NASA Astrophysics Data System (ADS)
Warneke, C.; Veres, P.; Murphy, S. M.; Soltis, J.; Field, R. A.; Graus, M. G.; Koss, A.; Li, S.-M.; Li, R.; Yuan, B.; Roberts, J. M.; de Gouw, J. A.
2015-01-01
Here we compare volatile organic compound (VOC) measurements using a standard proton-transfer-reaction quadrupole mass spectrometer (PTR-QMS) with a new proton-transfer-reaction time of flight mass spectrometer (PTR-TOF) during the Uintah Basin Winter Ozone Study 2013 (UBWOS2013) field experiment in an oil and gas field in the Uintah Basin, Utah. The PTR-QMS uses a quadrupole, which is a mass filter that lets one mass to charge ratio pass at a time, whereas the PTR-TOF uses a time of flight mass spectrometer, which takes full mass spectra with typical 0.1 s-1 min integrated acquisition times. The sensitivity of the PTR-QMS in units of counts per ppbv (parts per billion by volume) is about a factor of 10-35 times larger than the PTR-TOF, when only one VOC is measured. The sensitivity of the PTR-TOF is mass dependent because of the mass discrimination caused by the sampling duty cycle in the orthogonal-acceleration region of the TOF. For example, the PTR-QMS on mass 33 (methanol) is 35 times more sensitive than the PTR-TOF and for masses above 120 amu less than 10 times more. If more than 10-35 compounds are measured with PTR-QMS, the sampling time per ion decreases and the PTR-TOF has higher signals per unit measuring time for most masses. For UBWOS2013 the PTR-QMS measured 34 masses in 37 s and on that timescale the PTR-TOF is more sensitive for all masses. The high mass resolution of the TOF allows for the measurements of compounds that cannot be separately detected with the PTR-QMS, such as oxidation products from alkanes and cycloalkanes emitted by oil and gas extraction. PTR-TOF masses do not have to be preselected, allowing for identification of unanticipated compounds. The measured mixing ratios of the two instruments agreed very well (R2 ≥ 0.92 and within 20%) for all compounds and masses monitored with the PTR-QMS.
NASA Astrophysics Data System (ADS)
Warneke, C.; Veres, P. R.; Murphy, S. M.; Soltis, J.; Field, R. A.; Graus, M. G.; Koss, A.; Li, S.-M.; Li, R.; Yuan, B.; Roberts, J. M.; de Gouw, J. A.
2014-07-01
Here we compare volatile organic compound (VOC) measurements using a standard Proton-Transfer-Reaction Quadrupole Mass Spectrometer (PTR-QMS) with a new Proton-Transfer-Reaction Time Of Flight Mass Spectrometer (PTR-TOF) during the Uintah Basin Winter Ozone Study 2013 (UBWOS2013) field experiment in an oil and gas field in the Uintah Basin, Utah. The PTR-QMS uses a quadrupole, which is a mass filter that lets one mass pass at a time, whereas the PTR-TOF uses a Time Of Flight mass spectrometer, which takes full mass spectra with typical 0.1 s to 1 min integrated acquisition times. The sensitivity of the PTR-QMS in units of counts per ppbv is about a factor of 10-35 times larger than the PTR-TOF, when only one VOC is measured. The sensitivity of the PTR-TOF is mass dependent because of the mass discrimination caused by the sampling duty cycle in the orthogonal-acceleration region of the TOF. For example, the PTR-QMS on mass 33 (methanol) is 35 times more sensitive than the PTR-TOF and for masses above 120 amu less than 10 times more. If more than 10-35 compounds are measured with PTR-QMS, the sampling time per ion decreases and the PTR-TOF has higher signals per unit measuring time for most masses. For UBWOS2013 the PTR-QMS measured 34 masses in 37 s and on that time-scale the PTR-TOF is more sensitive for all masses. The high mass resolution of the TOF allows for the measurements of compounds that cannot be separately detected with the PTR-QMS, such as oxidation products from alkanes and cycloalkanes emitted by oil and gas extraction. PTR-TOF masses do not have to be pre-selected allowing for identification of unanticipated compounds. The measured mixing ratios of the two instruments agreed very well (R2 ≥ 0.92 and within 20%) for all compounds and masses monitored with the PTR-QMS.
High Resolution PTR-TOFMS: A New Instrument for Organic Compound Measurements
NASA Astrophysics Data System (ADS)
Hansel, A.; Graus, M.; Mueller, M.; Wisthaler, A.
2007-12-01
Over the last decade proton transfer reaction mass spectrometry (PTR-MS) has become very popular in many scientific fields. PTR-MS allows for the quantitative detection of volatile organic compounds (VOCs) at pptv-level virtually in real time. Monitoring of VOCs with a time resolution of typically a second per compound has, for instance, enabled the tracking of pollution plumes by air-borne measurements, thus revealing the photo- chemical fate of pollutants. It has also been employed in direct eddy covariant flux measurements. This rapidity, however, has been achieved at the cost of the number of compounds to be analyzed and compound selectivity. Conventional PTR-MS can, for example, not distinguish between hydrocarbons and their oxygenated isobaric species, e.g. between naphthalene and octanal or between isoprene and furan. In a mass range up to 200 Dalton, such a task would require a mass resolving power of 5500. The use of a time of flight (TOF) instead of a quadrupole mass analyzer in PTR-MS provides a sufficient high mass resolution to identify the atomic composition of product ions by their exact mass and their characteristic isotope patterns. In addition PTR-TOF-MS can record full mass spectra within a fraction of a second which is a dramatically increase in duty cycle. At the University of Innsbruck a high resolution PTR-TOFMS has recently been developed, coupling a PTR-ion source and a high resolution TOFMS. We achieved a mass resolving power of 6000 (FWHM), and a detection limit of tens to a few hundreds of pptv if integrating mass spectra for one minute. First results and future directions will be discussed in this paper.
NASA Astrophysics Data System (ADS)
Hansel, Armin; Breitenlechner, Martin; Fischer, Lukas; Hainer, Markus
2017-04-01
Existing proton transfer reaction time of flight (PTR-TOF) instruments are known to detect volatile organic compounds (VOCs) and could in principle also detect highly oxidized organic compounds such as low volatility organic compounds (LVOC) but PTR-TOF inlets were not optimized to avoid wall losses of such low volatility compounds. In addition PTR-TOF is not sensitive enough to quantify second order and even higher order oxidation products at atmospherically relevant concentrations. To solve this problem, as well as to enable bridging the gap in understanding how atmospherically relevant BVOC form SVOC, LVOC and even ELVOC, we developed the PTR3, a compact and field deployable ultrasensitive instrument based on chemical ionization mass spectrometry. Here we report first results from PTR-3-TOF measurements at Hyytiälä where we measured concentrations and fluxes of precursor gases (BVOC) and their oxidation products: semi and low volatile organic compounds. The recently developed PTR-3-TOF instrument uses a discharge ion source coupled to a contact free inlet system running at high sample flow rates through the novel reaction chamber at 80 mbar. The PTR-3 front part is coupled to TOFWERK's newest Long-TOF mass analyzer. The first prototype has sensitivities of up to 20.000 cps per ppb and a mass resolution of 8.000 m/Δm. The instrument has been successfully tested at CERN for the CLOUD campaign in 2015. During pure α-pinene ozonolysis experiments at low NOx conditions we observed in total several hundred peaks in the mass spectrum, including α-Pinene present in the ppb range, first and higher order oxidation products present in the ppt range and highly oxydized α-pinene monomers and dimers (e.g., C20H30O18H+; m/z = 559.1506 Th) in the low ppq range and even sub-ppq range. The advantage of this new technology based on positive ion chemistry is the capability to measure precursor gases as well as condensing- and even nucleating vapors.
NASA Astrophysics Data System (ADS)
Buysse, Pauline; Loubet, Benjamin; Ciuraru, Raluca; Lafouge, Florence; Zurfluh, Olivier; Gonzaga-Gomez, Lais; Fanucci, Olivier; Gueudet, Jean-Christophe; Decuq, Céline; Gros, Valérie; Sarda, Roland; Zannoni, Nora
2017-04-01
The quantification of volatile organic compounds (VOC) fluxes exchanged by terrestrial ecosystems is of large interest because of their influence on the chemistry and composition of the atmosphere including aerosols and oxidants. Latest developments in the techniques for detecting, identifying and measuring VOC fluxes have considerably improved the abilities to get reliable estimates. Among these, the eddy-covariance (EC) methodology constitutes the most direct approach, and relies on both well-established principles (Aubinet et al. 2000) and a sound continuously worldwide improving experience. The combination of the EC methodology with the latest proton-transfer-reaction mass spectrometer (PTR-MS) device, the PTR-Qi-TOF-MS, which allows the identification and quantification of more than 500 VOC at high frequency, now provides a very powerful and precise tool for an accurate quantification of VOC fluxes on various types of terrestrial ecosystems. The complexity of the whole methodology however demands that several data quality requirements are fulfilled. VOC fluxes were measured by EC with a PTR-Qi-TOF-MS (national instrument within the ANAEE-France framework) for one month and a half over a mature wheat crop near Paris (FR-GRI ICOS site). Most important emissions (by descending order) were observed from detected compounds with mass-over-charge (m/z) ratios of 33.033 (methanol), 45.033 (acetaldehyde), 93.033 (not identified yet), 59.049 (acetone), and 63.026 (dimethyl sulfide or DMS). Emissions from higher-mass compounds, which might be due to pesticide applications at the beginning of our observation period, were also detected. Some compounds were also seen to deposit (e.g. m/z 47.013, 71.085, 75.044, 83.05) while others exhibited bidirectional fluxes (e.g. m/z 57.07, 69.07). Before analyzing VOC flux responses to meteorological and crop development drivers, a data quality check was performed which included (i) uncertainty analysis of mass and concentration calibration, (ii) determination of fragmentation patterns and (iii) of lag time high-frequency losses for all ions that showed a flux, and (iv) the determination of the flux random uncertainties and of the limit of detection.
