NASA Astrophysics Data System (ADS)
Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen
2016-08-01
The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.
CARMENES in SPIE 2014. Building a fibre link for CARMENES
NASA Astrophysics Data System (ADS)
Stürmer, J.; Stahl, O.; Schwab, C.; Seifert, W.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Caballero, J. A.
2014-07-01
Optical fibres have successfully been used to couple high-resolution spectrographs to telescopes for many years. As they allow the instrument to be placed in a stable and isolated location, they decouple the spectrograph from environmental influences. Fibres also provide a substantial increase in stability of the input illumination of the spectrograph, which makes them a key optical element of the two high-resolution spectrographs of CARMENES. The optical properties of appropriate fibres are investigated, especially their scrambling and focal ratio degradation (FRD) behaviour. In the laboratory the output illumination of various fibres is characterized and different methods to increase the scrambling of the fibre link are tested and compared. In particular, a combination of fibres with different core shapes shows a very good scrambling performance. The near-field (NF) shows an extremely low sensitivity to the exact coupling conditions of the fibre. However, small changes in the far-field (FF) can still be seen. Related optical simulations of the stability performance of the two spectrographs are presented. The simulations focus on the influence of the non-perfect illumination stabilization in the far-field of the fibre on the radial velocity stability of the spectrographs. We use ZEMAX models of the spectrographs to simulate how the barycentres of the spots move depending on the FF illumination pattern and therefore how the radial velocity is affected by a variation of the spectrograph illumination. This method allows to establish a quantitative link between the results of the measurements of the optical properties of fibres on the one hand and the radial velocity precision on the other. The results provide a strong indication that 1ms?1 precision can be reached using a circular-octagonal fibre link even without the use of an optical double scrambler, which has successfully been used in other high-resolution spectrographs. Given the typical throughput of an optical double scrambler of about 75% to 85 %, our solution allows for a substantially higher throughput of the system.
Instruments at the Lowell Observatory Discovery Channel Telescope (DCT)
NASA Astrophysics Data System (ADS)
Jacoby, George H.; Bida, Thomas A.; Fischer, Debra; Horch, Elliott; Kutyrev, Alexander; Mace, Gregory N.; Massey, Philip; Roe, Henry G.; Prato, Lisa A.
2017-01-01
The Lowell Observatory Discovery Channel Telescope (DCT) has been in full science operation for 2 years (2015 and 2016). Five instruments have been commissioned during that period, and two additional instruments are planned for 2017. These include:+ Large Monolithic Imager (LMI) - a CCD imager (12.6 arcmin FoV)+ DeVeny - a general purpose optical spectrograph (2 arcmin slit length, 10 grating choices)+ NIHTS - a low resolution (R=160) YJHK spectrograph (1.3 arcmin slit)+ DSSI - a two-channel optical speckle imager (5 arcsec FoV)+ IGRINS - a high resolution (45,000) HK spectrograph, on loan from the University of Texas.In the upcoming year, instruments will be delivered from the University of Maryland (RIMAS - a YJHK imager/spectrograph) and from Yale University (EXPRES - a very high resolution stabilized optical echelle for PRV).Each of these instruments will be described, along with their primary science goals.
The Diffuse Interstellar Cloud Experiment: a high-resolution far-ultraviolet spectrograph.
Schindhelm, Eric; Beasley, Matthew; Burgh, Eric B; Green, James C
2012-03-01
We have designed, assembled, and launched a sounding rocket payload to perform high-resolution far-ultraviolet spectroscopy. The instrument is functionally a Cassegrain telescope followed by a modified Rowland spectrograph. The spectrograph was designed to achieve a resolving power (R=λ/δλ) of 60,000 in a compact package by adding a magnifying secondary optic. This is enabled by using a holographically ruled grating to minimize aberrations induced by the second optic. We designed the instrument to observe two stars on opposing sides of a nearby hot/cold gas interface. Obtaining spectra of the O VI doublet in absorption toward these stars can provide new insight into the processes governing hot gas in the local interstellar medium. Here we present the optical design and alignment of the telescope and spectrograph, as well as flight results. © 2012 Optical Society of America
Multi-object medium resolution optical spectroscopy at the E-ELT
NASA Astrophysics Data System (ADS)
Spanò, Paolo; Bonifacio, Piercarlo
2008-07-01
We present the design of a compact medium resolution spectrograph (R~15,000-20,000), intended to operate on a 42m telescope in seeing-limited mode. Our design takes full advantage of some new technology optical components, like volume phase holographic (VPH) gratings. At variance with the choice of complex large echelle spectrographs, which have been the standard on 8m class telescopes, we selected an efficient VPH spectrograph with a limited beam diameter, in order to keep overall dimensions and costs low, using proven available technologies. To obtain such a resolution, we need to moderately slice the telescope image plane onto the spectrograph entrance slit (5-6 slices). Then, standard telescope AO-mode (GLAO, Ground Layer Adaptive Optics) can be used over a large field of view (~10 arcmin), without loosing efficiency. Multiplex capabilities can greatly increase the observing efficiency. A robotic pick-up mirror system can be implemented, within conventional environmental conditions (temperature, pressure, gravity, size), demanding only standard mechanical and optical tolerances. A modular approach allows us scaling multiplex capabilities on overall costs and available space.
NASA Astrophysics Data System (ADS)
Robertson, J. Gordon; Bland-Hawthorn, Joss
2012-09-01
As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.
PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT
NASA Astrophysics Data System (ADS)
Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo
PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.
bHROS: A New High-Resolution Spectrograph Available on Gemini South
NASA Astrophysics Data System (ADS)
Margheim, S. J.; Gemini bHROS Team
2005-12-01
The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.
High-resolution ground-based spectroscopy: where and how ?
NASA Astrophysics Data System (ADS)
Pallavicini, R.
2002-07-01
An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.
LRS2: A New Integral Field Spectrograph for the HET
NASA Astrophysics Data System (ADS)
Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie
2016-01-01
Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.
NASA Astrophysics Data System (ADS)
Smee, Stephen A.; Prochaska, Travis; Shectman, Stephen A.; Hammond, Randolph P.; Barkhouser, Robert H.; DePoy, D. L.; Marshall, J. L.
2012-09-01
We describe the conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). GMACS is a candidate first-light instrument for the GMT and will be one of several instruments housed in the Gregorian Instrument Rotator (GIR) located at the Gregorian focus. The instrument samples a 9 arcminute x 18 arcminute field of view providing two resolution modes (i.e, low resolution, R ~ 2000, and moderate resolution, R ~ 4000) over a 3700 Å to 10200 Å wavelength range. To minimize the size of the optics, four fold mirrors at the GMT focal plane redirect the full field into four individual "arms", that each comprises a double spectrograph with a red and blue channel. Hence, each arm samples a 4.5 arcminute x 9 arcminute field of view. The optical layout naturally leads to three separate optomechanical assemblies: a focal plane assembly, and two identical optics modules. The focal plane assembly contains the last element of the telescope's wide-field corrector, slit-mask, tent-mirror assembly, and slit-mask magazine. Each of the two optics modules supports two of the four instrument arms and houses the aft-optics (i.e. collimators, dichroics, gratings, and cameras). A grating exchange mechanism, and articulated gratings and cameras facilitate multiple resolution modes. In this paper we describe the details of the GMACS optomechanical design, including the requirements and considerations leading to the design, mechanism details, optics mounts, and predicted flexure performance.
NASA Astrophysics Data System (ADS)
Carrasco, E.; Sánchez-Blanco, E.; García-Vargas, M. L.; Gil de Paz, A.; Páez, G.; Gallego, J.; Sánchez, F. M.; Vílchez, J. M.
2012-09-01
MEGARA is the next optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for Gran Telescopio Canarias. The instrument offers two IFUs plus a Multi-Object Spectroscopy (MOS) mode: a large compact bundle covering 12.5 arcsec x 11.3 arcsec on sky with 100 μm fiber-core; a small compact bundle, of 8.5 arcsec x 6.7 arcsec with 70 μm fiber-core and a fiber MOS positioner that allows to place up to 100 mini-bundles, 7 fibers each, with 100 μm fiber-core, within a 3.5 arcmin x 3.5 arcmin field of view, around the two IFUs. The fibers, organized in bundles, end in the pseudo-slit plate, which will be placed at the entrance focal plane of the MEGARA spectrograph. The large IFU and MOS modes will provide intermediate to high spectral resolutions, R=6800-17000. The small IFU mode will provide R=8000-20000. All these resolutions are possible thanks to a spectrograph design based in the used of volume phase holographic gratings in combination with prisms to keep fixed the collimator and camera angle. The MEGARA optics is composed by a total of 53 large optical elements per spectrograph: the field lens, the collimator and the camera lenses plus the complete set of pupil elements including holograms, windows and prisms. INAOE, a partner of the GTC and a partner of MEGARA consortium, is responsible of the optics manufacturing and tests. INAOE will carry out this project working in an alliance with CIO. This paper summarizes the status of MEGARA spectrograph optics at the Preliminary Design Review, held on March 2012.
Small Astronomy Payloads for Spacelab. [conferences
NASA Technical Reports Server (NTRS)
Bohlin, R. C. (Editor)
1975-01-01
The workshop to define feasible concepts in the UV-optical 1R area for Astronomy Spacelab Payloads is reported. Payloads proposed include: high resolution spectrograph, Schmidt camera spectrograph, UV telescope, and small infrared cryogenic telescope.
Optical design of a versatile FIRST high-resolution near-IR spectrograph
NASA Astrophysics Data System (ADS)
Zhao, Bo; Ge, Jian
2012-09-01
We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.
High resolution spectrograph. [for LST
NASA Technical Reports Server (NTRS)
Peacock, K.
1975-01-01
The high resolution spectrograph (HRS) is designed to be used with the Large Space Telescope (LST) for the study of spectra of point and extended targets in the spectral range 110 to 410 nm. It has spectral resolutions of 1,000; 30,000; and 100,000 and has a field of view as large as 10 arc sec. The spectral range and resolution are selectable using interchangeable optical components and an echelle spectrograph is used to display a cross dispersed spectrum on the photocathode of either of 2 SEC orthicon image tubes. Provisions are included for wavelength calibration, target identification and acquisition and thermal control. The system considerations of the instrument are described.
Instrumentation progress at the Giant Magellan Telescope project
NASA Astrophysics Data System (ADS)
Jacoby, George H.; Bernstein, R.; Bouchez, A.; Colless, M.; Crane, Jeff; DePoy, D.; Espeland, B.; Hare, Tyson; Jaffe, D.; Lawrence, J.; Marshall, J.; McGregor, P.; Shectman, Stephen; Sharp, R.; Szentgyorgyi, A.; Uomoto, Alan; Walls, B.
2016-08-01
Instrument development for the 24m Giant Magellan Telescope (GMT) is described: current activities, progress, status, and schedule. One instrument team has completed its preliminary design and is currently beginning its final design (GCLEF, an optical 350-950 nm, high-resolution and precision radial velocity echelle spectrograph). A second instrument team is in its conceptual design phase (GMACS, an optical 350-950 nm, medium resolution, 6-10 arcmin field, multi-object spectrograph). A third instrument team is midway through its preliminary design phase (GMTIFS, a near-IR YJHK diffraction-limited imager/integral-field-spectrograph), focused on risk reduction prototyping and design optimization. A fourth instrument team is currently fabricating the 5 silicon immersion gratings needed to begin its preliminary design phase (GMTNIRS, a simultaneous JHKLM high-resolution, AO-fed, echelle spectrograph). And, another instrument team is focusing on technical development and prototyping (MANIFEST, a facility robotic, multifiber feed, with a 20 arcmin field of view). In addition, a medium-field (6 arcmin, 0.06 arcsec/pix) optical imager will support telescope and AO commissioning activities, and will excel at narrow-band imaging. In the spirit of advancing synergies with other groups, the challenges of running an ELT instrument program and opportunities for cross-ELT collaborations are discussed.
NASA Astrophysics Data System (ADS)
Prochaska, Travis; Sauseda, Marcus; Beck, James; Schmidt, Luke; Cook, Erika; DePoy, Darren L.; Marshall, Jennifer L.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Froning, Cynthia; Pak, Soojong; Mendes de Oliveira, Claudia; Papovich, Casey; Ji, Tae-Geun; Lee, Hye-In
2016-08-01
We describe a preliminary conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT). This paper describes the details of the GMACS optomechanical conceptual design, including the requirements and considerations leading to the design, mechanisms, optical mounts, and predicted flexure performance.
NASA Astrophysics Data System (ADS)
Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.
2012-09-01
Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.
Astronomical near-infrared echelle gratings
NASA Astrophysics Data System (ADS)
Hinkle, Kenneth H.; Joyce, Richard R.; Liang, Ming
2014-07-01
High-resolution near-infrared echelle spectrographs require coarse rulings in order to match the free spectral range to the detector size. Standard near-IR detector arrays typically are 2 K x 2 K or 4 K x 4 K. Detectors of this size combined with resolutions in the range 30000 to 100000 require grating groove spacings in the range 5 to 20 lines/mm. Moderately high blaze angles are desirable to reduce instrument size. Echelle gratings with these characteristics have potential wide application in both ambient temperature and cryogenic astronomical echelle spectrographs. We discuss optical designs for spectrographs employing immersed and reflective echelle gratings. The optical designs set constraints on grating characteristics. We report on market choices for obtaining these gratings and review our experiments with custom diamond turned rulings.
Design and Construction of VUES: The Vilnius University Echelle Spectrograph
NASA Astrophysics Data System (ADS)
Jurgenson, Colby; Fischer, Debra; McCracken, Tyler; Sawyer, David; Giguere, Matt; Szymkowiak, Andrew; Santoro, Fernando; Muller, Gary
2016-03-01
In February 2014, the Yale Exoplanet Laboratory was commissioned to design, build, and deliver a high resolution (R=60,000) spectrograph for the 1.65m telescope at the Molėtai Astronomical Observatory. The observatory is operated by the Institute of Theoretical Physics and Astronomy at Vilnius University. The Vilnius University Echelle Spectrograph (VUES) is a white-pupil design that is fed via an octagonal fiber from the telescope and has an operational bandpass from 400nm to 880nm. VUES incorporates a novel modular optomechanical design that allows for quick assembly and alignment on commercial optical tables. This approach allowed the spectrograph to be assembled and commissioned at Yale using lab optical tables and then reassembled at the observatory on a different optical table with excellent repeatability. The assembly and alignment process for the spectrograph was reduced to a few days, allowing the spectrograph to be completely disassembled for shipment to Lithuania, and then installed at the observatory during a 10-day period in June of 2015.
Achieving the resolution of the spectrograph of the 6m large Azimuthal telescope
NASA Astrophysics Data System (ADS)
Sazonenko, Dmitrii; Kukushkin, Dmitrii; Bakholdin, Alexey; Valyavin, Gennady
2016-08-01
Special Astrophysical Observatory of Russian Academy of Sciences (SAO RAS) creates a spectrograph with high spectral resolution for the 6-meter telescope. The spectrograph consists of a mobile unit located at the focus of the telescope's main mirror, a stationary part located under the telescope and optical fibers which transmit light from the mobile part to the stationary one. The spectral resolution of the stationary part should be R=100000. To achieve such a value, the scheme has two spectral elements, with cross-dispersion. The main spectral element is an echelle grating. The second spectral element is a prism with a diffraction grating on one facet.
MEGARA: the new multi-object and integral field spectrograph for GTC
NASA Astrophysics Data System (ADS)
Carrasco, E.; Páez, G.; Izazaga-Pére, R.; Gil de Paz, A.; Gallego, J.; Iglesias-Páramo, J.
2017-07-01
MEGARA is an optical integral-field unit and multi-object spectrograph for the 10.4m Gran Telescopio Canarias. Both observational modes will provide identical spectral resolutions Rfwhm ˜ 6,000, 12,000 and 18,700. The spectrograph is a collimator-camera system. The unique characteristics of MEGARA in terms of throughput and versatility make this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. The instrument is currently at the telescope for on-sky commissioning. Here we describe the as-built main characteristics the instrument.
MSE spectrograph optical design: a novel pupil slicing technique
NASA Astrophysics Data System (ADS)
Spanò, P.
2014-07-01
The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.
The New Instrument Suite of the TSU/Fairborn 2m Automatic Spectroscopic Telescope
NASA Astrophysics Data System (ADS)
Muterspaugh, Matthew W.; Maxwell, T.; Williamson, M. W.; Fekel, F. C.; Ge, J.; Kelly, J.; Ghasempour, A.; Powell, S.; Zhao, B.; Varosi, F.; Schofield, S.; Liu, J.; Warner, C.; Jakeman, H.; Avner, L.; Swihart, S.; Harrison, C.; Fishler, D.
2014-01-01
Tied with the Liverpool Telescope as the world's largest fully robotic optical research telescope, Tennessee State University's (TSU) 2m Automatic Spectroscopic Telescope (AST) has recently been upgraded to improve performance and increase versatility by supporting multiple instruments. Its second-generation instrument head enables us to rapidly switch between any of up to twelve fibers optics, each of which can supply light to a different instrument. In 2013 construction was completed on a new temperature-controlled guest instrument building, and two new high resolution spectrographs were commissioned. The current set of instrumentation includes (1) the telescope's original R=30,000 echelle spectrograph (0.38--0.83 microns simultaneous), (2) a single order R=7,000 spectrograph centered at Ca H&K features, (3) a single-mode-fiber fed miniature echelle spectrograph (R=100,000; 0.48--0.62 microns simultaneous), (4) the University of Florida's EXPERT-3 spectrograph (R=100,000; 0.38--0.9 microns simultaneous; vacuum and temperature controlled) and (5) the University of Florida's FIRST spectrograph (R=70,000$; 0.8--1.35 or 1.4--1.8 microns simultaneous; vacuum and temperature controlled). Future instruments include the Externally Dispersed Interferometry (EDI) Testbed, a combination low resolution dispersed spectrograph and Fourier Transform Spectrograph. We welcome inquiries from the community in regards to observing access and/or proposals for future guest instruments.
The deterministic optical alignment of the HERMES spectrograph
NASA Astrophysics Data System (ADS)
Gers, Luke; Staszak, Nicholas
2014-07-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.
4MOST optical system: presentation and design details
NASA Astrophysics Data System (ADS)
Azaïs, Nicolas; Frey, Steffen; Bellido, Olga; Winkler, Roland
2017-09-01
The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where 2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.
The optical design of the G-CLEF Spectrograph: the first light instrument for the GMT
NASA Astrophysics Data System (ADS)
Ben-Ami, Sagi; Epps, Harland; Evans, Ian; Mueller, Mark; Podgorski, William; Szentgyorgyi, Andrew
2016-08-01
The GMT-Consortium Large Earth Finder (G-CLEF), the first major light instrument for the GMT, is a fiber-fed, high-resolution echelle spectrograph. In the following paper, we present the optical design of G-CLEF. We emphasize the unique solutions derived for the spectrograph fiber-feed: the Mangin mirror that corrects the cylindrical field curvature, the implementation of VPH grisms as cross dispersers, and our novel solution for a multi-colored exposure meter. We describe the spectrograph blue and red cameras comprised of 7 and 8 elements respectively, with one aspheric surface in each camera, and present the expected echellogram imaged on the instrument focal planes. Finally, we present ghost analysis and mitigation strategy that takes into account both single reflection and double reflection back scattering from various elements in the optical train.
High-Speed Laser Imaging, Emission and Temperature Measurements of Explosions
2006-09-01
of these optical fibers illuminated the entrance slit of a dedicated Ocean Optics model HR-2000 spectrograph. The seven spectrographs were modified...Hewlett-Packard). The spectral response of the system was calibrated using an ARC Model XS432 Xenon lamp. Time resolution is approximately 12...F FOROHAR 101 STRAUSS AVE INDIAN HEAD MD 20640-5035 1 NAVAL SURFACE WARFARE CTR CODE 920J R GUIRGUIS 101 STRAUSS AVE INDIAN
NOAO's next-generation optical spectrograph
NASA Astrophysics Data System (ADS)
Barden, Samuel C.; Harmer, Charles F.; Blakley, Rick D.; Parks, Rachel J.
2000-08-01
The National Optical Astronomy Observatory is developing a new, wide-field, imaging spectrograph for use on its existing 4-meter telescopes. This Next Generation Optical Spectrograph (NGOS) will utilize volume-phase holographic grating technology and will have a mosaiced detector array to image the spectra over a field of view that will be something like 10.5 by 42 arc-minutes on the sky. The overall efficiency of the spectrograph should be quite high allowing it to outperform the current RC spectrograph by factors of 10 to 20 and the Hydra multi-fiber instrument by a facto of fiber to ten per object. The operational range of the instrument will allow observations within the optical and near-IR regions. Spectral resolutions will go from R equals 1000 to at least R equals 5000 with 1.4 arc-second slits. The large size of this instrument, with a beam diameter of 200 mm and an overall length of nearly 3 meters, presents a significant challenge in mounting it at the Cassegrain location of the telescope. Design trades and options that allow it to fit are discussed.
GRACES, the Gemini remote access CFHT ESPaDOnS spectrograph: initial design and testing
NASA Astrophysics Data System (ADS)
Tollestrup, Eric V.; Pazder, John; Barrick, Gregory; Martioli, Eder; Schiavon, Ricardo; Anthony, André; Halman, Mark; Veillet, Christian
2012-09-01
The Gemini Remote Access CFHT ESPaDOnS Spectrograph (GRACES) is an innovative instrumentation experiment that will demonstrate if ESPaDOnS, a bench-mounted high-resolution optical spectrograph at CFHT, can be fed by a 270-m long fiber from the Gemini-North telescope with low enough losses to remain competitive with conventional spectrographs on other 8 to 10-m telescopes. Detailed simulations have shown that GRACES should be more sensitive than the HIRES spectrograph at Keck Observatory at wavelengths longer than about 600-700 nm. This result is possible by using FPB-type of optical fibers made by Polymicro Technologies and by keeping the critical focal ratio degradation (FRD) losses to less than 10%. Laboratory tests on these FPB optical fibers are underway and show that for 36-m lengths that the FRD losses are as low as 0.8% with a repeatability of 1%. Tests are currently underway on 280-m lengths.
Optical design of the SuMIRe/PFS spectrograph
NASA Astrophysics Data System (ADS)
Pascal, Sandrine; Vives, Sébastien; Barkhouser, Robert; Gunn, James E.
2014-07-01
The SuMIRe Prime Focus Spectrograph (PFS), developed for the 8-m class SUBARU telescope, will consist of four identical spectrographs, each receiving 600 fibers from a 2394 fiber robotic positioner at the telescope prime focus. Each spectrograph includes three spectral channels to cover the wavelength range [0.38-1.26] um with a resolving power ranging between 2000 and 4000. A medium resolution mode is also implemented to reach a resolving power of 5000 at 0.8 um. Each spectrograph is made of 4 optical units: the entrance unit which produces three corrected collimated beams and three camera units (one per spectral channel: "blue, "red", and "NIR"). The beam is split by using two large dichroics; and in each arm, the light is dispersed by large VPH gratings (about 280x280mm). The proposed optical design was optimized to achieve the requested image quality while simplifying the manufacturing of the whole optical system. The camera design consists in an innovative Schmidt camera observing a large field-of-view (10 degrees) with a very fast beam (F/1.09). To achieve such a performance, the classical spherical mirror is replaced by a catadioptric mirror (i.e meniscus lens with a reflective surface on the rear side of the glass, like a Mangin mirror). This article focuses on the optical architecture of the PFS spectrograph and the perfornance achieved. We will first described the global optical design of the spectrograph. Then, we will focus on the Mangin-Schmidt camera design. The analysis of the optical performance and the results obtained are presented in the last section.
High efficiency spectrographs for the EUV and soft X-rays
NASA Technical Reports Server (NTRS)
Cash, W.
1983-01-01
The use of grazing incidence optics and reflection grating designs is shown to be a method that improves the performance of spectrographs at wavelengths shorter than 1200 A. Emphasis is laid on spectroscopic designs for X ray and EUV astronomy, with sample designs for an objective reflection grating spectrograph (ORGS) and an echelle spectrograph for wavelengths longer than 100 A. Conical diffraction allows operations at grazing incidence in the echelle spectrograph. In ORGS, the extreme distance of X ray objects aids in collimating the source radiation, which encounters conical diffraction within the instrument, proceeds parallel to the optical axis, and arrives at the detector. A series of gratings is used to achieve the effect. A grazing echelle is employed for EUV observations, and offers a resolution of 20,000 over a 300 A bandpass.
VizieR Online Data Catalog: Texas-Oxford NVSS (TONS) radio galaxies (Brand+, 2005)
NASA Astrophysics Data System (ADS)
Brand, K.; Rawlings, S.; Hill, G. J.; Tufts, J. R.
2005-10-01
Optical spectra were obtained during the period 2000 October-2003 May on the 2.6-m Nordic Optical Telescope (NOT) using the Andalucia faint object spectrograph, the 4.2-m William Herschel telescope (WHT) using ISIS, the 2.7-m Smith reflector at McDonald with the Imaging Grism Instrument (IGI), and the Hobby-Eberly Telescope (HET) using the Marcario low-resolution spectrograph (LRS). (3 data files).
The optical design of solar spectrograph
NASA Astrophysics Data System (ADS)
Zhang, Yang; Pan, Wen-Qiang; Meng, Xiang-Yue; Lv, Xian-Kui; Feng, Jie; Zhu, Jia-Wei; Zhang, Xiao-Xiao; Li, Lei; Yang, Wei-Ping
2017-08-01
At the beginning of this paper, we simply describe the theories of spectrograph and the operating principle of grating. Based on the Spectrometer theory and optical theory we design a solar spectrograph by analyzing and calculating. And the working waveband of this solar spectrograph is between 510nm and 540nm. Besides, according to the design data, we ensure the blaze level of grating and the focal length of collimate. Due to the presence of the collimate in the optical structure, astigmatism exists in the system. For this reason, we add a cylindrical lens to the structure to correct. The optical system is characterized by using white-pupil design and folding light path to make the whole system simple. In the end, according to the calculated design parameters, we use the Zemax software for simulation, then the result is RMS only has 4μm at the 520nm. It's worth nothing that the resolution merely near the reference wavelength (520nm)meets the design requirements.
The Mars Microbeam Raman Spectrometer: An Improved Advanced Brassboard
NASA Technical Reports Server (NTRS)
Haskin, L. A.; Wang, Alian
2003-01-01
An advanced brassboard (ADBB) of the Mars Miscrobeam Raman Spectrometer is being developed. The probe and spectrograph have been redesigned with improved optics and the electronics have been miniaturized. The modified optical design in the probe and spectrograph provides better spectral resolution than the previous model and enables the probe design to be more compatible with robotic arm deployment. The CCD detector is now cooled thermoelectrically in anticipation of eventual terrestrial field testing of the instrument.
Laboratory Testing and Performance Verification of the CHARIS Integral Field Spectrograph
NASA Technical Reports Server (NTRS)
Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier;
2016-01-01
The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being delivered to the Subaru telescope in April 2016. This paper is a report on the laboratory performance of the spectrograph, and its current status in the commissioning process so that observers will better understand the instrument capabilities. We will also discuss the lessons learned during the testing process and their impact on future high-contrast imaging spectrographs for wavefront control.
NASA Astrophysics Data System (ADS)
Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchère, F.; Trujillo Bueno, J.
2016-07-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The instrument main scientific goal is to achieve polarization measurement of the Lyman-α line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. The optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly-α profiles. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-α is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.
KiwiSpec - an advanced spectrograph for high resolution spectroscopy: optical design and variations
NASA Astrophysics Data System (ADS)
Barnes, Stuart I.; Gibson, Steve; Nield, Kathryn; Cochrane, Dave
2012-09-01
The KiwiSpec R4-100 is an advanced high resolution spectrograph developed by KiwiStar Optics, Industrial Research Ltd, New Zealand. The instrument is based around an R4 echelle grating and a 100mm collimated beam diameter. The optical design employs a highly asymmetric white pupil design, whereby the transfer collimator has a focal length only 1/3 that of the primary collimator. This allows the cross-dispersers (VPH gratings) and camera optics to be small and low cost while also ensuring a very compact instrument. The KiwiSpec instrument will be bre-fed and is designed to be contained in both thermal and/or vacuum enclosures. The instrument concept is highly exible in order to ensure that the same basic design can be used for a wide variety of science cases. Options include the possibility of splitting the wavelength coverage into 2 to 4 separate channels allowing each channel to be highly optimized for maximum eciency. CCDs ranging from smaller than 2K2K to larger than 4K4K can be accommodated. This allows good (3-4 pixel) sampling of resolving powers ranging from below 50,000 to greater than 100,000. Among the specic design options presented here will be a two-channel concept optimized for precision radial velocities, and a four-channel concept developed for the Gemini High- Resolution Optical Spectrograph (GHOST). The design and performance of a single-channel prototype will be presented elsewhere in these proceedings.
Optical Technologies for UV Remote Sensing Instruments
NASA Technical Reports Server (NTRS)
Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.
1993-01-01
Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suvorov, Alexey; Cai, Yong Q.
A concept of an inelastic x-ray scattering (IXS) spectrograph with an imaging analyzer was proposed recently and discussed in a number of publications (see e.g. Ref.1). The imaging analyzer as proposed combines x-ray lenses with highly dispersive crystal optics. It allows conversion of the x-ray energy spectrum into a spatial image with very high energy resolution. However, the presented theoretical analysis of the spectrograph did not take into account details of the scattered radiation source, i.e. sample, and its impact on the spectrograph performance. Using numerical simulations we investigated the influence of the finite sample thickness, the scattering angle andmore » the incident energy detuning on the analyzer image and the ultimate resolution.« less
Hermes: the engineering challenges
NASA Astrophysics Data System (ADS)
Brzeski, Jurek; Gers, Luke; Smith, Greg; Staszak, Nicholas
2012-09-01
The Australian Astronomical Observatory is building a 4-channel VPH-grating High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the 3.9 meter Anglo-Australian Telescope (AAT). HERMES will provide a nominal spectral resolving power of 28,000 for Galactic Archaeology with an optional high-resolution mode of 45,000 with the use of a slit mask. HERMES is fed by a fibre positioning robot called 2dF at the telescope prime focus. There are a total of 784 science fibres, which interface with the spectrograph via two separate slit body assemblies, each comprising of 392 science fibers. The slit defines the spectral lines of 392 fibres on the detector. The width of the detector determines the spectral bandwidth and the detector height determines the fibre to fibre spacing or cross talk. Tolerances that follow from this are all in the 10 micrometer range. The slit relay optics must contribute negligibly to the overall image quality budget and uniformly illuminate the spectrograph exit pupil. The latter requirement effectively requires that the relay optics provide a telecentric input at the collimator entrance slit. As a result it is critical to align the optical components to extreme precision required by the optical design. This paper discusses the engineering challenges of designing, optimising, tolerancing and manufacturing of very precise mechanical components for housing optics and the design of low cost of jigs and fixtures for alignment and assembly of the optics.
Optical design of the PEPSI high-resolution spectrograph at LBT
NASA Astrophysics Data System (ADS)
Andersen, Michael I.; Spano, Paolo; Woche, Manfred; Strassmeier, Klaus G.; Beckert, Erik
2004-09-01
PEPSI is a high-resolution, fiber fed echelle spectrograph with polarimetric capabilities for the LBT. In order to reach a maximum resolution R=120.000 in polarimetric mode and 300.000 in integral light mode with high efficiency in the spectral range 390-1050~nm, we designed a white-pupil configuration with Maksutov collimators. Light is dispersed by an R4 31.6 lines/mm monolithic echelle grating mosaic and split into two arms through dichroics. The two arms, optimized for the spectral range 390-550~nm and 550-1050~nm, respectively, consist of Maksutov transfer collimators, VPH-grism cross dispersers, optimized dioptric cameras and 7.5K x 7.5K 8~μ CCDs. Fibers of different core sizes coupled to different image-slicers allow a high throughput, comparable to that of direct feed instruments. The optical configuration with only spherical and cylindrical surfaces, except for one aspherical surface in each camera, reduces costs and guarantees high optical quality. PEPSI is under construction at AIP with first light expected in 2006.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2006-06-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2004-09-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2008-07-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
Exploring the Universe with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
1990-01-01
A general overview is given of the operations, engineering challenges, and components of the Hubble Space Telescope. Deployment, checkout and servicing in space are discussed. The optical telescope assembly, focal plane scientific instruments, wide field/planetary camera, faint object spectrograph, faint object camera, Goddard high resolution spectrograph, high speed photometer, fine guidance sensors, second generation technology, and support systems and services are reviewed.
Precision stellar radial velocity measurements with FIDEOS at the ESO 1-m telescope of La Silla
NASA Astrophysics Data System (ADS)
Vanzi, L.; Zapata, A.; Flores, M.; Brahm, R.; Tala Pinto, M.; Rukdee, S.; Jones, M.; Ropert, S.; Shen, T.; Ramirez, S.; Suc, V.; Jordán, A.; Espinoza, N.
2018-07-01
We present results from the commissioning and early science programs of FIbre Dual Echelle Optical Spectrograph (FIDEOS), the new high-resolution echelle spectrograph developed at the Centre of Astro Engineering of Pontificia Universidad Catolica de Chile, and recently installed at the ESO 1-m telescope of La Silla. The instrument provides spectral resolution R ˜ 43 000 in the visible spectral range 420-800 nm, reaching a limiting magnitude of 11 in V band. Precision in the measurement of radial velocity is guaranteed by light feeding with an octagonal optical fibre, suitable mechanical isolation, thermal stabilization, and simultaneous wavelength calibration. Currently the instrument reaches radial velocity stability of ˜8 m s-1 over several consecutive nights of observation.
ZTF Bright Transient Survey classifications
NASA Astrophysics Data System (ADS)
Graham, M. L.; Bellm, E.; Bektesevic, D.; Eadie, G.; Huppenkothen, D.; Davenport, J. R. A.; Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Walters, R.; Blagorodnova, N.; Neill, J.; Miller, A. A.; Taddia, F.; Lunnan, R.; Taggart, K.; Perley, D. A.; Goobar, A.
2018-06-01
The Zwicky Transient Facility (ZTF; ATel #11266) Bright Transient Survey (BTS; ATel #11688) reports classifications of the following targets. Spectra have been obtained with the Dual Imaging Spectrograph (range 340-1000nm, spectral resolution R 1000) mounted on the 3.5m telescope at Apache Point Observatory, the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003), or the Andalucia Faint Object Spectrograph and Camera (ALFOSC) on the 2.5m Nordic Optical Telescope (NOT).
The mechanical design of CHARIS: an exoplanet IFS for the Subaru Telescope
NASA Astrophysics Data System (ADS)
Galvin, Michael B.; Carr, Michael A.; Groff, Tyler D.; Kasdin, N. Jeremy; Fagan, Radford; Hayashi, Masahiko; Takato, Naruhisa
2014-07-01
Princeton University is designing and building an integral field spectrograph (IFS), the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), for integration with the Subaru Corona Extreme Adaptive Optics (SCExAO) system and the AO188 adaptive optics system on the Subaru Telescope. CHARIS and SCExAO will measure spectra of hot, young Jovian planets in a coronagraphic image across J, H, and K bands down to an 80 milliarcsecond inner working angle. Here we present the current status of the mechanical design of the CHARIS instrument.
Design, development, and performance of the fibres of MOONS
NASA Astrophysics Data System (ADS)
Guinouard, Isabelle; Avila, Gerardo; Lee, David; Amans, Jean-Philippe; Rees, Phil; Taylor, William; Oliva, Ernesto
2016-07-01
The Multi-Object Optical and Near-infrared Spectrograph (MOONS) will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.64μm-1.8μm, with a multiplex capability of over 1000 fibres. Each spectrograph will produce spectra for 500 targets simultaneously, each with its own dedicated sky fibre for optimal sky subtraction. The system will have both a medium resolution (R 4000-6000) mode and a high resolution (R 20000) mode. The fibres are used to pick off each sub field of 1" and are used to transport the light from the instrument focal plane to the two spectrographs. Each fibre has a microlens to focus the beam into the fibre at a relative fast focal ratio of F/3.65 to reduce the Focal Ratio Degradation (FRD).
NASA Technical Reports Server (NTRS)
Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.;
2016-01-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The in- strument main scientific goal is to achieve polarization measurement of the Lyman-alpha line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. For this purpose, the optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly- pro les. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-alpha is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We will explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We will then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.
VizieR Online Data Catalog: VI photometry and spectroscopy in h+{chi} Per (Currie+, 2010)
NASA Astrophysics Data System (ADS)
Currie, T.; Hernandez, J.; Irwin, J.; Kenyon, S. J.; Tokarz, S.; Balog, Z.; Bragg, A.; Berlind, P.; Calkins, M.
2010-04-01
Optical VI photometry of h and {chi} Persei were taken with the Mosaic Imager at the 4m Mayall telescope at the Kitt Peak National Observatory on 2006 October 13-16 and 27-30. We acquired low-resolution optical spectroscopy of Two Micron All Sky Survey (2MASS)-detected stars within 1deg2 of the cluster centers. For faint stars, we used the multiobject, fiber-fed spectrograph Hectospec on the 6.5m MMT. Brighter stars were observed with the fiber-fed spectrograph Hydra on the 3.5m WIYN telescope at Kitt Peak National Observatory and single-slit FAST spectrograph on the 1.5m Tillinghast telescope at the Fred Lawrence Whipple Observatory. (4 data files).
NASA Astrophysics Data System (ADS)
Kluttz, K. A.; Gray, R. O.
2003-12-01
We have designed and constructed an economical medium-resolution spectrograph to be used on the 32-inch telescope of Appalachian State University's Dark Sky Observatory (DSO). The primary function of this instrument will be to study shell and emission-line stars. However, we will also use this instrument for chemical abundance studies and radial velocities. The basic design is that of an Ebert spectrograph with a single 6-inch mirror acting as both the collimator and camera. The primary dispersion is accomplished by a reflection grating, and order separation is accomplished by a grism. The spectrograph has been designed so that three wavelength regions are simultaneously imaged on the CCD camera. When the Hα line is centered in the third order, Hβ and lines of Fe II multiplet 42 -- often enhanced in shell and emission-line stars -- appear in the fourth order and the fifth order contains both the Ca II K & H lines. To facilitate abundance measurements, a telluric-free region near 6400Å is available in the third order by tilting the main diffraction grating. Preliminary tests have shown that the resolution of the new spectrograph is 0.42Å in the third order (R ≈ 15,000). This relatively high resolution will allow studies to be conducted at DSO which have not previously been possible with the instrumentation currently in use. Several optical components for this spectrograph were purchased with grants from the Fund for Astrophysical Research and the University Research Council.
Studying focal ratio degradation of optical fibers for Subaru's Prime Focus Spectrograph
NASA Astrophysics Data System (ADS)
dos Santos, Jesulino Bispo; de Oliveira, Antonio Cesar; Gunn, James; de Oliveira, Ligia Souza; Vital de Arruda, Marcio; Castilho, Bruno; Gneiding, Clemens Darvin; Ribeiro, Flavio Felipe; Murray, Graham; Reiley, Daniel J.; Sodré Junior, Laerte; de Oliveira, Claudia Mendes
2014-07-01
Focal Ration Degradation (FRD) is a change in light's angular distribution caused by fiber optics. FRD is important to fiber-fed, spectroscopic astronomical systems because it can cause loss of signal, degradation in spectral resolution, or increased complexity in spectrograph design. Laboratório Nacional de Astrofísica (LNA) has developed a system that can accurately and precisely measures FRD, using an absolute method that can also measure fiber throughput. This paper describes the metrology system and shows measurements of Polymicro's fiber FBP129168190, FBP127165190 and Fujikura fiber 128170190. Although the FRD of the two fibers are low and similar to one another, it is very important to know the exact characteristics of these fibers since both will be used in the construction of FOCCoS (Fiber Optical Cable and Connectors System) for PFS (Prime Focus Spectrograph) to be installed at the Subaru telescope.
On-sky calibration performance of a monolithic Michelson interferometer filtered source
NASA Astrophysics Data System (ADS)
Ge, Jian; Ma, Bo; Powell, Scott; Varosi, Frank; Schofield, Sidney; Grieves, Nolan; Liu, Jian
2014-07-01
In the new era of searching for Earth-like planets, new generation radial velocity (RV) high resolution spectrographs requires ~0.1 m/s Doppler calibration accuracy in the visible band and a similar calibration precision in the near infrared. The patented stable monolithic Michelson interferometer filtered source called the Sine source emerges as a very promising calibration device. This Sine source has the potential of covering the practical working wavelengths (~0.38- 2.5 μm) for Doppler measurements with high resolution optical and near infrared high resolution spectrographs at the ground-based telescopes. The single frame calibration precision can reach < 0.1 m/s for the state of the art spectrographs, and it can be easily designed to match the intrinsic sensitivities of future Doppler instruments. The Sine source also has the great practical advantages in compact (portable) size and low cost. Here we report early results from on-sky calibration of a Sine source measured with two state-of-the-art TOU optical high resolution spectrograph (R=100,000, 0.38-0.9 microns) and FIRST near infrared spectrograph (R=50,000, 0.8-1.8 microns) at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The results with the TOU spectrograph monitoring over seven days show that the Sine source has produced ~3 times better calibration precision than the ThAr calibration (RMS = 2.7m/s vs. 7.4m/s) at 0.49-0.62 microns where calibration data have been processed by our preliminary data pipeline and ~1.4 times better than the iodine absorption spectra (RMS=3.6 m/s) at the same wavelength region. As both ThAr and Iodine have reached sub m/s calibration accuracy with existing Doppler instruments (such as HARPS and HIRES), it is likely that the sine source would provide similar improvement once a better data pipeline and an upgraded version of a Sine source are developed. It is totally possible to reach ~0.1 m/s in the optical wavelength region. In addition, this Sine source offers potential very accurate calibration at 0.7-0.9 μm where ThAr lines are totally dominated by strong and saturated Argon lines and the ThAr calibration data are nearly useless. The early measurements with the FIRST near infrared spectrograph show that this Sine source produces very homogenous fringe modulations over 0.8-1.8 μm which can potentially provide better precision than the UrNe lamp for instrument drift measurements.
Optical and Infrared Spectral Features of Nova Canis Majoris 2018
NASA Astrophysics Data System (ADS)
Rudy, Richard; Mauerhan, Jon; Crawford, Kirk; Russell, Ray; Wiktorowicz, Sloane
2018-04-01
Optical and IR spectra from 0.47-2.5 microns (resolution: 5-30 angstroms) of Nova Canis Majoris (CBET 4499), were obtained 2018 April 21.14 (UT) with the Aerospace Corporation's 1.0 m telescope using its Visible and Infrared Imaging Spectrograph (VNIRIS).
The Optical Design of CHARIS: An Exoplanet IFS for the Subaru Telescope
NASA Technical Reports Server (NTRS)
Peters-Limbach, Mary; Groff, Tyler; Kasdin, N. Jeremy; Driscoll, Dave; Galvin, Michael; Foster, Allen; Carr, Michael; LeClerc, Dave; Fagan, Rad; McElwain, Michael;
2013-01-01
High-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the optical design for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 138×138 spatial elements over a 2.07 arcsec × 2.07 arcsec field of view (FOV). CHARIS will operate in the near infrared (lambda = 1.15 - 2.5 micrometers) and will feature two spectral resolution modes of R is approximately 18 (low-res mode) and R is approximately 73 (high-res mode). Taking advantage of the Subaru telescope adaptive optics systems and coronagraphs (AO188 and SCExAO), CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS will undergo CDR in October 2013 and is projected to have first light by the end of 2015. We report here on the current optical design of CHARIS and its unique innovations.
Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C
NASA Astrophysics Data System (ADS)
Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.
2013-09-01
We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.
NASA Astrophysics Data System (ADS)
Jelinsky, Patrick; Bebek, Chris; Besuner, Robert; Carton, Pierre-Henri; Edelstein, Jerry; Lampton, Michael; Levi, Michael E.; Poppett, Claire; Prieto, Eric; Schlegel, David; Sholl, Michael
2012-09-01
BigBOSS is a proposed ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a 14,000 square degree galaxy and quasi-stellar object redshift survey. It consists of a 5,000- fiber-positioner focal plane feeding the spectrographs. The optical fibers are separated into ten 500 fiber slit heads at the entrance of ten identical spectrographs in a thermally insulated room. Each of the ten spectrographs has a spectral resolution (λ/Δλ) between 1500 and 4000 over a wavelength range from 360 - 980 nm. Each spectrograph uses two dichroic beam splitters to separate the spectrograph into three arms. It uses volume phase holographic (VPH) gratings for high efficiency and compactness. Each arm uses a 4096x4096 15 μm pixel charge coupled device (CCD) for the detector. We describe the requirements and current design of the BigBOSS spectrograph. Design trades (e.g. refractive versus reflective) and manufacturability are also discussed.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2010-07-01
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set to begin in the fall of 2010.
The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR)
NASA Astrophysics Data System (ADS)
Peterson, Bradley M.; Fischer, Debra; LUVOIR Science and Technology Definition Team
2017-01-01
LUVOIR is one of four potential large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. LUVOIR will have an 8 to16-m segmented primary mirror and operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The notional initial complement of instruments will include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a multi-resolution optical/NIR spectrograph. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable and upgradable. This is the first report by the LUVOIR STDT to the community on the top-level architectures we are studying, including preliminary capabilities of a mission with those parameters. The STDT seeks feedback from the astronomical community for key science investigations that can be undertaken with the notional instrument suite and to identify desirable capabilities that will enable additional key science.
The Cosmic Evolution Through UV Spectroscopy (CETUS) Probe Mission Concept
NASA Astrophysics Data System (ADS)
Danchi, William; Heap, Sara; Woodruff, Robert; Hull, Anthony; Kendrick, Stephen E.; Purves, Lloyd; McCandliss, Stephan; Kelly Dodson, Greg Mehle, James Burge, Martin Valente, Michael Rhee, Walter Smith, Michael Choi, Eric Stoneking
2018-01-01
CETUS is a mission concept for an all-UV telescope with 3 scientific instruments: a wide-field camera, a wide-field multi-object spectrograph, and a point-source high-resolution and medium resolution spectrograph. It is primarily intended to work with other survey telescopes in the 2020’s (e.g. E-ROSITA (X-ray), LSST, Subaru, WFIRST (optical-near-IR), SKA (radio) to solve major, outstanding problems in astrophysics. In this poster presentation, we give an overview of CETUS key science goals and a progress report on the CETUS mission and instrument design.
Collimating slicer for optical integral field spectroscopy
NASA Astrophysics Data System (ADS)
Laurent, Florence; Hénault, François
2016-07-01
Integral Field Spectroscopy (IFS) is a technique that gives simultaneously the spectrum of each spatial sampling element of a given field. It is a powerful tool which rearranges the data cube represented by two spatial dimensions defining the field and the spectral decomposition (x, y, λ) in a detector plane. In IFS, the "spatial" unit reorganizes the field, the "spectral" unit is being composed of a classical spectrograph. For the spatial unit, three main techniques - microlens array, microlens array associated with fibres and image slicer - are used in astronomical instrumentations. The development of a Collimating Slicer is to propose a new type of optical integral field spectroscopy which should be more compact. The main idea is to combine the image slicer with the collimator of the spectrograph mixing the "spatial" and "spectral" units. The traditional combination of slicer, pupil and slit elements and spectrograph collimator is replaced by a new one composed of a slicer and spectrograph collimator only. After testing few configurations, this new system looks very promising for low resolution spectrographs. In this paper, the state of art of integral field spectroscopy using image slicers will be described. The new system based onto the development of a Collimating Slicer for optical integral field spectroscopy will be depicted. First system analysis results and future improvements will be discussed.
Designing the optimal semi-warm NIR spectrograph for SALT via detailed thermal analysis
NASA Astrophysics Data System (ADS)
Wolf, Marsha J.; Sheinis, Andrew I.; Mulligan, Mark P.; Wong, Jeffrey P.; Rogers, Allen
2008-07-01
The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the optical spectrograph. The RSS/NIR is a low to medium resolution spectrograph with broadband, spectropolarimetric, and Fabry-Perot imaging capabilities. The optical and NIR arms can be used simultaneously to extend spectral coverage from 3200 Å to approximately 1.6 μm. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera incorporates a HAWAII-2RG detector with an Epps optical design consisting of 6 spherical elements and providing subpixel rms image sizes of 7.5 +/- 1.0 μm over all wavelengths and field angles. The NIR spectrograph is semi-warm, sharing a common slit plane and partial collimator with the optical arm. A pre-dewar, cooled to below ambient temperature, houses the final NIR collimator optic, the grating/Fabry-Perot etalon, the polarizing beam splitter, and the first three camera optics. The last three camera elements, blocking filters, and detector are housed in a cryogenically cooled dewar. The semi-warm design concept has long been proposed as an economical way to extend optical instruments into the NIR, however, success has been very limited. A major portion of our design effort entails a detailed thermal analysis using non-sequential ray tracing to interactively guide the mechanical design and determine a truly realizable long wavelength cutoff over which astronomical observations will be sky-limited. In this paper we describe our thermal analysis, design concepts for the staged cooling scheme, and results to be incorporated into the overall mechanical design and baffling.
Spectral classification of ASASSN-14az
NASA Astrophysics Data System (ADS)
Benetti, S.; Pastorello, A.; Elias-Rosa, N.; Cappellaro, E.; Tomasella, L.; Ochner, P.; Turatto, M.; Pedani, M.; Harutyunyan, A.
2014-05-01
We report that an optical spectrogram (range 340-800 nm; resolution 1.1 nm), obtained on May 30.19 UT with the TNG (+ DOLORES spectrograph) under the Asiago Transient Classification Program (Tomasella et al. ...
NASA Astrophysics Data System (ADS)
Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan
2012-09-01
HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.
Immersion Gratings for Infrared High-resolution Spectroscopy
NASA Astrophysics Data System (ADS)
Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo
2016-10-01
High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion gratings, including the development of a long-NIR (2-5um) high-resolution (R=80,000) spectrograph with Ge-immersion grating, VINROUGE, which is a prototype for the TMT MIR instrument.
NASA Astrophysics Data System (ADS)
Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard
2012-09-01
When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5×. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I and z bands.
NASA Astrophysics Data System (ADS)
Spanò, P.; Tosh, I.; Chemla, F.
2010-07-01
OPTIMOS-EVE is a fiber-fed, high-multiplex, high-efficiency, large spectral coverage spectrograph for EELT covering visible and near-infrared simultaneously. More than 200 seeing-limited objects will be observed at the same time over the full 7 arcmin field of view of the telescope, feeding the spectrograph, asking for very large multiplexing at the spectrograph side. The spectrograph consists of two identical units. Each unit will have two optimized channels to observe both visible and near-infrared wavelengths at the same time, covering from 0.37 to 1.7 micron. To maximize the scientific return, a large simultaneous spectral coverage per exposure was required, up to 1/3 of the central wavelength. Moreover, different spectral resolution modes, spanning from 5'000 to 30'000, were defined to match very different sky targets. Many different optical solutions were generated during the initial study phase in order to select that one that will maximize performances within given constraints (mass, space, cost). Here we present the results of this study, with special attention to the baseline design. Efforts were done to keep size of the optical components well within present state-of-the-art technologies. For example, large glass blank sizes were limited to ~35 cm maximum diameter. VPH gratings were selected as dispersers, to improve efficiency, following their superblaze curve. This led to scanning gratings and cameras. Optical design will be described, together with expected performances.
VizieR Online Data Catalog: H-band spectroscopic analysis of 25 bright M31 GCs (Sakari+, 2016)
NASA Astrophysics Data System (ADS)
Sakari, C. M.; Shetrone, M. D.; Schiavon, R. P.; Bizyaev, D.; Prieto, C. A.; Beers, T. C.; Caldwell, N.; Garcia-Hernandez, D. A.; Lucatello, S.; Majewski, S.; O'Connell, R. W.; Pan, K.; Strader, J.
2016-11-01
H-band spectra (1.51-1.69um) of the target clusters were obtained with the moderately high resolution (R=22500) APOGEE spectrograph on the 2.5m Telescope at Apache Point Observatory in 2011 and 2013. The details of the observations can be found in Majewski+ (2015arXiv150905420M) and Zasowski+ (2013AJ....146...81Z), including descriptions of the plates and fibers that were utilized for the observations. The high-resolution optical abundances from Colucci et al. (2009, J/ApJ/704/385 and 2014ApJ...797..116C) are supplemented with new results for five globular clusters (GCs). The new optical spectra were obtained in 2009 and 2010 with the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory in Fort Davis, TX (R=30000; spectral coverage over ~5320-6290 and ~6360-7340Å in the blue and the red, respectively). (5 data files).
Last technology and results from the IOTA interferometer
NASA Astrophysics Data System (ADS)
Pedretti, Ettore; Traub, Wesley A.; Monnier, John D.; Schuller, Peter A.; Ragland, Sam; Berger, Jean–Philippe; Millan-Gabet, Rafael; Wallace, Gary; Burke, Michael; Lacasse, Marc G.; Thureau, Nathalie D.; Carleton, Nathaniel
2008-07-01
The infrared optical telescope array (IOTA), one of the most productive interferometers in term of science and new technologies was decommissioned in summer 2006. We discuss the testing of a low-resolution spectrograph coupled with the IOTA-3T integrated-optics beam combiner and some of the scientific results obtained from this instrument.
NASA Astrophysics Data System (ADS)
Lawman, Samuel; Romano, Vito; Madden, Peter W.; Mason, Sharon; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun
2018-03-01
Ultra high axial resolution (UHR) was demonstrated early in the development of optical coherence tomography (OCT), but has not yet reached clinical practice. We present the combination of supercontinuum light source and line field (LF-) OCT as a technical and economical route to get UHR-OCT into clinic and other OCT application areas. We directly compare images of a human donor cornea taken with low and high resolution current generation clinical OCT systems with UHR-LF-OCT. These images highlight the massive information increase of UHR-OCT. Application to pharmaceutical pellets, and the functionality and imaging performance of different imaging spectrograph choices for LF- OCT are also demonstrated.
Ohio State Infrared Imager/Spectrograph (OSIRIS) | SOAR
opperate at wavelengths from 0.9 to 2.4 microns. Internal optics allow for two plate scales and a variety of spectroscopic resolutions. Internal mechanisms control the selected filter, focal plane mask
Advances in instrumentation at the W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter
2010-07-01
In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.
First Light from the 4.3-meter Discovery Channel Telescope At Lowell Observatory
NASA Astrophysics Data System (ADS)
Hall, Jeffrey C.; Levine, S.
2013-01-01
Seven years after groundbreaking on July 12, 2005, the 4.3-meter Discovery Channel Telescope (DCT) is now complete and into commissioning. We obtained first light images in mid 2012 with a 4K x 4K CCD and have recently obtained our first images with the DCT's main camera, the 6K x 6K Large Monolithic Imager (LMI, see adjacent poster by Massey). We held a celebratory gala on July 21, 2012, in Flagstaff. The DCT's delivered image quality is regularly subarcsecond with near-uniform image quality across the FOV from zenith to >2 airmasses, although we have not fully commissioned the active optics system. We attribute this to the outstanding quality of the mirror figures, performed by the University of Arizona's College of Optical Sciences (for M1) and L3 Brashear (for M2). The instrument cube at the RC focus can accommodate four instruments plus the LMI. Designed and built at Lowell Observatory, the cube also contains the DCT's autoguider and wavefront sensor. First light instruments include the 4000 DeVeny spectrograph (the former KPNO White Spectrograph), a low-resolution, high-throughput IR spectrograph, and a higher-resolution IR spectrograph/imager being built by Goddard Space Flight Center in collaboration with the University of Maryland. We are seeking funding for long-slit and fiber-fed echelle spectrographs for higher resolution optical spectroscopy. The DCT can also be configured to host Nasmyth and prime focus instruments. Discovery Communications and its founder John Hendricks contributed $16M to the $53M cost of the telescope, in return for naming rights and first rights to public, educational use of images in their programming. Analysis of data and publication by astronomers in professional journals follows the same procedure as for any other major telescope facility. Discovery's first DCT feature, "Scanning the Skies," aired on September 9, 2012. Future outreach plans include initiating webcasts to classrooms via the Discovery Education networks, reaching 30-40M schoolchildren across the USA. The DCT partner consortium includes Boston University (in perpetuity), the University of Maryland, and the University of Toledo, all of whom have ongoing, long term access to the facility.
First light of the CHARIS high-contrast integral-field spectrograph
NASA Astrophysics Data System (ADS)
Groff, Tyler; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Currie, Thayne; Takato, Naruhisa; Hayashi, Masahiko
2017-09-01
One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has `high' and `low' resolution operating modes. The high-resolution mode is used to characterize targets in J, H, and K bands at R70. The low-resolution prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS has completed commissioning and is open for science observations.
VizieR Online Data Catalog: weak G-band stars abundances (Palacios+, 2016)
NASA Astrophysics Data System (ADS)
Palacios, A.; Jasniewicz, G.; Masseron, T.; Thevenin, F.; Itam-Pasquet, J.; Parthasarathy, M.
2016-05-01
Seventeen southern wGb stars were observed at La Silla, ESO Chile, with the high-efficiency Fiber-fed Extended Range Optical Spectrograph FEROS spectrograph mounted on the 2.2m telescope. FEROS is a bench-mounted, thermally controlled, prism-cross-dispersed echelle spectrograph, providing, in a single spectrogram spread over 39 orders, almost complete spectral coverage from ~350 to ~920nm at a resolution of 48000. The FEROS observations were carried out during an observing run between May 10 and 13, 2012. All these spectra were flat-fielded and calibrated by means of ThArNe exposures using standard processing tools available at ESO. In addition, two northern wGb stars, HD 18474 and HD 166208, were observed in service mode at the Observatoire du Pic du Midi, France, with the NARVAL spectrograph mounted on the Bernard Lyot 2.0m telescope. The NARVAL instrument consists of a bench-mounted cross-dispersed echelle spectrograph, fibre-fed from a Cassegrain-mounted polarimeter unit. It was used in its non-polarimetric mode; it provided almost complete spectral coverage from ~375 to ~1050nm at a resolution of 75000 in a single spectrogram spread over 40 orders. (6 data files).
FIEStool: Automated data reduction for FIber-fed Echelle Spectrograph (FIES)
NASA Astrophysics Data System (ADS)
Stempels, Eric; Telting, John
2017-08-01
FIEStool automatically reduces data obtained with the FIber-fed Echelle Spectrograph (FIES) at the Nordic Optical Telescope, a high-resolution spectrograph available on a stand-by basis, while also allowing the basic properties of the reduction to be controlled in real time by the user. It provides a Graphical User Interface and offers bias subtraction, flat-fielding, scattered-light subtraction, and specialized reduction tasks from the external packages IRAF (ascl:9911.002) and NumArray. The core of FIEStool is instrument-independent; the software, written in Python, could with minor modifications also be used for automatic reduction of data from other instruments.
TAIPAN fibre feed and spectrograph: engineering overview
NASA Astrophysics Data System (ADS)
Staszak, Nicholas F.; Lawrence, Jon; Zhelem, Ross; Content, Robert; Churilov, Vladimir; Case, Scott; Brown, Rebecca; Hopkins, Andrew M.; Kuehn, Kyler; Pai, Naveen; Klauser, Urs; Nichani, Vijay; Waller, Lew
2016-07-01
TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The TAIPAN Spectrograph is an AAO designed all-refractive 2-arm design that delivers a spectral resolution of R>2000 over the wavelength range 370-870 nm. It is fed by a custom fibre cable from the TAIPAN Starbugs positioner. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300). Presented is an engineering overview of the UKST Fibre Cable design used to support Starbugs, the custom slit design, and the overall design and build plan for the TAIPAN Spectrograph.
Development of a near-infrared high-resolution spectrograph (WINERED) for a survey of bulge stars
NASA Astrophysics Data System (ADS)
Tsujimoto, T.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.; Gouda, N.
2008-07-01
We are developing a new near-infrared high-resolution (R[max] = 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9 1.35 μm. WINERED employs an innovative optical system; a portable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide precise positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical composition will be measured by WINERED. These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for observations of single objects by the end of 2008 and to attach it to various 4 10m telescopes as a PI-type instrument. We hope to upgrade WINERED with a multi-object feed in the future for efficient survey of the JASMINE bulge stars.
VizieR Online Data Catalog: Spectroscopy of EG And over roughly 14 years (Kenyon+, 2016)
NASA Astrophysics Data System (ADS)
Kenyon, S. J.; Garcia, M. R.
2016-08-01
From 1994 September to 2016 January, P. Berlind, M. Calkins, and other observers acquired 480 low-resolution optical spectra of EG And with FAST, a high throughput, slit spectrograph mounted at the Fred L. Whipple Observatory 1.5m telescope on Mount Hopkins, Arizona They used a 300g/mm grating blazed at 4750Å, a 3'' slit, and a thinned 512*2688 CCD. These spectra cover 3800-7500Å at a resolution of 6Å. The full wavelength solution is derived from calibration lamps acquired immediately after each exposure. The wavelength solution for each frame has a probable error of <~+/-0.5Å. Most of the resulting spectra have moderate signal-to-noise ratio, S/N >~15-30 per pixel. Prior to the start of the FAST observations, we obtained occasional optical spectrophotometric observations of EG And throughout 1982-1989 with the cooled dual-beam intensified Reticon scanner (IRS) mounted on the white spectrograph at the KPNO No. 1 and No. 2 90cm telescopes. Various remote observers acquired high-resolution spectroscopic observations of EG And with the echelle spectrographs and Reticon detectors on the 1.5m telescopes of the Fred L. Whipple Observatory on Mount Hopkins, Arizona and the Oak Ridge Observatory in Harvard, Massachusetts. These spectra cover a 44Å bandpass centered near 5190Å or 5200Å and have a resolution of roughly 12km/s. (1 data file).
Affordable spectroscopy for 1m-class telescopes: recent developments and applications
NASA Astrophysics Data System (ADS)
Csák, B.; Kovács, J.; Szabó, Gy. M.; Kiss, L. L.; Dózsa, Á.; Sódor, Á.; Jankovics, I.
2014-03-01
Doppler observations of exoplanet systems have been a very expensive technique, mainly due to the high costs of high-resolution stable spectrographs. Recent advances in instrumentation enable affordable Doppler planet detections with surprisingly small optical telescopes. We investigate the possibility of measuring Doppler reflex motion of planet hosting stars with small-aperture telescopes that have traditionally been neglected for this kind of studies. After thoroughly testing the recently developed and commercially available Shelyak eShel echelle spectrograph, we demonstrated that it is routinely possible to achieve velocity precision at the 100 m s-1 level, reaching down to ¬± 50 m s-1 for the best cases. We describe our off-the-shelf instrumentation, including a new 0.5m RC telescope at the Gothard Astrophysical Observatory of Loránd E&ötv&ös University equipped with an intermediate resolution fiber-fed echelle spectrograph. We present some follow-up radial velocity measurements of planet hosting stars and point out that updating the orbital solution of Doppler-planets is a very important task that can be fulfilled with sub-meter sized optical telescopes without requesting very expensive telescope times on 2—4 m (or larger) class telescopes.
An overview of instrumentation for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Wagner, R. Mark
2012-09-01
An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
SPRAT: Spectrograph for the Rapid Acquisition of Transients
NASA Astrophysics Data System (ADS)
Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.
2014-07-01
We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.
NIRPS: an adaptive-optics assisted radial velocity spectrograph to chase exoplanets around M-stars
NASA Astrophysics Data System (ADS)
Wildi, F.; Blind, N.; Reshetov, V.; Hernandez, O.; Genolet, L.; Conod, U.; Sordet, M.; Segovilla, A.; Rasilla, J. L.; Brousseau, D.; Thibault, S.; Delabre, B.; Bandy, T.; Sarajlic, M.; Cabral, A.; Bovay, S.; Vallée, Ph.; Bouchy, F.; Doyon, R.; Artigau, E.; Pepe, F.; Hagelberg, J.; Melo, C.; Delfosse, X.; Figueira, P.; Santos, N. C.; González Hernández, J. I.; de Medeiros, J. R.; Rebolo, R.; Broeg, Ch.; Benz, W.; Boisse, I.; Malo, L.; Käufl, U.; Saddlemyer, L.
