20171830
Sukernik, Rem I; Volodko, Natalia V; Mazunin, Ilya O; Eltsov, Nikolai P; Dryomov, Stanislav V; Starikovskaya, Elena B
2012-05-01
To fill remaining gaps in mitochondrial DNA diversity in the least surveyed eastern and western flanks of Siberia, 391 mtDNA samples (144 Tubalar from Altai, 87 Even from northeastern Siberia, and 160 Ulchi from the Russian Far East) were characterized via high-resolution restriction fragment length polymorphism/single nucleotide polymorphisms analysis. The subhaplogroup structure was extended through complete sequencing of 67 mtDNA samples selected from these and other related native Siberians. Specifically, we have focused on the evolutionary histories of the derivatives of M and N haplogroups, putatively reflecting different phases of settling Siberia by early modern humans. Population history and phylogeography of the resulting mtDNA genomes, combined with those from previously published data sets, revealed a wide range of tribal- and region-specific mtDNA haplotypes that emerged or diversified in Siberia before or after the last glacial maximum, ∼18 kya. Spatial distribution and ages of the "east" and "west" Eurasian mtDNA haploclusters suggest that anatomically modern humans that originally colonized Altai derived from macrohaplogroup N and came from Southwest Asia around 38,000 years ago. The derivatives of macrohaplogroup M, which largely emerged or diversified within the Russian Far East, came along with subsequent migrations to West Siberia millennia later. The last glacial maximum played a critical role in the timing and character of the settlement of the Siberian subcontinent. Copyright © 2012 Wiley Periodicals, Inc.
Yu, Wookyung; Baxa, Michael C.; Gagnon, Isabelle; Freed, Karl F.; Sosnick, Tobin R.
2016-01-01
The relationship between folding cooperativity and downhill, or barrier-free, folding of proteins under highly stabilizing conditions remains an unresolved topic, especially for proteins such as λ-repressor that fold on the microsecond timescale. Under aqueous conditions where downhill folding is most likely to occur, we measure the stability of multiple H bonds, using hydrogen exchange (HX) in a λYA variant that is suggested to be an incipient downhill folder having an extrapolated folding rate constant of 2 × 105 s−1 and a stability of 7.4 kcal·mol−1 at 298 K. At least one H bond on each of the three largest helices (α1, α3, and α4) breaks during a common unfolding event that reflects global denaturation. The use of HX enables us to both examine folding under highly stabilizing, native-like conditions and probe the pretransition state region for stable species without the need to initiate the folding reaction. The equivalence of the stability determined at zero and high denaturant indicates that any residual denatured state structure minimally affects the stability even under native conditions. Using our ψ analysis method along with mutational ϕ analysis, we find that the three aforementioned helices are all present in the folding transition state. Hence, the free energy surface has a sufficiently high barrier separating the denatured and native states that folding appears cooperative even under extremely stable and fast folding conditions. PMID:27078098
Protein folding and misfolding: mechanism and principles
Englander, S. Walter; Mayne, Leland; Krishna, Mallela M. G.
2012-01-01
Two fundamentally different views of how proteins fold are now being debated. Do proteins fold through multiple unpredictable routes directed only by the energetically downhill nature of the folding landscape or do they fold through specific intermediates in a defined pathway that systematically puts predetermined pieces of the target native protein into place? It has now become possible to determine the structure of protein folding intermediates, evaluate their equilibrium and kinetic parameters, and establish their pathway relationships. Results obtained for many proteins have serendipitously revealed a new dimension of protein structure. Cooperative structural units of the native protein, called foldons, unfold and refold repeatedly even under native conditions. Much evidence obtained by hydrogen exchange and other methods now indicates that cooperative foldon units and not individual amino acids account for the unit steps in protein folding pathways. The formation of foldons and their ordered pathway assembly systematically puts native-like foldon building blocks into place, guided by a sequential stabilization mechanism in which prior native-like structure templates the formation of incoming foldons with complementary structure. Thus the same propensities and interactions that specify the final native state, encoded in the amino-acid sequence of every protein, determine the pathway for getting there. Experimental observations that have been interpreted differently, in terms of multiple independent pathways, appear to be due to chance misfolding errors that cause different population fractions to block at different pathway points, populate different pathway intermediates, and fold at different rates. This paper summarizes the experimental basis for these three determining principles and their consequences. Cooperative native-like foldon units and the sequential stabilization process together generate predetermined stepwise pathways. Optional misfolding errors are responsible for 3-state and heterogeneous kinetic folding. PMID:18405419
Strauss, Mike; Schotte, Lise; Karunatilaka, Krishanthi S.; Filman, David J.
2016-01-01
ABSTRACT By using cryo-electron microscopy, expanded 80S-like poliovirus virions (poliovirions) were visualized in complexes with four 80S-specific camelid VHHs (Nanobodies). In all four complexes, the VHHs bind to a site on the top surface of the capsid protein VP3, which is hidden in the native virus. Interestingly, although the four VHHs bind to the same site, the structures of the expanded virus differ in detail in each complex, suggesting that each of the Nanobodies has sampled a range of low-energy structures available to the expanded virion. By stabilizing unique structures of expanded virions, VHH binding permitted a more detailed view of the virus structure than was previously possible, leading to a better understanding of the expansion process that is a critical step in infection. It is now clear which polypeptide chains become disordered and which become rearranged. The higher resolution of these structures also revealed well-ordered conformations for the EF loop of VP2, the GH loop of VP3, and the N-terminal extensions of VP1 and VP2, which, in retrospect, were present in lower-resolution structures but not recognized. These structural observations help to explain preexisting mutational data and provide insights into several other stages of the poliovirus life cycle, including the mechanism of receptor-triggered virus expansion. IMPORTANCE When poliovirus infects a cell, it undergoes a change in its structure in order to pass RNA through its protein coat, but this altered state is short-lived and thus poorly understood. The structures of poliovirus bound to single-domain antibodies presented here capture the altered virus in what appear to be intermediate states. A careful analysis of these structures lets us better understand the molecular mechanism of infection and how these changes in the virus lead to productive-infection events. PMID:27852863
Strauss, Mike; Schotte, Lise; Karunatilaka, Krishanthi S; Filman, David J; Hogle, James M
2017-02-01
By using cryo-electron microscopy, expanded 80S-like poliovirus virions (poliovirions) were visualized in complexes with four 80S-specific camelid VHHs (Nanobodies). In all four complexes, the VHHs bind to a site on the top surface of the capsid protein VP3, which is hidden in the native virus. Interestingly, although the four VHHs bind to the same site, the structures of the expanded virus differ in detail in each complex, suggesting that each of the Nanobodies has sampled a range of low-energy structures available to the expanded virion. By stabilizing unique structures of expanded virions, VHH binding permitted a more detailed view of the virus structure than was previously possible, leading to a better understanding of the expansion process that is a critical step in infection. It is now clear which polypeptide chains become disordered and which become rearranged. The higher resolution of these structures also revealed well-ordered conformations for the EF loop of VP2, the GH loop of VP3, and the N-terminal extensions of VP1 and VP2, which, in retrospect, were present in lower-resolution structures but not recognized. These structural observations help to explain preexisting mutational data and provide insights into several other stages of the poliovirus life cycle, including the mechanism of receptor-triggered virus expansion. When poliovirus infects a cell, it undergoes a change in its structure in order to pass RNA through its protein coat, but this altered state is short-lived and thus poorly understood. The structures of poliovirus bound to single-domain antibodies presented here capture the altered virus in what appear to be intermediate states. A careful analysis of these structures lets us better understand the molecular mechanism of infection and how these changes in the virus lead to productive-infection events. Copyright © 2017 American Society for Microbiology.
Salemi, Zahra; Hosseinkhani, Saman; Ranjbar, Bijan; Nemat-Gorgani, Mohsen
2006-09-30
Our previous studies indicated that native carbonic anhydrase does not interact with hydrophobic adsorbents and that it acquires this ability upon denaturation. In the present study, an apo form of the enzyme was prepared by removal of zinc and a comparative study was performed on some characteristic features of the apo and native forms by far- and near-UV circular dichroism (CD), intrinsic fluorescent spectroscopy, 1-anilino naphthalene-8-sulfonate (ANS) binding, fluorescence quenching by acrylamide, and Tm measurement. Results indicate that protein flexibility is enhanced and the hydrophobic sites become more exposed upon conversion to the apo form. Accordingly, the apo structure showed a greater affinity for interaction with hydrophobic adsorbents as compared with the native structure. As observed for the native enzyme, heat denaturation of the apo form promoted interaction with alkyl residues present on the adsorbents and, by cooling followed by addition of zinc, catalytically-active immobilized preparations were obtained.
Food availability in exotic grasslands: a potential mechanism for depauperate breeding assemblages
George, Andrew D.; O'Connell, Timothy J.; Hickman, Karen R.; Leslie, David M.
2013-01-01
We investigated the influence of Old World bluestem (Bothriochloa ischaemum; OWB) monocultures on grassland bird abundance through analysis of vegetation structure and food availability. We compared breeding bird density, vegetation structure and composition, and arthropod biomass between six native grass and six OWB fields in the southern Great Plains. The OWB fields supported 1.70 ± 0.27 (mean ± SE) Grasshopper Sparrows (Ammodramus savannarum) per ha compared to 0.95 ± 0.25 in native grass fields, but total species richness was greater in native grass fields (40 versus 28 species). Density of some bird species was correlated with vegetation structure regardless of field type, suggesting that management practices may be more influential than plant species composition. Mean arthropod biomass was 3.39× greater in native grass fields than in OWB monocultures. Native grass fields provided habitat for a larger complement of birds than did OWB monocultures, and reduced food availability in OWB fields suggests a mechanism for that difference.