Ambient VOC-Measurements by GC-PTR-TOF
NASA Astrophysics Data System (ADS)
Langebner, S.; Schnitzhofer, R.; Hasler, C.; Jocher, M.; Hansel, A.; Brilli, F.
2011-12-01
Authors: Stephan LANGEBNER, Federico BRILLI, Ralf SCHNITZHOFER, Christoph HASLER, Markus JOCHER, Armin HANSEL; During the past 16 years PTR MS (Proton Transfer Reaction Mass Spectrometry) became a well established technique for real time measurements of environmentally important volatile organic compounds (VOCs) [HANSEL 1995]. The recent development of PTR ToF [GRAUS 2010] increased the VOC separation capability by strongly improving the mass separation capability and the duty cycle. Now isobaric compounds can be separated and whole mass spectra are recorded within a fraction of a second. Isomeric VOCs, however, remain undistinguishable with this technique. Therefore a Thermo-Desorption-System-Gas-Chromatograph (TDS GC) with isomeric separation capabilities was coupled with a PTR ToF. The performance of this new GC PTR TOF instrument was evaluated analysing ambient air for several days. The measurement cycle started with simultaneous GC-sampling and direct PTR ToF measurements of ambient air. After the fifteen minute TDS cycle, the output of the GC column was directed to the PTR ToF and the timely separated VOC peaks were recorded for 40 minutes. We will present first results which look very promising e.g. different monoterpene isomers can be clearly distinguished at ambient levels.
NASA Astrophysics Data System (ADS)
Salvador, Christian Mark; Ho, T.-T.; Chou, Charles C.-K.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.
2016-09-01
Organic matter is the most complicated and unresolved major component of atmospheric aerosol particles. Its sources and global budget are still highly uncertain and thereby necessitate further research efforts with state-of-the-art instrument. This study employed a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS) for characterization of ambient organic aerosols. First, five authentic standard substances, which include phthalic acid, levoglucosan, arabitol, cis-pinonic acid and glutaric acid, were utilized to examine the response of the instrument. The results demonstrated the linearity of the TD-PTR-TOF-MS signals against a range of mass loading of specific species on filters. However, it was found that significant fragmentation happened to those challenging compounds, although the proton-transfer-reaction (PTR) was recognized as a soft ionization technique. Consequently, quantitative characterization of aerosols with the TD-PTR-TOF-MS depended on the availability of the fragmentation pattern in mass spectra and the recovery rate with the quantification ion peak(s). The instrument was further deployed to analyze a subset of submicron aerosol samples collected at the TARO (Taipei Aerosol and Radiation Observatory) in Taipei, Taiwan during August 2013. The results were compared with the measurements from a conventional DRI thermo-optical carbon analyzer. The inter-comparison indicated that the TD-PTR-TOF-MS underestimated the mass of total organic matter (TOM) in aerosol samples by 27%. The underestimation was most likely due to the thermo-decomposition during desorption processes and fragmentation in PTR drift tube, where undetectable fragments were formed. Besides, condensation loss of low vapor pressure species in the transfer components was also responsible for the underestimation to a certain degree. Nevertheless, it was showed that the sum of the mass concentrations of the major detected ion peaks correlated strongly with the TOM determined by DRI analyzer (R2 = 0.8578), suggesting that the TD-PTR-TOF-MS measurements explained more than 85% of the variance in the time series of TOM. In addition to identification by comparing with the fragmentation pattern obtained from the mass spectra of the authentic substances, most of the major ions were attributed to protonated or acylium ions of specific parent compounds. Amongst the quantified species with full calibration with authentic standard, phthalic acid was found accounting for 7.0% of the mass loading of TOM. In addition, a high-end estimation of 9.4% was suggested for the mass contribution from glutaric acid, which was made by assuming that the ion with m/z of 73.027 was totally produced from fragmentation of glutaric acid as characterization of authentic standard despite of the formation of protonated methyl-glyoxal ion. Moreover, a substantial contribution from ions corresponding to protonated acetic acid and acetone was measured, which could be produced from fragmentation of larger oxygenated molecules. The TD-PTR-TOF-MS measurements suggested that low molecular weight carboxylic acid (LMWCA), products of photochemical oxidation of gaseous hydrocarbons and fatty acids, constituted a major fraction of secondary organic aerosols in Taipei, Taiwan, a typical subtropical urban area.
PTR-TOF-MS measurements of atmospheric VOCs during the CALNEX 2010 campaign
NASA Astrophysics Data System (ADS)
Vlasenko, A. L.; Li, S.; Bon, D.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.
2010-12-01
During the CALNEX 2010 study, in-situ volatile organic compounds (VOCs) measurements were made aboard the WHOI research vessel Atlantis by a high resolution proton transfer mass spectrometer (PTR-TOF-MS, Ionicon Analytik). The PTR-TOF-MS was deployed along with a GC-FID system during cruise along the California coast and inside port areas to characterize atmospheric levels and chemical transformation of the extensive set of VOCs in marine boundary layer, in particular, in situations where outflows of pollutants from the major urban centers along the coast occur, and to probe the interactions of the anthropogenic pollutants with marine atmosphere. One minute average scans were collected over a period of 24 days. Several offshore outflow episodes were identified by the increasing mixing ratios of aromatic compounds, such as benzene, toluene and C8-aromatics. Preliminary analysis suggests a relatively rapid removal of these species as a result of photochemical aging over a time scale of hours during sunrise. The observed rates of removal correspond reasonably well with those expected from OH photochemistry. Data demonstrating all of these conclusions will be shown.
NASA Astrophysics Data System (ADS)
Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.
2017-12-01
A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm < DP < 120 nm) we boost the already excellent limits of detection of the PTR-TOF 6000 X2 system to unprecedented levels. We demonstrate that particulate organic analytes of mass concentrations down to 100 pg m-3 can be detected on-line and in single-minute time-resolutions. In addition, PTR-MS allows for a quantitative detection of almost the full range of particulate organics of intermediate to low volatility. With the high mass resolution (R > 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).
Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF
NASA Astrophysics Data System (ADS)
Ruuskanen, T. M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, L.; Brilli, F.; Wohlfahrt, G.; Hansel, A.
2011-01-01
Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ - water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.
VOC Emission and Deposition Eddy Covariance Fluxes above Grassland using PTR-TOF
NASA Astrophysics Data System (ADS)
Ruuskanen, T. M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, L.; Brilli, F.; Wohlfahrt, G.; Hansel, A.
2010-12-01
Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ - water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.
Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF
NASA Astrophysics Data System (ADS)
Ruuskanen, T. M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, L.; Brilli, F.; Wohlfahrt, G.; Hansel, A.
2010-09-01
Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+-water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmol C m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.
Field performance and identification capability of the Innsbruck PTR-TOF
NASA Astrophysics Data System (ADS)
Graus, M.; Müller, M.; Hansel, A.
2009-04-01
Over the last one and a half decades Proton Transfer Reaction Mass Spectrometry (PTR-MS) [1, 2] has gained recognition as fast on-line sensor for monitoring volatile organic compounds (VOC) in the atmosphere. Sample collection is very straight forward and the fact that no pre-concentration is needed is of particular advantage for compounds that are notoriously difficult to pre-concentrate and/or analyze by gas chromatographic (GC) methods. Its ionization method is very versatile, i.e. all compounds that perform exothermic proton transfer with hydronium ions - and most VOCs do so - are readily ionized, producing quasi-molecular ions VOC.H+. In the quasi-molecular ion the elemental composition of the analyte compound is conserved and allows, in combination with some background knowledge of the sample, conclusions about the identity of that compound. De Gouw and Warneke (2007) [3] summarized the applicability of PTR-MS in atmospheric chemistry but they also pointed out shortcomings in the identification capabilities. Goldstein and Galbally (2007) [4] addressed the multitude of VOCs potentially present in the atmosphere and they emphasized the gasphase-to-aerosol partitioning of organic compounds (volatile and semi-volatile) in dependence of carbon-chain length and oxygen containing functional groups. In collaboration with Ionicon and assisted by TOFWERK we developed a PTR time-of-flight (PTR-TOF) instrument that allows for the identification of the atomic composition of oxygenated hydrocarbons by exact-mass determination. A detection limit in the low pptv range was achieved at a time resolution of one minute, one-second detection limit is in the sub-ppbv range. In 2008 the Innsbruck PTR-TOF was field deployed in the icebreaker- and helicopter based Arctic Summer Cloud Ocean Study (ASCOS) to characterize the organic trace gas composition of the High Arctic atmosphere. During the six-week field campaign the PTR-TOF was run without problems even under harsh conditions in the open water and during ice breaking. Continuous time-series of full mass spectra with a one minute time resolution were recorded throughout the campaign between August 2nd and September 7th 2008 running up to a net VOC data set of 745 hours. Over 370 mass peaks have been separated, about 340 show signal intensities above the 30 minute detection limit of ~3pptv. Additionally we analyzed samples from nine helicopter based soundings providing vertical VOC profiles up to 3000 m.a.s.l. The performance of the newly developed instrument will be discussed and ASCOS data will be shown. Acknowledgment: The ASCOS expedition was arranged by the Swedish Polar Research Secretariat (SPRS) and was an effort within the framework of SWEDARCTIC 2008. For more information on ASCOS see http://ascos.se/. We thank the ASCOS organizers - Caroline Leck and Michael Tjernström - all ASCOS participants, the SPRS and the Oden crew for the excellent team work and Armin Wisthaler for his assistance in planning and preparations. The TOF-MS system was funded by the University of Innsbruck (Uni Infrastruktur Programm). The development project was financially supported by the Austrian Research Funding Association (FFG). [1] Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W. International Journal of Mass Spectrometry and Ion Processes 1995, 149-150, 609-619. [2] Lindinger, W.; Hansel, A.; Jordan, A. Chemical Society Review 1998, 27, 347-375. [3] De Gouw, J. A.; Warneke, C. Mass Spectrometry Reviews 2007, 26, 223-257. [4] Goldstein, A. H.; Galbally, I. E. Environmental Science and Technology 2007, 41, 154-1521.