2017-09-01
Since 1st light in 2002, HARPS has been setting the standard in the exo-planet detection by radial velocity (RV) measurements[1]. Based on this experience, our consortium is developing a high accuracy near-infrared RV spectrograph covering YJH bands to detect and characterize low-mass planets in the habitable zone of M dwarfs. It will allow RV measurements at the 1-m/s level and will look for habitable planets around M- type stars by following up the candidates found by the upcoming space missions TESS, CHEOPS and later PLATO. NIRPS and HARPS, working simultaneously on the ESO 3.6m are bound to become a single powerful high-resolution, high-fidelity spectrograph covering from 0.4 to 1.8 micron. NIRPS will complement HARPS in validating earth-like planets found around G and K-type stars whose signal is at the same order of magnitude than the stellar noise. Because at equal resolving power the overall dimensions of a spectrograph vary linearly with the input beam étendue, spectrograph designed for seeing-limited observations are large and expensive. NIRPS will use a high order adaptive optics system to couple the starlight into a fiber corresponding to 0.4" on the sky as efficiently or better than HARPS or ESPRESSO couple the light 0.9" fiber. This allows the spectrograph to be very compact, more thermally stable and less costly. Using a custom tan(θ)=4 dispersion grating in combination with a start-of-the-art Hawaii4RG detector makes NIRPS very efficient with complete coverage of the YJH bands at 110'000 resolution. NIRPS works in a regime that is in-between the usual multi-mode (MM) where 1000's of modes propagates in the fiber and the single mode well suited for perfect optical systems. This regime called few-modes regime is prone to modal noise- Results from a significant R and D effort made to characterize and circumvent the modal noise show that this contribution to the performance budget shall not preclude the RV performance to be achieved.
Experimental Estimation of CLASP Spatial Resolution: Results of the Instrument's Optical Alignment
NASA Technical Reports Server (NTRS)
Giono, Gabrial; Katsukawa, Yukio; Ishikawa, Ryoko; Narukage, Noriyuki; Bando, Takamasa; Kano, Ryohei; Suematsu, Yoshinori; Kobayashi, Ken; Winebarger, Amy; Auchere, Frederic
2015-01-01
The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a sounding-rocket experiment currently being built at the National Astronomical Observatory of Japan. This instrument aims to probe for the first time the magnetic field strength and orientation in the solar upper-chromosphere and lower-transition region. CLASP will measure the polarization of the Lyman-Alpha line (121.6nm) with an unprecedented accuracy, and derive the magnetic field information through the Hanle effect. Although polarization accuracy and spectral resolution are crucial for the Hanle effect detection, spatial resolution is also important to get reliable context image via the slit-jaw camera. As spatial resolution is directly related with the alignment of optics, it is also a good way of ensuring the alignment of the instrument to meet the scientific requirement. This poster will detail the experiments carried out to align CLASP's optics (telescope and spectrograph), as both part of the instrument were aligned separately. The telescope was aligned in double-pass mode, and a laser interferometer (He-Ne) was used to measure the telescope's wavefront error (WFE). The secondary mirror tilt and position were adjusted to remove comas and defocus aberrations from the WFE. Effect of gravity on the WFE measurement was estimated and the final WFE derived in zero-g condition for CLASP telescope will be presented. In addition, an estimation of the spot shape and size derived from the final WFE will also be shown. The spectrograph was aligned with a custom procedure: because Ly-??light is absorbed by air, the spectrograph's off-axis parabolic mirrors were aligned in Visible Light (VL) using a custom-made VL grating instead of the flight Ly-? grating. Results of the alignment in Visible Light will be shown and the spot shape recorded with CCDs at various position along the slit will be displayed. Results from both alignment experiment will be compared to the design requirement, and will be combined in order to estimate CLASP spatial resolution after its alignment in visible light.
Compact optics for high resolution spectroscopy of celestial x-ray sources
NASA Astrophysics Data System (ADS)
Cash, W.; Lillie, C.; McEntaffer, R.; Zhang, W.
2011-05-01
The astronomy community has never flown a celestial source spectrograph that can resolve natural line widths in absorption the way the ultraviolet community since OAO-3 Copernicus in 1972. Yet there is important science to be mined there, and right now there are now missions on track to pursue it. We present a modified off-plane grating spectrograph design that will support high resolution (λ/δλ ~ 4000) in the soft x-ray band with a high packing density that will enable a modest cost space mission. We discuss the design for the WHIMEx mission which was proposed as an Explorer earlier this year with the goal of detecting high temperature oxygen in the Intergalactic Medium.
NASA Astrophysics Data System (ADS)
Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene
2018-06-01
We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.
NASA Astrophysics Data System (ADS)
Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob
2016-07-01
In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.
NASA Astrophysics Data System (ADS)
Lizon, Jean Louis; Klein, Barbara; Oliva, Ernesto; Löwinger, Tom; Anglada Escude, Guillem; Baade, Dietrich; Bristow, Paul; Dorn, Reinhold J.; Follert, Roman; Grunhut, Jason; Hatzes, Artie; Heiter, Ulrike; Ives, Derek; Jung, Yves; Kerber, Florian; Lockhart, Matt; Marquart, Thomas; Origlia, Livia; Pasquini, Luca; Paufique, Jerome; Piskunov, N.; Pozna, Eszter; Reiners, Ansgar; Smette, Alain; Smoker, Jonathan; Seemann, Ulf; Stempels, Eric; Valenti, Elena
2014-07-01
CRIRES is one of the few IR (0.92-5.2 μm) high-resolution spectrographs in operation at the VLT since 2006. Despite good performance it suffers a limitation that significantly hampers its ability: a small spectral coverage per exposure. The CRIRES upgrade (CRIRES+) proposes to transform CRIRES into a cross-dispersed spectrograph while maintaining the high resolution (100000) and increasing the wavelength coverage by a factor 10 compared to the current capabilities. A major part of the upgrade is the exchange of the actual cryogenic pre-disperser module by a new cross disperser unit. In addition to a completely new optical design, a number of important changes are required on key components and functions like the slit unit and detectors units. We will outline the design of these new units fitting inside a predefined and restricted space. The mechanical design of the new functions including a description and analysis will be presented. Finally we will present the strategy for the implementation of the changes.
NASA Technical Reports Server (NTRS)
Peters, Mary Anne; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Galvin, Michael; Carr, Michael A.; Lupton, Robert; Gunn, James E.; Knapp, Gillian; Gong, Qian;
2012-01-01
Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140 x 140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 micron) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.
Beckers, Jacques M; Andersen, Torben E; Owner-Petersen, Mette
2007-03-05
Under seeing limited conditions very high resolution spectroscopy becomes very difficult for extremely large telescopes (ELTs). Using adaptive optics (AO) the stellar image size decreases proportional with the telescope diameter. This makes the spectrograph optics and hence its resolution independent of the telescope diameter. However AO for use with ELTs at visible wavelengths require deformable mirrors with many elements. Those are not likely to be available for quite some time. We propose to use the pupil slicing technique to create a number of sub-pupils each of which having its own deformable mirror. The images from all sub-pupils are combined incoherently with a diameter corresponding to the diffraction limit of the sub-pupil. The technique is referred to as "Pupil Slicing Adaptive Optics" or PSAO.
An overview and the current status of instrumentation at the Large Binocular Telescope Observatory
NASA Astrophysics Data System (ADS)
Wagner, R. Mark; Edwards, Michelle L.; Kuhn, Olga; Thompson, David; Veillet, Christian
2014-07-01
An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (24' × 24') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectrometer (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front-bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23 m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near- infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning and performing science observations on the LBT utilizing the installed adaptive secondary mirrors in both single-sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Installation and testing of the bench spectrograph will begin in July 2014. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. Both LUCI2 and MODS2 passed their laboratory acceptance milestones in the summer of 2013 and have been installed on the LBT. LUCI2 is currently being commissioned and the data analysis is well underway. Diffraction-limited commissioning of its adaptive optics modes will begin in the 2014B semester. MODS2 commissioning began in May 2014 and will completed in the 2014B semester as well. Binocular testing and commissioning of both the LUCI and MODS pairs will begin in 2014B with the goal that this capability could be offered sometime in 2015. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.
VizieR Online Data Catalog: SN2009ip UBVRI, UVOT and JHK light curves (Fraser+, 2013)
NASA Astrophysics Data System (ADS)
Fraser, M.; Inserra, C.; Jerkstrand, A.; Kotak, R.; Pignata, G.; Benetti, S.; Botticella, M.-T.; Bufano, F.; Childress, M.; Mattila, S.; Pastorello, A.; Smartt, S. J.; Turatto, M.; Yuan, F.; Anderson, J. P.; Bayliss, D. D. R.; Bauer, F. E.; Chen, T.-W.; Forster Buron, F.; Gal-Yam, A.; Haislip, J. B.; Knapic, C.; Le Guillou, L.; Marchi, S.; Mazzali, P.; Molinaro, M.; Moore, J. P.; Reichart, D.; Smareglia, R.; Smith, K. W.; Sternberg, A.; Sullivan, M.; Takats, K.; Tucker, B. E.; Valenti, S.; Yaron, O.; Young, D. R.; Zhou, G.
2014-11-01
Optical spectroscopic follow-up of SN 2009ip was chiefly obtained with the New Technology Telescope (NTT) + ESO Faint Object Spectrograph and Camera 2 (EFOSC2), as part of the Public European Southern Observatory (ESO) Spectroscopic Survey of Transient Objects (PESSTO). The PESSTO data were supplemented with data from the Telescopio Nazionale Galileo (TNG) + Device Optimized for the LOw RESolution (DOLORES), and the Australian National University (ANU) 2.3m telescope + Wide Field Spectrograph (WiFeS). (3 data files).
Spectroscopic Instrumentation in Undergraduate Astronomy Laboratories
NASA Astrophysics Data System (ADS)
Ludovici, Dominic; Mutel, Robert Lucien; Lang, Cornelia C.
2017-01-01
We have designed and built two spectrographs for use in undergraduate astronomy laboratories at the University of Iowa. The first, a low cost (appx. $500) low resolution (R ~ 150 - 300) grating-prism (grism) spectrometer consists of five optical elements and is easily modified to other telescope optics. The grism spectrometer is designed to be used in a modified filter wheel. This type of spectrometer allows students to undertake projects requiring sensitive spectral measurements, such as determining the redshifts of quasars. The second instrument is a high resolution (R ~ 8000), moderate cost (appx. $5000) fiber fed echelle spectrometer. The echelle spectrometer will allow students to conduct Doppler measurements such as those used to study spectroscopic binaries. Both systems are designed to be used with robotic telescope systems. The availability of 3D printing enables both of these spectrographs to be constructed in hands-on instrumentation courses where students build and commission their own instruments. Additionally, these instruments enable introductory majors and non-majors laboratory students to gain experience conducting their own spectroscopic observations.
HESP: Instrument control, calibration and pipeline development
NASA Astrophysics Data System (ADS)
Anantha, Ch.; Roy, Jayashree; Mahesh, P. K.; Parihar, P. S.; Sangal, A. K.; Sriram, S.; Anand, M. N.; Anupama, G. C.; Giridhar, S.; Prabhu, T. P.; Sivarani, T.; Sundararajan, M. S.
Hanle Echelle SPectrograph (HESP) is a fibre-fed, high resolution (R = 30,000 and 60,000) spectrograph being developed for the 2m HCT telescope at IAO, Hanle. The major components of the instrument are a) Cassegrain unit b) Spectrometer instrument. An instrument control system interacting with a guiding unit at Cassegrain interface as well as handling spectrograph functions is being developed. An on-axis auto-guiding using the spill-over angular ring around the input pinhole is also being developed. The stellar light from the Cassegrain unit is taken to the spectrograph using an optical fiber which is being characterized for spectral transmission, focal ratio degradation and scrambling properties. The design of the thermal enclosure and thermal control for the spectrograph housing is presented. A data pipeline for the entire Echelle spectral reduction is being developed. We also plan to implement an instrument physical model based calibration into the main data pipeline and in the maintenance and quality control operations.
The PALM-3000 high-order adaptive optics system for Palomar Observatory
NASA Astrophysics Data System (ADS)
Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa
2008-07-01
Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.
Photorefractive-based adaptive optical windows
NASA Astrophysics Data System (ADS)
Liu, Yuexin; Yang, Yi; Wang, Bo; Fu, John Y.; Yin, Shizhuo; Guo, Ruyan; Yu, Francis T.
2004-10-01
Optical windows have been widely used in optical spectrographic processing system. In this paper, various window profiles, such as rectangular, triangular, Hamming, Hanning, and Blackman etc., have been investigated in detail, regarding their effect on the generated spectrograms, such as joint time-frequency resolution ΔtΔw, the sidelobe amplitude attenuation etc.. All of these windows can be synthesized in a photorefractive crystal by angular multiplexing holographic technique, which renders the system more adaptive. Experimental results are provided.
Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR
NASA Astrophysics Data System (ADS)
Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.
2016-07-01
An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.
Can we use adaptive optics for UHR spectroscopy with PEPSI at the LBT?
NASA Astrophysics Data System (ADS)
Sacco, Germano G.; Pallavicini, Roberto; Spano, Paolo; Andersen, Michael; Woche, Manfred F.; Strassmeier, Klaus G.
2004-10-01
We investigate the potential of using adaptive optics (AO) in the V, R, and I bands to reach ultra-high resolution (UHR, R >= 200,000) in echelle spectrographs at 8-10m telescopes. In particular, we investigate the possibility of implementing an UHR mode for the fiber-fed spectrograph PEPSI (Potsdam Echelle Polarimetric and Spectrographic Instrument) being developed for the Large Binocular Telescope (LBT). By simulating the performances of the advanced AO system that will be available at first light at the LBT, and by using first-order estimates of the spectrograph performances, we calculate the total efficiency and signal to noise ratio (SNR) of PEPSI in the AO mode for stars of different magnitudes, different fiber core sizes, and different fractions of incident light diverted to the wavefront sensor. We conclude that AO can provide a significant advantage, of up to a factor ~2 in the V, R and I bands, for stars brighter than mR ~ 12 - 13. However, if these stars are observed at UHR in non-AO mode, slit losses caused by the need to use a very narrow slit can be compensated more effectively by the use of image slicers.
Immersion echelle spectrograph
Stevens, Charles G.; Thomas, Norman L.
2000-01-01
A small spectrograph containing no moving components and capable of providing high resolution spectra of the mid-infrared region from 2 microns to 4 microns in wavelength. The resolving power of the spectrograph exceeds 20,000 throughout this region and at an optical throughput of about 10.sup.-5 cm.sup.2 sr. The spectrograph incorporates a silicon immersion echelle grating operating in high spectral order combined with a first order transmission grating in a cross-dispersing configuration to provide a two-dimensional (2-D) spectral format that is focused onto a two-dimensional infrared detector array. The spectrometer incorporates a common collimating and condensing lens assembly in a near aberration-free axially symmetric design. The spectrometer has wide use potential in addition to general research, such as monitoring atmospheric constituents for air quality, climate change, global warming, as well as monitoring exhaust fumes for smog sources or exhaust plumes for evidence of illicit drug manufacture.
First light results from the Hermes spectrograph at the AAT
NASA Astrophysics Data System (ADS)
Sheinis, Andrew; Barden, Sam; Birchall, Michael; Carollo, Daniela; Bland-Hawthorn, Joss; Brzeski, Jurek; Case, Scott; Cannon, Russell; Churilov, Vladimir; Couch, Warrick; Dean, Robert; De Silva, Gayandhi; D'Orazi, Valentina; Farrell, Tony; Fiegert, Kristin; Freeman, Kenneth; Frost, Gabriella; Gers, Luke; Goodwin, Michael; Gray, Doug; Heald, Ron; Heijmans, Jeroen; Jones, Damien; Keller, Stephan; Klauser, Urs; Kondrat, Yuriy; Lawrence, Jon; Lee, Steve; Mali, Slavko; Martell, Sarah; Mathews, Darren; Mayfield, Don; Miziarski, Stan; Muller, Rolf; Pai, Naveen; Patterson, Robert; Penny, Ed; Orr, David; Shortridge, Keith; Simpson, Jeffrey; Smedley, Scott; Smith, Greg; Stafford, Darren; Staszak, Nicholas; Vuong, Minh; Waller, Lewis; Wylie de Boer, Elizabeth; Xavier, Pascal; Zheng, Jessica; Zhelem, Ross; Zucker, Daniel
2014-07-01
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the of the Milky Way, through a detailed spatially tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2 degree field of view. Hermes has been commissioned over 3 runs, during bright time in October, November and December 2013, in parallel with the beginning of the GALAH Pilot survey starting in November 2013. In this paper we present the first-light results from the commissioning run and the beginning of the GALAH Survey, including performance results such as throughput and resolution, as well as instrument reliability. We compare the abundance calculations from the pilot survey to those in the literature.
Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy
NASA Astrophysics Data System (ADS)
MacLachlan, D. G.; Harris, R. J.; Gris-Sánchez, I.; Morris, T. J.; Choudhury, D.; Gendron, E.; Basden, A. G.; Spaleniak, I.; Arriola, A.; Birks, T. A.; Allington-Smith, J. R.; Thomson, R. R.
2017-02-01
The spectral resolution of a dispersive astronomical spectrograph is limited by the trade-off between throughput and the width of the entrance slit. Photonic guided wave transitions have been proposed as a route to bypass this trade-off, by enabling the efficient reformatting of incoherent seeing-limited light collected by the telescope into a linear array of single modes: a pseudo-slit which is highly multimode in one axis but diffraction-limited in the dispersion axis of the spectrograph. It is anticipated that the size of a single-object spectrograph fed with light in this manner would be essentially independent of the telescope aperture size. A further anticipated benefit is that such spectrographs would be free of `modal noise', a phenomenon that occurs in high-resolution multimode fibre-fed spectrographs due to the coherent nature of the telescope point spread function (PSF). We seek to address these aspects by integrating a multicore fibre photonic lantern with an ultrafast laser inscribed three-dimensional waveguide interconnect to spatially reformat the modes within the PSF into a diffraction-limited pseudo-slit. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and 1530 ± 80 nm stellar light, the device exhibits a transmission of 47-53 per cent depending upon the mode of AO correction applied. We also show the advantage of using AO to couple light into such a device by sampling only the core of the CANARY PSF. This result underscores the possibility that a fully optimized guided-wave device can be used with AO to provide efficient spectroscopy at high spectral resolution.
NASA Astrophysics Data System (ADS)
Huke, Philipp; Tal-Or, Lev; Sarmiento, Luis Fernando; Reiners, Ansgar
2016-07-01
Hollow cathode discharge lamps (HCLs) have been successfully used in recent years as calibration sources of optical astronomical spectrographs. The numerous narrow metal lines have stable wavelengths, which makes them well suited for m/s calibration accuracy of high-resolution spectrographs, while the buffer-gas lines are less stable and less useful. Accordingly, an important property is the metal-to-gas line-strength ratio (Rmetal/gas). Processes inside the lamp cause the light to be emitted from different regions between the cathode and the anode leaing to the emission of different beams with different values of Rmetal/gas. We used commercially- available HCLs to measure and characterize these beams with respect to their spatial distribution, their angle of propagation relative to the optical axis, and their values of Rmetal/gas. We conclude that a good imaging of an HCL into a fiber-fed spectrograph would consist of an aperture close to its front window in order to filter out the parts of the beam with low Rmetal/gas, and of a lens to collimate the important central beam. We show that Rmetal/gas can be further improved with only minor adjustments of the imaging parameters, and that the imaging scheme that yields the highest Rmetal/gas does not necessarily provide the highest flux.
Effects of fiber manipulation methods on optical fiber properties
NASA Astrophysics Data System (ADS)
Reynolds, Robert O.; Bechter, Andrew; Crass, Jonathan
2016-07-01
Optical fibers are routinely used to couple high-resolution spectrographs to modern telescopes, enabling important advantages in areas such as the search for extrasolar planets using spectroscopic radial velocity measurements of candidate stars. Optical fibers partially scramble the input illumination, and this feature enables a fiber feed to provide more uniform illumination to the spectrograph optics, thereby reducing systematic errors in radial velocity measurements. However fibers suffer from focal ratio degradation (FRD), a spreading of the beam at the output of the fiber with respect to that at the fiber input, which results in losses in throughput and resolution. Modal noise, a measurement uncertainty caused by inherent fiber properties and evident as a varying spatial intensity at the fiber exit plane, reduces the signal to noise ratio in the data. Devices such as double scramblers are often used to improve scrambling, and better fiber end preparation can mitigate FRD. Many instruments agitate the fiber during an observation to reduce modal noise, and stretching the fiber during use has been shown to offer a greater reduction in that noise. But effects of agitation and stretching on fiber parameters such as total transmission and focal ratio degradation have not been adequately studied. In this paper we present measurements of transmission loss and focal ratio degradation for both agitated and stretched fibers.
First light results from the HERMES spectrograph at the AAT
NASA Astrophysics Data System (ADS)
Sheinis, Andrew I.
2016-08-01
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is a facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the Galactic Archeology with Hermes (GALAH) survey is to reconstruct the mass assembly history of the Milky Way, through a detailed spatially tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2- degree field of view. Hermes was commissioned in late 2013, with the GALAH Pilot starting in parallel with the commissioning. The GALAH survey started in early 2014 is currently about 33% complete. We present a description of the motivating science; an overview the instrument; and a status report on GALAH Survey.
VizieR Online Data Catalog: Chemical analysis of CH stars. II. (Karinkuzhi+, 2015)
NASA Astrophysics Data System (ADS)
Karinkuzhi, D.; Goswami, A.
2017-10-01
Low-resolution spectra of these objects obtained from 2m Himalayan Chandra Telescope at the Indian Astronomical Observatory, Hanle using HFOSC clearly show strong features due to carbon. HFOSC is an optical imager cum spectrograph for conducting low- and medium-resolution grism spectroscopy (http://www.iiap.res.in/iao/hfosc.html). High-resolution spectra necessary for abundance analyses of the programme stars are taken from the ELODIE archive (Moultaka et al. 2004PASP..116..693M). (7 data files).
The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept design update
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Aloezos, Steve; Bly, Vincent T.; Collins, Christine; Crooke, Julie; Dressing, Courtney D.; Fantano, Lou; Feinberg, Lee D.; France, Kevin; Gochar, Gene; Gong, Qian; Hylan, Jason E.; Jones, Andrew; Linares, Irving; Postman, Marc; Pueyo, Laurent; Roberge, Aki; Sacks, Lia; Tompkins, Steven; West, Garrett
2017-09-01
In preparation for the 2020 Astrophysics Decadal Survey, NASA has commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. NASA's Goddard Space Flight Center (GSFC) is providing the design and engineering support to develop executable and feasible mission concepts that are capable of the identified science objectives. We present an update on the first of two architectures being studied: a 15- meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 μm. Four instruments are being developed for this architecture: an optical / near-infrared coronagraph capable of 10-10 contrast at inner working angles as small as 2 λ/D the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 - 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-IR imager; and a UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). A fifth instrument, a multi-resolution optical-NIR spectrograph, is planned as part of a second architecture to be studied in late 2017.
On the design of the PEPSI spectropolarimeter for the LBT
NASA Astrophysics Data System (ADS)
Ilyin, I.; Strassmeier, K. G.; Woche, M.; Dionies, F.; Di Varano, I.
2011-10-01
We present the design concept of the spectropolarimeter for the high-resolution echelle spectrograph PEPSI to be installed at the 2×8.4 m Large Binocular Telescope (LBT) in Arizona. We discuss the optical key elements, the principles of operations of the instrument and its instrumental polarization effects.
VizieR Online Data Catalog: Astrometry and photometry of nearby white dwarfs (Limoges+, 2013)
NASA Astrophysics Data System (ADS)
Limoges, M.-M.; Lepine, S.; Bergeron, P.
2014-06-01
Optical spectra have been obtained with the Steward Observatory 2.3m telescope and the B&C spectrograph on 2009 May, 2009 Nov, 2010 July, with the NOAO Mayall 4m telescope and the RC spectrograph on 2009 Aug, 2010 Mar, 2010 Oct, and with the NOAO 2.1m and the Goldcam spectrograph on 2009 Dec, 2010 May. The adopted configurations allow a spectral coverage of λλ3800-5600 and λλ3800-6700, at an intermediate resolution of ~6ÅFWHM. Spectra were first obtained at low signal-to-noise ratio (S/N ~25). As a result of our spectroscopic observations, 193 newly identified white dwarfs from the SUPERBLINK catalog have been spectroscopically confirmed (Tables 3 and 4). (3 data files).
NASA Astrophysics Data System (ADS)
Gibson, Steve; Barnes, Stuart I.; Hearnshaw, John; Nield, Kathryn; Cochrane, Dave; Grobler, Deon
2012-09-01
A new advanced high resolution spectrograph has been developed by Kiwistar Optics of Industrial Research Ltd., New Zealand. The instrument, KiwiSpec R4-100, is bench-mounted, bre-fed, compact (0.75m by 1.5m footprint), and is well-suited for small to medium-sized telescopes. The instrument makes use of several advanced concepts in high resolution spectrograph design. The basic design follows the classical white pupil concept in an asymmetric implementation and employs an R4 echelle grating illuminated by a 100mm diameter collimated beam for primary dispersion. A volume phase holographic grating (VPH) based grism is used for cross-dispersion. The design also allows for up to four camera and detector channels to allow for extended wavelength coverage at high eciency. A single channel prototype of the instrument has been built and successfully tested with a 1m telescope. Targets included various spectrophotometric standard stars and several radial velocity standard stars to measure the instrument's light throughput and radial velocity capabilities. The prototype uses a 725 lines/mm VPH grism, an off-the-shelf camera objective, and a 2k×2k CCD. As such, it covers the wavelength range from 420nm to 660nm and has a resolving power of R ≍ 40,000. Spectrophotometric and precision radial velocity results from the on-sky testing period will be reported, as well as results of laboratory-based measurements. The optical design of KiwiSpec, and the various multi-channel design options, will be presented elsewhere in these proceedings.
Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer)
NASA Astrophysics Data System (ADS)
Park, Chan; Jaffe, Daniel T.; Yuk, In-Soo; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Pavel, Michael; Lee, Hanshin; Oh, Heeyoung; Jeong, Ueejeong; Sim, Chae Kyung; Lee, Hye-In; Nguyen Le, Huynh Anh; Strubhar, Joseph; Gully-Santiago, Michael; Oh, Jae Sok; Cha, Sang-Mok; Moon, Bongkon; Park, Kwijong; Brooks, Cynthia; Ko, Kyeongyeon; Han, Jeong-Yeol; Nah, Jakyoung; Hill, Peter C.; Lee, Sungho; Barnes, Stuart; Yu, Young Sam; Kaplan, Kyle; Mace, Gregory; Kim, Hwihyun; Lee, Jae-Joon; Hwang, Narae; Park, Byeong-Gon
2014-07-01
The Immersion Grating Infrared Spectrometer (IGRINS) is a compact high-resolution near-infrared cross-dispersed spectrograph whose primary disperser is a silicon immersion grating. IGRINS covers the entire portion of the wavelength range between 1.45 and 2.45μm that is accessible from the ground and does so in a single exposure with a resolving power of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is 1ʺ x 15ʺ and the plate scale is 0.27ʺ pixel. The spectrograph employs two 2048 x 2048 pixel Teledyne Scientific and Imaging HAWAII-2RG detectors with SIDECAR ASIC cryogenic controllers. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be only 25mm, which permits a moderately sized (0.96m x 0.6m x 0.38m) rectangular cryostat to contain the entire spectrograph. The fabrication and assembly of the optical and mechanical components were completed in 2013. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present early performance test results obtained from the commissioning runs at the McDonald Observatory.
Hubble Space Telescope, Faint Object Spectrograph
NASA Technical Reports Server (NTRS)
1981-01-01
This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
Conceptual design for an AIUC multi-purpose spectrograph camera using DMD technology
NASA Astrophysics Data System (ADS)
Rukdee, S.; Bauer, F.; Drass, H.; Vanzi, L.; Jordan, A.; Barrientos, F.
2017-02-01
Current and upcoming massive astronomical surveys are expected to discover a torrent of objects, which need groundbased follow-up observations to characterize their nature. For transient objects in particular, rapid early and efficient spectroscopic identification is needed. In particular, a small-field Integral Field Unit (IFU) would mitigate traditional slit losses and acquisition time. To this end, we present the design of a Digital Micromirror Device (DMD) multi-purpose spectrograph camera capable of running in several modes: traditional longslit, small-field patrol IFU, multi-object and full-field IFU mode via Hadamard spectra reconstruction. AIUC Optical multi-purpose CAMera (AIUCOCAM) is a low-resolution spectrograph camera of R 1,600 covering the spectral range of 0.45-0.85 μm. We employ a VPH grating as a disperser, which is removable to allow an imaging mode. This spectrograph is envisioned for use on a 1-2 m class telescope in Chile to take advantage of good site conditions. We present design decisions and challenges for a costeffective robotized spectrograph. The resulting instrument is remarkably versatile, capable of addressing a wide range of scientific topics.
First-generation instrumentation for the Discovery Channel Telescope
NASA Astrophysics Data System (ADS)
Bida, Thomas A.; Dunham, Edward W.; Massey, Philip; Roe, Henry G.
2014-07-01
The 4.3m Discovery Channel Telescope (DCT) has been conducting part-time science operations since January 2013. The f/6.1, 0.5° field-of-view at the RC focus is accessible through the Cassegrain instrument cube assembly, which can support 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. Lowell Observatory has developed the Large Monolithic Imager (LMI), a 12.3' FOV 6K x 6K single CCD camera with a dual filter wheel, and installed at the straight-through, field-corrected RC focal station, which has served as the primary early science DCT instrument. Two low-resolution facility spectrographs are currently under development with first light for each anticipated by early 2015: the upgraded DeVeny Spectrograph, to be utilized for single object optical spectroscopy, and the unique Near-Infrared High-Throughput Spectrograph (NIHTS), optimized for single-shot JHK spectroscopy of faint solar system objects. These spectrographs will be mounted at folded RC ports, and the NIHTS installation will feature simultaneous optical imaging with LMI through use of a dichroic fold mirror. We report on the design, construction, commissioning, and progress of these 3 instruments in detail. We also discuss plans for installation of additional facility instrumentation on the DCT.
Spectroscopic Classification of PSN J11492548-0507138 as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Rudy, R. J.; Ardila, D. R.; Crawford, K. B.; Moody, M. S. L.; Safrit, T. K.; Puetter, R. C.
2015-07-01
Optical and IR spectra from 0.47-2.5 microns (resolution: 5-30 angstroms) of PSN J11492548-0507138 (ATEL #7732) were obtained on 2015 July 12.15 with the Shane 3.0 m Telescope of Lick Observatory using the Aerospace Corporation's Visible and Infrared Imaging Spectrograph (VNIRIS).
NASA Astrophysics Data System (ADS)
Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.
2016-08-01
SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI
VizieR Online Data Catalog: Radial velocity follow-up of the HD 3167 system (Gandolfi+, 2017)
NASA Astrophysics Data System (ADS)
Gandolfi, D.; Barragan, O.; Hatzes, A. P.; Fridlund, M.; Fossati, L.; Donati, P.; Johnson, M. C.; Nowak, G.; Prieto-Arranz, J.; Albrecht, S.; Dai, F.; Deeg, H.; Endl, M.; Grziwa, S.; Hjorth, M.; Korth, J.; Nespral, D.; Saario, J.; Smith, A. M. S.; Antoniciello, G.; Alarcon, J.; Bedell, M.; Blay, P.; Brems, S. S.; Cabrera, J.; Csizmadia, S.; Cusano, F.; Cochran, W. D.; Eigmuller, P.; Erikson, A.; Gonzalez Hernandez, J. I.; Guenther, E. W.; Hirano, T.; Suarez Mascareno, A.; Narita, N.; Palle, E.; Parviainen, H.; Patzold, M.; Persson, C. M.; Rauer, H.; Saviane, I.; Schmidtobreick, L.; van Eylen, V.; Winn, J. N.; Zakhozhay, O. V.
2018-06-01
We used the FIbre-fed Echelle Spectrograph (FIES; Frandsen & Lindberg 1999anot.conf...71F; Telting et al. 2014AN....335...41T) mounted at the 2.56 m Nordic Optical Telescope (NOT) of Roque de los Muchachos Observatory (La Palma, Spain) to acquire 37 high-resolution spectra (R~67000) in 12 different nights between July and September 2016. We also acquired 50 spectra with the HARPS spectrograph (R~115000; Mayor et al. 2003Msngr.114...20M) and 32 spectra with the HARPS-N spectrograph (R~115000; Cosentino et al. 2012SPIE.8446E..1VC). HARPS and HARPS-N are fiber-fed cross-dispersed echelle spectrographs specifically designed to achieve very high-precision long-term RV stabilities (<1 m/s). They are mounted at the ESO-3.6 m telescope of La Silla observatory (Chile) and at the 3.58 m Telescopio Nazionale Galileo (TNG) of Roque de los Muchachos Observatory (La Palma, Spain). (1 data file).
IRMS: Infrared Multi-Slit Spectrograph for TMT
NASA Astrophysics Data System (ADS)
U, Vivian; Mobasher, B.
2014-07-01
As one of the first-light instruments on the TMT, the IRMS is a near-infrared multi-slit spectrograph and imager designed to sample near the diffraction limit with the help of adaptive optics. Fed by the Narrow-Field Infrared Adaptive Optics Systems (NFIRAOS) on the TMT, the IRMS will provide near-infrared imaging and multi-object spectroscopy at Y, J, H, and K bands (0.9-2.5 microns) with moderate spectral resolution. With a field of view of ~2 arcmin on a side, it has a multiplex capability of up to 46 slits using a slit mask system on a cryogenic configurable slit unit. Here we present a preliminary version of the exposure time calculator for sensitivity comparison with Keck/MOSFIRE. Selected science cases are highlighted to demonstrate the need for IRMS in this upcoming thirty-meter class telescope era.
The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS)
NASA Technical Reports Server (NTRS)
Oegerle, William (Technical Monitor); Rabin, D.; Davila, J.; Thomas, R. J.; Engler, C.; Irish, S.; Keski-Kuha, R.; Novello, J.; Nowak, M.; Payne, L.;
2003-01-01
EUNIS (Extreme Ultraviolet Normal Incidence Spectrograph) is a high-efficiency extreme ultraviolet spectrometer that is expected to fly for the first time in 2004 as a sounding rocket payload. Using two independent optical systems, EUNIS will probe the structure and dynamics of the inner solar corona high spectral resolution in two wavelength regions: 17-21 nm with 3.5 pm resolution and 30-37 nm with 7 pm resolution. The long wavelength channel includes He II 30.4 nm and strong lines from Fe XI-XVI; the short wavelength channel includes strong lines of Fe IX-XIII. Angular resolution of 2 arcsec is maintained along a slit covering a full solar radius. EUNIS will have 100 times the throughput of the highly successful SERTS payloads that have preceded it. There are only two reflections in each optical channel, from the superpolished, off-axis paraboloidal primary and the toroidal grating. Each optical element is coated with a high-efficiency multilayer coating optimized for its spectral bandpass. The detector in each channel is a microchannel plate image intensifier fiber- coupled to three 1K x 1K active pixel sensors. EUNIS will obtain spectra with a cadence as short as 1 sec, allowing unprecedented studies of the physical properties of evolving and transient structures. Diagnostics of wave heating and reconnection wil be studied at heights above 2 solar radii, in the wind acceleration region. The broad spectral coverage and high spectral resolution will provide superior temperature and density diagnostics and will enable underflight calibration of several orbital instruments, including SOHO/CDS and EIT, TRACE, Solar-B/EIS, and STEREO/EUVI. EUNIS is supported by NASA through the Low Cost Access to Space Program in Solar and Heliospheric Physics.
GMTIFS: The Giant Magellan Telescope integral fields spectrograph and imager
NASA Astrophysics Data System (ADS)
Sharp, Rob; Bloxham, G.; Boz, R.; Bundy, D.; Davies, J.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Vaccarella, A.; Vest, C.; Young, P.; McGregor, P.
2016-08-01
GMTIFS is the first-generation adaptive optics integral-field spectrograph for the GMT, having been selected through a competitive review process in 2011. The GMTIFS concept is for a workhorse single-object integral-field spectrograph, operating at intermediate resolution (R 5,000 and 10,000) with a parallel imaging channel. The IFS offers variable spaxel scales to Nyquist sample the diffraction limited GMT PSF from λ 1-2.5 μm as well as a 50 mas scale to provide high sensitivity for low surface brightness objects. The GMTIFS will operate with all AO modes of the GMT (Natural guide star - NGSAO, Laser Tomography - LTAO, and, Ground Layer - GLAO) with an emphasis on achieving high sky coverage for LTAO observations. We summarize the principle science drivers for GMTIFS and the major design concepts that allow these goals to be achieved.
The CHARIS High-Contrast Integral-Field Spectrograph
NASA Technical Reports Server (NTRS)
Groff, Tyler D.; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja;
2017-01-01
One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has 'high' and 'low' resolution operating modes. The "high-resolution" mode is used to characterize targets in J, H, and K bands at R70. The "low-resolution" prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS is in the final stages of commissioning, with the instrument open for science observations beginning February 2017. Here we review the science case, design, on-sky performance, engineering observations of exoplanet and disk targets, and specific lessons learned for extremely high contrast imagers. Key design aspects that will be demonstrated are crosstalk optimization, wavefront correction using the IFS image, lenslet tolerancing, the required spectral resolution to fit exoplanet atmospheres, and the utility of the spectrum in achieving higher contrast detection limits.
WINERED: a warm near-infrared high-resolution spectrograph
NASA Astrophysics Data System (ADS)
Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Motohara, Kentaro; Minami, Atsushi
2006-06-01
We are developing a new near-infrared high-resolution (R max = 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9-1.35 μm. WINERED employs the following two novel approaches in the optical system: (1) portable design with a ZnSe immersion grating and (2) warm optics without any cold stops. These concepts result in several essential advantages as follows: easy to build, align, and maintain; these result in a short development time and low cost. WINERED employs a VIRGO HgCdTe 2k × 2k array by Raytheon as the detector. We are developing our own array control system that aims at a low readout noise (< 10 e -) with a readout time of about 3 sec. Our goal is to achieve a high sensitivity of R = 100,000 for a NIR spectroscopy of 15 mag and 17 mag point sources with 4 m and 10 m telescopes, respectively. We have just finalized the optical design and produced a prototype electronics, which are described in the companion papers by Yasui et al. and Kondo et al., respectively. We plan to complete this instrument by the end of 2008 and hope to attach it to various 4 to 10 m telescopes as a PI-type instrument.
ESPRESSO optical bench: from mind to reality
NASA Astrophysics Data System (ADS)
Tenegi, F.; Santana, S.; Gómez, J.; Rodilla, E.; Hughes, I.; Mégevand, D.; Rebolo, R.; Riva, M.; Luis-Simoes, R.
2016-07-01
ESPRESSO [1] is a high-resolution spectrograph under development for the VLT telescope. In general, the Optical Bench (OB) structure can be considered as a 3D one, conformed by welding thin plates of Structural Steel (St-52) with a nickelplated surface treatment, combined for getting maximum stiffness and minimum weight, that will be finally re-machined to get stringent geometrical and dimensional tolerances at I/Fs positions. TIG conventional welding procedure has been selected to minimize the cost and facilitate the own welding process. This solution follows the inheritance from HARPS [2] due to its success to achieve the required performance for the bench. This paper contains an overview of the whole process of designing and manufacturing the Optical Bench of ESPRESSO, from the very first beginning with the specifications to the current status of the bench with its integration on the Spectrograph (including the Finite Element Models and the delivery of the final structure by the supplier) and lessons learned.
NASA Astrophysics Data System (ADS)
Kruczek, Nicholas; Nell, Nicholas; France, Kevin; Hoadley, Keri; Fleming, Brian; Kane, Robert; Ulrich, Stefan; Egan, Arika; Beatty, Dawson
2017-08-01
In this proceeding, we describe the scientific motivation and technical development of the Colorado HighResolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing of components for the third launch of the payload (CHESS-3). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS is an objective echelle spectrograph, which uses a mechanically-ruled echelle and a powered (f/12.4) crossdispersing grating, and is designed to achieve a resolving power R > 100,000 over the bandpass λλ 1000-1600 Å. Results from final efficiency and reflectivity measurements for the optical components of CHESS-3 are presented. An important role of sounding rocket experiments is the testing and verification of the space flight capabilities of experimental technologies. CHESS-3 utilizes a 40mm-diameter cross-strip anode microchannel plate detector fabricated by Sensor Sciences LLC, capable of achieving high spatial resolution and a high global count rate (˜1 MHz). We present pre-flight laboratory spectra and calibration results, including wavelength solution and resolving power of the instrument. The fourth launch of CHESS (CHESS-4) will demonstrate a δ-doped CCD, assembled in collaboration with the Microdevices Laboratory at JPL and Arizona State University. In support of CHESS-4, the CHESS-3 payload included a photomultiplier tube, used as a secondary confirmation of the optical alignment of the payload during flight. CHESS-3 launched on 26 June 2017 aboard NASA/CU sounding rocket mission 36.323 UG. We present initial flight results for the CHESS-3 observation of the β1 Scorpii sightline.
Development and Flight-testing of Astronomical Instrumentation for Future NASA Astrophysics Missions
NASA Astrophysics Data System (ADS)
France, Kevin
We propose a four year suborbital research program to continue the University of Colorado's efforts in the development and flight testing of instrument designs and critical path technologies for ultraviolet spectroscopy in support of future NASA Explorer, Probe-, and Flagship-class missions. This proposal builds on our existing program of high-resolution spectroscopy for the 100 - 160 nm bandpass with the development of a new high-efficiency imaging spectrograph operating in the same band. The ultimate goal of the University of Colorado ultraviolet rocket program is to develop the technical capabilities to enable a future, highly multiplexed ultraviolet spectrograph (with both high-resolution and imaging spectroscopy modes), e.g., an analog to the successful HST-STIS instrument, with an order-of-magnitude higher efficiency. We do this in the framework of a university led program where undergraduate, graduate, and postdoctoral training is paramount and cutting edge science investigations support our baseline technology development program. In the proposed effort, we will optimize our high-resolution (R > 100,000) echelle spectrograph payload (CHESS) with the first science flight of a new, large-format CCD array provided by our collaborators at JPL and Arizona State University. We will launch CHESS to study our local interstellar environment with spectral resolving power and bandpass that cannot be achieved with any suite of current or planned space missions. In parallel with the proposed science flights of CHESS, we will design, calibrate, and launch a new high-throughput imaging spectrograph (SISTINE); the first sub-arcsecond imaging, medium spectral resolution (R = 10,000), spectrograph ever flown with spectral coverage over the entire 100 - 160 nm bandpass. SISTINE incorporates several novel optical technologies that were highlighted as major hardware drivers for NASA's next large ultraviolet/optical/near-IR observatory by the 2014 Cosmic Origins Technology Report, including advanced mirror coatings with high broadband reflectivity (including > 20% efficiency gains below 115 nm), the first demonstration and flight test of these coatings on a shaped 0.5-meter telescope, and large-format, high-QE photon counting detectors. SISTINE will be launched to study the energetic radiation environment in the habitable zones around nearby low-mass exoplanet host stars, systems that are the top priority in NASA's search for the signatures of biological activity in the coming decade. SISTINE addresses the highest science priority in the 2010 Astronomy and Astrophysics Decadal Survey and is a crucial step towards meeting NASA's technology needs for future space observatories.
Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving
Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey
2017-06-09
Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawlessmore » diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.« less
NASA Astrophysics Data System (ADS)
Buisset, Christophe; Poshyachinda, Saran; Soonthornthum, Boonrucksar; Prasit, Apirat; Alagao, Mary Angelie; Choochalerm, Piyamas; Wanajaroen, Weerapot; Lepine, Thierry; Rabbia, Yves; Aukkaravittayapun, Suparerk; Leckngam, Apichat; Thummasorn, Griangsak; Ngernsujja, Surin; Inpan, Anuphong; Kaewsamoet, Pimon; Lhospice, Esther; Meemon, Panomsak; Artsang, Pornapa; Suwansukho, Kajpanya; Sirichote, Wichit; Paenoi, Jitsupa
2018-03-01
The National Astronomical Research Institute of Thailand (NARIT) has developed since June 2014 an optical laboratory that comprises all the activities and facilities related to the research and development of new instruments in the following areas: telescope design, high dynamic and high resolution imaging systems and spectrographs. The facilities include ZEMAX and Solidwork software for design and simulation activities as well as an optical room with all the equipment required to develop optical setup with cutting-edge performance. The current projects include: i) the development of a focal reducer for the 2.3 m Thai National Telescope (TNT), ii) the development of the Evanescent Wave Coronagraph dedicated to the high contrast observations of star close environment and iii) the development of low resolution spectrographs for the Thai National Telescope and for the 0.7 m telescopes of NARIT regional observatories. In each project, our activities start from the instrument optical and mechanical design to the simulation of the performance, the development of the prototype and finally to the final system integration, alignment and tests. Most of the mechanical parts are manufactured by using the facilities of NARIT precision mechanical workshop that includes a 3-axis Computer Numerical Control (CNC) to machine the mechanical structures and a Coordinate Measuring Machine (CMM) to verify the dimensions. In this paper, we give an overview of the optical laboratory activities and of the associated facilities. We also describe the objective of the current projects, present the specifications and the design of the instruments and establish the status of development and we present our future plans.
VizieR Online Data Catalog: PS1 z>5.6 quasars follow-up (Banados+, 2016)
NASA Astrophysics Data System (ADS)
Banados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Mazzucchelli, C.; Walter, F.; Fan, X.; Stern, D.; Schlafly, E.; Chambers, K. C.; Rix, H.-W.; Jiang, L.; McGreer, I.; Simcoe, R.; Wang, F.; Yang, J.; Morganson, E.; De Rosa, G.; Greiner, J.; Balokovic, M.; Burgett, W. S.; Cooper, T.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Jun, H. D.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Miller, D.; Schindler, J.-T.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Yang, Q.
2017-01-01
The photometric follow-up observations were carried out over different observing runs and different instruments. We obtained optical and near-infrared images with the MPG 2.2m/GROND, New Technology Telescope (NTT)/EFOSC2, NTT/SofI, Calar Alto (CAHA) 3.5m/Omega2000, CAHA 2.2m/CAFOS21, MMT/SWIRC), and du Pont/Retrocam; see Table 1 for details of the observations and filters used. A spectroscopic campaign was carried out using several instruments at different telescopes: EFOSC2 at the NTT telescope in La Silla, the Focal Reducer / Low-Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT), the Folded-Port Infrared Echellette (FIRE) spectrometer and the Low-Dispersion Survey Spectrograph (LDSS3) at the Baade and Clay Telescopes at Las Campanas Observatory, the Low-Resolution Imaging Spectrometer (LRIS) at the Keck I 10m Telescope on Mauna Kea, the Double Spectrograph (DBSP) on the 200 inch (5m) Hale Telescope at Palomar Observatory (P200), the Red-Channel Spectrograph on the 6.5m MMT Telescope, the Cassegrain TWIN Spectrograph at the 3.5m Calar Alto Telescope (CAHA 3.5m), and the Multi-object Double Spectrograph (MODS) and LUCI spectrograph at the Large Binocular Telescope (LBT). The details of the spectroscopic observations of the PS1-discovered quasars are shown in Table 5. (10 data files).
VizieR Online Data Catalog: Abundances of LAMOST giants from APOGEE DR12 (Ho+, 2017)
NASA Astrophysics Data System (ADS)
Ho, A. Y. Q.; Ness, M. K.; Hogg, D. W.; Rix, H.-W.; Liu, C.; Yang, F.; Zhang, Y.; Hou, Y.; Wang, Y.
2017-09-01
The Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) is a low-resolution (R~1800) optical (3650-9000Å) spectroscopic survey. APOGEE is a high-resolution (R~22500), high-S/N (S/N~100), H-band (15200-16900Å) spectroscopic survey, part of the Sloan Digital Sky Survey III. Observations are conducted using a 300 fiber spectrograph on the 2.5m Sloan Telescope at the Apache Point Observatory (APO) in Sunspot, New Mexico (USA). (1 data file).
Spectrographs for astrophotonics.
Blind, N; Le Coarer, E; Kern, P; Gousset, S
2017-10-30
The next generation of extremely large telescopes (ELT), with diameters up to 39 meters, is planned to begin operation in the next decade and promises new challenges in the development of instruments since the instrument size increases in proportion to the telescope diameter D, and the cost as D 2 or faster. The growing field of astrophotonics (the use of photonic technologies in astronomy) could solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. Astrophotonics allows for a broad range of new optical functions, with applications ranging from sky background filtering, high spatial and spectral resolution imaging and spectroscopy. In this paper, we want to provide astronomers with valuable keys to understand how photonics solutions can be implemented (or not) according to the foreseen applications. The paper introduces first key concepts linked to the characteristics of photonics technologies, placed in the framework of astronomy and spectroscopy. We then describe a series of merit criteria that help us determine the potential of a given micro-spectrograph technology for astronomy applications, and then take an inventory of the recent developments in integrated micro-spectrographs with potential for astronomy. We finally compare their performance, to finally draw a map of typical science requirements and pin the identified integrated technologies on it. We finally emphasize the necessary developments that must support micro-spectrograph in the coming years.
A Survey of Near-infrared Diffuse Interstellar Bands
NASA Astrophysics Data System (ADS)
Hamano, Satochi; Kobayashi, Naoto; Kawakita, Hideyo; Ikeda, Yuji; Kondo, Sohei; Sameshima, Hiroaki; Arai, Akira; Matsunaga, Noriyuki; Yasui, Chikako; Mizumoto, Misaki; Fukue, Kei; Izumi, Natsuko; Otsubo, Shogo; Takenada, Keiichi
2018-04-01
We propose a study of interstellar molecules with near-infrared (NIR) high-resolution spectroscopy as a science case for the 3.6-m Devasthal Optical Telescope (DOT). In particular, we present the results obtained on-going survey of diffuse interstellar bands (DIBs) in NIR with the newly developed NIR high-resolution spectrograph WINERED, which offers a high sensitivity in the wavelength range of 0.91-1.36 µm. Using the WINERED spectrograph attached to the 1.3-m Araki telescope in Japan, we obtained high-quality spectra of a number of early-type stars in various environments, such as diffuse interstellar clouds, dark clouds and star-forming regions, to investigate the properties of NIR DIBs and constrain their carriers. As a result, we successfully identified about 50 new NIR DIBs, where only five fairly strong DIBs had been identified previously. Also, some properties of DIBs in the NIR are discussed to constrain the carriers of DIBs.
NASA Astrophysics Data System (ADS)
Hoadley, Keri; France, Kevin; Nell, Nicholas; Kane, Robert; Schultz, Ted; Beasley, Matthew; Green, James; Kulow, Jen; Kersgaard, Eliot; Fleming, Brian
2014-07-01
The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) is a far ultraviolet (FUV) rocket-borne experiment designed to study the atomic-to-molecular transitions within translucent interstellar clouds. CHESS is an objective echelle spectrograph operating at f/12.4 and resolving power of 120,000 over a band pass of 100 - 160 nm. The echelle flight grating is the product of a research and development project with LightSmyth Inc. and was coated at Goddard Space Flight Center (GSFC) with Al+LiF. It has an empirically-determined groove density of 71.67 grooves/mm. At the Center for Astrophysics and Space Astronomy (CASA) at the University of Colorado (CU), we measured the efficiencies of the peak and adjacent dispersion orders throughout the 90 - 165 nm band pass to characterize the behavior of the grating for pre-flight calibrations and to assess the scattered-light behavior. The crossdispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, low line density (351 grooves/mm), powered optic with a toroidal surface curvature. The CHESS cross-disperser was also coated at GSFC; Cr+Al+LiF was deposited to enhance far-UV efficiency. Results from final efficiency and reflectivity measurements of both optics are presented. We utilize a cross-strip anode microchannel plate (MCP) detector built by Sensor Sciences to achieve high resolution (25 μm spatial resolution) and data collection rates (~ 106 photons/second) over a large format (40mm round, digitized to 8k x 8k) for the first time in an astronomical sounding rocket flight. The CHESS instrument was successfully launched from White Sands Missile Range on 24 May 2014. We present pre-flight sensitivity, effective area calculations, lab spectra and calibration results, and touch on first results and post-flight calibration plans.
MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting ready for the telescope
NASA Astrophysics Data System (ADS)
Gil de Paz, A.; Carrasco, E.; Gallego, J.; Iglesias-Páramo, J.; Cedazo, R.; García Vargas, M. L.; Arrillaga, X.; Avilés, J. L.; Cardiel, N.; Carrera, M. A.; Castillo-Morales, A.; Castillo-Domínguez, E.; de la Cruz García, J. M.; Esteban San Román, S.; Ferrusca, D.; Gómez-Álvarez, P.; Izazaga-Pérez, R.; Lefort, B.; López-Orozco, J. A.; Maldonado, M.; Martínez-Delgado, I.; Morales Durán, I.; Mujica, E.; Páez, G.; Pascual, S.; Pérez-Calpena, A.; Picazo, P.; Sánchez-Penim, A.; Sánchez-Blanco, E.; Tulloch, S.; Velázquez, M.; Vílchez, J. M.; Zamorano, J.; Aguerri, A. L.; Barrado y Naváscues, D.; Bertone, E.; Cava, A.; Cenarro, J.; Chávez, M.; García, M.; García-Rojas, J.; Guichard, J.; González-Delgado, R.; Guzmán, R.; Herrero, A.; Huélamo, N.; Hughes, D. H.; Jiménez-Vicente, J.; Kehrig, C.; Marino, R. A.; Márquez, I.; Masegosa, J.; Mayya, Y. D.; Méndez-Abreu, J.; Mollá, M.; Muñoz-Tuñón, C.; Peimbert, M.; Pérez-González, P. G.; Pérez Montero, E.; Rodríguez, M.; Rodríguez-Espinosa, J. M.; Rodríguez-Merino, L.; Rodríguez-Muñoz, L.; Rosa-González, D.; Sánchez-Almeida, J.; Sánchez Contreras, C.; Sánchez-Blázquez, P.; Sánchez Moreno, F. M.; Sánchez, S. F.; Sarajedini, A.; Silich, S.; Simón-Díaz, S.; Tenorio-Tagle, G.; Terlevich, E.; Terlevich, R.; Torres-Peimbert, S.; Trujillo, I.; Tsamis, Y.; Vega, O.
2016-08-01
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma that is being built by a Consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). The instrument is currently finishing AIV and will be sent to GTC on November 2016 for its on-sky commissioning on April 2017. The MEGARA IFU fiber bundle (LCB) covers 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec while the MEGARA MOS mode allows observing up to 92 objects in a region of 3.5x3.5 arcmin2 around the IFU. The IFU and MOS modes of MEGARA will provide identical intermediate-to-high spectral resolutions (RFWHM 6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3700-9800ÅÅ. An x-y mechanism placed at the pseudo-slit position allows (1) exchanging between the two observing modes and (2) focusing the spectrograph for each VPH setup. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts a 4kx4k 15-μm CCD. The unique characteristics of MEGARA in terms of throughput and versatility and the unsurpassed collecting are of GTC make of this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. In these proceedings we present a summary of the instrument characteristics and the results from the AIV phase. All subsystems have been successfully integrated and the system-level AIV phase is progressing as expected.
History of Hubble Space Telescope (HST)
1981-01-01
This drawing illustrates the Hubble Space Telescope's (HST's), Goddard High-Resolution Spectrograph (GHRS). The HST's two spectrographs, the GHRS and the Faint Object Spectrograph (FOS), can detect a broader range of wavelengths than is possible from Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The GHRS can detect fine details in the light from somewhat brighter objects but only ultraviolet light. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
History of Hubble Space Telescope (HST)
1981-01-01
This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
NASA Astrophysics Data System (ADS)
Sugai, Hajime; Tamura, Naoyuki; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio Vital; Barkhouser, Robert H.; Bennett, Charles L.; Bickerton, Steve; Bozier, Alexandre; Braun, David F.; Bui, Khanh; Capocasale, Christopher M.; Carr, Michael A.; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C. Y.; Dawson, Olivia R.; Dekany, Richard G.; Ek, Eric M.; Ellis, Richard S.; English, Robin J.; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D.; Golebiowski, Mirek; Gunn, James E.; Hart, Murdock; Heckman, Timothy M.; Ho, Paul T. P.; Hope, Stephen; Hovland, Larry E.; Hsu, Shu-Fu; Hu, Yen-Shan; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E.; Kempenaar, Jason G.; King, Matthew E.; le Fèvre, Olivier; Mignant, David Le; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H.; Madec, Fabrice; Mao, Peter; Souza Marrara, Lucas; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J.; Cesar de Oliveira, Antonio; Mendes de Oliveira, Claudia; Souza de Oliveira, Ligia; Orndorff, Joe D.; de Paiva Vilaça, Rodrigo; Partos, Eamon J.; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J.; Riddle, Reed; Santos, Leandro; dos Santos, Jesulino Bispo; Schwochert, Mark A.; Seiffert, Michael D.; Smee, Stephen A.; Smith, Roger M.; Steinkraus, Ronald E.; Sodré, Laerte; Spergel, David N.; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C.; Wyse, Rosie; Yan, Chi-Hung
2015-07-01
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 μm to 1.26 μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 μm to 0.89 μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase.
The optical design of GMOX: a next-generation instrument concept for Gemini
NASA Astrophysics Data System (ADS)
Barkhouser, Robert; Robberto, Massimo; Smee, Stephen A.; Ninkov, Zoran; Gennaro, Mario; Heckman, Timothy
2016-08-01
We present the optical design of GMOX, the Gemini Multi-Object eXtra-wide-band spectrograph. GMOX was selected as part of the Gemini Instrument Feasibility Study to develop capabilities and requirements for the next facility instrument (Gen4#3) for the observatory. We envision GMOX covering the entire optical/near-IR wavelength range accessible from the ground, from 3500 Å in the U band up to 2.4 μm in the K band, with nominal resolving power R≃5,000. To maximize efficiency, the bandpass is split into three spectrograph arms - blue, red, and near-infrared - with the near-infrared arm further split into three channels covering the Y+J, H, and K bands. At the heart of each arm is a Digital Micromirror Device (DMD) serving as a programmable slit array. This technology will enable GMOX to simultaneously acquire hundreds of spectra of faint sources in crowded fields with unparalleled spatial resolution, optimally adapting to both seeing-limited and diffraction limited conditions provided by ALTAIR and GeMS at Gemini North and South, respectively. Fed by GeMS at f/33, GMOX can synthesize slits as small as 40 mas (corresponding to a single HST/WFC3 CCD pixel) over its entire 85"x45" field of view. With either ALTAIR or the native telescope focal ratio of f/16, both the slit and field sizes double. In this paper we discuss the conceptual optical design of GMOX including, for each arm: the pre-slit optics, DMD slit array, off-axis Schmidt collimator, VPH grating, and refractive spectrograph and slit-viewing cameras.
Development of the fibres of MOONS
NASA Astrophysics Data System (ADS)
Guinouard, Isabelle; Lee, David; Schnetler, Hermine; Taylor, William; Amans, Jean-Philippe; Montgomery, David; Oliva, Ernesto
2014-07-01
MOONS will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.8 - 1.8 μm, with a multiplex capability of approximately 1000 fibres. Each triple arm spectrograph will produce spectra for half of the targets simultaneously. The system will have both a medium resolution (R~4000-6000) mode and a high resolution (R~20000) mode. The fibres are used to pick off each sub field of 1.05 arcseconds and are used to transport the light from the instrument focal plane to the two spectrographs. Each fibre has a microlens to focus the beam into the fibre at a relative fast focal ratio of F/3.65 to reduce the Focal Ratio Degradation (FRD). This paper presents the overall design of the fibre system and describes the specific developments required to optimise its performance. The design of the fibre input optics, the choice of the fibre connector, and the layout of the slit end are described. The results of preliminary tests to measure the effect of twisting on the FRD performance of prototype fibres are also discussed.
PRISM Spectrograph Optical Design
NASA Technical Reports Server (NTRS)
Chipman, Russell A.
1995-01-01
The objective of this contract is to explore optical design concepts for the PRISM spectrograph and produce a preliminary optical design. An exciting optical configuration has been developed which will allow both wavelength bands to be imaged onto the same detector array. At present the optical design is only partially complete because PRISM will require a fairly elaborate optical system to meet its specification for throughput (area*solid angle). The most complex part of the design, the spectrograph camera, is complete, providing proof of principle that a feasible design is attainable. This camera requires 3 aspheric mirrors to fit inside the 20x60 cm cross-section package. A complete design with reduced throughput (1/9th) has been prepared. The design documents the optical configuration concept. A suitable dispersing prism material, CdTe, has been identified for the prism spectrograph, after a comparison of many materials.
NASA Astrophysics Data System (ADS)
Crawford, S. M.; Crause, Lisa; Depagne, Éric; Ilkiewicz, Krystian; Schroeder, Anja; Kuhn, Rudolph; Hettlage, Christian; Romero Colmenaro, Encarni; Kniazev, Alexei; Väisänen, Petri
2016-08-01
The High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT) is a dual beam, fiber-fed echelle spectrograph providing high resolution capabilities to the SALT observing community. We describe the available data reduction tools and the procedures put in place for regular monitoring of the data quality from the spectrograph. Data reductions are carried out through the pyhrs package. The data characteristics and instrument stability are reported as part of the SALT Dashboard to help monitor the performance of the instrument.
NASA Astrophysics Data System (ADS)
Zieleniewski, Simon; Thatte, Niranjan; Kendrew, Sarah; Houghton, Ryan; Tecza, Matthias; Clarke, Fraser; Fusco, Thierry; Swinbank, Mark
2014-07-01
With the next generation of extremely large telescopes commencing construction, there is an urgent need for detailed quantitative predictions of the scientific observations that these new telescopes will enable. Most of these new telescopes will have adaptive optics fully integrated with the telescope itself, allowing unprecedented spatial resolution combined with enormous sensitivity. However, the adaptive optics point spread function will be strongly wavelength dependent, requiring detailed simulations that accurately model these variations. We have developed a simulation pipeline for the HARMONI integral field spectrograph, a first light instrument for the European Extremely Large Telescope. The simulator takes high-resolution input data-cubes of astrophysical objects and processes them with accurate atmospheric, telescope and instrumental effects, to produce mock observed cubes for chosen observing parameters. The output cubes represent the result of a perfect data reduc- tion process, enabling a detailed analysis and comparison between input and output, showcasing HARMONI's capabilities. The simulations utilise a detailed knowledge of the telescope's wavelength dependent adaptive op- tics point spread function. We discuss the simulation pipeline and present an early example of the pipeline functionality for simulating observations of high redshift galaxies.
The ICE spectrograph for PEPSI at the LBT: preliminary optical design
NASA Astrophysics Data System (ADS)
Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.
2003-03-01
We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.
The CHARIS IFS for high contrast imaging at Subaru
NASA Technical Reports Server (NTRS)
Groff, Tyler D.; Kasdin, N. Jeremy; Limbach, Mary Anne; Galvin, Michael; Carr, Michael A.; Knapp, Gillian; Brandt, Timothy; Loomis, Craig; Jarosik, Norman; Mede, Kyle;
2015-01-01
The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) being built for the Subaru telescope. CHARIS will take spectra of brown dwarfs and hot Jovian planets in the coronagraphic image provided by the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) and AO188 adaptive optics systems. The system is designed to detect objects five orders of magnitude dimmer than their parent star down to an 80 milliarcsecond inner working angle. For characterization, CHARIS has a high-resolution prism providing an average spectral resolution of R82, R69, and R82 in J, H, and K bands respectively. The so-called discovery mode uses a second low-resolution prism with an average spectral resolution of R19 spanning 1.15-2.37 microns (J+H+K bands). This is unique compared to other high contrast IFS designs. It augments low inner working angle performance by reducing the separation at which we can rely on spectral differential imaging. The principal challenge for a high-contrast IFS is quasi-static speckles, which cause undue levels of spectral crosstalk. CHARIS has addressed this through several key design aspects that should constrain crosstalk between adjacent spectral features to be below 1%. Sitting on the Nasmyth platform, the alignment between the lenslet array, prism, and detector will be highly stable, key for the performance of the data pipeline. Nearly every component has arrived and the project is entering its final build phase. Here we review the science case, the resulting design, status of final construction, and lessons learned that are directly applicable to future exoplanet instruments.
VizieR Online Data Catalog: The AllWISE motion survey (AllWISE2) (Kirkpatrick+, 2016)
NASA Astrophysics Data System (ADS)
Kirkpatrick, J. D.; Kellogg, K.; Schneider, A. C.; Fajardo-Acosta, S.; Cushing, M. C.; Greco, J.; Mace, G. N.; Gelino, C. R.; Wright, E. L.; Eisenhardt, P. R. M.; Stern, D.; Faherty, J. K.; Sheppard, S. S.; Lansbury, G. B.; Logsdon, S. E.; Martin, E. C.; McLean, I. S.; Schurr, S. D.; Cutri, R. M.; Conrow, T.