Water withdrawals reduce native fish diversity across the sunbelt of the US
NASA Astrophysics Data System (ADS)
Sabo, J. L.; Bowling, L. C.; Roath, J.; Sinha, T.; Kominoski, J.; Fuller, P.
2012-12-01
Water withdrawals for urban, industrial and agricultural uses are known to have negative effects on freshwater biodiversity, but this conclusion is based largely on a small number of place based studies. In this talk we will present results from a continental scale analysis of water withdrawals on the species richness of native and non-native fishes in the coterminous US. To do this we compiled data from the USGS on water withdrawals and the species richness of non-native fishes. We obtained data on the native fish species richness from NatureServe's native fish database. We also compiled spatial data on cropland area and urban impervious surfaces. Finally, we used gridded estimates of streamflow from the Variable Infiltration Capacity model and a routing model to estimate streamflow (less upstream water withdrawal). We estimate the water stress index (WSI) as withdrawals standardized by streamflow (local and upstream deliveries) and use this as a metric of sustainability of human water use. All data were compiled at the spatial resolution of 8-digit hydrologic unit code hydrologic accounting units. Our key finding is that human water use (WSI)--and not impervious surfaces or cropland area--has a strong negative effect on native, but not non-native biodiversity in rivers. This result was robust across the US sunbelt but weaker across the coterminous US. Our result suggests that the effects of cities and farms on native freshwater fauna are outweighed by the upstream and cross-basin extraction of water to support these land uses.
Méndez, Verónica; Wood, Jamie R; Butler, Simon J
2018-05-01
Functional diversity metrics are increasingly used to augment or replace taxonomic diversity metrics to deliver more mechanistic insights into community structure and function. Metrics used to describe landscape structure and characteristics share many of the same limitations as taxonomy-based metrics, particularly their reliance on anthropogenically defined typologies with little consideration of structure, management, or function. However, the development of alternative metrics to describe landscape characteristics has been limited. Here, we extend the functional diversity framework to characterize landscapes based on the diversity of resources available across habitats present. We then examine the influence of resource diversity and provenance on the functional diversities of native and exotic avian communities in New Zealand. Invasive species are increasingly prevalent and considered a global threat to ecosystem function, but the characteristics of and interactions between sympatric native and exotic communities remain unresolved. Understanding their comparative responses to environmental change and the mechanisms underpinning them is of growing importance in predicting community dynamics and changing ecosystem function. We use (i) matrices of resource use (species) and resource availability (habitats) and (ii) occurrence data for 62 native and 25 exotic species and 19 native and 13 exotic habitats in 2015 10 × 10 km quadrats to examine the relationship between native and exotic avian and landscape functional diversity. The numbers of species in, and functional diversities of, native and exotic communities were positively related. Each community displayed evidence of environmental filtering, but it was significantly stronger for exotic species. Less environmental filtering occurred in landscapes providing a more diverse combination of resources, with resource provenance also an influential factor. Landscape functional diversity explained a greater proportion of variance in native and exotic community characteristics than the number of habitat types present. Resource diversity and provenance should be explicitly accounted for when characterizing landscape structure and change as they offer additional mechanistic understanding of the links between environmental filtering and community structure. Manipulating resource diversity through the design and implementation of management actions could prove a powerful tool for the delivery of conservation objectives, be they to protect native species, control exotic species, or maintain ecosystem service provision.
Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi
2015-01-01
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388
The role of atomic level steric effects and attractive forces in protein folding.
Lammert, Heiko; Wolynes, Peter G; Onuchic, José N
2012-02-01
Protein folding into tertiary structures is controlled by an interplay of attractive contact interactions and steric effects. We investigate the balance between these contributions using structure-based models using an all-atom representation of the structure combined with a coarse-grained contact potential. Tertiary contact interactions between atoms are collected into a single broad attractive well between the C(β) atoms between each residue pair in a native contact. Through the width of these contact potentials we control their tolerance for deviations from the ideal structure and the spatial range of attractive interactions. In the compact native state dominant packing constraints limit the effects of a coarse-grained contact potential. During folding, however, the broad attractive potentials allow an early collapse that starts before the native local structure is completely adopted. As a consequence the folding transition is broadened and the free energy barrier is decreased. Eventually two-state folding behavior is lost completely for systems with very broad attractive potentials. The stabilization of native-like residue interactions in non-perfect geometries early in the folding process frequently leads to structural traps. Global mirror images are a notable example. These traps are penalized by the details of the repulsive interactions only after further collapse. Successful folding to the native state requires simultaneous guidance from both attractive and repulsive interactions. Copyright © 2011 Wiley Periodicals, Inc.
Kuzuhara, Takashi; Kise, Daisuke; Yoshida, Hiroko; Horita, Takahiro; Murazaki, Yoshimi; Utsunomiya, Hiroko; Tsuge, Hideaki
2009-01-01
The C-terminal domain protein (amino-acid residues 535–759) of the PB2 subunit of the RNA-dependent RNA polymerase from the highly pathogenic influenza A virus was expressed as a soluble protein in Escherichia coli and crystallized using sodium formate as a precipitant. Data sets were collected from crystals of native and selenomethionine-substituted protein on the KEK NW12 beamline at the Photon Factory and the crystals diffracted to a maximum resolution of 2.44 Å for the SeMet-derivative crystal. The native crystals were found to belong to space group P3221, with unit-cell parameters a = b = 52.5, c = 156.3 Å. The Matthews value (V M) was 2.7 Å3 Da−1, assuming the presence of one molecule in the asymmetric unit. The SeMet-derivative crystals were found to belong to the same space group, with unit-cell parameters a = b = 52.6, c = 156.4 Å. Attempts are being made to solve the structure by multi-wavelength anomalous dispersion phasing. PMID:19194006
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay; Weiss, Michael A.; Eitel, Simon H.; Meier, Thomas; Schoenleber, Ralph O.; Kent, Stephen B.H.
2017-01-01
We have systematically explored three approaches based on Fmoc chemistry SPPS for the total chemical synthesis of the key depsipeptide intermediate for the efficient total chemical synthesis of insulin. The approaches used were: stepwise Fmoc chemistry SPPS; the ‘hybrid method’, in which maximally-protected peptide segments made by Fmoc chemistry SPPS are condensed in solution; and, native chemical ligation using peptide-thioester segments generated by Fmoc chemistry SPPS. A key building block in all three approaches was a Glu[Oβ(Thr)] ester-linked dipeptide equipped with a set of orthogonal protecting groups compatible with Fmoc chemistry SPPS. The most effective method for the preparation of the 51 residue ester-linked polypeptide chain of ester insulin was the use of unprotected peptide-thioester segments, prepared from peptide-hydrazides synthesized by Fmoc chemistry SPPS, and condensed by native chemical ligation. High resolution X-ray crystallography confirmed the disulfide pairings and three-dimensional structure of synthetic insulin lispro prepared from ester insulin lispro by this route. Further optimization of these pilot studies should yield an effective total chemical synthesis of insulin lispro (Humalog) based on peptide synthesis by Fmoc chemistry SPPS. PMID:27905149
Pleiner, Tino; Bates, Mark; Trakhanov, Sergei; Lee, Chung-Tien; Schliep, Jan Erik; Chug, Hema; Böhning, Marc; Stark, Holger; Urlaub, Henning; Görlich, Dirk
2015-01-01
Nanobodies are single-domain antibodies of camelid origin. We generated nanobodies against the vertebrate nuclear pore complex (NPC) and used them in STORM imaging to locate individual NPC proteins with <2 nm epitope-label displacement. For this, we introduced cysteines at specific positions in the nanobody sequence and labeled the resulting proteins with fluorophore-maleimides. As nanobodies are normally stabilized by disulfide-bonded cysteines, this appears counterintuitive. Yet, our analysis showed that this caused no folding problems. Compared to traditional NHS ester-labeling of lysines, the cysteine-maleimide strategy resulted in far less background in fluorescence imaging, it better preserved epitope recognition and it is site-specific. We also devised a rapid epitope-mapping strategy, which relies on crosslinking mass spectrometry and the introduced ectopic cysteines. Finally, we used different anti-nucleoporin nanobodies to purify the major NPC building blocks – each in a single step, with native elution and, as demonstrated, in excellent quality for structural analysis by electron microscopy. The presented strategies are applicable to any nanobody and nanobody-target. DOI: http://dx.doi.org/10.7554/eLife.11349.001 PMID:26633879
What determines the spectrum of protein native state structures?
Lezon, Timothy R; Banavar, Jayanth R; Lesk, Arthur M; Maritan, Amos
2006-05-01
We present a brief summary of the key factors underlying protein structure, as developed in the investigations of Pauling, Ramachandran, and Rose. We then outline a simplified physical model of proteins that focuses on geometry and symmetry. Although this model superficially appears unrelated to the detailed chemical descriptions commonly applied to proteins, we show that it captures the essential elements of the chemistry and provides a unified framework for understanding the common characteristics of folded proteins. We suggest that the spectrum of protein native state structures is determined by geometry and symmetry and the role of the sequence is to choose its native state structure from this predetermined menu. 2006 Wiley-Liss, Inc.