Comparison of different real time VOC measurement techniques in a ponderosa pine forest
NASA Astrophysics Data System (ADS)
Kaser, L.; Karl, T.; Schnitzhofer, R.; Graus, M.; Herdlinger-Blatt, I. S.; DiGangi, J. P.; Sive, B.; Turnipseed, A.; Hornbrook, R. S.; Zheng, W.; Flocke, F. M.; Guenther, A.; Keutsch, F. N.; Apel, E.; Hansel, A.
2013-03-01
Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20-25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and likely points to an offset in calibration, rather than a difference in the ability to measure the sum of terpenes. The contribution of isoprene relative to MBO inferred from PTR-MS and PTR-TOF-MS was smaller than 12% while GC-MS data suggested an average of 21% of isoprene relative to MBO. This comparison demonstrates that the current capability of VOC measurements to account for OH reactivity associated with the measured VOCs is within 20%.
Comparison of different real time VOC measurement techniques in a ponderosa pine forest
NASA Astrophysics Data System (ADS)
Kaser, L.; Karl, T.; Schnitzhofer, R.; Graus, M.; Herdlinger-Blatt, I. S.; DiGangi, J. P.; Sive, B.; Turnipseed, A.; Hornbrook, R. S.; Zheng, W.; Flocke, F. M.; Guenther, A.; Keutsch, F. N.; Apel, E.; Hansel, A.
2012-10-01
Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK+MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK+MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20-25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and likely points to an offset in calibration, rather than a difference in the ability to measure the sum of terpenes. The contribution of isoprene relative to MBO inferred from PTR-MS and PTR-TOF-MS was smaller than 12% while GC-MS data suggested an average of 21% of isoprene relative to MBO. This comparison demonstrates that the current capability of VOC measurements to account for OH reactivity associated with the measured VOCs is within 20%.
NASA Astrophysics Data System (ADS)
Müller, M.; Graus, M.; Wisthaler, A.; Hansel, A.; Metzger, A.; Dommen, J.; Baltensperger, U.
2011-09-01
A series of 1,3,5-trimethylbenzene (TMB) photo-oxidation experiments was performed in the 27-m3 Paul Scherrer Institute environmental chamber under various NOx conditions. A University of Innsbruck prototype high resolution Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF) was used for measurements of gas and particulate phase organics. The gas phase mass spectrum displayed ~200 ion signals during the TMB photo-oxidation experiments. Molecular formulas CNmHnNoOp were determined and ion signals were separated and grouped according to their C, O and N numbers. This allowed to determine the time evolution of the O:C ratio and of the average carbon oxidation state OSC of the reaction mixture. Both quantities were compared with master chemical mechanism (MCMv3.1) simulations. The O:C ratio in the particle phase was about twice the O:C ratio in the gas phase. Average carbon oxidation states of secondary organic aerosol (SOA) samples OSCSOA were in the range of -0.34 to -0.31, in agreement with expected average carbon oxidation states of fresh SOA (OSC = -0.5 - 0).
NASA Astrophysics Data System (ADS)
Müller, M.; Graus, M.; Wisthaler, A.; Hansel, A.; Metzger, A.; Dommen, J.; Baltensperger, U.
2012-01-01
A series of 1,3,5-trimethylbenzene (TMB) photo-oxidation experiments was performed in the 27-m3 Paul Scherrer Institute environmental chamber under various NOx conditions. A University of Innsbruck prototype high resolution Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF) was used for measurements of gas and particulate phase organics. The gas phase mass spectrum displayed ~200 ion signals during the TMB photo-oxidation experiments. Molecular formulas CmHnNoOp were determined and ion signals were separated and grouped according to their C, O and N numbers. This allowed to determine the time evolution of the O:C ratio and of the average carbon oxidation state OSC of the reaction mixture. Both quantities were compared with master chemical mechanism (MCMv3.1) simulations. The O:C ratio in the particle phase was about twice the O:C ratio in the gas phase. Average carbon oxidation states of secondary organic aerosol (SOA) samples OSCSOA were in the range of -0.34 to -0.31, in agreement with expected average carbon oxidation states of fresh SOA (OSC = -0.5-0).
Pang, Xiaobing
2015-06-01
Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Brilli, Federico; Gioli, Beniamino; Ciccioli, Paolo; Zona, Donatella; Loreto, Francesco; Janssens, Ivan A.; Ceulemans, Reinhart
2014-11-01
Combustion of solid and liquid fuels is the largest source of potentially toxic volatile organic compounds (VOCs), which can strongly affect health and the physical and chemical properties of the atmosphere. Among combustion processes, biomass burning is one of the largest at global scale. We used a Proton Transfer Reaction “Time-of-Flight” Mass Spectrometer (PTR-TOF-MS), which couples high sensitivity with high mass resolution, for real-time detection of multiple VOCs emitted by burned hay and straw in a barn located near our measuring station. We detected 132 different organic ions directly attributable to VOCs emitted from the fire. Methanol, acetaldehyde, acetone, methyl vinyl ether (MVE), acetic acid and glycolaldehyde dominated the VOC mixture composition. The time-course of the 25 most abundant VOCs, representing ∼85% of the whole mixture of VOCs, was associated with that of carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) emissions. The strong linear relationship between the concentrations of pyrogenic VOC and of a reference species (i.e. CO) allowed us to compile a list of emission ratios (ERs) and emission factors (EFs), but values of ER (and EF) were overestimated due to the limited mixing of the gases under the stable (non-turbulent) nocturnal conditions. In addition to the 25 most abundant VOCs, chemical formula and concentrations of the residual, less abundant VOCs in the emitted mixture were also estimated by PTR-TOF-MS. Furthermore, the evolution of the complex combustion process was described on the basis of the diverse types of pyrogenic gases recorded.
Selective-Reagent-Ionization Mass Spectrometry: New Prospects for Atmospheric Research
NASA Astrophysics Data System (ADS)
Sulzer, Philipp; Jordan, Alfons; Hartungen, Eugen; Hanel, Gernot; Jürschik, Simone; Herbig, Jens; Märk, Lukas; Märk, Tilmann D.
2014-05-01
Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), which was introduced to the scientific community in the 1990's, has quickly evolved into a well-established technology for atmospheric research and environmental chemistry [1]. Advantages of PTR-MS are i) high sensitivities of several hundred cps/ppbv, ii) detection limits at or below the pptv level, iii) direct injection sampling (i.e. no sample preparation), iv) response times in the 100 ms regime and v) online quantification. However, one drawback is a somehow limited selectivity, as in case of quadrupole mass filter based instruments only information about nominal m/z are available. In Time-Of-Flight (TOF) mass analyzer based instruments selectivity is drastically increased by a high mass resolution of up to 8000 m/Δm, but e.g. isomers still cannot be separated. In 2009 we introduced an advanced version of PTR-MS, which permits switching the reagent ions from H3O+ to NO+ and O2+, respectively [2]. This novel type of instrumentation was called Selective-Reagent-Ionization Mass Spectrometry (SRI-MS) and has been successfully used to separate isomers, e.g. the biogenic compounds isoprene and 2-methyl-3-buten-2-ol as shown by Karl et al. [3]. Switching the reagent ions dramatically increases selectivity and thus applicability of SRI-MS in atmospheric research. Here we report on the latest results utilizing an even more advanced embodiment of SRI-MS enabling the use of the additional reagent ions Kr+ and Xe+ [4]. With this technology important atmospheric compounds, such as CO2, CO, CH4, O2, etc. can be quantified and selectivity is increased even further. We present comparison data between diesel and gasoline car exhaust gases and quantitative data on indoor air for these compounds, which are not detectable with classical PTR-MS. Additionally, we show very recent examples of isomers which cannot be separated with PTR-MS but can clearly be distinguished with SRI-MS. Finally, we give an overview of ongoing SRI-MS developments, which include TOF based instruments with increased sensitivity of one order of magnitude (i.e. in the 103 cps/ppbv regime) by means of using a quadrupole ion guide between the drift tube and the TOF analyzer. It is expected that these developments will have a serious impact in atmospheric research, because increased sensitivity implies reduced measurement times and thus, e.g. even more accurate flux measurements. References [1] J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall, Mass Spectrometry Reviews, 26 (2007), 223-257. [2] A. Jordan, S. Haidacher, G. Hanel, E. Hartungen, J. Herbig, L. Märk, R. Schottkowsky, H. Seehauser, P. Sulzer, T.D. Märk, International Journal of Mass Spectrometry, 286 (2009), 32 - 38. [3] T. Karl, A. Hansel, L. Cappellin, L. Kaser, I. Herdlinger-Blatt, W. Jud, Atmospheric Chemistry and Physics, 12/24 (2012), 11877-11884. [4] P. Sulzer, A. Edtbauer, E. Hartungen, S. Juerschik, A. Jordan, G. Hanel, S. Feil, S. Jaksch, L. Märk, T.D. Märk, International Journal of Mass Spectrometry, 321 (2012), 66-70. Acknowledgement We acknowledge financial support by the Austrian Research Promotion Agency (FFG), Wien.
Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest
NASA Astrophysics Data System (ADS)
Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar
2016-04-01
Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during the night bellow a shallow boundary layer and subsequently resuspended during the day. We discuss here the importance of wide-spread temperate Norway spruce forests in biosphere-atmosphere exchange under climate change. Although temperate forests could play a key role in air pollutants removal, these contribute at the same time to a secondary organic aerosol formation by production of BVOCs. Measurements of trace gases are important for further parametrization of biosphere-atmosphere continuum transport models.
NASA Astrophysics Data System (ADS)
Sarkar, C.; Sinha, V.; Kumar, V.; Rupakheti, M.; Panday, A. K.; Mahata, K.; Rupakheti, D.; Kathayat, B.; Lawrence, M. G.
2015-12-01
During SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in the winter of 2012-2013, a comprehensive study was carried out to characterize the chemical composition of ambient Kathmandu air for speciated VOCs by deploying a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), the first time to be deployed in South Asia. Due to its high mass resolution (m/Δm > 4200) and temporal resolution (1 minute), 71 ion peaks were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the Valley. Of the 71, 38 species were found to have campaign average concentrations > 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers. Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m/z=69.070) and furan (m/z=69.033). Comparison with several sites elsewhere in the world showed mixing ratios of acetaldehyde (~ 9 ppb), acetonitrile (~1 ppb) and isoprene (~ 1 ppb) to be among the highest measured anywhere in the world. Two "new" ambient compounds namely, methanamide (m/z = 46.029) and acetamide (m/z=60.051) which can photochemically produce isocyanic acid in the atmosphere, are reported in this study alongwith nitromethane (a tracer for diesel exhaust) and ketene (a very reactive compound). Two distinct periods were identified during the campaign based on high daytime biogenic emissions of isoprene even in winter and biomass fired brick kiln emissions of acetonitrile, benzene and isocyanic acid. Biomass burning and biomass fired brick kiln emissions were found to be the dominant source for compounds such as propyne, propene, benzene and propanenitrile which correlated strongly with biomass burning tracer acetonitrile (r2 > 0.7). The calculated total VOC OH reactivity was dominated by acetaldehyde (20.1%), ketene (ethenone) (17.1%), isoprene (16.8 %) and propene (15.6%), while oxygenated VOCs and isoprene collectively contributed to more than 70% of the total ozone production potential. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane are reported in this study.
Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.
Mehranian, Abolfazl; Zaidi, Habib
2015-04-01
Time-of-flight (TOF) PET/MR imaging is an emerging imaging technology with great capabilities offered by TOF to improve image quality and lesion detectability. We assessed, for the first time, the impact of TOF image reconstruction on PET quantification errors induced by MR imaging-based attenuation correction (MRAC) using simulation and clinical PET/CT studies. Standard 4-class attenuation maps were derived by segmentation of CT images of 27 patients undergoing PET/CT examinations into background air, lung, soft-tissue, and fat tissue classes, followed by the assignment of predefined attenuation coefficients to each class. For each patient, 4 PET images were reconstructed: non-TOF and TOF both corrected for attenuation using reference CT-based attenuation correction and the resulting 4-class MRAC maps. The relative errors between non-TOF and TOF MRAC reconstructions were compared with their reference CT-based attenuation correction reconstructions. The bias was locally and globally evaluated using volumes of interest (VOIs) defined on lesions and normal tissues and CT-derived tissue classes containing all voxels in a given tissue, respectively. The impact of TOF on reducing the errors induced by metal-susceptibility and respiratory-phase mismatch artifacts was also evaluated using clinical and simulation studies. Our results show that TOF PET can remarkably reduce attenuation correction artifacts and quantification errors in the lungs and bone tissues. Using classwise analysis, it was found that the non-TOF MRAC method results in an error of -3.4% ± 11.5% in the lungs and -21.8% ± 2.9% in bones, whereas its TOF counterpart reduced the errors to -2.9% ± 7.1% and -15.3% ± 2.3%, respectively. The VOI-based analysis revealed that the non-TOF and TOF methods resulted in an average overestimation of 7.5% and 3.9% in or near lung lesions (n = 23) and underestimation of less than 5% for soft tissue and in or near bone lesions (n = 91). Simulation results showed that as TOF resolution improves, artifacts and quantification errors are substantially reduced. TOF PET substantially reduces artifacts and improves significantly the quantitative accuracy of standard MRAC methods. Therefore, MRAC should be less of a concern on future TOF PET/MR scanners with improved timing resolution. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Gonzaga-Gomez, Lais; Boissard, Christophe; Ciuraru, Raluca; Lafouge, Florence; Zurfluh, Olivier; Buysse, Pauline; Decuq, Céline; Fanucci, Olivier; Gueudet, Jean-Christophe; Gros, Valérie; Sarda, Roland; Zannoni, Nora; Loubet, Benjamin
2017-04-01
Volatile organic compounds (VOC) play an important role in the chemistry of the atmosphere as precursors of secondary pollutants such as ozone and organic aerosols. A large variety of VOC are exchanged between plants (BVOC) and the atmosphere. Their fluxes are strongly dependent on environmental factors (temperature, light, biotic and abiotic stress) and vary greatly among plant species. Only few studies focused on BVOC emissions by agricultural plants and were mostly carried in North America. However, agricultural lands occupy 51% of the total country area in France, with wheat being one of the most important crop. We used a PTR-Qi-TOF-MS (national instrument within the ANAEE-France framework) and dynamic chambers to measure BVOC emissions from plant and soil compartments of a wheat and a maize crop near Paris (FR-GRI ICOS site). More than 700 masses were detected thanks to the resolution and sensitivity of this new instrument. We analyze the emission response to light, temperature and stomatal aperture in order to explain the mechanisms of BVOC exchanges by wheat plants. We investigate the emission differences between soil and plant compartment, and between wheat and maize crops. Acetone (m/z 59.049) was the predominant volatile compound in the emissions from wheat. Both methanol (m/z 33.033) and acetaldehyde (m/z 45.033) were also quite abundantly emitted but were less than half the acetone emissions. Other masses detected in relative importance in this study were m/z 63.026 (possible DMS), m/z 93.033 (not identified), m/z 69.069 (isoprene), m/z 57.069 (not identified), m/z 83.085 (possible green leaf volatiles), m/z 73.064 (methyl ethyl ketone). Their emissions were around 7 times smaller than the emissions of acetone. On the other hand we observed a deposition for, mainly, m/z 75.044 (hydroxyacetone) and m/z 61.028 (acetic acid). Methanol presented both positive and negative fluxes witch could indicate either emission or absorption of this compound by the plant, respectively.
Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S; Moses, William W; Qi, Jinyi
2018-03-16
The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1-1.3 over the TOF 500 ps and 1.5-1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.
NASA Astrophysics Data System (ADS)
Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S.; Moses, William W.; Qi, Jinyi
2018-03-01
The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1–1.3 over the TOF 500 ps and 1.5–1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.
Wang, Chia-Chen; Lai, Yin-Hung; Ou, Yu-Meng; Chang, Huan-Tsung; Wang, Yi-Sheng
2016-01-01
Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644968
NASA Astrophysics Data System (ADS)
Veres, P.; Auld, J.; Williams, J.
2012-04-01
In this presentation, we will summarize the results of measurements made in an approximately 1300 m3 tropical greenhouse at the Johannes Gutenberg University botanical garden in Mainz Germany conducted over a one month period. The greenhouse is home to a large variety of plant species from hot and humid regions of the world. The greenhouse is also host to several crops such as Cocoa and Cola Nut as well as ornamental plants. A particular focus of the species maintained are those which are considered ant plants, or plants which have an intimate relationship with ants in tropical habitats. Volatile organic compounds (VOCs) were measured using a Switchable Reagent Ion Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS) using H3O+, NO+, and O2+ ion chemistry. Measurements will be presented both for primary emissions observed in the closed greenhouse atmosphere as well as the oxidation products observed after the introduction of ambient ozone. The high resolving power (5000 m/Δm) of the time-of-flight instrument allows for the separation of isobaric species. In particular, both isoprene (68.1170 amu) and furan (68.0740 amu) were observed and separated as primary emissions during this study. The significance of this will be discussed in terms of both atmospheric implications as well as with respect to previous measurements of isoprene obtained using quadrupole PTR-MS where isobaric separation of these compounds is not possible. Additionally observed species (e.g. Methanol, Acetaldehyde, MVK and MEK) will be discussed in detail with respect to their behavior as a function of light, temperature and relative humidity. The overall instrument performance of the PTR-TOF-MS technique using the H3O+, NO+, and O2+ primary ions for the measurement of VOCs will be evaluated.
NASA Astrophysics Data System (ADS)
Alves, E. G.; Batalha, S. S. A.; Park, J. H.; Seco, R.; Tota, J.; Santana, R. A. S. D.; Guenther, A. B.; Kim, S.; Smith, J. N.; Souza, R. A. F. D.