2016-07-01
Observations for the spectroscopic follow-up of interesting AllWISE sources are listed in Table 4. Optical follow-up was conducted with the Palomar/Double Spectrograph on the Hale 5m telescope on Palomar Mountain, California, as our primary optical spectrograph in the northern hemisphere. It was used during the UT nights of 2014 January 26, February 23/24, April 22, June 25/26, July 21, September 27, October 24, and November 15 as well as 2015 June 08, September 07, and December 10. The Boller & Chivens Spectrograph (BCSpec) on the 2.5m Irenee duPont telescope at Las Campanas Observatory, Chile, served as our primary optical spectrograph in the southern hemisphere and was used on the UT nights of 2014 April 30, May 01-04, and November 16-20. Spectra of 10 objects were obtained on the UT nights of 2014 July 03-04 and 2015 December 07-10 at the European Southern Observatory (ESO) 3.58m New Technology Telescope (NTT) at La Silla, Chile. Spectra of seven objects were obtained on the UT nights of 2014 June 26, 2015 August 13, and 2015 December 05 with the Low Resolution Imaging Spectrometer (LRIS) at the 10m W. M. Keck Observatory on Mauna Kea, Hawaii. SpeX on the NASA 3m Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, served as our primary near-infrared spectrograph in the northern hemisphere. The UT dates of observation were 2014 November 11 and 2015 January 27, May 08-09, June 27, July 03-05, and July 20. The Folded-port Infrared Echellette (FIRE) at the 6.5m Walter Baade Telescope at Las Campanas Observatory, Chile, served as our primary near-infrared spectrograph in the southern hemisphere. The UT dates of observation were 2014 August 07-09, 2015 February 08, and 2015 May 31. Several sources were also observed with the Near-Infrared Spectrometer (NIRSPEC) at the 10m W. M. Keck Observatory on Mauna Kea, Hawaii. The observation dates were UT 2014 April 12 and December 03, and 2015 July 03 and July 11. (9 data files).
Single Mode, Extreme Precision Doppler Spectrographs
NASA Astrophysics Data System (ADS)
Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath
2014-04-01
The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.
PRAXIS: a low background NIR spectrograph for fibre Bragg grating OH suppression
NASA Astrophysics Data System (ADS)
Horton, Anthony; Ellis, Simon; Lawrence, Jon; Bland-Hawthorn, Joss
2012-09-01
Fibre Bragg grating (FBG) OH suppression is capable of greatly reducing the bright sky background seen by near infrared spectrographs. By filtering out the airglow emission lines at high resolution before the light enters the spectrograph this technique prevents scattering from the emission lines into interline regions, thereby reducing the background at all wavelengths. In order to take full advantage of this sky background reduction the spectrograph must have very low instrumental backgrounds so that it remains sky noise limited. Both simulations and real world experience with the prototype GNOSIS system show that existing spectrographs, designed for higher sky background levels, will be unable to fully exploit the sky background reduction. We therefore propose PRAXIS, a spectrograph optimised specifically for this purpose. The PRAXIS concept is a fibre fed, fully cryogenic, fixed format spectrograph for the J and H-bands. Dark current will be minimised by using the best of the latest generation of NIR detectors while thermal backgrounds will be reduced by the use of a cryogenic fibre slit. Optimised spectral formats and the use of high throughput volume phase holographic gratings will further enhance sensitivity. Our proposal is for a modular system, incorporating exchangeable fore-optics units, integral field units and OH suppression units, to allow PRAXIS to operate as a visitor instrument on any large telescope and enable new developments in FBG OH suppression to be incorporated as they become available. As a high performance fibre fed spectrograph PRAXIS could also serve as a testbed for other astrophotonic technologies.
KiwiSpec: The Design and Performance of a High Resolution Echelle Spectrograph for Astronomy
NASA Astrophysics Data System (ADS)
Gibson, Steven Ross
This document describes the design, analysis, construction and testing of KiwiSpec, a fibre-fed, high resolution astronomical spectrograph of an asymmetric white pupil design. The instrument employs an R4, 31.6 groove mm-1 échelle grating for primary dispersion and a 725 lines mm-1 volume phase holographic (VPH) based grism for cross-dispersion. Two versions of the prototype were designed and constructed: an 'in-air' prototype, and a prototype featuring a vacuum chamber (to increase the stability of the instrument). The KiwiSpec optical design is introduced, as well as a description of the theory behind a cross-dispersed échelle spectrograph. The results of tolerancing the optical design are reported for alignment, optical fabrication, and optical surface quality groups of parameters. The optical windows of an iodine cell are also toleranced. The opto-mechanical mounts of both prototypes are described in detail, as is the design of the vacuum chamber system. Given the goal of 1 m/s radial velocity stability, analyses were undertaken to determine the allowable amount of movement of the vacuum windows, and to determine the allowable changes in temperature and pressure within and outside of the vacuum chamber. The spectral efficiency of the instrument was estimated through a predictive model; this was calculated for the as-built instrument and also for an instrument with ideal, high-efficiency coatings. Measurements of the spectral efficiency of various components of the instrument are reported, as well as a description of the measurement system developed to test the efficiency of VPH gratings. On-sky efficiency measurements from use of KiwiSpec on the 1-m McLellan telescope at Mt John University Observatory are reported. Two possible exposure meter locations are explored via an efficiency model, and also through the measurement of the zero-order reflectivity of the échelle grating. Various stability aspects of the design are investigated. These include the stability of the optical mounts with temperature changes, and also the effect of the expansion and contraction of the supporting optical tables. As well, the stability of the in-air prototype was determined through measurement of the movement of thorium-argon emission lines within spectra as the temperature, atmospheric pressure and relative humidity (naturally) varied. Current and planned testing for determining the stability of the vacuum chamber prototype is discussed.
SEEDS Moving Groups and CHARIS Status Updates
NASA Technical Reports Server (NTRS)
McElwain, Michael
2012-01-01
We present the status update for the SEEDS Moving Groups category. To date, we have observed 59 targets and currently have more than 20 candidates. We also present the expected scientific capabilities of CHARIS, the Coronagraphic High Angular Resolution Imaging Spectrograph, which is being built for the Subaru 8.2 m telescope of the National Astronomical Observatory of Japan. CHARIS will be implemented behind the new extreme adaptive optics system at Subaru, SCExAO, and the existing 188-actuator system AO188. CHARIS will offer three observing modes over nearinfrared wavelengths from 0.9 to 2.4 microns (the y-, J-, H-, and K-bands), including a low-spectral-resolution mode covering this entire wavelength range and a high-resolution mode within a single band. With these capabilities, CHARIS will offer exceptional sensitivity for discovering giant exoplanets, and will enable detailed characterization of their atmospheres, CHARIS, the only planned high-contrast integral field spectrograph on an 8m-class telescope in the Northern Hemisphere, will complement the similar instruments such as Project 1640 at Palomar, and GPI and SPHERE in Chile.
Investigation of breadboard temperature profiling system for SSME fuel preburner diagnostics
NASA Technical Reports Server (NTRS)
Shirley, J. A.
1986-01-01
The feasibility of measuring temperatures in the space shuttle main engine (SSME) fuel preburner using spontaneous Raman scattering from molecular hydrogen was studied. Laser radiation is transmitted to the preburner through a multimode optical fiber. Backscattered Raman-shifted light is collected and focused into a second fiber which connects to a remote-located spectrograph and a mutlichannel optical detector. Optics collimate and focus laser light from the transmitter fiber defining the probe volume. The high pressure, high temperature preburner environment was simulated by a heated pressure cell. Temperatures determined by the distribution of Q-branch co-vibrational transitions demonstrate precision and accuracy of 3%. It is indicated heat preburner temperatures can be determined with 5% accuracy with spatial resolution less than 1 cm and temporal resolution of 10 millisec at the nominal preburner operation conditions.
A fast new cadioptric design for fiber-fed spectrographs
NASA Astrophysics Data System (ADS)
Saunders, Will
2012-09-01
The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per arm, making the design affordable.
Spectroscopy of the novae M31N_2008-08a and M31N_2008-08b
NASA Astrophysics Data System (ADS)
Di Mille, F.; Ciroi, S.; Orio, M.; Rafanelli, P.; Bianchini, A.; Nelson, T.; Andreuzzi, G.
2008-09-01
We obtained low resolution spectra of the two optical nova candidates in M31 (see ATEL #1654). The spectra were obtained with the 3.5-m Telescopio Nazionale Galileo of INAF equipped with the DOLORES spectrograph and camera (spectral range 330-790 nm, resolution 1.2 nm) on Aug 17.13 for 2008-08a and on Aug 17.17 for 2008-08b (8 days after the discovery of both novae, which were below the detection limits 2 days earlier).
VizieR Online Data Catalog: X-ray AGNs with Subaru/FMOS NIR observations (Suh+, 2015)
NASA Astrophysics Data System (ADS)
Suh, H.; Hasinger, G.; Steinhardt, C.; Silverman, J. D.; Schramm, M.
2016-03-01
We performed NIR spectroscopic observations for the AGN sources with the FMOS high-resolution spectrographs on the Subaru telescope; in J-short (0.92-1.12um), J-long (1.11-1.35um), H-short (1.40-1.60um), and H-long (1.60-1.80um) coverage with a spectral resolution of R~2200. The data span the 2012 Mar 25-2013 Oct 24 period. In addition to NIR spectra, we use existing optical spectroscopy (see section 3.2). (2 data files).
NASA Astrophysics Data System (ADS)
Cazorla, Constantin; Morel, Thierry; Nazé, Yaël; Rauw, Gregor; Semaan, Thierry; Daflon, Simone; Oey, M. S.
2017-07-01
Aims: Recent observations have challenged our understanding of rotational mixing in massive stars by revealing a population of fast-rotating objects with apparently normal surface nitrogen abundances. However, several questions have arisen because of a number of issues, which have rendered a reinvestigation necessary; these issues include the presence of numerous upper limits for the nitrogen abundance, unknown multiplicity status, and a mix of stars with different physical properties, such as their mass and evolutionary state, which are known to control the amount of rotational mixing. Methods: We have carefully selected a large sample of bright, fast-rotating early-type stars of our Galaxy (40 objects with spectral types between B0.5 and O4). Their high-quality, high-resolution optical spectra were then analysed with the stellar atmosphere modelling codes DETAIL/SURFACE or CMFGEN, depending on the temperature of the target. Several internal and external checks were performed to validate our methods; notably, we compared our results with literature data for some well-known objects, studied the effect of gravity darkening, or confronted the results provided by the two codes for stars amenable to both analyses. Furthermore, we studied the radial velocities of the stars to assess their binarity. Results: This first part of our study presents our methods and provides the derived stellar parameters, He, CNO abundances, and the multiplicity status of every star of the sample. It is the first time that He and CNO abundances of such a large number of Galactic massive fast rotators are determined in a homogeneous way. Based on observations obtained with the Heidelberg Extended Range Optical Spectrograph (HEROS) at the Telescopio Internacional de Guanajuato (TIGRE) with the SOPHIE échelle spectrograph at the Haute-Provence Observatory (OHP; Institut Pytheas; CNRS, France), and with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph at the Magellan II Clay telescope. Based also on archival data from the Galactic O-Star Spectroscopic Survey (GOSSS), the Anglo-Australian Telescope (AAT) equipped with the University College London Echelle Spectrograph (UCLES), the ESO/La Silla Observatory with the Fiber-fed Extended Range Optical Spectrograph (FEROS; programmes 70.D-0110, 075.D-0061, 076.C-0431, 081.D-2008, 083.D-0589, 086.D-0997, 087.D-0946, 089.D-0189, 089.D-0975, 179.C-0197, and the High Accuracy Radial velocity Planet Searcher (HARPS; programme 60.A-9036), the Pic du Midi Observatory equipped with the NARVAL spectropolarimeter, the San Pedro Mártir (SPM) observatory with the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO), the OHP with the AURELIE and ELODIE échelle spectrographs, the Nordic Optical Telescope (NOT) with the FIbre-fed Echelle Spectrograph (FIES), the Canada-France-Hawaii Telescope (CFHT), with the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectrograph, the Leonhard Euler Telescope with the CORALIE spectrograph.Table F.2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A56
Using confidence intervals to evaluate the focus alignment of spectrograph detector arrays.
Sawyer, Travis W; Hawkins, Kyle S; Damento, Michael
2017-06-20
High-resolution spectrographs extract detailed spectral information of a sample and are frequently used in astronomy, laser-induced breakdown spectroscopy, and Raman spectroscopy. These instruments employ dispersive elements such as prisms and diffraction gratings to spatially separate different wavelengths of light, which are then detected by a charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) detector array. Precise alignment along the optical axis (focus position) of the detector array is critical to maximize the instrumental resolution; however, traditional approaches of scanning the detector through focus lack a quantitative measure of precision, limiting the repeatability and relying on one's experience. Here we propose a method to evaluate the focus alignment of spectrograph detector arrays by establishing confidence intervals to measure the alignment precision. We show that propagation of uncertainty can be used to estimate the variance in an alignment, thus providing a quantitative and repeatable means to evaluate the precision and confidence of an alignment. We test the approach by aligning the detector array of a prototype miniature echelle spectrograph. The results indicate that the procedure effectively quantifies alignment precision, enabling one to objectively determine when an alignment has reached an acceptable level. This quantitative approach also provides a foundation for further optimization, including automated alignment. Furthermore, the procedure introduced here can be extended to other alignment techniques that rely on numerically fitting data to a model, providing a general framework for evaluating the precision of alignment methods.
PRAXIS: low thermal emission high efficiency OH suppressed fibre spectrograph
NASA Astrophysics Data System (ADS)
Content, Robert; Bland-Hawthorn, Joss; Ellis, Simon; Gers, Luke; Haynes, Roger; Horton, Anthony; Lawrence, Jon; Leon-Saval, Sergio; Lindley, Emma; Min, Seong-Sik; Shortridge, Keith; Staszak, Nick; Trinh, Christopher; Xavier, Pascal; Zhelem, Ross
2014-07-01
PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH suppression to be deployed on a telescope. The Bragg gratings reflect the NIR OH lines while being transparent to the light between the lines. This gives in principle a much higher signal-noise ratio at low resolution spectroscopy but also at higher resolutions by removing the scattered wings of the OH lines. The specifications call for high throughput and very low thermal and detector noise so that PRAXIS will remain sky noise limited even with the low sky background levels remaining after OH suppression. The optical and mechanical designs are presented. The optical train starts with fore-optics that image the telescope focal plane on an IFU which has 19 hexagonal microlenses each feeding a multi-mode fibre. Seven of these fibres are attached to a fibre Bragg grating OH suppression system while the others are reference/acquisition fibres. The light from each of the seven OH suppression fibres is then split by a photonic lantern into many single mode fibres where the Bragg gratings are imprinted. Another lantern recombines the light from the single mode fibres into a multi-mode fibre. A trade-off was made in the design of the IFU between field of view and transmission to maximize the signal-noise ratio for observations of faint, compact objects under typical seeing. GNOSIS used the pre-existing IRIS2 spectrograph while PRAXIS will use a new spectrograph specifically designed for the fibre Bragg grating OH suppression and optimised for 1.47 μm to 1.7 μm (it can also be used in the 1.09 μm to 1.26 μm band by changing the grating and refocussing). This results in a significantly higher transmission due to high efficiency coatings, a VPH grating at low incident angle and optimized for our small bandwidth, and low absorption glasses. The detector noise will also be lower thanks to the use of a current generation HAWAII-2RG detector. Throughout the PRAXIS design, from the fore-optics to the detector enclosure, special care was taken at every step along the optical path to reduce thermal emission or stop it leaking into the system. The spectrograph design itself was particularly challenging in this aspect because practical constraints required that the detector and the spectrograph enclosures be physically separate with air at ambient temperature between them. At present, the instrument uses the GNOSIS fibre Bragg grating OH suppression unit. We intend to soon use a new OH suppression unit based on multicore fibre Bragg gratings which will allow an increased field of view per fibre. Theoretical calculations show that the gain in interline sky background signal-noise ratio over GNOSIS may very well be as high as 9 with the GNOSIS OH suppression unit and 17 with the multicore fibre OH suppression unit.
PEPSI: the Potsdam Echelle Polarimetric and Spectroscopic Instrument for the LBT
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Woche, M.; Ilyin, I.; Popow, E.; Bauer, S.-M.; Dionies, F.; Fechner, T.; Weber, M.; Hofmann, A.; Storm, J.; Materne, R.; Bittner, W.; Bartus, J.; Granzer, T.; Denker, C.; Carroll, T.; Kopf, M.; DiVarano, I.; Beckert, E.; Lesser, M.
2008-07-01
We present the status of PEPSI, the bench-mounted fibre-fed and stabilized "Potsdam Echelle Polarimetric and Spectroscopic Instrument" for the 2×8.4m Large Binocular Telescope in southern Arizona. PEPSI is under construction at AIP and is scheduled for first light in 2009/10. Its ultra-high-resolution mode will deliver an unprecedented spectral resolution of approximately R=310,000 at high efficiency throughout the entire optical/red wavelength range 390-1050nm without the need for adaptive optics. Besides its polarimetric Stokes IQUV mode, the capability to cover the entire optical range in three exposures at resolutions of 40,000, 130,000 and 310,000 will surpass all existing facilities in terms of light-gathering-power times spectral-coverage product. A solar feed will make use of the spectrograph also during day time. As such, we hope that PEPSI will be the most powerful spectrometer of its kind for the years to come.
NASA Astrophysics Data System (ADS)
Passegger, Vera Maria; Reiners, Ansgar; Jeffers, Sandra V.; Wende, Sebastian; Schöfer, Patrick; Amado, Pedro J.; Caballero, Jose A.; Montes, David; Mundt, Reinhard; Ribas, Ignasi; Quirrenbach, Andreas
2016-07-01
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs) started a new planet survey on M-dwarfs in January this year. The new high-resolution spectrographs are operating in the visible and near-infrared at Calar Alto Observatory. They will perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300 M-dwarfs with the aim to detect low-mass planets within habitable zones. We characterised the candidate sample for CARMENES and provide fundamental parameters for these stars in order to constrain planetary properties and understand star-planet systems. Using state-of-the-art model atmospheres (PHOENIX-ACES) and χ2-minimization with a downhill-simplex method we determine effective temperature, surface gravity and metallicity [Fe/H] for high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken with FEROS, CAFE and HRS. We find good agreement between the models and our observed high-resolution spectra. We show the performance of the algorithm, as well as results, parameter and spectral type distributions for the CARMENES candidate sample, which is used to define the CARMENES target sample. We also present first preliminary results obtained from CARMENES spectra.
High sensitivity, wide coverage, and high-resolution NIR non-cryogenic spectrograph, WINERED
NASA Astrophysics Data System (ADS)
Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Otsubo, Shogo; Hamano, Satoshi; Sameshima, Hiroaki; Yoshikawa, Tomoshiro; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Kinoshita, Masaomi; Kitano, Ayaka; Asano, Akira; Takenaka, Keiichi; Watase, Ayaka; Mito, Hiroyuki; Yasui, Chikako; Minami, Atsushi; Izumu, Natsuko; Yamamoto, Ryo; Mizumoto, Misaki; Arasaki, Takayuki; Arai, Akira; Matsunaga, Noriyuki; Kawakita, Hideyo
2016-08-01
Near-infrared (NIR) high-resolution spectroscopy is a fundamental observational method in astronomy. It provides significant information on the kinematics, the magnetic fields, and the chemical abundances, of astronomical objects embedded in or behind the highly extinctive clouds or at the cosmological distances. Scientific requirements have accelerated the development of the technology required for NIR high resolution spectrographs using 10 m telescopes. WINERED is a near-infrared (NIR) high-resolution spectrograph that is currently mounted on the 1.3 m Araki telescope of the Koyama Astronomical Observatory in Kyoto-Sangyo University, Japan, and has been successfully operated for three years. It covers a wide wavelength range from 0.90 to 1.35 μm (the z-, Y-, and J-bands) with a spectral resolution of R = 28,000 (Wide-mode) and R = 80,000 (Hires-Y and Hires-J modes). WINERED has three distinctive features: (i) optics with no cold stop, (ii) wide spectral coverage, and (iii) high sensitivity. The first feature, originating from the Joyce proposal, was first achieved by WINERED, with a short cutoff infrared array, cold baffles, and custom-made thermal blocking filters, and resulted in reducing the time for development, alignment, and maintenance, as well as the total cost. The second feature is realized with the spectral coverage of Δλ/λ 1/6 in a single exposure. This wide coverage is realized by a combination of a decent optical design with a cross-dispersed echelle and a large format array (2k x 2k HAWAII- 2RG). The Third feature, high sensitivity, is achieved via the high-throughput optics (>60 %) and the very low noise of the system. The major factors affecting the high throughput are the echelle grating and the VPH cross-disperser with high diffraction efficiencies of 83 % and 86 %, respectively, and the high QE of HAWAII-2RG (83 % at 1.23 μm). The readout noise of the electronics and the ambient thermal background radiation at longer wavelengths could be major noise sources. The readout noise is 5.3 e- for NDR = 32, and the ambient thermal background is significantly reduced to 0.05 e- pix-1 sec-1 at 273 K. As a result, the limiting magnitudes of WINERED are estimated to be mJ = 13.8 mag for the 1.3 m telescope, mJ = 16.9 mag for the 3.6 m telescope, and mJ = 19.2 mag for 10 m telescope with adoptive optics, respectively. Finally, we introduce some scientific highlights provided by WINERED for both emission and absorption line objects in the fields of stars, the interstellar medium, and the solar system.
Space Telescope maintenance and refurbishment
NASA Technical Reports Server (NTRS)
Trucks, H. F.
1983-01-01
The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.
Optical Fiber Evaluation for the Hobby-Eberly Telescope
NASA Astrophysics Data System (ADS)
McGouldrick, K.; Maywalt, J.; Engel, L.; Rhoads, B.; Andersen, D. R.; Ramsey, L. W.
1998-12-01
Two major facility instruments on the Hobby-Eberly telescope (HET) are fiber coupled: the high and medium resolution spectrographs. Understanding the behavior of the fibers with the HET is central to understanding the performance of the telescope/spectrograph system. We will describe the Penn State fiber evaluation facility which enables us to measure focal ratio degradation (FRD) and total throughput. We will present some typical data obtained using the HET focal ratio at the fiber input. The HET design has a roving pupil that changes the illumination pattern somewhat during the typical 1 hour tracking time on a target. We will describe our plans to simulate the HET input test the degree to which the varying pupil is scrambled by the fiber.
VizieR Online Data Catalog: HeI 5876 & 10830Å EWs of solar-type stars (Andretta+, 2017)
NASA Astrophysics Data System (ADS)
Andretta, V.; Giampapa, M. S.; Covino, E.; Reiners, A.; Beeck, B.
2017-11-01
A total of 134 FEROS spectra (R=48000) of our targets (including telluric standards) were acquired on the night of UT 2011 December 6-7; spectral coverage from 3500 to 9200Å. The Fiber Extended-range Optical Spectrograph (FEROS) was mounted at the 2.2m Max-Planck Gesellschaft/European Southern Observatory (MPG/ESO) telescope at La Silla (Chile). The HeIλ10830 spectroscopic observations were carried out on the same night as the FEROS D3 observations, using the CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES), mounted at Unit Telescope 1 (Antu) of the VLT array at Cerro Paranal. The details of the observations is given in table 1. (3 data files).
NASA Astrophysics Data System (ADS)
Rosich Minguell, Josefina; Garzón Lopez, Francisco
2012-09-01
The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5μm bandpass) was selected in 2010 by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, Institut de Física d'Altes Energies, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autónoma de México. This paper shows an overview of the MIRADAS control software, which follows the standards defined by the telescope to permit the integration of this software on the GTC Control System (GCS). The MIRADAS Control System is based on a distributed architecture according to a component model where every subsystem is selfcontained. The GCS is a distributed environment written in object oriented C++, which runs components in different computers, using CORBA middleware for communications. Each MIRADAS observing mode, including engineering, monitoring and calibration modes, will have its own predefined sequence, which are executed in the GCS Sequencer. These sequences will have the ability of communicating with other telescope subsystems.
VizieR Online Data Catalog: Photospheric properties of T Tauri stars (Herczeg+, 2014)
NASA Astrophysics Data System (ADS)
Herczeg, G. J.; Hillenbrand, L. A.
2017-06-01
We obtained low resolution optical spectra with the Double Spectrograph (DBSP; Oke & Gunn 1982PASP...94..586O) on the Hale 200 inch telescope at Palomar Observatory on 2008 January 18-21 and 2008 December 28-30, and with the Low Resolution Imaging Spectrograph (LRIS; Oke et al. 1995PASP..107..375O; McCarthy et al. 1998SPIE.3355...81M) on Keck I on 2006 November 23 and 2008 May 28. The entire sample of the 2006 Keck observations was published in Herczeg & Hillenbrand (2008ApJ...681..594H). The latest spectral types of the 2008 May run were published in Herczeg et al. (2009ApJ...696.1589H). The Atmospheric Dispersion Corrector (Phillips et al. 2006SPIE.6269E..1OP) was used for the 2008 May run but was not yet available in 2006 November. Both DBSP and LRIS use a dichroic to split the light into red and blue beams at ~5600 Å. (1 data file).
Spectroscopic monitoring of bright A-F type candidate hybrid stars discovered by the Kepler mission
NASA Astrophysics Data System (ADS)
Lampens, Patricia; Frémat, Y.; Vermeylen, Lore; De Cat, Peter; Dumortier, Louis; Sódor, Ádám; Sharka, Marek; Bognár, Zsófia
2018-04-01
We report on a study of 250 optical spectra for 50 bright A/F-type candidate hybrid pulsating stars from the Kepler field. Most of the spectra have been collected with the high-resolution spectrograph HERMES attached to the Mercator telescope, La Palma. We determined the radial velocities (RVs), projected rotational velocities, fundamental atmospheric parameters and provide a classification based on the appearance of the cross-correlation profiles and the behaviour of the RVs with time in order to find true hybrid pulsators. Additionally, we also detected new spectroscopic binary and multiple systems in our sample and determined the fraction of spectroscopic systems. In order to be able to extend this investigation to the fainter A-F type candidate hybrid stars, various high-quality spectra collected with 3-4 m sized telescopes suitably equipped with a high-resolution spectrograph and furthermore located in the Northern hemisphere would be ideal. This programme could be done using the new instruments installed at the Devasthal Observatory.
VizieR Online Data Catalog: Sulamitis and Clarissa asteroids spectra (Morate+, 2018)
NASA Astrophysics Data System (ADS)
Morate, D.; de, Leon J.; de Pra, M.; Licandro, J.; Cabrera-Lavers, A.; Campins, H.; Pinilla-Alonso, N.
2017-11-01
A total of 97 low-resolution visible spectra were obtained for the asteroids in the Sulamitis and Clarissa families (64 and 33 objects, respectively), using the Optical System for Imaging and Low Resolution Integrated Spectroscopy (OSIRIS) camera spectrograph at the 10.4m Gran Telescopio Canarias (GTC), located at the El Roque de los Muchachos Observatory (ORM) in La Palma, Canary Islands, Spain. In addition, we obtained three spectra of (752) Sulamitis using the Intermediate Dispersion Spectrograph (IDS) at the 2.5m Isaac Newton Telescope, also located at the ORM in La Palma, as part of program C97 (2015), on July 22, 2015. All the spectra files included here are named ast_ASTEROIDNUMBER.txt, except for the spectra of (752) taken with the INT (named ast752INT.txt). The first column is the wavelength, expressed in microns, and the second column is the reflectance value (which is normalized at 1 at 0.55 microns). (3 data files).
VizieR Online Data Catalog: Palomar Transient Factory SNe IIn photometry (Ofek+, 2014)
NASA Astrophysics Data System (ADS)
Ofek, E. O.; Arcavi, I.; Tal, D.; Sullivan, M.; Gal-Yam, A.; Kulkarni, S. R.; Nugent, P. E.; Ben-Ami, S.; Bersier, D.; Cao, Y.; Cenko, S. B.; De Cia, A.; Filippenko, A. V.; Fransson, C.; Kasliwal, M. M.; Laher, R.; Surace, J.; Quimby, R.; Yaron, O.
2017-07-01
The Palomar Transient Factory (PTF; Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R) and its extension the intermediate PTF (iPTF) found over 2200 spectroscopically confirmed SNe. We selected 19 SNe IIn for which PTF/iPTF has good coverage of the light-curve rise and peak; they are listed in Table 1. Optical spectra were obtained with a variety of telescopes and instruments, including the Double Spectrograph (Oke & Gunn 1982PASP...94..586O) at the Palomar 5 m Hale telescope, the Kast spectrograph (Miller & Stone 1993, Lick Observatory Technical Report 66 (Santa Cruz, CA: Lick Observatory)) at the Lick 3 m Shane telescope, the Low Resolution Imaging Spectrometer (Oke et al. 1995PASP..107..375O) on the Keck-1 10 m telescope, and the Deep Extragalactic Imaging Multi-Object Spectrograph (Faber et al. 2003SPIE.4841.1657F) on the Keck-2 10 m telescope. (2 data files).
CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor
NASA Astrophysics Data System (ADS)
France, Kevin; Fleming, Brian; Hoadley, Keri
2016-10-01
NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) surveyor mission (d≈12 m, Δλ≈1000 Å, 2 μm spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. The science grasp of an LUVOIR surveyor is broad, ranging from the direct detection of potential biomarkers on rocky planets to the flow of matter into and out of galaxies and the history of star-formation across cosmic time. There are technical challenges for several aspects of the LUVOIR surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR surveyor mission concept, the combined high-resolution and imaging spectrograph for the LUVOIR surveyor (CHISL). CHISL includes a high-resolution (R≈120,000 1000 to 1700 Å) point-source spectroscopy channel and a medium-resolution (R≥14,000 from 1000 to 2000 Å in a single observation and R˜24,000 to 35,000 in multiple grating settings) imaging spectroscopy channel. CHISL addresses topics ranging from characterizing the composition and structure of planet-forming disks to the feedback of matter between galaxies and the intergalactic medium. We present the CHISL concept, a small sample of representative science cases, and the primary technological hurdles. Technical challenges include high-efficiency ultraviolet coatings and high-quantum efficiency, large-format, photon counting detectors. We are actively engaged in laboratory and flight characterization efforts for all of these enabling technologies as components on sounding rocket payloads under development at the University of Colorado. We describe two payloads that are designed to be pathfinder instruments for the high-resolution (CHESS) and imaging spectroscopy (SISTINE) arms of CHISL. We are carrying out this instrument design, characterization, and flight-testing today to support the new start of an LUVOIR surveyor mission in the next decade.
VizieR Online Data Catalog: Abundances of metal-poor star HD 94028 (Roederer+, 2016)
NASA Astrophysics Data System (ADS)
Roederer, I. U.; Karakas, A. I.; Pignatari, M.; Herwig, F.
2016-06-01
We use two NUV spectroscopic data sets of HD 94028 available in the Mikulski Archive for Space Telescopes. These observations were made using STIS on board the HST. One spectrum (data sets O5CN01-03, GO-8197, PI. Duncan) has very high spectral resolution (R~110000). This spectrum covers ~1885-2147Å with signal-to-noise ratios (S/N)35/1 per pixel near 2140Å. The other spectrum (data sets O56D06-07, GO-7402, PI. Peterson) has high spectral resolution (R~30000). This spectrum covers 2280-3117Å with S/N ranging from ~20 near 2300Å to ~40 near 3100Å. Roederer et al. (2014, J/AJ/147/136) derived abundances from an optical spectrum of HD 94028 taken using the Robert G. Tull Coude Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, Texas. We rederive abundances from this spectrum. We also use an optical spectrum taken with the Ultraviolet and Visual Echelle Spectrograph (UVES) on the Very Large Telescope (VLT) Kueyen at Cerro Paranal, Chile. We obtained this spectrum from the ESO Science Archive. This spectrum covers 3050-3860Å at R~37000 with S/N ranging from ~40 near 3200Å to ~130 near 3800Å. (3 data files).
Report of the facility definition team spacelab UV-Optical Telescope Facility
NASA Technical Reports Server (NTRS)
1975-01-01
Scientific requirements for the Spacelab Ultraviolet-Optical Telescope (SUOT) facility are presented. Specific programs involving high angular resolution imagery over wide fields, far ultraviolet spectroscopy, precisely calibrated spectrophotometry and spectropolarimetry over a wide wavelength range, and planetary studies, including high resolution synoptic imagery, are recommended. Specifications for the mounting configuration, instruments for the mounting configuration, instrument mounting system, optical parameters, and the pointing and stabilization system are presented. Concepts for the focal plane instruments are defined. The functional requirements of the direct imaging camera, far ultraviolet spectrograph, and the precisely calibrated spectrophotometer are detailed, and the planetary camera concept is outlined. Operational concepts described in detail are: the makeup and functions of shuttle payload crew, extravehicular activity requirements, telescope control and data management, payload operations control room, orbital constraints, and orbital interfaces (stabilization, maneuvering requirements and attitude control, contamination, utilities, and payload weight considerations).
NASA Technical Reports Server (NTRS)
Kerber, Florian; Lindler, Don; Bristow, Paul; Lembke, Dominik; Nave, Gillian; Reader, Joseph; Sansonetti, Craig J.; Heap, Sara R.; Rosa, Michael R.; Wood, H. John
2006-01-01
The Space Telescope European Coordinating Facility (ST-ECF) and National Institute of Standards and Technology (NIST) are collaborating to study hollow cathode calibration lamps as used onboard the Hubble Space Telescope (HST). As part of the STIS Calibration Enhancement (STIS-CE) Project we are trying to improve our understanding of the performance of hollow cathode lamps and the physical processes involved in their long term operation. The original flight lamps from the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) are the only lamps that have ever been returned to Earth after extended operation in space. We have taken spectra of all four lamps using NIST s 10.7-m normal-incidence spectrograph and Fourier transform spectrometer (FTS) optimized for use in the ultraviolet (UV). These spectra, together with spectra archived from six years of on-orbit operations and pre-launch spectra, provide a unique data set - covering a period of about 20 years - for studying aging effects in these lamps. Our findings represent important lessons for the choice and design of calibration sources and their operation in future UV and optical spectrographs in space.
Scientific Design of a High Contrast Integral Field Spectrograph for the Subaru Telescope
NASA Technical Reports Server (NTRS)
McElwain, Michael W.
2012-01-01
Ground based telescopes equipped with adaptive optics systems and specialized science cameras are now capable of directly detecting extrasolar planets. We present the scientific design for a high contrast integral field spectrograph for the Subaru Telescope. This lenslet based integral field spectrograph will be implemented into the new extreme adaptive optics system at Subaru, called SCExAO.
NASA Astrophysics Data System (ADS)
Sugai, Hajime; Tamura, Naoyuki; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio V.; Barkhouser, Robert H.; Bennett, Charles L.; Bickerton, Steve; Bozier, Alexandre; Braun, David F.; Bui, Khanh; Capocasale, Christopher M.; Carr, Michael A.; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C. Y.; Dawson, Olivia R.; Dekany, Richard G.; Ek, Eric M.; Ellis, Richard S.; English, Robin J.; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D.; Golebiowski, Mirek; Gunn, James E.; Hart, Murdock; Heckman, Timothy M.; Ho, Paul T. P.; Hope, Stephen; Hovland, Larry E.; Hsu, Shu-Fu; Hu, Yen-Sang; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E.; Kempenaar, Jason G.; King, Matthew E.; Le Fèvre, Olivier; Le Mignant, David; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H.; Madec, Fabrice; Mao, Peter; Marrara, Lucas S.; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J.; de Oliveira, Antonio Cesar; de Oliveira, Claudia M.; de Oliveira, Ligia S.; Orndorff, Joe D.; de Paiva Vilaça, Rodrigo; Partos, Eamon J.; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J.; Riddle, Reed; Santos, Leandro; dos Santos, Jesulino B.; Schwochert, Mark A.; Seiffert, Michael D.; Smee, Stephen A.; Smith, Roger M.; Steinkraus, Ronald E.; Sodré, Laerte; Spergel, David N.; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C.; Wyse, Rosie; Yan, Chi-Hung
2014-07-01
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 μm to 1.26 μm, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 μm to 0.89 μm also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts (SuMIRe) project, while Hyper Suprime-Cam (HSC) works on the imaging part. HSC's excellent image qualities have proven the high quality of the Wide Field Corrector (WFC), which PFS shares with HSC. The PFS collaboration has succeeded in the project Preliminary Design Review and is now in a phase of subsystem Critical Design Reviews and construction. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated microlens is glued to each fiber tip. The microlenses are molded glass, providing uniform lens dimensions and a variety of refractive-index selection. After successful production of mechanical and optical samples, mass production is now complete. Following careful investigations including Focal Ratio Degradation (FRD) measurements, a higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. After evaluating the statistics of positioning accuracies, collision avoidance software, and interferences (if any) within/between electronics boards, mass production will commence. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. All optical glass blanks are now being polished. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms. The active damping system against cooler vibration has been proven to work as predicted, and spectrographs have been designed to avoid small possible residual resonances.
NASA Astrophysics Data System (ADS)
Meyer, Elliot; Chen, Shaojie; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Simard, Luc; Marie, Jerome; Mieda, Etsuko; Gordon, Jacob
2014-07-01
We present the efficiency of near-infrared reflective ruled diffraction gratings designed for the InfraRed Imaging Spectrograph (IRIS). IRIS is a first light, integral field spectrograph and imager for the Thirty Meter Telescope (TMT) and narrow field infrared adaptive optics system (NFIRAOS). IRIS will operate across the near-infrared encompassing the ZYJHK bands (~0.84 - 2.4μm) with multiple spectral resolutions. We present our experimental setup and analysis of the efficiency of selected reflective diffraction gratings. These measurements are used as a comparison sample against selected candidate Volume Phase Holographic (VPH) gratings (see Chen et al., this conference). We investigate the efficiencies of five ruled gratings designed for IRIS from two separate vendors. Three of the gratings accept a bandpass of 1.19-1.37μm (J band) with ideal spectral resolutions of R=4000 and R=8000, groove densities of 249 and 516 lines/mm, and blaze angles of 9.86° and 20.54° respectively. The other two gratings accept a bandpass of 1.51-1.82μm (H Band) with an ideal spectral resolution of R=4000, groove density of 141 lines/mm, and blaze angle of 9.86°. The fraction of flux in each diffraction mode was compared to both a pure reflection mirror as well as the sum of the flux measured in all observable modes. We measure the efficiencies off blaze angle for all gratings and the efficiencies between the polarization transverse magnetic (TM) and transverse electric (TE) states. The peak reflective efficiencies are 98.90 +/- 3.36% (TM) and 84.99 +/- 2.74% (TM) for the H-band R=4000 and J-band R=4000 respectively. The peak reflective efficiency for the J-band R=8000 grating is 78.78 +/- 2.54% (TE). We find that these ruled gratings do not exhibit a wide dependency on incident angle within +/-3°. Our best-manufactured gratings were found to exhibit a dependency on the polarization state of the incident beam with a ~10-20% deviation, consistent with the theoretical efficiency predictions. This work will significantly contribute to the selection of the final grating type and vendor for the IRIS optical system, and are also pertinent to current and future near-infrared astronomical spectrographs.
Spectroscopic binary orbits from ultraviolet radial velocities. X - CW Cephei (HD 218066)
NASA Technical Reports Server (NTRS)
Stickland, D. J.; Koch, R. H.; Pfeiffer, R. J.
1992-01-01
Observations of CW Cephei were carried out repeatedly in the course of three days in December 1991, using the high-resolution, short-wavelength spectrograph of IUE, with an additional spectrum taken on February 6, 1992. The paper presents a log of these observations, which represent the only high-resolution observations of this star in the archive. The observations have an advantage of Popper's (1974) optical observations that they do not stretch out over a significant part of the apsidal cycle and can thus be treated with the value of omega taken as fixed.
VizieR Online Data Catalog: Equivalent widths and atomic data for GCs (Lamb+, 2015)
NASA Astrophysics Data System (ADS)
Lamb, M. P.; Venn, K. A.; Shetrone, M. D.; Sakari, C. M.; Pritzl, B. J.
2017-11-01
Optical spectra were gathered with the High Resolution Spectrograph (HRS; Tull 1998, Proc. SPIE, 3355, 387) on the HET. The HRS was configured at resolution R=30000 with 2x2 pixel binning using the 2 arcsec fibre. The HRS splits the incoming beam on to two CCD chips, from which the spectral regions 6000-7000 Å (red chip) and 4800-5900 Å (blue chip) were extracted for this work. Two standard stars were also observed, RGB stars with previously published spectral analyses in each of the GCs M3 and M13. (2 data files).
VizieR Online Data Catalog: BD+46 442 optical spectra (Bollen+, 2017)
NASA Astrophysics Data System (ADS)
Bollen, D.; van Winckel, H.; Kamath, D.
2017-08-01
Reduced high-resolution (R~85000) optical spectra of BD+46 442. These 104 spectra were obtained between July 2009 and January 2016 from the HERMES spectrograph, mounted on the 1.2m Flemish Mercator telescope at La Palma, Canary Islands, Spain. The spectra cover a wavelength range from 3770 to 9000 angstrom in logscale. The flux is given in arbitrary units. The spectra are collected as FITS files. The numbering of the spectra corresponds to the numbering in Table B.1 in the article (e.g. spec_15.fits corresponds to N=15). (2 data files).
NASA Astrophysics Data System (ADS)
McCoy, K.; Ramsey, L.
2011-09-01
The Penn State Astronomy and Astrophysics Department’s Pathfinder instrument is a fiber-fed, warm-bench echelle spectrograph designed to explore technical issues that must be resolved in order to measure precise radial velocities that will allow the detection of exoplanets in the near-infrared (NIR). In May 2010, Pathfinder demonstrated 10-20 m/s radial-velocity precision in the NIR at the 9 meter Hobby-Eberly Telescope. To attain even higher precision, we are investigating the NIR properties of the optical fibers that transmit light from the telescope to Pathfinder. We conducted a series of modal noise tests with visible and NIR laser diodes on a 200 micron diameter, fused-silica, multimode optical fiber as the preliminary step in analyzing the degrading effects of modal noise on radial-velocity precision. We report these test results and comment on our future tests to reduce the negative effects of modal noise and focal ratio degradation (FRD). The lessons learned from this research and the Pathfinder prototype will be used in Pathfinder II, which will aim to achieve better than 5 m/s in the NIR.
VizieR Online Data Catalog: Spectroscopy of candidate members in Taurus (Luhman+, 2017)
NASA Astrophysics Data System (ADS)
Luhman, K. L.; Mamajek, E. E.; Shukla, S. J.; Loutrel, N. P.
2017-06-01
We have obtained optical and near-infrared spectra of candidate members of Taurus. The spectra were collected with the Gemini Near-Infrared Imager (NIRI) using the K-band grism and 0.47'' slit (1.9-2.5μm, R=700), the Gemini Multi-Object Spectrograph (GMOS) using the 400line/mm grating and 0.75'' slit (0.56-1μm, R=1500), the Marcario Low-Resolution Spectrograph (LRS) on the Hobby-Eberly Telescope (HET) using the G3 grism and 2'' slit (0.63-0.91μm, R=1100), and SpeX at the NASA Infrared Telescope Facility (IRTF) using either the prism or SXD mode (R=150/750) and 0.8'' slit (0.8-2.5μm). (7 data files).
NASA Astrophysics Data System (ADS)
Kulkarni, S. R.; Adelberger, K. L.; Bloom, J. S.; Kundic, T.; Lubin, L.
1998-01-01
On December 28, 1997, Kundic and Lubin obtained spectra of the optical transient of GRB 971214 (IAUC #6788) with the Low Resolution Imaging Spectrograph (LRIS) mounted on the Keck II telescope. The seeing conditions were excellent. If the transient continued the power-law decay as indicated by the data from Halpern et al. (IAUC #6788) then by this epoch the light at this position should be dominated by the host (cf. Kulkarni et al. GCN #27; ATEL #5).
Optical spectroscopy of V404 Cyg during its latest outburst
NASA Astrophysics Data System (ADS)
Somogyi, Peter
2016-01-01
Low resolution spectra were obtained during the current outburst (announced in ATel #8453) of the microquasar V404 Cyg. Ten 600 sec exposures were obtained on 2015 Dec. 31 (JD 2457388.202 - 0.27) with a 250 mm Newtonian reflector using an LHires III spectrograph with 150 line/mm grating (R ~ 500) spanning 4500-7500A with the combined S/N ~ 10 (continuum at 6000A; calibration used the standard HD192640).
Spectroscopic Classification of SN 2018nt as a Reddened Type Ia Supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Szeged, U.; Wheeler, J. C.
2018-02-01
An optical spectrum (range 360-700 nm) of SN 2018nt (K2 C16-0043), was obtained with the "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Odewahn on 2018 Feb 05.20 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2 mag) about 3 weeks after maximum light.
Experimental Study of an Advanced Concept of Moderate-resolution Holographic Spectrographs
NASA Astrophysics Data System (ADS)
Muslimov, Eduard; Valyavin, Gennady; Fabrika, Sergei; Musaev, Faig; Galazutdinov, Gazinur; Pavlycheva, Nadezhda; Emelianov, Eduard
2018-07-01
We present the results of an experimental study of an advanced moderate-resolution spectrograph based on a cascade of narrow-band holographic gratings. The main goal of the project is to achieve a moderately high spectral resolution with R up to 5000 simultaneously in the 4300–6800 Å visible spectral range on a single standard CCD, together with an increased throughput. The experimental study consisted of (1) resolution and image quality tests performed using the solar spectrum, and (2) a total throughput test performed for a number of wavelengths using a calibrated lab monochromator. The measured spectral resolving power reaches values over R > 4000 while the experimental throughput is as high as 55%, which agrees well with the modeling results. Comparing the obtained characteristics of the spectrograph under consideration with the best existing spectrographs, we conclude that the used concept can be considered as a very competitive and cheap alternative to the existing spectrographs of the given class. We propose several astrophysical applications for the instrument and discuss the prospect of creating its full-scale version.
NASA Astrophysics Data System (ADS)
Martins, J. H. C.; Figueira, P.; Santos, N. C.; Melo, C.; Garcia Muñoz, A.; Faria, J.; Pepe, F.; Lovis, C.
2018-05-01
The characterization of planetary atmospheres is a daunting task, pushing current observing facilities to their limits. The next generation of high-resolution spectrographs mounted on large telescopes - such as ESPRESSO@VLT and HIRES@ELT - will allow us to probe and characterize exoplanetary atmospheres in greater detail than possible to this point. We present a method that permits the recovery of the colour-dependent reflectivity of exoplanets from high-resolution spectroscopic observations. Determining the wavelength-dependent albedo will provide insight into the chemical properties and weather of the exoplanet atmospheres. For this work, we simulated ESPRESSO@VLT and HIRES@ELT high-resolution observations of known planetary systems with several albedo configurations. We demonstrate how the cross correlation technique applied to theses simulated observations can be used to successfully recover the geometric albedo of exoplanets over a range of wavelengths. In all cases, we were able to recover the wavelength dependent albedo of the simulated exoplanets and distinguish between several atmospheric models representing different atmospheric configurations. In brief, we demonstrate that the cross correlation technique allows for the recovery of exoplanetary albedo functions from optical observations with the next generation of high-resolution spectrographs that will be mounted on large telescopes with reasonable exposure times. Its recovery will permit the characterization of exoplanetary atmospheres in terms of composition and dynamics and consolidates the cross correlation technique as a powerful tool for exoplanet characterization.
On the Chemical Abundances of Miras in Clusters: V1 in the Metal-rich Globular NGC 5927
NASA Astrophysics Data System (ADS)
D’Orazi, V.; Magurno, D.; Bono, G.; Matsunaga, N.; Braga, V. F.; Elgueta, S. S.; Fukue, K.; Hamano, S.; Inno, L.; Kobayashi, N.; Kondo, S.; Monelli, M.; Nonino, M.; Przybilla, N.; Sameshima, H.; Saviane, I.; Taniguchi, D.; Thevenin, F.; Urbaneja-Perez, M.; Watase, A.; Arai, A.; Bergemann, M.; Buonanno, R.; Dall’Ora, M.; Da Silva, R.; Fabrizio, M.; Ferraro, I.; Fiorentino, G.; Francois, P.; Gilmozzi, R.; Iannicola, G.; Ikeda, Y.; Jian, M.; Kawakita, H.; Kudritzki, R. P.; Lemasle, B.; Marengo, M.; Marinoni, S.; Martínez-Vázquez, C. E.; Minniti, D.; Neeley, J.; Otsubo, S.; Prieto, J. L.; Proxauf, B.; Romaniello, M.; Sanna, N.; Sneden, C.; Takenaka, K.; Tsujimoto, T.; Valenti, E.; Yasui, C.; Yoshikawa, T.; Zoccali, M.
2018-03-01
We present the first spectroscopic abundance determination of iron, α-elements (Si, Ca, and Ti), and sodium for the Mira variable V1 in the metal-rich globular cluster NGC 5927. We use high-resolution (R ∼ 28,000), high signal-to-noise ratio (∼200) spectra collected with WINERED, a near-infrared (NIR) spectrograph covering simultaneously the wavelength range 0.91–1.35 μm. The effective temperature and the surface gravity at the pulsation phase of the spectroscopic observation were estimated using both optical (V) and NIR time-series photometric data. We found that the Mira is metal-rich ([Fe/H] = ‑0.55 ± 0.15) and moderately α-enhanced ([α/Fe] = 0.15 ± 0.01, σ = 0.2). These values agree quite well with the mean cluster abundances based on high-resolution optical spectra of several cluster red giants available in the literature ([Fe/H] = ‑ 0.47 ± 0.06, [α/Fe] = + 0.24 ± 0.05). We also found a Na abundance of +0.35 ± 0.20 that is higher than the mean cluster abundance based on optical spectra (+0.18 ± 0.13). However, the lack of similar spectra for cluster red giants and that of corrections for departures from local thermodynamical equilibrium prevents us from establishing whether the difference is intrinsic or connected with multiple populations. These findings indicate a strong similarity between optical and NIR metallicity scales in spite of the difference in the experimental equipment, data analysis, and in the adopted spectroscopic diagnostics. Based on spectra collected with the WINERED spectrograph available as a visitor instrument at the ESO New Technology Telescope (NTT), La Silla, Chile (ESO Proposal: 098.D-0878(A), PI: G. Bono).
NASA Astrophysics Data System (ADS)
Schmidt, Luke M.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Prochaska, Travis; DePoy, Darren L.; Marshall, Jennifer L.; Cook, Erika; Froning, Cynthia; Ji, Tae-Geun; Lee, Hye-In; Mendes de Oliveira, Claudia; Pak, Soojong; Papovich, Casey
2016-08-01
We present a preliminary conceptual optical design for GMACS, a wide field, multi-object, optical spectrograph currently being developed for the Giant Magellan Telescope (GMT). We include details of the optical design requirements derived from the instrument scientific and technical objectives and demonstrate how these requirements are met by the current design. Detector specifications, field acquisition/alignment optics, and optical considerations for the active flexure control system are also discussed.
Sodium Laser Guide Star Technique, Spectroscopy and Imaging with Adaptive Optics
NASA Astrophysics Data System (ADS)
Ge, Jian
A sodium laser guide star (LGS) adaptive optics (AO) system developed at Stewart Observatory is to be used at the 6.5m MMT. Annual measurements at Kitt Peak show that the mean mesospheric sodium column density varies from ~2×109cm-2 (summer) to ~5×109cm-2 (winter). The sodium column density also varies by a factor of two during a one hour period. The first simultaneous measurements of sodium LGS brightness, sodium column density and laser power were obtained. The absolute sodium return for a continuous wave circularly polarized beam is 1.2([/pm]0.3)× 106 photons s-1m-2W-1 for the sodium column density of 3.7×109cm-2. Theoretical studies demonstrate that the 6.5m MMT LGS AO can provide Strehl ratios better than 0.15 and about 50% flux concentration within 0.2'' aperture for 1-5.5μm under median seeing. This correction will be available for the full sky. Better Strehl and higher flux concentration can be achieved with natural guide stars, but limited sky coverage. The AO corrected field-of-view is about 60''. The Arizona IR Imager and Echelle Spectrograph (ARIES) was designed to match the 6.5m MMT AO. Detection limits of more than 2 magnitude fainter can be reached with the AO over without the AO. A pre-ARIES wide field near-IR camera was designed, built and tested. The camera provides 1'' images in the near-IR over an 8.5 × 8.5arcmin2 field. The 10-σ detection limit with one minute exposures is 17.9 mag. in the K band. A prototype very high resolution cross-dispersed optical echelle spectrograph was designed and built to match the Starfire Optical Range 1.5m AO images. Interstellar KI 7698A absorption lines have been detected in the spectra of αCyg and ζPer. The spectral resolution is 250.000. About 300A wavelengths were covered in a single exposure. Total detection efficiency of 1% has been achieved. For the first time, a near-single-mode fiber with 10μm core size was applied to transmit the Mt. Wilson 100inch AO corrected beams to a spectrograph. The coupling efficiency of the fiber reached up to 70%. Spectra of αOri were recorded. The spectral resolution is 200,000. The total wavelength coverage is about 650A per exposure.
Design of FHiRE: the Fiber High Resolution Echelle Spectrograph
NASA Astrophysics Data System (ADS)
Pierce, Michael J.; McLane, Jacob N.; Pilachowski, C. A.; Kobulnicky, Henry; Jang-Condell, Hannah
2018-01-01
The enormous success of the Kepler mission in the discovery of transiting exoplanets implies that the majority of stars have planetary systems. NASA's upcomming Transiting Exoplanet Survey Satellite (TESS) is designed to survey the brightest stars over the entire sky, systems that are accessible to spectroscopic follow-up with mid-sized telescopes. We have undertaken the development of a precision radial velocity spectrograph with the goal of providing ground-based suppoert for TESS. The instrument, known as FHiRE (Fiber High Resolution Echelle spectrograph), is being developed in collaboration with Indiana University and will deployed at the 2.3-meter telescope of the Wyoming InfraRed Observatory (WIRO). FHiRE features a traditional white pupil echelle design with R ~ 60,000 that is fed via two optical fibers from the telescope. Both the science fiber and a simultaneously sampled Thorium-Argon comparison fiber will make use of double mode scramblers. FHiRE itself will be housed within a vacuum enclosure in order to minimize any temperatue variations of the instrument and maximize its radial velocity precision. Together, these two features should enable FHiRE to reach a long-term velocity precision of < 1 m/s. We present the design of FHiRE and its expected performance. In a companion poster (Jang-Condell et al.) we will present the exoplanet science goals of the project.
[Design and analysis of a novel light visible spectrum imaging spectrograph optical system].
Shen, Man-de; Li, Fei; Zhou, Li-bing; Li, Cheng; Ren, Huan-huan; Jiang, Qing-xiu
2015-02-01
A novel visible spectrum imaging spectrograph optical system was proposed based on the negative dispersion, the arbitrary phase modulation characteristics of diffractive optical element and the aberration correction characteristics of freeform optical element. The double agglutination lens was substituted by a hybrid refractive/diffractive lens based on the negative dispersion of diffractive optical element. Two freeform optical elements were used in order to correct some aberration based on the aberration correction characteristics of freeform optical element. An example and frondose design process were presented. When the design parameters were uniform, compared with the traditional system, the novel visible spectrum imaging spectrograph optical system's weight was reduced by 22.9%, the total length was reduced by 26.6%, the maximal diameter was reduced by 30.6%, and the modulation transfer function (MTF) in 1.0 field-of-view was improved by 0.35 with field-of-view improved maximally. The maximal distortion was reduced by 1.6%, the maximal longitudinal aberration was reduced by 56.4%, and the lateral color aberration was reduced by 59. 3%. From these data, we know that the performance of the novel system was advanced quickly and it could be used to put forward a new idea for modern visible spectrum imaging spectrograph optical system design.
CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor
NASA Astrophysics Data System (ADS)
France, Kevin; Fleming, Brian; Hoadley, Keri
2016-07-01
NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) Surveyor mission (dprimary ≍ 12 m, Δλ ≍ 1000 Å - 2 μm spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. The science grasp of a LUVOIR Surveyor is broad, ranging from the direct detection of potential biomarkers on rocky planets to the flow of matter into and out of galaxies and the history of star-formation across cosmic time. There are technical challenges for several aspects of the LUVOIR Surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR Surveyor mission concept, the Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor (CHISL). CHISL includes a highresolution (R ≍ 120,000; 1000 - 1700Å) point-source spectroscopy channel and a medium resolution (R >= 14,000 from 1000 - 2000 Å in a single observation and R 24,000 - 35,000 in multiple grating settings) imaging spectroscopy channel. CHISL addresses topics ranging from characterizing the composition and structure of planet-forming disks to the feedback of matter between galaxies and the intergalactic medium. We present the CHISL concept, a small sample of representative science cases, and the primary technological hurdles. Technical challenges include high-efficiency ultraviolet coatings and high-quantum efficiency, large-format, photon counting detectors. We are actively engaged in laboratory and flight characterization efforts for all of these enabling technologies as components on sounding rocket payloads under development at the University of Colorado. We describe two payloads that are designed to be pathfinder instruments for the high-resolution (CHESS) and imaging spectroscopy (SISTINE) arms of CHISL. We are carrying out this instrument design, characterization, and flight-testing today to support the new start of a LUVOIR Surveyor mission in the next decade.
The Spartan-281 Far Ultraviolet Imaging Spectrograph
NASA Technical Reports Server (NTRS)
Carruthers, George R.; Heckathorn, Harry M.; Dufour, Reginald J.; Opal, Chet B.; Raymond, John C.
1988-01-01
The U.S. Naval Research Laboratory's Far Ultraviolet Imaging Spectrograph (FUVIS), currently under development for flight as a Spartan shuttle payload, is designed to perform spectroscopy of diffuse sources in the FUV with very high sensitivity and moderate spatial and spectral resolution. Diffuse nebulae, the general galactic background radiation, and artificially induced radiation associated with the Space Shuttle vehicle are sources of particular interest. The FUVIS instrument will cover the wavelength range of 970-2000 A with selectable resolutions of 5 and 30 A. It is a slit imaging spectrograph having 3 arcmin spatial resolution along its 2.7 deg long slit.
The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design
NASA Astrophysics Data System (ADS)
France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason
2017-08-01
The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2 arcminute field-of-view) that will employ a complement of narrow- and medium-band filters. The instrument definition, design, and development are being carried out by an instrument study team led by the University of Colorado, Goddard Space Flight Center, and the LUVOIR Science and Technology Definition Team. LUMOS has recently completed a preliminary design in Goddard's Instrument Design Laboratory and is being incorporated into the working LUVOIR mission concept. In this proceeding, we describe the instrument requirements for LUMOS, the instrument design, and technology development recommendations to support the hardware required for LUMOS. We present an overview of LUMOS' observing modes and estimated performance curves for effective area, spectral resolution, and imaging performance. Example "LUMOS 100-hour Highlights" observing programs are presented to demonstrate the potential power of LUVOIR's ultraviolet spectroscopic capabilities.
NASA Astrophysics Data System (ADS)
Steinhaus, David W.; Kline, John V.; Bieniewski, Thomas M.; Dow, Grove S.; Apel, Charles T.
1980-11-01
An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph.
NASA Astrophysics Data System (ADS)
Haley, Craig Stuart
2009-12-01
Key to understanding and predicting the effects of global environmental problems such as ozone depletion and global warming is a detailed understanding of the atmospheric processes, both dynamical and chemical. Essential to this understanding are accurate global data sets of atmospheric constituents with adequate temporal and spatial (vertical and horizontal) resolutions. For this purpose the Canadian satellite instrument OSIRIS (Optical Spectrograph and Infrared Imager System) was launched on the Odin satellite in 2001. OSIRIS is primarily designed to measure minor stratospheric constituents, including ozone (O3) and nitrogen dioxide (NO2), employing the novel limb-scattered sunlight technique, which can provide both good vertical resolution and near global coverage. This dissertation presents a method to retrieve stratospheric O 3 and NO2 from the OSIRIS limb-scatter observations. The retrieval method incorporates an a posteriori optimal estimator combined with an intermediate spectral analysis, specifically differential optical absorption spectroscopy (DOAS). A detailed description of the retrieval method is presented along with the results of a thorough error analysis and a geophysical validation exercise. It is shown that OSIRIS limb-scatter observations successfully produce accurate stratospheric O3 and NO2 number density profiles throughout the stratosphere, clearly demonstrating the strength of the limb-scatter technique. The OSIRIS observations provide an extremely useful data set that is of particular importance for studies of the chemistry of the middle atmosphere. The long OSIRIS record of stratospheric ozone and nitrogen dioxide may also prove useful for investigating variability and trends.
NASA Astrophysics Data System (ADS)
Chen, Shaojie; Sivanandam, Suresh; Moon, Dae-Sik
2016-08-01
We discuss the optical design of an infrared multi-object spectrograph (MOS) concept that is designed to take advantage of the multi-conjugate adaptive optics (MCAO) corrected field at the Gemini South telescope. This design employs a unique, cryogenic MEMS-based focal plane mask to select target objects for spectroscopy by utilizing the Micro-Shutter Array (MSA) technology originally developed for the Near Infrared Spectrometer (NIRSpec) of the James Webb Space Telescope (JWST). The optical design is based on all spherical refractive optics, which serves both imaging and spectroscopic modes across the wavelength range of 0.9-2.5 μm. The optical system consists of a reimaging system, MSA, collimator, volume phase holographic (VPH) grisms, and spectrograph camera optics. The VPH grisms, which are VPH gratings sandwiched between two prisms, provide high dispersing efficiencies, and a set of several VPH grisms provide the broad spectral coverage at high throughputs. The imaging mode is implemented by removing the MSA and the dispersing unit out of the beam. We optimize both the imaging and spectrographic modes simultaneously, while paying special attention to the performance of the pupil imaging at the cold stop. Our current design provides a 1' ♢ 1' and a 0.5' ♢ 1' field of views for imaging and spectroscopic modes, respectively, on a 2048 × 2048 pixel HAWAII-2RG detector array. The spectrograph's slit width and spectral resolving power are 0.18'' and 3,000, respectively, and spectra of up to 100 objects can be obtained simultaneously. We present the overall results of simulated performance using optical model we designed.
Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph
NASA Astrophysics Data System (ADS)
Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.
2018-01-01
The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.
Enhanced Exoplanet Biosignature from an Interferometer Addition to Low Resolution Spectrographs
NASA Astrophysics Data System (ADS)
Erskine, D. J.; Muirhead, P. S.; Vanderburg, A. M.; Szentgyorgyi, A.
2017-12-01
The absorption spectral signature of many atmospheric molecules consists of a group of 40 or so lines that are approximately periodic due to the physics of molecular vibration. This is fortuitous for detecting atmospheric features in an exoEarth, since it has a similar periodic nature as an interferometer's transmission, which is sinusoidal. The period (in wavenumbers) of the interferometer is selectable, being inversely proportional to the delay (in cm). We show that the addition of a small interferometer of 0.6 cm delay to an existing dispersive spectrograph can greatly enhance the detection of molecular features, by several orders of magnitude for initially low resolution spectrographs. We simulate the Gemini Planet Imager measuring a telluric spectrum having native resolution of 40 and 70 in the 1.65 micron and 2 micron bands. These low resolutions are insufficient to resolve the fine features of the molecular feature group. However, the addition of a 0.6 cm delay outside the spectrograph and in series with it increases the local amplitude of the signal to a level similar to a R=4400 (at 1.65 micron) or R=3900 (at 2 micron) classical spectrograph. Prepared by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
France, Kevin; Hoadley, Keri; Fleming, Brian T.; Kane, Robert; Nell, Nicholas; Beasley, Matthew; Green, James C.
2016-03-01
NASA’s suborbital program provides an opportunity to conduct unique science experiments above Earth’s atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (UV) (100-160nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, Suborbital Local Interstellar Cloud Experiment (SLICE), Colorado High-resolution Echelle Stellar Spectrograph (CHESS), and Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars (SISTINE) form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R>105) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASA’s top two technology priorities for enabling a future flagship observatory (e.g. the LUVOIR Surveyor concept) that offers factors of ˜50-100 gain in UV spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.