Lexical Encoding of L2 Tones: The Role of L1 Stress, Pitch Accent and Intonation
ERIC Educational Resources Information Center
Braun, Bettina; Galts, Tobias; Kabak, Baris
2014-01-01
Native language prosodic structure is known to modulate the processing of non-native suprasegmental information. It has been shown that native speakers of French, a language without lexical stress, have difficulties storing non-native stress contrasts. We investigated whether the ability to store lexical tone (as in Mandarin Chinese) also depends…
ERIC Educational Resources Information Center
Trollinger, Linda Burcham
This qualitative study drew on the stories and reflections of six Appalachian women of Native American descent to explore their experiences of reconnecting with their lost Native identity. This paper visualizes those experiences in light of the relationships between personal realities and structural influences. Historically, Native identities have…
Kim, Jonghyun; Moon, Seokil; Jeong, Youngmo; Jang, Changwon; Kim, Youngmin; Lee, Byoungho
2018-06-01
Here, we present dual-dimensional microscopy that captures both two-dimensional (2-D) and light-field images of an in-vivo sample simultaneously, synthesizes an upsampled light-field image in real time, and visualizes it with a computational light-field display system in real time. Compared with conventional light-field microscopy, the additional 2-D image greatly enhances the lateral resolution at the native object plane up to the diffraction limit and compensates for the image degradation at the native object plane. The whole process from capturing to displaying is done in real time with the parallel computation algorithm, which enables the observation of the sample's three-dimensional (3-D) movement and direct interaction with the in-vivo sample. We demonstrate a real-time 3-D interactive experiment with Caenorhabditis elegans. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Watching stem cells at work with a flexible multiphoton tomograph
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Hoffmann, Robert; Weinigel, Martin; König, Karsten
2012-03-01
There is a high demand for non-invasive imaging techniques that allow observation of stem cells in their native environment without significant input on cell metabolism, reproduction, and behavior. Easy accessible hair follicle pluripotent stem cells in the bulge area and dermal papilla are potential sources for stem cell based therapy. It has been shown that these cells are able to generate hair, non-follicle skin cells, nerves, vessels, smooth muscles etc. and may participate in wound healing processes. We report on the finding of nestin-GFP expressing stem cells in their native niche in the bulge of the hair follicle of living mice by using high-resolution in-vivo multiphoton tomography. The 3D imaging with submicron resolution was based on two-photon induced fluorescence and second harmonic generation (SHG) of collagen. Migrating stem cells from the bulge to their microenvironment have been detected inside the skin during optical deep tissue sectioning.
Thoden, J. B.; Holden, H. M.; Fisher, A. J.; Sinclair, J. F.; Wesenberg, G.; Baldwin, T. O.; Rayment, I.
1997-01-01
Luciferase, as isolated from Vibrio harveyi, is an alpha beta heterodimer. When allowed to fold in the absence of the alpha subunit, either in vitro or in vivo, the beta subunit of enzyme will form a kinetically stable homodimer that does not unfold even after prolonged incubation in 5 M urea at pH 7.0 and 18 degrees C. This form of the beta subunit, arising via kinetic partitioning on the folding pathway, appears to constitute a kinetically trapped alternative to the heterodimeric enzyme (Sinclair JF, Ziegler MM, Baldwin TO. 1994. Kinetic partitioning during protein folding yields multiple native states. Nature Struct Biol 1: 320-326). Here we describe the X-ray crystal structure of the beta 2 homodimer of luciferase from V. harveyi determined and refined at 1.95 A resolution. Crystals employed in the investigational belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a = 58.8 A, b = 62.0 A, and c = 218.2 A and contained one dimer per asymmetric unit. Like that observed in the functional luciferase alpha beta heterodimer, the major tertiary structural motif of each beta subunit consists of an (alpha/beta)8 barrel (Fisher AJ, Raushel FM, Baldwin TO, Rayment I. 1995. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 34: 6581-6586). The root-mean-square deviation of the alpha-carbon coordinates between the beta subunits of the hetero- and homodimers is 0.7 A. This high resolution X-ray analysis demonstrated that "domain" or "loop" swapping has not occurred upon formation of the beta 2 homodimer and thus the stability of the beta 2 species to denaturation cannot be explained in such simple terms. In fact, the subunit:subunit interfaces observed in both the beta 2 homodimer and alpha beta heterodimer are remarkably similar in hydrogen-bonding patterns and buried surface areas. PMID:9007973
Optimization of super-resolution processing using incomplete image sets in PET imaging.
Chang, Guoping; Pan, Tinsu; Clark, John W; Mawlawi, Osama R
2008-12-01
Super-resolution (SR) techniques are used in PET imaging to generate a high-resolution image by combining multiple low-resolution images that have been acquired from different points of view (POVs). The number of low-resolution images used defines the processing time and memory storage necessary to generate the SR image. In this paper, the authors propose two optimized SR implementations (ISR-1 and ISR-2) that require only a subset of the low-resolution images (two sides and diagonal of the image matrix, respectively), thereby reducing the overall processing time and memory storage. In an N x N matrix of low-resolution images, ISR-1 would be generated using images from the two sides of the N x N matrix, while ISR-2 would be generated from images across the diagonal of the image matrix. The objective of this paper is to investigate whether the two proposed SR methods can achieve similar performance in contrast and signal-to-noise ratio (SNR) as the SR image generated from a complete set of low-resolution images (CSR) using simulation and experimental studies. A simulation, a point source, and a NEMA/IEC phantom study were conducted for this investigation. In each study, 4 (2 x 2) or 16 (4 x 4) low-resolution images were reconstructed from the same acquired data set while shifting the reconstruction grid to generate images from different POVs. SR processing was then applied in each study to combine all as well as two different subsets of the low-resolution images to generate the CSR, ISR-1, and ISR-2 images, respectively. For reference purpose, a native reconstruction (NR) image using the same matrix size as the three SR images was also generated. The resultant images (CSR, ISR-1, ISR-2, and NR) were then analyzed using visual inspection, line profiles, SNR plots, and background noise spectra. The simulation study showed that the contrast and the SNR difference between the two ISR images and the CSR image were on average 0.4% and 0.3%, respectively. Line profiles of the point source study showed that the three SR images exhibited similar signal amplitudes and FWHM. The NEMA/IEC study showed that the average difference in SNR among the three SR images was 2.1% with respect to one another and they contained similar noise structure. ISR-1 and ISR-2 can be used to replace CSR, thereby reducing the total SR processing time and memory storage while maintaining similar contrast, resolution, SNR, and noise structure.
Geierhaas, Christian D; Salvatella, Xavier; Clarke, Jane; Vendruscolo, Michele
2008-03-01
It has been suggested that Phi-values, which allow structural information about transition states (TSs) for protein folding to be obtained, are most reliably interpreted when divided into three classes (high, medium and low). High Phi-values indicate almost completely folded regions in the TS, intermediate Phi-values regions with a detectable amount of structure and low Phi-values indicate mostly unstructured regions. To explore the extent to which this classification can be used to characterise in detail the structure of TSs for protein folding, we used Phi-values divided into these classes as restraints in molecular dynamics simulations. This type of procedure is related to that used in NMR spectroscopy to define the structure of native proteins from the measurement of inter-proton distances derived from nuclear Overhauser effects. We illustrate this approach by determining the TS ensembles of five proteins and by showing that the results are similar to those obtained by using as restraints the actual numerical Phi-values measured experimentally. Our results indicate that the simultaneous consideration of a set of low-resolution Phi-values can provide sufficient information for characterising the architecture of a TS for folding of a protein.
Geierhaas, Christian D.; Salvatella, Xavier; Clarke, Jane; Vendruscolo, Michele
2008-01-01
It has been suggested that Φ-values, which allow structural information about transition states (TSs) for protein folding to be obtained, are most reliably interpreted when divided into three classes (high, medium and low). High Φ-values indicate almost completely folded regions in the TS, intermediate Φ-values regions with a detectable amount of structure and low Φ-values indicate mostly unstructured regions. To explore the extent to which this classification can be used to characterise in detail the structure of TSs for protein folding, we used Φ-values divided into these classes as restraints in molecular dynamics simulations. This type of procedure is related to that used in NMR spectroscopy to define the structure of native proteins from the measurement of inter-proton distances derived from nuclear Overhauser effects. We illustrate this approach by determining the TS ensembles of five proteins and by showing that the results are similar to those obtained by using as restraints the actual numerical Φ-values measured experimentally. Our results indicate that the simultaneous consideration of a set of low-resolution Φ-values can provide sufficient information for characterising the architecture of a TS for folding of a protein. PMID:18299294
Visualizing the dynamic structure of the plant photosynthetic membrane.
Ruban, Alexander V; Johnson, Matthew P
2015-11-03
The chloroplast thylakoid membrane is the site for the initial steps of photosynthesis that convert solar energy into chemical energy, ultimately powering almost all life on earth. The heterogeneous distribution of protein complexes within the membrane gives rise to an intricate three-dimensional structure that is nonetheless extremely dynamic on a timescale of seconds to minutes. These dynamics form the basis for the regulation of photosynthesis, and therefore the adaptability of plants to different environments. High-resolution microscopy has in recent years begun to provide new insights into the structural dynamics underlying a number of regulatory processes such as membrane stacking, photosystem II repair, photoprotective energy dissipation, state transitions and alternative electron transfer. Here we provide an overview of the essentials of thylakoid membrane structure in plants, and consider how recent advances, using a range of microscopies, have substantially increased our knowledge of the thylakoid dynamic structure. We discuss both the successes and limitations of the currently available techniques and highlight newly emerging microscopic methods that promise to move the field beyond the current 'static' view of membrane organization based on frozen snapshots to a 'live' view of functional membranes imaged under native aqueous conditions at ambient temperature and responding dynamically to external stimuli.
Monitoring Tamarisk Defoliation and Scaling Evapotranspiration Using Remote Sensing Data
NASA Astrophysics Data System (ADS)
Dennison, P. E.; Hultine, K. R.; Nagler, P. L.; Miura, T.; Glenn, E. P.; Ehleringer, J. R.