2014-12-01
Biogenic Volatile Organic Compounds (BVOCs) play an important role in atmospheric chemistry and biogeochemical cycles. It is known that tropical forests are the biggest source of the dominant BVOCs (i.e. isoprene and monoterpenes) emitted to the atmosphere. Nevertheless, Amazonian rainforest, the world's largest tropical rainforest, has been poorly explored for isoprene and monoterpene emissions. Recently (June and July 2014), we deployed a PTR-TOF-MS (Proton Transfer Reaction - Time of Flight - Mass Spectrometer) to quantify isoprene and monoterpene emissions using the eddy covariance flux method at the FLONA Tapajos (Floresta Nacional do Tapajos; Tapajos National Forest) in the eastern central Amazon rainforest, Santarem-PA, Brazil. The sample inlet and a 3D-sonic anemometer were located above the forest canopy (~65m), and the air was sampled through a long Teflon tube (100m) with high flow rate (40L/min) to the PTR-TOF-MS. From preliminary results for the first 3 days, concentrations and fluxes of m/z 69 (isoprene; C5H8-H+) and m/z 137 (total monoterpenes; C10H16-H+) showed a clear circadian cycle (high during daytime and low at nighttime), suggesting the emissions of these compounds are light and temperature dependent. Our study provides the first PTR-TOF-MS flux observations of isoprene and total monoterpenes at the Flona Tapajos. Moreover, since there are variations on the emissions, when comparing different environments of the huge Amazon basin, these results from eastern central Amazonia will contribute to improving regional and global BVOC emission model estimates.
NASA Astrophysics Data System (ADS)
Sarkar, C.; Sinha, V.; Kumar, V.; Rupakheti, M.; Panday, A.; Mahata, K. S.; Rupakheti, D.; Kathayat, B.; Lawrence, M. G.
2015-09-01
The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs) are key constituents of air pollution, though their specific role in the Valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in Nepal in the winter of 2012-2013, a comprehensive study was carried out to characterize the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs by deploying a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS)-the first such deployment in South Asia. 71 ion peaks (for which measured ambient concentrations exceeded the 2 σ detection limit) were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the Valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m/Δm > 4200) and temporal resolution (1 min) of the PTR-TOF-MS. The highest average VOC mixing ratios during the measurement period were (in rank order): acetaldehyde (8.8 ppb), methanol (7.4 ppb), acetone (4.2 ppb), benzene (2.7 ppb), toluene (1.5 ppb), isoprene (1.1 ppb), acetonitrile (1.1 ppb), C8-aromatics (~ 1 ppb), furan (~ 0.5 ppb), and C9-aromatics (0.4 ppb). Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m/z = 69.070) and furan (m/z = 69.033). Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde (~ 9 ppb), acetonitrile (~ 1 ppb) and isoprene (~ 1 ppb) to be among the highest reported till date. Two "new" ambient compounds namely, formamide (m/z = 46.029) and acetamide (m/z = 60.051), which can photochemically produce isocyanic acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust) which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene, and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile which correlated strongly with acetonitrile (r2 > 0.7), a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %), isoprene (20.2 %) and propene (18.7 %), while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known SOA yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were: benzene > naphthalene > toluene > xylenes > monoterpenes > trimethyl-benzenes > styrene > isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid) in the Kathmandu Valley and improve its air quality.
NASA Astrophysics Data System (ADS)
Sarkar, Chinmoy; Sinha, Vinayak; Kumar, Vinod; Rupakheti, Maheswar; Panday, Arnico; Mahata, Khadak S.; Rupakheti, Dipesh; Kathayat, Bhogendra; Lawrence, Mark G.
2016-03-01
The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs) are key constituents of air pollution, though their specific role in the valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in Nepal in the winter of 2012-2013, a comprehensive study was carried out to characterise the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs, by deploying a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) - the first such deployment in South Asia. In the study, 71 ion peaks (for which measured ambient concentrations exceeded the 2σ detection limit) were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m / Δm > 4200) and temporal resolution (1 min) of the PTR-TOF-MS. The concentration ranking in the average VOC mixing ratios during our wintertime deployment was acetaldehyde (8.8 ppb) > methanol (7.4 ppb) > acetone + propanal (4.2 ppb) > benzene (2.7 ppb) > toluene (1.5 ppb) > isoprene (1.1 ppb) > acetonitrile (1.1 ppb) > C8-aromatics ( ˜ 1 ppb) > furan ( ˜ 0.5 ppb) > C9-aromatics (0.4 ppb). Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m / z = 69.070) and furan (m / z = 69.033). Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde ( ˜ 9 ppb), acetonitrile ( ˜ 1 ppb) and isoprene ( ˜ 1 ppb) to be among the highest reported to date. Two "new" ambient compounds, namely formamide (m / z = 46.029) and acetamide (m / z = 60.051), which can photochemically produce isocyanic acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust), which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile, which correlated strongly with acetonitrile (r2 > 0.7), a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %), isoprene (20.2 %) and propene (18.7 %), while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known secondary organic aerosol (SOA) yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were benzene > naphthalene > toluene > xylenes > monoterpenes > trimethylbenzenes > styrene > isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid) in the Kathmandu Valley.
NASA Astrophysics Data System (ADS)
Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.
2013-12-01
Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the Fast-GC limit of detection with respect to monoterpenes was 4-5 ppt, and the agreement between Fast-GC and PTR-MS derived total monoterpene mixing ratios was consistent with previous GC/PTR-MS comparisons. The measurement uncertainties associated with the Fast-GC quantification of monoterpenes are ≤ 10%, while larger uncertainties (up to ~ 25%) are associated with the OBVOC and sesquiterpene measurements.
Temporal variation of VOC fluxes measured with PTR-TOF above a boreal forest
NASA Astrophysics Data System (ADS)
Schallhart, Simon; Rantala, Pekka; Kajos, Maija K.; Aalto, Juho; Mammarella, Ivan; Ruuskanen, Taina M.; Kulmala, Markku
2018-01-01
Between April and June 2013 fluxes of volatile organic compounds (VOCs) were measured in a Scots pine and Norway spruce forest using the eddy covariance (EC) method with a proton transfer reaction time-of-flight (PTR-TOF) mass spectrometer. The observations were performed above a boreal forest at the SMEAR II site in southern Finland.We found a total of 25 different compounds with exchange and investigated their seasonal variations from spring to summer. The majority of the net VOC flux was comprised of methanol, monoterpenes, acetone and butene + butanol. The butene + butanol emissions were concluded to not originate from the forest and, therefore, be anthropogenic. The VOC exchange followed a seasonal trend and the emissions increased from spring to summer. Only three compounds were emitted during the snowmelt while in summer emissions of some 19 VOCs were observed. During the measurement period in April, the emissions were dominated by butene + butanol, while during the start of the growing season and in summer, methanol was the most emitted compound. The main source of methanol was likely the growth of new biomass. During a 21-day period in June, the net VOC flux was 2.1 nmol m-2 s-1. This is on the lower end of PTR-TOF flux measurements from other ecosystems, which range from 2 to 10 nmol m-2 s-1. The EC flux results were compared with surface layer profile measurements, using a proton transfer reaction quadrupole mass spectrometer, which is permanently installed at the SMEAR II site. For the major compounds, the fluxes measured with the two different methods agreed well.
NASA Astrophysics Data System (ADS)
Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.
2016-08-01
We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaser, L.; Karl, T.; Guenther, A.
2013-01-01
We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-TOFMS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration ompounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks including protonated parent compounds, their fragmentsmore » and isotopes as well as VOC-H+-water clusters showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1mgcompoundm-2 h-1. These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00-18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50 %), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10 %). The total MBO+isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of 20 monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site specific leaf cuvette measurements. While the modelled and measured MBO+isoprene fluxes agree well the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to storms, are not included in MEGAN 2.1.« less
Rogasch, Julian Mm; Hofheinz, Frank; Lougovski, Alexandr; Furth, Christian; Ruf, Juri; Großer, Oliver S; Mohnike, Konrad; Hass, Peter; Walke, Mathias; Amthauer, Holger; Steffen, Ingo G
2014-12-01
F18-fluorodeoxyglucose positron-emission tomography (FDG-PET) reconstruction algorithms can have substantial influence on quantitative image data used, e.g., for therapy planning or monitoring in oncology. We analyzed radial activity concentration profiles of differently reconstructed FDG-PET images to determine the influence of varying signal-to-background ratios (SBRs) on the respective spatial resolution, activity concentration distribution, and quantification (standardized uptake value [SUV], metabolic tumor volume [MTV]). Measurements were performed on a Siemens Biograph mCT 64 using a cylindrical phantom containing four spheres (diameter, 30 to 70 mm) filled with F18-FDG applying three SBRs (SBR1, 16:1; SBR2, 6:1; SBR3, 2:1). Images were reconstructed employing six algorithms (filtered backprojection [FBP], FBP + time-of-flight analysis [FBP + TOF], 3D-ordered subset expectation maximization [3D-OSEM], 3D-OSEM + TOF, point spread function [PSF], PSF + TOF). Spatial resolution was determined by fitting the convolution of the object geometry with a Gaussian point spread function to radial activity concentration profiles. MTV delineation was performed using fixed thresholds and semiautomatic background-adapted thresholding (ROVER, ABX, Radeberg, Germany). The pairwise Wilcoxon test revealed significantly higher spatial resolutions for PSF + TOF (up to 4.0 mm) compared to PSF, FBP, FBP + TOF, 3D-OSEM, and 3D-OSEM + TOF at all SBRs (each P < 0.05) with the highest differences for SBR1 decreasing to the lowest for SBR3. Edge elevations in radial activity profiles (Gibbs artifacts) were highest for PSF and PSF + TOF declining with decreasing SBR (PSF + TOF largest sphere; SBR1, 6.3%; SBR3, 2.7%). These artifacts induce substantial SUVmax overestimation compared to the reference SUV for PSF algorithms at SBR1 and SBR2 leading to substantial MTV underestimation in threshold-based segmentation. In contrast, both PSF algorithms provided the lowest deviation of SUVmean from reference SUV at SBR1 and SBR2. At high contrast, the PSF algorithms provided the highest spatial resolution and lowest SUVmean deviation from the reference SUV. In contrast, both algorithms showed the highest deviations in SUVmax and threshold-based MTV definition. At low contrast, all investigated reconstruction algorithms performed approximately equally. The use of PSF algorithms for quantitative PET data, e.g., for target volume definition or in serial PET studies, should be performed with caution - especially if comparing SUV of lesions with high and low contrasts.