A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph
2006-10-23
spectral features, MSX SMC 029, in the Small Magellanic Cloud (SMC) usimg the low-resolution modules of the Infrared Spectrograph on the Spitzer Space ...029, in the Small Magellanic Cloud (SMC) using the low-resolution modules of the Infrared Spectrograph on the Spitzer Space Telescope. A cool dust... outer atmosphere expands and pulsates, pushing gas away from the star where it can cool and condense into dust grains. The resulting circumstellar dust
Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph
NASA Astrophysics Data System (ADS)
Fabricant, Daniel; Fata, Robert; Roll, John; Hertz, Edward; Caldwell, Nelson; Gauron, Thomas; Geary, John; McLeod, Brian; Szentgyorgyi, Andrew; Zajac, Joseph; Kurtz, Michael; Barberis, Jack; Bergner, Henry; Brown, Warren; Conroy, Maureen; Eng, Roger; Geller, Margaret; Goddard, Richard; Honsa, Michael; Mueller, Mark; Mink, Douglas; Ordway, Mark; Tokarz, Susan; Woods, Deborah; Wyatt, William; Epps, Harland; Dell'Antonio, Ian
2005-12-01
The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. In the configuration pioneered by the Autofib instrument at the Anglo-Australian Telescope, Hectospec's fiber probes are arranged in a radial ``fisherman on the pond'' geometry and held in position with small magnets. A pair of high-speed, six-axis robots move the 300 fiber buttons between observing configurations within ~300 s, and to an accuracy of ~25 μm. The optical fibers run for 26 m between the MMT's focal surface and the bench spectrograph, operating at R~1000-2000. Hectochelle, another high-dispersion bench spectrograph offering R~35,000, is also available. The system throughput, including all losses in the telescope optics, fibers, and spectrograph, peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting for aperture losses at the 1.5" diameter fiber entrance aperture, the system throughput peaks at ~17%, close to our prediction of 20%. Hectospec has proven to be a workhorse instrument at the MMT. Together, Hectospec and Hectochelle have been scheduled for 1/3 of the available nights since its commissioning. Hectospec has returned approximately 60,000 reduced spectra for 16 scientific programs during its first year of operation.
VizieR Online Data Catalog: Spectroscopic analysis of 348 red giants (Zielinski+, 2012)
NASA Astrophysics Data System (ADS)
Zielinski, P.; Niedzielski, A.; Wolszczan, A.; Adamow, M.; Nowak, G.
2012-10-01
The atmospheric parameters were derived using a strictly spectroscopic method based on the LTE analysis of equivalent widths of FeI and FeII lines. With existing photometric data and the Hipparcos parallaxes, we estimated stellar masses and ages via evolutionary tracks fitting. The stellar radii were calculated from either estimated masses and the spectroscopic logg or from the spectroscopic Teff and estimated luminosities. The absolute radial velocities were obtained by cross-correlating spectra with a numerical template. Our high-quality, high-resolution optical spectra have been collected since 2004 with the Hobby-Eberly Telescope (HET), located in the McDonald Observatory. The telescope was equipped with the High Resolution Spectrograph (HRS; R~60000 resolution). (2 data files).
VizieR Online Data Catalog: The ELM survey. VII. 15 new ELM white dwarf cand. (Brown+, 2016)
NASA Astrophysics Data System (ADS)
Brown, W. R.; Gianninas, A.; Kilic, M.; Kenyon, S. J.; Allende Prieto, C.
2016-05-01
We present observations of 15 new extremely low-mass white dwarf (ELM WD) candidates. Ten objects are selected by color for our targeted spectroscopic ELM Survey program as described in Brown et al. (2012ApJ...744..142B). Five objects come from follow-up spectroscopy of the completed Hypervelocity Star survey. We acquire spectra for the 15 ELM WD candidates using the Blue Channel spectrograph on the 6.5m MMT telescope. We configured the Blue Channel spectrograph to obtain 3650-4500Å spectral coverage with 1.0Å spectral resolution. We acquire additional spectra for 5 objects using the KOSMOS spectrograph on the Kitt Peak National Observatory 4m Mayall telescope on program numbers 2014B-0119 and 2015A-0082. We configured the KOSMOS spectrograph to obtain 3500-6200Å spectral coverage with 2.0Å spectral resolution. We also acquire spectra for objects with g<17mag using the FAST spectrograph on the Fred Lawrence Whipple Observatory 1.5m Tillinghast telescope. We configured the FAST spectrograph to obtain 3500-5500Å spectral coverage with 1.7Å spectral resolution. (3 data files).
Second generation spectrograph for the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.
1986-01-01
The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.
2012-01-01
The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.
NASA Astrophysics Data System (ADS)
Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.
2014-07-01
This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The fibers are continually actuated to reduce modal noise. The spectrographs are mounted on benches inside vacuum tanks located in the coudé laboratory of the 3.5m dome. Each vacuum tank is equipped with a temperature stabilization system capable of keeping the temperature constant to within +/-0.01°C over 24 hours. The visible-light spectrograph will be operated near room temperature, while the near-IR spectrograph will be cooled to ~ 140 K. The CARMENES instrument passed its final design review in February 2013. The MAIV phase is currently ongoing. First tests at the telescope are scheduled for early 2015. Completion of the full instrument is planned for the fall of 2015. At least 600 useable nights have been allocated at the Calar Alto 3.5m Telescope for the CARMENES survey in the time frame until 2018. A data base of M stars (dubbed CARMENCITA) has been compiled from which the CARMENES sample can be selected. CARMENCITA contains information on all relevant properties of the potential targets. Dedicated imaging, photometric, and spectroscopic observations are underway to provide crucial data on these stars that are not available in the literature.
New infrared spectrograph for the investigation of the mesopause region
NASA Astrophysics Data System (ADS)
Koltovskoi, I. I.; Ammosov, P. P.; Gavrilyeva, G. A.; Ammosova, A. M.; Sivseva, V. I.
2017-11-01
A new infrared spectrograph with high temporal resolution for observation of OH band (3-1) emission dynamics is described. For the automated work of the spectrograph, special software was created. Remote control over the device is also configured.
NASA Astrophysics Data System (ADS)
McKay, Adam; DiSanti, Michael A.; Cochran, Anita L.; Dello Russo, Neil; Bonev, Boncho P.; Vervack, Ronald J.; Gibb, Erika L.; Roth, Nathan X.; Kawakita, Hideyo
2017-10-01
Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC's) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.
NASA Astrophysics Data System (ADS)
McKay, Adam; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Bonev, Boncho; Vervack, Ronald; Gibb, Erika; Roth, Nathan; Kawakita, Hideyo
2018-01-01
Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC'S) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.
VizieR Online Data Catalog: Boo-127 and Boo-980 high-resolution spectra (Frebel+, 2016)
NASA Astrophysics Data System (ADS)
Frebel, A.; Norris, J. E.; Gilmore, G.; Wyse, R. F. G.
2016-09-01
We observed Boo-980 and Boo-127 stars with the MIKE spectrograph on the Magellan-Clay telescope in 2010 March and 2011 March. Details of the MIKE observations and photometry taken from Norris et al. (2008ApJ...689L.113N) are given in Table 1. MIKE spectra have nearly full optical wavelength coverage over the range ~3500-9000Å (R~22000 in the red and ~28000 in the blue wavelength regime). (2 data files).
Spectroscopic Classification of SN 2017ghm as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Wheeler, J. C.; Wang, X.; Li, W.; Li, Z.; Xiang, D.; Rui, L.; Lin, H.; Xu, Z.; Li, B.; Zhao, H.; Wang, L.; Tan, H.; Zhang, J.
2017-09-01
An optical spectrum (range 360-680 nm) of SN 2017ghm (=PTSS-17uyml), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), was obtained with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Rostopchin on 2017 Aug 31.17 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2.3 mag) around maximum light.
CARMENES: First Results from the CAHA 3.5m Telescope
NASA Astrophysics Data System (ADS)
Quirrenbach, Andreas; Consortium, CARMENES
2015-12-01
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument currently undergoing commissioning at the 3.5m telescope at the Calar Alto Observatory. It has been developed by a consortium of eleven Spanish and German institutions (see also Quirrenbach et al. 2010; 2012; 2014). CARMENES will conduct a 600-night exoplanet survey targeting ~300 M dwarfs. An important and unique feature of the CARMENES instrument is that it consists of two separate échelle spectrographs, which together cover the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000. The spectrographs are fed by fibers from the Cassegrain focus of the telescope.The main scientific objective of the CARMENES project is to carry out a survey of late-type main sequence stars with the goal of detecting low-mass planets in their habitable zones (HZs). In the focus of the project are very cool stars later than spectral type M4 and moderately active stars. We aim at being able to detect a 2M⊕ planet in the HZ of an M5 star. A long-term radial velocity precision of 1ms-1 per measurement will permit to attain such goals. For stars later than M4 (M < 0.25M⊙), such precision will yield detections of super-Earths of 5M⊕ and smaller inside the entire width of the HZ. The CARMENES survey will thus provide a comprehensive overview of planetary systems around nearby Northern M dwarfs. By reaching into the realm of Earth-like planets, it will provide a treasure trove for follow-up studies probing their habitability.Quirrenbach, A., Amado, P.J., Mandel, H., et al. (2010). CARMENES: Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs. In Ground-based and airborne instrumentation for astronomy III. Eds. McLean, I.S., Ramsay, S.K., & Takami, H., SPIE 773513Quirrenbach, A., Amado, P.J., Seifert, W., et al. (2012). CARMENES. I: Instrument and survey overview. In Ground-based and airborne instrumentation for astronomy IV. Eds. McLean, I.S., Ramsay, S.K., & Takami, H., SPIE 84460RQuirrenbach, A., Amado, P.J., Caballero, J.A., et al. (2014). CARMENES instrument overview. In Ground-based and airborne instrumentation for astronomy V. Eds. Ramsay, S.K., McLean, I.S., & Takami, H., SPIE 91471F
NASA Astrophysics Data System (ADS)
Tyas, Luke Martin Graham
2012-05-01
SALT HRS (Southern African Large Telescope High Resolution Échelle Spectrograph) is a high-resolution, high-efficiency spectrograph for the 11m SALT telescope in Sutherland, South Africa. The initial optical design work was performed at the University of Canterbury, New Zealand. Revisions to the concept, the mechanical design, manufacture, assembly and testing have been handled by the Centre for Advanced Instrumentation, at Durham University in the United Kingdom. SALT HRS is a fibre-fed échelle grating spectrograph with four operational modes: low-, medium- and high-resolution and high-stability modes, having spectral resolutions of R≈16000, 37000, 67000 and 67000 respectively over a wavelength range of 370-890nm. The instrument is of a dual channel, 'white pupil' design, in which the primary mirror acts to collimate light onto a single R4 échelle grating, and also to focus dispersed light to an intermediate focus. A dichroic beam-splitter separates the dispersed light into two separate spectral channels. Spherical pupil mirrors transfer the separated beams via a fold mirror to two wavelength-specific volume-phase holographic gratings (VPHGs) used as cross-dispersers. Cross-dispersed spectra are then imaged by two fully dioptric camera systems onto optimized CCD detectors. This thesis presents the results of the laboratory testing and specification of several critical sub-systems of SALT HRS, as well as the development of key software tools for the design verification and operation at the telescope. In Chapter 1 we first review the technical development of high-resolution spectroscopy and its specific implementation in SALT HRS. In Chapter 2 we develop a comprehensive throughput model of the entire system based on a combination of as-built performance and specific throughput measurements in the laboratory. This is used to make some specific predictions for the on-sky performance of SALT HRS and the magnitude limits for science targets. We also present a graphical exposure time calculator based on these measurements which can be used by an astronomer to plan their observations with SALT HRS. Chapter 3 contains a detailed treatise on the optical fibre system of SALT HRS. Considerations for the use of optical fibres in astronomy are provided, as are details of an optional double scrambler, and the various instrument fibre modes. Extensive measurements of focal ratio degradation (FRD) are also presented, with testing of input beam speed; wavelength; fibre bending; variable pupil mirror illumination; and vacuum tank pressure dependency. The systems for fibre management are reviewed, as is the fibre bundle assembly process. Testing of two further sub-systems is described in Chapter 4. Firstly the long-term stability of the mirror mounting mechanisms is determined. The advantages of cross-dispersion of échelle spectra using volume-phase holographic gratings are then discussed, and the results of diffraction efficiency measurements are given for both red and blue channel gratings. Modern CCD technologies are examined in Chapter 5, and the blue detector is experimentally characterized using photon transfer and quantum efficiency curves. It is also used for an investigation into cosmic ray events in CCDs. Results from shielding the detector using lead are described, as is an attempt to distinguish the source of the events based on their morphology. Finally, Chapter 6 deals with the handling of data produced by SALT HRS. Methods of wavelength calibration of the spectra are discussed, including the use of Thorium-Argon lamps and an iodine absorption cell. The implementation of a Python based quick-look data reduction pipeline is reviewed, with a description of the processes performed. A summary of the thesis is given in Chapter 7.
A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roederer, Ian U.; Preston, George W.; Thompson, Ian B.
2014-06-01
We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope atmore » McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.« less
NASA Astrophysics Data System (ADS)
Dorn, Reinhold J.; Follert, Roman; Bristow, Paul; Cumani, Claudio; Eschbaumer, Siegfried; Grunhut, Jason; Haimerl, Andreas; Hatzes, Artie; Heiter, Ulrike; Hinterschuster, Renate; Ives, Derek J.; Jung, Yves; Kerber, Florian; Klein, Barbara; Lavaila, Alexis; Lizon, Jean Louis; Löwinger, Tom; Molina-Conde, Ignacio; Nicholson, Belinda; Marquart, Thomas; Oliva, Ernesto; Origlia, Livia; Pasquini, Luca; Paufique, Jérôme; Piskunov, Nikolai; Reiners, Ansgar; Seemann, Ulf; Stegmeier, Jörg; Stempels, Eric; Tordo, Sebastien
2016-08-01
The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath
2015-06-10
We present the design and test results of a compact optical fiber double-scrambler for high-resolution Doppler radial velocity instruments. This device consists of a single optic: a high-index n ∼ 2 ball lens that exchanges the near and far fields between two fibers. When used in conjunction with octagonal fibers, this device yields very high scrambling gains (SGs) and greatly desensitizes the fiber output from any input illumination variations, thereby stabilizing the instrument profile of the spectrograph and improving the Doppler measurement precision. The system is also highly insensitive to input pupil variations, isolating the spectrograph from telescope illumination variationsmore » and seeing changes. By selecting the appropriate glass and lens diameter the highest efficiency is achieved when the fibers are practically in contact with the lens surface, greatly simplifying the alignment process when compared to classical double-scrambler systems. This prototype double-scrambler has demonstrated significant performance gains over previous systems, achieving SGs in excess of 10,000 with a throughput of ∼87% using uncoated Polymicro octagonal fibers. Adding a circular fiber to the fiber train further increases the SG to >20,000, limited by laboratory measurement error. While this fiber system is designed for the Habitable-zone Planet Finder spectrograph, it is more generally applicable to other instruments in the visible and near-infrared. Given the simplicity and low cost, this fiber scrambler could also easily be multiplexed for large multi-object instruments.« less
NASA Technical Reports Server (NTRS)
1996-01-01
Under a Small Business Innovation Research (SBIR) contract to Kennedy Space Center, EIC Laboratories invented a Raman Spectrograph with fiber optic sampling for space applications such as sensing hazardous fuel vapors and making on-board rapid analyses of chemicals and minerals. Raman spectroscopy is a laser-based measurement technique that provides through a unique vibrational spectrum a molecular 'fingerprint,' and can function in aqueous environments. EIC combined optical fiber technology with Raman methods to develop sensors that can be operated at a distance from the spectrographic analysis instruments and the laser excitation source. EIC refined and commercialized the technology to create the Fiber Optic Raman Spectrograph and the RamanProbe. Commercial applications range from process control to monitoring hazardous materials.
The LUVOIR Large Mission Concept
NASA Astrophysics Data System (ADS)
O'Meara, John; LUVOIR Science and Technology Definition Team
2018-01-01
LUVOIR is one of four large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. We are currently developing two architectures: Architecture A with a 15.1 meter segmented primary mirror, and Architecture B with a 9.2 meter segmented primary mirror. Our focus in this presentation is the Architecture A LUVOIR. LUVOIR will operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The initial instruments developed for LUVOIR Architecture A include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a high resolution UV/optical spectropolarimeter. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable, upgradable, and primarily driven by guest observer science programs. In this presentation, we will describe the observatory, its instruments, and survey the transformative science LUVOIR can accomplish.
Development of micro-mirror slicer integral field unit for space-borne solar spectrographs
NASA Astrophysics Data System (ADS)
Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi
2017-12-01
We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.
Solar physics at the Einstein Tower
NASA Astrophysics Data System (ADS)
Denker, C.; Heibel, C.; Rendtel, J.; Arlt, K.; Balthasar, Juergen H.; Diercke, A.; González Manrique, S. J.; Hofmann, A.; Kuckein, C.; Önel, H.; Senthamizh Pavai, V.; Staude, J.; Verman, M.
2016-11-01
The solar observatory Einstein Tower ({Einsteinturm}) at the Telegrafenberg in Potsdam is both a landmark of modern architecture and an important place for solar physics. Originally built for high-resolution spectroscopy and measuring the gravitational redshift, research shifted over the years to understanding the active Sun and its magnetic field. Nowadays, telescope and spectrographs are used for research and development, i.e., testing instruments and in particular polarization optics for advanced instrumentation deployed at major European and international astronomical and solar telescopes. In addition, the Einstein Tower is used for educating and training of the next generation astrophysicists as well as for education and public outreach activities directed at the general public. This article comments on the observatory's unique architecture and the challenges of maintaining and conserving the building. It describes in detail the characteristics of telescope, spectrographs, and imagers; it portrays some of the research and development activities.
NASA Astrophysics Data System (ADS)
Erskine, David J.; Edelstein, J.; Sirk, M.; Wishnow, E.; Ishikawa, Y.; McDonald, E.; Shourt, W. V.
2014-07-01
High resolution broad-band spectroscopy at near-infrared wavelengths has been performed using externally dis- persed interferometry (EDI) at the Hale telescope at Mt. Palomar. The EDI technique uses a field-widened Michelson interferometer in series with a dispersive spectrograph, and is able to recover a spectrum with a resolution 4 to 10 times higher than the existing grating spectrograph. This method increases the resolution well beyond the classical limits enforced by the slit width and the detector pixel Nyquist limit and, in principle, decreases the effect of pupil variation on the instrument line-shape function. The EDI technique permits arbi- trarily higher resolution measurements using the higher throughput, lower weight, size, and expense of a lower resolution spectrograph. Observations of many stars were performed with the TEDI interferometer mounted within the central hole of the 200 inch primary mirror. Light from the interferometer was then dispersed by the TripleSpec near-infrared echelle spectrograph. Continuous spectra between 950 and 2450 nm with a resolution as high as ~27,000 were recovered from data taken with TripleSpec at a native resolution of ˜2,700. Aspects of data analysis for interferometric spectral reconstruction are described. This technique has applications in im- proving measurements of high-resolution stellar template spectra, critical for precision Doppler velocimetry using conventional spectroscopic methods. A new interferometer to be applied for this purpose at visible wavelengths is under construction.
True resolution enhancement for optical spectroscopy
NASA Astrophysics Data System (ADS)
Cooper, Justin T.; Oleske, Jeffrey B.
2018-02-01
Resolving spectrally adjacent peaks is important for techniques, such as tracking small shifts in Raman or fluorescence spectra, quantifying pharmaceutical polymorph ratios, or molecular orientation studies. Thus, suitable spectral resolution is a vital consideration when designing most spectroscopic systems. Most parameters that influence spectral resolution are fixed for a given system (spectrometer length, grating groove density, excitation source, CCD pixel size, etc.). Inflexible systems are non-problematic if the spectrometer is dedicated for a single purpose; however, these specifications cannot be optimized for different applications with wider range resolution requirements. Data processing techniques, including peak fitting, partial least squares, or principal component analysis, are typically used to achieve sub-optical resolution information. These techniques can be plagued by spectral artifacts introduced by post-processing as well as the subjective implementation of statistical parameters. TruRes™, from Andor Technology, uses an innovative optical means to greatly improve and expand the range of spectral resolutions accessible on a single setup. True spectral resolution enhancement of >30% is achieved without mathematical spectral alteration, dataprocessing, or spectrometer component changes. Discreet characteristic spectral lines from Laser-Induced Breakdown Spectroscopy (LIBS) and atomic calibration sources are now fully resolved from spectrally-adjacent peaks under otherwise identical configuration. TruRes™ has added advantage of increasing the spectral resolution without sacrificing bandpass. Using TruRes™ the Kymera 328i resolution can approach that of a 500 mm focal spectrometer. Furthermore, the bandpass of a 500 mm spectrograph with would be 50% narrower than the Kymera 328i with all other spectrometer components constant. However, the Kymera 328i with TruRes™ is able to preserve a 50% wider bandpass.
Polishing techniques for MEGARA pupil elements optics
NASA Astrophysics Data System (ADS)
Izazaga, R.; Carrasco, E.; Aguirre, D.; Salas, A.; Gil de Paz, A.; Gallego, J.; Iglesias, J.; Arroyo, J. M.; Hernández, M.; López, N.; López, V.; Quechol, J. T.; Salazar, M. F.; Carballo, C.; Cruz, E.; Arriaga, J.; De la Luz, J. A.; Huepa, A.; Jaimes, G. L.; Reyes, J.
2016-07-01
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral-field and multi-object optical spectrograph for the 10.4m Gran Telescopio Canarias.. It will offer RFWHM 6,000, 12,000 and 18,700 for the low- , mid- and high-resolution, respectively in the wavelength range 3650-9700Å. .The dispersive elements are volume phase holographic (VPH) gratings, sandwiched between two flat Fused Silica windows of high optical precision in large apertures. The design, based in VPHs in combination with Ohara PBM2Y prisms allows to keep the collimator and camera angle fixed. Seventy three optical elements are being built in Mexico at INAOE and CIO. For the low resolution modes, the VPHs windows specifications in irregularity is 1 fringe in 210mm x 170mm and 0.5 fringe in 190mm x 160mm. for a window thickness of 25 mm. For the medium and high resolution modes the irregularity specification is 2 fringes in 220mm x 180mm and 1 fringe in 205mm x 160mm, for a window thickness of 20mm. In this work we present a description of the polishing techniques developed at INAOE optical workshop to fabricate the 36 Fused Silica windows and 24 PBM2Y prisms that allows us to achieve such demanding specifications. We include the processes of mounting, cutting, blocking, polishing and testing.
High Resolution Spectrograph for the Hobby-Eberly Telescope
NASA Astrophysics Data System (ADS)
Tull, R. G.; MacQueen, P. J.; Good, J.; Epps, H. W.; HET HRS Team
1998-12-01
A fiber fed high-resolution spectrograph (HRS) is under construction for the Hobby-Eberly Telescope (HET). The primary resolving power originally specified, from astrophysical considerations, was R = 60,000 with a fiber of diameter at least 1 arc-second, with full spectral coverage limited only by the combined band-pass of the HET, the optical fiber, and the image detector. This was achieved in the final design with a high blaze angle R-4 echelle mosaic, white pupil design, image slicing, and a large area CCD mosaic illuminated by an eight element refractive camera. Two back-to-back, user selectable first-order diffraction gratings are employed for cross dispersion, to separate echelle spectral orders; the entire spectral range (420 - 1,000 nm) can be covered in as few as two exposures. Critical issues addressed in the design are cross dispersion and order spacing, sky subtraction, echelle and CCD selection, fiber optic feed and scrambling, and image or pupil slicing. In the final design meeting the requirements we exploited the large-area 4096 square CCD, image slicing, and the optical performance of the white-pupil design to acquire a range of 30,000 < R < 120,000 with fibers of diameter 2 and 3 arc-seconds, without sacrificing full spectral coverage. Design details will be presented. Limiting magnitude is projected to be about V = 19 (for S/N = 10) at the nominal R = 60,000 resolving power. The poster display will outline performance characteristics expected in relation to projected astrophysical research capabilities outlined by Sneden et al., in this conference. HRS is supported by generous grants from NSF, NASA, the State of Texas, and private philanthropy, with matching funds granted by the University of Texas and by McDonald Observatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nudelfuden, A.; Solanki, R.; Moos, H.W.
1985-03-15
Soft x-ray (20--304--A) astigmatic line shapes were measured in order to evaluate the spatial imaging properties of a Rowland mounted concave grating in grazing incidence. The practicability of coarse 1-D spatial imaging in the soft x-ray region is demonstrated. Spatial resolution equivalent to approx.4 cm at a source distance of 2 m can be achieved with practical parameters (e.g., sensitivity and time resolution) for a fusion diagnostic spectrograph. The results are compared to computer-generated ray tracings and found to be in good agreement. The ray tracing program which models the grazing incidence optics is discussed.
PEPSI-feed: linking PEPSI to the Vatican Advanced Technology Telescope using a 450m long fibre
NASA Astrophysics Data System (ADS)
Sablowski, D. P.; Weber, M.; Woche, M.; Ilyin, I.; Järvinen, A.; Strassmeier, K. G.; Gabor, P.
2016-07-01
Limited observing time at large telescopes equipped with the most powerful spectrographs makes it almost impossible to gain long and well-sampled time-series observations. Ditto, high-time-resolution observations of bright targets with high signal-to-noise are rare. By pulling an optical fibre of 450m length from the Vatican Advanced Technology Telescope (VATT) to the Large Binocular Telescope (LBT) to connect the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) to the VATT, allows for ultra-high resolution time-series measurements of bright targets. This article presents the fibre-link in detail from the technical point-of-view, demonstrates its performance from first observations, and sketches current applications.
PSN J02455988-0734270 in NGC 1084 is a young type II-P SN
NASA Astrophysics Data System (ADS)
Childress, M.; Scalzo, R.; Yuan, F.; Schmidt, B.
2012-08-01
We report the spectroscopic classification of the optical transient PSN J02455988-0734270 in NGC 1084 (disc. 2012-08-11.039 by B. Monard) based on an optical spectrum taken with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3600-10000, 1A resolution). The transient spectrum was compared to supernova spectral templates using SNID (Blondin & Tonry, 2007, ApJ, 666, 1024) indicating it to be a supernova of type II-P at a very young age, perhaps only a few days after explosion.
Spectra of Th/Ar and U/Ne hollow cathode lamps for spectrograph calibration
NASA Astrophysics Data System (ADS)
Nave, Gillian; Shlosberg, Ariel; Kerber, Florian; Den Hartog, Elizabeth; Neureiter, Bianca
2018-01-01
Low-current Th/Ar hollow cathode lamps have long been used for calibration of astronomical spectrographs on ground-based telescopes. Thorium is an attractive element for calibration as it has a single isotope, has narrow spectral lines, and has a dense spectrum covering the whole of the visible region. However, the high density of the spectrum that makes it attractive for calibrating high-resolution spectrographs is a detriment for lower resolution spectrographs and this is not obvious by examination of existing linelists. In addition, recent changes in regulations regarding the handling of thorium have led to a degradation in the quality of Th/Ar calibration lamps, with contamination by molecular ThO lines that are strong enough to obscure the calibration lines of interest.We are pursuing two approaches to these problems. First, we have expanded and improved the NIST Standard Reference Database 161, "Spectrum of Th-Ar Hollow Cathode Lamps" to cover the region 272 nm to 5500 nm. Spectra of hollow cathode lamps at up to 3 different currents can now be displayed simultaneously. Interactive zooming and the ability to convolve any of the spectra with a Gaussian or uploaded instrument profile enable the user to see immediately what the spectrum would look like at the particular resolution of their spectrograph. Second, we have measured the spectrum of a recent, contaminated Th/Ar hollow cathode lamp using a high-resolution Echelle spectrograph (Madison Wisconsin) at a resolving power (R~ 250,000). This significantly exceeds the resolving power of most astronomical spectrographs and resolves many of the molecular lines of ThO. With these spectra we are measuring and calibrating the positions of these molecular lines in order to make them suitable for spectrograph calibration.In the near infrared region, U/Ne hollow cathode lamps give a higher density of calibration lines than Th/Ar lamps and will be implemented on the upgraded CRIRES+ spectrograph on ESO’s Very Large Telescope in Chile. A new atlas of the U/Ne spectrum as measured by CRIRES will be presented.
NASA Astrophysics Data System (ADS)
Shukla, Hemant; Bonissent, Alain
2017-04-01
We present the parameterized simulation of an integral-field unit (IFU) slicer spectrograph and its applications in spectroscopic studies, namely, for probing dark energy with type Ia supernovae. The simulation suite is called the fast-slicer IFU simulator (FISim). The data flow of FISim realistically models the optics of the IFU along with the propagation effects, including cosmological, zodiacal, instrumentation and detector effects. FISim simulates the spectrum extraction by computing the error matrix on the extracted spectrum. The applications for Type Ia supernova spectroscopy are used to establish the efficacy of the simulator in exploring the wider parametric space, in order to optimize the science and mission requirements. The input spectral models utilize the observables such as the optical depth and velocity of the Si II absorption feature in the supernova spectrum as the measured parameters for various studies. Using FISim, we introduce a mechanism for preserving the complete state of a system, called the partial p/partial f matrix, which allows for compression, reconstruction and spectrum extraction, we introduce a novel and efficient method for spectrum extraction, called super-optimal spectrum extraction, and we conduct various studies such as the optimal point spread function, optimal resolution, parameter estimation, etc. We demonstrate that for space-based telescopes, the optimal resolution lies in the region near R ˜ 117 for read noise of 1 e- and 7 e- using a 400 km s-1 error threshold on the Si II velocity.
NASA Astrophysics Data System (ADS)
Monroe, TalaWanda R.; Aloisi, Alessandra; Debes, John H.; Jedrzejewski, Robert I.; Lockwood, Sean A.; Peeples, Molly S.; Proffitt, Charles R.; Riley, Allyssa; Walborn, Nolan R.
2016-06-01
The variety of operating modes of the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) continues to allow STIS users to obtain unique, high quality observations and cutting-edge results 19 years after its installation on HST. STIS is currently the only instrument available to the astronomy community that allows high spectral and spatial resolution spectroscopy in the FUV and NUV, including echelle modes. STIS also supports solar-blind imaging in the FUV. In the optical, STIS provides long-slit, first-order spectra that take advantage of HST's superb spatial resolution, as well as several unique unfiltered coronagraphic modes, which continue to benefit the exoplanet and debris-disk communities. The STIS instrument team monitors the instrument’s health and performance over time to characterize the effects of radiation damage and continued use of the detectors and optical elements. Additionally, the STIS team continues to improve the quality of data products for the user community. We present updates on efforts to improve the echelle flux calibration of overlapping spectral orders due to changes in the grating blaze function since HST Servicing Mission 4, and efforts to push the contrast limit and smallest inner working angle attainable with the coronagraphic BAR5 occulter. We also provide updates on the performance of the STIS calibration lamps, including work to maintain the accuracy of the wavelength calibration for all modes.
4MOST fiber feed preliminary design: prototype testing and performance
NASA Astrophysics Data System (ADS)
Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.
2016-08-01
The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.
The coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald Observatory.
NASA Technical Reports Server (NTRS)
Tull, R. G.
1972-01-01
Discussion of certain design aspects of the coude spectrograph, and description of the coude scanner that uses some of the spectrograph optics. The configuration of the large echelle grating used is reviewed along with the systems of computer scanner control and data handling.
The Coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald observatory
NASA Technical Reports Server (NTRS)
Tull, R. G.
1972-01-01
The design of the Coude spectrograph of the 2.7 m McDonald telescope is discussed. A description is given of the Coude scanner which uses the spectrograph optics, the configuration of the large echelle and the computer scanner control and data systems.
System engineering at the MEGARA project
NASA Astrophysics Data System (ADS)
Pérez-Calpena, A.; García-Vargas, María. Luisa; Gil de Paz, A.; Gallego Maestro, J.; Carrasco Licea, E.; Sánchez Moreno, F.; Iglesias-Páramo, J.
2014-08-01
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi- Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The MEGARA focal plane subsystems are located at one of the GTC focal stations, while the MEGARA refractive VPH based spectrograph is located at one of the Nasmyth platforms. The fiber bundles conduct the light from the focal plane subsystems to the pseudo-slits at the entrance of the spectrograph. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain) and is developed under contract with GRANTECAN. The project is carried out by a multidisciplinary and geographically distributed team, which includes the in-kind contributions of the project partners and personnel from several private companies. The MEGARA system-engineering plan has been tailored to the project and is being applied to ensure the technical control of the project in order to finally meet the science high-level requirements and GTC constrains.
VizieR Online Data Catalog: HARPS-N radial velocities of KOI-70 (Buchhave+, 2016)
NASA Astrophysics Data System (ADS)
Buchhave, L. A.; Dressing, C. D.; Dumusque, X.; Rice, K.; Vanderburg, A.; Mortier, A.; Lopez-Morales, M.; Lopez, E.; Lundkvist, M. S.; Kjeldsen, H.; Affer, L.; Bonomo, A. S.; Charbonneau, D.; Collier, Cameron A.; Cosentino, R.; Figueira, P.; Fiorenzano, A. F. M.; Harutyunyan, A.; Haywood, R. D.; Johnson, J. A.; Latham, D. W.; Lovis, C.; Malavolta, L.; Mayor, M.; Micela, G.; Molinari, E.; Motalebi, F.; Nascimbeni, V.; Pepe, F.; Phillips, D. F.; Piotto, G.; Pollacco, D.; Queloz, D.; Sasselov, D.; Segransan, D.; Sozzetti, A.; Udry, S.; Watson, C.
2017-01-01
We obtained 125 observations of Kepler-20 (KOI-70, KIC 6850504, 2MASS J19104752+4220194) with the HARPS-N spectrograph on the 3.58m Telescopio Nazionale Galileo (TNG) located at Roque de Los Muchachos Observatory, La Palma, Spain. HARPS-N is an updated version of the original HARPS spectrograph on the 3.6m telescope at the European Southern Observatory on La Silla, Chile. HARPS-N is an ultra-stable fiber-fed high-resolution (R=115000) spectrograph with an optical wavelength coverage from 383 to 693nm. We obtained 61 and 64 observations of Kepler-20 in the 2014 and 2015 observing seasons, respectively (125 observations in total). We rejected 21 observations obtained under poor observing conditions where the internal error estimate exceeded 5m/s leaving a total of 104 observations. Kepler-20 has a mV=12.5 and required 30 minute exposure times to build up an adequate signal-to-noise ratio (S/N). The average S/N per pixel of the observations at 550nm is 30, yielding an average internal uncertainty estimate of 3.66m/s. The radial velocities and their 1σ errors are shows in Table1. (1 data file).
VizieR Online Data Catalog: Radial velocities for the HD 3167 system (Christiansen+, 2017)
NASA Astrophysics Data System (ADS)
Christiansen, J. L.; Vanderburg, A.; Burt, J.; Fulton, B. J.; Batygin, K.; Benneke, B.; Brewer, J. M.; Charbonneau, D.; Ciardi, D. R.; Cameron, A. C.; Coughlin, J. L.; Crossfield, I. J. M.; Dressing, C.; Greene, T. P.; Howard, A. W.; Latham, D. W.; Molinari, E.; Mortier, A.; Mullally, F.; Pepe, F.; Rice, K.; Sinukoff, E.; Sozzetti, A.; Thompson, S. E.; Udry, S.; Vogt, S. S.; Barman, T. S.; Batalha, N. E.; Bouchy, F.; Buchhave, L. A.; Butler, R. P.; Cosentino, R.; Dupuy, T. J.; Ehrenreich, D.; Fiorenzano, A.; Hansen, B. M. S.; Henning, T.; Hirsch, L.; Holden, B. P.; Isaacson, H. T.; Johnson, J. A.; Knutson, H. A.; Kosiarek, M.; Lopez-Morales, M.; Lovis, C.; Malavolta, L.; Mayor, M.; Micela, G.; Motalebi, F.; Petigura, E.; Phillips, D. F.; Piotto, G.; Rogers, L. A.; Sasselov, D.; Schlieder, J. E.; Segransan, D.; Watson, C. A.; Weiss, L. M.
2018-06-01
The final data set includes observations obtained with Keck/HIRES, Automated Planet Finder (APF)/Levy, and HARPS-N. Our observational setup for both Keck/HIRES and the APF/Levy was essentially identical to those described in Fulton et al. (2016, J/ApJ/830/46) and Burt et al. (2014ApJ...789..114B). We collected a total of 60 RV measurements using Keck/HIRES (Vogt et al. 1994SPIE.2198..362V), and 116 measurements using the Levy Spectrograph on the APF (Radovan et al. 2014SPIE.9145E..2BR; Vogt et al. 2014PASP..126..359V) at Lick Observatory between 2016 July 7 and 2016 December 2. We also observed HD 3167 with the HARPS-N spectrograph (Cosentino et al. 2012SPIE.8446E..1VC) located at the 3.58 m Telescopio Nazionale Galileo on the island of La Palma, Spain. HARPS-N is a stabilized spectrograph designed for precise RV measurements. We observed HD 3167 76 times between 2016 July 7 (independently beginning the same night as the HIRES/APF campaign) and 2016 December 7, obtaining high-resolution optical spectra with a spectral resolving power of R=115000. (1 data file).
CHARIS Construction Status, Design, and Future Science
NASA Astrophysics Data System (ADS)
Groff, Tyler Dean; Kasdin, N. Jeremy; Peters, Mary Anne; Galvin, Michael; Knapp, Gillian R.; Brandt, Timothy; Loomis, Craig; Carr, Michael; Mede, Kyle; Jarosik, Norman; McElwain, Michael W.; Guyon, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Hayashi, Masahiko
2015-01-01
Princeton University is funded by the National Astronomical Observatory of Japan to build an integral field spectrograph (IFS) dubbed the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). CHARIS is part of the ongoing exoplanet science effort at the Subaru Telescope, and will serve as the science imager for the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) and AO188 systems. The principal science goals are disk imaging and high contrast spectra of brown dwarfs and hot Jovian planets across J, H, and K bands. SCExAO is a coronagraphic and wavefront control system that will be capable of extreme adaptive optics and quasi-static speckle suppression. Speckle suppression is meant to reduce the residual speckle to a level that makes it possible to detect planets at very low inner working angles (~80 mas). Even so, CHARIS must mitigate spectral contamination from the residual speckle halo due to crosstalk between the closely packed spectra of the image. CHARIS mitigates crosstalk via an array of field stops behind the lenslet array and carefully toleranced relay optics. This reduces uncertainty in the measured spectrum of the exoplanets by increasing robustness of the spectrograph to nearby bright speckles. Mitigating crosstalk in hardware both improves science and reduces computational overhead. Combined with a detailed wavefront budget this improves the utility of CHARIS in the speckle control loop. Another defining feature of CHARIS is its disperser design. In addition to imaging in individual J, H, and K bands, CHARIS has a fourth mode that images across all three simultaneously. This required an improvement in the linearity of dispersion from 1.15 to 2.38 microns. To do so the CHARIS project has chosen a new high-index dispersing material and characterized its properties at cryogenic temperatures. We present the build status of the spectrograph, including status and viability of operating an H2RG detector directly using a SAM card via gigabit Ethernet over Linux. In addition to the stated and as-built specifications of the instrument hardware, we discuss the future of science impacts of CHARIS at the Subaru telescope.
Suppression of the near-infrared OH night-sky lines with fibre Bragg gratings - first results
NASA Astrophysics Data System (ADS)
Ellis, S. C.; Bland-Hawthorn, J.; Lawrence, J.; Horton, A. J.; Trinh, C.; Leon-Saval, S. G.; Shortridge, K.; Bryant, J.; Case, S.; Colless, M.; Couch, W.; Freeman, K.; Gers, L.; Glazebrook, K.; Haynes, R.; Lee, S.; Löhmannsröben, H.-G.; O'Byrne, J.; Miziarski, S.; Roth, M.; Schmidt, B.; Tinney, C. G.; Zheng, J.
2012-09-01
The background noise between 1 and 1.8 μm in ground-based instruments is dominated by atmospheric emission from hydroxyl molecules. We have built and commissioned a new instrument, the Gemini Near-infrared OH Suppression Integral Field Unit (IFU) System (GNOSIS), which suppresses 103 OH doublets between 1.47 and 1.7 μm by a factor of ≈1000 with a resolving power of ≈10 000. We present the first results from the commissioning of GNOSIS using the IRIS2 spectrograph at the Anglo-Australian Telescope. We present measurements of sensitivity, background and throughput. The combined throughput of the GNOSIS fore-optics, grating unit and relay optics is ≈36 per cent, but this could be improved to ≈46 per cent with a more optimal design. We measure strong suppression of the OH lines, confirming that OH suppression with fibre Bragg gratings will be a powerful technology for low-resolution spectroscopy. The integrated OH suppressed background between 1.5 and 1.7 μm is reduced by a factor of 9 compared to a control spectrum using the same system without suppression. The potential of low-resolution OH-suppressed spectroscopy is illustrated with example observations of Seyfert galaxies and a low-mass star. The GNOSIS background is dominated by detector dark current below 1.67 μm and by thermal emission above 1.67 μm. After subtracting these, we detect an unidentified residual interline component of ≈860 ± 210 photons s-1 m-2 arcsec-2 μm-1, comparable to previous measurements. This component is equally bright in the suppressed and control spectra. We have investigated the possible source of the interline component, but were unable to discriminate between a possible instrumental artefact and intrinsic atmospheric emission. Resolving the source of this emission is crucial for the design of fully optimized OH suppression spectrographs. The next-generation OH suppression spectrograph will be focused on resolving the source of the interline component, taking advantage of better optimization for a fibre Bragg grating feed incorporating refinements of design based on our findings from GNOSIS. We quantify the necessary improvements for an optimal OH suppressing fibre spectrograph design.
NASA Astrophysics Data System (ADS)
Langarica, Rosalia; Bernal, Abel; Rosado, Margarita; Cobos Duenas, Francisco J.; Garfias, Fernando; Gutierrez, Leonel; Le Coarer, Etienne; Tejada, Carlos; Tinoco, Silvio J.
1998-07-01
The kinematics of the interstellar medium may be studied by means of a scanning Fabry-Perot interferometer (SFPI). This allows the coverage of a wider field of view with higher spatial and spectral resolution than when a high-dispersion classical spectrograph is used. The system called PUMA consists of a focal reducer and a SFPI installed in the 2.1 m telescope of the San Pedro Martir National Astronomical Observatory (SPM), Mexico, in its f/7.5 configuration. It covers a field of view of 10 arcmin providing direct images as well as interferograms which are focused on a 1024 X 1024 Tektronix CCD, covering a wide spectral range. It is considered the integration of other optical elements for further developments. The optomechanical system and the developed software allow exact, remote positioning of all movable parts and control the FPI scanning and data acquisition. The parallelism of the interferometer plates is automatically achieved by a custom method. The PUMA provides spectral resolutions of 0.414 Angstrom and a free spectral range of 19.8 Angstrom. Results of high quality that compete with those obtained by similar systems in bigger telescopes, are presented.
Development of the fibre positioning unit of MOONS
NASA Astrophysics Data System (ADS)
Montgomery, David; Atkinson, David; Beard, Stephen; Cochrane, William; Drass, Holger; Guinouard, Isabelle; Lee, David; Taylor, William; Rees, Phil; Watson, Steve
2016-08-01
The Multi-Object Optical and Near-Infrared Spectrograph (MOONS) will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.64μm-1.8μm, with a multiplex capability of over 1000 fibres. This can be configured to produce spectra for chosen targets and have close proximity sky subtraction if required. The system will have both a medium resolution (R 4000-6000) mode and a high resolution (R 20000) mode. The fibre positioning units are used to position each fibre independently in order to pick off each sub field of 1.0" within a circular patrol area of 85" on sky (50mm physical diameter). The nominal physical separation between FPUs is 25mm allowing a 100% overlap in coverage between adjacent units. The design of the fibre positioning units allows parallel and rapid reconfiguration between observations. The kinematic geometry is such that pupil alignment is maintained over the patrol area. This paper presents the design of the Fibre Positioning Units at the preliminary design review and the results of verification testing of the advanced prototypes.
Prospects for Measuring Supermassive Black Hole Masses with Future Extremely Large Telescopes
NASA Astrophysics Data System (ADS)
Do, Tuan; Wright, S. A.; Barton, E. J.; Barth, A. J.; Simard, L.; Larkin, J. E.; Moore, A.
2013-01-01
The next generation of giant-segmented mirror telescopes (> 20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS. These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument, to determine the expected signal-to-noise of a range of possible targets spanning intermediate mass black holes of ~10^4 M⊙ to the most massive black holes known today of >10^10 M⊙. We find that future integral-field spectrographs will be able to observe Milky Way-mass black holes out the distance of the Virgo cluster, and will allow us to observe many more brightest-cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at different spectral resolutions and plate scales. We find that a spectral resolution of ~8000 will be necessary to measure the masses of IMBHs. We find by using the SDSS DR7 catalog of galaxies that over 4000 massive black holes will be observable at distances between 0.005 < z < 0.3 with the estimated sensitivity and angular resolution of TMT. These observations will provide the most accurate dynamical mass measurements of black holes to enable the study of their demography, address the origin of the M_bh-σ and M_bh - L relationships, and the origins and evolution of black holes through cosmic time.
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zajnulina, M.; Giannone, D.; Haynes, R.
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromaticmore » input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.« less
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers.
Zajnulina, M; Böhm, M; Blow, K; Rieznik, A A; Giannone, D; Haynes, R; Roth, M M
2015-10-01
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
NASA Astrophysics Data System (ADS)
Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.
2015-10-01
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
NASA Astrophysics Data System (ADS)
Chen, G.; Guenther, E. W.; Pallé, E.; Nortmann, L.; Nowak, G.; Kunz, S.; Parviainen, H.; Murgas, F.
2017-04-01
Aims: As a sub-Uranus-mass low-density planet, GJ 3470b has been found to show a flat featureless transmission spectrum in the infrared and a tentative Rayleigh scattering slope in the optical. We conducted an optical transmission spectroscopy project to assess the impacts of stellar activity and to determine whether or not GJ 3470b hosts a hydrogen-rich gas envelop. Methods: We observed three transits with the low-resolution Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at the 10.4 m Gran Telescopio Canarias, and one transit with the high-resolution Ultraviolet and Visual Echelle Spectrograph (UVES) at the 8.2 m Very Large Telescope. Results: From the high-resolution data, we find that the difference of the Ca II H+K lines in- and out-of-transit is only 0.67 ± 0.22%, and determine a magnetic filling factor of about 10-15%. From the low-resolution data, we present the first optical transmission spectrum in the 435-755 nm band, which shows a slope consistent with Rayleigh scattering. Conclusions: After exploring the potential impacts of stellar activity in our observations, we confirm that Rayleigh scattering in an extended hydrogen-helium atmosphere is currently the best explanation. Further high-precision observations that simultaneously cover optical and infrared bands are required to answer whether or not clouds and hazes exist at high-altitude. Based on observations made with the Gran Telescopio Canarias (GTC), at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma, as well as observations obtained at the European Southern Observatory at Paranal, Chile in program 096.C-0258(A).
Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER
NASA Astrophysics Data System (ADS)
Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Cheimets, Peter; Hertz, Edward; Bookbinder, Jay A.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo
2015-10-01
An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.
Exact optics - III. Schwarzschild's spectrograph camera revised
NASA Astrophysics Data System (ADS)
Willstrop, R. V.
2004-03-01
Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.
Velocity Dispersions Across Bulge Types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich
2010-06-08
We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (sigma*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.
The interaction of the outflow with the molecular disk in the Active Galactic Nucleus of NGC 6951
NASA Astrophysics Data System (ADS)
May, D.; Steiner, J. E.; Ricci, T. V.; Menezes, R. B.; Andrade, I. S.
2015-02-01
Context: we present a study of the central 200 pc of NGC 6951, in the optical and NIR, taken with the Gemini North Telescope integral field spectrographs, with resolution of ~ 0''.1 Methods: we used a set of image processing techniques, as the filtering of high spatial and spectral frequencies, Richardson-Lucy deconvolution and PCA Tomography (Steiner et al. 2009) to map the distribution and kinematics of the emission lines. Results: we found a thick molecular disk, with the ionization cone highly misaligned.
Coronagraph for astronomical imaging and spectrophotometry
NASA Technical Reports Server (NTRS)
Vilas, Faith; Smith, Bradford A.
1987-01-01
A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.
NASA Astrophysics Data System (ADS)
Barkhouser, Robert H.; Arns, James; Gunn, James E.
2014-08-01
The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance potential of this technology, a set of three prototype VPH gratings (one each of the blue, red, and NIR designs) was ordered and has been recently delivered. The goal for these prototype units, but not a requirement, was to meet the specifications for the final gratings in order to serve as spares and also as early demonstration and integration articles. In this paper we present the design and specifications for the PFS gratings, the plan and setups used for testing both the prototype and final gratings, and results from recent optical testing of the prototype grating set.
Spectral multiplexing using stacked volume-phase holographic gratings - I
NASA Astrophysics Data System (ADS)
Zanutta, A.; Landoni, M.; Riva, M.; Bianco, A.
2017-08-01
Many focal-reducer spectrographs, currently available at state-of-the-art telescopes facilities, would benefit from a simple refurbishing that could increase both the resolution and spectral range in order to cope with the progressively challenging scientific requirements, but, in order to make this update appealing, it should minimize the changes in the existing structure of the instrument. In the past, many authors proposed solutions based on stacking subsequently layers of dispersive elements and recording multiple spectra in one shot (multiplexing). Although this idea is promising, it brings several drawbacks and complexities that prevent the straightforward integration of such a device in a spectrograph. Fortunately, nowadays, the situation has changed dramatically, thanks to the successful experience achieved through photopolymeric holographic films, used to fabricate common volume-phase holographic gratings (VPHGs). Thanks to the various advantages made available by these materials in this context, we propose an innovative solution to design a stacked multiplexed VPHG that is able to secure efficiently different spectra in a single shot. This allows us to increase resolution and spectral range enabling astronomers to greatly economize their awarded time at the telescope. In this paper, we demonstrate the applicability of our solution, both in terms of expected performance and feasibility, supposing the upgrade of the Gran Telescopio CANARIAS (GTC) Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS).
NASA Astrophysics Data System (ADS)
Chonis, Taylor Steven
In the upcoming era of extremely large ground-based astronomical telescopes, the design of wide-field spectroscopic survey instrumentation has become increasingly complex due to the linear growth of instrument pupil size with telescope diameter for a constant spectral resolving power. The upcoming Visible Integral field Replicable Unit Spectrograph (VIRUS), a baseline array of 150 copies of a simple integral field spectrograph that will be fed by 3:36 x 104 optical fibers on the upgraded Hobby-Eberly Telescope (HET) at McDonald Observatory, represents one of the first uses of large-scale replication to break the relationship between instrument pupil size and telescope diameter. By dividing the telescope's field of view between a large number of smaller and more manageable instruments, the total information grasp of a traditional monolithic survey spectrograph can be achieved at a fraction of the cost and engineering complexity. To highlight the power of this method, VIRUS will execute the HET Dark Energy Experiment (HETDEX) and survey & 420 degrees2 of sky to an emission line flux limit of ˜ 10-17 erg s-1 cm -2 to detect ˜ 106 Lyman-alpha emitting galaxies (LAEs) as probes of large-scale structure at redshifts of 1:9 < z < 3:5. HETDEX will precisely measure the evolution of dark energy at that epoch, and will simultaneously amass an LAE sample that will be unprecedented for extragalactic astrophysics at the redshifts of interest. Large-scale replication has clear advantages to increasing the total information grasp of a spectrograph, but there are also challenges. In this dissertation, two of these challenges with respect to VIRUS are detailed. First, the VIRUS cryogenic system is discussed, specifically the design and tests of a novel thermal connector and internal camera croygenic components that link the 150 charge-coupled device detectors to the instrument's liquid nitrogen distribution system. Second, the design, testing, and mass production of the suite of volume phase holographic (VPH) diffraction gratings for VIRUS is presented, which highlights the challenge and success associated with producing of a very large number of highly customized optical elements whose performance is crucial to meeting the efficiency requirements of the spectrograph system. To accommodate VIRUS, the HET is undergoing a substantial wide-field upgrade to increase its field of view to 22' in diameter. The previous HET facility Low Resolution Spectrograph (LRS), which was directly fed by the telescope's previous spherical aberration corrector, must be removed from the prime focus instrument package as a result of the telescope upgrades and instead be fiber-coupled to the telescope focal plane. For a similar cost as modifying LRS to accommodate these changes, a new second generation instrument (LRS2) will be based on the VIRUS unit spectrograph. The design, operational concept, construction, and laboratory testing and characterization of LRS2 is the primary focus of this dissertation, which highlights the benefits of leveraging the large engineering investment, economies of scale, and laboratory and observatory infrastructure associated with the massively replicated VIRUS instrument. LRS2 will provide integral field spectroscopy for a seeing-limited field of 12" x 6". The multiplexed VIRUS framework facilitates broad wavelength coverage from 370 nm to 1.0 mum spread between two dual-channel spectrographs at a moderate spectral resolving power of R ≈ 2000. The design departures from VIRUS are presented, including the novel integral field unit, VPH grism dispersers, and various optical changes for accommodating the broadband wavelength coverage. Laboratory testing has verified that LRS2 largely meets its image quality specification and is nearly ready for delivery to the HET where its final verification and validation tasks will be executed. LRS2 will enable the continuation of most legacy LRS science programs and provide improved capability for future investigations. (Abstract shortened by ProQuest.).
Conversational high resolution mass spectrographic data reduction
NASA Technical Reports Server (NTRS)
Romiez, M. P.
1973-01-01
A FORTRAN 4 program is described which reduces the data obtained from a high resolution mass spectrograph. The program (1) calculates an accurate mass for each line on the photoplate, and (2) assigns elemental compositions to each accurate mass. The program is intended for use in a time-shared computing environment and makes use of the conversational aspects of time-sharing operating systems.
Fiber IFU unit for the second generation VLT spectrograph KMOS
NASA Astrophysics Data System (ADS)
Tomono, Daigo; Weisz, Harald; Hofmann, Reiner
2003-03-01
KMOS is a cryogenic multi-object near-infrared spectrograph for the VLT. It will be equipped with about 20 deployable integral field units (IFUs) which can be positioned anywhere in the 7.2 arcmin diameter field o the VLT Nasmyth focus by a cryogenic robot. We describe IFUs using micro lens arrays and optical fibers to arrange the two-dimensional fields from the IFUs on the spectrograph entrance slit. Each micro-lens array is mounted in a spider arm which also houses the pre-optics with a cold stop. The spider arms are positioned by a cryogenic robot which is built around the image plane. For the IFUs, two solutions are considered: monolithic mirco-lens arrays with fibers attached to the back where the entrance pupil is imaged, and tapered fibers with integrated lenses which are bundled together to form a lens array. The flexibility of optical fibers relaxes boundary conditions for integration of the instrument components. On the other hand, FRD and geometric characteristics of optical fibers leads to higher AΩ accepted by the spectrograph. Conceptual design of the instrument is presented as well as advantages and disadvantages of the fiber IFUs.
NASA Astrophysics Data System (ADS)
Pazder, John; Fournier, Paul; Pawluczyk, Rafal; van Kooten, Maaike
2014-07-01
We report results of the extensive development work done on the 270-m optical fiber link for the GRACES project and a preliminary investigations into a high numerical aperture fiber for astronomy. The Gemini Remote Access CFHT ESPaDOnS Spectrograph (GRACES) is an instrumentation experiment to link ESPaDOnS, a bench-mounted highresolution optical spectrograph at CFHT, to the Gemini-North telescope with an optical fiber link. A 270-m fiber link with less than 14% Focal Ratio Degradation (FRD) has been developed jointly by HIA and FiberTech Optica for the experiment. A preliminary study has been conducted by HIA into a high numerical aperture fiber (0.26 numerical aperture) with the intended application of wide field optical spectrographs fiber fed from the telescope prime focus. The Laboratory test results of FRD, transmission, and stability for the GRACES fiber link and preliminary FRD measurements of the high numerical aperture fiber tests are reported.
NASA Astrophysics Data System (ADS)
Alonso-Floriano, F. J.
2015-11-01
This thesis is focused on the study of low-mass objects that can be targets of exoplanet searches with near-infrared spectrographs in general and CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs; see Quirrenbach et al. 2014) in particular. The CARMENES consortium comprises 11 institutions from Germany and Spain that are building a high-resolution spectrograph (R=82,000) with two channels, visible (0.55 - 1.05 um) and infrared (0.95 - 1.7 um), for the 3.5 m Calar Alto telescope. It will observe a sample of 300 M dwarfs in 600 nights of guaranteed time during at least three years, starting in January 2016. The final sample will be chosen from the 2200 M dwarfs included in the CARMENCITA input catalogue. For these stars, we have obtained and collected a large amount of data: spectral types, radial and rotational velocities, photometry in several bands, etc. Part of the e effort of the science preparation necessary for the final selection of targets for CARMENES and other near-infrared spectrographs has been collected in two publications, which are presented in this PhD thesis. In the first publication (Alonso-Floriano et al., 2015A&A...577A.128A), we obtained low-resolution spectra for 753 stars using the CAFOS spectrograph at the 2.2 m Calar Alto telescope. The main goal was to derive accurate spectral types, which are fundamental parameters for the sample selection. We used a grid of 49 standard stars, from spectral types K3V to M8V, together with a double least-square minimisation technique and 31 spectral indices previously defined by other authors. In addition, we quantified the surface gravity, metallicity and chromospheric activity of the sample, in order to detect low-gravity stars (giants and very young), metal-poor and very metal-poor stars (subdwarfs), and very active stars. In the second publication (Alonso-Floriano et al., 2015A&A...583A..85A), we searched for common proper motion companions, especially of low mass, to members of the near young beta Pictoris moving group. First, we compiled a list of 185 members and candidate members to beta Pictoris from 35 representatives studies on this moving group. Next, we used the Aladin and STILTS virtual observatory tools, as well as the PPMXL proper motion and Washington double stars catalogues. The objects that showed similar proper motions to those stars of the sample were targets of an astro-photometric follow-up. The 36 common proper motion companion eventually obtained were subjects of a study of binding energies to determine their physical ligation.
Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions
NASA Astrophysics Data System (ADS)
Günther, Hans M.; Bautz, Marshall W.; Heilmann, Ralf K.; Huenemoerder, David P.; Marshall, Herman L.; Nowak, Michael A.; Schulz, Norbert S.
2016-07-01
We study a critical angle transmission (CAT) grating spectrograph that delivers a spectral resolution significantly above any X-ray spectrograph ever own. This new technology will allow us to resolve kinematic components in absorption and emission lines of galactic and extragalactic matter down to unprecedented dispersion levels. We perform ray-trace simulations to characterize the performance of the spectrograph in the context of an X-ray Surveyor or Arcus like layout (two mission concepts currently under study). Our newly developed ray-trace code is a tool suite to simulate the performance of X-ray observatories. The simulator code is written in Python, because the use of a high-level scripting language allows modifications of the simulated instrument design in very few lines of code. This is especially important in the early phase of mission development, when the performances of different configurations are contrasted. To reduce the run-time and allow for simulations of a few million photons in a few minutes on a desktop computer, the simulator code uses tabulated input (from theoretical models or laboratory measurements of samples) for grating efficiencies and mirror reflectivities. We find that the grating facet alignment tolerances to maintain at least 90% of resolving power that the spectrometer has with perfect alignment are (i) translation parallel to the optical axis below 0.5 mm, (ii) rotation around the optical axis or the groove direction below a few arcminutes, and (iii) constancy of the grating period to 1:105. Translations along and rotations around the remaining axes can be significantly larger than this without impacting the performance.
Reconstructive correction of aberrations in nuclear particle spectrographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berz, M.; Joh, K.; Nolen, J.A.
A method is presented that allows the reconstruction of trajectories in particle spectrographs and the reconstructive correction of residual aberrations that otherwise limit the resolution. Using a computed or fitted high order transfer map that describes the uncorrected aberrations of the spectrograph, it is possible to calculate a map via an analytic recursion relation that allows the computation of the corrected data of interest such as reaction energy and scattering angle as well as the reconstructed trajectories in terms of position measurements in two planes near the focal plane. The technique is only limited by the accuracy of the positionmore » measurements, the incoherent spot sizes, and the accuracy of the transfer map. In practice the method can be expressed as an inversion of a nonlinear map and implemented in the differential algebraic framework. The method is applied to correct residual aberrations in the S800 spectrograph which is under construction at the National Superconducting Cyclotron Laboratory at Michigan State University and to two other high resolution spectrographs.« less
Space telescope scientific instruments
NASA Technical Reports Server (NTRS)
Leckrone, D. S.
1979-01-01
The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.
NASA Astrophysics Data System (ADS)
Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc
2014-07-01
Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.
PISCES High Contrast Integral Field Spectrograph Simulations and Data Reduction Pipeline
NASA Technical Reports Server (NTRS)
Llop Sayson, Jorge Domingo; Memarsadeghi, Nargess; McElwain, Michael W.; Gong, Qian; Perrin, Marshall; Brandt, Timothy; Grammer, Bryan; Greeley, Bradford; Hilton, George; Marx, Catherine
2015-01-01
The PISCES (Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies) is a lenslet array based integral field spectrograph (IFS) designed to advance the technology readiness of the WFIRST (Wide Field Infrared Survey Telescope)-AFTA (Astrophysics Focused Telescope Assets) high contrast Coronagraph Instrument. We present the end to end optical simulator and plans for the data reduction pipeline (DRP). The optical simulator was created with a combination of the IDL (Interactive Data Language)-based PROPER (optical propagation) library and Zemax (a MatLab script), while the data reduction pipeline is a modified version of the Gemini Planet Imager's (GPI) IDL pipeline. The simulations of the propagation of light through the instrument are based on Fourier transform algorithms. The DRP enables transformation of the PISCES IFS data to calibrated spectral data cubes.
32-channel pyrometer with high dynamic range for studies of shocked nanothermites
NASA Astrophysics Data System (ADS)
Bassett, Will P.; Dlott, Dana D.
2017-01-01
A 32-channel optical pyrometer has been developed for studying temperature dynamics of shock-initiated reactive materials with one nanosecond time resolution and high dynamic range. The pyrometer consists of a prism spectrograph which directs the spectrally-resolved emission to 32 fiber optics and 32 photomultiplier tubes and digitizers. Preliminary results show shock-initiated reactions of a nanothermite composite, nano CuO/Al in nitrocellulose binder, consists of three stages. The first stage occurred at 30 ns, right after the shock unloaded, the second stage at 100 ns and the third at 1 μs, and the temperatures ranged from 2100K to 3000K. Time-resolved emission spectra suggest hot spots formed during shock unloading, which initiated the bulk thermite/nitrocellulose reaction.
NASA Astrophysics Data System (ADS)
Merten, Jonathan; Johnson, Bruce
2018-01-01
A new dual-beam atomic absorption technique is applied to laser-induced plasmas. The technique uses an optical parametric oscillator pseudocontinuum, producing emission that is both wider than the absorption line profile, but narrow enough to allow the use of an echelle spectrograph without order sorting. The dual-beam-in space implementation makes the technique immune to nonspecific attenuation of the probe beam and the structure of the pseudocontinuum. The potential for plasma diagnostics is demonstrated with spatially and temporally resolved measurements of magnesium metastable and lithium ground state optical depths in a laser-induced plasma under reduced pressure conditions. The lithium measurements further demonstrate the technique's potential for isotope ratio measurements.
Time-of-flight mass spectrographs—From ions to neutral atoms
NASA Astrophysics Data System (ADS)
Möbius, E.; Galvin, A. B.; Kistler, L. M.; Kucharek, H.; Popecki, M. A.
2016-12-01
After their introduction to space physics in the mid 1980s time-of-flight (TOF) spectrographs have become a main staple in spaceborne mass spectrometry. They have largely replaced magnetic spectrometers, except when extremely high mass resolution is required to identify complex molecules, for example, in the vicinity of comets or in planetary atmospheres. In combination with electrostatic analyzers and often solid state detectors, TOF spectrographs have become key instruments to diagnose space plasma velocity distributions, mass, and ionic charge composition. With a variety of implementation schemes that also include isochronous electric field configurations, TOF spectrographs can respond to diverse science requirements. This includes a wide range in mass resolution to allow the separation of medium heavy isotopes or to simply provide distributions of the major species, such as H, He, and O, to obtain information on source tracers or mass fluxes. With a top-hat analyzer at the front end, or in combination with deflectors for three-axis stabilized spacecraft, the distribution function of ions can be obtained with good time resolution. Most recently, the reach of TOF ion mass spectrographs has been extended to include energetic neutral atoms. After selecting the arrival direction with mechanical collimation, followed by conversion to ions, adapted TOF sensors form a new branch of the spectrograph family tree. We review the requirements, challenges, and implementation schemes for ion and neutral atom spectrographs, including potential directions for the future, while largely avoiding overlap with complementary contributions in this special issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence
2014-05-01
Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibersmore » leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.« less
NASA Technical Reports Server (NTRS)
Wilkinson, Erik; Green, James C.; Cash, Webster
1993-01-01
The design, calibration, and sounding rocket flight performance of a novel spectrograph suitable for moderate-resolution EUV spectroscopy are presented. The sounding rocket-borne instrument uses a radial groove grating to maintain a high system efficiency while controlling the aberrations induced when doing spectroscopy in a converging beam. The instrument has a resolution of approximately 2 A across the 200-330 A bandpass with an average effective area of 2 sq cm. The instrument, called the Extreme Ultraviolet Spectrograph, acquired the first EUV spectra in this wavelength region of the hot white dwarf G191-B2B and the late-type star Capella.