2008-12-01
Non-native tamarisk (Tamarix spp.) has invaded riparian ecosystems throughout the Western United States. Another non-native species, the saltcedar leaf beetle (Diorhabda elongata), has been released in an attempt to control tamarisk infestations. Most efforts directed towards monitoring tamarisk defoliation by Diorhabda have focused on changes in leaf area or sap flux, but these measurements only give a local view of defoliation impacts. We are assessing the ability of remote sensing data for monitoring tamarisk defoliation and measuring resulting changes in evapotranspiration over space and time. Tamarisk defoliation by Diorhabda has taken place during the past two summers along the Colorado River and its tributaries near Moab, Utah. We are using 15 meter spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 250 meter spatial resolution Moderate Resolution Imaging Spectrometer (MODIS) data to monitor tamarisk defoliation. An ASTER normalized difference vegetation index (NDVI) time series has revealed large drops in index values associated with loss of leaf area due to defoliation. MODIS data have superior temporal monitoring abilities, but at the sacrifice of much lower spatial resolution. A MODIS enhanced vegetation index time series has revealed that for pixels where the percentage of riparian cover is moderate or high, defoliation is detectable even at 250 meter spatial resolution. We are comparing MODIS vegetation index time series to site measurements of leaf area and sap flux. We are also using an evapotranspiration model to scale potential water savings resulting from the biocontrol of tamarisk.
Sakurai, Kazumasa; Yagi, Masanori; Konuma, Tsuyoshi; Takahashi, Satoshi; Nishimura, Chiaki; Goto, Yuji
2017-09-12
The roles of non-native α-helices frequently observed in the initial folding stage of β-sheet proteins have been examined for many years. We herein investigated the residue-level structures of several mutants of bovine β-lactoglobulin (βLG) in quenched-flow pH-pulse labeling experiments. βLG assumes a collapsed intermediate with a non-native α-helical structure (I 0 ) in the early stage of folding, although its native form is predominantly composed of β-structures. The protection profile in I 0 of pseudo-wild type (WT*) βLG was found to deviate from the pattern of the "average area buried upon folding" (AABUF). In particular, the level of protection at the region of strand A, at which non-native α-helices form in the I 0 state, was significantly low compared to AABUF. G17E, the mutant with an increased helical propensity, showed a similar protection pattern. In contrast, the protection pattern for I 0 of E44L, the mutant with an increased β-sheet propensity, was distinct from that of WT* and resembled the AABUF pattern. Transverse relaxation measurements demonstrated that the positions of the residual structures in the unfolded states of these mutants were consistent with those of the protected residues in the respective I 0 states. On the basis of the slower conversion of I 0 to the native state for E44L to that for WT*, non-native α-helices facilitate the ordered assembly of the β-barrel by preventing interactions that trap folding.
Dias, José; Renault, Louis; Pérez, Javier; Mirande, Marc
2013-01-01
In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex. PMID:23836901
Zarrine-Afsar, Arash; Dahesh, Samira; Davidson, Alan R
2012-05-01
Delineating structures of the transition states in protein folding reactions has provided great insight into the mechanisms by which proteins fold. The most common method for obtaining this information is Φ-value analysis, which is carried out by measuring the changes in the folding and unfolding rates caused by single amino acid substitutions at various positions within a given protein. Canonical Φ-values range between 0 and 1, and residues displaying high values within this range are interpreted to be important in stabilizing the transition state structure, and to elicit this stabilization through native-like interactions. Although very successful in defining the general features of transition state structures, Φ-value analysis can be confounded when non-native interactions stabilize this state. In addition, direct information on backbone conformation within the transition state is not provided. In the work described here, we have investigated structure formation at a conserved β-bulge (with helical conformation) in the Fyn SH3 domain by characterizing the effects of substituting all natural amino acids at one position within this structural motif. By comparing the effects on folding rates of these substitutions with database-derived local structure propensity values, we have determined that this position adopts a non-native backbone conformation in the folding transition state. This result is surprising because this position displays a high and canonical Φ-value of 0.7. This work emphasizes the potential role of non-native conformations in folding pathways and demonstrates that even positions displaying high and canonical Φ-values may, nevertheless, adopt a non-native conformation in the transition state. Copyright © 2012 Wiley Periodicals, Inc.
Pereverzev, A Y; Boyarkin, O V
2017-02-01
Linking the intrinsic tertiary structures of biomolecules to their native geometries is a central prerequisite for making gas-phase studies directly relevant to biology. The isolation of molecules in the gas phase eliminates hydrophilic interactions with solvents, to some extent mimicking a hydrophobic environment. Intrinsic structures therefore may resemble native ones for peptides that in vivo reside in a hydrophobic environment (e.g., binding pockets of receptors). In this study, we investigate doubly protonated neurokinin A (NKA) using IR-UV double resonance cold ion spectroscopy and find only five conformers of this decapeptide in the gas phase. In contrast, NMR data show that in aqueous solutions, NKA exhibits high conformational heterogeneity, which reduces to a few well-defined structures in hydrophobic micelles. Do the gas-phase structures of NKA resemble these native structures? The IR spectra reported here allow the validation of future structural calculations that may answer this question.
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-09-02
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Sen. Cardin, Benjamin L. [D-MD
2014-04-29
Senate - 04/29/2014 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
The VSGB 2.0 Model: A Next Generation Energy Model for High Resolution Protein Structure Modeling
Li, Jianing; Abel, Robert; Zhu, Kai; Cao, Yixiang; Zhao, Suwen; Friesner, Richard A.
2011-01-01
A novel energy model (VSGB 2.0) for high resolution protein structure modeling is described, which features an optimized implicit solvent model as well as physics-based corrections for hydrogen bonding, π-π interactions, self-contact interactions and hydrophobic interactions. Parameters of the VSGB 2.0 model were fit to a crystallographic database of 2239 single side chain and 100 11–13 residue loop predictions. Combined with an advanced method of sampling and a robust algorithm for protonation state assignment, the VSGB 2.0 model was validated by predicting 115 super long loops up to 20 residues. Despite the dramatically increasing difficulty in reconstructing longer loops, a high accuracy was achieved: all of the lowest energy conformations have global backbone RMSDs better than 2.0 Å from the native conformations. Average global backbone RMSDs of the predictions are 0.51, 0.63, 0.70, 0.62, 0.80, 1.41, and 1.59 Å for 14, 15, 16, 17, 18, 19, and 20 residue loop predictions, respectively. When these results are corrected for possible statistical bias as explained in the text, the average global backbone RMSDs are 0.61, 0.71, 0.86, 0.62, 1.06, 1.67, and 1.59 Å. Given the precision and robustness of the calculations, we believe that the VSGB 2.0 model is suitable to tackle “real” problems, such as biological function modeling and structure-based drug discovery. PMID:21905107
NASA Astrophysics Data System (ADS)
Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael
2011-01-01
Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.
Weber, Kirsten; Luther, Lisa; Indefrey, Peter; Hagoort, Peter
2016-05-01
When we learn a second language later in life, do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study, we investigated the underlying brain networks in native speakers compared with proficient second language users while processing complex sentences. As hypothesized, complex structures were processed by the same large-scale inferior frontal and middle temporal language networks of the brain in the second language, as seen in native speakers. These effects were seen both in activations and task-related connectivity patterns. Furthermore, the second language users showed increased task-related connectivity from inferior frontal to inferior parietal regions of the brain, regions related to attention and cognitive control, suggesting less automatic processing for these structures in a second language.
The topomer-sampling model of protein folding
Debe, Derek A.; Carlson, Matt J.; Goddard, William A.
1999-01-01
Clearly, a protein cannot sample all of its conformations (e.g., ≈3100 ≈ 1048 for a 100 residue protein) on an in vivo folding timescale (<1 s). To investigate how the conformational dynamics of a protein can accommodate subsecond folding time scales, we introduce the concept of the native topomer, which is the set of all structures similar to the native structure (obtainable from the native structure through local backbone coordinate transformations that do not disrupt the covalent bonding of the peptide backbone). We have developed a computational procedure for estimating the number of distinct topomers required to span all conformations (compact and semicompact) for a polypeptide of a given length. For 100 residues, we find ≈3 × 107 distinct topomers. Based on the distance calculated between different topomers, we estimate that a 100-residue polypeptide diffusively samples one topomer every ≈3 ns. Hence, a 100-residue protein can find its native topomer by random sampling in just ≈100 ms. These results suggest that subsecond folding of modest-sized, single-domain proteins can be accomplished by a two-stage process of (i) topomer diffusion: random, diffusive sampling of the 3 × 107 distinct topomers to find the native topomer (≈0.1 s), followed by (ii) intratopomer ordering: nonrandom, local conformational rearrangements within the native topomer to settle into the precise native state. PMID:10077555
Native state volume fluctuations in proteins as a mechanism for dynamic allostery
Law, Anthony B.; Sapienza, Paul J.; Zhang, Jun; ...
2017-01-17
Allostery enables tight regulation of protein function in the cellular environment. While existing models of allostery are firmly rooted in the current structure-function paradigm, the mechanistic basis for allostery in the absence of structural change remains unclear. In this study, we show that a typical globular protein is able to undergo significant changes in volume under native conditions while exhibiting no additional changes in protein structure. These native state volume fluctuations were found to correlate with changes in internal motions that were previously recognized as a source of allosteric entropy. This finding offers a novel mechanistic basis for allostery inmore » the absence of canonical structural change. As a result, the unexpected observation that function can be derived from expanded, low density protein states has broad implications for our understanding of allostery and suggests that the general concept of the native state be expanded to allow for more variable physical dimensions with looser packing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, Andrew T.; Watowich, Stanley J., E-mail: watowich@xray.utmb.edu
2006-06-01
The C-terminal protease domain of Venezuelan equine encephalitis virus (VEEV) nsP2 has been overexpressed in E. coli, purified and successfully crystallized. Native crystals diffract to beyond 2.5 Å resolution and isomorphous heavy-atom derivatives suitable for phase analysis have been identified. The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichiamore » coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way.« less
Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer
NASA Astrophysics Data System (ADS)
Poltash, Michael L.; McCabe, Jacob W.; Patrick, John W.; Laganowsky, Arthur; Russell, David H.