Bianchi, Tiago; Weesepoel, Yannick; Koot, Alex; Iglesias, Ignasi; Eduardo, Iban; Gratacós-Cubarsí, Marta; Guerrero, Luis; Hortós, Maria; van Ruth, Saskia
2017-09-01
The aim of this study was to investigate the aroma and sensory profiles of various types of peaches (Prunus persica L. Batsch.). Forty-three commercial cultivars comprising peaches, flat peaches, nectarines, and canning peaches (pavías) were grown over two consecutive harvest years. Fruits were assessed for chemical aroma and sensory profiles. Chemical aroma profile was obtained by proton transfer reaction-mass spectrometry (PTR-MS) and spectral masses were tentatively identified with PTR-Time of Flight-MS (PTR-Tof-MS). Sensory analysis was performed at commercial maturity considering seven aroma/flavor attributes. The four types of peaches showed both distinct chemical aroma and sensory profiles. Flat peaches and canning peaches showed most distinct patterns according to discriminant analysis. The sensory data were related to the volatile compounds by partial least square regression. γ-Hexalactone, γ-octalactone, hotrienol, acetic acid and ethyl acetate correlated positively, and benzeneacetaldehyde, trimethylbenzene and acetaldehyde negatively to the intensities of aroma and ripe fruit sensory scores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ouni, Youssef; Taamalli, Ameni; Gómez-Caravaca, Ana Maria; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Zarrouk, Mokhtar
2011-08-01
The phenolic compounds present in seven samples of olive fruits were analysed by a rapid and resolutive LC-ESI-TOF MS method. All samples were collected during the normal picking period for olive oil production, in central and south Tunisia, and were obtained from the Oueslati variety cultivated in different olive growing areas. In the Tunisian samples, 22 compounds have been characterised by LC-ESI-TOF MS analysis. Results showed no qualitative differences in the phenolic fractions between virgin olive oils from different geographical region. However, significant quantitative differences were observed in a wide number of phenolic compounds. These results permit to use the phenolic fractions as an indicator of each region. Copyright © 2011 Elsevier Ltd. All rights reserved.
Imaging performance of a LaBr3-based PET scanner
Daube-Witherspoon, M E; Surti, S; Perkins, A; Kyba, C C M; Wiener, R; Werner, M E; Kulp, R; Karp, J S
2010-01-01
A prototype time-of-flight (TOF) PET scanner based on cerium-doped lanthanum bromide [LaBr3 (5% Ce)] has been developed. LaBr3 has high light output, excellent energy resolution, and fast timing properties that have been predicted to lead to good image quality. Intrinsic performance measurements of spatial resolution, sensitivity, and scatter fraction demonstrate good conventional PET performance; the results agree with previous simulation studies. Phantom measurements show the excellent image quality achievable with the prototype system. Phantom measurements and corresponding simulations show a faster and more uniform convergence rate, as well as more uniform quantification, for TOF reconstruction of the data, which have 375-ps intrinsic timing resolution, compared to non-TOF images. Measurements and simulations of a hot and cold sphere phantom show that the 7% energy resolution helps to mitigate residual errors in the scatter estimate because a high energy threshold (>480 keV) can be used to restrict the amount of scatter accepted without a loss of true events. Preliminary results with incorporation of a model of detector blurring in the iterative reconstruction algorithm show improved contrast recovery but also point out the importance of an accurate resolution model of the tails of LaBr3’s point spread function. The LaBr3 TOF-PET scanner has demonstrated the impact of superior timing and energy resolutions on image quality. PMID:19949259
PTR, PCR and Energy Resolution Study of GAGG:Ce Scintillator
NASA Astrophysics Data System (ADS)
Limkitjaroenporn, Pruittipol; Hongtong, Wiraporn; Kim, Hong Joo; Kaewkhao, Jakrapong
2018-03-01
In this paper, the peak to total ratio (PTR), the peak to Compton ratio (PCR) and the energy resolution of cerium doped gadolinium aluminium gallium garnet (GAGG:Ce) scintillator are measured in the range of energy from 511 keV to 1332 keV using the radioactive source Na-22, Cs-137 and Co-60. The crystal is coupled with the PMT number R1306 and analyzed by the nuclear instrument module (NIM). The results found that the PTR and PCR of GAGG:Ce scintillator decrease with the increasing of energy. The results of energy resolution show the trend is decrease with the increasing of energy which corresponding to the higher energy resolution at higher energy. Moreover the energy resolution found to be linearly with.
NASA Astrophysics Data System (ADS)
Loubet, Benjamin; Buysse, Pauline; Lafouge, Florence; Ciuraru, Raluca; Decuq, Céline; Zurfluh, Olivier
2017-04-01
Field scale flux measurements of volatile organic compounds (VOC) are essential for improving our knowledge of VOC emissions from ecosystems. Many VOCs are emitted from and deposited to ecosystems. Especially less known, are crops which represent more than 50% of French terrestrial surfaces. In this study, we evaluate a new on-line methodology for measuring VOC fluxes by Eddy Covariance with a PTR-Qi-TOF-MS. Measurements were performed at the ICOS FR-GRI site over a crop using a 30 m long high flow rate sampling line and an ultrasonic anemometer. A Labview program was specially designed for acquisition and on-line covariance calculation: Whole mass spectra ( 240000 channels) were acquired on-line at 10 Hz and stored in a temporary memory. Every 5 minutes, the spectra were mass-calibrated and normalized by the primary ion peak integral at 10 Hz. The mass spectra peaks were then retrieved from the 5-min averaged spectra by withdrawing the baseline, determining the resolution and using a multiple-peak detection algorithm. In order to optimize the peak detection algorithm for the covariance, we determined the covariances as the integrals of the peaks of the vertical-air-velocity-fluctuation weighed-averaged-spectra. In other terms, we calculate
NASA Astrophysics Data System (ADS)
Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.
2014-05-01
Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest ~30 km west of central Tokyo, Japan, the Fast-GC limit of detection with respect to monoterpenes was 4-5 ppt, and the agreement between Fast-GC and PTR-MS derived total monoterpene mixing ratios was consistent with previous GC/PTR-MS comparisons. The measurement uncertainties associated with the Fast-GC quantification of monoterpenes are ≤ 12%, while larger uncertainties (up to ~25%) are associated with the OBVOC and sesquiterpene measurements.
Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.
Abstract. In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150–250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMSCID- TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptidemore » biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10–200 nM range, while simultaneously achieving discovery measurements« less
Cappellin, Luca; Loreto, Francesco; Aprea, Eugenio; Romano, Andrea; del Pulgar, José Sánchez; Gasperi, Flavia; Biasioli, Franco
2013-01-01
Proton Transfer Reaction Mass Spectrometry (PTR-MS) has evolved in the last decade as a fast and high sensitivity sensor for the real-time monitoring of volatile compounds. Its applications range from environmental sciences to medical sciences, from food technology to bioprocess monitoring. Italian scientists and institutions participated from the very beginning in fundamental and applied research aiming at exploiting the potentialities of this technique and providing relevant methodological advances and new fundamental indications. In this review we describe this activity on the basis of the available literature. The Italian scientific community has been active mostly in food science and technology, plant physiology and environmental studies and also pioneered the applications of the recently released PTR-ToF-MS (Proton Transfer Reaction-Time of Flight-Mass Spectrometry) in food science and in plant physiology. In the very last years new results related to bioprocess monitoring and health science have been published as well. PTR-MS data analysis, particularly in the case of the ToF based version, and the application of advanced chemometrics and data mining are also aspects characterising the activity of the Italian community. PMID:24021966
NASA Astrophysics Data System (ADS)
Kameyama, S.; Tanimoto, H.; Inomata, S.; Tsunogai, U.; Ooki, A.; Yokouchi, Y.; Takeda, S.; Obata, H.; Tsuda, A.; Uematsu, M.
2010-12-01
We developed an equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS) for high-resolution measurement of multiple volatile organic compounds (VOCs) dissolved in seawater. The equilibration of six VOC species (dimethyl sulfide (DMS), isoprene, propene, acetone, acetaldehyde, and methanol) between seawater and carrier gas, and the response time of the system were evaluated in the laboratory. While isoprene and propene are not in equilibrium associated with slow response time (≈ 15 min) due to low solubility, other species achieve complete equilibrium with overall response time within 2 min under the condition without water droplets on the inner wall of the headspace of the equilibrator. The EI-PTR-MS instrument was deployed during a cruise in the western North Pacific. For DMS and isoprene, comparison of EI-PTR-MS with a membrane tube equilibrator-gas chromatography/mass spectrometry was made, showing generally good agreement. EI-PTR-MS captured temporal variations of dissolved VOCs including small-scale variability, demonstrating the performance of EI-PTR-MS technique for continuous measurement of multiple VOCs in seawater.
NASA Astrophysics Data System (ADS)
Khan, M. H.; Holzinger, R.