NASA Astrophysics Data System (ADS)
Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey; Miles, Drew M.; Donovan, Benjamin D.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo
2015-05-01
An X-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.
VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)
NASA Astrophysics Data System (ADS)
McLure, R.; Pentericci, L.; Vandels Team
2017-11-01
This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0
Thermal hyperspectral chemical imaging
NASA Astrophysics Data System (ADS)
Holma, Hannu; Hyvärinen, Timo; Mattila, Antti-Jussi; Kormano, Ilkka
2012-06-01
Several chemical compounds have their strongest spectral signatures in the thermal region. This paper presents three push-broom thermal hyperspectral imagers. The first operates in MWIR (2.8-5 μm) with 35 nm spectral resolution. It consists of uncooled imaging spectrograph and cryogenically cooled InSb camera, with spatial resolution of 320/640 pixels and image rate to 400 Hz. The second imager covers LWIR in 7.6-12 μm with 32 spectral bands. It employs an uncooled microbolometer array and spectrograph. These imagers have been designed for chemical mapping in reflection mode in industry and laboratory. An efficient line-illumination source has been developed, and it makes possible thermal hyperspectral imaging in reflection with much higher signal and SNR than is obtained from room temperature emission. Application demonstrations including sorting of dark plastics and mineralogical mapping of drill cores are presented. The third imager utilizes a cryo-cooled MCT array with precisely temperature stabilized optics. The optics is not cooled, but instrument radiation is suppressed by special filtering and corrected by BMC (Background-Monitoring-on-Chip) method. The approach provides excellent sensitivity in an instrument which is portable and compact enough for installation in UAVs. The imager has been verified in 7.6 to 12.3 μm to provide NESR of 18 mW/(m2 sr μm) at 10 μm for 300 K target with 100 spectral bands and 384 spatial samples. It results in SNR of higher than 500. The performance makes possible various applications from gas detection to mineral exploration and vegetation surveys. Results from outdoor and airborne experiments are shown.
VizieR Online Data Catalog: Double-peaked narrow lines in AGN. II. z<0.1 (Nevin+, 2016)
NASA Astrophysics Data System (ADS)
Nevin, R.; Comerford, J.; Muller-Sanchez, F.; Barrows, R.; Cooper, M.
2017-02-01
To determine the nature of 71 Type 2 AGNs with double-peaked [OIII] emission lines in SDSS that are at z<0.1 and further characterize their properties, we observe them using two complementary follow-up methods: optical long-slit spectroscopy and Jansky Very Large Array (VLA) radio observations. We use various spectrographs with similar pixel scales (Lick Kast Spectrograph; Palomar Double Spectrograph; MMT Blue Channel Spectrograph; APO Dual Imaging Spectrograph and Keck DEep Imaging Multi-Object Spectrograph. We use a 1200 lines/mm grating for all spectrographs; see table 1. In future work, we will combine our long-slit observations with the VLA data for the full sample of 71 galaxies (O. Muller-Sanchez+ 2016, in preparation). (4 data files).
A near-infrared high-resolution spectroscopic survey of bulge stars - JASMINE prestudy
NASA Astrophysics Data System (ADS)
Tsujimoto, T.; Gouda, N.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.
2006-08-01
We are developing a new near-infrared high-resolution (R[max]= 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9-1.35 μm. WINERED employs the novelty in the optical system; a potable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide the exact positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical compositions will be measured by WINERED with high accuracies (δV< 1km/s). These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for the observation of a single object by the end of 2008 and hope to attach it to various 4-10m telescopes as a PI-type instrument. In succession, we will develop it to the design for a simultaneous multi-object spectroscopy.
The Wide Integral Field Infrared Spectrograph (WIFIS): optomechanical design and development
NASA Astrophysics Data System (ADS)
Meyer, R. Elliot; Moon, Dae-Sik; Sivanandam, Suresh; Ma, Ke; Henderson, Chuck; Blank, Basil; Chou, Chueh-Yi; Jarvis, Miranda; Eikenberry, Stephen S.
2016-08-01
We present the optomechanical design and development of the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS will provide an unrivalled integral field size of 20"×50" for a near-infrared (0.9-1.7 μm) integral-field spectrograph at the 2.3-meter Steward Bok telescope. Its main optomechanical system consists of two assemblies: a room-temperature bench housing the majority of the optical components and a cryostat for a field-flattening lens, thermal blocking filter, and detector. Two additional optical subsystems will provide calibration functionality, telescope guiding, and off-axis optical imaging. WIFIS will be a highly competitive instrument for seeing-limited astronomical investigations of the dynamics and chemistry of extended objects in the near-infrared wavebands. WIFIS is expected to be commissioned during the end of 2016 with scientific operations beginning in 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, J.E.; Adams, R.; Carlson, A.L.
Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shiftmore » and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.« less
The GALAH Survey and Galactic Archaeology in the Next Decade
NASA Astrophysics Data System (ADS)
Martell, S. L.
2016-10-01
The field of Galactic Archaeology aims to understand the origins and evolution of the stellar populations in the Milky Way, as a way to understand galaxy formation and evolution in general. The GALAH (Galactic Archaeology with HERMES) Survey is an ambitious Australian-led project to explore the Galactic history of star formation, chemical evolution, minor mergers and stellar migration. GALAH is using the HERMES spectrograph, a novel, highly multiplexed, four-channel high-resolution optical spectrograph, to collect high-quality R˜28,000 spectra for one million stars in the Milky Way. From these data we will determine stellar parameters, radial velocities and abundances for up to 29 elements per star, and carry out a thorough chemical tagging study of the nearby Galaxy. There are clear complementarities between GALAH and other ongoing and planned Galactic Archaeology surveys, and also with ancillary stellar data collected by major cosmological surveys. Combined, these data sets will provide a revolutionary view of the structure and history of the Milky Way.
X-ray optics for WHIMex: the Warm Hot Intergalactic Medium Explorer
NASA Astrophysics Data System (ADS)
Cash, W.; McEntaffer, R.; Zhang, W.; Casement, S.; Lillie, C.; Schattenburg, M.; Bautz, M.; Holland, A.; Tsunemi, H.; O'Dell, S.
2011-09-01
The x-ray astronomy community has never flown a celestial source spectrograph that can resolve natural line widths in absorption the way the ultraviolet community did with OAO-3 Copernicus back in 1972. Yet there is important science to be mined there, and right now, the large flagship missions like the International X-ray Observatory are not progressing toward launch. WHIMEx is an Explorer concept proposed earlier this year to open up that science regime in the next few years. The concept features a modified off-plane grating spectrograph design that will support high resolution (λ/δλ ~ 4000) in the soft x-ray band with a high packing density that will enable a modest cost space mission. We discuss the design and capabilities for the WHIMEx mission. Its prime science goal is detecting high temperature oxygen in the Intergalactic Medium, but it has a broad range of science potential cutting across all of x-ray astronomy and should give us a new window on the Universe.
Spectrographs and Large Telescopes: A Study of Instrumentation
NASA Astrophysics Data System (ADS)
Fica, Haley Diane; Crane, Jeffrey D.; Uomoto, Alan K.; Hare, Tyson
2017-01-01
It is a truth universally acknowledged, that a telescope in possession of a large aperture, must be in want of a high resolution spectrograph. Subsystems of these instruments require testing and upgrading to ensure that they can continue to be scientifically productive and usher in a new era of astronomical research. The Planet Finder Spectrograph (PFS) and Magellan Inamori Kyocera Echelle (MIKE), both on the Magellan II Clay telescope at Las Campanas Observatory, and the Giant Magellan Telescope (GMT) Consortium Large Earth Finder (G-CLEF) are examples of such instruments. Bluer flat field lamps were designed for PFS and MIKE to replace lamps no longer available in order to ensure continued, efficient functionality. These newly designed lamps will result in better flat fielding and calibration of data, and thus result in increased reduction of instrument noise. When it is built and installed in 2022, G-CLEF will be be fed by a tertiary mirror on the GMT. Stepper motors attached to the back of this mirror will be used to correct misalignments in the optical relay system. These motors were characterized to ensure that they function as expected to an accuracy of a few microns. These projects incorporate several key aspects of astronomical instrumentation: designing, building, and testing.
NASA Astrophysics Data System (ADS)
Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.
2015-09-01
Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 μm. We report absolute refractive index (n), dispersion (dn/dλ), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.
2015-01-01
Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 micron. We report absolute refractive index (n), dispersion (dn/d(lambda), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.
VizieR Online Data Catalog: Kepler-10 RV measurements by HARPS-N (Dumusque+, 2014)
NASA Astrophysics Data System (ADS)
Dumusque, X.; Bonomo, A. S.; Haywood, R. D.; Malavolta, L.; Segransan, D.; Buchhave, L. A.; Collier, Cameron A.; Latham, D. W.; Molinari, E.; Pepe, F.; Udry, S.; Charbonneau, D.; Cosentino, R.; Dressing, C. D.; Figueira, P.; Fiorenzano, A. F. M.; Gettel, S.; Harutyunyan, A.; Horne, K.; Lopez-Morales, M.; Lovis, C.; Mayor, M.; Micela, G.; Motalebi, F.; Nascimbeni, V.; Phillips, D. F.; Piotto, G.; Pollacco, D.; Queloz, D.; Rice, K.; Sasselov, D.; Sozzetti, A.; Szentgyorgyi, A.; Watson, C.
2017-03-01
We monitored the RV variation of Kepler-10 with the HARPS-N spectrograph installed on the 3.57-m Telescopio Nazionale Galileo at the Spanish Observatorio del Roque de los Muchachos, La Palma Island, Spain (Cosentino et al. 2012SPIE.8446E..1VC). This instrument is an updated version of the original HARPS planet hunter installed on the 3.6-m telescope at the European Southern Observatory on La Silla, Chile (Mayor et al. 2003Msngr.114...20M). Just like its older brother, the HARPS-N instrument is an ultra-stable fiber-fed high-resolution (R = 115,000) optical echelle spectrograph optimized for the measurement of very precise RVs. The use of a more modern monolithic 4kx4k CCD enclosed in a more temperature stable cryostat, and the use of octagonal fibers for a better scrambling of the incoming light fed into the spectrograph should improve the precision of the instrument compared to HARPS. Scientific operations began at HARPS-N in 2012 August. Over the first two observing seasons, we obtained 157 RV measurements of Kepler-10. Four observations that were obtained during bad weather conditions had very low signal to noise (S/N, <10) and were rejected. (1 data file).
LOITA: Lunar Optical/Infrared Telescope Array
NASA Technical Reports Server (NTRS)
1993-01-01
LOITA (Lunar Optical/Infrared Telescope Array) is a lunar-based interferometer composed of 18 alt-azimuth telescopes arranged in a circular geometry. This geometry results in excellent uv coverage and allows baselines up to 5 km long. The angular resolution will be 25 micro-arcsec at 500 nm and the main spectral range of the array will be 200 to 1100 nm. For infrared planet detection, the spectral range may be extended to nearly 10 mu m. The telescope mirrors have a Cassegrain configuration using a 1.75 m diameter primary mirror and a 0.24 m diameter secondary mirror. A three-stage (coarse, intermediate, and fine) optical delay system, controlled by laser metrology, is used to equalize path lengths from different telescopes to within a few wavelengths. All instruments and the fine delay system are located within the instrument room. Upon exiting the fine delay system, all beams enter the beam combiner and are then directed to the various scientific instruments and detectors. The array instrumentation will consist of CCD detectors optimized for both the visible and infrared as well as specially designed cameras and spectrographs. For direct planet detection, a beam combiner employing achromatic nulling interferometry will be used to reduce star light (by several orders of magnitude) while passing the planet light. A single telescope will be capable of autonomous operation. This telescope will be equipped with four instruments: wide field and planetary camera, faint object camera, high resolution spectrograph, and faint object spectrograph. These instruments will be housed beneath the telescope. The array pointing and control system is designed to meet the fine pointing requirement of one micro-arcsec stability and to allow precise tracking of celestial objects for up to 12 days. During the lunar night, the optics and the detectors will be passively cooled to 70-80 K temperature. To maintain a continuous communication with the earth a relay satellite placed at the L4 libration point will be used in conjunction with the Advanced Tracking and Data Relay Satellite System (ATDRSS). Electrical power of about 10 kW will be supplied by a nuclear reactor based on the SP-100 technology. LOITA will be constructed in three phases of six telescopes each. The total mass of the first operational phase is estimated at 58,820 kg. The cost of the fully operational first phase of the observatory is estimated at $8.9 billion. LOITA's primary objectives will be to detect and characterize planets around nearby stars (up to ten parsec away), study physics of collapsed stellar objects, solar/stellar surface features and the processes in nuclear regions of galaxies and quasars. An interferometric array such as LOITA will be capable of achieving resolutions three orders of magnitude greater than Hubble's design goal. LOITA will also be able to maintain higher signal to noise ratios than are currently attainable due to long observation times available on the moon.
GIARPS@TNG: GIANO-B and HARPS-N together for a wider wavelength range spectroscopy
NASA Astrophysics Data System (ADS)
Claudi, R.; Benatti, S.; Carleo, I.; Ghedina, A.; Guerra, J.; Micela, G.; Molinari, E.; Oliva, E.; Rainer, M.; Tozzi, A.; Baffa, C.; Baruffolo, A.; Buchschacher, N.; Cecconi, M.; Cosentino, R.; Fantinel, D.; Fini, L.; Ghinassi, F.; Giani, E.; Gonzalez, E.; Gonzalez, M.; Gratton, R.; Harutyunyan, A.; Hernandez, N.; Lodi, M.; Malavolta, L.; Maldonado, J.; Origlia, L.; Sanna, N.; Sanjuan, J.; Scuderi, S.; Seemann, U.; Sozzetti, A.; Perez Ventura, H.; Hernandez Diaz, M.; Galli, A.; Gonzalez, C.; Riverol, L.; Riverol, C.
2017-08-01
Since 2012, thanks to the installation of the high-resolution echelle spectrograph in the optical range HARPS-N, the Italian telescope TNG (La Palma) became one of the key facilities for the study of the extrasolar planets. In 2014 TNG also offered GIANO to the scientific community, providing a near-infrared (NIR) cross-dispersed echelle spectroscopy covering 0.97-2.45μm at a resolution of 50000. GIANO, although designed for direct light-feed from the telescope at the Nasmyth-B focus, was provisionally mounted on the rotating building and connected via fibers to only available interface at the Nasmyth-A focal plane. The synergy between these two instruments is particularly appealing for a wide range of science cases, especially for the search of exoplanets around young and active stars and the characterisation of their atmosphere. Through the funding scheme "WOW" (a Way to Others Worlds), the Italian National Institute for Astrophysics (INAF) proposed to position GIANO at the focal station for which it was originally designed and the simultaneous use of these spectrographs with the aim to achieve high-resolution spectroscopy in a wide wavelength range (0.383-2.45μm) obtained in a single exposure, giving rise to the project called GIARPS (GIANO-B & HARPS-N). Because of its characteristics, GIARPS can be considered the first and unique worldwide instrument providing not only high resolution in a large wavelength band, but also a high-precision radial velocity measurement both in the visible and in the NIR arm, since in the next future GIANO-B will be equipped with gas absorption cells.
A Multi-object Exoplanet Detecting Technique
NASA Astrophysics Data System (ADS)
Zhang, K.
2011-05-01
Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in 2010. A related spectrum reduction program and the instrumental stability were tested by obtaining some multi-object interference spectrum. Thirdly, studying the parameter optimization of fixed-delay Michelson interferometer is helpful to increase its inner thermal stability and reduce the external environmental requirement. Referring to Wide-angle Michelson Interferometer successfully used in Upper Atmospheric Wind field, a glass pair selecting scheme is given. By choosing a suitable glass pair of interference arms, the RV error can be stable as several hundred m\\cdots^{-1}\\cdot{dg}C^{-1}. Therefore, this work is helpful to deeply study EDI technique and speed up the development of multi-object exoplanet survey system. LAMOST will make a greater contribution to astronomy when the combination between its spectrographs and EDI technique comes true.
Study on a multi-delay spectral interferometry for stellar radial velocity measurement
NASA Astrophysics Data System (ADS)
Zhang, Kai; Jiang, Haijiao; Tang, Jin; Ji, Hangxin; Zhu, Yongtian; Wang, Liang
2014-08-01
High accuracy radial velocity measurement isn't only one of the most important methods for detecting earth-like Exoplanets, but also one of the main developing fields of astronomical observation technologies in future. Externally dispersed interferometry (EDI) generates a kind of particular interference spectrum through combining a fixed-delay interferometer with a medium-resolution spectrograph. It effectively enhances radial velocity measuring accuracy by several times. Another further study on multi-delay interferometry was gradually developed after observation success with only a fixed-delay, and its relative instrumentation makes more impressive performance in near Infrared band. Multi-delay is capable of giving wider coverage from low to high frequency in Fourier field so that gives a higher accuracy in radial velocity measurement. To study on this new technology and verify its feasibility at Guo Shoujing telescope (LAMOST), an experimental instrumentation with single fixed-delay named MESSI has been built and tested at our lab. Another experimental study on multi-delay spectral interferometry given here is being done as well. Basically, this multi-delay experimental system is designed in according to the similar instrument named TEDI at Palomar observatory and the preliminary test result of MESSI. Due to existence of LAMOST spectrograph at lab, a multi-delay interferometer design actually dominates our work. It's generally composed of three parts, respectively science optics, phase-stabilizing optics and delay-calibrating optics. To switch different fixed delays smoothly during observation, the delay-calibrating optics is possibly useful to get high repeatability during switching motion through polychromatic interferometry. Although this metrology is based on white light interferometry in theory, it's different that integrates all of interference signals independently obtained by different monochromatic light in order to avoid dispersion error caused by broad band in big optical path difference (OPD).
Vacuum Predisperser For A Large Plane-Grating Spectrograph
NASA Astrophysics Data System (ADS)
Engleman, R.; Palmer, B. A.; Steinhaus, D. W.
1980-11-01
A plane grating predisperser has been constructed which acts as an "order-sorter" for a large plane-grating spectrograph. This combination can photograph relatively wide regions of spectra in a single exposure with no loss of resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinlan, F.; Diddams, S. A.; Ycas, G.
2010-06-15
A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is {approx}350 kHz at 1550 nm. Themore » comb frequency uncertainty is bounded by {+-}30 kHz (corresponding to a radial velocity of {+-}5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.« less
Fiber developments at the Anglo-Australian Observatory for SPIRAL and AUSTRALIS
NASA Astrophysics Data System (ADS)
Lee, David; Taylor, Keith
2000-08-01
In this paper we discuss some of the recent developments with optical fibers at the Anglo-Australian Observatory. Firstly we will describe the upgrade to the SPIRAL integral field spectrograph for the Anglo-Australian Telescope. SPIRAL-B uses a crossed cylindrical microlens array to feed 512 optical fibers at F/5.5 providing a field of view of 22 by 11 arcseconds with 0.7 arcsecond spatial sampling. The performance of the fiber bundle, microlens array, and construction techniques will be described. We will also discus the development of prototype optical fiber switchyard as part of the AUSTRALIS concept study. The switchyard provides an 'optical bread' in the fiber, between the telescope and spectrograph, which allows coupling between fibers of different diameters and focal rations. A dichroic can also be incorporated into the switchyard to allow both optical and IR spectrographs to be fed simultaneously. Switchyards therefore provide much greater observing flexibility by increasing the number of possible instrument configurations. We will briefly discuss the merits of fiber switchyards and present the results of FRD and transmission test performed in the laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath
2015-12-01
Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical “seeing-limited” instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as “modal noise,” are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, SMFs do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes.more » Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading illumination stability. Here we present a cautionary note outlining how the polarization properties of SMFs can affect the radial velocity (RV) measurement precision of high resolution spectrographs. This work is immediately relevant to the rapidly expanding field of diffraction-limited, extreme precision RV spectrographs that are currently being designed and built by a number of groups.« less
Spectrum of Th-Ar Hollow Cathode Lamps
National Institute of Standards and Technology Data Gateway
SRD 161 NIST Spectrum of Th-Ar Hollow Cathode Lamps (Web, free access) This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.
VizieR Online Data Catalog: CARMENES radial velocity curves of 7 M-dwarf (Trifonov+, 2018)
NASA Astrophysics Data System (ADS)
Trifonov, T.; Kuerster, M.; Zechmeister, M.; Tal-Or, L.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.; Launhardt, R.; Henning, T.; Montes, D.; Bejar, V. J. S.; Mundt, R.; Pavlov, A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.; Nowak, G.; Jeffers, S. V.; Rodriguez-Lopez, C.; Del Burgo, C.; Anglada-Escude, G.; Lopez-Santiago, J.; Mathar, R. J.; Ammler-von Eiff, M.; Guenther, E. W.; Barrado, D.; Gonzalez Hernandez, J. I.; Mancini, L.; Stuermer, J.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Antona, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Bluemcke, M.; Brinkmoeller, M.; Cano, J.; Cardenas Vazquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Cortes-Contreras, M.; Czesla, S.; Diez-Alonso, E.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez-Peinado, R.; Groezinger, U.; Grohnert, S.; Guardia, J.; Guijarro, A.; de Guindos, E.; Gutierrez-Soto, J.; Hagen, H.-J.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Hermelo, I.; Hernandez Arabi, R.; Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E.; de Juan, E.; Kim, M.; Klein, R.; Klueter, J.; Klutsch, A.; Lafarga, M.; Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Lopez Del Fresno, M.; Lopez-Gonzalez, J.; Lopez-Puertas, M.; Lopez Salas, J. F.; Luque, R.; Magan Madinabeitia, H.; Mall, U.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya, A.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir, A.; Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo, R.; Redondo, P.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodriguez, E.; Rodriguez Trinidad, A.; Rohlo, R.-R.; Rosich, A.; Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.; Schiller, J.; Schoefer, P.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardel, F.; Wagner, K.; Winkler, J.; Woltho, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.
2017-10-01
The two CARMENES spectrographs are grism cross-dispersed, white pupil, echelle spectrograph working in quasi-Littrow mode using a two-beam, two-slice image slicer. The visible spectrograph covers the wavelength range from 0.52um to 1.05um with 61 orders, a resolving power of R=94600, and a mean sampling of 2.8 pixels per resolution element. The data presented in this paper were taken during the early phase of operation of the CARMENES visible-light spectrograph. (8 data files).
2013-01-31
meters away from the explosive charge. The collection optic were aligned to view the center of each charge through a BK7 glass view- port. The...Basler Sprint ) with a data collection rate of 1–70 kHz. The resolution and usable spectral range of the spectrograph were 1.2 nm and 380–720 nm...RDX 20 wt. % AlOA in RDX 20 wt. % AlFA in RDX 0 … … … 15 … 4000 ( 400 ) … 30 3900 (200) 4500 (500) 3200 (300) 45 3600 (300) 3400 (500) 044907-3
16 years of airglow measurement with astronomical facilities
NASA Astrophysics Data System (ADS)
Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy; Proxauf, Bastian
2017-04-01
Observations taken with ground-based astronomical telescopes are affected by various airglow emission processes in the Earth's upper atmosphere. This chemiluminescent emission can be used to investigate the physical state of the meso- and the thermosphere. By applying a modified approach of techniques originally developed to characterise and remove these features from the astronomical spectra, which are not primarily taken for airglow studies, these spectra are suitable for airglow research. For our studies, we currently use data from two observing sites on both hemispheres for our studies: The European Southern Observatory operates four 8m telescopes at the Very Large Telescope (VLT) in the Chilean Atacama desert (24.6°S, 70.4°W). The 2.5m Sloan Digital Sky Survey telescope (SDSS) located in New Mexico/USA (32.8°N, 105.8°W) provides observations from the northern hemisphere. Each of these telescopes is equipped with several astronomical instruments. Among them are several spectrographs operating in the optical and near-IR regime with medium to high spectral resolution. Currently, we work on data from the following three spectrographs (1) UVES@VLT (Ultraviolet and Visual Echelle Spectrograph): This instrument provides spectra in the wavelength regime from 0.3 to 1.1μm in small spectral ranges. Its high resolving power (up to R˜110 000) allows a detailed study of oxygen (OI@557nm, OI@630nm), sodium (NaD@589nm), nitrogen (NI@520nm), and many OH bands. UVES has been in operation since 1999 providing the longest time series. (2) X-Shooter@VLT: This spectrograph is unique as it provides the whole wavelength range from 0.3 to 2.5μm at once with medium resolving power (R˜3 300 to 18 000, depending on the setup). This enables us to study the dependency of optical and near-IR airglow processes simultaneously, e.g. the OH bands. In addition, weak airglow continuum emission, e.g. arising from FeO and NiO can be studied. In operation since 2009, the data cover half a solar cycle. (3) MaNGA spectrograph@SDSS: This instrument combines two spectrographs covering the wavelength range from 0.36 to 1.03μm with a resolving power of R˜2 000. It is equipped with a multi-fibre device and is used for this specific survey that started in 2014 (aimed to finish in 2020). In this poster we give an overview on the status of the project, some first results, and an outlook.
NASA Astrophysics Data System (ADS)
Prato, Lisa A.
2017-01-01
Through an agreement with the University of Texas at Austin and the Korea Astronomy and Space Science Institute, the Immersion Grating Infrared Spectrograph (IGRINS) saw first light on the Lowell Observatory 4.3 m Discovery Channel Telescope (DCT) telescope on September 8, 2016. IGRINS, originally commissioned at the McDonald Observatory 2.7 m telescope, provides a spectral resolution of 45,000 and a simultaneous spectral grasp of 1.45 to 2.45 microns, recording all of the H and K bands with no gaps in wavelength coverage on two H2RG detectors in a single exposure. The instrument design minimizes optical surfaces, optimizing throughput, and has no moving parts, key for stability. IGRINS on the DCT attains a signal to noise of 100 per resolution element in one hour of integration time on a K=12 magnitude source, currently making it the most sensitive high-resolution spectrograph in the world at H and K. Science programs in the fourth quarter, 2016, include such diverse topics as abundance measurements in M dwarfs and population II stars, studies of ices and atmospheres in outer solar system bodies, measurement of fundamental properties of pre-main sequence stars, calibrating young star evolution, defining the substellar boundary at the youngest ages, outflow characteristics in Wolf-Rayet stars, finding the first generation of exoplanets, gas dynamics in planetary nebulae, and structure of the ISM in molecular clouds. In this talk I will report on initial results from selected programs.
An Overview of the HST Advanced Camera for Surveys' On-orbit Performance
NASA Astrophysics Data System (ADS)
Hartig, G. F.; Ford, H. C.; Illingworth, G. D.; Clampin, M.; Bohlin, R. C.; Cox, C.; Krist, J.; Sparks, W. B.; De Marchi, G.; Martel, A. R.; McCann, W. J.; Meurer, G. R.; Sirianni, M.; Tsvetanov, Z.; Bartko, F.; Lindler, D. J.
2002-05-01
The Advanced Camera for Surveys (ACS) was installed in the HST on 7 March 2002 during the fourth servicing mission to the observatory, and is now beginning science operations. The ACS provides HST observers with a considerably more sensitive, higher-resolution camera with wider field and polarimetric, coronagraphic, low-resolution spectrographic and solar-blind FUV capabilities. We review selected results of the early verification and calibration program, comparing the achieved performance with the advertised specifications. Emphasis is placed on the optical characteristics of the camera, including image quality, throughput, geometric distortion and stray-light performance. More detailed analyses of various aspects of the ACS performance are presented in other papers at this meeting. This work was supported by a NASA contract and a NASA grant.
Research and technology, 1990: Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
1990-01-01
Goddard celebrates 1990 as a banner year in space based astronomy. From above the Earth's obscuring atmosphere, four major orbiting observatories examined the heavens at wavelengths that spanned the electromagnetic spectrum. In the infrared and microwave, the Cosmic Background Explorer (COBE), measured the spectrum and angular distribution of the cosmic background radiation to extraordinary precision. In the optical and UV, the Hubble Space Telescope has returned spectacular high resolution images and spectra of a wealth of astronomical objects. The Goddard High Resolution Spectrograph has resolved dozens of UV spectral lines which are as yet unidentified because they have never before been seen in any astronomical spectrum. In x rays, the Roentgen Satellite has begun returning equally spectacular images of high energy objects within our own and other galaxies.
VizieR Online Data Catalog: IMF in 3 low-redshift strong lenses from SNELLS (Newman+, 2017)
NASA Astrophysics Data System (ADS)
Newman, A. B.; Smith, R. J.; Conroy, C.; Villaume, A.; van Dokkum, P.
2018-04-01
The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS) lenses (Smith+ 2015MNRAS.449.3441S) were observed using the IMACS spectrograph at the 6.5m Magellan Baade telescope during 2015 April 9-10 and 2015 September 25. Spectroscopic observations cover the wavelength range 3565-9415Å continuously with a uniform resolution of 2.8Å. Total exposure times ranged from 60 minutes to 100 minutes per grating. See section 2.1. All SNELLS lenses were also observed using FIRE, a near-infrared echellete spectrograph at the Magellan Baade telescope, during the nights of 2015 April 8, May 3, and September 25. The FIRE spectra cover 0.82-2.51um, but in this paper we use only the region around the Wing-Ford band of FeH near 9916Å for SNL-0 and SNL-1. On-target exposure times for SNL-0 and SNL-1 were 32 minutes and 54 minutes, respectively. The 1" wide slit provided a resolution of R~4000. See section 2.2. We acquired optical and near-infrared spectra for all the SNELLS lenses with X-shooter at the 8.2m UT2 of the ESO Very Large Telescope (VLT). See section 2.3. We obtained r-band images of SNL-1 and SNL-2 using the LDSS-3 imaging spectrograph at the Magellan 2 telescope. Photometric calibration was tied to the SDSS DR9. For SNL-0, we used Hubble Heritage observations taken with the Advanced Camera for Surveys and the F625W filter (Proposal 10710). When constructing our dynamical model of SNL-2, we also use an R-band image obtained in excellent seeing with FORS2 at the VLT. See section 2.4. (2 data files).
MuSICa at GRIS: a prototype image slicer for EST at GREGOR
NASA Astrophysics Data System (ADS)
Calcines, A.; Collados, M.; López, R. L.
2013-05-01
This communication presents a prototype image slicer for the 4-m European Solar Telescope (EST) designed for the spectrograph of the 1.5-m GREGOR solar telescope (GRIS). The design of this integral field unit has been called MuSICa (Multi-Slit Image slicer based on collimator-Camera). It is a telecentric system developed specifically for the integral field, high resolution spectrograph of EST and presents multi-slit capability, reorganizing a bidimensional field of view of 80 arcsec^{2} into 8 slits, each one of them with 200 arcsec length × 0.05 arcsec width. It minimizes the number of optical components needed to fulfil this multi-slit capability, three arrays of mirrors: slicer, collimator and camera mirror arrays (the first one flat and the other two spherical). The symmetry of the layout makes it possible to overlap the pupil images associated to each part of the sliced entrance field of view. A mask with only one circular aperture is placed at the pupil position. This symmetric characteristic offers some advantages: facilitates the manufacturing process, the alignment and reduces the costs. In addition, it is compatible with two modes of operation: spectroscopic and spectro-polarimetric, offering a great versatility. The optical quality of the system is diffraction-limited. The prototype will improve the performances of GRIS at GREGOR and is part of the feasibility study of the integral field unit for the spectrographs of EST. Although MuSICa has been designed as a solar image slicer, its concept can also be applied to night-time astronomical instruments (Collados et al. 2010, Proc. SPIE, Vol. 7733, 77330H; Collados et al. 2012, AN, 333, 901; Calcines et al. 2010, Proc. SPIE, Vol. 7735, 77351X)
An Infrared Multi-Object Spectrograph (IRMS) with adaptive optics for TMT: the science case
NASA Astrophysics Data System (ADS)
Mobasher, Bahram; Crampton, David; Simard, Luc
2010-07-01
It has been recognized that a Near-Infrared Multi-object Spectrograph (IRMS) as one of the first light instrument on the Thirty Meter Telescope (TMT) would significantly increase the scientific capability of the observatory. The IRMS is planned to be a clone of the MOSFIRE instrument on the Keck telescope. As a result, we use the already available MOSFIRE design and expertise, significantly reducing the total cost and its development time. The IRMS will be a quasi diffraction limited multi-slit spectrograph with moderate resolution (R~4000), fed by Narrow-Field Infrared Adaptive Optics System (NFIRAOS). It images over the 2 arcmin diameter field of view of the NFIRAOS. There are a number of exceedingly important scientific questions, waiting to be addressed by the TMT/IRMS combination. Given its relatively small field of view, it is less affected by the sky background, which is a limiting factor in ground-based observations at near-IR wavelengths. The IRMS is the ideal instrument for studying spectroscopic properties of galaxies at the re-ionization epoch (z > 7), where the Lyman alpha line shifts to the near-ir wavelenghths. It can be used to measure rotation curves of spiral and velocity dispersion of elliptical galaxies at z~2-3 and hence, their spectroscopic mass. It can be used to search for population III stars via their spectroscopic signature and to perform measurement of spectroscopic lines at high redshifts, diagnostic of metallicity. Finally, IRMS allows measurement of the blue shifts in the rest-frame MgII line for high redshift galaxies, used to study the winds, leading to the feedback mechanism, responsible for quenching star formation activity in galaxies.
Mourard, Denis; Bério, Philippe; Perraut, Karine; Clausse, Jean-Michel; Creevey, Orlagh; Martinod, Marc-Antoine; Meilland, Anthony; Millour, Florentin; Nardetto, Nicolas
2017-05-01
High angular resolution studies of stars in the optical domain have highly progressed in recent years. After the results obtained with the visible instrument Visible spEctroGraph and polArimeter (VEGA) on the Center for High Angular Resolution Astronomy (CHARA) array and the recent developments on adaptive optics and fibered interferometry, we have started the design and study of a new six-telescope visible combiner with single-mode fibers. It is designed as a low spectral resolution instrument for the measurement of the angular diameter of stars to make a major step forward in terms of magnitude and precision with respect to the present situation. For a large sample of bright stars, a medium spectral resolution mode will allow unprecedented spectral imaging of stellar surfaces and environments for higher accuracy on stellar/planetary parameters. To reach the ultimate performance of the instrument in terms of limiting magnitude (Rmag≃8 for diameter measurements and Rmag≃4 to 5 for imaging), Stellar Parameters and Images with a Cophased Array (SPICA) includes the development of a dedicated fringe tracking system in the H band to reach "long" (200 ms to 30 s) exposures of the fringe signal in the visible.
Adaptive optics at the Subaru telescope: current capabilities and development
NASA Astrophysics Data System (ADS)
Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben
2014-08-01
Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.
Field Red Horizontal Branch Star Chemical Compositions from High Resolution Infrared Spectra
NASA Astrophysics Data System (ADS)
Sneden, Chris; Afsar, Melike; Bozkurt, Zeynep; Bocek-Topcu, Gamze; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; Kidder, Benjamin; McLane, Jacob
2017-06-01
We have observed three field red horizontal branch stars with the Immersion Grating Infrared Spectrograph (IGRINS). The high resolution (R~45000) high signal-to-noise (S/N > 200) spectra obtained with IGRINS cover the complete H-band (1.50-1.80 micron) and K-band (1.90-2.45 micron). We analyzed hundreds of lines of the ubiquitous OH, CN, and CO molecular bands, and found more than 80 lines of atomic species that were useful for abundance work. A combination of good laboratory transition probabilities (when available) and ones derived from reverse solar analyses were employed. Our transition data were checked through studies of the Arcturus Atlas spectrum. We derived abundances from synthetic spectra instead of from equivalent widths. With IGRINS data we were able to extract metallicities and abundance ratios for more than 20 elements, including several not detectable or poorly represented in optical wavelength regions. Our abundances from IGRINS spectra are in excellent accord with those derived from optical spectrum studies. These results are directly applicable to calibrations of results from lower-resolution and/or S/N infrared spectral surveys. IGRINS observations will give high reolution spectroscopic access to heavily obscured normal red giants and other cool stars with unusual element mixes.This work used the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation (NSF; grant AST-1229522), of the University of Texas at Austin, and of the Korean GMT Project of KASI. Our project also has been supported by NSF grants AST~1211585 and AST~1616040, by the University of Texas Rex G. Baker, Jr. Centennial Research Endowment, and by The Scientific and Technological Research Council of Turkey (TUBITAK, project No. 112T929).
Emission Spectroscopy of the Interior of Optically Dense Post-Detonation Fireballs
2013-03-01
sample. Light from the fiber optics was sent to spectrograph located in a shielded observation room several meters away from the explosive charge. The...spectrograph was constructed from a 1/8 m spectrometer (Oriel) interfaced to a 4096 pixel line-scan camera (Basler Sprint ) with a data collection rate... 400 ) 45 4000 (200) … FIG. 3. Time-resolved emission spectra obtained from detonation of 20 g charges of RDX containing 20 wt. % aluminum nanoparticles
Don Hendrix, master Mount Wilson and Palomar Observatories optician
NASA Astrophysics Data System (ADS)
Osterbrock, Donald E.
2003-06-01
Don O. Hendrix, with at most a high-school education and no previous experience in optics, because an outstanding astronomical optician at Mount Wilson Observatory. He started making Schmidt-camera optics for spectrographs there in 1932, and ultimately made them for all the stellar and nebular spectrographs used at the prime, Newtonian, Cassegrain, and coudé foci of the 60-inch, 100-inch, and Palomar Hale 200-inch telescopes. He completed figuring and polishing the primary 200-inch mirror, and also the Lick Observatory 120-inch primary mirror. Mount Wilson and Palomar Observatory designers Theodore Dunham Jr., Rudolph Minkowski, and Ira S. Bowen led the way for many years in developing fast, effective astronomical spectrographs, based on Hendrix's skills.
Performance of The Far Ultraviolet Spectroscopic Explorer Mirror Assemblies
NASA Technical Reports Server (NTRS)
Ohi, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffery; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.; Obenschain, Arthur (Technical Monitor)
2000-01-01
The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5-118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four coaligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 x 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50 percent and 95 percent slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The far-ultraviolet reflectivity of the SiC- and AlLiF-coated mirrors decreased about six percent and three percent, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.
Performance of the Far Ultraviolet Spectroscopic Explorer mirror assemblies
NASA Astrophysics Data System (ADS)
Ohl, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffrey; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.
2000-12-01
The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5 - 118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four co- aligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 X 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50% and 95% slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The FUV reflectivity of the SiC- and Al:LiF-coated mirrors decreased about 6% and 3%, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.
NASA Astrophysics Data System (ADS)
Fżrész, Gábor; Simcoe, Robert; Barnes, Stuart I.; Buchhave, Lars A.; Egan, Mark; Foster, Rick; Hellickson, Tim; Malonis, Andrew; Phillips, David; Shectman, Stephen; Walsworth, Ronald; Winn, Josh; Woods, Deborah
2016-08-01
The Kepler mission highlighted that precision radial velocity (PRV) follow-up is a real bottleneck in supporting transiting exoplanet surveys. The limited availability of PRV instruments, and the desire to break the "1 m/s" precision barrier, prompted the formation of a NASA-NSF collaboration `NN-EXPLORE' to call for proposals designing a new Extreme Precision Doppler Spectrograph (EPDS). By securing a significant fraction of telescope time on the 3.5m WIYN at Kitt Peak, and aiming for unprecedented long-term precision, the EPDS instrument will provide a unique tool for U.S. astronomers in characterizing exoplanet candidates identified by TESS. One of the two funded instrument concept studies is led by the Massachusetts Institute of Technology, in consortium with Lincoln Laboratories, Harvard-Smithsonian Center for Astrophysics and the Carnegie Observatories. This paper describes the instrument concept WISDOM (WIYN Spectrograph for DOppler Monitoring) prepared by this team. WISDOM is a fiber fed, environmentally controlled, high resolution (R=110k), asymmetric white-pupil echelle spectrograph, covering a wide 380-1300nm wavelength region. Its R4 and R6 echelle gratings provide the main dispersion, symmetrically mounted on either side of a vertically aligned, vacuum-enclosed carbon fiber optical bench. Each grating feeds two cameras and thus the resulting wavelength range per camera is narrow enough that the VPHG cross-dispersers and employed anti-reflection coatings are highly efficient. The instrument operates near room temperature, and so thermal background for the near-infrared arm is mitigated by thermal blocking filters and a short (1.7μm) cutoff HgCdTe detector. To achieve high resolution while maintaining small overall instrument size (100/125mm beam diameter), imposed by the limited available space within the observatory building, we chose to slice the telescope pupil 6 ways before coupling light into fibers. An atmospheric dispersion corrector and fast tip-tilt system assures maximal light gathering within the 1.2″ entrance aperture. The six octagonal fibers corresponding to each slice of the pupil employ ball-lens double scramblers to stabilize the near- and far-fields. Three apiece are coupled into each of two rectangular fibers, to mitigate modal nose and present a rectilinear illumination pattern at the spectrograph's slit plane. Wavelength solutions are derived from ThAr lamps and an extremely wide coverage dual-channel laser frequency comb. Data is reduced on the fly for evaluation by a custom pipeline, while daily archives and extended scope data reduction products are stored on NExScI servers, also managing archives and access privileges for GTO and GO programs. Note: individual papers, submitted along this main paper, describe the details of subsystems such as the optical design (Barnes et al., 9908-247), the fiber link design (Fűrész et al., 9908-281), and the pupil slicer (Egan et al., 9912-183).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaskuri, Anna, E-mail: anna.vaskuri@aalto.fi; Kärhä, Petri; Heikkilä, Anu
2015-10-15
Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with amore » silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3–8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.« less
VizieR Online Data Catalog: Very metal-poor stars in the Milky Way's halo (Carollo+, 2014)
NASA Astrophysics Data System (ADS)
Carollo, D.; Freeman, K.; Beers, T. C.; Placco, V. M.; Tumlinson, J.; Martell, S. L.
2017-07-01
The Aoki et al. (2013, J/AJ/145/13) sample comprises 137 stars observed at high spectral resolution (R~30000), in the course of four observing runs between 2008 March and October, using the High Dispersion Spectrograph (Noguchi et al. 2002PASJ...54..855N) at the Subaru Telescope. We also include 190 stars from the Yong et al. (2013, J/ApJ/762/26) sample - the 38 stars from their "program sample," and 152 stars in their literature compilation. High-resolution spectra (22000
NASA Astrophysics Data System (ADS)
Szentgyorgyi, Andrew; Baldwin, Daniel; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzmán, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Miin; Mendes de Oliveira, Claudia Mendes; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Onyuksel, Cem; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam
2016-08-01
The GMT-Consortium Large Earth Finder (G-CLEF) will be a cross-dispersed, optical band echelle spectrograph to be delivered as the first light scientific instrument for the Giant Magellan Telescope (GMT) in 2022. G-CLEF is vacuum enclosed and fiber-fed to enable precision radial velocity (PRV) measurements, especially for the detection and characterization of low-mass exoplanets orbiting solar-type stars. The passband of G-CLEF is broad, extending from 3500Å to 9500Å. This passband provides good sensitivity at blue wavelengths for stellar abundance studies and deep red response for observations of high-redshift phenomena. The design of G-CLEF incorporates several novel technical innovations. We give an overview of the innovative features of the current design. G-CLEF will be the first PRV spectrograph to have a composite optical bench so as to exploit that material's extremely low coefficient of thermal expansion, high in-plane thermal conductivity and high stiffness-to-mass ratio. The spectrograph camera subsystem is divided into a red and a blue channel, split by a dichroic, so there are two independent refractive spectrograph cameras. The control system software is being developed in model-driven software context that has been adopted globally by the GMT. G-CLEF has been conceived and designed within a strict systems engineering framework. As a part of this process, we have developed a analytical toolset to assess the predicted performance of G-CLEF as it has evolved through design phases.
Fireball multi object spectrograph: as-built optic performances
NASA Astrophysics Data System (ADS)
Grange, R.; Milliard, B.; Lemaitre, G.; Quiret, S.; Pascal, S.; Origné, A.; Hamden, E.; Schiminovich, D.
2016-07-01
Fireball (Faint Intergalactic Redshifted Emission Balloon) is a NASA/CNES balloon-borne experiment to study the faint diffuse circumgalactic medium from the line emissions in the ultraviolet (200 nm) above 37 km flight altitude. Fireball relies on a Multi Object Spectrograph (MOS) that takes full advantage of the new high QE, low noise 13 μm pixels UV EMCCD. The MOS is fed by a 1 meter diameter parabola with an extended field (1000 arcmin2) using a highly aspherized two mirror corrector. All the optical train is working at F/2.5 to maintain a high signal to noise ratio. The spectrograph (R 2200 and 1.5 arcsec FWHM) is based on two identical Schmidt systems acting as collimator and camera sharing a 2400 g/mm aspherized reflective Schmidt grating. This grating is manufactured from active optics methods by double replication technique of a metal deformable matrix whose active clear aperture is built-in to a rigid elliptical contour. The payload and gondola are presently under integration at LAM. We will present the alignment procedure and the as-built optic performances of the Fireball instrument.
Development of a slicer integral field unit for the existing optical spectrograph FOCAS: progress
NASA Astrophysics Data System (ADS)
Ozaki, Shinobu; Tanaka, Yoko; Hattori, Takashi; Mitsui, Kenji; Fukushima, Mitsuhiro; Okada, Norio; Obuchi, Yoshiyuki; Tsuzuki, Toshihiro; Miyazaki, Satoshi; Yamashita, Takuya
2014-07-01
We are developing an integral field unit (IFU) with an image slicer for the existing optical spectrograph, Faint Object Camera And Spectrograph (FOCAS), on the Subaru Telescope. The slice width is 0.43 arcsec, the slice number is 23, and the field of view is 13.5 × 9.89 arcsec2. Sky spectrum separated by about 5.7 arcmin from an object field can be simultaneously obtained, which allows us precise background subtraction. Slice mirrors, pupil mirrors and slit mirrors are all glass, and their mirror surfaces are fabricated by polishing. Our IFU is about 200 mm × 300 mm × 80 mm in size and 1 kg in weight. It is installed into a mask storage in FOCAS along with one or two mask plates, and inserted into the optical path by using the existing mask exchange mechanism. This concept allow us flexible operation such as Targets of Opportunity observations. High reflectivity of multilayer dielectric coatings offers high throughput (>80%) of the IFU. In this paper, we will report a final optical layout, its performances, and results of prototyping works.
Toroidal varied-line space (TVLS) gratings
NASA Astrophysics Data System (ADS)
Thomas, Roger J.
2003-02-01
It is a particular challenge to develop a stigmatic spectrograph for EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-space rulings (TULS). A number of solar EUV spectrographs have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. These ideas are now combined into a spectrograph concept that considers varied-line space grooves ruled onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrographs based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.
VizieR Online Data Catalog: 1H 0323+342 rest frame optical spectrum with GHAO (Leon+, 2014)
NASA Astrophysics Data System (ADS)
Leon Tavares, J.; Kotilainen, J.; Chavushyan, V.; Anorve, C.; Puerari, I.; Cruz-Gonzalez, I.; Patino-Alvarez, V.; Anton, S.; Carraminana, A.; Carrasco, L.; Guichard, J.; Karhunen, K.; Olguin-Iglesias, A.; Sanghvi, J.; Valdes, J.
2017-05-01
Within the framework of a spectrophotometric monitoring program of bright γ-ray sources (Patino-Alvarez et al. 2013, Proc. Fermi Symposium, arXiv:1303.1893), we undertook spectroscopic observations of 1H 0323+342 using the Boller & Chivens long-slit spectrograph on the 2.1 m Guillermo Haro Astrophysical Observatory (GHAO) in Sonora, Mexico. The spectra were obtained under photometric weather conditions (2012 September 17, 2013 January 9, 2013 February 7 and 11) using a slit width of 2.5 arcsec. The spectral resolution was R=15 Å and R=7 Å (FWHM) for the low-resolution and intermediate-resolution spectra, respectively. The wavelength range for the three low-resolution spectra is 3800-7100 Å, and for one intermediate-resolution spectrum the wavelength range is 4300-5900 Å. The signal-to-noise ratio (S/N) was >40 in the continuum near H{Beta}. To enable a wavelength calibration, HeAr lamp spectra were taken after each object exposure. Spectrophotometric standard stars were observed every night (at least two per night) to enable flux calibration. (1 data file).
The X-ray spectrographic telescope. [for solar corona observation
NASA Technical Reports Server (NTRS)
Vaiana, G. S.; Krieger, A. S.; Petrasso, R.; Silk, J. K.; Timothy, A. F.
1974-01-01
The S-054 X-ray telescope, which operated successfully throughout the eight-month Skylab mission, is a grazing incidence instrument with a spatial resolution of the order of 2 arc sec on axis. The total wavelength range observed by the instrument is 2 to 60 A. Crude spectral resolution within this range is achieved by means of a series of six X-ray filter materials. A spectrographic mode of operation, employing an objective grating, is used to obtain spectra of flare events and selected coronal features.
Optical and Infrared Spectroscopy of Nova Ophiuchi 2018 No.2
NASA Astrophysics Data System (ADS)
Rudy, R. J.; Mauerhan, J. C.; Russell, R. W.; Subasavage, J. P.; Wiktorowicz, S. J.; Kim, D. L.; Sitko, M. L.
2018-05-01
Over a two week period coming approximately two months after outburst, Nova Ophiuchi 2018, No.2 (CBET 4492) was observed spectroscopically using instruments from three different facilities: 2018 May 6, using the Spex instrument at the Infrared Telescope Facility (0.7-2.5 microns); 2018 May 14, using the Broadband Array Spectrograph System on the 3.6 meter Advanced Electro-Optical Systems telescope (3-13 microns); 2018 May 19, with the VNIRIS spectrograph on the Aerospace Corporation's one meter telescope (0.47-2.5 microns).
A High-Speed Spectroscopy System for Observing Lightning and Transient Luminous Events
NASA Astrophysics Data System (ADS)
Boggs, L.; Liu, N.; Austin, M.; Aguirre, F.; Tilles, J.; Nag, A.; Lazarus, S. M.; Rassoul, H.
2017-12-01
Here we present a high-speed spectroscopy system that can be used to record atmospheric electrical discharges, including lightning and transient luminous events. The system consists of a Phantom V1210 high-speed camera, a Volume Phase Holographic (VPH) grism, an optional optical slit, and lenses. The spectrograph has the capability to record videos at speeds of 200,000 frames per second and has an effective wavelength band of 550-775 nm for the first order spectra. When the slit is used, the system has a spectral resolution of about 0.25 nm per pixel. We have constructed a durable enclosure made of heavy duty aluminum to house the high-speed spectrograph. It has two fans for continuous air flow and a removable tray to mount the spectrograph components. In addition, a Watec video camera (30 frames per second) is attached to the top of the enclosure to provide a scene view. A heavy duty Pelco pan/tilt motor is used to position the enclosure and can be controlled remotely through a Rasperry Pi computer. An observation campaign has been conducted during the summer and fall of 2017 at the Florida Institute of Technology. Several close cloud-to-ground discharges were recorded at 57,000 frames per second. The spectrum of a downward stepped negative leader and a positive cloud-to-ground return stroke will be reported on.
VizieR Online Data Catalog: PTF obs. of a precursor to SNHunt 275 2015 May event (Ofek+, 2016)
NASA Astrophysics Data System (ADS)
Ofek, E. O.; Cenko, S. B.; Shaviv, N. J.; Duggan, G.; Strotjohann, N.-L.; Rubin, A.; Kulkarni, S. R.; Gal-Yam, A.; Sullivan, M.; Cao, Y.; Nugent, P. E.; Kasliwal, M. M.; Sollerman, J.; Fransson, C.; Filippenko, A. V.; Perley, D. A.; Yaron, O.; Laher, R.
2016-08-01
The Palomar Transient Factory (PTF and iPTF; Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R), using the 48inch Oschin Schmidt telescope, observed the field of SNHunt 275 starting in 2009 March. On 2013 December 12, PTF detected a new source at the location of the event, and the transient was named PTF 13efv (see Figure 1). Three images obtained between 2014 January 23 and April 25 were used as a reference. The PTF R-band photometry is listed in Table1. Most of the optical spectra were obtained with the Low Resolution Imaging Spectrometer (LRIS) on the Keck I 10m telescope, although a few spectra were also taken with the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10m telescope, the Kast spectrograph on the Shane 3m telescope at Lick Observatory, and the Gemini-North Multiobject Spectrograph (GMOS) on the 8m Gemini-N telescope. The first spectrum was obtained during the 2013 December outburst. We used the Swift/UVOT observations of SNHunt 275, since 2008, to construct the bolometric light curve of the transient. The log of Swift-XRT observations, along with the source and background X-ray counts in the individual observations, is given in Table 5. (3 data files).
Rise to SUMMIT: the Sydney University Multiple-Mirror Telescope
NASA Astrophysics Data System (ADS)
Moore, Anna M.; Davis, John
2000-07-01
The Sydney University Multiple Mirror Telescope (SUMMIT) is a medium-sized telescope designed specifically for high resolution stellar spectroscopy. Throughout the design emphasis has been placed on high efficiency at low cost. The telescope consists of four 0.46 m diameter mirrors mounted on a single welded steel frame. Specially designed mirror cells support and point each mirror, allowing accurate positioning of the images on optical fibers located at the foci of the mirrors. Four fibers convey the light to the future location of a high resolution spectrograph away from the telescope in a stable environment. An overview of the commissioning of the telescope is presented, including the guidance and automatic mirror alignment and focussing systems. SUMMIT is located alongside the Sydney University Stellar Interferometer at the Paul Wild Observatory, near Narrabri, Northern New South Wales.
NASA Astrophysics Data System (ADS)
Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.
2016-09-01
The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.
Using CETUS to study the first stars and first metals
NASA Astrophysics Data System (ADS)
Roederer, Ian; CETUS Team
2018-01-01
The nucleosynthetic signatures of the first stars and supernovae are imprinted in the compositions of the most metal-poor stars found today. Only a few tens of absorption lines are commonly found in the optical spectra of the second-generation stars, so only 5-10 elements are regularly detected. Many others (Be, B, Si, P, S, Sc, V, Cr, Mn, Co, Ni, Cu, and Zn) are expected to be present but are rarely detected, and the upper limits derived from their optical non-detections are often uninteresting. The UV part of the spectrum accessible to the high-resolution UV spectrograph on CETUS would enable all of these elements to be detected if present in the most metal-poor stars known. We illustrate some of the ground-breaking observations of these stars that could be made with this mission.
NASA Astrophysics Data System (ADS)
Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team
2017-01-01
The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.
Advances in instrumentation at the W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
Adkins, Sean M.; Armandroff, Taft E.; Johnson, James; Lewis, Hilton A.; Martin, Christopher; McLean, Ian S.; Wizinowich, Peter
2012-09-01
In this paper we describe both recently completed instrumentation projects and our current development efforts in terms of their role in the strategic plan, the key science areas they address, and their performance as measured or predicted. Projects reaching completion in 2012 include MOSFIRE, a near IR multi-object spectrograph, a laser guide star adaptive optics facility on the Keck I telescope, and an upgrade to the guide camera for the HIRES instrument on Keck I. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager (KCWI), an upgrade to the telescope control systems on both Keck telescopes, a near-IR tip/tilt sensor for the Keck I adaptive optics system, and a new grating for the OSIRIS integral field spectrograph.
The opto-mechanical design of HARMONI: a first light integral field spectrograph for the E-ELT
NASA Astrophysics Data System (ADS)
Thatte, Niranjan A.; Tecza, Mathias; Freeman, David; Gallie, Angus M.; Montgomery, David; Clarke, Fraser; Fragoso-Lopez, Ana Belén.; Fuentes, Javier; Gago, Fernando; Garcia, Adolfo; Gracia, Felix; Kosmalski, Johan; Lynn, James; Sosa, Dario; Arribas, Santiago; Bacon, Roland; Davies, Roger L.; Fusco, Thierry; Lunney, David; Mediavilla, Evencio; Remillieux, Alban; Schnetler, Hermine
2012-09-01
HARMONI is a visible and near-IR integral field spectrograph, providing the E-ELT's spectroscopic capability at first light. It obtains simultaneous spectra of 32000 spaxels, at a range of resolving powers from R~4000 to R~20000, covering the wavelength range from 0.47 to 2.45 μm. The 256 × 128 spaxel field of view has four different plate scales, with the coarsest scale (40 mas) providing a 5″ × 10″ FoV, while the finest scale is a factor of 10 finer (4mas). We describe the opto-mechanical design of HARMONI, prior to the start of preliminary design, including the main subsystems - namely the image de-rotator, the scale-changing optics, the splitting and slicing optics, and the spectrographs. We also present the secondary guiding system, the pupil imaging optics, the field and pupil stops, the natural guide star wavefront sensor, and the calibration unit.
Hartmann wavefront sensing of the corrective optics for the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Davila, Pam S.; Eichhorn, William L.; Wilson, Mark E.
1994-06-01
There is no doubt that astronomy with the `new, improved' Hubble Space Telescope will significantly advance our knowledge and understanding of the universe for years to come. The Corrective Optics Space Telescope Axial Replacement (COSTAR) was designed to restore the image quality to nearly diffraction limited performance for three of the first generation instruments; the faint object camera, the faint object spectrograph, and the Goddard high resolution spectrograph. Spectacular images have been obtained from the faint object camera after the installation of the corrective optics during the first servicing mission in December of 1993. About 85% of the light in the central core of the corrected image is contained within a circle with a diameter of 0.2 arcsec. This is a vast improvement over the previous 15 to 17% encircled energies obtained before COSTAR. Clearly COSTAR is a success. One reason for the overwhelming success of COSTAR was the ambitious and comprehensive test program conducted by various groups throughout the program. For optical testing of COSTAR on the ground, engineers at Ball Aerospace designed and built the refractive Hubble simulator to produce known amounts of spherical aberration and astigmatism at specific points in the field of view. The design goal for this refractive aberrated simulator (RAS) was to match the aberrations of the Hubble Space Telescope to within (lambda) /20 rms over the field at a wavelength of 632.8 nm. When the COSTAR optics were combined with the RAS optics, the corrected COSTAR output images were produced. These COSTAR images were recorded with a high resolution 1024 by 1024 array CCD camera, the Ball image analyzer (BIA). The image quality criteria used for assessment of COSTAR performance was encircled energy in the COSTAR focal plane. This test with the BIA was very important because it was a direct measurement of the point spread function. But it was difficult with this test to say anything quantitative about the aberration content of the corrected images. Also, from only this test it was difficult to measure important pupil parameters, such as pupil intensity profiles and pupil sizes and location. To measure the COSTAR wavefront accurately and to determine pupil parameters, another very important test was performed on the COSTAR optics. A Hartmann test of the optical system consisting of the RAS and COSTAR was conducted by the Goddard Independent Verification Team (IVT). In this paper, we first describe the unique Hartmann sensor that was developed by the IVT. Then we briefly describe the RAS and COSTAR optical systems and the test setup. Finally, we present the results of the test and compare our results with results obtained from optical analysis and from image tests with the BIA.
Thirty-Meter Telescope: A Technical Study of the InfraRed Multiobject Spectrograph
NASA Astrophysics Data System (ADS)
U, Vivian; Dekany, R.; Mobasher, B.
2013-01-01
The InfraRed Multiobject Spectrograph (IRMS) is an adaptive optics (AO)-fed, reconfigurable near-infrared multi-object spectrograph and imager on the Thirty Meter Telescope (TMT). Its design is based on the MOSFIRE spectrograph currently operating on the Keck Observatory. As one of the first three first-light instruments on the TMT, IRMS is in a mini-conceptual design phase. Here we motivate the science goals of the instrument and present the anticipated sensitivity estimates based on the combination of MOSFIRE with the AO system NFIRAOS on TMT. An assessment of the IRMS on-instrument wavefront sensor performance and vignetting issue will also be discussed.
VizieR Online Data Catalog: The quasars MMT-BOSS pilot survey (Ross+, 2012)
NASA Astrophysics Data System (ADS)
Ross, N. P.; Myers, A. D.; Sheldon, E. S.; Yeche, C.; Strauss, M. A.; Bovy, J.; Kirkpatrick, J. A.; Richards, G. T.; Aubourg, E.; Blanton, M. R.; Brandt, W. N.; Carithers, W. C.; Croft, R. A. C.; da Silva, R.; Dawson, K.; Eisenstein, D. J.; Hennawi, J. F.; Ho, S.; Hogg, D. W.; Lee, K.-G.; Lundgren, B.; McMahon, R. G.; Miralda-Escude, J.; Palanque-Delabrouille, N.; Paris, I.; Petitjean, P.; Pieri, M. M.; Rich, J.; Roe, N. A.; Schiminovich, D.; Schlegel, D. J.; Schneider, D. P.; Slosar, A. Z.; Suzuki, N.; Tinker, J. L.; Weinberg, D. H.; Weyant, A.; White, M.; Wood-Vasey, W. M.
2012-03-01
The Sloan Digital Sky Survey is now in its third phase (SDSS-III; Eisenstein et al. 2011AJ....142...72E) and is carrying out a combination of four interleaved surveys that will continue until the summer of 2014. One of those surveys, the Baryon Oscillation Spectroscopic Survey (BOSS), commenced operations in late 2009 and is using essentially all the dark time for SDSS-III. BOSS uses the same 2.5m Sloan Foundation telescope that was used in SDSS-I/II, but since BOSS will observe fainter targets, the fiber-fed spectrographs have been significantly upgraded. These upgrades include: new CCDs with improved blue and red response; 1000 2" instead of 640 3" optical diameter fibers; higher throughput gratings over a spectral range of 3600-10000Å at a resolution of about 2000, and improved optics. Prior to the commencement of BOSS spectroscopy, we carried out spectroscopy of quasar candidates selected from co-added photometry in SDSS Stripe 82. Observations of these candidates were carried out in queue mode between 2008 September and 2009 January using the Hectospec multi-fiber spectrograph on the 6.5m Multiple Mirror Telescope (MMT). In Tables 14 and 15, we provide positions, PSF photometry (as observed, uncorrected for Galactic extinction), and redshifts for confirmed quasars from the MMT survey. Objects that are not flagged Primary in the CAS are listed separately (table 15). (2 data files).
Discovery of Variable Hydrogen Balmer Absorption Lines with Inverse Decrement in PG 1411+442
NASA Astrophysics Data System (ADS)
Shi, Xi-Heng; Pan, Xiang; Zhang, Shao-Hua; Sun, Lu-Ming; Wang, Jian-Guo; Ji, Tuo; Yang, Chen-Wei; Liu, Bo; Jiang, Ning; Zhou, Hong-Yan
2017-07-01
We present new optical spectra of the well-known broad absorption line (BAL) quasar PG 1411+442, using the DBSP spectrograph at the Palomar 200 inch telescope in 2014 and 2017 and the YFOSC spectrograph at the Lijiang 2.4 m telescope in 2015. A blueshifted narrow absorption line system is clearly revealed in 2014 and 2015 consisting of hydrogen Balmer series and metastable He I lines. The velocity of these lines is similar to the centroid velocity of the UV BALs, suggesting that both originate from the outflow. The Balmer lines vary significantly between the two observations and vanished in 2017. They were also absent in the archived spectra obtained before 2001. The variation is thought to be driven by photoionization change. Besides, the absorption lines show inversed Balmer decrement, I.e., the apparent optical depths of higher-order Balmer absorption lines are larger than those of lower-order lines, which is inconsistent with the oscillator strengths of the transitions. We suggest that such anomalous line ratios can be naturally explained by the thermal structure of a background accretion disk, which allows the obscured part of the disk to contribute differently to the continuum flux at different wavelengths. High-resolution spectroscopic and photometric monitoring would be very useful to probe the structure of the accretion disk as well as the geometry and physical conditions of the outflow.