2018-05-01
As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase.
Solvent and temperature effects on crambin, a hydrophobic protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llinas, M.; Lecomte, J.T.J.; De Marco, A.
1980-10-01
Crambin, a 5000-mol. wt. water-insoluble protein found in crambe abyssinica seeds is presently being studied by x-ray diffraction to 0.9 A resolution and /sup 1/H-nuclear magnetic resonance (NMR) spectroscopy. Preliminary /sup 1/H-NMR data at 250 and 600 MHz have suggested that this hydrophobic protein retains a similar globular conformation in both glacial acetic acid (AA), a Bronsted acid, and dimethylformamide (DMF), a Lewis base. These observations suggest that the globular conformation observed in these organic solvents is most likely the native structure present in the crystalline state. As suggested by the high intrinsic resolution of the crystallographic x-ray diffraction pattern,more » and demonstrated by the NMR data, crambin is a very rigid protein. Work is in progress to assign the /sup 1/H-resonances and to correlate H and /sup 13/C NMR dynamic data with the crystallographic model. It is hoped that unravelling conformational features of this hydrophobic protein will provide clues to help us understand other membrane-bound functional proteins.« less
2015-01-01
The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen–deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our “standard condition” (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W+-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8–9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8–9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain. PMID:25290210
Li, Jing; Rodnin, Mykola V; Ladokhin, Alexey S; Gross, Michael L
2014-11-04
The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our "standard condition" (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W(+)-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8-9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8-9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.
Macromolecular ab initio phasing enforcing secondary and tertiary structure.
Millán, Claudia; Sammito, Massimo; Usón, Isabel
2015-01-01
Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna
2010-06-01
The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion ofmore » chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.« less
On the mineral core of ferritin-like proteins: structural and magnetic characterization
NASA Astrophysics Data System (ADS)
García-Prieto, A.; Alonso, J.; Muñoz, D.; Marcano, L.; Abad Díaz de Cerio, A.; Fernández de Luis, R.; Orue, I.; Mathon, O.; Muela, A.; Fdez-Gubieda, M. L.
2015-12-01
It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction.It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04446d
Rostgaard Nielsen, Lene; Brandes, Ursula; Dahl Kjaer, Erik; Fjellheim, Siri
2016-06-01
Cytisus scoparius is a global invasive species that affects local flora and fauna at the intercontinental level. Its natural distribution spans across Europe, but seeds have also been moved among countries, mixing plants of native and non-native genetic origins. Hybridization between the introduced and native gene pool is likely to threaten both the native gene pool and the local flora. In this study, we address the potential threat of invasive C. scoparius to local gene pools in vulnerable heathlands. We used nuclear single nucleotide polymorphic (SNP) and simple sequence repeat (SSR) markers together with plastid SSR and indel markers to investigate the level and direction of gene flow between invasive and native heathland C. scoparius. Analyses of population structures confirmed the presence of two gene pools: one native and the other invasive. The nuclear genome of the native types was highly introgressed with the invasive genome, and we observed advanced-generation hybrids, suggesting that hybridization has been occurring for several generations. There is asymmetrical gene flow from the invasive to the native gene pool, which can be attributed to higher fecundity in the invasive individuals, measured by the number of flowers and seed pods. Strong spatial genetic structure in plastid markers and weaker structure in nuclear markers suggest that seeds spread over relatively short distances and that gene flow over longer distances is mainly facilitated by pollen dispersal. We further show that the growth habits of heathland plants become more vigorous with increased introgression from the invaders. Implications of the findings are discussed in relation to future management of invading C. scoparius. © 2016 John Wiley & Sons Ltd.
Salvage of failed protein targets by reductive alkylation.
Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej
2014-01-01
The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.
Salvage of Failed Protein Targets by Reductive Alkylation
Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej
2014-01-01
The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719
Gardberg, Anna; Abendroth, Jan; Bhandari, Janhavi; Sankaran, Banumathi; Staker, Bart
2011-01-01
Fructose bisphosphate aldolase (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources, including the bacterium Brucella melitensis and the protozoan Babesia bovis. Bioinformatic analysis of the Bartonella henselae genome revealed an FBPA homolog. The B. henselae FBPA enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme crystallized in the apo form but failed to diffract; however, well diffracting crystals could be obtained by cocrystallization in the presence of the native substrate fructose 1,6-bisphosphate. A data set to 2.35 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group P212121, with unit-cell parameters a = 72.39, b = 127.71, c = 157.63 Å. The structure was refined to a final free R factor of 22.2%. The structure shares the typical barrel tertiary structure and tetrameric quaternary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site. PMID:21904049
Hao, Ge-Fei; Xu, Wei-Fang; Yang, Sheng-Gang; Yang, Guang-Fu
2015-01-01
Protein and peptide structure predictions are of paramount importance for understanding their functions, as well as the interactions with other molecules. However, the use of molecular simulation techniques to directly predict the peptide structure from the primary amino acid sequence is always hindered by the rough topology of the conformational space and the limited simulation time scale. We developed here a new strategy, named Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) to identify the native states of a peptide and miniprotein. A cluster of near native structures could be obtained by using the MSA-MD method, which turned out to be significantly more efficient in reaching the native structure compared to continuous MD and conventional SA-MD simulation. PMID:26492886
A Folding Zone in the Ribosomal Exit Tunnel for Kv1.3 Helix Formation
Tu, LiWei; Deutsch, Carol
2010-01-01
SUMMARY Although it is now clear that protein secondary structure can be acquired early, while the nascent peptide resides within the ribosomal exit tunnel, the principles governing folding of native polytopic proteins have not yet been elucidated. We now report an extensive investigation of native Kv1.3, a voltage-gated K+ channel, including transmembrane and linker segments synthesized in sequence. These native segments form helices vectorially (N- to C-terminus) only in a permissive vestibule located in the last 20Å of the tunnel. Native linker sequences similarly fold in this vestibule. Finally, secondary structure acquired in the ribosome is retained in the translocon. These findings emerge from accessibility studies of a diversity of native transmembrane and linker sequences and may therefore be applicable to protein biogenesis in general. PMID:20060838
Arthropod assemblages on native and nonnative plant species of a coastal reserve in California.
Fork, Susanne K
2010-06-01
Biological invasions by nonnative plant species are a widespread phenomenon. Many studies have shown strong ecological impacts of plant invasions on native plant communities and ecosystem processes. Far fewer studies have examined effects on associated animal communities. From the perspective of a reserve's land management, I addressed the question of whether arthropod assemblages on two nonnative plant species of concern were impoverished compared with those assemblages associated with two predominant native plant species of that reserve. If the nonnative plant species, Conium maculatum L., and Phalaris aquatica L., supported highly depauperate arthropod assemblages compared with the native plant species, Baccharis pilularis De Candolle and Leymus triticoides (Buckley) Pilger, this finding would provide additional support for prioritizing removal of nonnatives and restoration of natives. I assessed invertebrate assemblages at the taxonomic levels of arthropod orders, Coleoptera families, and Formicidae species, using univariate analyses to examine community attributes (richness and abundance) and multivariate techniques to assess arthropod assemblage community composition differences among plant species. Arthropod richness estimates by taxonomic level between native and nonnative vegetation showed varying results. Overall, arthropod richness of the selected nonnative plants, examined at higher taxonomic resolution, was not necessarily less diverse than two of common native plants found on the reserve, although differences were found among plant species. Impacts of certain nonnative plant species on arthropod assemblages may be more difficult to elucidate than those impacts shown on native plants and ecosystem processes.
Kannan, Srinivasaraghavan; Zacharias, Martin
2014-01-01
The 20 residue Trp-cage mini-protein is one of smallest proteins that adopt a stable folded structure containing also well-defined secondary structure elements. The hydrophobic core is arranged around a single central Trp residue. Despite several experimental and simulation studies the detailed folding mechanism of the Trp-cage protein is still not completely understood. Starting from fully extended as well as from partially folded Trp-cage structures a series of molecular dynamics simulations in explicit solvent and using four different force fields was performed. All simulations resulted in rapid collapse of the protein to on average relatively compact states. The simulations indicate a significant dependence of the speed of folding to near-native states on the side chain rotamer state of the central Trp residue. Whereas the majority of intermediate start structures with the central Trp side chain in a near-native rotameric state folded successfully within less than 100 ns only a fraction of start structures reached near-native folded states with an initially non-native Trp side chain rotamer state. Weak restraining of the Trp side chain dihedral angles to the state in the folded protein resulted in significant acceleration of the folding both starting from fully extended or intermediate conformations. The results indicate that the side chain conformation of the central Trp residue can create a significant barrier for controlling transitions to a near native folded structure. Similar mechanisms might be of importance for the folding of other protein structures. PMID:24563686
Invasive plants transform the three-dimensional structure of rain forests
Asner, Gregory P.; Hughes, R. Flint; Vitousek, Peter M.; Knapp, David E.; Kennedy-Bowdoin, Ty; Boardman, Joseph; Martin, Roberta E.; Eastwood, Michael; Green, Robert O.