2013-12-01
A Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS) with different sampling systems (multi-stage denuder for gas phase and impact on a collector for aerosol phase) has been deployed in summer 2013 during the Southern Oxidant and Aerosol Study (SOAS) at the SEARCH ground site, Centreville, Alabama for in-situ gas phase and aerosol measurements on an hourly time resolution. A bunch of DB-1 column (0.53 mm x 5.0 μm) is used in the denuder for capturing the bulk of SVOCs and a collection-thermal-desorption (CTD) cell is used for collecting aerosol particles. Several hundreds semivolatile organic compounds (SVOCs) in gas phase and aerosol phases have been detected. The high mass resolution capabilities of ~5000, low detection limit (<0.05 pptv for gas species, <0.01 ng m-3 for aerosol species) and good physical and chemical characterization of SVOCs with the TD-PTR-MS allows constraining both, the quantity and the chemical composition. The SEARCH site was highly impacted by Biogenic Volatile Organic Compounds (BVOCs) and occasionally influenced by anthropogenic pollution. BVOCs and their oxidation products are capable of partitioning into the particle phase, so their simultaneous quantification in both phases has been used to determine the gas/particle-phase partitioning. Our results show the expected diurnal variation based on the changes of air temperature for many species. The results from this study give valuable insights into sources and processing of Secondary Organic Aerosols (SOAs) that can be used to improve parameterization algorithms in regional and global climate models.
NASA Astrophysics Data System (ADS)
Drewnick, Frank; Hings, Silke S.; Curtius, Joachim; Eerdekens, Gunter; Williams, Jonathan
The chemical composition and chemically resolved size distributions of fine aerosol particles were measured at high time resolution (5 min) with a time-of-flight aerosol mass spectrometer (TOF-AMS) during the New Year's 2005 fireworks in Mainz, central Germany. In addition, particle number concentrations and trace gas concentrations were measured using a condensation particle counter (CPC) and a proton transfer reaction mass spectrometer (PTR-MS). The main non-refractory components of the firework aerosol were potassium, sulfate, total organics and chloride. Increased trace gas mixing ratios of methanol, acetonitrile, acetone and acetaldehyde were observed. Aerosol nitrate and ammonium concentrations were not significantly affected by the fireworks as well as the measured aromatic trace gases. The sub-micron aerosol concentrations peaked about 20 min after midnight with total mass concentrations larger than 600 μg m -3. The trace gas concentrations peaked about 30 min later. Using the sulfur-to-potassium concentration ratio measured in another fireworks aerosol, it was for the first time possible to estimate the relative ionization efficiency of aerosol potassium, measured with the TOF-AMS. Here we found a value of RIE K=2.9.
Capozzi, Vittorio; Yener, Sine; Khomenko, Iuliia; Farneti, Brian; Cappellin, Luca; Gasperi, Flavia; Scampicchio, Matteo; Biasioli, Franco
2017-05-11
Proton Transfer Reaction (PTR), combined with a Time-of-Flight (ToF) Mass Spectrometer (MS) is an analytical approach based on chemical ionization that belongs to the Direct-Injection Mass Spectrometric (DIMS) technologies. These techniques allow the rapid determination of volatile organic compounds (VOCs), assuring high sensitivity and accuracy. In general, PTR-MS requires neither sample preparation nor sample destruction, allowing real time and non-invasive analysis of samples. PTR-MS are exploited in many fields, from environmental and atmospheric chemistry to medical and biological sciences. More recently, we developed a methodology based on coupling PTR-ToF-MS with an automated sampler and tailored data analysis tools, to increase the degree of automation and, consequently, to enhance the potential of the technique. This approach allowed us to monitor bioprocesses (e.g. enzymatic oxidation, alcoholic fermentation), to screen large sample sets (e.g. different origins, entire germoplasms) and to analyze several experimental modes (e.g. different concentrations of a given ingredient, different intensities of a specific technological parameter) in terms of VOC content. Here, we report the experimental protocols exemplifying different possible applications of our methodology: i.e. the detection of VOCs released during lactic acid fermentation of yogurt (on-line bioprocess monitoring), the monitoring of VOCs associated with different apple cultivars (large-scale screening), and the in vivo study of retronasal VOC release during coffee drinking (nosespace analysis).
NASA Astrophysics Data System (ADS)
Holzinger, Rupert; Khan, Anwar; Misztal, Pawel; Goldstein, Allen
2016-04-01
A serial 3-stage denuder system has been developed and for the first time deployed during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, Alabama, USA, for one month during the summer of 2013. Volatile organic compounds (VOCs) were collected on an activated carbon denuder and thermally desorbed to be measured with PTR-MS (PTR-TOF800, Ionicon Analytik GmbH). Comparison with a second PTR-MS instrument operated under standard conditions at the same site revealed poor recovery for the majority of the VOCs while individual species measured by the different PTR-MS systems still exhibited excellent correlation. Semivolatile organic compounds (SVOCs) in the gas phase were collected and thermally desorbed on a denuder coated with Methylsiloxane (Agilent DB-1). More than 100 SVOCs have been detected at levels in the range 0.05-3 pmmol/mol and only a few species exhibited maximum mixing ratios above 5 pmol/mol. Many of the detected species exhibited a clear diurnal profile while the concentration of some was clearly dominated by pollution events. Carboxylic acids, (oxidized) polycyclic aromatic compounds, and monoterpene oxidation products were compound groups that provided most of the mass and a typical total concentration of the measured burden of SVOCs was 5 microgram per cubic meter.
Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS
NASA Astrophysics Data System (ADS)
Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.; Baker, Erin S.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco
2018-05-01
In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150-250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMS-CID-TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10-200 nM range, while simultaneously achieving discovery measurements of not initially targeted peptides as markers from the same proteins and, eventually, other proteins. [Figure not available: see fulltext.
Non-ECG-gated unenhanced MRA of the carotids: optimization and clinical feasibility.
Raoult, H; Gauvrit, J Y; Schmitt, P; Le Couls, V; Bannier, E
2013-11-01
To optimise and assess the clinical feasibility of a carotid non-ECG-gated unenhanced MRA sequence. Sixteen healthy volunteers and 11 patients presenting with internal carotid artery (ICA) disease underwent large field-of-view balanced steady-state free precession (bSSFP) unenhanced MRA at 3T. Sampling schemes acquiring the k-space centre either early (kCE) or late (kCL) in the acquisition window were evaluated. Signal and image quality was scored in comparison to ECG-gated kCE unenhanced MRA and TOF. For patients, computed tomography angiography was used as the reference. In volunteers, kCE sampling yielded higher image quality than kCL and TOF, with fewer flow artefacts and improved signal homogeneity. kCE unenhanced MRA image quality was higher without ECG-gating. Arterial signal and artery/vein contrast were higher with both bSSFP sampling schemes than with TOF. The kCE sequence allowed correct quantification of ten significant stenoses, and it facilitated the identification of an infrapetrous dysplasia, which was outside of the TOF imaging coverage. Non-ECG-gated bSSFP carotid imaging offers high-quality images and is a promising sequence for carotid disease diagnosis in a short acquisition time with high spatial resolution and a large field of view. • Non-ECG-gated unenhanced bSSFP MRA offers high-quality imaging of the carotid arteries. • Sequences using early acquisition of the k-space centre achieve higher image quality. • Non-ECG-gated unenhanced bSSFP MRA allows quantification of significant carotid stenosis. • Short MR acquisition times and ungated sequences are helpful in clinical practice. • High 3D spatial resolution and a large field of view improve diagnostic performance.
NASA Astrophysics Data System (ADS)
Panchal, Rikesh; Monks, Paul
2015-04-01
Hydroxyl (OH) radicals play an important role in 'cleansing' the atmosphere of many pollutants such as, NOx, CH4 and various VOCs, through oxidation. To measure the reactivity of OH, both the sinks and sources of OH need to be quantified, and currently the overall sinks of OH seem not to be fully constrained. In order to measure the total rate loss of OH in an ambient air sample, all OH reactive species must be considered and their concentrations and reaction rate coefficients with OH known. Using the method pioneered by Sinha and Williams at the Max Plank Institute Mainz, the Comparative Reactivity Method (CRM) which directly quantifies total OH reactivity in ambient air without the need to consider the concentrations of individual species within the sample that can react with OH, has been developed and applied in a urban setting. The CRM measures the concentration of a reactive species that is present only in low concentrations in ambient air, in this case pyrrole, flowing through a reaction vessel and detected using Proton Transfer Reaction - Mass Spectrometry (PTR-MS). The poster will show a newly developed and tested PTR-TOF-MS system for CRM. The correction regime will be detailed to account for the influence of the varying humidity between ambient air and clean air on the pyrrole signal. Further, examination of the sensitivity dependence of the PTR-MS as a function of relative humidity and H3O+(H2O) (m/z=37) cluster ion allows the correction for the humidity variation, between the clean humid air entering the reaction vessel and ambient air will be shown. NO, present within ambient air, is also a potential interference and can cause recycling of OH, resulting in an overestimation of OH reactivity. Tests have been conducted on the effects of varying NO concentrations on OH reactivity and a correction factor determined for application to data when sampling ambient air. Finally, field tests in the urban environment at the University of Leicester will be shown coupled to an examination of trends in OH reactivity and other air quality markers such NOx and black carbon.
NASA Astrophysics Data System (ADS)
Koss, A.; Yuan, B.; De Gouw, J. A.; Warneke, C.; Stark, H.