Discovery of Variable Hydrogen Balmer Absorption Lines with Inverse Decrement in PG 1411+442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xi-Heng; Pan, Xiang; Zhang, Shao-Hua
We present new optical spectra of the well-known broad absorption line (BAL) quasar PG 1411+442, using the DBSP spectrograph at the Palomar 200 inch telescope in 2014 and 2017 and the YFOSC spectrograph at the Lijiang 2.4 m telescope in 2015. A blueshifted narrow absorption line system is clearly revealed in 2014 and 2015 consisting of hydrogen Balmer series and metastable He i lines. The velocity of these lines is similar to the centroid velocity of the UV BALs, suggesting that both originate from the outflow. The Balmer lines vary significantly between the two observations and vanished in 2017. Theymore » were also absent in the archived spectra obtained before 2001. The variation is thought to be driven by photoionization change. Besides, the absorption lines show inversed Balmer decrement, i.e., the apparent optical depths of higher-order Balmer absorption lines are larger than those of lower-order lines, which is inconsistent with the oscillator strengths of the transitions. We suggest that such anomalous line ratios can be naturally explained by the thermal structure of a background accretion disk, which allows the obscured part of the disk to contribute differently to the continuum flux at different wavelengths. High-resolution spectroscopic and photometric monitoring would be very useful to probe the structure of the accretion disk as well as the geometry and physical conditions of the outflow.« less
Realizing software longevity over a system's lifetime
NASA Astrophysics Data System (ADS)
Lanclos, Kyle; Deich, William T. S.; Kibrick, Robert I.; Allen, Steven L.; Gates, John
2010-07-01
A successful instrument or telescope will measure its productive lifetime in decades; over that period, the technology behind the control hardware and software will evolve, and be replaced on a per-component basis. These new components must successfully integrate with the old, and the difficulty of that integration depends strongly on the design decisions made over the course of the facility's history. The same decisions impact the ultimate success of each upgrade, as measured in terms of observing efficiency and maintenance cost. We offer a case study of these critical design decisions, analyzing the layers of software deployed for instruments under the care of UCO/Lick Observatory, including recent upgrades to the Low Resolution Imaging Spectrometer (LRIS) at Keck Observatory in Hawaii, as well as the Kast spectrograph, Lick Adaptive Optics system, and Hamilton spectrograph, all at Lick Observatory's Shane 3-meter Telescope at Mt. Hamilton. These issues play directly into design considerations for the software intended for use at the next generation of telescopes, such as the Thirty Meter Telescope. We conduct our analysis with the future of observational astronomy infrastructure firmly in mind.
MINERVA-Red: A telescope dedicated to the discovery of planets orbiting the nearest low-mass stars
NASA Astrophysics Data System (ADS)
Sliski, David; Blake, Cullen; Johnson, John A.; Plavchan, Peter; Wittenmyer, Robert A.; Eastman, Jason D.; Barnes, Stuart; Baker, Ashley
2017-01-01
Results from Kepler and ground-based exoplanet surveys suggest that M-dwarfs host numerous small sized planets. Additionally, the discovery of the Earth-sized exoplanets orbiting Proxima Centauri and Trappist 1 demonstrate that these stars can host terrestrial planets in their habitable zones. Since low-mass stars are intrinsically faint at optical wavelengths, obtaining 1 m/s Doppler resolution to detect their planetary companions remains a challenge for instruments designed for sun-like stars. We describe a novel, high-cadence approach aimed at detecting and characterizing planets orbiting the closest low-mass stars to the Sun. MINERVA-Red is an echelle spectrograph optimized for the 'deep red', between 800 nm and 900 nm, where M-dwarfs are brightest. The spectrograph will be temperature controlled at 20C +/- 10mk and in a vacuum chamber which maintains a pressure below 0.01 mbar while using a Fabry-Perot etalon and U/Ne lamp for wavelength calibration. The spectrometer will operate with a robotic, 0.7-meter telescope at Mt. Hopkins, Arizona. We expect first light in 2017.
PUCHEROS: a cost-effective solution for high-resolution spectroscopy with small telescopes
NASA Astrophysics Data System (ADS)
Vanzi, L.; Chacon, J.; Helminiak, K. G.; Baffico, M.; Rivinius, T.; Štefl, S.; Baade, D.; Avila, G.; Guirao, C.
2012-08-01
We present PUCHEROS, the high-resolution echelle spectrograph, developed at the Center of Astro-Engineering of Pontificia Universidad Catolica de Chile to provide an effective tool for research and teaching of astronomy. The instrument is fed by a single-channel optical fibre and it covers the visible range from 390 to 730 nm in one shot, reaching a spectral resolution of about 20 000. In the era of extremely large telescopes our instrument aims to exploit the capabilities offered by small telescopes in a cost-effective way, covering the observing needs of a community of astronomers, in Chile and elsewhere, which do not necessarily need large collecting areas for their research. In particular the instrument is well suited for long-term spectroscopic monitoring of bright variable and transient targets down to a V magnitude of about 10. We describe the instrument and present a number of text case examples of observations obtained during commissioning and early science.
Normal-incidence EXtreme-Ultraviolet imaging Spectrometer - NEXUS
NASA Astrophysics Data System (ADS)
Dere, K. P.
2003-05-01
NEXUS is the result of a breakthrough optical design that incorporates new technologies to achieve high optical throughput at high spatial (1 arcsec) and spectral (1-2 km s-1) resolution over a wide field of view in an optimal extreme-ultraviolet spectral band. This achievement was made possible primarily by two technical developments. First, a coating of boron-carbide deposited onto a layer of iridium provided a greatly enhanced reflectivity at EUV wavelengths that would enable NEXUS to observe the Sun over a wide temperature range at high cadence. The reflectivity of these coatings have been measured and demonstrated in the laboratory. The second key development was the use of a variable-line-spaced toroidal grating spectrometer. The spectrometer design allowed the Sun to be imaged at high spatial and spectral resolution along a 1 solar radius-long slit and over a wavelength range from 450 to 800 Å, nearly an entire spectral order. Because the spectrograph provided a magnification of about a factor of 6, only 2 optical elements are required to achieved the desired imaging performance. Throughput was enhanced by the use of only 2 reflections. The could all be accomodated within a total instrument length of 1.5m. We would like to acknowledge support from ONR
Baldes de fotones para espectrógrafos ópticos
NASA Astrophysics Data System (ADS)
Townsend, A.; Eikenberry, S.; Warner, C.; Donoso, V.; Díaz, R.; Levato, H.
2017-10-01
In order to implement low-cost large-aperture ground-based optical spectroscopy systems we are using inexpensive commercial-off-the-shelf telescopes and components to create semi-autonomous small telescope arrays and fiber-fed spectrographs. Small telescopes used conjointly (``photonic lightbuckets'') and connected by our new fiber-optic linkage have the effective light-gathering area of a larger telescope for about one-tenth of the cost. For the first prototype, we plan to feed the the LHIRES and BHROS spectrographs at ICATE with the equivalent collecting area of a one meter telescope.
An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.
Tousey, R; Purcell, J D; Garrett, D L
1967-03-01
An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.
-- Link6 -- Integrated Photonic Spectrographs for Astronomy Optical Multi-Mode Interference Devices Dual Guiding, Modulating, and Emitting Light on Silicon Scope1 -- Scope 2 -- Lamp1 -- optical Ring Resonators
The opto-mechanical design of the GMT-consortium large earth finder (G-CLEF)
NASA Astrophysics Data System (ADS)
Mueller, Mark; Baldwin, Daniel; Bean, Jacob; Bergner, Henry; Bigelow, Bruce; Chun, Moo-Young; Crane, Jeffrey; Foster, Jeff; Fżrész, Gabor; Gauron, Thomas; Guzman, Dani; Hertz, Edward; Jordán, Andrés.; Kim, Kang-Min; McCracken, Kenneth; Norton, Timothy; Ordway, Mark; Park, Chan; Park, Sang; Podgorski, William A.; Szentgyorgyi, Andrew; Uomoto, Alan; Yuk, In-Soo
2014-08-01
The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT) currently under construction at the Las Campanas Observatory in Chile's Atacama desert region. We designed G-CLEF as a general-purpose echelle spectrograph with precision radial velocity (PRV) capability used for exoplanet detection. The radial velocity (RV) precision goal of GCLEF is 10 cm/sec, necessary for detection of Earth-sized planets orbiting stars like our Sun in the habitable zone. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures. Stability in instruments of this type is typically affected by changes in temperature, orientation, and air pressure as well as vibrations caused by telescope tracking. For these reasons, we have chosen to enclose G-CLEF's spectrograph in a thermally insulated, vibration isolated vacuum chamber and place it at a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the previously listed considerations must be managed while ensuring that performance requirements are achieved. In this paper, we discuss the design of G-CLEF's optical mounts and support structures including technical choices made to minimize the system's sensitivity to thermal gradients. A more general treatment of the properties of G-CLEF can be found elsewhere in these proceedings1. We discuss the design of the vacuum chamber which houses the irregularly shaped optical bench and optics while conforming to a challenging space envelope on GMT's azimuth platform. We also discuss the design of G-CLEF's insulated enclosure and thermal control systems which maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting the maximum thermal emission into the telescope dome environment. Finally, we discuss G-CLEF's front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.
NASA Astrophysics Data System (ADS)
Rosales-Ortega, F. F.; Castillo, E.; Sánchez, S. F.; Iglesias-Páramo, J.; Mollá, J. I. M.; Chávez, M.
2016-10-01
In order to extend the current suite of instruments offered in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE), and to explore a second-generation instrument for the future 6.5 m Telescopio San Pedro Martir (TSPM), we propose a prototype instrument that will provide un-biased wide-field (few arcmin) spectroscopic information, with the flexibility of operating at different spectral resolutions (R˜1-104), with a spatial resolution limited by seeing, and therefore to be used in a wide range of astronomical problems. This instrument will make use of the Fourier Transform Spectroscopy technique, which has been proved to be feasible in the optical wavelength range. Here we give the basic technical description of a Fourier transform spectrograph, as well as the technical advantages and weaknesses, and the science cases in which this instrument can be implemented.
NASA Astrophysics Data System (ADS)
Bely, Pierre Y.; Breckinridge, James B.
The present volume on space astronomical telescopes and instruments discusses lessons from the HST, telescopes on the moon, future space missions, and mirror fabrication and active control. Attention is given to the in-flight performance of the Goddard high-resolution spectrograph of the HST, the initial performance of the high-speed photometer, results from HST fine-guidance sensors, and reconstruction of the HST mirror figure from out-of-focus stellar images. Topics addressed include system concepts for a large UV/optical/IR telescope on the moon, optical design considerations for next-generation space and lunar telescopes, the implications of lunar dust for astronomical observatories, and lunar liquid-mirror telescopes. Also discussed are space design considerations for the Space Infrared Telescope Facility, the Hubble extrasolar planet interferometer, Si:Ga focal-plane arrays for satellite and ground-based telescopes, microchannel-plate detectors for space-based astronomy, and a method for making ultralight primary mirrors.
Optical Reflection Spectroscopy of GEO Objects
NASA Technical Reports Server (NTRS)
Seitzer, Patrick; Cardona, Tammaso; Lederer, Susan M.; Cowardin, Heather; Abercromby, Kira J.; Barker, Edwin S.; Bedard, Donald
2013-01-01
We report on optical reflection spectroscopy of geosynchronous (GEO) objects in the US Space Surveillance Network (SSN) catalog. These observations were obtained using imaging spectrographs on the 6.5-m Magellan telescopes at the Las Campanas Observatory in Chile. Our goal is to determine the composition of these objects by comparing these spectral observations with ground-based laboratory measurements of spacecraft materials. The observations are all low resolution (1 nm after smoothing) obtained through a 5 arcsecond wide slit and using a grism as the dispersing element. The spectral range covered was from 450 nm to 800 nm. All spectra were flux calibrated using observations of standard stars with the exact same instrumental setup. An effort was made to obtain all observations within a limited range of topocentric phase angle, although the solar incident angle is unknown due to the lack of any knowledge of the attitude of the observed surface at the time of observation.
SCAT Classification of 4 Optical Transients
NASA Astrophysics Data System (ADS)
Tucker, Michael A.; Rowan, Dominick M.; Shappee, Benjamin J.; Dong, Subo; Bose, Subhash; Stanek, K. Z.
2018-06-01
The Spectral Classification of Astronomical Transients (SCAT) survey (ATel #11444) presents the classification of 4 optical transients. We report optical spectroscopy (330-970nm) taken with the University of Hawaii 88-inch (UH88) telescope using the SuperNova Integral Field Spectrograph (SNIFS).
The optical design of a visible adaptive optics system for the Magellan Telescope
NASA Astrophysics Data System (ADS)
Kopon, Derek
The Magellan Adaptive Optics system will achieve first light in November of 2012. This AO system contains several subsystems including the 585-actuator concave adaptive secondary mirror, the Calibration Return Optic (CRO) alignment and calibration system, the CLIO 1-5 microm IR science camera, the movable guider camera and active optics assembly, and the W-Unit, which contains both the Pyramid Wavefront Sensor (PWFS) and the VisAO visible science camera. In this dissertation, we present details of the design, fabrication, assembly, alignment, and laboratory performance of the VisAO camera and its optical components. Many of these components required a custom design, such as the Spectral Differential Imaging Wollaston prisms and filters and the coronagraphic spots. One component, the Atmospheric Dispersion Corrector (ADC), required a unique triplet design that had until now never been fabricated and tested on sky. We present the design, laboratory, and on-sky results for our triplet ADC. We also present details of the CRO test setup and alignment. Because Magellan is a Gregorian telescope, the ASM is a concave ellipsoidal mirror. By simulating a star with a white light point source at the far conjugate, we can create a double-pass test of the whole system without the need for a real on-sky star. This allows us to test the AO system closed loop in the Arcetri test tower at its nominal design focal length and optical conjugates. The CRO test will also allow us to calibrate and verify the system off-sky at the Magellan telescope during commissioning and periodically thereafter. We present a design for a possible future upgrade path for a new visible Integral Field Spectrograph. By integrating a fiber array bundle at the VisAO focal plane, we can send light to a pre-existing facility spectrograph, such as LDSS3, which will allow 20 mas spatial sampling and R˜1,800 spectra over the band 0.6-1.05 microm. This would be the highest spatial resolution IFU to date, either from the ground or in space.
The LST scientific instruments
NASA Technical Reports Server (NTRS)
Levin, G. M.
1975-01-01
Seven scientific instruments are presently being studied for use with the Large Space Telescope (LST). These instruments are the F/24 Field Camera, the F/48-F/96 Planetary Camera, the High Resolution Spectrograph, the Faint Object Spectrograph, the Infrared Photometer, and the Astrometer. These instruments are being designed as facility instruments to be replaceable during the life of the Observatory.
VizieR Online Data Catalog: l Car radial velocity curves (Anderson, 2016)
NASA Astrophysics Data System (ADS)
Anderson, R. I.
2018-02-01
Line-of-sight (radial) velocities of the long-period classical Cepheid l Carinae were measured from 925 high-quality optical spectra recorded using the fiber-fed high-resolution (R~60,000) Coralie spectrograph located at the Euler telescope at La Silla Observatory, Chile. The data were taken between 2014 and 2016. This is the full version of Tab. 2 presented partially in the paper. Line shape parameters (depth, width, asymmetry) are listed for the computed cross-correlation profiles (CCFs). Radial velocities were determined using different techniques (Gaussian, bi-Gaussian) and measured on CCFs computed using three different numerical masks (G2, weak lines, strong lines). (1 data file).
CAB Contribution to HARMONI: The first light spectrograph of the E-ELT
NASA Astrophysics Data System (ADS)
Piqueras López, J.; Arribas, S.; Calcines, A.
2017-03-01
HARMONI (High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph) is a visible and near-infrared (0.47 to 2.45 μm) integral field spectrograph selected as a first-light instrument for the European Extremely Large Telescope (E-ELT). With four spatial scales (60, 20, 10 and 4 mas) and a wide range of spectral resolving powers (R=3500, 7500, 20000), HARMONI will allow scientists to address many of the E-ELT science cases. The HARMONI Consortium is led by the University of Oxford, and is also formed by the UK Astronomy Technology Centre (UKATC, Edinburgh, UK), Centre de Recherche Astrophysique de Lyon (CRAL), Laboratoire d'Astrophysique de Marseille (LAM), Instituto de Astrofísica de Canarias (IAC, Spain) and the Centro de Astrobiología (CAB INTA-CSIC, Spain). We summarize here the current status of the project, and describe the participation of CAB to design and manufacture two of the instrument sub-systems: the calibration unit and the secondary guiding module. The calibration unit will simulate the optical output of the telescope, and provide the functionality needed to illuminate the focal plane in such a way that the following type of data can be obtained: data aimed at removing the instrumental signature from the raw data and to convert the data into a data product that uses physical units, data required for monitoring the status of the instrument, and data required for calibrating the secondary guiding subsystem. The secondary guiding subsystem basic requirement is to provide knowledge (relative or absolute) of the location of the science focal plane on timescales of a few seconds and longer (up to months), with an accuracy of 2mas or 0.1x the input FWHM (at H/K bands), whichever is greater. The subsystem should achieve this level performance for different observation modes, e.g. no- AO, GLAO and LTAO modes.
Completing the census of young stars near the Sun with the FunnelWeb spectroscopic survey
NASA Astrophysics Data System (ADS)
Lawson, Warrick; Murphy, Simon; Tinney, Christopher G.; Ireland, Michael; Bessell, Michael S.
2016-06-01
From late 2016, the Australian FunnelWeb survey will obtain medium-resolution (R~2000) spectra covering the full optical range for 2 million of the brightest stars (I<12) in the southern sky. It will do so using an upgraded UK Schmidt Telescope at Siding Spring Observatory, equipped with a revolutionary, parallelizable optical fibre positioner ("Starbugs") and spectrograph. The ability to reconfigure a multi-fibre plate in less than 5 minutes allows FunnelWeb to observe more stars per night than any other competing multi-fibre spectrograph and enables a range of previously inefficient bright star science not attempted since the completion of the HD catalogues in the 1940s. Among its key science aims, FunnelWeb will obtain spectra for thousands of young and adolescent (<1 Gyr) stars near the Sun (<200 pc) across a wide range of spectral types. These spectra will include well-studied youth and activity indicators such as H-alpha, Li I 6708A, Ca II H&K, as well as surface gravity diagnostics (e.g. Na I, K I). In addition, FunnelWeb will obtain stellar parameters (Teff, logg, vsini), abundances (Fe/H, alpha/Fe) and radial velocities to 1-2 km/s for every star in the survey. When combined with high precision parallaxes and proper motions from the Gaia mission expected from 2017, this dataset will provide a near-complete census of adolescent stars in the solar neighbourhood. It will help reveal the typical formation environments of young solar-type stars, how such stars move from their stellar nurseries to their adult lives in the field, and identifying thousands of high-priority targets for follow-up direct imaging (GPI, SPHERE), transit (including TESS) and radial velocity exoplanet studies. In this poster contribution we introduce the FunnelWeb survey, its science goals and input catalogue, as well as provide an update on the status of the fibre positioner and spectrograph commissioning at Siding Spring.
Spectroscopic Classifications of Optical Transients with the Lick Shane telescope
NASA Astrophysics Data System (ADS)
Rojas-Bravo, C.; Xhakaj, E.; Pan, Y.-C.; Kilpatrick, C. D.; Foley, R. J.
2017-07-01
We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane telescope. Targets were supplied by ASAS-SN, ATLAS, Gaia, and POSS.
Performance, results, and prospects of the visible spectrograph VEGA on CHARA
NASA Astrophysics Data System (ADS)
Mourard, Denis; Challouf, Mounir; Ligi, Roxanne; Bério, Philippe; Clausse, Jean-Michel; Gerakis, Jérôme; Bourges, Laurent; Nardetto, Nicolas; Perraut, Karine; Tallon-Bosc, Isabelle; McAlister, H.; ten Brummelaar, T.; Ridgway, S.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.
2012-07-01
In this paper, we review the current performance of the VEGA/CHARA visible spectrograph and make a review of the most recent astrophysical results. The science programs take benefit of the exceptional angular resolution, the unique spectral resolution and one of the main features of CHARA: Infrared and Visible parallel operation. We also discuss recent developments concerning the tools for the preparation of observations and important features of the data reduction software. A short discussion of the future developments will complete the presentation, directed towards new detectors and possible new beam combination scheme for improved sensitivity and imaging capabilities.
VizieR Online Data Catalog: RAVE J203843.2-002333 high-resolution spectroscopy (Placco+, 2017)
NASA Astrophysics Data System (ADS)
Placco, V. M.; Holmbeck, E. M.; Frebel, A.; Beers, T. C.; Surman, R. A.; Ji, A. P.; Ezzeddine, R.; Points, S. D.; Kaleida, C. C.; Hansen, T. T.; Sakari, C. M.; Casey, A. R.
2018-03-01
Medium-resolution spectroscopic follow-up was carried out with the Mayall 4m Telescope at Kitt Peak National Observatory. The observations were obtained in semester 2014B, using the R-C spectrograph covering the wavelength range [3500,6000]Å (R~1600). High-resolution spectroscopic data were obtained during the 2014B and 2016A semesters, using the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the Magellan/Clay Telescope at Las Campanas Observatory. For the 2014B run, the setup yielding a resolving power of R~38000 (blue spectral range) and R~30000 (red spectral range). For the 2016A run, the resolving power was R~66000 (coverage [~3500,9000]Å). (4 data files).
NASA Astrophysics Data System (ADS)
Aguado, David S.; González Hernández, Jonay I.; Allende Prieto, Carlos; Rebolo, Rafael
2018-01-01
We report the discovery of the carbon-rich hyper metal-poor unevolved star J0815+4729. This dwarf star was selected from SDSS/BOSS as a metal-poor candidate and follow-up spectroscopic observations at medium resolution were obtained with the Intermediate dispersion Spectrograph and Imaging System (ISIS) at William Herschel Telescope and the Optical System for Imaging and low-intermediate-Resolution Integrated Spectroscopy (OSIRIS) at Gran Telescopio de Canarias. We use the FERRE code to derive the main stellar parameters, {T}{eff}=6215+/- 82 K, and {log}g=4.7+/- 0.5, an upper limit to the metallicity of [Fe/H] ≤ ‑5.8, and a carbon abundance of [C/Fe] ≥ +5.0, while [α /{Fe}]=0.4 is assumed. The metallicity upper limit is based on the Ca II K line, which at the resolving power of the OSIRIS spectrograph cannot be resolved from possible interstellar calcium. The star could be the most iron-poor unevolved star known and also be among the ones with the largest overabundances of carbon. High-resolution spectroscopy of J0815+4729 will certainly help to derive other important elemental abundances, possibly providing new fundamental constraints on the early stages of the universe, the formation of the first stars, and the properties of the first supernovae. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Program ID GTC90-15B and the Discretionary Director Time GTC03-16ADDT and also based on observations made with the William Herschel Telescope (WHT).
Optical fiber systems for the BigBOSS instrument
NASA Astrophysics Data System (ADS)
Edelstein, Jerry; Poppett, Claire; Sirk, Martin; Besuner, Robert; Lafever, Robin; Allington-Smith, Jeremy R.; Murray, Graham J.
2012-09-01
We describe the fiber optics systems for use in BigBOSS, a proposed massively parallel multi-object spectrograph for the Kitt Peak Mayall 4-m telescope that will measure baryon acoustic oscillations to explore dark energy. BigBOSS will include 5,000 optical fibers each precisely actuator-positioned to collect an astronomical target’s flux at the telescope prime-focus. The fibers are to be routed 40m through the telescope facility to feed ten visible-band imaging spectrographs. We report on our fiber component development and performance measurement program. Results include the numerical modeling of focal ratio degradation (FRD), observations of actual fibers’ collimated and converging beam FRD, and observations of FRD from different types of fiber terminations, mechanical connectors, and fusion-splice connections.
ERIS: preliminary design phase overview
NASA Astrophysics Data System (ADS)
Kuntschner, Harald; Jochum, Lieselotte; Amico, Paola; Dekker, Johannes K.; Kerber, Florian; Marchetti, Enrico; Accardo, Matteo; Brast, Roland; Brinkmann, Martin; Conzelmann, Ralf D.; Delabre, Bernard A.; Duchateau, Michel; Fedrigo, Enrico; Finger, Gert; Frank, Christoph; Rodriguez, Fernando G.; Klein, Barbara; Knudstrup, Jens; Le Louarn, Miska; Lundin, Lars; Modigliani, Andrea; Müller, Michael; Neeser, Mark; Tordo, Sebastien; Valenti, Elena; Eisenhauer, Frank; Sturm, Eckhard; Feuchtgruber, Helmut; George, Elisabeth M.; Hartl, Michael; Hofmann, Reiner; Huber, Heinrich; Plattner, Markus P.; Schubert, Josef; Tarantik, Karl; Wiezorrek, Erich; Meyer, Michael R.; Quanz, Sascha P.; Glauser, Adrian M.; Weisz, Harald; Esposito, Simone; Xompero, Marco; Agapito, Guido; Antichi, Jacopo; Biliotti, Valdemaro; Bonaglia, Marco; Briguglio, Runa; Carbonaro, Luca; Cresci, Giovanni; Fini, Luca; Pinna, Enrico; Puglisi, Alfio T.; Quirós-Pacheco, Fernando; Riccardi, Armando; Di Rico, Gianluca; Arcidiacono, Carmelo; Dolci, Mauro
2014-07-01
The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation adaptive optics near-IR imager and spectrograph for the Cassegrain focus of the Very Large Telescope (VLT) Unit Telescope 4, which will soon make full use of the Adaptive Optics Facility (AOF). It is a high-Strehl AO-assisted instrument that will use the Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). The project has been approved for construction and has entered its preliminary design phase. ERIS will be constructed in a collaboration including the Max- Planck Institut für Extraterrestrische Physik, the Eidgenössische Technische Hochschule Zürich and the Osservatorio Astrofisico di Arcetri and will offer 1 - 5 μm imaging and 1 - 2.5 μm integral field spectroscopic capabilities with a high Strehl performance. Wavefront sensing can be carried out with an optical high-order NGS Pyramid wavefront sensor, or with a single laser in either an optical low-order NGS mode, or with a near-IR low-order mode sensor. Due to its highly sensitive visible wavefront sensor, and separate near-IR low-order mode, ERIS provides a large sky coverage with its 1' patrol field radius that can even include AO stars embedded in dust-enshrouded environments. As such it will replace, with a much improved single conjugated AO correction, the most scientifically important imaging modes offered by NACO (diffraction limited imaging in the J to M bands, Sparse Aperture Masking and Apodizing Phase Plate (APP) coronagraphy) and the integral field spectroscopy modes of SINFONI, whose instrumental module, SPIFFI, will be upgraded and re-used in ERIS. As part of the SPIFFI upgrade a new higher resolution grating and a science detector replacement are envisaged, as well as PLC driven motors. To accommodate ERIS at the Cassegrain focus, an extension of the telescope back focal length is required, with modifications of the guider arm assembly. In this paper we report on the status of the baseline design. We will also report on the main science goals of the instrument, ranging from exoplanet detection and characterization to high redshift galaxy observations. We will also briefly describe the SINFONI-SPIFFI upgrade strategy, which is part of the ERIS development plan and the overall project timeline.
STRUCTURE OF PROMINENCE LEGS: PLASMA AND MAGNETIC FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levens, P. J.; Labrosse, N.; Schmieder, B.
We investigate the properties of a “solar tornado” observed on 2014 July 15, and aim to link the behavior of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the Interface Region Imaging Spectrograph (IRIS) spectrograph, and the Hinode/Solar Optical Telescope (SOT) instrument. Along with spectropolarimetry provided by the Télescope Héliographique pour l’Etude du Magnétisme et des Instabilités Solaires telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are stronglymore » absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca ii (SOT), are not visible in the IRIS Mg ii slit-jaw images. This is explained by the large optical thickness of the structures in Mg ii, which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of ±10 km s{sup −1} in the tornado-like structure. Between the two legs we see loops in Mg ii, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures that are unrelated to the loops. This kind of “tornado” scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.« less
Structure of Prominence Legs: Plasma and Magnetic Field
NASA Astrophysics Data System (ADS)
Levens, P. J.; Schmieder, B.; Labrosse, N.; López Ariste, A.
2016-02-01
We investigate the properties of a “solar tornado” observed on 2014 July 15, and aim to link the behavior of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the Interface Region Imaging Spectrograph (IRIS) spectrograph, and the Hinode/Solar Optical Telescope (SOT) instrument. Along with spectropolarimetry provided by the Télescope Héliographique pour l’Etude du Magnétisme et des Instabilités Solaires telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are strongly absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca II (SOT), are not visible in the IRIS Mg II slit-jaw images. This is explained by the large optical thickness of the structures in Mg II, which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of ±10 km s-1 in the tornado-like structure. Between the two legs we see loops in Mg II, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures that are unrelated to the loops. This kind of “tornado” scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.
NASA Astrophysics Data System (ADS)
Higdon, S. J. U.; Weedman, D.; Higdon, J. L.; Houck, J. R.; Soifer, B. T.; Armus, L.; Charmandaris, V.; Herter, T. L.; Brandl, B. R.; Brown, M. J. I.; Dey, A.; Jannuzi, B.; Le Floc'h, E.; Rieke, M.
2004-12-01
We have surveyed a field covering 8.4 degrees2 within the NOAO Deep Wide Field Survey region in Boötes with the Multiband Imaging Photometer on the Spitzer Space Telescope to a limiting 24 um flux density of 0.3 mJy, identifying ˜ 22,000 point sources. Thirty one sources from this survey with F(24 um) > 0.75 mJy , which are optically ``invisible'' (R > 26) or very faint (I > 24) have been observed with the low-resolution modules of the Infrared Spectrograph on SST. The spectra were extracted using the IRS SMART spectral analysis package in order to optimize their signal to noise. A suite of mid-IR spectral templates of well known galaxies, observed as part of the IRS GTO program, is used to perform formal fits to the spectral energy distribution of the Boötes sources. These fits enable us to measure their redshift, to calculate the depth of the 9.7 um silicate feature along with the strength of 7.7 um PAH, as well as to estimate their bolometric luminosities. We compare the mid-IR slope, the measured PAH luminosity, and the optical depth of these sources with those of galaxies in the local Universe. As a result we are able to estimate the contribution of a dust enshrouded active nucleus to the mid-IR and bolometric luminosity of these systems. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through Contract Number 1257184 issued by JPL/Caltech.
MEGARA Optics: Sub-aperture Stitching Interferometry for Large Surfaces
NASA Astrophysics Data System (ADS)
Aguirre-Aguirre, Daniel; Carrasco, Esperanza; Izazaga-Pérez, Rafael; Páez, Gonzalo; Granados-Agustín, Fermín; Percino-Zacarías, Elizabeth; Gil de Paz, Armando; Gallego, Jesús; Iglesias-Páramo, Jorge; Villalobos-Mendoza, Brenda
2018-04-01
In this work, we present a detailed analysis of sub-aperture interferogram stitching software to test circular and elliptical clear apertures with diameters and long axes up to 272 and 180 mm, respectively, from the Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA). MEGARA is a new spectrograph for the Gran Telescopio Canarias (GTC). It offers a resolution between 6000 and 20000 via the use of volume phase holographic gratings. It has an integral field unit and a set of robots for multi-object spectroscopy at the telescope focal plane. The output end of the fibers forms the spectrograph pseudo-slit. The fixed geometry of the collimator and camera configuration requires prisms in addition to the flat windows of the volume phase holographic gratings. There are 73 optical elements of large aperture and high precision manufactured in Mexico at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the Centro de Investigaciones en Óptica (CIO). The principle of stitching interferometry is to divide the surface being tested into overlapping small sections, which allows an easier analysis (Kim & Wyant 1981). This capability is ideal for non-contact tests for unique and large optics as required by astronomical instruments. We show that the results obtained with our sub-aperture stitching algorithm were consistent with other methods that analyze the entire aperture. We used this method to analyze the 24 MEGARA prisms that could not be tested otherwise. The instrument has been successfully commissioned at GTC in all the spectral configurations. The fulfillment of the irregularity specifications was one of the necessary conditions to comply with the spectral requirements.
Beyond MOS and fibers: Optical Fourier-transform Imaging Unit for Cananea Observatory (OFIUCO)
NASA Astrophysics Data System (ADS)
Nieto-Suárez, M. A.; Rosales-Ortega, F. F.; Castillo, E.; García, P.; Escobedo, G.; Sánchez, S. F.; González, J.; Iglesias-Páramo, J.; Mollá, M.; Chávez, M.; Bertone, E.; et al.
2017-11-01
Many physical processes in astronomy are still hampered by the lack of spatial and spectral resolution, and also restricted to the field-of-view (FoV) of current 2D spectroscopy instruments available worldwide. It is due to that, many of the ongoing or proposed studies are based on large-scale imaging and/or spectroscopic surveys. Under this philosophy, large aperture telescopes are dedicated to the study of intrinsically faint and/or distance objects, covering small FoVs, with high spatial resolution, while smaller telescopes are devoted to wide-field explorations. However, future astronomical surveys, should be addressed by acquiring un-biases, spatially resolved, high-quality spectroscopic information for a wide FoV. Therefore, and in order to improve the current instrumental offer in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE); and to explore a possible instrument for the future Telescopio San Pedro Mártir (6.5m), we are currently integrating at INAOE an instrument prototype that will provide us with un-biased wide-field (few arcmin) spectroscopic information, and with the flexibility of operating at different spectral resolutions (R 1-20000), with a spatial resolution limited by seeing, and therefore, to be used in a wide range of astronomical problems. This instrument called OFIUCO: Optical Fourier-transform Imaging Unit for Cananea Observatory, will make use of the Fourier Transform Spectroscopic technique, which has been proved to be feasible in the optical wavelength range (350-1000 nm) with designs such as SITELLE (CFHT). We describe here the basic technical description of a Fourier transform spectrograph with important modifications from previous astronomical versions, as well as the technical advantages and weakness, and the science cases in which this instrument can be implemented.
TCS and peripheral robotization and upgrade on the ESO 1-meter telescope at La Silla Observatory
NASA Astrophysics Data System (ADS)
Ropert, S.; Suc, V.; Jordán, A.; Tala, M.; Liedtke, P.; Royo, S.
2016-07-01
In this work we describe the robotization and upgrade of the ESO 1m telescope located at La Silla Observatory. The ESO 1m telescope was the first telescope installed in La Silla, in 1966. It now hosts as a main instrument the FIber Dual EchellE Optical Spectrograph (FIDEOS), a high resolution spectrograph designed for precise Radial Velocity (RV) measurements on bright stars. In order to meet this project's requirements, the Telescope Control System (TCS) and some of its mechanical peripherals needed to be upgraded. The TCS was also upgraded into a modern and robust software running on a group of single board computers interacting together as a network with the CoolObs TCS developed by ObsTech. One of the particularities of the CoolObs TCS is that it allows to fuse the input signals of 2 encoders per axis in order to achieve high precision and resolution of the tracking with moderate cost encoders. One encoder is installed on axis at the telescope and the other on axis at the motor. The TCS was also integrated with the FIDEOS instrument system so that all the system can be controlled through the same remote user interface. Our modern TCS unit allows the user to run observations remotely through a secured internet web interface, minimizing the need of an on-site observer and opening a new age in robotic astronomy for the ESO 1m telescope.
Astrophysics on the Edge: New Instrumental Developments at the ING
NASA Astrophysics Data System (ADS)
Santander-García, M.; Rodríguez-Gil, P.; Tulloch, S.; Rutten, R. G. M.
Present and future key instruments at the Isaac Newton Group of Telescopes (ING) are introduced, and their corresponding latest scientific highlights are presented. GLAS (Ground-layer Laser Adaptive optics System): The recently installed 515 nm laser, mounted on the WHT (William Herschel Telescope), produces a bright artificial star at a height of 15 km. This enables almost full-sky access to Adaptive Optics observations. Recent commissioning observations with the NAOMI+GLAS system showed that very significant improvement in image quality can be obtained, e.g. down to 0.16 arcsec in the H band. QUCAM2 and QUCAM3: Two Low Light Level (L3) CCD cameras for fast or faint-object spectroscopy with the twin-armed ISIS spectrograph at the WHT. Their use opens a new window of high time-frequency observations, as well as access to fainter objects. They are powerful instruments for research on compact objects such as white dwarfs, neutron stars or black holes, stellar pulsations, and compact binaries.HARPS-NEF (High-Accuracy Radial-velocity Planet Searcher of the New Earths Facility): An extremely stable, high-resolution (R ˜ 120, 000) spectrograph for the WHT which is being constructed for commissioning in 2009-2010. Its radial velocity stability of < 1 m s- 1 may in the future be even further improved by using a Fabry-Perot laser-comb, a wavelength calibration unit capable of achieving an accuracy of 1 cm s- 1. This instrument will effectively allow to search for earth-like exoplanets.
NASA Astrophysics Data System (ADS)
Davila, J. M.; O'Neill, J. F.
2013-12-01
Spectrographs provide a unique window into plasma parameters in the solar atmosphere. In fact spectrographs provide the most accurate measurements of plasma parameters such as density, temperature, and flow speed. However, traditionally spectrographic instruments have suffered from the inability to cover large spatial regions of the Sun quickly. To cover an active region sized spatial region, the slit must be rastered over the area of interest with an exposure taken at each pointing location. Because of this long cycle time, the spectra of dynamic events like flares, CME initiations, or transient brightening are obtained only rarely. And even if spectra are obtained they are either taken over an extremely small spatial region, or the spectra are not co-temporal across the raster. Either of these complicates the interpretation of the spectral raster results. Imagers are able to provide high time and spatial resolution images of the full Sun but with limited spectral resolution. The telescopes onboard the Solar Dynamics Observatory (SDO) normally take a full disk solar image every 10 seconds with roughly 1 arcsec spatial resolution. However the spectral resolution of the multilayer imagers on SDO is of order 100 times less than a typical spectrograph. Because of this it is difficult to interpret multilayer imaging data to accurately obtain plasma parameters like temperature and density from these data, and there is no direct measure of plasma flow velocity. SERTS and EIS partially addressed this problem by using a wide slit to produce monochromatic images with limited FOV to limit overlapping. However dispersion within the wide slit image remained a problem which prevented the determination of intensity, Doppler shift, and line width in the wide slit. Kankelborg and Thomas introduced the idea of using multiple images -1, 0, and +1 spectral orders of a single emission line. This scheme provided three independent images to measure the three spectral line parameters in each pixel with the Multi-Order Solar EUV Spectrograph (MOSES) instrument. We suggest a reconstruction approach based on tomographic methods with regularization. Preliminary results show that the typical Doppler shift and line width error introduced by the reconstruction method is of order a few km/s at 300 A. This is on the order of the error obtained in narrow slit spectrographs but with data obtained over a two-dimensional field of view.
The end-to-end simulator for the E-ELT HIRES high resolution spectrograph
NASA Astrophysics Data System (ADS)
Genoni, M.; Landoni, M.; Riva, M.; Pariani, G.; Mason, E.; Di Marcantonio, P.; Disseau, K.; Di Varano, I.; Gonzalez, O.; Huke, P.; Korhonen, H.; Li Causi, Gianluca
2017-06-01
We present the design, architecture and results of the End-to-End simulator model of the high resolution spectrograph HIRES for the European Extremely Large Telescope (E-ELT). This system can be used as a tool to characterize the spectrograph both by engineers and scientists. The model allows to simulate the behavior of photons starting from the scientific object (modeled bearing in mind the main science drivers) to the detector, considering also calibration light sources, and allowing to perform evaluation of the different parameters of the spectrograph design. In this paper, we will detail the architecture of the simulator and the computational model which are strongly characterized by modularity and flexibility that will be crucial in the next generation astronomical observation projects like E-ELT due to of the high complexity and long-time design and development. Finally, we present synthetic images obtained with the current version of the End-to-End simulator based on the E-ELT HIRES requirements (especially high radial velocity accuracy). Once ingested in the Data reduction Software (DRS), they will allow to verify that the instrument design can achieve the radial velocity accuracy needed by the HIRES science cases.
SOAR Optical Imager (SOI) | SOAR
SPARTAN Near-IR Camera Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER AVAILABLE SOAR ?: ADS link to SOI instrument SPIE paper Last update: C. Briceño, Aug 23, 2017 SOAR Optical Imager
Lhires III High Resolution Spectrograph
NASA Astrophysics Data System (ADS)
Thizy, O.
2007-05-01
By spreading the light from celestial objects by wavelength, spectroscopists are like detectives looking for clues and identifying guilty phenomena that shape their spectra. We will review some basic principles in spectroscopy that will help, at our amateur level, to understand how spectra are shaped. We will review the Lhires III highresolution spectrograph Mark Three that was designed to reveal line profile details and subtle changes. Then, we will do an overview of educational and scientific projects that are conducted with the Lhires III and detail the COROT Be star program and the BeSS database for which the spectrograph is a key instrument.
A soft x-ray octadecyl hydrogen maleate crystal spectrograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, P.Z.; Fill, E.E.; Tietang, G.
1996-03-01
A crystal spectrograph is described which can be used to investigate laser-produced plasmas in the region of soft x rays at wavelengths of up to 60 A. The spectrograph uses an octadecyl hydrogen maleate crystal with a 2{ital d} of 63.5 A, combined with a very thin carbon filter (3000 A thick). As examples of its application, soft x-ray spectra in the range of 43{endash}51 A from laser plasmas of Si and Cu are presented. A spectral resolution of {lambda}/{Delta}{lambda}=1100 is deduced from the spectra. {copyright} {ital 1996 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Shectman, Stephen A.; Johns, Matthew
2003-02-01
Commissioning of the two 6.5-meter Magellan telescopes is nearing completion at the Las Campanas Observatory in Chile. The Magellan 1 primary mirror was successfully aluminized at Las Campanas in August 2000. Science operations at Magellan 1 began in February 2001. The second Nasmyth focus on Magellan 1 went into operation in September 2001. Science operations on Magellan 2 are scheduled to begin shortly. The ability to deliver high-quality images is maintained at all times by the simultaneous operation of the primary mirror support system, the primary mirror thermal control system, and a real-time active optics system, based on a Shack-Hartmann image analyzer. Residual aberrations in the delivered image (including focus) are typically 0.10-0.15" fwhm, and real images as good as 0.25" fwhm have been obtained at optical wavelengths. The mount points reliably to 2" rms over the entire sky, using a pointing model which is stable from year to year. The tracking error under typical wind conditions is better than 0.03" rms, although some degradation is observed under high wind conditions when the dome is pointed in an unfavorable direction. Instruments used at Magellan 1 during the first year of operation include two spectrographs previously used at other telescopes (B&C, LDSS-2), a mid-infrared imager (MIRAC) and an optical imager (MAGIC, the first Magellan-specific facility instrument). Two facility spectrographs are scheduled to be installed shortly: IMACS, a wide-field spectrograph, and MIKE, a double echelle spectrograph.
Fiber link design for the NASA-NSF extreme precision Doppler spectrograph concept "WISDOM"
NASA Astrophysics Data System (ADS)
Fżrész, Gábor; Pawluczyk, Rafal; Fournier, Paul; Simcoe, Robert; Woods, Deborah F.
2016-08-01
We describe the design of the fiber-optic coupling and light transfer system of the WISDOM (WIYN Spectrograph for DOppler Monitoring) instrument. As a next-generation Precision Radial Velocity (PRV) spectrometer, WISDOM incorporates lessons learned from HARPS about thermal, pressure, and gravity control, but also takes new measures to stabilize the spectrograph illumination, a subject that has been overlooked until recently. While fiber optic links provide more even illumination than a conventional slit, careful engineering of the interface is required to realize their full potential. Conventional round fiber core geometries have been used successfully in conjunction with optical double scramblers, but such systems still retain a memory of the input illumination that is visible in systems seeking sub-m/s PRV precision. Noncircular fibers, along with advanced optical scramblers, and careful optimization of the spectrograph optical system itself are therefore necessary to study Earth-sized planets. For WISDOM, we have developed such a state-of-the-art fiber link concept. Its design is driven primarily by PRV requirements, but it also manages to preserve high overall throughput. Light from the telescope is coupled into a set of six, 32 μm diameter octagonal core fibers, as high resolution is achieved via pupil slicing. The low-OH, step index, fused silica, FBPI-type fibers are custom designed for their numerical aperture that matches the convergence of the feeding beam and thus minimizes focal ratio degradation at the output. Given the demanding environment at the telescope the fiber end tips are mounted in a custom fused silica holder, providing a perfect thermal match. We used a novel process, chemically assisted photo etching, to manufacture this glass fiber holder. A single ball-lens scrambler is inserted into the 25m long fibers. Employing an anti-reflection (AR) coated, high index, cubic-zirconia ball lens the alignment of the scrambler components are straightforward, as the fiber end tips (also AR coated) by design touch the ball lens and thus eliminate spacing tolerances. A clever and simple opto-mechanical design and assembly process assures micron-level self-alignment, yielding a 87% throughput and a scrambling gain of >20,000. To mitigate modal noise the individual fibers then subsequently combined into a pair of rectangular fibers, providing a much larger modal area thanks to the 34x106 micron diameter. To minimize slit height, and thus better utilize detector area, the octagonal cores are brought very close together in this transition. The two outer fibers are side polished at one side, into a D-shaped cladding, while the central fiber has a dual side polish. These tapered, side-flattening operations are executed with precise alignment to the octagonal core. Thus the cores of the 3 fibers are brought together and aligned within few microns of each other before spliced onto the rectangular fiber. Overall throughput kept high and FRD at bay by careful management of fiber mounting, vacuum feed-through, application of efficient AR coatings, and implementation of thermal breaks that allow for independent expansion of the fibers and the protective tubing.
NASA Astrophysics Data System (ADS)
Hoadley, Keri; France, Kevin
2017-01-01
Understanding the evolution of gas over the lifetime of protoplanetary disks provides us with important clues about how planet formation mechanisms drive the diversity of exoplanetary systems observed to date. In the first part of my talk, I will discuss how we use emission line observations of molecular hydrogen (H2) in the far-ultraviolet (far-UV) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to study the warm molecular regions (a < 10 AU) of planet-forming disks. We compare the observations with analytic disk models that produce synthetic H2 profiles, and we statistically determine the disk representations that best replicate the data. I will discuss the results of our comparisons and how the modeled radial distributions of H2 in the disk help provide important constraints on the effective density of gas left in the inner disk of protoplanetary disks at various disk evolutionary stages. Finally, I will talk about follow-up studies that look to connect the warm, UV-pumped molecular populations of the inner disk to thermally-excited molecules observed in similar regions of the disk in the near- to mid-IR.In the second part of my talk, I will discuss the observational requirements in the UV and IR band passes to gain further insights into the behavior of the warm, gaseous protoplanetary disk, focusing specifically on a spectrograph concept for the next-generation LUVOIR Surveyor. I will discuss a testbed instrument, the Colorado High-resolution Echelle Stellar Spectrograph (CHESS), built as a demonstration of one component of the LUVOIR spectrograph and new technological improvements to UV optical components for the next generation of near- to far-UV astrophysical observatories. CHESS is a far-UV sounding rocket experiment designed to probe the warm and cool atoms and molecules near sites of recent star formation in the local interstellar medium. I will talk about the science goals, design, research and development (R&D) components, and calibration of the CHESS instrument. I will end by presenting the initial data reduction and results of the flight observations taken during the second launch of CHESS.
Deriving Temperatures from the Homopause of Jupiter
NASA Astrophysics Data System (ADS)
Kim, Sang J.
2015-11-01
Recently, Kim et al. (Icarus, 2015) derived homopause temperatures from several places on the north and south polar regions of Jupiter by analyzing the 3-μm spectro-images of CH4, which were obtained using the Gemini Near-Infrared Spectrograph (GNIRS). The spectral resolution of the data was R~18,000, which is enough to resolve the sharp 3-μm emission lines of the P and Q branches of CH4. From the next year’s JUNO encounter with Jupiter, we are expecting low resolution spectra from JUNO’s IR 2-5 μm spectrograph, whose resolution is only R~300 at 3 μm. We will present a method to derive homopause temperatures from low-resolution spectra utilizing the gross envelopes of the P, Q, R branch lines of CH4. We will discuss possible sciences extracted from the constructed maps of homopause temperatures over the auroral or non-auroral regions of Jupiter.
NASA Astrophysics Data System (ADS)
Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Danchi, William; Kendrick, Stephen E.; Purves, Lloyd
2017-09-01
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R 40,000 echelle modes and R 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
NASA Astrophysics Data System (ADS)
Woodruff, Robert; Robert Woodruff, Goddard Space Flight Center, Kendrick Optical Consulting
2018-01-01
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
SALT high resolution spectroscopy of GX339-4 in outburst
NASA Astrophysics Data System (ADS)
Buckley, D. A. H.; Aydi, E.; Kotze, M. M.; Gandhi, P.; Altamirano, D.; Charles, P. A.; Russell, D.
2017-10-01
High resolution (R = 15,000) spectroscopy of the current outbursting black hole transient GX339-4 (ATel #10797) was obtained with the SALT High Resolution Spectrograph (HRS; Crause et al. 2014, Proc SPIE, 91476) on 2017-09-29 starting at 17:28 UTC, during evening twilight.
NASA Astrophysics Data System (ADS)
Harrington, David M.; Sueoka, Stacey R.
2018-01-01
Data products from high spectral resolution astronomical polarimeters are often limited by fringes. Fringes can skew derived magnetic field properties from spectropolarimetric data. Fringe removal algorithms can also corrupt the data if the fringes and object signals are too similar. For some narrow-band imaging polarimeters, fringes change the calibration retarder properties and dominate the calibration errors. Systems-level engineering tools for polarimetric instrumentation require accurate predictions of fringe amplitudes, periods for transmission, diattenuation, and retardance. The relevant instabilities caused by environmental, thermal, and optical properties can be modeled and mitigation tools developed. We create spectral polarization fringe amplitude and temporal instability predictions by applying the Berreman calculus and simple interferometric calculations to optics in beams of varying F/ number. We then apply the formalism to superachromatic six-crystal retarders in converging beams under beam thermal loading in outdoor environmental conditions for two of the world's largest observatories: the 10-m Keck telescope and the Daniel K. Inouye Solar Telescope (DKIST). DKIST will produce a 300-W optical beam, which has imposed stringent requirements on the large diameter six-crystal retarders, dichroic beamsplitters, and internal optics. DKIST retarders are used in a converging beam with F/ ratios between 8 and 62. The fringe spectral periods, amplitudes, and thermal models of retarder behavior assisted DKIST optical designs and calibration plans with future application to many astronomical spectropolarimeters. The Low Resolution Imaging Spectrograph with polarimetry instrument at Keck also uses six-crystal retarders in a converging F / 13 beam in a Cassegrain focus exposed to summit environmental conditions providing observational verification of our predictions.
A high resolution ultraviolet Shuttle glow spectrograph
NASA Technical Reports Server (NTRS)
Carruthers, George R.
1993-01-01
The High Resolution Shuttle Glow Spectrograph-B (HRSGS-B) is a small payload being developed by the Naval Research Laboratory. It is intended for study of shuttle surface glow in the 180-400 nm near- and middle-ultraviolet wavelength range, with a spectral resolution of 0.2 nm. It will search for, among other possible features, the band systems of excited NO which result from surface-catalyzed combination of N and O. It may also detect O2 Hertzberg bands and N2 Vegard-Kaplan bands resulting from surface recombination. This wavelength range also includes possible N2+ and OH emissions. The HRSGS-B will be housed in a Get Away Special canister, mounted in the shuttle orbiter payload bay, and will observe the glow on the tail of the orbiter.
NASA Astrophysics Data System (ADS)
Blagorodnova, N.; Adams, S.
2017-03-01
We report the classification of Gaia17apq and Gaia17apv (SN2017cao and SN2017cat), discovered by the Gaia ESA survey. The observations were performed on UT 2017-03-16 with the Double Spectrograph (DBSP; range 350-1000nm, spectral resolution R 4000) on Palomar 200-inch (P200) telescope.
Performance of the CHIRON high-resolution Echelle spectrograph
NASA Astrophysics Data System (ADS)
Schwab, Christian; Spronck, Julien F. P.; Tokovinin, Andrei; Szymkowiak, Andrew; Giguere, Matthew; Fischer, Debra A.
2012-09-01
CHIRON is a fiber-fed Echelle spectrograph with observing modes for resolutions from 28,000 to 120,000, built primarily for measuring precise radial velocities (RVs). We present the instrument performance as determined during integration and commissioning. We discuss the PSF, the effect of glass inhomogeneity on the cross-dispersion prism, temperature stabilization, stability of the spectrum on the CCD, and detector characteristics. The RV precision is characterized, with an iodine cell or a ThAr lamp as the wavelength reference. Including all losses from the sky to the detector, the overall efficiency is about 6%; the dominant limitation is coupling losses into the fiber due to poor guiding.
Sounding Rocket Instrument Development at UAHuntsville/NASA MSFC
NASA Technical Reports Server (NTRS)
Kobayashi, Ken; Cirtain, Jonathan; Winebarger, Amy; Savage, Sabrina; Golub, Leon; Korreck, Kelly; Kuzin, Sergei; Walsh, Robert; DeForest, Craig; DePontieu, Bart;
2013-01-01
We present an overview of solar sounding rocket instruments developed jointly by NASA Marshall Space Flight Center and the University of Alabama in Huntsville. The High Resolution Coronal Imager (Hi-C) is an EUV (19.3 nm) imaging telescope which was flown successfully in July 2012. The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a Lyman Alpha (121.6 nm) spectropolarimeter developed jointly with the National Astronomical Observatory of Japan and scheduled for launch in 2015. The Marshall Grazing Incidence X-ray Spectrograph is a soft X-ray (0.5-1.2 keV) stigmatic spectrograph designed to achieve 5 arcsecond spatial resolution along the slit.
LUNAR SAMPLES - APOLLO XI - MSC
1969-08-03
S69-40740 (July 1969) --- Dr. Ross Taylor (seated), Australian National University, and John Allen, Brown and Root-Northrop technician, review preliminary data from the optical emission spectrograph in the Spectrographic Laboratory of the Physical-Chemical Test Laboratory. Tests were being conducted on lunar surface material collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.
ARGOS: the laser guide star system for the LBT
NASA Astrophysics Data System (ADS)
Rabien, S.; Ageorges, N.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Hart, M. L.; Hubbard, P.; Kanneganti, S.; Masciadri, E.; Noenickx, J.; Orban de Xivry, G.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.
2010-07-01
ARGOS is the Laser Guide Star adaptive optics system for the Large Binocular Telescope. Aiming for a wide field adaptive optics correction, ARGOS will equip both sides of LBT with a multi laser beacon system and corresponding wavefront sensors, driving LBT's adaptive secondary mirrors. Utilizing high power pulsed green lasers the artificial beacons are generated via Rayleigh scattering in earth's atmosphere. ARGOS will project a set of three guide stars above each of LBT's mirrors in a wide constellation. The returning scattered light, sensitive particular to the turbulence close to ground, is detected in a gated wavefront sensor system. Measuring and correcting the ground layers of the optical distortions enables ARGOS to achieve a correction over a very wide field of view. Taking advantage of this wide field correction, the science that can be done with the multi object spectrographs LUCIFER will be boosted by higher spatial resolution and strongly enhanced flux for spectroscopy. Apart from the wide field correction ARGOS delivers in its ground layer mode, we foresee a diffraction limited operation with a hybrid Sodium laser Rayleigh beacon combination.
VizieR Online Data Catalog: NGC 1893 optical and NIR photometry (Prisinzano+, 2011)
NASA Astrophysics Data System (ADS)
Prisinzano, L.; Sanz-Forcada, J.; Micela, G.; Caramazza, M.; Guarcello, M. G.; Sciortino, S.; Testi, L.
2010-10-01
We present new optical and NIR photometric data in the VRIJHK and H-α bands for the cluster NGC 1893. The optical photometry was obtained by using images acquired in service mode using two different telescopes: the Device Optimized for the LOw RESolution (DOLORES) mounted on the Telescopio Nazionale Galileo (TNG), used in service mode during three nights in 2007, and the Calar Alto Faint Object Spectrograph (CAFOS), mounted on the 2.2m telescope in Calar Alto German-Spanish Observatory (Spain), during three nights in 2007 and 2008. NIR observations were acquired in service mode at the TNG, using the large field Near Infrared Camera Spectrometer (NICS) with the Js(1.25um), H(1.63um) and K'(2.12um) filters during eight nights in 2007 and 2008. We observed a field around NGC 1893 with a raster of 4x4 pointings, at each pointing we obtained a series of NINT dithered exposures. Each exposure is a repetition of a DIT (Detector Integration Time) times NDIT (number of DIT), to avoid saturation of the background. (4 data files).
The opto-mechanical design of the GMT-Consortium Large Earth Finder (G-CLEF)
NASA Astrophysics Data System (ADS)
Mueller, Mark; Szentgyorgyi, Andrew; Baldwin, Daniel; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, J.; Chun, Moo-Yung; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Glenday, Alex; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andreas; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Oh, Jae Sok; Onyuksel, Cem; Ordway, Mark; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam
2016-08-01
The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, optical echelle spectrograph selected as the first light instrument for the Giant Magellan Telescope (GMT) now under construction at the Las Campanas Observatory in Chile. G-CLEF has been designed to be a general-purpose echelle spectrograph with precision radial velocity (PRV) capability for exoplanet detection. The radial velocity (RV) precision goal of G-CLEF is 10 cm/sec, necessary for detection of Earth-sized exoplanets. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures especially when considering the instrument's operational environment. The accuracy of G-CLEF's PRV measurements will be influenced by minute changes in temperature and ambient air pressure as well as vibrations and micro gravity-vector variations caused by normal telescope slewing. For these reasons we have chosen to enclose G-CLEF's spectrograph in a well-insulated, vibration isolated vacuum chamber in a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the above considerations must be managed while ensuring performance requirements are achieved. In this paper, we discuss the design of G-CLEF's optical mounts and support structures including the choice of a low coefficient of thermal expansion (CTE) carbon-fiber optical bench to minimize the system's sensitivity to thermal soaks and gradients. We discuss design choices made to the vacuum chamber geared towards minimize the influence of daily ambient pressure variations on image motion during observation. We discuss the design of G-CLEF's insulated enclosure and thermal control systems which will maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting thermal emissions into the telescope dome. Also discussed are micro gravity-vector variations caused by normal telescope slewing, their uncorrected influence on image motion, and how they are dealt with in the design. Finally, we discuss G-CLEF's front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.
Advances in photographic X-ray imaging for solar astronomy
NASA Technical Reports Server (NTRS)
Moses, J. Daniel; Schueller, R.; Waljeski, K.; Davis, John M.
1989-01-01
The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-ray photographic imaging in sounding rocket flights of the High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) The calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development; (2) The use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution; and (3) The application of a technique described by Cook, Ewing, and Sutton for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.
Spectroscopic Classifications of Optical Transients with the Lick Shane 3-m telescope
NASA Astrophysics Data System (ADS)
Dimitriadis, G.; Foley, R. J.
2018-05-01
We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane 3-m telescope. Targets were supplied by ATLAS, ASAS-SN, and the KEGS K2 SN search.
NASA Astrophysics Data System (ADS)
Cesar de Oliveira, Antonio; Souza de Oliveira, Ligia; de Arruda, Marcio V.; Bispo dos Santos, Jesulino; Souza Marrara, Lucas; Bawden de Paula Macanhan, Vanessa; Batista de Carvalho Oliveira, João.; de Paiva Vilaça, Rodrigo; Dominici, Tania P.; Sodré, Laerte; Mendes de Oliveira, Claudia; Karoji, Hiroshi; Sugai, Hajime; Shimono, Atsushi; Tamura, Naoyuki; Takato, Naruhisa; Ueda, Akitoshi
2012-09-01
The Fiber Optical Cable and Connector System (FOCCoS), provides optical connection between 2400 positioners and a set of spectrographs by an optical fibers cable as part of Subaru PFS instrument. Each positioner retains one fiber entrance attached at a microlens, which is responsible for the F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. The optical fibers cable will be segmented in 3 parts at long of the way, cable A, cable B and cable C, connected by a set of multi-fibers connectors. Cable B will be permanently attached at the Subaru telescope. The first set of multi-fibers connectors will connect the cable A to the cable C from the spectrograph system at the Nasmith platform. The cable A, is an extension of a pseudo-slit device obtained with the linear disposition of the extremities of the optical fibers and fixed by epoxy at a base of composite substrate. The second set of multi-fibers connectors will connect the other extremity of cable A to the cable B, which is part of the positioner's device structure. The optical fiber under study for this project is the Polymicro FBP120170190, which has shown very encouraging results. The kind of test involves FRD measurements caused by stress induced by rotation and twist of the fiber extremity, similar conditions to those produced by positioners of the PFS instrument. The multi-fibers connector under study is produced by USCONEC Company and may connect 32 optical fibers. The tests involve throughput of light and stability after many connections and disconnections. This paper will review the general design of the FOCCoS subsystem, methods used to fabricate the devices involved and the tests results necessary to evaluate the total efficiency of the set.
Spectroscopic Confirmation of TCP J07134590-2112330 as a Galactic Classical Nova in Canis Major
NASA Astrophysics Data System (ADS)
Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Swihart, Sam
2018-03-01
TCP J07134590-2112330 was discovered by Yuji Nakamura on 2018 March 24.5 UT as a 12 mag optical transient. We obtained spectroscopic observations of TCP J07134590-2112330 with the Goodman spectrograph on the 4-m SOAR telescope on 2018 Mar 25.1 UT, with a low-resolution spectrum (R 1200) covering 3850-7850 A. The spectrum indicates that TCP J07134590-2112330 is a young classical nova, with strong hydrogen Balmer emission lines and additional strong lines of [O I] and Fe II. The Balmer lines show P Cygni profiles; the FWHM of the H alpha emission component is 1250 km/s, and the absorption trough extends to -2000 km/s.
Concerning the Spatial Heterodyne Spectrometer
Lenzner, Matthias; Diels, Jean -Claude
2016-01-22
A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Gong, Qian; Hull, Tony; Purves, Lloyd
2014-01-01
One of the key goals of NASA’s astrophysics program is to answer the question: How did galaxies evolve into the spiral, elliptical, and irregular galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to help address this question by making a large ultraviolet spectroscopic survey of galaxies at a redshift, z approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-m space telescope with an near-ultraviolet (NUV) multi-object slit spectrograph covering the spectral range, 0.2-0.4 micrometers (0.1-0.2 micrometers as emitted by galaxies at a redshift, z approximately 1) at a spectral resolution of delta lambda=6 A.
NASA Technical Reports Server (NTRS)
Snow, J. B.; Chang, R. K.; Zheng, J. B.; Leipertz, A.
1983-01-01
Rotational coherent Stokes Raman scattering (CSRS) and coherent anti-Stokes Raman scattering (CARS) in air and in nitrogen were observed simultaneously by using broadband generation and detection. In the broadband technique used, the entire CARS and CSRS spectrum was generated in a single laser pulse; the CSRS and CARS signals were dispersed by a spectrograph and detected simultaneously by an optical multichannel analyzer. A three-dimensional phase-matching geometry was used to achieve spatial resolution of the CSRS and CARS beams from the input beams. Under resonant conditions, similar experiments may provide a means of investigating the possible interaction between the CSRS and CARS processes in driving the rotational levels.
CUBES: cassegrain U-band Brazil-ESO spectrograph
NASA Astrophysics Data System (ADS)
Barbuy, B.; Bawden Macanhan, V.; Bristow, P.; Castilho, B.; Dekker, H.; Delabre, B.; Diaz, M.; Gneiding, C.; Kerber, F.; Kuntschner, H.; La Mura, G.; Maciel, W.; Meléndez, J.; Pasquini, L.; Pereira, C. B.; Petitjean, P.; Reiss, R.; Siqueira-Mello, C.; Smiljanic, R.; Vernet, J.
2014-11-01
CUBES is a high-efficiency, medium-resolution ( R˜20,000) ground based UV (300-400 nm) spectrograph, to be installed in the cassegrain focus of one of ESO's VLT unit telescopes in 2017/18. The CUBES project is a joint venture between ESO and IAG/USP, and LNA/MCTI. CUBES will provide access to a wealth of new and relevant information for stellar as well as extragalactic sources. Main science cases include the study of beryllium and heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range, as well as the study of active galactic nuclei and the quasar absorption lines. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will give a significant gain in sensitivity over existing ground based medium-high resolution spectrographs, enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project including the status, science cases and a discussion of the design options.
MEGARA: large pupil element tests and performance
NASA Astrophysics Data System (ADS)
Martínez-Delgado, I.; Sánchez-Blanco, E.; Pérez-Calpena, A.; García-Vargas, M. L.; Maldonado, X. M.; Gil de Paz, A.; Carrasco, E.; Gallego, J.; Iglesias-Páramo, J.; Sánchez-Moreno, F. M.
2016-07-01
MEGARA is a third generation spectrograph for the Spanish 10.4m telescope (GTC) providing two observing modes: a large central Integral Field Unit (IFU), called the Large Compact Bundle (LCB), covering a FOV of 12.5 × 11.3 arcsec2, and a Multi-Object Spectrograph (MOS) with a FOV of 3.5 × 3.5 arcmin2. MEGARA will observe the whole visible range from 3650A to 10000A allowing different spectral resolutions (low, medium and high) with R = 6000, 11000 and 18000 respectively. The dispersive elements are placed at the spectrograph pupil position in the path of the collimated beam and they are composed of a set of volume phase hologram gratings (VPHs) sandwiched between two flat windows and coupled in addition to two prisms in the case of the medium- and high-resolution units. We will describe the tests and setups developed to check the requirements of all units, as well as the obtained performance at laboratory
VizieR Online Data Catalog: Accurate astrometry & RVs of 4 multiple systems (Tokovinin+, 2017)
NASA Astrophysics Data System (ADS)
Tokovinin, A.; Latham, D. W.