2008-01-01
Biological invasions contribute to global environmental change, but the dynamics and consequences of most invasions are difficult to assess at regional scales. We deployed an airborne remote sensing system that mapped the location and impacts of five highly invasive plant species across 221,875 ha of Hawaiian ecosystems, identifying four distinct ways that these species transform the three-dimensional (3D) structure of native rain forests. In lowland to montane forests, three invasive tree species replace native midcanopy and understory plants, whereas one understory invader excludes native species at the ground level. A fifth invasive nitrogen-fixing tree, in combination with a midcanopy alien tree, replaces native plants at all canopy levels in lowland forests. We conclude that this diverse array of alien plant species, each representing a different growth form or functional type, is changing the fundamental 3D structure of native Hawaiian rain forests. Our work also demonstrates how an airborne mapping strategy can identify and track the spread of certain invasive plant species, determine ecological consequences of their proliferation, and provide detailed geographic information to conservation and management efforts. PMID:18316720
Systemic Inflammatory Response Syndrome After Administration of Unmodified T Lymphocytes
Papadopoulou, Anastasia; Krance, Robert A; Allen, Carl E; Lee, Daniel; Rooney, Cliona M; Brenner, Malcolm K; Leen, Ann M; Heslop, Helen E
2014-01-01
Systemic inflammatory response syndrome (SIRS) is a rare systemic inflammatory response associated with fever, tachycardia, profound hypotension, and respiratory distress, which has been reported in cancer patients receiving T cells genetically modified with chimeric antigen receptors to retarget their specificity to tumor-associated antigens. The syndrome usually occurs following significant in vivo expansion of the infused cells and has been associated with tumor destruction/lysis. Analysis of patient plasma has shown elevated cytokine levels, and resolution of symptoms has been reported after administration of steroids and/or antibodies (such as anti–tumor necrosis factor and anti-interleukin (IL)-6 receptor antibodies) that interfere with cytokine responses.To date, SIRS has not been reported in subjects receiving genetically unmodified T cells with native receptors directed against tumor antigens, in which greater physiological control of T-cell activation and expansion may occur. Here, however, we report a patient with bulky refractory Epstein-Barr virus (EBV)–associated lymphoma, who developed this syndrome 2 weeks after receiving T cells directed against EBV antigens through their native receptors. She was treated with steroids and etanercept, with rapid resolution of symptoms. SIRS may therefore occur even when T cells recognize antigens physiologically through their “wild-type” native receptors and should be acknowledged as a potential complication of this therapy. PMID:24651135
Coutinho, Alexandra; Valverde, Guido; Fehren-Schmitz, Lars; Cooper, Alan; Barreto Romero, Maria Inés; Espinoza, Isabel Flores; Llamas, Bastien; Haak, Wolfgang
2014-01-01
Phylogeographic studies have described a reduced genetic diversity in Native American populations, indicative of one or more bottleneck events during the peopling and prehistory of the Americas. Classical sequencing approaches targeting the mitochondrial diversity have reported the presence of five major haplogroups, namely A, B, C, D and X, whereas the advent of complete mitochondrial genome sequencing has recently refined the number of founder lineages within the given diversity to 15 sub-haplogroups. We developed and optimized a SNaPshot assay to study the mitochondrial diversity in pre-Columbian Native American populations by simultaneous typing of 26 single nucleotide polymorphisms (SNPs) characterising Native American sub-haplogroups. Our assay proved to be highly sensitive with respect to starting concentrations of target DNA and could be applied successfully to a range of ancient human skeletal material from South America from various time periods. The AmericaPlex26 is a powerful assay with enhanced phylogenetic resolution that allows time- and cost-efficient mitochondrial DNA sub-typing from valuable ancient specimens. It can be applied in addition or alternative to standard sequencing of the D-loop region in forensics, ancestry testing, and population studies, or where full-resolution mitochondrial genome sequencing is not feasible. PMID:24671218
Coutinho, Alexandra; Valverde, Guido; Fehren-Schmitz, Lars; Cooper, Alan; Barreto Romero, Maria Inés; Espinoza, Isabel Flores; Llamas, Bastien; Haak, Wolfgang
2014-01-01
Phylogeographic studies have described a reduced genetic diversity in Native American populations, indicative of one or more bottleneck events during the peopling and prehistory of the Americas. Classical sequencing approaches targeting the mitochondrial diversity have reported the presence of five major haplogroups, namely A, B, C, D and X, whereas the advent of complete mitochondrial genome sequencing has recently refined the number of founder lineages within the given diversity to 15 sub-haplogroups. We developed and optimized a SNaPshot assay to study the mitochondrial diversity in pre-Columbian Native American populations by simultaneous typing of 26 single nucleotide polymorphisms (SNPs) characterising Native American sub-haplogroups. Our assay proved to be highly sensitive with respect to starting concentrations of target DNA and could be applied successfully to a range of ancient human skeletal material from South America from various time periods. The AmericaPlex26 is a powerful assay with enhanced phylogenetic resolution that allows time- and cost-efficient mitochondrial DNA sub-typing from valuable ancient specimens. It can be applied in addition or alternative to standard sequencing of the D-loop region in forensics, ancestry testing, and population studies, or where full-resolution mitochondrial genome sequencing is not feasible.
ERIC Educational Resources Information Center
Ucar, Serpil
2017-01-01
The utilization of English recurrent word combinations--lexical bundles--play a fundamental role in academic prose (Karabacak & Qin, 2013). There has been highly limited research about comparing Turkish non-native and native English writers' use of lexical bundles in academic prose in terms of frequency, structure and functions of lexical…
Structure of n-alkyltrichlorosilane mono layers on Si(100)/SiO 2
H. -G. Steinruck; Ocko, B.; Will, J.; ...
2015-10-05
The structure of n-alkyltrichlorosilane self-assembled monolayers (SAMs) of alkyl chain lengths n = 12, 14, 18, and 22 formed on the amorphous native oxide of silicon (100) has been investigated via angstrom-resolution surface X-ray scattering techniques, with particular focus on the proliferation of lateral order along the molecules’ long axis. Grazing incidence diffraction shows that the monolayer is composed of hexagonally packed crystalline-like domains for n = 14, 18, and 22 with a lateral size of about 60 Å. However, Bragg rod analysis shows that ~12 of the CH 2 units are not included in the crystalline-like domains. We assignmore » this, and the limited lateral crystallites’ size, to strain induced by the size mismatch between the optimal chain–chain and headgroup–headgroup spacings. Lastly, analysis of X-ray reflectivity profiles for n = 12, 14, and 22 shows that the density profile used to successfully model n = 18 provides an excellent fit where the analysis-derived parameters provide complementary structural information to the grazing incidence results.« less
Oligomerization of a molecular chaperone modulates its activity
Kawagoe, Soichiro; Ishimori, Koichiro
2018-01-01
Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here, we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100 kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell. PMID:29714686
Cordeiro, Marco; Kameche, Farid; Ngo, Anh -Tu; ...
2015-03-17
Co xPt 100–x nanoalloys have been synthesized by two different chemical processes either at high or at low temperature. Their physical properties and the order/disorder phase transition induced by annealing have been investigated depending on the route of synthesis. It is demonstrated that the chemical synthesis at high temperature allows stabilization of the fcc structure of the native nanoalloys while the soft chemical approach yields mainly poly or non crystalline structure. As a result the approach of the order/disorder phase transition is strongly modified as observed by high-resolution transmission electron microscopy (HR-TEM) studies performed during in situ annealing of themore » different nanoalloys. The control of the nanocrystallinity leads to significant decrease in the chemical ordering temperature as the ordered structure is observed at temperatures as low as 420 °C. Furthermore, this in turn preserves the individual nanocrystals and prevents their coalescence usually observed during the annealing necessary for the transition to an ordered phase.« less
Zebavidin - An Avidin-Like Protein from Zebrafish
Taskinen, Barbara; Zmurko, Joanna; Ojanen, Markus; Kukkurainen, Sampo; Parthiban, Marimuthu; Määttä, Juha A. E.; Leppiniemi, Jenni; Jänis, Janne; Parikka, Mataleena; Turpeinen, Hannu; Rämet, Mika; Pesu, Marko; Johnson, Mark S.; Kulomaa, Markku S.; Airenne, Tomi T.; Hytönen, Vesa P.
2013-01-01
The avidin protein family members are well known for their high affinity towards D-biotin and high structural stability. These properties make avidins valuable tools for a wide range of biotechnology applications. We have identified a new member of the avidin family in the zebrafish (Danio rerio) genome, hereafter called zebavidin. The protein is highly expressed in the gonads of both male and female zebrafish and in the gills of male fish, but our data suggest that zebavidin is not crucial for the developing embryo. Biophysical and structural characterisation of zebavidin revealed distinct properties not found in any previously characterised avidins. Gel filtration chromatography and native mass spectrometry suggest that the protein forms dimers in the absence of biotin at low ionic strength, but assembles into tetramers upon binding biotin. Ligand binding was analysed using radioactive and fluorescently labelled biotin and isothermal titration calorimetry. Moreover, the crystal structure of zebavidin in complex with biotin was solved at 2.4 Å resolution and unveiled unique ligand binding and subunit interface architectures; the atomic-level details support our physicochemical observations. PMID:24204770
Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V
2009-11-18
Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.
Purification and biophysical characterization of the core protease domain of anthrax lethal factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gkazonis, Petros V.; Dalkas, Georgios A.; Chasapis, Christos T.
2010-06-04
Anthrax lethal toxin (LeTx) stands for the major virulence factor of the anthrax disease. It comprises a 90 kDa highly specific metalloprotease, the anthrax lethal factor (LF). LF possesses a catalytic Zn{sup 2+} binding site and is highly specific against MAPK kinases, thus representing the most potent native biomolecule to alter and inactivate MKK [MAPK (mitogen-activated protein kinase) kinases] signalling pathways. Given the importance of the interaction between LF and substrate for the development of anti-anthrax agents as well as the potential treatment of nascent tumours, the analysis of the structure and dynamic properties of the LF catalytic site aremore » essential to elucidate its enzymatic properties. Here we report the recombinant expression and purification of a C-terminal part of LF (LF{sub 672-776}) that harbours the enzyme's core protease domain. The biophysical characterization and backbone assignments ({sup 1}H, {sup 13}C, {sup 15}N) of the polypeptide revealed a stable, well folded structure even in the absence of Zn{sup 2+}, suitable for high resolution structural analysis by NMR.« less
[Regression analysis to select native-like structures from decoys of antigen-antibody docking].
Chen, Zhengshan; Chi, Xiangyang; Fan, Pengfei; Zhang, Guanying; Wang, Meirong; Yu, Changming; Chen, Wei
2018-06-25
Given the increasing exploitation of antibodies in different contexts such as molecular diagnostics and therapeutics, it would be beneficial to unravel properties of antigen-antibody interaction with modeling of computational protein-protein docking, especially, in the absence of a cocrystal structure. However, obtaining a native-like antigen-antibody structure remains challenging due in part to failing to reliably discriminate accurate from inaccurate structures among tens of thousands of decoys after computational docking with existing scoring function. We hypothesized that some important physicochemical and energetic features could be used to describe antigen-antibody interfaces and identify native-like antigen-antibody structure. We prepared a dataset, a subset of Protein-Protein Docking Benchmark Version 4.0, comprising 37 nonredundant 3D structures of antigen-antibody complexes, and used it to train and test multivariate logistic regression equation which took several important physicochemical and energetic features of decoys as dependent variables. Our results indicate that the ability to identify native-like structures of our method is superior to ZRANK and ZDOCK score for the subset of antigen-antibody complexes. And then, we use our method in workflow of predicting epitope of anti-Ebola glycoprotein monoclonal antibody-4G7 and identify three accurate residues in its epitope.
Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology
Sinz, Andrea; Arlt, Christian; Chorev, Dror; Sharon, Michal
2015-01-01
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein–protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies. PMID:25970732
Dulik, Matthew C.; Owings, Amanda C.; Gaieski, Jill B.; Vilar, Miguel G.; Andre, Alestine; Lennie, Crystal; Mackenzie, Mary Adele; Kritsch, Ingrid; Snowshoe, Sharon; Wright, Ruth; Martin, James; Gibson, Nancy; Andrews, Thomas D.; Schurr, Theodore G.; Adhikarla, Syama; Adler, Christina J.; Balanovska, Elena; Balanovsky, Oleg; Bertranpetit, Jaume; Clarke, Andrew C.; Comas, David; Cooper, Alan; Der Sarkissian, Clio S. I.; GaneshPrasad, ArunKumar; Haak, Wolfgang; Haber, Marc; Hobbs, Angela; Javed, Asif; Jin, Li; Kaplan, Matthew E.; Li, Shilin; Martínez-Cruz, Begoña; Matisoo-Smith, Elizabeth A.; Melé, Marta; Merchant, Nirav C.; Mitchell, R. John; Parida, Laxmi; Pitchappan, Ramasamy; Platt, Daniel E.; Quintana-Murci, Lluis; Renfrew, Colin; Lacerda, Daniela R.; Royyuru, Ajay K.; Santos, Fabrício R.; Soodyall, Himla; Soria Hernanz, David F.; Swamikrishnan, Pandikumar; Tyler-Smith, Chris; Santhakumari, Arun Varatharajan; Vieira, Pedro Paulo; Wells, R. Spencer; Zalloua, Pierre A.; Ziegle, Janet S.
2012-01-01
For decades, the peopling of the Americas has been explored through the analysis of uniparentally inherited genetic systems in Native American populations and the comparison of these genetic data with current linguistic groupings. In northern North America, two language families predominate: Eskimo-Aleut and Na-Dene. Although the genetic evidence from nuclear and mtDNA loci suggest that speakers of these language families share a distinct biological origin, this model has not been examined using data from paternally inherited Y chromosomes. To test this hypothesis and elucidate the migration histories of Eskimoan- and Athapaskan-speaking populations, we analyzed Y-chromosomal data from Inuvialuit, Gwich’in, and Tłįchǫ populations living in the Northwest Territories of Canada. Over 100 biallelic markers and 19 chromosome short tandem repeats (STRs) were genotyped to produce a high-resolution dataset of Y chromosomes from these groups. Among these markers is an SNP discovered in the Inuvialuit that differentiates them from other Aboriginal and Native American populations. The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas. In addition, the population history of Athapaskan speakers is complex, with the Tłįchǫ being distinct from other Athapaskan groups. The high-resolution biallelic data also make clear that Y-chromosomal diversity among the first Native Americans was greater than previously recognized. PMID:22586127
Sildever, Sirje; Sefbom, Josefin; Lips, Inga; Godhe, Anna
2016-12-01
It has been shown that the planktonic diatom Skeletonema from neighbouring areas are genetically differentiated despite absence of physical dispersal barriers. We revisited two sites, Mariager Fjord and Kattegat, NE Atlantic, and isolated new strains. Microsatellite genotyping and F-statistics revealed that the populations were genetically differentiated. An experiment was designed to investigate if populations are locally adapted and have a native competitive advantage. Ten strains from each location were grown individually in native and foreign water to investigate differences in produced biomass. Additionally, we mixed six pairs, one strain from each site, and let them grow together in native and foreign water. Strains from Mariager Fjord and Kattegat produced higher biomass in native water. In the competition experiment, strains from both sites displayed higher relative abundance and demonstrated competitive advantage in their native water. The cause of the differentiated growth is unknown, but could possibly be attributed to differences in silica concentration or viruses in the two water types. Our data show that dispersal potential does not influence the genetic structure of the populations. We conclude that genetic adaptation has not been overruled by gene flow, but instead the responses to different selection conditions are enforcing the observed genetic structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Franc, Vojtech; Zhu, Jing; Heck, Albert J. R.
2018-03-01
The human complement hetero-trimeric C8αβγ (C8) protein assembly ( 150 kDa) is an important component of the membrane attack complex (MAC). C8 initiates membrane penetration and coordinates MAC pore formation. Here, we charted in detail the structural micro-heterogeneity within C8, purified from human plasma, combining high-resolution native mass spectrometry and (glyco)peptide-centric proteomics. The intact C8 proteoform profile revealed at least 20 co-occurring MS signals. Additionally, we employed ion exchange chromatography to separate purified C8 into four distinct fractions. Their native MS analysis revealed even more detailed structural micro-heterogeneity on C8. Subsequent peptide-centric analysis, by proteolytic digestion of C8 and LC-MS/MS, provided site-specific quantitative profiles of different types of C8 glycosylation. Combining all this data provides a detailed specification of co-occurring C8 proteoforms, including experimental evidence on N-glycosylation, C-mannosylation, and O-glycosylation. In addition to the known N-glycosylation sites, two more N-glycosylation sites were detected on C8. Additionally, we elucidated the stoichiometry of all C-mannosylation sites in all the thrombospondin-like (TSP) domains of C8α and C8β. Lastly, our data contain the first experimental evidence of O-linked glycans located on C8γ. Albeit low abundant, these O-glycans are the first PTMs ever detected on this subunit. By placing the observed PTMs in structural models of free C8 and C8 embedded in the MAC, it may be speculated that some of the newly identified modifications may play a role in the MAC formation. [Figure not available: see fulltext.
Structure of fructose bisphosphate aldolase from Encephalitozoon cuniculi
Gardberg, Anna; Sankaran, Banumathi; Davies, Doug; Bhandari, Janhavi; Staker, Bart; Stewart, Lance
2011-01-01
Fructose bisphosphate aldolose (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources. Bioinformatic analysis of the genome of the eukaryotic microsporidian parasite Encephalitozoon cuniculi revealed an FBPA homolog. The structures of this enzyme in the presence of the native substrate FBP and also with the partial substrate analog phosphate are reported. The purified enzyme crystallized in 90 mM Bis-Tris propane pH 6.5, 18% PEG 3350, 18 mM NaKHPO4, 10 mM urea for the phosphate-bound form and 100 mM Bis-Tris propane pH 6.5, 20% PEG 3350, 20 mM fructose 1,6-bisphosphate for the FBP-bound form. In both cases protein was present at 25 mg ml−1 and the sitting-drop vapour-diffusion method was used. For the FBP-bound form, a data set to 2.37 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group C2221, with unit-cell parameters a = 121.46, b = 135.82, c = 61.54 Å. The structure was refined to a final free R factor of 20.8%. For the phosphate-bound form, a data set was collected to 2.00 Å resolution. The space group was also C2221 and the unit-cell parameters were a = 121.96, b = 137.61, c = 62.23 Å. The structure shares the typical barrel tertiary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site. The quaternary structure is dimeric. This work provides a direct experimental result for the substrate-binding conformation of the product state of E. cuniculi FBPA. PMID:21904050
Structure of fructose bisphosphate aldolase from Encephalitozoon cuniculi.