2017-10-01
The outer subsystems are classical visual binaries. Historic micrometric measurements and modern speckle interferometric data have been obtained from the WDS database on our request. Additionally, we secured new speckle astrometry and relative photometry of two systems at the 4.1m SOAR telescope. Published radial velocities (RVs) are used here together with the new data. The RVs were measured with the CfA Digital Speedometers, initially using the 1.5m Wyeth Reflector at the Oak Ridge Observatory in the town of Harvard, Massachusetts, and subsequently with the 1.5m Tillinghast Reflector at the Whipple Observatory on Mount Hopkins, Arizona. Starting in 2009, the new fiber-fed Tillinghast Reflector Echelle Spectrograph (TRES) was used. The spectral resolution was 44000 for all three spectrographs. Two objects, HIP 101955 and 103987, were observed in 2015 with the CHIRON echelle spectrograph at the 1.5m telescope at CTIO with a spectral resolution of 80000. (4 data files).
Deployment of the Hobby-Eberly Telescope wide-field upgrade
NASA Astrophysics Data System (ADS)
Hill, Gary J.; Drory, Niv; Good, John M.; Lee, Hanshin; Vattiat, Brian L.; Kriel, Herman; Ramsey, Jason; Bryant, Randy; Elliot, Linda; Fowler, Jim; Häuser, Marco; Landiau, Martin; Leck, Ron; Odewahn, Stephen; Perry, Dave; Savage, Richard; Schroeder Mrozinski, Emily; Shetrone, Matthew; DePoy, D. L.; Prochaska, Travis; Marshall, J. L.; Damm, George; Gebhardt, Karl; MacQueen, Phillip J.; Martin, Jerry; Armandroff, Taft; Ramsey, Lawrence W.
2016-07-01
The Hobby-Eberly Telescope (HET) is an innovative large telescope, located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. We have completed a major multi-year upgrade of the HET that has substantially increased the pupil size to 10 meters and the field of view to 22 arcminutes by replacing the corrector, tracker, and prime focus instrument package. The new wide field HET will feed the revolutionary integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§), a new low resolution spectrograph (LRS2), an upgraded high resolution spectrograph (HRS2), and later the Habitable Zone Planet Finder (HPF). The upgrade is being commissioned and this paper discusses the completion of the installation, the commissioning process and the performance of the new HET.
Design and realization of the real-time spectrograph controller for LAMOST based on FPGA
NASA Astrophysics Data System (ADS)
Wang, Jianing; Wu, Liyan; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Wu, Zhen; Chen, Yi
2008-08-01
A large Schmitt reflector telescope, Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST), is being built in China, which has effective aperture of 4 meters and can observe the spectra of as many as 4000 objects simultaneously. To fit such a large amount of observational objects, the dispersion part is composed of a set of 16 multipurpose fiber-fed double-beam Schmidt spectrographs, of which each has about ten of moveable components realtimely accommodated and manipulated by a controller. An industrial Ethernet network connects those 16 spectrograph controllers. The light from stars is fed to the entrance slits of the spectrographs with optical fibers. In this paper, we mainly introduce the design and realization of our real-time controller for the spectrograph, our design using the technique of System On Programmable Chip (SOPC) based on Field Programmable Gate Array (FPGA) and then realizing the control of the spectrographs through NIOSII Soft Core Embedded Processor. We seal the stepper motor controller as intellectual property (IP) cores and reuse it, greatly simplifying the design process and then shortening the development time. Under the embedded operating system μC/OS-II, a multi-tasks control program has been well written to realize the real-time control of the moveable parts of the spectrographs. At present, a number of such controllers have been applied in the spectrograph of LAMOST.
NASA Technical Reports Server (NTRS)
Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.;
2016-01-01
We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.
GNOSIS: The First Fiber Bragg Grating-based OH Suppression Unit
NASA Astrophysics Data System (ADS)
Trinh, Christopher; Ellis, S. C.; Bland-Hawthorn, J.; Lawrence, J. S.; Horton, A. J.; Leon-Saval, S. G.; Shortridge, K.; Bryant, J.; Case, S.; Colless, M.; Couch, W.; Freeman, K. C.; Löhmannsröben, H.; Gers, L.; Glazebrook, K.; Haynes, R.; Lee, S.; O'Byrne, J.; Miziarski, S.; Roth, M. M.; Schmidt, B.; Tinney, C. G.; Zheng, J.
2013-01-01
The sky background is over 1000 times brighter in the near-infrared (NIR) than in the visible placing severe limitations on our ability to study the redshifted light from the distant objects formed in the early Universe from the ground. It is well-known that 98% of the NIR background comes from the forest of bright and highly variable emission lines of atmospheric hydroxyl (OH) molecules. Unfortunately, astronomers have been unable to effectively remove this background from their data. We present the first OH suppression unit, GNOSIS, to utilize fiber Bragg gratings (FBGs). Simple FBGs are optical fibers with a periodic refractive index modulation imprinted within the fiber core, which induces a strong reflection in a narrow 0.2 nm) stopband. GNOSIS utilizes “OH suppression fibers” with a complex aperiodic refractive index modulation capable of removing the 103 brightest OH doublets between 1470 and 1700 nm by up 30 dB before dispersion and in a manner purely dependent on wavelength. The OH suppression fibers have high throughput 60%) and over 90% of the H band is available for spectroscopy. OH suppression units like GNOSIS may be utilized with any NIR telescope and spectrograph combination, but we commissioned GNOSIS at the 3.9-meter Anglo-Australian Telescope with the IRIS2 spectrograph for our first demonstration. Commissioning reveals excellent suppression performance. Approximately 78% of the OH lines were suppressed at the target level or greater. GNOSIS reduces the integrated background between 1500 and 1700 nm by a factor of ~ 9 but the signal-to-noise ratio is about the same as standard long-slit IRIS2 observations due to retrofitting to an un-optimized spectrograph. Nevertheless, if paired with a fiber-optimized spectrograph FBG OH suppression technology shows great promise for high sensitivity NIR spectroscopy at moderate to low resolutions from the ground.
Spectroscopic classification of PS17chm with Double Spectrograph on Palomar 200-inch telescope
NASA Astrophysics Data System (ADS)
Blagorodnova, N.; Kupfer, T.; Burdge, K.; Kasliwal, M.; Adams, S.
2017-04-01
We report the classification of PS17chm, discovered by the by the Pan-STARRS Survey for Transients (see Chambers et al. 2016, arXiv:1612.05560, and http://pswww.ifa.hawaii.edu ). The observations were performed on UT 2017-04-19 with the Double Spectrograph (DBSP; range 350-1000nm, spectral resolution R 4000) on Palomar 200-inch (P200) telescope.
Monolithic fiber optic sensor assembly
Sanders, Scott
2015-02-10
A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.
GIANO and HARPS-N together: towards an Earth-mass detection instrument
NASA Astrophysics Data System (ADS)
Tozzi, A.; Oliva, E.; Iuzzolino, M.; Fini, L.; Puglisi, A.; Sozzi, M.; Falcini, G.; Carbonaro, L.; Ghedina, A.; Mercatelli, L.; Seemann, U.; Claudi, R.
2016-08-01
This article describes the works we are doing for modifying the interface between the high resolution infrared spectrograph GIANO (0.97-2.4 micron) and the TNG telescope, passing from a fiber feed configuration to the original design of a direct light-feeding from the telescope to the spectrograph. So doing the IR spectrograph, GIANO, will work in parallel to HARPS-N spectrometer (0.38-0.70 micron), the visible high resolution spectrograph, thanks to a new telescope interface based on a dichroic window that simultaneously feeds the two instrumentes: this is GIARPS (GIAno and haRPS). The scientific aims of this project are to improve the radial velocity accuracy achievable with GIANO, down to a goal of 1 m/s, the value necessary to detect Earth-mass planets on habitable orbits around late-M stars, to implement simultaneous observations with Harps-N and GIANO optimizing the study of planets around cool stars. The very broad wavelengths range is particularly important to discriminate false radial velocity signals caused by stellar activity. We therefore include several absorption cells with different mixtures of gases and a stabilized Fabry Perot cavity, necessary to have absorption lines over the 0.97-2.4 microns range covered by GIANO. The commissioning of GIARPS is scheduled by the end of 2016.
Solar Imaging UV/EUV Spectrometers Using TVLS Gratings
NASA Technical Reports Server (NTRS)
Thomas, Roger J.
2003-01-01
It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.
Laboratory measurements of modal noise on optical fiber
NASA Astrophysics Data System (ADS)
Iuzzolino, M.; Sanna, N.; Tozzi, A.; Oliva, E.
Many scientific instruments are nowadays coupled to the telescope through optical fibers. This is also the case of the current configuration of GIANO, the high resolution near infrared echelle spectrograph installed at the TNG telescope. As experienced and frequent users of the IR optical fiber, the GIANO building team decided to go deep in the characterization of the optical fiber in the IR band, and in particular to understand and analyze the fiber modal noise. This work is also a preparatory study for the future HIRES@E-ELT instrument design. This paper consists in the description of the fiber laboratory tests, and in the explanation of the results. The whole job defines a wider comprehension of the modal noise, and demonstrates the existence of two aspects influencing this noise. The first one, well known in literature, refers to the interferences between the fiber modes at the exit endface of the fiber, and it can be mitigated by mechanical scrambling techniques. The second one, unknown before, is entirely dependent on the way in which light is injected at the entrance of the fiber, and no mitigation have been observed with any classical scrambling technique (e.g. double-scramblers). These considerations apply to both ZBLAN or fused silica optical fiber, and to both circular and octagonal core shape.
Development of compact integral field unit for spaceborne solar spectro-polarimeter
NASA Astrophysics Data System (ADS)
Suematsu, Y.; Koyama, M.; Sukegawa, T.; Enokida, Y.; Saito, K.; Okura, Y.; Nakayasu, T.; Ozaki, S.; Tsuneta, S.
2017-11-01
A 1.5-m class aperture Solar Ultra-violet Visible and IR telescope (SUVIT) and its instruments for the Japanese next space solar mission SOLAR-C [1] are under study to obtain critical physical parameters in the lower solar atmosphere. For the precise magnetic field measurements covering field-of-view of 3 arcmin x3 acmin, a full stokes polarimetry at three magnetic sensitive lines in wavelength range of 525 nm to 1083 nm with a four-slit spectrograph of two dinesional image scanning mechanism is proposed: one is a true slit and the other three are pseudo-slits from integral field unit (IFU). To suit this configuration, besides a fiber bundle IFU, a compact mirror slicer IFU is designed and being developed. Integral field spectroscopy (IFS), which is realized with IFU, is a two dimensional spectroscopy, providing spectra simultaneously for each spatial direction of an extended two-dimensional field. The scientific advantages of the IFS for studies of localized and transient solar surface phenomena are obvious. There are in general three methods [2][3] to realize the IFS depending on image slicing devices such as a micro-lenslet array, an optical fiber bundle and a narrow rectangular image slicer array. So far, there exist many applications of the IFS for ground-based astronomical observations [4]. Regarding solar instrumentations, the IFS of micro-lenslet array was done by Suematsu et al. [5], the IFS of densely packed rectangular fiber bundle with thin clads was realized [6] and being developed for 4-m aperture solar telescope DKIST by Lin [7] and being considered for space solar telescope SOLAR-C by Katsukawa et al. [8], and the IFS with mirror slicer array was presented by Ren et al. [9] and under study for up-coming large-aperture solar telescope in Europe by Calcines et al. [10] From the view point of a high efficiency spectroscopy, a wide wavelength coverage, a precision spectropolarimetry and space application, the image slicer consisting of all reflective optics is the best option among the three. However, the image slicers are presently limited either by their risk in the case of classical glass polishing techniques (see Vivès et al. [11] for recent development) or by their optical performances when constituted by metallic mirrors. For space instruments, small sized units are much advantageous and demands that width of each slicer mirror is as narrow as an optimal slit width (< 100 micron) of spectrograph which is usually hard to manufacture with glass polishing techniques. On the other hand, Canon is developing a novel technique for such as high performance gratings which can be applicable for manufacturing high optical performance metallic mirrors of small dimensions. For the space-borne spectrograph of SUVIT to be aboard SOLAR-C, we designed the IFS made of a micro image slicer of 45 arrayed 30-micron-thick metal mirrors and a pseudo-pupil metal mirror array re-formatting three pseudo-slits; the design is feasible for optical configuration sharing a spectrograph with a conventional real slit. According to the optical deign, Canon manufactured a prototype IFU for evaluation, demonstrating high performances of micro image slicer and pupil mirrors; enough small micro roughness for visible light spectrographs, sharp edges for efficient image slices, surface figure for high image quality, etc. In the following, we describe the optical design of IFU feasible for space-borne spectrograph, manufacturing method to attain high optical performance of metal mirrors developed by Canon, and resulted performance of prototype IFU in detail.
NASA Technical Reports Server (NTRS)
Leckrone, David S.; Wahlgren, Glenn M.; Johansson, Sveneric G.
1991-01-01
The Goddard High-Resolution Spectrograph on the HST has been used to obtain high S/N observations of the sharp-lined, Hg- and Pt-rich B-type star, Chi Lupi, with a resolving power of 87,000. The observations reveal a level of spectroscopic detail never before observed at ultraviolet wavelengths for any star other than the sun. Concentrating on the region around the resonance line of Hg II at 1942 A, the profile and central position of this line confirm beyond doubt that the Hg isotope anomaly in Chi Lupi is real and extreme, with Hg being heavily concentrated in the form of Hg-204. The problems in atomic physics which impair the accurate analysis of spectra of this quality are emphasized.
Fabrication of MgF2 and LiF windows for the Hubble Space Telescope Imaging Spectrograph
NASA Technical Reports Server (NTRS)
Gormley, Daphne; Bottema, Murk; Darnell, Barbara; Fowler, Walter; Medenica, Walter
1988-01-01
Two prototype test windows (MgF2 and LiF) to be used on the 75-mm UV MAMA detector tubes for the Hubble Space Telescope Imaging Spectrograph are described. The spatial and optical constraints of this instrument dictate that the thickness of the window materials be no greater than 2-3 mm to achieve a minimum 50-percent transmission at hydrogen Lyman alpha (121.6 nm), and that the window must be domed to minimize optical aberrations and provide structural strength. The detector window has an input diameter of about 100 mm with a radius-of-curvature of 70 mm. The manufacturing processes involved in the fabrication of these windows is discussed, as well as test programs (optical and structural) to be performed at Goddard Space Flight Center.
MUSE field splitter unit: fan-shaped separator for 24 integral field units
NASA Astrophysics Data System (ADS)
Laurent, Florence; Renault, Edgard; Anwand, Heiko; Boudon, Didier; Caillier, Patrick; Kosmalski, Johan; Loupias, Magali; Nicklas, Harald; Seifert, Walter; Salaun, Yves; Xu, Wenli
2014-07-01
MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where it was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transferred in monolithic way onto VLT telescope where the first light was achieved. This paper describes the MUSE main optical component: the Field Splitter Unit. It splits the VLT image into 24 subfields and provides the first separation of the beam for the 24 Integral Field Units. This talk depicts its manufacturing at Winlight Optics and its alignment into MUSE instrument. The success of the MUSE alignment is demonstrated by the excellent results obtained onto MUSE positioning, image quality and throughput onto the sky. MUSE commissioning at the VLT is planned for September, 2014.
VizieR Online Data Catalog: Spectroscopy of 104 objects in the ONC (Ingraham+, 2014)
NASA Astrophysics Data System (ADS)
Ingraham, P.; Albert, L.; Doyon, R.; Artigau, E.
2016-03-01
In 2003 December, we obtained six nights (on CFHT to perform MOS observations of faint objects in the central region of the Orion Trapezium cluster. The observations used the infrared imager and multi-object spectrograph SIMON (Spectrometre Infrarouge de Montreal). The optical design is fully achromatic between 0.8 and 2.5μm and features a HAWAII-I 1024*1024 HgCdTe detector with an image scale of 0.2'' on CFHT. SIMON utilizes a low-dispersion Amici prism enabling multi-object low-resolution (R~30) spectroscopy over the wavelength range of 0.9-2.4μm. The slit width, in the spectral direction, was chosen to be 0.6'' (3pixels) resulting in a spectral resolution of R~30. In total, spectra for 240 point sources were obtained. Here, we present only the 104 objects (see Table5) with low-extinction (AV<8) spectra having well constrained spectral types. (2 data files).
NASA Astrophysics Data System (ADS)
Jorgensen, Kira; Africano, John L.; Stansbery, Eugene G.; Kervin, Paul W.; Hamada, Kris M.; Sydney, Paul F.
2001-12-01
The purpose of this research is to improve the knowledge of the physical properties of orbital debris, specifically the material type. Combining the use of the fast-tracking United States Air Force Research Laboratory (AFRL) telescopes with a common astronomical technique, spectroscopy, and NASA resources was a natural step toward determining the material type of orbiting objects remotely. Currently operating at the AFRL Maui Optical Site (AMOS) is a 1.6-meter telescope designed to track fast moving objects like those found in lower Earth orbit (LEO). Using the spectral range of 0.4 - 0.9 microns (4000 - 9000 angstroms), researchers can separate materials into classification ranges. Within the above range, aluminum, paints, plastics, and other metals have different absorption features as well as slopes in their respective spectra. The spectrograph used on this telescope yields a three-angstrom resolution; large enough to see smaller features mentioned and thus determine the material type of the object. The results of the NASA AMOS Spectral Study (NASS) are presented herein.
The SAMI Galaxy Survey: cubism and covariance, putting round pegs into square holes
NASA Astrophysics Data System (ADS)
Sharp, R.; Allen, J. T.; Fogarty, L. M. R.; Croom, S. M.; Cortese, L.; Green, A. W.; Nielsen, J.; Richards, S. N.; Scott, N.; Taylor, E. N.; Barnes, L. A.; Bauer, A. E.; Birchall, M.; Bland-Hawthorn, J.; Bloom, J. V.; Brough, S.; Bryant, J. J.; Cecil, G. N.; Colless, M.; Couch, W. J.; Drinkwater, M. J.; Driver, S.; Foster, C.; Goodwin, M.; Gunawardhana, M. L. P.; Ho, I.-T.; Hampton, E. J.; Hopkins, A. M.; Jones, H.; Konstantopoulos, I. S.; Lawrence, J. S.; Leslie, S. K.; Lewis, G. F.; Liske, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Medling, A. M.; Mahajan, S.; Mould, J.; Parker, Q.; Pracy, M. B.; Obreschkow, D.; Owers, M. S.; Schaefer, A. L.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.
2015-01-01
We present a methodology for the regularization and combination of sparse sampled and irregularly gridded observations from fibre-optic multiobject integral field spectroscopy. The approach minimizes interpolation and retains image resolution on combining subpixel dithered data. We discuss the methodology in the context of the Sydney-AAO multiobject integral field spectrograph (SAMI) Galaxy Survey underway at the Anglo-Australian Telescope. The SAMI instrument uses 13 fibre bundles to perform high-multiplex integral field spectroscopy across a 1° diameter field of view. The SAMI Galaxy Survey is targeting ˜3000 galaxies drawn from the full range of galaxy environments. We demonstrate the subcritical sampling of the seeing and incomplete fill factor for the integral field bundles results in only a 10 per cent degradation in the final image resolution recovered. We also implement a new methodology for tracking covariance between elements of the resulting data cubes which retains 90 per cent of the covariance information while incurring only a modest increase in the survey data volume.
NASA Technical Reports Server (NTRS)
Giampapa, Mark S. (Editor); Bookbinder, Jay A. (Editor)
1992-01-01
Consideration is given to HST observations of late-type stars, molecular absorption in the UV spectrum of Alpha Ori, EUV emission from late-type stars, Rosat observations of the Pleiades cluster, a deep ROSAT observation of the Hyades cluster, optical spectroscopy detected by EXOSAT, stellar photospheric convection, a structure of the solar X-ray corona, magnetic surface images of the BY Dra Star HD 82558, a Zebra interpretatin of BY Dra stars, optical flares on II Peg, a low-resolution spectroscopic survey of post-T tauri candidates, millimeter and sub-millimeter emission from flare stars, and activity in tidally interacting binaries. Attention is also given to modeling stellar angular momentum evolution, extended 60-micron emission from nearby Mira variables, the PANDORA atmosphere program, the global properties of active regions, oscillations in a stratified atmosphere, lithium abundances in northern RS CVn binaries, a new catalog of cool dwarf stars, the Far UV Spectrograph Explorer, and development of reflecting coronagraphs.
Investigation of focal ratio degradation in optical fibres for astronomical instrumentation
NASA Astrophysics Data System (ADS)
Crause, Lisa; Bershady, Matthew; Buckley, David
2008-07-01
A differential method was used to investigate the focal ratio degradation (FRD) exhibited by, and throughput of, a selection of current-generation optical fibres. These fibres were tested to establish which would be best suited to feed the High Resolution Spectrograph being built for the Southern African Large Telescope (SALT), as well as for future instruments on WIYN and SALT. The double re-imaging system of Bershady et al. (2004) was substantially modified to improve image quality and measurement efficiency, and to permit a direct FRD-measurement in the far-field. The re-imaging method compares the beam profile produced by light which passes through a fibre to that which does not. Broad and intermediate band-pass filters were used between 400-800 nm to test for wavelength dependence in the observed FRD over a wide range in beam-speeds. Our results continue to be at odds with a mico-bend model for FRD. We conclude that the new Polymicro FBP fibre is the most suitable product for broadband applications.
VizieR Online Data Catalog: Young star systems observed with SALT (Riedel+, 2017)
NASA Astrophysics Data System (ADS)
Riedel, A. R.; Alam, M. K.; Rice, E. L.; Cruz, K. L.; Henry, T. J.
2017-11-01
The sample of stars was drawn from the TINYMO survey (Riedel 2012PhDT.......100R). In that survey, nearby low-proper-motion M dwarfs in the southern hemisphere were identified in the SuperCOSMOS Science Archive (Hambly+ 2001MNRAS.326.1279H). We have obtained low-resolution optical spectroscopy from the SALT telescope at the South African Astronomical Observatory in Sutherland, South Africa and the Robert Stoble Spectrograph (RSS), which provides optical spectroscopy between 3200 and 9000Å with a resolving power of up to 6000, depending on slit width. Observations were conducted in semesters 2013A and 2013B. In total, there are 165 spectra of the 79 stars: SCR 2237-2622 was only observed once, two stars (SCR 1816-6305, 2MASS 2004-3356) were observed three times, three stars (2MASS 0510-2340B, 2MASS 1207-3247, SCR 1842-5554A) were observed four times, and the remainder were observed twice. (5 data files).
The BINA collaboration: science at the Royal Observatory of Belgium
NASA Astrophysics Data System (ADS)
De Cat, Peter; Cuypers, Jan; Blomme, Ronny; Frémat, Yves; Groenewegen, Martin; Lampens, Patricia; Lobel, Alex; Pauwels, Thierry; Van de Steene, Griet; van Hoof, Peter
2018-04-01
The Belgo-Indian Network for Astronomy and Astrophysics (BINA) is a collaboration between Indian and Belgian astronomical institutes with the main aim to optimize the scientific output of the Indo-Belgian telescopes, being the 4.0-m International Liquid Mirror Telescope and the 3.6-m Devasthal Optical Telescope. These new facilities are both located at the Devasthal Observatory near Nainital, India. In this contribution, we introduce projects that are of scientific interest for colleagues of the department "Astronomy and Astrophysics" of the Royal Observatory of Belgium (ROB). It serves as an invitation for Indian astronomers to participate. We highlight how these projects could benefit from observations with the Indo-Belgian telescopes by using instruments from the first-generation (currently offered) and/or the next-generation (development or design phase). We show that, from an ROB point-of-view, the BINA would be the most successful if the 3.6-m DOT would be equipped with an efficient optical high-resolution spectrograph.
HST image restoration: A comparison of pre- and post-servicing mission results
NASA Technical Reports Server (NTRS)
Hanisch, R. J.; Mo, J.
1992-01-01
A variety of image restoration techniques (e.g., Wiener filter, Lucy-Richardson, MEM) have been applied quite successfully to the aberrated HST images. The HST servicing mission (scheduled for late 1993 or early 1994) will install a corrective optics system (COSTAR) for the Faint Object Camera and spectrographs and replace the Wide Field/Planetary Camera with a second generation instrument (WF/PC-II) having its own corrective elements. The image quality is expected to be improved substantially with these new instruments. What then is the role of image restoration for the HST in the long term? Through a series of numerical experiments using model point-spread functions for both aberrated and unaberrated optics, we find that substantial improvements in image resolution can be obtained for post-servicing mission data using the same or similar algorithms as being employed now to correct aberrated images. Included in our investigations are studies of the photometric integrity of the restoration algorithms and explicit models for HST pointing errors (spacecraft jitter).
The science case of the PEPSI high-resolution echelle spectrograph and polarimeter for the LBT
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Pallavicini, R.; Rice, J. B.; Andersen, M. I.
2004-05-01
We lay out the scientific rationale for and present the instrumental requirements of a high-resolution adaptive-optics Echelle spectrograph with two full-Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solar-stellar connection. Late-type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T-Tauri stars as well as in the acceleration and collimation of jet-like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X-ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma-ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields.
Fluorescence/depolarization lidar for mid-range stand-off detection of biological agents
NASA Astrophysics Data System (ADS)
Mierczyk, Z.; Kopczyński, K.; Zygmunt, M.; Wojtanowski, J.; Młynczak, J.; Gawlikowski, A.; Młodzianko, A.; Piotrowski, W.; Gietka, A.; Knysak, P.; Drozd, T.; Muzal, M.; Kaszczuk, M.; Ostrowski, R.; Jakubaszek, M.
2011-06-01
LIDAR system for real-time standoff detection of bio-agents is presented and preliminary experimental results are discussed. The detection approach is based on two independent physical phenomena: (1) laser induced fluorescence (LIF), (2) depolarization resulting from elastic scattering on non-spherical particles. The device includes three laser sources, two receiving telescopes, depolarization component and spectral signature analyzing spectrograph. It was designed to provide the stand-off detection capability at ranges from 200 m up to several kilometers. The system as a whole forms a mobile platform for vehicle or building installation. Additionally, it's combined with a scanning mechanics and advanced software, which enable to conduct the semi-automatic monitoring of a specified space sector. For fluorescence excitation, 3-rd (355 nm) and 4-th (266 nm) harmonics of Nd:YAG pulsed lasers are used. They emit short (~6 ns) pulses with the repetition rate of 20 Hz. Collecting optics for fluorescence echo detection and spectral content analysis includes 25 mm diameter f/4 Newton telescope, Czerny Turner spectrograph and 32-channel PMT. Depending on the grating applied, the spectral resolution from 20 nm up to 3 nm per channel can be achieved. The system is also equipped with an eye-safe (1.5 μm) Nd:YAG OPO laser for elastic backscattering/depolarization detection. The optical echo signal is collected by Cassegrain telescope with aperture diameter of 12.5 mm. Depolarization detection component based on polarizing beam-splitter serves as the stand-off particle-shape analyzer, which is very valuable in case of non-spherical bio-aerosols sensing.
Photopolymers for holographic optical elements in astronomy
NASA Astrophysics Data System (ADS)
Zanutta, A.; Orselli, E.; Fäcke, T.; Bianco, A.
2017-05-01
Holographic Optical Elements (HOEs) cover nowadays a relevant position as dispersing elements in astronomical spectrographs because each astronomical observation could take advantage of specific devices with features tailored for achieving the best performances. The design and manufacturing of highly efficient and reliable dispersive elements require photosensitive materials as recording substrate where it is possible to precisely control the parameters that define the efficiency response (namely both the refractive index modulation and the film thickness). The most promising materials in this field are the photopolymers because, beside the ability to provide the tuning feature, they bring also advantages such as self-developing, high refractive index modulation and ease of use thanks to their simple thin structure, which is insensitive from the external environment. In particular, Bayfol HX photopolymers were characterized with the purpose to use them as new material for astronomical Volume Phase Holographic Gratings. We designed and manufactured VPHGs for astronomical instrumentation and we demonstrated how photopolymers are reliable holographic materials for making astronomical devices with performances comparable to those provided by VPHGs based on Dichromated Gelatins (DCGs), but with a much simpler production process. Moreover, the versatility of these materials allowed us to propose and realize novel architectures of the spectroscopic dispersive elements. A compact and unique single prism device was realized for a FOSC spectrograph and new multi-layered devices are proposed, stacking VPHGs one on top of the other to obtain many spectra in the instrument's detector, with advantages as increase of resolution and signal to noise ratio with respect to the classical single dispersive element.
First light of a laser frequency comb at SALT
NASA Astrophysics Data System (ADS)
Depagne, Éric; McCracken, Richard A.; Reid, Derryck T.; Kuhn, Rudi B.; Erasmus, Nicolas; Crause, Lisa A.
2016-08-01
We present preliminary results of the commissioning and testing of SALT-CRISP (SALT-Calibration Ruler for Increased Spectrograph Precision), a Laser Frequency Comb (LFC) built by Heriot-Watt University and temporarily installed at the Southern African Large Telescope (SALT). The comb feeds the High Stability mode of SALT's High Resolution Spectrograph (HRS) and fully covers the wavelength range of the red channel of the HRS: 555-890 nm. The LFC provides significantly improved wavelength calibration compared to a standard Thorium-Argon (ThAr) lamp and hence offers unprecedented opportunities to characterise the resolution, stability and radial velocity precision of the HRS. Results from this field trial will be incorporated into subsequent LFC designs.
NASA Astrophysics Data System (ADS)
Lindgren, Sara; Heiter, Ulrike
2017-08-01
Context. Reliable metallicity values for late K and M dwarfs are important for studies of the chemical evolution of the Galaxy and advancement of planet formation theory in low-mass environments. Historically it has been challenging to determine the stellar parameters of low-mass stars because of their low surface temperature, which causes several molecules to form in the photospheric layers. In our work we use the fact that infrared high-resolution spectrographs have opened up a new window for investigating M dwarfs. This enables us to use similar methods as for warmer solar-like stars. Aims: Metallicity determination with high-resolution spectra is more accurate than with low-resolution spectra, but it is rather time consuming. In this paper we expand our sample analyzed with this precise method both in metallicity and effective temperature to build a calibration sample for a future revised empirical calibration. Methods: Because of the relatively few molecular lines in the J band, continuum rectification is possible for high-resolution spectra, allowing the stellar parameters to be determined with greater accuracy than with optical spectra. We obtained high-resolution spectra with the CRIRES spectrograph at the Very Large Telescope (VLT). The metallicity was determined using synthetic spectral fitting of several atomic species. For M dwarfs that are cooler than 3575 K, the line strengths of FeH lines were used to determine the effective temperatures, while for warmer stars a photometric calibration was used. Results: We analyzed 16 targets with a range of effective temperature from 3350-4550 K. The resulting metallicities lie between -0.5< [M/H] < +0.4. A few targets have previously been analyzed using low-resolution spectra and we find a rather good agreement with our values. A comparison with available photometric calibrations shows varying agreement and the spread within all empirical calibrations is large. Conclusions: Including the targets from our previous paper, we analyzed 28 M dwarfs with high-resolution infrared spectra. The targets spread approximately one dex in metallicity and 1400 K in effective temperature. For individual M dwarfs we achieve uncertainties of 0.05 dex and 100 K on average. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 090.D-0796(A).
Integration of a thermo-structural analysis with an optical model for PEPSI polarimeter
NASA Astrophysics Data System (ADS)
Di Varano, Igor; Strassmeier, Klaus G.; Ilyin, Ilya; Woche, Manfred; Kaercher, Hans J.
2011-09-01
The two spectropolarimeters for PEPSI (Potsdam Echelle Polarimetric and Spectroscopic Instrument) have been de¬signed in order to reconstruct the full Stokes vector measuring linear and circular polarization simultaneously with a re¬solving power of 120,000. The polarimeters will be attached to the Gregorian focus of the so far largest LBT 2x8.4m telescope and will feed together with permanent focus stations the spectrograph via 44m long fibers connection. The spectrograph will be located in a pressure-temperature controlled chamber within the telescope pier. We present hereafter the last results from combined structural and CFD analyses in order to fulfill the optical requirements.
PRAXIS: a near infrared spectrograph optimised for OH suppression
NASA Astrophysics Data System (ADS)
Ellis, S. C.; Bauer, S.; Bland-Hawthorn, J.; Case, S.; Content, R.; Fechner, T.; Giannone, D.; Haynes, R.; Hernandez, E.; Horton, A. J.; Klauser, U.; Lawrence, J. S.; Leon-Saval, S. G.; Lindley, E.; Löhmannsröben, H.-G.; Min, S.-S.; Pai, N.; Roth, M.; Shortridge, K.; Staszak, Nicholas F.; Tims, Julia; Xavier, Pascal; Zhelem, Ross
2016-08-01
Atmospheric emission from OH molecules is a long standing problem for near-infrared astronomy. PRAXIS is a unique spectrograph, currently in the build-phase, which is fed by a fibre array that removes the OH background. The OH suppression is achieved with fibre Bragg gratings, which were tested successfully on the GNOSIS instrument. PRAXIS will use the same fibre Bragg gratings as GNOSIS in the first implementation, and new, less expensive and more efficient, multicore fibre Bragg gratings in the second implementation. The OH lines are suppressed by a factor of 1000, and the expected increase in the signal-to-noise in the interline regions compared to GNOSIS is a factor of 9 with the GNOSIS gratings and a factor of 17 with the new gratings. PRAXIS will enable the full exploitation of OH suppression for the first time, which was not achieved by GNOSIS due to high thermal emission, low spectrograph transmission, and detector noise. PRAXIS will have extremely low thermal emission, through the cooling of all significantly emitting parts, including the fore-optics, the fibre Bragg gratings, a long length of fibre, and a fibre slit, and an optical design that minimises leaks of thermal emission from outside the spectrograph. PRAXIS will achieve low detector noise through the use of a Hawaii-2RG detector, and a high throughput through an efficient VPH based spectrograph. The scientific aims of the instrument are to determine the absolute level of the interline continuum and to enable observations of individual objects via an IFU. PRAXIS will first be installed on the AAT, then later on an 8m class telescope.
NASA Astrophysics Data System (ADS)
de Oliveira, A. C.; de Oliveira, L. S.; Dos Santos, J. B.; Arruda, M. V.; Dos Santos, L. G. C.; Rodrigues, F.; de Castro, F. L. F.
2011-06-01
While there is no direct evidence for the deterioration in Focal Ratio Degradation (FRD) of optical fibres in severe temperature gradients, the fibre ends inserted into metallic containment devices such as steel ferrules can be a source of stress, and hence increased FRD at low temperatures. In such conditions, instruments using optical fibres may suffer some increase in FRD and consequent loss of system throughput when they are working in environments with significant thermal gradients, a common characteristic of ground-based observatories. In this paper we present results of experiments with optical fibres inserted in different materials as a part of our prototyping study for Gemini's Wide-field Multi-Object Spectrograph (WFMOS) project. Thermal effects and the use of new holding techniques will be discussed in the context of Integral Field Units and multi-fibres systems. In this work, we have used careful methodologies that give absolute measurements of FRD to quantify the advantages of using epoxy-based composites rather than metals as support structures for the fibre ends. This is shown to be especially important in minimizing thermally induced stresses in the fibre terminations. Not only is this important for optimizing fibre spectrograph performance but the benefits of using such materials are demonstrated in the minimization of positional variations and the avoidance of metal-to-glass delamination. Furthermore, by impregnating the composites with small zirconium oxide particles the composite materials supply their own fine polishing grit which aids significantly to the optical quality of the finished product.
Development of a slicer integral field unit for the existing optical imaging spectrograph FOCAS
NASA Astrophysics Data System (ADS)
Ozaki, Shinobu; Tanaka, Yoko; Hattori, Takashi; Mitsui, Kenji; Fukusima, Mitsuhiro; Okada, Norio; Obuchi, Yoshiyuki; Miyazaki, Satoshi; Yamashita, Takuya
2012-09-01
We are developing an integral field unit (IFU) with an image slicer for the existing optical imaging spectrograph, Faint Object Camera And Spectrograph (FOCAS), on the Subaru Telescope. Basic optical design has already finished. The slice width is 0.4 arcsec, slice number is 24, and field of view is 13.5x 9.6 arcsec. Sky spectra separated by about 3 arcmin from an object field can be simultaneously obtained, which allows us precise background subtraction. The IFU will be installed as a mask plate and set by the mask exchanger mechanism of FOCAS. Slice mirrors, pupil mirrors and slit mirrors are all made of glass, and their mirror surfaces are fabricated by polishing. Multilayer dielectric reflective coating with high reflectivity (< 98%) is made on each mirror surface. Slicer IFU consists of many mirrors which need to be arraigned with high accuracy. For such alignment, we will make alignment jigs and mirror holders made with high accuracy. Some pupil mirrors need off-axis ellipsoidal surfaces to reduce aberration. We are conducting some prototyping works including slice mirrors, an off-axis ellipsoidal surface, alignment jigs and a mirror support. In this paper, we will introduce our project and show those prototyping works.
Progreso en la puesta en marcha del espectrógrafo BHROS
NASA Astrophysics Data System (ADS)
Díaz, R.; Levato, H.; Casagrande, A.; Piroddi, D.; Yornet, G.; Eikenberry, S.; Gonzalez, F.; Townsend, A.; Godoy, J.; Marun, A.; Gunella, F.; D'Ambra, A.; Warner, C.; Bosch, G.; Donoso, V.; Grosso, M.; Seifer, E.
2017-10-01
We report the advance on the re-assembly and commissioning of the BHROS spectrograph, its associated instrument laboratory and the planned system of telescopes. This is the largest astronomical spectrograph ever assembled in Argentina and the laboratory is also being used for other instrumentation needs of ICATE. We have installed a half meter telescope in order to test the spectrograph with on-sky sources, and we plan to install a network of telescopes feeding it via a multiple optical fiber system. In these first tests we have obtained spectra of the Sun (R100000) and Jupiter and Achernar (R40000). In 2017-2018 we plan to install and test a network of five small telescopes feeding the spectrograph with the collecting area equivalent to that of a one meter telescope, with a cost 10-25 times less in acquisition, transport, installation and operation respect to a conventional monolithic telescope.
Progress along the E-ELT instrumentation roadmap
NASA Astrophysics Data System (ADS)
Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.
2016-08-01
A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.
An abundance analysis from the STIS-HST UV spectrum of the non-magnetic Bp star HR 6000
NASA Astrophysics Data System (ADS)
Castelli, F.; Cowley, C. R.; Ayres, T. R.; Catanzaro, G.; Leone, F.
2017-05-01
Context. The sharp-line spectrum of the non-magnetic, main-sequence Bp star HR 6000 has peculiarities that distinguish it from those of the HgMn stars with which it is sometimes associated. The position of the star close to the center of the Lupus 3 molecular cloud, whose estimated age is on the order of 9.1 ± 2.1 Myr, has lead to the hypothesis that the anomalous peculiarities of HR 6000 can be explained by the young age of the star. Aims: Observational material from the Hubble Space Telescope (HST) provides the opportunity to extend the abundance analysis previously performed for the optical region and clarify the properties of this remarkable peculiar star. Our aim was to obtain the atmospheric abundances for all the elements observed in a broad region from 1250 to 10 000 Å. Methods: An LTE synthetic spectrum was compared with a high-resolution spectrum observed with the Space Telescope Imaging Spectrograph (STIS) equipment in the 1250-3040 Å interval. Abundances were changed until the synthetic spectrum fit the observed spectrum. The assumed model is an LTE, plane-parallel, line-blanketed ATLAS12 model already used for the abundance analysis of a high-resolution optical spectrum observed at ESO with the Ultraviolet and Visual Echelle Spectrograph (UVES). The stellar parameters are Teff = 13450 K, log g = 4.3, and zero microturbulent velocity. Results: Abundances for 28 elements and 7 upper limits were derived from the ultraviolet spectrum. Adding results from previous work, we have now quantitative results for 37 elements, some of which show striking contrasts with those of a broad sample of HgMn stars. The analysis has pointed out numerous abundance anomalies, such as ionization anomalies and line-to-line variation in the derived abundances, in particular for silicon. The inferred discrepancies could be explained by non-LTE effects and with the occurrence of diffusion and vertical abundance stratification. In the framework of the last hypothesis, we obtained, by means of trial and error, empirical step functions of abundance versus optical depth log (τ5000) for carbon, nitrogen, silicon, manganese, and gold, while we failed to find such a function for phosphorous. The poor results for carbon, and mostly for phosphorus, suggest the possible importance in this star of NLTE effects to be investigated in future works.
NASA Technical Reports Server (NTRS)
Decarlo, Francesco; Stalio, Roberto; Trampus, Paolo; Broadfoot, A. Lyle; Sandel, Bill R.; Sicuranza, Giovanni
1993-01-01
We describe an algorithm for star identification and pointing/tracking of a spaceborne electro-optical system and simulation analyses to test the algorithm. The algorithm will be implemented in the guiding system of UVSTAR, a spectrographic telescope for observations of astronomical and planetary sources operating in the 500-1250 A waveband at approximately 1 A resolution. The experiment is an attached payload and will fly as a Hitchhiker-M payload on the Shuttle. UVSTAR includes capabilities for independent target acquisition and tracking. The spectrograph package has internal gimbals that allow angular movement of plus or minus 3 deg from the central position. Rotation about the azimuth axis (parallel to the Shuttle z axis) and elevation axis (parallel to the Shuttle x axis) will actively position the field of view to center the target of interest in the fields of the spectrographs. The algorithm is based on an on-board catalog of stars. To identify star fields, the algorithm compares the positions of stars recorded by the guiding imager to positions computed from the on-board catalog. When the field has been identified, its position within the guiding imager field of view can be used to compute the pointing corrections necessary to point to a target of interest. In tracking mode, the software uses the past history to predict the quasi-periodic attitude control motions of the shuttle and sends pointing commands to cancel the motion and stabilize UVSTAR on the target. The guiding imager (guider) will have an 80-mm focal length and f/1.4 optics giving a field of view of 6 deg x 4.5 deg using a 385 x 288 pixel intensified CCD. It will be capable of providing high accuracy (better than 2 arc-sec) attitude determination from coarse (6 deg x 4.5 deg) initial knowledge of the pointing direction; and of pointing toward the target. It will also be capable of tracking at the same high accuracy with a processing time of less than a few hundredths of a second.
NASA Astrophysics Data System (ADS)
Shectman, Stephen A.
1995-05-01
The Magellan project is a collaboration between the Carnegie Institution of Washington and the University of Arizona to build and operate a 6.5-meter telescope at the Las Campanas Observatory in Chile. Negotiations which are presently underway with additional partners are likely to result in the construction of a second identical telescope as part of the same facility. The concrete work for the first telescope has been completed. The steel structure for the fixed part of the dome and for the aluminizing building has been shipped to the site. The structure for the rotating part of the dome should arrive at the site by the end of 1995. The telescope mount is being constructed by L&F Industries of Huntington Park, CA. Most of the structure has been fabricated and machining of the parts is underway. Shop assembly of the mount is scheduled to be completed by the end of 1995, and the mount should arrive at the site by mid-1996. The borosilicate honeycomb mirror blank for the first telescope was cast at the Steward Observatory Mirror Lab in February, 1994. The refractory material is presently being cleaned out of the honeycomb cores, and figuring should begin in 1996. The schedule calls for the mirror to be installed in the telescope by mid-1997. The optical design of the telescope features an f/11 Gregorian secondary for which the field curvature is matched to the collimator optics of a wide-field imaging spectrograph. A two-element field corrector incorporates an atmospheric dispersion compensator with no additional glass-air surfaces. The matching field curvatures permit the collimator to cover a very wide field (30 arc-min) with high image quality (0.1 arc-sec rms). Cameras and detectors which make use of such a wide field are challenging but at least conceivable from a technical point of view. A compact echelle spectrograph has also been designed to work in the resolution range 30-50,000. Spectral coverage will be complete between 3500A and 8500A. The spectrograph has been designed for high throughput and the CCD readouts will be optimized in a novel way to minimize the effect of amplifier noise for observations of faint objects.
NRES: The Network of Robotic Echelle Spectrographs
NASA Astrophysics Data System (ADS)
Siverd, Robert; Brown, Timothy M.; Henderson, Todd; Hygelund, John; Barnes, Stuart; Bowman, Mark; De Vera, Jon; Eastman, Jason D.; Kirby, Annie; Norbury, Martin; Smith, Cary; Taylor, Brook; Tufts, Joseph; Van Eyken, Julian C.
2017-06-01
Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four to six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12. Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. Barring serious complications, we expect regular scheduled science observing to begin in mid-2017. Three additional units are in building or testing phases and slated for deployment in late 2017. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities. We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first unit, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of science cases.
VizieR Online Data Catalog: Black hole masses in megamaser disk galaxies (Greene+, 2016)
NASA Astrophysics Data System (ADS)
Greene, J. E.; Seth, A.; Kim, M.; Lasker, R.; Goulding, A.; Gao, F.; Braatz, J. A.; Henkel, C.; Condon, J.; Lo, K. Y.; Zhao, W.
2016-11-01
The velocity dispersion (σ*) presented here for megamaser disk galaxies are measured from three data sets. Two galaxies (NGC1320, NGC5495) were observed with the B&C spectrograph on the Dupont telescope at the Las Campanas Observatory. These spectra have an instrumental resolution of σr~120km/s and a wavelength range of 3400-6000Å. Two galaxies (Mrk1029, ESO558-G009) have σ* measurements from the cross-dispersed near-infrared spectrograph Triplespec on the 3.5m telescope at Apache Point. Triplespec has a wavelength range of 0.9-2.4um with a spectral resolution of σr~37km/s. Finally, three galaxies (J0437+2456, NGC5765b, UGC6093) have spectra from the SDSS. They have a spectral resolution of σr~65km/s and cover a range of 3800-9200Å. (1 data file).
WILSON-BAPPU EFFECT: EXTENDED TO SURFACE GRAVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sunkyung; Kang, Wonseok; Lee, Jeong-Eun
2013-10-01
In 1957, Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (M{sub V} ) and the width of the Ca II K emission line for late-type stars. Here, we revisit the Wilson-Bappu relationship (WBR) to claim that the WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high-resolution spectra of 125 late-type stars obtained with the Bohyunsan Optical Echelle Spectrograph and adopted from the Ultraviolet and Visual Echelle Spectrograph archive. Based onmore » our measurement of the emission line width (W), we have obtained a WBR of M{sub V} = 33.76 - 18.08 log W. In order to extend the WBR to being a surface gravity indicator, stellar atmospheric parameters such as effective temperature (T{sub eff}), surface gravity (log g), metallicity ([Fe/H]), and micro-turbulence ({xi}{sub tur}) have been derived from self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and log W, we found that log g = -5.85 log W+9.97 log T{sub eff} - 23.48 for late-type stars.« less
The SED Machine: a dedicated transient IFU spectrograph
NASA Astrophysics Data System (ADS)
Ben-Ami, Sagi; Konidaris, Nick; Quimby, Robert; Davis, Jack T.; Ngeow, Chow Choong; Ritter, Andreas; Rudy, Alexander
2012-09-01
The Spectral Energy Distribution (SED) Machine is an Integral Field Unit (IFU) spectrograph designed specifically to classify transients. It is comprised of two subsystems. A lenselet based IFU, with a 26" × 26" Field of View (FoV) and ˜ 0.75" spaxels feeds a constant resolution (R˜100) triple-prism. The dispersed rays are than imaged onto an off-the-shelf CCD detector. The second subsystem, the Rainbow Camera (RC), is a 4-band seeing-limited imager with a 12.5' × 12.5' FoV around the IFU that will allow real time spectrophotometric calibrations with a ˜ 5% accuracy. Data from both subsystems will be processed in real time using a dedicated reduction pipeline. The SED Machine will be mounted on the Palomar 60-inch robotic telescope (P60), covers a wavelength range of 370 - 920nm at high throughput and will classify transients from on-going and future surveys at a high rate. This will provide good statistics for common types of transients, and a better ability to discover and study rare and exotic ones. We present the science cases, optical design, and data reduction strategy of the SED Machine. The SED machine is currently being constructed at the Calofornia Institute of Technology, and will be comissioned on the spring of 2013.
An integrated thermo-structural model to design a polarimeter for the GTC
NASA Astrophysics Data System (ADS)
Di Varano, I.; Strassmeier, K. G.; Woche, M.; Laux, U.
2016-07-01
The GTC (Gran Telescopio Canarias), with an equivalent aperture of 10.4 m, effective focal length of 169.9 m, located at the Observatorio del Roque de los Muchachos , in La Palma, Canary Islands, will host on its Cassegrain focus the GRAPE polarimeter (GRAntecan PolarimEter). At such focus the plate scale is 1.21 arcsec/mm and the unvignetted FOV 8 arcmin. The instrument will provide full Stokes polarimetry in the spectral range 380-1500 nm, feeding simultaneously up to two spectrographs. At the moment an interface to HORS (High Optical Resolution Spectrograph) is being defined, located on the Nasmyth platform, it has a FWHM resolving power of about 25,000 (5 pixel) within a spectral range of 400-680 nm. The rotator and instrumental flanges for the Cassegrain focus are currently under definition. Hereafter I present the state of art of the mechanical design of the polarimeter, whose strategy is based on an integrated model of Zemax design into ANSYS FEM static and dynamic analyses with thermal loads applied, in order to retrieve tip-tilt, decentering errors and other significant parameters to be looped back to the Zemax model. In such a way it is possible to compare and refine the results achieved through the tolerance analysis.
NASA Astrophysics Data System (ADS)
Fischer, P. D.; Brown, M. E.; Trumbo, S. K.; Hand, K. P.
2017-01-01
We present spatially resolved spectroscopic observations of Europa’s surface at 3-4 μm obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3-4 μm. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μm compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.
Hubble Space Telescope faint object spectrograph instrument handbook, version 5.0
NASA Technical Reports Server (NTRS)
Kinney, A. L. (Editor)
1994-01-01
This version of the FOS Instrument Handbook is for the refurbished telescope, which is affected by an increase in throughput, especially for the smaller apertures, a decrease in efficiency due to the extra reflections of the COSTAR optics, and a change in focal length. The improved PSF affects all exposure time calculations due to better aperture throughputs and increases the spectral resolution. The extra reflections of COSTAR decrease the efficiency by 10-20 percent. The change in focal length affects the aperture sizes as projected on the sky. The aperture designations that are already in use both in the exposure logsheets and in the project data base (PDB) have not been changed. Apertures are referred to here by their size, followed by the designation used on the exposure logsheet.
Current status of the facility instrumentation suite at the Large Binocular Telescope Observatory
NASA Astrophysics Data System (ADS)
Rothberg, Barry; Kuhn, Olga; Edwards, Michelle L.; Hill, John M.; Thompson, David; Veillet, Christian; Wagner, R. Mark
2016-07-01
The current status of the facility instrumentation for the Large Binocular Telescope (LBT) is reviewed. The LBT encompasses two 8.4 meter primary mirrors on a single mount yielding an effective collecting area of 11.8 meters or 23 meters when interferometrically combined. The three facility instruments at LBT include: 1) the Large Binocular Cameras (LBCs), each with a 23'× 25' field of view (FOV). The blue optimized and red optimized optical wavelength LBCs are mounted at the prime focus of the SX (left) and DX (right) primary mirrors, respectively. Combined, the filter suite of the two LBCs cover 0.3-1.1 μm, including the addition of new medium-band filters centered on TiO (0.78 μm) and CN (0.82 μm) 2) the Multi-Object Double Spectrograph (MODS), two identical optical spectrographs each mounted at the straight through f/15 Gregorian focus of the primary mirrors. The capabilities of MODS-1 and -2 include imaging with Sloan filters (u, g, r, i, and z) and medium resolution (R ˜ 2000) spectroscopy, each with 24 interchangeable masks (multi-object or longslit) over a 6'× 6' FOV. Each MODS is capable of blue (0.32-0.6 μm) and red (0.5-1.05 μm) wavelength only spectroscopy coverage or both can employ a dichroic for 0.32-1.05 μm wavelength coverage (with reduced coverage from 0.56- 0.57 μm) and 3) the two LBT Utility Camera in the Infrared instruments (LUCIs), are each mounted at a bent-front Gregorian f/15 focus of a primary mirror. LUCI-1 and 2 are designed for seeing-limited (4'× 4' FOV) and active optics using thin-shell adaptive secondary mirrors (0.5'× 0.5' FOV) imaging and spectroscopy over the wavelength range of 0.95-2.5 μm and spectroscopic resolutions of 400 <= R <= 11000 (depending on the combination of grating, slits, and cameras used). The spectroscopic capabilities also include 32 interchangeable multi-object or longslit masks which are cryogenically cooled. Currently all facility instruments are in-place at the LBT and, for the first time, have been on-sky for science observations. In Summer 2015 LUCI-1 was refurbished to replace the infrared detector; to install a high-resolution camera to take advantage of the active optics SX secondary; and to install a grating designed primarily for use with high resolution active optics. Thus, like MODS-1 and -2, both LUCIs now have specifications nearly identical to each other. The software interface for both LUCIs have also been replaced, allowing both instruments to be run together from a single interface. With the installation of all facility instruments finally complete we also report on the first science use of "mixed-mode" operations, defined as the combination of different paired instruments with each mirror (i.e. LBC+MODS, LBC+LUCI, LUCI+MODS). Although both primary mirrors reside on a single fixed mount, they are capable of operating as independent entities within a defined "co-pointing" limit. This provides users with the additional capability to independently dither each mirror or center observations on two different sets of spatial coordinates within this limit.
A Fine-Tooth Comb to Measure the Accelerating Universe
NASA Astrophysics Data System (ADS)
2008-09-01
Astronomical instruments needed to answer crucial questions, such as the search for Earth-like planets or the way the Universe expands, have come a step closer with the first demonstration at the telescope of a new calibration system for precise spectrographs. The method uses a Nobel Prize-winning technology called a 'laser frequency comb', and is published in this week's issue of Science. Uncovering the disc ESO PR Photo 26a/08 A Laser Comb for Astronomy "It looks as if we are on the way to fulfil one of astronomers' dreams," says team member Theodor Hänsch, director at the Max Planck Institute for Quantum Optics (MPQ) in Germany. Hänsch, together with John Hall, was awarded the 2005 Nobel Prize in Physics for work including the frequency comb technique. Astronomers use instruments called spectrographs to spread the light from celestial objects into its component colours, or frequencies, in the same way water droplets create a rainbow from sunlight. They can then measure the velocities of stars, galaxies and quasars, search for planets around other stars, or study the expansion of the Universe. A spectrograph must be accurately calibrated so that the frequencies of light can be correctly measured. This is similar to how we need accurate rulers to measure lengths correctly. In the present case, a laser provides a sort of ruler, for measuring colours rather than distances, with an extremely accurate and fine grid. New, extremely precise spectrographs will be needed in experiments planned for the future European Extremely Large Telescope (E-ELT), which is being designed by ESO, the European Southern Observatory. These new spectrographs will need to be calibrated with even more accurate 'rulers'. In fact, they must be accurate to about one part in 30 billions - a feat equivalent to measuring the circumference of the Earth to about a millimetre! "We'll need something beyond what current technology can offer, and that's where the laser frequency comb comes in. It is worth recalling that the kind of precision required, 1 cm/s, corresponds, on the focal plane of a typical high-resolution spectrograph, to a shift of a few tenths of a nanometre, that is, the size of some molecules," explains PhD student and team member Constanza Araujo-Hauck from ESO. The new calibration technique comes from the combination of astronomy and quantum optics, in a collaboration between researchers at ESO and the Max Planck Institute for Quantum Optics. It uses ultra-short pulses of laser light to create a 'frequency comb' - light at many frequencies separated by a constant interval - to create just the kind of precise 'ruler' needed to calibrate a spectrograph. After successful tests in the MPQ laboratory in 2007, the team have successfully tested a prototype device using the laser comb at the VTT (Vacuum Tower Telescope) solar telescope in Tenerife, on 8 March 2008, measuring the spectrum of the Sun in infrared light. The results are already impressive, and the technique promises to achieve the accuracy needed to study these big astronomical questions. "In our tests in Tenerife, we have already achieved beyond state-of-the-art accuracy. Now we are going to make the system more versatile, and develop it even further," says team member Tilo Steinmetz, from Menlo Systems GmbH, a spin-off company from the Max Planck Institute, which was founded to commercialise the frequency comb technique. Having tested the technique on a solar telescope, a new version of the system is now being built for the HARPS planet-finder instrument on ESO's 3.6-metre telescope at La Silla in Chile, before being considered for future generations of instruments. One of the ambitious project to be realised with the E-ELT, called CODEX, aims to measure the recently discovered acceleration of the universe directly, by following the velocities of distant galaxies and quasars over a 20-year period. This would let astronomers test Einstein's general relativity and the nature of the recently discovered, and mysterious, dark energy. "We have to measure the movement of these distant galaxies to a few centimetres per second, and follow this over decades. These speeds are barely faster than a snail's pace, and the laser frequency comb is absolutely crucial for this," says team member Antonio Manescau, from ESO. Astronomers also use spectrographs to hunt for planets around other stars, by watching for subtle movements of the star as the planet orbits it. To be detected with current technology, these planets must be relatively massive or close to the star, compared to Earth. A more precise spectrograph will let astronomers find planets, with characteristics similar to Earth's.
Status of the JWST Science Instrument Payload
NASA Technical Reports Server (NTRS)
Greenhouse, Matt
2016-01-01
The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Travis C.; Straughn, A. N.; Machuca, C.
2017-01-01
We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out tomore » several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.« less
NASA Technical Reports Server (NTRS)
Santerne, A.; Beaulieu, J.-P.; Rojas Ayala, B.; Boisse, I.; Schlawin, E.; Almenara, J.-M.; Batista, V.; Bennett, D.; Diaz, R. F.; Figueira, P.;
2016-01-01
The microlensing event OGLE-2011-BLG-0417 is an exceptionally bright lens binary that was predicted to present radial velocity variation at the level of several km s1. Pioneer radial velocity follow-up observations with the UVES spectrograph at the ESOVLT of this system clearly ruled out the large radial velocity variation, leaving a discrepancy between the observation and the prediction. In this paper, we further characterise the microlensing system by analysing its spectral energy distribution (SED) derived using the UVES spectrum and new observations with the ARCoIRIS (CTIO) near-infrared spectrograph and the Keck adaptive optics instrumentNIRC2 in the J, H, and Ks-bands. We determine the mass and distance of the stars independently from the microlensing modelling. We find that the SED is compatible with a giant star in the Galactic bulge and a foreground star with a mass of 0.94 +/- 0.09 M solar mass at a distance of 1.07 +/- 0.24 kpc. We find that this foreground star is likely the lens. Its parameters are not compatible with the onespreviously reported in the literature (0.52 +/- 0.04 M solar mass at 0.95 +/- 0.06 kpc), based on the microlensing light curve. A thoughtful reanalysis of the microlensing event is mandatory to fully understand the reason of this new discrepancy. More importantly, this paper demonstrates that spectroscopic follow-up observations of microlensing events are possible and provide independent constraints on the parameters of the lens and source stars, hence breaking some degeneracies in the analysis. UV-to-NIR low-resolution spectrographs like X-shooter (ESOVLT) could substantially contribute to this follow-up efforts, with magnitude limits above all microlensing events detected so far.
Silicon immersion gratings and their spectroscopic applications
NASA Astrophysics Data System (ADS)
Ge, Jian; Zhao, Bo; Powell, Scott; Fletcher, Adam; Wan, Xiaoke; Chang, Liang; Jakeman, Hali; Koukis, Dimitrios; Tanner, David B.; Ebbets, Dennis; Weinberg, Jonathan; Lipscy, Sarah; Nyquist, Rich; Bally, John
2012-09-01
Silicon immersion gratings (SIGs) offer several advantages over the commercial echelle gratings for high resolution infrared (IR) spectroscopy: 3.4 times the gain in dispersion or ~10 times the reduction in the instrument volume, a multiplex gain for a large continuous wavelength coverage and low cost. We present results from lab characterization of a large format SIG of astronomical observation quality. This SIG, with a 54.74 degree blaze angle (R1.4), 16.1 l/mm groove density, and 50x86 mm2 grating area, was developed for high resolution IR spectroscopy (R~70,000) in the near IR (1.1-2.5 μm). Its entrance surface was coated with a single layer of silicon nitride antireflection (AR) coating and its grating surface was coated with a thin layer of gold to increase its throughput at 1.1-2.5 μm. The lab measurements have shown that the SIG delivered a spectral resolution of R=114,000 at 1.55 μm with a lab testing spectrograph with a 20 mm diameter pupil. The measured peak grating efficiency is 72% at 1.55 μm, which is consistent with the measurements in the optical wavelengths from the grating surface at the air side. This SIG is being implemented in a new generation cryogenic IR spectrograph, called the Florida IR Silicon immersion grating spectrometer (FIRST), to offer broad-band high resolution IR spectroscopy with R=72,000 at 1.4-1.8 um under a typical seeing condition in a single exposure with a 2kx2k H2RG IR array at the robotically controlled Tennessee State University 2-meter Automatic Spectroscopic Telescope (AST) at Fairborn Observatory in Arizona. FIRST is designed to provide high precision Doppler measurements (~4 m/s) for the identification and characterization of extrasolar planets, especially rocky planets in habitable zones, orbiting low mass M dwarf stars. It will also be used for other high resolution IR spectroscopic observations of such as young stars, brown dwarfs, magnetic fields, star formation and interstellar mediums. An optimally designed SIG of the similar size can be used in the Silicon Immersion Grating Spectrometer (SIGS) to fill the need for high resolution spectroscopy at mid IR to far IR (~25-300 μm) for the NASA SOFIA airborne mission in the future.
NASA Astrophysics Data System (ADS)
Elyajouri, M.; Lallement, R.; Monreal-Ibero, A.; Capitanio, L.; Cox, N. L. J.
2017-04-01
Aims: Information on the existence and properties of diffuse interstellar bands (DIBs) outside the optical domain is still limited. Additional infra-red (IR) measurements and IR-optical correlative studies are needed to constrain DIB carriers and locate various absorbers in 3D maps of the interstellar matter. Methods: We extended our study of H-band DIBs in Apache Point Observatory Galactic Evolution Experiment (APOGEE) Telluric Standard Star (TSS) spectra. We used the strong λ15273 band to select the most and least absorbed targets. We used individual spectra of the former subsample to extract weaker DIBs, and we searched the two stacked series for differences that could indicate additional bands. High-resolution NARVAL and SOPHIE optical spectra for a subsample of 55 TSS targets were additionally recorded for NIR/optical correlative studies. Results: From the TSS spectra we extract a catalog of measurements of the poorly studied λλ15617, 15653, and 15673 DIBs in ≃300 sightlines, we obtain a first accurate determination of their rest wavelength and constrained their intrinsic width and shape. In addition, we studied the relationship between these weak bands and the strong λ15273 DIB. We provide a first or second confirmation of several other weak DIBs that have been proposed based on different instruments, and we add new constraints on their widths and locations. We finally propose two new DIB candidates. Conclusions: We compared the strength of the λ15273 absorptions with their optical counterparts λλ5780, 5797, 6196, 6283, and 6614. Using the 5797-5780 ratio as a tracer of shielding against the radiation field, we showed that the λ15273 DIB carrier is significantly more abundant in unshielded (σ-type) clouds, and it responds even more strongly than the λ5780 band carrier to the local ionizing field. Full Table 5 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A129Based on SDSS/APOGEE Archive data, on observations collected with the NARVAL spectrograph on the Bernard Lyot telescope (TBL) at Observatoire du Pic du Midi (CNRS/UPS), France, and with the SOPHIE spectrograph on the Observatoire de Haute-Provence (OHP) 1.93 m telescope (CNRS/AMU).
VizieR Online Data Catalog: YSOs search in LDN 1340 in optical (Kun+, 2016)
NASA Astrophysics Data System (ADS)
Kun, M.; Moor, A.; Szegedi-Elek, E.; Reipurth, B.