Gardberg, Anna; Sankaran, Banumathi; Davies, Doug; Bhandari, Janhavi; Staker, Bart; Stewart, Lance
2011-09-01
Fructose bisphosphate aldolose (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources. Bioinformatic analysis of the genome of the eukaryotic microsporidian parasite Encephalitozoon cuniculi revealed an FBPA homolog. The structures of this enzyme in the presence of the native substrate FBP and also with the partial substrate analog phosphate are reported. The purified enzyme crystallized in 90 mM Bis-Tris propane pH 6.5, 18% PEG 3350, 18 mM NaKHPO(4), 10 mM urea for the phosphate-bound form and 100 mM Bis-Tris propane pH 6.5, 20% PEG 3350, 20 mM fructose 1,6-bisphosphate for the FBP-bound form. In both cases protein was present at 25 mg ml(-1) and the sitting-drop vapour-diffusion method was used. For the FBP-bound form, a data set to 2.37 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group C222(1), with unit-cell parameters a=121.46, b=135.82, c=61.54 Å. The structure was refined to a final free R factor of 20.8%. For the phosphate-bound form, a data set was collected to 2.00 Å resolution. The space group was also C222(1) and the unit-cell parameters were a=121.96, b=137.61, c=62.23 Å. The structure shares the typical barrel tertiary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site. The quaternary structure is dimeric. This work provides a direct experimental result for the substrate-binding conformation of the product state of E. cuniculi FBPA.
NASA Astrophysics Data System (ADS)
Masoumi, Nafiseh
There are several disadvantages correlated with current heart valve replacement, including anticoagulation therapy for patients with mechanical valves and the low durability of bioprosthetic valves. The non-viable nature of such devices is a critical drawback especially for pediatric cases due to the inability of the graft to grow in vivo with the patients. A tissue engineered heart valve (TEHV) with remodeling and growth ability, is conceptually appealing to use in the surgical repair and could serve as a permanent replacements when operating for pediatric valvular lesions. It is critical that scaffolds for functional heart valve tissue engineering, be capable of mimicking the native leaflet's structure and mechanical properties at the time of implantation. Meanwhile, the scaffolds should be able to support cellular proliferation and native-like tissue formation as the TEHV remodels toward a scaffold-free state. Our overall hypothesis is that an "ideal" engineered construct, designed based on native leaflet's structure and mechanics, will complement a native heart valve leaflet in providing benchmarks for use in the design of clinically-applicable TEHV. This hypothesis was addressed through several experiments conducted in the present study. To establish a functional biomimetic TEHV, we developed scaffolds capable of matching the anisotropic stiffness of native leaflet while promoting native-like cell and collagen content and supporting the ECM generation. Scaffolds with various polymer contents (e.g., poly (glycerol sebacate) (PGS) and poly (epsilon-caprolactone) (PCL)) and structural designs (e.g., microfabricated and microfibrous scaffolds), were fabricated based on native leaflet's structure and mechanics. It was found that the tri-layered scaffold, designed with assembly of microfabricated PGS and microfibrous PGS/PCL was a functional leaflet capable of promoting tissue formation. Furthermore, to investigate the effect of cyclic stress and flexure individually on the TEHV development, we designed a simple and novel stretch-flexure bioreactor in which samples were subjected to well-defined stimulations with a controlled strain-rate. The stretch and flexure was found to accelerate and increase tissue formation on the microfabricated PGS scaffolds cultivated in the bioreactors.
Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.
2015-01-01
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host’s cellular environment, their natural in-situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940’s and subsequent application to cells in the 1950’s. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in-situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760
Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C
2015-11-15
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.
Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme
Mustoe, Anthony M.; Al-Hashimi, Hashim M.; Brooks, Charles L.
2016-01-01
A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360
CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis
Skinner, Owen S.; Do Vale, Luis H. F.; Catherman, Adam D.; Havugimana, Pierre C.; Valle de Sousa, Marcelo; Domont, Gilberto B.; Kelleher, Neil L.; Compton, Philip D.
2016-01-01
Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses. PMID:26967310
Invasive hybridization in a threatened species is accelerated by climate change
NASA Astrophysics Data System (ADS)
Muhlfeld, Clint C.; Kovach, Ryan P.; Jones, Leslie A.; Al-Chokhachy, Robert; Boyer, Matthew C.; Leary, Robb F.; Lowe, Winsor H.; Luikart, Gordon; Allendorf, Fred W.
2014-07-01
Climate change will decrease worldwide biodiversity through a number of potential pathways, including invasive hybridization (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between threatened native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and non-native rainbow trout (Oncorhynchus mykiss), the world's most widely introduced invasive fish. Despite widespread release of millions of rainbow trout over the past century within the Flathead River system, a large relatively pristine watershed in western North America, historical samples revealed that hybridization was prevalent only in one (source) population. During a subsequent 30-year period of accelerated warming, hybridization spread rapidly and was strongly linked to interactions between climatic drivers--precipitation and temperature--and distance to the source population. Specifically, decreases in spring precipitation and increases in summer stream temperature probably promoted upstream expansion of hybridization throughout the system. This study shows that rapid climate warming can exacerbate interactions between native and non-native species through invasive hybridization, which could spell genomic extinction for many species.
Comparative water use of native and invasive plants at multiple scales: a global meta-analysis.
Cavaleri, Molly A; Sack, Lawren
2010-09-01
Ecohydrology and invasive ecology have become increasingly important in the context of global climate change. This study presents the first in-depth analysis of the water use of invasive and native plants of the same growth form at multiple scales: leaf, plant, and ecosystem. We reanalyzed data for several hundred native and invasive species from over 40 published studies worldwide to glean global trends and to highlight how patterns vary depending on both scale and climate. We analyzed all pairwise combinations of co-occurring native and invasive species for higher comparative resolution of the likelihood of an invasive species using more water than a native species and tested for significance using bootstrap methods. At each scale, we found several-fold differences in water use between specific paired invasive and native species. At the leaf scale, we found a strong tendency for invasive species to have greater stomatal conductance than native species. At the plant scale, however, natives and invasives were equally likely to have the higher sap flow rates. Available data were much fewer for the ecosystem scale; nevertheless, we found that invasive-dominated ecosystems were more likely to have higher sap flow rates per unit ground area than native-dominated ecosystems. Ecosystem-scale evapotranspiration, on the other hand, was equally likely to be greater for systems dominated by invasive and native species of the same growth form. The inherent disconnects in the determination of water use when changing scales from leaf to plant to ecosystem reveal hypotheses for future studies and a critical need for more ecosystem-scale water use measurements in invasive- vs. native-dominated systems. The differences in water use of native and invasive species also depended strongly on climate, with the greater water use of invasives enhanced in hotter, wetter climates at the coarser scales.
Winkler, Kathrin A; Pamminger-Lahnsteiner, Barbara; Wanzenböck, Josef; Weiss, Steven
2011-01-01
Translocations of Baltic whitefish (Coregonus sp.) into Austrian Alpine lakes have created ‘artificial hybrid zones’, threatening the genetic integrity of native lineages. We evaluate the genetic structure of Coregonus in Austrian lakes and characterize hybridization and introgression between native and introduced lineages. Fifteen populations (N= 747) were assessed for allelic variation at eight microsatellite loci and a reduced set (N= 253) for variation across two mtDNA genes (cyt b and NADH-3). Bayesian approaches were used to estimate individual admixture proportions (q-values) and classify genotypes as native, introduced or hybrids. q-value distributions varied among populations highlighting differential hybridization and introgression histories. Many lakes revealed a clear distinction between native and introduced genotypes despite hybridization, whereas some locations revealed hybrid swarms. Genetic structure among lakes was congruent with morphological divergence and novelty raising speculation of multiple taxa, including a population south of the Alps, outside the putative native range of Coregonus. Although statistically congruent with inferences based on nuclear markers, mitochondrial haplotype data was not diagnostic with respect to native and non-native lineages, supporting that the Alpine region was colonized post-glacially by an admixture of mtDNA lineages, which coalesce >1 Ma. Mechanisms promoting or eroding lineage isolation are discussed, as well as a high potential to conserve native Alpine lineages despite the extensive historical use of introduced Baltic stocks. PMID:21199024
Comparison of burbot populations across adjacent native and introduced ranges
Walters, Annika W.; Mandeville, Elizabeth G.; Saunders, W. Carl; Gerrity, Paul C.; Skorupski, Joseph A.; Underwood, Zachary E.; Gardunio, Eric I.
2017-01-01
Introduced species are a threat to biodiversity. Burbot, Lota lota, a fish native to the Wind River Drainage, Wyoming and a species of conservation concern, have been introduced into the nearby Green River Drainage, Wyoming, where they are having negative effects on native fish species. We compared these native and introduced burbot populations to evaluate potential mechanisms that could be leading to introduction success. We examined genetic ancestry, physical habitat characteristics, community composition, and burbot abundance, relative weight, and size structure between the native and introduced range to elucidate potential differences. The origin of introduced burbot in Flaming Gorge Reservoir is most likely Boysen Reservoir and several nearby river populations in the native Wind River Drainage. Burbot populations did not show consistent differences in abundance, size structure, and relative weight between drainages, though Fontenelle Reservoir, in the introduced drainage, had the largest burbot. There were also limited environmental and community composition differences, though reservoirs in the introduced drainage had lower species richness and a higher percentage of non-native fish species than the reservoir in the native drainage. Burbot introduction in the Green River Drainage is likely an example of reservoir construction creating habitat with suitable environmental conditions to allow a southwards range expansion of this cold-water species. An understanding of the factors driving introduction success can allow better management of species, both in their introduced and native range.
The Promiscuity of [beta]-Strand Pairing Allows for Rational Design of [beta]-Sheet Face Inversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makabe, Koki; Koide, Shohei
2009-06-17
Recent studies suggest the dominant role of main-chain H-bond formation in specifying {beta}-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing {beta}-sheet-based nanomaterials. Here we show rational design of {beta}-sheet face inversions by incremental deletions of {beta}-strands from the single-layer {beta}-sheet of Borrelia outer surface protein A. We show that a {beta}-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a {beta}-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success ofmore » the design and supported the importance of main-chain H-bonds in determining {beta}-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on {beta}-rich peptide self-assemblies.« less