2016-08-01
We observed the optical spectra of 23 stars, utilizing several instruments, namely CAFOS with the G-100 grism, installed on the 2.2m telescope of the Calar Alto Observatory, FAST on the 1.5m telescope of the Fred Lawrence Whipple Observatory, ALFOSC with grism 8 on the Nordic Optical Telescope in the Observatorio del Roque de los Muchachos in La Palma, and the low-resolution slit spectrograph operated on the 1m RCC telescope of the Konkoly Observatory between 1999 Aug 07 and 2011 Sep 27 (see table 1). We observed L1340 with the Wide Field Grism Spectrograph 2 (WFGS2), installed on the University of Hawaii 2.2m telescope, on 2011 January 1, October 15, 16, and 18, and 2012 August 10. We covered an area of 30x40arcmin, centered on RA=2:30,DE=72:48(J2000), with a mosaic of 12 overlapping fields. We found 75 stars with Hα emission by examining the images visually. See section 2.2 and table 2. Spitzer L1340 was observed by the Spitzer Space Telescope using Spitzer's Infrared Array Camera (IRAC) on 2009 March 16 and by the Multiband Imaging Photometer for Spitzer (MIPS) on 2008 November 26 (Prog. ID: 50691, PI: G. Fazio). A small part of the cloud, centered on RNO 7, was observed in the four IRAC bands on 2006 September 24 (Prog. ID: 30734, PI: D. Figer). All but eight of the Hα sources have counterparts in the AllWISE Source Catalog (Wright et al. 2010AJ....140.1868W; see II/328). L1340 is situated within Stripe 1260 of the SEGUE survey (Yanny et al. 2009, J/AJ/137/4377). Each of our target stars has a counterpart in the SDSS Data Release 9 (Ahn et al. 2012, V/139) within 1" of the 2MASS position. (6 data files).
Optical Design of WFIRST-AFTA Wide-Field Instrument
NASA Technical Reports Server (NTRS)
Pasquale, Bert; Content, Dave; Kruk, Jeffrey; Vaughn, David; Gong, Qian; Howard, Joseph; Jurling, Alden; Mentzell, Eric; Armani, Nerses; Kuan, Gary
2014-01-01
The WFIRSTAFTA Wide-Field Infrared Survey Telescope TMA optical design provides 0.28-sq FOV at 0.11 pixel scale, operating between 0.6 2.4m, including a spectrograph mode (1.3-1.95m.) An IFU provides a discrete 3x3.15 field at 0.15 sampling.
NASA Astrophysics Data System (ADS)
Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul
2015-08-01
Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2 × 10-5 across a spectral range of 250 nm.
An Integral-Field Spectrograph for a Terrestrial Planet Finding Mission
NASA Technical Reports Server (NTRS)
Heap, Sara R.
2011-01-01
We describe a conceptual design for an integral field spectrograph for characterizing exoplanets that we developed for NASA's Terrestrial Planet Finder Coronagraph (TPF-C), although it is equally applicable to an external-occulter mission. The spectrograph fulfills all four scientific objectives of a terrestrial planet finding mission by: (1) Spectrally characterizing the atmospheres of detected planets in search of signatures of habitability or even biological activity; (2) Directly detecting terrestrial planets in the habitable zone around nearby stars; (3) Studying all constituents of a planetary system including terrestrial and giant planets, gas and dust around sun-like stars of different ages and metallicities; (4) Enabling simultaneous, high-spatial-resolution, spectroscopy of all astrophysical sources regardless of central source luminosity, such as AGN's, proplyds, etc.
The infrared spectrograph during the SIRTF pre-definition phase
NASA Technical Reports Server (NTRS)
Houck, James R.
1988-01-01
A test facility was set up to evaluate back-illuminated impurity band detectors constructed for an infrared spectrograph to be used on the Space Infrared Telescope Facility (SIRTF). Equipment built to perform the tests on these arrays is described. Initial tests have been geared toward determining dark current and read noise for the array. Four prior progress reports are incorporated into this report. They describe the first efforts in the detector development and testing effort; testing details and a new spectrograph concept; a discussion of resolution issues raised by the new design; management activities; a review of computer software and testing facility hardware; and a review of the preamplifier constructed as well as a revised schematic of the detector evaluation facility.
VizieR Online Data Catalog: MUSCLES Treasury Survey. IV. M dwarf UV fluxes (Youngblood+, 2017)
NASA Astrophysics Data System (ADS)
Youngblood, A.; France, K.; Loyd, R. O. P.; Brown, A.; Mason, J. P.; Schneider, P. C.; Tilley, M. A.; Berta-Thompson, Z. K.; Buccino, A.; Froning, C. S.; Hawley, S. L.; Linsky, J.; Mauas, P. J. D.; Redfield, S.; Kowalski, A.; Miguel, Y.; Newton, E. R.; Rugheimer, S.; Segura, A.; Roberge, A.; Vieytes, M.
2018-02-01
We selected stars with HST UV spectra and ground-based optical spectra either obtained directly by us or available in the VLT/XSHOOTER or Keck/HIRES public archives. Several targets have spectroscopic data obtained with the Dual Imaging Spectrograph (DIS) on the ARC 3.5m telescope at Apache Point Observatory (APO), R~2500, or the REOSC echelle spectrograph on the 2.15m telescope at Complejo Astronomico El Leoncito (CASLEO), R~12000, within a day or two of the HST observations. We also gathered spectra of GJ1132, GJ1214, and Proxima Cen on the nights of 2016 March 7-9 using the MIKE echelle spectrograph on the Magellan Clay telescope. (2 data files).
Slit device for FOCCoS-PFS-Subaru
NASA Astrophysics Data System (ADS)
de Oliveira, Antonio Cesar; Gunn, James E.; de Oliveira, Ligia Souza; Vital de Arruda, Marcio; Souza Marrara, Lucas; dos Santos, Leandro Henrique; Ferreira, Décio; dos Santos, Jesulino Bispo; Rosa, Josimar Aparecido; Ribeiro, Flavio Felipe; Vilaça, Rodrigo de Paiva; Verducci, Orlando; Sodré, Laerte; Oliveira, Claudia Mendes
2014-07-01
The Fiber Optical Cable and Connector System, "FOCCoS", subsystem of the Prime Focus Spectrograph, "PFS", for Subaru telescope, is responsible to feed four spectrographs with a set of optical fibers cables. The light injection for each spectrograph is assured by a convex curved slit with a linear array of 616 optical fibers. In this paper we present a design of a slit that ensures the right direction of the fibers by using masks of micro holes. This kind of mask is made by a technique called electroforming, which is able to produce a nickel plate with holes in a linear sequence. The precision error is around 1-μm in the diameter and 1-μm in the positions of the holes. This nickel plate may be produced with a thickness between 50 and 200 microns, so it may be very flexible. This flexibility allows the mask to be bent into the shape necessary for a curved slit. The concept requires two masks, which we call Front Mask, and Rear Mask, separated by a gap that defines the thickness of the slit. The pitch and the diameter of the holes define the linear geometry of the slit; the curvature of each mask defines the angular geometry of the slit. Obviously, this assembly must be mounted inside a structure rigid and strong enough to be supported inside the spectrograph. This structure must have a CTE optimized to avoid displacement of the fibers or increased FRD of the fibers when the device is submitted to temperatures around 3 degrees Celsius, the temperature of operation of the spectrograph. We have produced two models. Both are mounted inside a very compact Invar case, and both have their front surfaces covered by a dark composite, to reduce stray light. Furthermore, we have conducted experiments with two different internal structures to minimize effects caused by temperature gradients. This concept has several advantages relative to a design based on Vgrooves, which is the classical option. It is much easier and quicker to assemble, much cheaper, more accurate, easier to adjust; and it also offers the possibility of making a device much more strong, robust and completely miniaturized.
NASA Astrophysics Data System (ADS)
Finn, S. C.; Chakrabarti, S.; Stephan, A. W.; Geddes, G.; Budzien, S. A.; Cook, T.; Aryal, S.; Martel, J.; Galkin, I. A.; Erickson, P. J.
2017-12-01
The Limb-Imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) was launched as part of the Space Test Program Houston #5 (STP-H5) payload aboard a commercial resupply flight on February 19, 2017 and was subsequently installed on the International Space Station (ISS). LITES is an imaging spectrograph that spans the 60 - 140 nm wavelength range at 1 nm spectral resolution and samples tangent altitudes 150 - 350 km with 0.2° angular resolution. LITES, in combination with the GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment, which includes a GPS receiver and a nadir viewing 135.6 nm photometer, jointly collect new information on the thermosphere and the ionosphere using simultaneous UV and radio emissions. LITES, which uses standard stars to perform in-flight calibration, observes altitude profiles of day and night airglow emissions that are being used to infer thermospheric and ionospheric density profiles. Furthermore, due to the inclination of the ISS, LITES has also observed auroral spectrum and their altitude and spatial variations. Finally, geomagnetic storm effects on its UV emissions can be used to remotely sense their effects on the upper atmospheric morphology. These ISS observations,which are complement to the upcoming ICON and GOLD NASA missions, are focused on ionosphere-atmosphere coupling and global-scale atmospheric response to space weather observed from higher altitudes . We will present an overview of the LITES instrument, some early results from the first few months of operations. We will also summarize the advantages in calibration and validation activities that are possible through space-based LITES, GROUP-C and stellar measurements and simultaneous ground-based optical and radar observations.
Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph
NASA Astrophysics Data System (ADS)
Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.
The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.
UNDERCOVER EUV SOLAR JETS OBSERVED BY THE INTERFACE REGION IMAGING SPECTROGRAPH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, N.-H.; Innes, D. E.
It is well-known that extreme ultraviolet (EUV) emission emitted at the solar surface is absorbed by overlying cool plasma. Especially in active regions, dark lanes in EUV images suggest that much of the surface activity is obscured. Simultaneous observations from the Interface Region Imaging Spectrograph, consisting of UV spectra and slit-jaw images (SJI), give vital information with sub-arcsecond spatial resolution on the dynamics of jets not seen in EUV images. We studied a series of small jets from recently formed bipole pairs beside the trailing spot of active region 11991, which occurred on 2014 March 5 from 15:02:21 UT tomore » 17:04:07 UT. Collimated outflows with bright roots were present in SJI 1400 Å (transition region) and 2796 Å (upper chromosphere) that were mostly not seen in Atmospheric Imaging Assembly (AIA) 304 Å (transition region) and AIA 171 Å (lower corona) images. The Si iv spectra show a strong blue wing enhancement, but no red wing, in the line profiles of the ejecta for all recurrent jets, indicating outward flows without twists. We see two types of Mg ii line profiles produced by the jets spires: reversed and non-reversed. Mg ii lines remain optically thick, but turn optically thin in the highly Doppler shifted wings. The energy flux contained in each recurrent jet is estimated using a velocity differential emission measure technique that measures the emitting power of the plasma as a function of the line-of-sight velocity. We found that all the recurrent jets release similar energy (10{sup 8} erg cm{sup −2} s{sup −1}) toward the corona and the downward component is less than 3%.« less
Kepler-432 b: a massive warm Jupiter in a 52-day eccentric orbit transiting a giant star
NASA Astrophysics Data System (ADS)
Ortiz, Mauricio; Gandolfi, Davide; Reffert, Sabine; Quirrenbach, Andreas; Deeg, Hans J.; Karjalainen, Raine; Montañés-Rodríguez, Pilar; Nespral, David; Nowak, Grzegorz; Osorio, Yeisson; Palle, Enric
2015-01-01
We study the Kepler object Kepler-432, an evolved star ascending the red giant branch. By deriving precise radial velocities from multi-epoch high-resolution spectra of Kepler-432 taken with the CAFE spectrograph at the 2.2 m telescope of Calar Alto Observatory and the FIES spectrograph at the Nordic Optical Telescope of Roque de Los Muchachos Observatory, we confirm the planetary nature of the object Kepler-432 b, which has a transit period of 52 days. We find a planetary mass of Mp = 5.84 ± 0.05MJup and a high eccentricity of e = 0.478 ± 0.004. With a semi-major axis of a = 0.303 ± 0.007 AU, Kepler-432 b is the first bona fide warm Jupiter detected to transit a giant star. We also find a radial velocity linear trend of γ˙ = 0.44 ± 0.04 m s-1 d-1, which suggests the presence of a third object in the system. Current models of planetary evolution in the post-main-sequence phase predict that Kepler-432 b will be most likely engulfed by its host star before the latter reaches the tip of the red giant branch. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Table 3 is available in electronic form at http://www.aanda.org
Undercover EUV Solar Jets Observed by the Interface Region Imaging Spectrograph
NASA Astrophysics Data System (ADS)
Chen, N.-H.; Innes, D. E.
2016-12-01
It is well-known that extreme ultraviolet (EUV) emission emitted at the solar surface is absorbed by overlying cool plasma. Especially in active regions, dark lanes in EUV images suggest that much of the surface activity is obscured. Simultaneous observations from the Interface Region Imaging Spectrograph, consisting of UV spectra and slit-jaw images (SJI), give vital information with sub-arcsecond spatial resolution on the dynamics of jets not seen in EUV images. We studied a series of small jets from recently formed bipole pairs beside the trailing spot of active region 11991, which occurred on 2014 March 5 from 15:02:21 UT to 17:04:07 UT. Collimated outflows with bright roots were present in SJI 1400 Å (transition region) and 2796 Å (upper chromosphere) that were mostly not seen in Atmospheric Imaging Assembly (AIA) 304 Å (transition region) and AIA 171 Å (lower corona) images. The Si IV spectra show a strong blue wing enhancement, but no red wing, in the line profiles of the ejecta for all recurrent jets, indicating outward flows without twists. We see two types of Mg II line profiles produced by the jets spires: reversed and non-reversed. Mg II lines remain optically thick, but turn optically thin in the highly Doppler shifted wings. The energy flux contained in each recurrent jet is estimated using a velocity differential emission measure technique that measures the emitting power of the plasma as a function of the line-of-sight velocity. We found that all the recurrent jets release similar energy (108 erg cm-2 s-1) toward the corona and the downward component is less than 3%.
The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III
NASA Astrophysics Data System (ADS)
Alam, Shadab; Albareti, Franco D.; Allende Prieto, Carlos; Anders, F.; Anderson, Scott F.; Anderton, Timothy; Andrews, Brett H.; Armengaud, Eric; Aubourg, Éric; Bailey, Stephen; Basu, Sarbani; Bautista, Julian E.; Beaton, Rachael L.; Beers, Timothy C.; Bender, Chad F.; Berlind, Andreas A.; Beutler, Florian; Bhardwaj, Vaishali; Bird, Jonathan C.; Bizyaev, Dmitry; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Bochanski, John J.; Bolton, Adam S.; Bovy, Jo; Shelden Bradley, A.; Brandt, W. N.; Brauer, D. E.; Brinkmann, J.; Brown, Peter J.; Brownstein, Joel R.; Burden, Angela; Burtin, Etienne; Busca, Nicolás G.; Cai, Zheng; Capozzi, Diego; Carnero Rosell, Aurelio; Carr, Michael A.; Carrera, Ricardo; Chambers, K. C.; Chaplin, William James; Chen, Yen-Chi; Chiappini, Cristina; Chojnowski, S. Drew; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Covey, Kevin; Croft, Rupert A. C.; Cuesta, Antonio J.; Cunha, Katia; da Costa, Luiz N.; Da Rio, Nicola; Davenport, James R. A.; Dawson, Kyle S.; De Lee, Nathan; Delubac, Timothée; Deshpande, Rohit; Dhital, Saurav; Dutra-Ferreira, Letícia; Dwelly, Tom; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eisenstein, Daniel J.; Ellsworth, Tristan; Elsworth, Yvonne; Epstein, Courtney R.; Eracleous, Michael; Escoffier, Stephanie; Esposito, Massimiliano; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Feuillet, Diane; Filiz Ak, Nurten; Finley, Hayley; Finoguenov, Alexis; Flaherty, Kevin; Fleming, Scott W.; Font-Ribera, Andreu; Foster, Jonathan; Frinchaboy, Peter M.; Galbraith-Frew, J. G.; García, Rafael A.; García-Hernández, D. A.; García Pérez, Ana E.; Gaulme, Patrick; Ge, Jian; Génova-Santos, R.; Georgakakis, A.; Ghezzi, Luan; Gillespie, Bruce A.; Girardi, Léo; Goddard, Daniel; Gontcho, Satya Gontcho A.; González Hernández, Jonay I.; Grebel, Eva K.; Green, Paul J.; Grieb, Jan Niklas; Grieves, Nolan; Gunn, James E.; Guo, Hong; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hayden, Michael; Hearty, Fred R.; Hekker, Saskia; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Honscheid, Klaus; Huber, Daniel; Huehnerhoff, Joseph; Ivans, Inese I.; Jiang, Linhua; Johnson, Jennifer A.; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Klaene, Mark A.; Knapp, Gillian R.; Kneib, Jean-Paul; Koenig, Xavier P.; Lam, Charles R.; Lan, Ting-Wen; Lang, Dustin; Laurent, Pierre; Le Goff, Jean-Marc; Leauthaud, Alexie; Lee, Khee-Gan; Lee, Young Sun; Licquia, Timothy C.; Liu, Jian; Long, Daniel C.; López-Corredoira, Martín; Lorenzo-Oliveira, Diego; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H.; Mack, Claude E., III; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, A.; Manera, Marc; Mao, Qingqing; Maraston, Claudia; Marchwinski, Robert C.; Margala, Daniel; Martell, Sarah L.; Martig, Marie; Masters, Karen L.; Mathur, Savita; McBride, Cameron K.; McGehee, Peregrine M.; McGreer, Ian D.; McMahon, Richard G.; Ménard, Brice; Menzel, Marie-Luise; Merloni, Andrea; Mészáros, Szabolcs; Miller, Adam A.; Miralda-Escudé, Jordi; Miyatake, Hironao; Montero-Dorta, Antonio D.; More, Surhud; Morganson, Eric; Morice-Atkinson, Xan; Morrison, Heather L.; Mosser, Benôit; Muna, Demitri; Myers, Adam D.; Nandra, Kirpal; Newman, Jeffrey A.; Neyrinck, Mark; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; Noterdaeme, Pasquier; Nuza, Sebastián E.; O'Connell, Julia E.; O'Connell, Robert W.; O'Connell, Ross; Ogando, Ricardo L. C.; Olmstead, Matthew D.; Oravetz, Audrey E.; Oravetz, Daniel J.; Osumi, Keisuke; Owen, Russell; Padgett, Deborah L.; Padmanabhan, Nikhil; Paegert, Martin; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Pâris, Isabelle; Park, Changbom; Pattarakijwanich, Petchara; Pellejero-Ibanez, M.; Pepper, Joshua; Percival, Will J.; Pérez-Fournon, Ismael; P´rez-Ra`fols, Ignasi; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc H.; Porto de Mello, Gustavo F.; Prada, Francisco; Prakash, Abhishek; Price-Whelan, Adrian M.; Protopapas, Pavlos; Raddick, M. Jordan; Rahman, Mubdi; Reid, Beth A.; Rich, James; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodrigues, Thaíse S.; Rodríguez-Torres, Sergio; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Ruan, John J.; Rubiño-Martín, J. A.; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Samushia, Lado; Sánchez, Ariel G.; Santiago, Basílio; Sayres, Conor; Schiavon, Ricardo P.; Schlegel, David J.; Schmidt, Sarah J.; Schneider, Donald P.; Schultheis, Mathias; Schwope, Axel D.; Scóccola, C. G.; Scott, Caroline; Sellgren, Kris; Seo, Hee-Jong; Serenelli, Aldo; Shane, Neville; Shen, Yue; Shetrone, Matthew; Shu, Yiping; Silva Aguirre, V.; Sivarani, Thirupathi; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobreira, Flávia; Souto, Diogo; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Strauss, Michael A.; Streblyanska, Alina; Suzuki, Nao; Swanson, Molly E. C.; Tan, Jonathan C.; Tayar, Jamie; Terrien, Ryan C.; Thakar, Aniruddha R.; Thomas, Daniel; Thomas, Neil; Thompson, Benjamin A.; Tinker, Jeremy L.; Tojeiro, Rita; Troup, Nicholas W.; Vargas-Magaña, Mariana; Vazquez, Jose A.; Verde, Licia; Viel, Matteo; Vogt, Nicole P.; Wake, David A.; Wang, Ji; Weaver, Benjamin A.; Weinberg, David H.; Weiner, Benjamin J.; White, Martin; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. M.; Ye`che, Christophe; York, Donald G.; Zakamska, Nadia L.; Zamora, O.; Zasowski, Gail; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng; Zhou, Xu; Zhou, Zhimin; Zou, Hu; Zhu, Guangtun
2015-07-01
The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.
APOGEE fiber development and FRD testing
NASA Astrophysics Data System (ADS)
Brunner, Sophia; Burton, Adam; Crane, Jeff; Zhao, Bo; Hearty, Fred R.; Wilson, John C.; Carey, Larry; Leger, French; Skrutskie, Mike; Schiavon, Ricardo; Majewski, Steven R.
2010-07-01
Development of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) near-infrared spectrograph has motivated thorough investigation into the properties and performance of optical fibers. The fiber selected for APOGEE is a step index, multi-mode fiber, developed by PolyMicro, with a 120μm low OH, fused silica core, 25μm cladding, and 10μm buffer. The instrument design includes a 40 meter fiber run, connecting the spectrograph to the 2.5m Sloan Digital Sky Survey (SDSS) telescope, and an additional 2.5 meter fiber segment located within the instrument dewar, a vacuum-sealed, cryogenic environment. This light path is convoluted and includes many transitions and connections where the beam is susceptible irrevocable loss. To optimize the spectrograph performance it is necessary to minimize the losses incurred in the fiber system, especially those resulting in focal ratio degradation (FRD). The focus of this research has been to identify potential sources of loss and where applicable, select material components to minimize this effect. There is little previous documented work concerning the performance of optical fibers within this wavelength band (1.5-1.7μm). Consequently, the following includes comprehensive explanations of the APOGEE fiber system components, our experimental design and optical test bed set-up, beam alignment procedures, fiber terminating and polishing techniques, and results from our examination of FRD as correlated with source wavelength, fiber length and termination, and environmental conditions.
SUBARU/HDS STUDY OF HE 1015-2050: SPECTRAL EVIDENCE OF R CORONAE BOREALIS LIGHT DECLINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, Aruna; Aoki, Wako, E-mail: aruna@iiap.res.in
2013-02-01
Hydrogen deficiency and a sudden optical light decline of about 6-8 mag are two principal characteristics of R Coronae Borealis (RCB) stars. The high latitude carbon star HE 1015-2050 was identified as a hydrogen-deficient carbon star from low-resolution spectroscopy. Photometric data of the Catalina Real-Time Transient Survey gathered between 2006 February and 2012 May indicate that the object exhibits no variability. However, a high-resolution (R {approx} 50, 000) optical spectrum of this object obtained with the 8.2 m Subaru telescope using High Dispersion Spectrograph on the 2012 January 13 offers sufficient spectral evidence that the object is a cool HdCmore » star of RCB type undergoing light decline. In contrast to the Na I D broad absorption features seen in the low-resolution spectra on several occasions, the high-resolution spectrum exhibits Na I D{sub 2} and D{sub 1} features in emission. A few emission lines due to Mg I, Sc II, Ti I, Ti II, Fe II, and Ba I are also observed in the spectrum of this object for the first time. Such emission features combined with neutral and singly ionized lines of Ca, Ti, Fe, etc., in absorption are reportedly seen in RCBs spectra in the early stage of decline or during the recovery to maximum. Further, the light decline of RCBs is ascribed to the formation of a cloud of soot that obscures the visible photosphere. The presence of such circumstellar material is evident from the polarimetric observations with an estimated V-band percentage polarization of {approx}1.7% for this object.« less
The Ultraviolet Spectrograph on NASA's Juno Mission
NASA Astrophysics Data System (ADS)
Gladstone, G. Randall; Persyn, Steven C.; Eterno, John S.; Walther, Brandon C.; Slater, David C.; Davis, Michael W.; Versteeg, Maarten H.; Persson, Kristian B.; Young, Michael K.; Dirks, Gregory J.; Sawka, Anthony O.; Tumlinson, Jessica; Sykes, Henry; Beshears, John; Rhoad, Cherie L.; Cravens, James P.; Winters, Gregory S.; Klar, Robert A.; Lockhart, Walter; Piepgrass, Benjamin M.; Greathouse, Thomas K.; Trantham, Bradley J.; Wilcox, Philip M.; Jackson, Matthew W.; Siegmund, Oswald H. W.; Vallerga, John V.; Raffanti, Rick; Martin, Adrian; Gérard, J.-C.; Grodent, Denis C.; Bonfond, Bertrand; Marquet, Benoit; Denis, François
2017-11-01
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter's far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno's other remote sensing instruments and used to place in situ measurements made by Juno's particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter's magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.
VizieR Online Data Catalog: SPT-SZ survey galaxy clusters optical spectroscopy (Ruel+, 2014)
NASA Astrophysics Data System (ADS)
Ruel, J.; Bazin, G.; Bayliss, M.; Brodwin, M.; Foley, R. J.; Stalder, B.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.; Chapman, S. C.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Natoli, T.; Nurgaliev, D.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Suhada, R.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Starsk, A. A.; Story, K.; Stubbs, C. W.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.
2017-04-01
Most of the galaxy clusters for which we report spectroscopic observations were published as SPT cluster detections (and new discoveries) in Vanderlinde et al. (2010ApJ...722.1180V), Williamson et al. (2011ApJ...738..139W), and Reichardt et al. (2013, J/ApJ/763/127); we refer the reader to those publications for details of the SPT observations. The spectroscopic observations presented in this work are the first of our ongoing follow-up program. The data were taken from 2008 to 2012 using the Gemini Multi Object Spectrograph (GMOS; Hook et al. 2004PASP..116..425H) on Gemini South, the Focal Reducer and low dispersion Spectrograph (FORS2; Appenzeller et al. 1998Msngr..94....1A) on VLT Antu, the Inamori Magellan Areal Camera and Spectrograph (IMACS; Dressler et al. 2006SPIE.6269E..0FD) on Magellan Baade, and the Low Dispersion Survey Spectrograph (LDSS339; Allington-Smith et al. 1994PASP..106..983A) on Magellan Clay. (2 data files).
Medium Resolution Spectroscopy of Boyajian's Star (KIC 8462852)
NASA Astrophysics Data System (ADS)
Steele, I. A.; Lamb, G. P.; Copperwheat, C. M.; Jermak, H. E.
2017-05-01
ATel #10405 reports that a several percent dip in the brightness of KIC 8462852 is underway. We report medium resolution spectroscopy (R=2500) taken with the FRODOSpec fibre fed integral field spectrograph of the 2.0 meter Liverpool Telescope, La Palma obtained on 20th May 2017 starting at 01:20UT.
Temporal intensity interferometry for characterization of very narrow spectral lines
NASA Astrophysics Data System (ADS)
Tan, P. K.; Kurtsiefer, C.
2017-08-01
Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.
NASA Technical Reports Server (NTRS)
Neupert, W. M.
1978-01-01
A scientific investigation of heating and mass transport in the solar corona that is currently planned for a future Shuttle/Spacelab flight is outlined. The instrument to be used is a near-normal incidence grating spectrograph fed by a grazing incidence Wolter Type 2 telescope. A toroidal grating design provides stigmatic images of the corona up to 8 arc min in extent over the spectral region from 225 A to 370 A. Spatial resolution of at least 2 arc sec and spectral resolution of 0.050 A is achievable throughout the central 4 arc min field or view. Primary scientific data are recorded on Schumann-type film. An H-alpha slit jaw monitor and zero order extreme ultraviolet monitor are also planned to support instrument operation.
DECam SAM 0.9-m CCD Goodman SOI Optical Spectrographs CHIRON COSMOS Goodman Filters Telescopes Blanco 4 magnitudes, astrometric, and spectral properties Filters Filter Overview Filter list (all filters up to and including 4x4-inch, sorted by wavelength) Filters - 3 & 4 inch (for SOAR, Schmidt, 0.9-m imaging
Studying focal ratio degradation of optical fibres with a core size of 50 μm for astronomy
NASA Astrophysics Data System (ADS)
Oliveira, A. C.; de Oliveira, L. S.; dos Santos, J. B.
2005-01-01
Along with the spectral attenuation properties, the focal ratio degradation (FRD) properties of optical fibres are the most important for instrumental applications in astronomy. We present a special study about the FRD of optical fibres with a core size of 50 μm to evaluate the effects of stress when mounting the fibre. Optical fibres like this were used to construct the Eucalyptus integral field unit. This fibre is very susceptible to the FRD effects, especially after the removal of the acrylate buffer. This operation is sometimes necessary to allow close packing of the fibres at the input to the spectrograph. Without the acrylate buffer, the protection of the cladding and core of the fibre may be easily damaged. In the near future, fibres of this size will be used to build the Southern Observatory for Astronomical Research (SOAR) integral field unit spectrograph (SIFS) and other instruments. It is important to understand the correct procedure which minimizes any increase in FRD during the construction of the instrument.
VizieR Online Data Catalog: Optical to NIR spectra of nova V2676 Oph 2012 (Raj+, 2017)
NASA Astrophysics Data System (ADS)
Raj, A.; Das, R. K.; Walter, F. M.
2017-09-01
Near-infrared observations were obtained using the 1.2m telescope of Mt.Abu Infrared Observatory from 2012 March 29 to June 18 and the SMARTS/CTIO 1.3m telescope. The SMARTS photometry is available on the SMARTS atlas (Walter+, 2012PASP..124.1057W). Optical spectra were obtained with the Asiago 1.22m telescope + B&C spectrograph. Further low-dispersion spectra and photometry were obtained using the SMARTS 1.5m facilities. We obtained 19 spectra on an irregular cadence and with various sky conditions from 2012 April 5 through 2012 June 24. The target was observed using the COSMOS long slit spectrograph at CTIO on 2015 May 8, some three years after the outburst. (3 data files).
VizieR Online Data Catalog: Abundances in the local region. II. F, G, and K dwarfs (Luck+, 2017)
NASA Astrophysics Data System (ADS)
Luck, R. E.
2017-06-01
The McDonald Observatory 2.1m Telescope and Sandiford Cassegrain Echelle Spectrograph provided much of the observational data for this study. High-resolution spectra were obtained during numerous observing runs, from 1996 to 2010. The spectra cover a continuous wavelength range from about 484 to 700nm, with a resolving power of about 60000. The wavelength range used demands two separate observations--one centered at about 520nm, and the other at about 630nm. Typical S/N values per pixel for the spectra are more than 150. Spectra of 57 dwarfs were obtained using the Hobby-Eberly telescope and High-Resolution Spectrograph. The spectra have a resolution of 30000, spanning the wavelength range of 400 to 785nm. They also have very high signal-to-noise ratios, >300 per resolution element in numerous cases. The last set of spectra were obtained from the ELODIE Archive (Moultaka et al. 2004PASP..116..693M). These spectra are fully processed, including order co-addition, and have a continuous wavelength span of 400 to 680nm and a resolution of 42000. The ELODIE spectra utilized here all have S/N>75 per pixel. (6 data files).
Total Solar Eclipse to Introduce Scientific Research
NASA Astrophysics Data System (ADS)
Choudhary, D. P.
2015-12-01
We are designing an experiment to record time lapse slit-less flash spectra of solar chromosphere and corona before, during and after the Total Solar Eclipse (TSE). As the moon gradually covers different heights of chromosphere and corona, the time lapse spectra would provide high hight-resolution information about the line formation starting at very close proximity to the solar limb. The flash spectrum will be recored with a slit-less spectrograph consisting of a transmission grating of 300 lines/mm, blazed at 5000 Å, and an 135 mm f/3.5 telephoto lens. Based on earlier such instruments, the system's efficiency is expected to be about 60% at 5303 Å (Fe XIV emission line) and 20% at 6374 Å (Fe X emission line) (Voulgaris, 2010). We shall place the grating before the telephoto lens on a wedge shaped. The full range of the visible spectrum, from 3900 Å to 6700 Å will be projected on the CCD sensor of the digital camera. The resolution of the spectrograph is expected to be 0.5 Å/pixel at 5215 Å. The diameter of the Sun would corresponded to 275 pixels or 6.87''/pixel. By turning the grating, the direction of the ruling shall be set parallel to the direction of the last visible elongated crescent of the Sun; which will play the role of the "slit" in the slitless spectrograph. The spectrograph will be mounted on a solar tracker to observe the sun during TSE.
In-Flight Performance of the Ozone Monitoring Instrument
NASA Technical Reports Server (NTRS)
Schenkeveld, V.M. Erik; Jaross, Glen; Marchenko, Sergey; Haffner, David; Kleipool, Quintus L.; Rozemeijer, Nico C.; Veefkind, J. Pepijn; Levelt, Pieternel F.
2017-01-01
The Dutch-Finnish Ozone Monitoring Instrument (OMI) is an imaging spectrograph flying on NASA's EOS Aura satellite since 15 July 2004. OMI is primarily used to map trace-gas concentrations in the Earth's atmosphere, obtaining mid-resolution (0.4-0.6 nm) ultraviolet-visible (UV- VIS; 264-504 nm) spectra at multiple (30-60) simultaneous fields of view. Assessed via various approaches that include monitoring of radiances from selected ocean, land ice and cloud areas, as well as measurements of line profiles in the solar spectra, the instrument shows low optical degradation and high wavelength stability over the mission lifetime. In the regions relatively free from the slowly unraveling "row anomaly" (RA) the OMI irradiances have degraded by 3- 8 %, while radiances have changed by 1-2 %. The long-term wavelength calibration of the instrument remains stable to 0.005-0.020 nm.
Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory
NASA Technical Reports Server (NTRS)
Feldman, P. D.
1975-01-01
The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.
VizieR Online Data Catalog: SDSS-RM project: peak velocities of QSOs (Shen+, 2016)
NASA Astrophysics Data System (ADS)
Shen, Y.; Brandt, W. N.; Richards, G. T.; Denney, K. D.; Greene, J. E.; Grier, C. J.; Ho, L. C.; Peterson, B. M.; Petitjean, P.; Schneider, D. P.; Tao, C.; Trump, J. R.
2017-01-01
The SDSS-RM quasar sample includes 849 broad-line quasars at 0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, P. D.; Brown, M. E.; Trumbo, S. K.
2017-01-01
We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scalemore » chaos, and can aid efforts to identify the endogenous non-ice species.« less
EXPRES: a next generation RV spectrograph in the search for earth-like worlds
NASA Astrophysics Data System (ADS)
Jurgenson, C.; Fischer, D.; McCracken, T.; Sawyer, D.; Szymkowiak, A.; Davis, A.; Muller, G.; Santoro, F.
2016-08-01
The EXtreme PREcision Spectrograph (EXPRES) is an optical fiber fed echelle instrument being designed and built at the Yale Exoplanet Laboratory to be installed on the 4.3-meter Discovery Channel Telescope operated by Lowell Observatory. The primary science driver for EXPRES is to detect Earth-like worlds around Sun-like stars. With this in mind, we are designing the spectrograph to have an instrumental precision of 15 cm/s so that the on-sky measurement precision (that includes modeling for RV noise from the star) can reach to better than 30 cm/s. This goal places challenging requirements on every aspect of the instrument development, including optomechanical design, environmental control, image stabilization, wavelength calibration, and data analysis. In this paper we describe our error budget, and instrument optomechanical design.
High Resolution Optical Spectroscopy of an Intriguing High-Latitude B-Type Star HD119608
NASA Astrophysics Data System (ADS)
Şahin, T.
2018-01-01
We present an LTE analysis of high resolution echelle optical spectra obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph for a B1Ib high galactic latitude supergiant HD119608. A fresh determination of the atmospheric parameters using line-blanketed LTE model atmospheres and spectral synthesis provided T eff = 23 300 ± 1000 K, log g = 3.0 ± 0.3, and the microturbulent velocity ξ = 6.0 ± 1.0 kms-1 and [Fe/H] = 0.16. The rotational velocity of the star was derived fromC, O, N, Al, and Fe lines as v sin i = 55.8 ± 1.3 kms-1. Elemental abundances were obtained for 10 different species. He, Al, and P abundances of the star were determined for the first time. In the spectra, hot post-AGB status as well as the Pop I characteristics of the star were examined. The approximately solar carbon and oxygen abundances, along with mild excess in helium and nitrogen abundances do not stipulate a CNO processed surface composition, hence a hot post-AGB status. The LTE abundances analysis also indicates solar sulphur and moderately enriched magnesium abundances. The average abundances of B dwarfs of well studied OB associations and Population I stars show a striking resemblance to abundances obtained for HD119608 in this study. This may imply a runaway status for the star.
On the spectroscopic nature of the cool evolved Am star HD151878
NASA Astrophysics Data System (ADS)
Freyhammer, L. M.; Elkin, V. G.; Kurtz, D. W.
2008-10-01
Recently, Tiwari, Chaubey & Pandey detected the bright component of the visual binary HD151878 to exhibit rapid photometric oscillations through a Johnson B filter with a period of 6min (2.78mHz) and a high, modulated amplitude up to 22mmag peak-to-peak, making this star by far the highest amplitude rapidly oscillating Ap (roAp) star known. As a new roAp star, HD151878 is of additional particular interest as a scarce example of the class in the northern sky, and only the second known case of an evolved roAp star - the other being HD116114. We used the FIbre-fed Echelle Spectrograph at the Nordic Optical Telescope to obtain high time-resolution spectra at high dispersion to attempt to verify the rapid oscillations. We show here that the star at this epoch is spectroscopically stable to rapid oscillations of no more than a few tens of ms-1. The high-resolution spectra furthermore show the star to be of type Am rather than Ap and we show the star lacks most of the known characteristics for roAp stars. We conclude that this is an Am star that does not pulsate with a 6-min period. The original discovery of pulsation is likely to be an instrumental artefact. Based on observations collected at the Nordic Optical Telescope as part of programme 36-418. E-mail: lfreyham@gmail.com
NASA Astrophysics Data System (ADS)
Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wallace, J. K.; Wang, J.; Vasisht, G.; Dekany, R.; Mennesson, B.; Choquet, E.; Delorme, J.-R.; Serabyn, E.
2017-04-01
High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.
The LCLS variable-energy hard X-ray single-shot spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich, David; Zhu, Diling; Turner, James
2016-01-01
The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for themore » continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10 -5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.« less
The LCLS variable-energy hard X-ray single-shot spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich, David; Zhu, Diling; Turner, James
The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for themore » continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10 -5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.« less
The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars
NASA Astrophysics Data System (ADS)
Rayner, John T.; Cushing, Michael C.; Vacca, William D.
2009-12-01
We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.
WIYN bench upgrade: a revitalized spectrograph
NASA Astrophysics Data System (ADS)
Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.
2008-07-01
We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.
Abundance Analysis of 17 Planetary Nebulae from High-Resolution Optical Spectroscopy
NASA Astrophysics Data System (ADS)
Sherrard, Cameroun G.; Sterling, Nicholas C.; Dinerstein, Harriet L.; Madonna, Simone; Mashburn, Amanda
2017-06-01
We present an abundance analysis of 17 planetary nebulae (PNe) observed with the 2D-coudé echelle spectrograph on the 2.7-m Harlan J. Smith telescope at McDonald Observatory. The spectra cover the wavelength range 3600--10,400 Å at a resolution R = 36,700, and are the first high-resolution optical spectra for many objects in our sample. The number of emission lines detected in individual nebulae range from ~125 to over 600. We derive temperatures, densities, and abundances from collisionally-excited lines using the PyNeb package (Luridiana et al. 2015, A&A, 573, A42) and the ionization correction factor scheme of Delgado-Inglada et al. (2014, MNRAS, 440, 536). The abundances of light elements agree with previous estimates for most of the PNe. Several objects exhibit emission lines of refractory elements such as K and Fe, and neutron-capture elements that can be enriched by the s-process. We find that K and Fe are depleted relative to solar by ~0.3--0.7~dex and 1-2 dex, respectively, and find evidence for s-process enrichments in 10 objects. Several objects in our sample exhibit C, N, and O recombination lines that are useful for abundance determinations. These transitions are used to compute abundance discrepancy factors (ADFs), the ratio of ionic abundances derived from permitted lines to those from collisionally-excited transitions. We explore relations among depletion factors, ADFs, s-process enrichment factors, and other nebular stellar and nebular properties. We acknowledge support from NSF awards AST-901432 and AST-0708429.
NASA Technical Reports Server (NTRS)
Gong, Qian; Groff, Tyler D.; Zimmerman, Neil; Mandell, Avi; McElwain, Michael; Rizzo, Maxime; Saxena, Prabal
2017-01-01
Based on the experience from Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST, we have moved to the flight instrument design phase. The specifications for flight IFS have similarities and differences from the prototype. This paper starts with the science and system requirement, discusses a number of critical trade-offs: such as IFS type selection, lenslet array shape and layout versus detector pixel accuracy, how to accommodate the larger Field Of View (FOV) and wider wavelength band for a potential add-on StarShade occulter. Finally, the traditional geometric optical design is also investigated and traded: reflective versus refractive, telecentric versus non-telecentric relay. The relay before the lenslet array controls the chief angle distribution on the lenslet array. Our previous paper has addressed how the relay design combined with lenslet arraypinhole mask can further compress the residual star light and increase the contrast. Finally, a complete phase A IFS optical design is presented.
PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Ilyin, I.; Järvinen, A.; Weber, M.; Woche, M.; Barnes, S. I.; Bauer, S.-M.; Beckert, E.; Bittner, W.; Bredthauer, R.; Carroll, T. A.; Denker, C.; Dionies, F.; DiVarano, I.; Döscher, D.; Fechner, T.; Feuerstein, D.; Granzer, T.; Hahn, T.; Harnisch, G.; Hofmann, A.; Lesser, M.; Paschke, J.; Pankratow, S.; Plank, V.; Plüschke, D.; Popow, E.; Sablowski, D.
2015-05-01
PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3k×10.3k CCDs with 9-μm pixels and peak quantum efficiencies of 94-96 % record a total of 92 échelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 92-96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15 % at 650 nm, and still 11 % and 10 % at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of ≈ 20th mag in V in the low-resolution mode. The R = 120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100-μm fibre through a projected sky aperture of 0.74 arcsec, comparable to the median seeing of the LBT site. The 43 000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Pérot étalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. Its full error propagation through all image-processing steps allows an adaptive selection of parameters by using statistical inferences and robust estimators. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics. Some pre-commissioning first-light spectra shall demonstrate the basic functionality.
NRES: The Network of Robotic Echelle Spectrographs
NASA Astrophysics Data System (ADS)
Siverd, Robert; Brown, Tim; Henderson, Todd; Hygelund, John; Barnes, Stuart; de Vera, Jon; Eastman, Jason; Kirby, Annie; Smith, Cary; Taylor, Brook; Tufts, Joseph; van Eyken, Julian
2018-01-01
Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four (up to six in the future) identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12 once the system reaches full capability. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities.Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. After several more months of additional testing and commissioning, regular science operations began with this node in September 2017. The second NRES spectrograph was installed at McDonald Observatory in September 2017 and released to the network after its own brief commissioning period, extending spectroscopic capability to the Northern hemisphere. The third NRES spectrograph was installed at SAAO in November 2017 and released to our science community just before year's end. The fourth NRES unit shipped in October and is currently en route to Wise Observatory in Israel with an expected release to the science community in early 2018.We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first three units, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of science cases.
Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications
NASA Astrophysics Data System (ADS)
Morrissey, Patrick; KCWI Team
2013-01-01
The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20"x33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces).
VizieR Online Data Catalog: The factory & the beehive. III. PTFEB132.707+19.810 (Kraus+, 2017)
NASA Astrophysics Data System (ADS)
Kraus, A. L.; Douglas, S. T.; Mann, A. W.; Agueros, M. A.; Law, N. M.; Covey, K. R.; Feiden, G. A.; Rizzuto, A. C.; Howard, A. W.; Isaacson, H.; Gaidos, E.; Torres, G.; Bakos, G.
2018-03-01
The PTF uses wide-field photometric observations from the robotic 48 inch Samuel Oschin Telescope (P48). When PTFEB132.707+19.810 was observed in 2010 and 2011, P48 was equipped with the CFH12K mosaic camera. PTFEB132.707+19.810 was observed as EPIC211972086 by the Kepler spacecraft during Campaign 5 of its repurposed K2 mission (Howell+ 2014PASP..126..398H), for which it was proposed as a target by eight proposals, including ours (GO5095; PI: Agueros). K2 observed PTFEB132.707+19.810 in long-cadence mode (tint=29.4minutes) for 73.9 continuous days spanning 2015 April 27-July 10. After our discovery of eclipses in this system in 2010, we began a spectroscopic monitoring campaign to measure radial velocities for the components. We obtained 20 high-dispersion spectra for the system using Keck I and the HIRES spectrograph (resolution of R~48000). We also obtained an optical spectrum of PTFEB132.707+19.810 on 2016 April 3 with SNIFS on the University of Hawai'i 2.2m telescope on Maunakea (R~1000 in blue channel). We obtained a NIR spectrum of PTFEB132.707+19.810 on 2016 April 5 with the SpeX spectrograph on the NASA Infrared Telescope Facility on Maunakea (R~2000). (3 data files).
VizieR Online Data Catalog: Stellar nuclei and bulges of nearby S0 galaxies (Sil'chenko, 2016)
NASA Astrophysics Data System (ADS)
Sil'Chenko, O. K.
2016-09-01
The integral-field spectrograph Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) was operating at the 4.2m William Herschel Telescope belonging to the ING of telescopes on La Palma. It worked in "TIGER mode", giving about 1500 spectra simultaneously, each for a 0.94''*0.94'' square element ("spaxel") from a (central) part of a galaxy. A total set of spectra covers an area of 41''*33''. The spectral range of the unit is rather narrow, 4800-5350Å, and its spectral resolution has been fixed since 2007 at about 4.3Å. There were two surveys of nearby early-type galaxies with SAURON. The first one, which started in 1999 and finished in 2004, involved 72 galaxies, among those 48 early-type ones and 24 spirals (de Zeeuw et al. 2002MNRAS.329..513D). The second one undertaken in 2007-2008 added more early-type galaxies, including dwarfs, to complete the volume-limited (D<42Mpc) sample (Cappellari et al. 2011, Cat. J/MNRAS/413/813). The total sample of early-type galaxies investigated in these two surveys includes 260 objects, and 200 of them are lenticular galaxies. For my analysis I have selected a subsample of 143 S0 galaxies that were observed in 2007-2008. (2 data files).
NASA Astrophysics Data System (ADS)
Arns, James A.
2016-08-01
The Subaru Prime Focus Spectrograph[1] (PFS) requires a suite of volume phase holographic (VPH) gratings that parse the observational spectrum into three sub-spectral regions. In addition, the red region has a second, higher resolution arm that includes a VPH grating that will eventually be incorporated into a grism. This paper describes the specifications of the four grating types, gives the theoretical performances of diffraction efficiency for the production designs and presents the measured performances on the gratings produced to date.
VizieR Online Data Catalog: WIYN open cluster study. LIX. RVs of NGC 6791 (Tofflemire+, 2014)
NASA Astrophysics Data System (ADS)
Tofflemire, B. M.; Gosnell, N. M.; Mathieu, R. D.; Platais, I.
2014-11-01
Our observations utilize the Hydra Multi-Object Spectrograph (MOS) on the WIYN 3.5m telescope. We use 3.1'' diameter fibers along with the bench spectrograph echelle grating, resulting in a spectral resolution of ~20000 (15km/s). See Geller et al. 2008 (cat. J/AJ/135/2264; Paper XXXII) for full details about our observing and data reduction procedures. Variations in our methods from previous WIYN Open Cluster Study (WOCS) radial velocity papers are given in Section 3. (3 data files).
Spectroscopic observations of comets
NASA Technical Reports Server (NTRS)
1982-01-01
Development of a spectrograph using a microchannel plate intensifier for observing faint comets is described. The spectrograph is capable of obtaining useful spectra of objects as faint as M(2) = 18. The increased guiding efficiency achieved by the optical coupling of the ISIT vidicon of the 154 cm telescope has resulted in a better signal to noise ratio. The ability to take a direct image of the comet aids in the interpretation of the spatial profile of the emissions. Spectra of comets Schwassmann-Wachmann 1, Bradfield, Encke, Tuttle, and Stephen-Oterma are discussed.
NASA Technical Reports Server (NTRS)
Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.;
2010-01-01
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.
Optical design and optical properties of a VUV spectrographic imager for ICON mission
NASA Astrophysics Data System (ADS)
Loicq, Jerome; Kintziger, Christian; Mazzoli, Alexandra; Miller, Tim; Chou, Cathy; Frey, Harald U.; Immel, Thomas J.; Mende, Stephen B.
2016-07-01
In the frame of the ICON (Ionospheric Connection Explorer) mission of NASA led by UC Berkeley, CSL and SSL Berkeley have designed in cooperation a new Far UV spectro-imager. The instrument is based on a Czerny-Turner spectrograph coupled with two back imagers. The whole field of view covers [+/- 12° vertical, +/- 9° horizontal]. The instrument is surmounted by a rotating mirror to adjust the horizontal field of view pointing by +/- 30°. To meet the scientific imaging and spectral requirements the instrument has been optimized. The optimization philosophy and related analysis are presented in the present paper. PSF, distortion map and spectral properties are described. A tolerance study and alignment cases were performed to prove the instrument can be built and aligned. Finally straylight and out of band properties are discussed.
NASA Astrophysics Data System (ADS)
Szentgyorgyi, Andrew
2017-09-01
"The GMT-Consortium Large Earth Finder (G-CLEF) is an optical band echelle spectrograph that has been selected as the first light instrument for the Giant Magellan Telescope (GMT). G-CLEF is a general purpose, high dispersion instrument that is fiber fed and capable of extremely precise radial velocity (PRV) measurements. G-CLEF will have a novel multi-object spectroscopy (MOS) capability that will be useful for a number of exoplanet science programs. I describe the general properties of G-CLEF and the systems engineering analyses, especially for PRV, that drove the current G-CLEF design. The requirements for calibration of the MOS channel are presented along with several novel approaches for achieving moderate radial velocity precision in the MOS mode."
Multipurpose Hyperspectral Imaging System
NASA Technical Reports Server (NTRS)
Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon
2005-01-01
A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.
CARMENES: an overview six months after first light
NASA Astrophysics Data System (ADS)
Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Bejar, V. J. S.; Benitez, D.; Berdinas, Z. M.; Brinkmöller, M.; Cardenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortes-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi, D.; Gallardo, I.; Gálvez-Ortiz, M. C.; Garcia-Piquer, A.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Hernández, J. I.; Gonzalez Peinado, R.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Arabi, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huber, K. F.; Huke, P.; Jeffers, S. V.; de Juan, E.; Kaminski, A.; Kehr, M.; Kim, M.; Klein, R.; Klüter, J.; Kürster, M.; Lafarga, M.; Lara, L. M.; Lamert, A.; Laun, W.; Launhardt, R.; Lemke, U.; Lenzen, R.; Llamas, M.; Lopez del Fresno, M.; López-Puertas, M.; López-Santiago, J.; Lopez Salas, J. F.; Magan Madinabeitia, H.; Mall, U.; Mandel, H.; Mancini, L.; Marin Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales, J. C.; Morales Muñoz, R.; Nagel, E.; Naranjo, V.; Nowak, G.; Palle, E.; Panduro, J.; Passegger, V. M.; Pavlov, A.; Pedraz, S.; Perez, E.; Pérez-Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez López, C.; Rohloff, R. R.; Rosich, A.; Sanchez Carrasco, M. A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Schöfer, P.; Schweitzer, A.; Shulyak, D.; Solano, E.; Stahl, O.; Storz, C.; Tabernero, H. M.; Tala, M.; Tal-Or, L.; Ulbrich, R.-G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Zapatero Osorio, M.-R.; Zechmeister, M.; Ammler-von Eiff, M.; Anglada-Escudé, G.; del Burgo, C.; Garcia-Vargas, M. L.; Klutsch, A.; Lizon, J.-L.; Lopez-Morales, M.; Ofir, A.; Pérez-Calpena, A.; Perryman, M. A. C.; Sánchez-Blanco, E.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Trifonov, T.; Tulloch, S. M.; Xu, W.
2016-08-01
The CARMENES instrument is a pair of high-resolution (R> 80,000) spectrographs covering the wavelength range from 0.52 to 1.71 μm, optimized for precise radial velocity measurements. It was installed and commissioned at the 3.5m telescope of the Calar Alto observatory in Southern Spain in 2015. The first large science program of CARMENES is a survey of 300 M dwarfs, which started on Jan 1, 2016. We present an overview of all subsystems of CARMENES (front end, fiber system, visible-light spectrograph, near-infrared spectrograph, calibration units, etalons, facility control, interlock system, instrument control system, data reduction pipeline, data flow, and archive), and give an overview of the assembly, integration, verification, and commissioning phases of the project. We show initial results and discuss further plans for the scientific use of CARMENES.
Development of integrated photonic-dicers for reformatting the point-spread-function of a telescope
NASA Astrophysics Data System (ADS)
MacLachlan, David G.; Harris, Robert; Choudhury, Debaditya; Arriola, Alexander; Brown, Graeme; Allington-Smith, Jeremy; Thomson, Robert R.
2014-07-01
Spectroscopy is a technique of paramount importance to astronomy, as it enables the chemical composition, distances and velocities of celestial objects to be determined. As the diameter of a ground-based telescope increases, the pointspread- function (PSF) becomes increasingly degraded due to atmospheric seeing. A degraded PSF requires a larger spectrograph slit-width for efficient coupling and current spectrographs for large telescopes are already on the metre scale. This presents numerous issues in terms of manufacturability, cost and stability. As proposed in 2010 by Bland-Hawthorn et al, one approach which may help to improve spectrograph stability is a guided wave transition, known as a "photonic-lantern". These devices enable the low-loss reformatting of a multimode PSF into a diffraction-limited source (in one direction). This pseudo-slit can then be used as the input to a traditional spectrograph operating at the diffraction limit. In essence, this approach may enable the use of diffractionlimited spectrographs on large telescopes without an unacceptable reduction in throughput. We have recently demonstrated that ultrafast laser inscription can be used to realize "integrated" photoniclanterns, by directly writing three-dimensional optical waveguide structures inside a glass substrate. This paper presents our work on developing ultrafast laser inscribed devices capable of reformatting a multimode telescope PSF into a diffraction-limited slit.
CARMENES: A Spectroscopic Survey of M Dwarfs and their Planets
NASA Astrophysics Data System (ADS)
Quirrenbach, Andreas; Consortium, CARMENES
2015-08-01
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument currently under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. Commissioning of CARMENES will start in April 2015. CARMENES will conduct a 600-night exoplanet survey targeting ~300 M dwarfs. An important and unique feature of the CARMENES instrument is that it consists of two separate échelle spectrographs, which together cover the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000. The spectrographs are fed by fibers from the Cassegrain focus of the telescope.The main scientific objective of CARMENES is to carry out a survey of late-type main sequence stars with the goal of detecting low-mass planets in their habitable zones (HZs). In the focus of the project are very cool stars later than spectral type M4 and moderately active stars. We aim at being able to detect a 2M⊕ planet in the HZ of an M5 star, which requires a long-term radial velocity precision of 1ms-1 per measurement. For stars later than M4 (M < 0.25M⊙), such precision will yield detections of super-Earths of 5M⊕ and smaller inside the entire width of the HZ. The CARMENES survey will thus provide a comprehensive overview of planetary systems around nearby Northern M dwarfs. By reaching into the realm of Earth-like planets, it will provide a treasure trove for follow-up studies probing their habitability.At the same time, the CARMENES survey will generate a unique data set for studies of M star atmospheres, rotation, and activity. The spectra will cover important diagnostic lines for activity (Hα, Na I D1 and D2, and the Ca II infrared triplet), as well as FeH lines around 10,000Å, from which the magnetic field can be inferred. Correlating the time series of these features with each other, and with wavelength-dependent radial velocities, will provide new insight into the physical properties of M dwarf atmospheres, and will provide excellent discrimination between planetary companions and stellar radial velocity "noise".
FAME: freeform active mirror experiment
NASA Astrophysics Data System (ADS)
Aitink-Kroes, Gabby; Agócs, Tibor; Miller, Chris; Black, Martin; Farkas, Szigfrid; Lemared, Sabri; Bettonvil, Felix; Montgomery, David; Marcos, Michel; Jaskó, Attila; van Duffelen, Farian; Challita, Zalpha; Fok, Sandy; Kiaeerad, Fatemeh; Hugot, Emmanuel; Schnetler, Hermine; Venema, Lars
2016-07-01
FAME is a four-year project and part of the OPTICON/FP7 program that is aimed at providing a breakthrough component for future compact, wide field, high resolution imagers or spectrographs, based on both Freeform technology, and the flexibility and versatility of active systems. Due to the opening of a new parameter space in optical design, Freeform Optics are a revolution in imaging systems for a broad range of applications from high tech cameras to astronomy, via earth observation systems, drones and defense. Freeform mirrors are defined by a non-rotational symmetry of the surface shape, and the fact that the surface shape cannot be simply described by conicoids extensions, or off-axis conicoids. An extreme freeform surface is a significantly challenging optical surface, especially for UV/VIS/NIR diffraction limited instruments. The aim of the FAME effort is to use an extreme freeform mirror with standard optics in order to propose an integrated system solution for use in future instruments. The work done so far concentrated on identification of compact, fast, widefield optical designs working in the visible, with diffraction limited performance; optimization of the number of required actuators and their layout; the design of an active array to manipulate the face sheet, as well as the actuator design. In this paper we present the status of the demonstrator development, with focus on the different building blocks: an extreme freeform thin face sheet, the active array, a highly controllable thermal actuator array, and the metrology and control system.
Confirming LBV Candidates Through Variability: A Photometric and Spectroscopic Monitoring Study
NASA Astrophysics Data System (ADS)
Stringfellow, Guy; Gvaramadze, Vasilii
2013-02-01
Luminous Blue Variable (LBV) stars represent an extremely rare class of luminous massive stars with high mass loss rates. The paucity ( 12) of confirmed Galactic LBV precludes determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. We've been conducting an optical/near-IR spectral survey of a large subset of central stars residing within newly discovered it Spitzer nebulae and have identified over two dozen new candidate LBVs (cLBVs) based on spectral similarity alone; confirming them as bona fide LBVs requires demonstrating 1-3 mag photometric and spectroscopic variability. This marks a significant advancement in the study of massive stars, far outweighing the return from many studies searching for LBVs and WRs the past several decades. Monitoring from semesters 2011B-2012A already has confirmed one new cLBV as a bona fide LBV. We propose to continue optical-IR photometric monitoring of these cLBVS with the 1.3m. Chiron, replacing the RC spectrograph on the 1.5m, now allows high-resolution optical spectroscopic monitoring of bright cLBVs, 11 of which are proposed herein. Spectra are important for understanding the physics driving photometric variability, properties of the wind, and allow analysis of line profiles.
The Cosmic Origins Spectrograph
NASA Astrophysics Data System (ADS)
Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Béland, Stéphane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V.; Andrews, John; Brownsberger, Kenneth; Morse, Jon; Wilkinson, Erik
2012-01-01
The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F λ ≈ 1.0 × 10-14 erg cm-2 s-1 Å-1, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Lyα absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.
Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)
NASA Astrophysics Data System (ADS)
Greathouse, T. K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Walther, B. C.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.
2013-09-01
We present a description of the Juno ultraviolet spectrograph (Juno-UVS) and results from its in-flight commissioning performed between December 5th and 13th 2011 and its first periodic maintenance between October 10th and 12th 2012. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency's Rosetta spacecraft, NASA's New Horizons spacecraft, and the LAMP instrument aboard NASA's Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a spin stabilized spacecraft. The Juno-UVS scan mirror allows for pointing of the slit approximately +/-30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. The planned 2 rpm spin rate for the primary mission results in integration times per 0.2° spatial resolution element per spin of only ~17 ms. Thus, for calibration purposes, data were retrieved from many spins and then remapped and co-added to build up exposure times on bright stars to measure the effective area, spatial resolution, scan mirror pointing positions, etc. The primary job of Juno-UVS will be to characterize Jupiter's UV auroral emissions and relate them to in-situ particle measurements. The ability to point the slit will make operations more flexible, allowing Juno-UVS to observe the atmospheric footprints of magnetic field lines through which Juno flies, giving a direct connection between energetic particle measurements on the spacecraft and the far-ultraviolet emissions produced by Jupiter's atmosphere in response to those particles.
Test of multi-object exoplanet search spectral interferometer
NASA Astrophysics Data System (ADS)
Zhang, Kai; Wang, Liang; Jiang, Haijiao; Zhu, Yongtian; Hou, Yonghui; Dai, Songxin; Tang, Jin; Tang, Zhen; Zeng, Yizhong; Chen, Yi; Wang, Lei; Hu, Zhongwen
2014-07-01
Exoplanet detection, a highlight in the current astronomy, will be part of puzzle in astronomical and astrophysical future, which contains dark energy, dark matter, early universe, black hole, galactic evolution and so on. At present, most of the detected Exoplanets are confirmed through methods of radial velocity and transit. Guo shoujing Telescope well known as LAMOST is an advanced multi-object spectral survey telescope equipped with 4000 fibers and 16 low resolution fiber spectrographs. To explore its potential in different astronomical activities, a new radial velocity method named Externally Dispersed Interferometry (EDI) is applied to serve Exoplanet detection through combining a fixed-delay interferometer with the existing spectrograph in medium spectral resolution mode (R=5,000-10,000). This new technology has an impressive feature to enhance radial velocity measuring accuracy of the existing spectrograph through installing a fixed-delay interferometer in front of spectrograph. This way produces an interference spectrum with higher sensitivity to Doppler Effect by interference phase and fixed delay. This relative system named Multi-object Exoplanet Search Spectral Interferometer (MESSI) is composed of a few parts, including a pair of multi-fiber coupling sockets, a remote control iodine subsystem, a multi-object fixed delay interferometer and the existing spectrograph. It covers from 500 to 550 nm and simultaneously observes up to 21 stars. Even if it's an experimental instrument at present, it's still well demonstrated in paper that how MESSI does explore an effective way to build its own system under the existing condition of LAMOST and get its expected performance for multi-object Exoplanet detection, especially instrument stability and its special data reduction. As a result of test at lab, inside temperature of its instrumental chamber is stable in a range of +/-0.5degree Celsius within 12 hours, and the direct instrumental stability without further observation correction is equivalent to be +/-50m/s every 20mins.
Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi
2011-02-01
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
Predictive spectroscopy and chemical imaging based on novel optical systems
NASA Astrophysics Data System (ADS)
Nelson, Matthew Paul
1998-10-01
This thesis describes two futuristic optical systems designed to surpass contemporary spectroscopic methods for predictive spectroscopy and chemical imaging. These systems are advantageous to current techniques in a number of ways including lower cost, enhanced portability, shorter analysis time, and improved S/N. First, a novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated. A regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal directly proportional to the chemical/physical property for which the regression vector was designed. Second, a novel optical system is described which takes a single-shot approach to chemical imaging with high spectroscopic resolution using a dimension-reduction fiber-optic array. Images are focused onto a two- dimensional matrix of optical fibers which are drawn into a linear distal array with specific ordering. The distal end is imaged with a spectrograph equipped with an ICCD camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the ICCD images and deconvolute them into wave length-specific reconstructed images or position-specific spectra which span a multi-wavelength space. This thesis includes a description of the fabrication of two dimension-reduction arrays as well as an evaluation of the system for spatial and spectral resolution, throughput, image brightness, resolving power, depth of focus, and channel cross-talk. PCA is performed on the images by treating rows of the ICCD images as spectra and plotting the scores of each PC as a function of reconstruction position. In addition, iterative target transformation factor analysis (ITTFA) is performed on the spectroscopic images to generate ``true'' chemical maps of samples. Univariate zero-order images, univariate first-order spectroscopic images, bivariate first-order spectroscopic images, and multivariate first-order spectroscopic images of the temporal development of laser-induced plumes are presented and interpreted. Reconstructed chemical images generated using bivariate and trivariate wavelength techniques, bimodal and trimodal PCA methods, and bimodal and trimodal ITTFA approaches are also included.
Status of the Geostationary Spectrograph (GeoSpec) for Earth and Atmospheric Science Applications
NASA Technical Reports Server (NTRS)
Janz, Scott; Hilsenrath, Ernest; Mount, G.; Brune, W.; Heath, D.
2004-01-01
GeoSpec will support future satellite mission concepts in the Atmospheric Sciences and in Land and Ocean Sciences by providing time-resolved measurements of both chemically linked atmospheric trace gas concentrations of important molecules such as O3, NO2, CH2O and SO2 and at the same time coastal and ocean pollution events, tidal effects, and the origin and evolution of aerosol plumes. The instrument design concept in development is a dual spectrograph covering the WMS wavelength region of 310-500 nm and the VIS/NIR wavelength region of 480-900 nm coupled to all reflective telescope and high sensitivity PIN/CMOS area detector. The goal of the project is to demonstrate a system capable of making moderate spatial resolution (750 meters at nadir) hyperspectral measurements (0.6 to 1.2 nm resolution) from a geostationary orbit. This would enable studies of time-varying pollution and coastal change processes with a temporal resolution of 5 minutes on a regional scale to 1 hour on a continental scale. Other spatial resolutions can be supported by varying the focal length of the input telescope. Scientific rationale and instrument design and status will be presented.