2015-12-01
In-situ time-of-flight chemical ionization mass spectrometers (ToF-CIMS) using H3O+ reagent ion chemistry (PTR-MS) are a relatively new technique in detection of gas-phase hydrocarbons, and recent improvements in instrument sensitivity, mass resolution, and ease of field deployment have expanded their use in atmospheric chemistry. The comparatively low-energy H3O+ ionization technique is ideal for measuring complex mixtures of hydrocarbons, and, compared to conventional quadrupole PTRMS, the newest generation of ToF-CIMS measure many more species simultaneously and with a sensitivity that is as high as a quadrupole PTR-MS. We describe here the development of a commercially available ToF CIMS into an H3O+CIMS suitable for deployment on aircraft, and its application during an aircraft campaign studying emissions from oil and natural gas extraction industry. We provide an overview of instrument development and specifications, including design, characterization, and field operation. We then discuss data processing and interpretation. First, we investigate determination of intensities of poorly resolved peaks. The mass resolution of the present instrument (m/Δm ~4500) enables separate analysis of many isobaric peaks, but peaks are also frequently not fully resolved. Using results from laboratory tests, we quantify how the accuracy can be limited by the overlap in neighboring peaks, and compare to theoretical predictions from literature. We then briefly describe our method for quality assurance of reported compounds, and correction for background and humidity effects. Finally, we present preliminary results from the first field deployment of this instrument during the Spring 2015 SONGNEX aircraft campaign. This campaign sampled emissions from oil and natural gas extraction regions and associated infrastructure in the Western and Central United States. We will highlight results that illustrate (1) new scientific capability from improved mass resolution, which dramatically increased the number of species measured, and (2) new capability from improved time resolution, which provides better spatial coverage during flights, leads to a more thorough and accurate measure of emissions composition, and potentially could enable emission rate estimates using eddy covariance analysis.
van Mourik, Louise M; Leonards, Pim E G; Gaus, Caroline; de Boer, Jacob
2015-10-01
Concerns about the high production volumes, persistency, bioaccumulation potential and toxicity of chlorinated paraffin (CP) mixtures, especially short-chain CPs (SCCPs), are rising. However, information on their levels and fate in the environment is still insufficient, impeding international classifications and regulations. This knowledge gap is mainly due to the difficulties that arise with CP analysis, in particular the chromatographic separation within CPs and between CPs and other compounds. No fully validated routine analytical method is available yet and only semi-quantitative analysis is possible, although the number of studies reporting new and improved methods have rapidly increased since 2010. Better cleanup procedures that remove interfering compounds, and new instrumental techniques, which distinguish between medium-chain CPs (MCCPs) and SCCPs, have been developed. While gas chromatography coupled to an electron capture negative ionisation mass spectrometry (GC/ECNI-MS) remains the most commonly applied technique, novel and promising use of high resolution time of flight MS (TOF-MS) has also been reported. We expect that recent developments in high resolution TOF-MS and Orbitrap technologies will further improve the detection of CPs, including long-chain CPs (LCCPs), and the group separation and quantification of CP homologues. Also, new CP quantification methods have emerged, including the use of mathematical algorithms, multiple linear regression and principal component analysis. These quantification advancements are also reflected in considerably improved interlaboratory agreements since 2010. Analysis of lower chlorinated paraffins (
NASA Astrophysics Data System (ADS)
Borghi, Giacomo; Peet, Bart Jan; Tabacchini, Valerio; Schaart, Dennis R.
2016-07-01
New applications for positron emission tomography (PET) and combined PET/magnetic resonance imaging (MRI) are currently emerging, for example in the fields of neurological, breast, and pediatric imaging. Such applications require improved image quality, reduced dose, shorter scanning times, and more precise quantification. This can be achieved by means of dedicated scanners based on ultrahigh-performance detectors, which should provide excellent spatial resolution, precise depth-of-interaction (DOI) estimation, outstanding time-of-flight (TOF) capability, and high detection efficiency. Here, we introduce such an ultrahigh-performance TOF/DOI PET detector, based on a 32 mm × 32 mm × 22 mm monolithic LYSO:Ce crystal. The 32 mm × 32 mm front and back faces of the crystal are coupled to a digital photon counter (DPC) array, in so-called dual-sided readout (DSR) configuration. The fully digital detector offers a spatial resolution of ~1.1 mm full width at half maximum (FWHM)/~1.2 mm mean absolute error, together with a DOI resolution of ~2.4 mm FWHM, an energy resolution of 10.2% FWHM, and a coincidence resolving time of 147 ps FWHM. The time resolution closely approaches the best results (135 ps FWHM) obtained to date with small crystals made from the same material coupled to the same DPC arrays, illustrating the excellent correction for optical and electronic transit time spreads that can be achieved in monolithic scintillators using maximum-likelihood techniques for estimating the time of interaction. The performance barely degrades for events with missing data (up to 6 out of 32 DPC dies missing), permitting the use of almost all events registered under realistic acquisition conditions. Moreover, the calibration procedures and computational methods used for position and time estimation follow recently made improvements that make them fast and practical, opening up realistic perspectives for using DSR monolithic scintillator detectors in TOF-PET and TOF-PET/MRI systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C.; Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322; Chirtoc, M.
2013-10-07
Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides themore » best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ∼52 ± 2 μm deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m{sup −1} K{sup −1} and 26.7 ±1 W m{sup −1} K{sup −1}, respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10{sup −6} m{sup 2} K W{sup −1}. The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials.« less
Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan
2017-07-01
This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Rampino, M. R.; Prokoph, A.; Adler, A. C.
2000-01-01
The Permian/Triassic (P/Tr) boundary (251.4 +/- 3 Myr) is marked by the most severe mass extinction in the geologic record. Recently, precise absolute dating has bracketed the marine extinctions and associated carbon-isotope anomaly within less than 1 Myr. We improve this resolution through high-resolution stratigraphy across the P/Tr boundary in the 331-m Gartnerkofel-1 core and nearby Reppwand outcrop section (Carnic Alps, Austria) utilizing FFT and wavelet timeseries analyses of cyclic components in down-hole core logs of density and natural gamma-ray intensity, and carbon-isotopic ratios of bulk samples. The wavelet analysis indicates continuity of deposition across the P/Tr boundary interval, and the timeseries analyses show evidence for persistent cycles in the ratio of approximately 40: 10: 4.7: 2.3 meters, correlated with Milankovitch-band orbital cycles of approximately 412: 100: 40: 20 kyr (eccentricity 1 and 2, obliquity, and precession), and giving a consistent average sedimentation rate of approximately 10 cm/1,000 yr. Milankovitch periods in delta C-13 and density in these shallow-water carbonates were most likely the result of climatically induced oscillations of sea level and climate, coupled with changes in ocean circulation and productivity, that affected sedimentation. Fluctuations in gamma radiation reflect varying input of clay minerals and the presence of shaly interbeds. Throughout the P/Tr boundary interval in the core, the 100,000-year eccentricity cycle seems to be dominant. Weaker obliquity and precession cycles are in line with the location of the Austrian section in the latest Permian, close to the Equator in the western bight of the Tethys, where obliquity and precessional effects on seasonal contrast might be subdued. Using the improved resolution provided by cycle analysis in the GK-1 core, we find that the dramatic change in the faunal record that marks the P/Tr boundary takes place over less than 6m, or less than 60,000 years. In the nearby Reppwand outcrop section, the same faunal changes occurs over only 0.8 m or about 8,000 years, close to the limit of time-resolution induced by bioturbation and reworking in these sediments. The sharp negative global carbon-isotope shift took place within less than or equal to 40,000 yr, and the isotope excursions persisted for approximately 480,000 yr into the Early Triassic. The results indicate that the severe marine faunal event that marks the P/Tr boundary was very sudden, perhaps less than the resolution window in the GK-1 core, and suggest a catastrophic cause. The wavelet-analysis approach to high-resolution cyclostratigraphy can be applied to other P/Tr boundary sections, and when combined with precise absolute dating and magnetostratigraphic methods promises a significant increase in resolution in determining the correlation and tempo of the end-Permian extinctions and related events worldwide.
Jeong, Won Tae; Lim, Heung Bin
2018-03-30
We developed a novel ultra performance liquid chromatography-quadrupole time-of-flight (UPLC-Q-TOF) mass spectrometry method that allows sensitive, rapid, and reliable detection and identification of six representative indole alkaloids (vincristine, vinblastine, ajmalicine, catharanthine, serpentine, and vindoline) that exhibit physiological activity in Catharanthus roseus (C. roseus). The alkaloids were eluted on a C18 column with acetonitrile and water containing 0.1% formic acid and 10 mM ammonium acetate, and separated with good resolution within 13 min. Electrospray ionization-Q-TOF (ESI-Q-TOF) analysis was performed to characterize the molecules and their fragment ions, and the characteristic ions and fragmentation patterns were used as to identify the alkaloids. The proposed analytical method was verified in reference to the ICH guidelines and the results showed excellent linearity (R 2 > 0.9988), limit of detection (1 ng/mL to 10 ng/mL), limit of quantification (3 ng/mL to 30 ng/mL), intra-day and inter-day precisions, and extraction recovery rates (92.8% to 104.1%) for all components. The validated UPLC-Q-TOF method was applied to the analysis of extracts from the root, stem, and leaves of C. roseus, allowing the identification of six alkaloids by comparison of retention times, molecular ions, and fragmentation patterns with those of reference compounds. Sixteen additional indole alkaloids were tentatively identified by comparison of chromatograms to chemical databases and literature reports. The contents of bis-indole alkaloids (vincristine and vinblastine) were high in the aerial parts, while the contents of mono-indole alkaloids (ajmalicine, catharanthine, serpentine, and vindoline) were high in the roots. The present results demonstrate that the proposed UPLC-Q-TOF method can be useful for the investigation of phytochemical constituents of medicinal plants. Copyright © 2018 Elsevier B.V. All rights reserved.
Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry
Wewer, Vera; Dombrink, Isabel; vom Dorp, Katharina; Dörmann, Peter
2011-01-01
Glycerolipids, sphingolipids, and sterol lipids constitute the major lipid classes in plants. Sterol lipids are composed of free and conjugated sterols, i.e., sterol esters, sterol glycosides, and acylated sterol glycosides. Sterol lipids play crucial roles during adaption to abiotic stresses and plant-pathogen interactions. Presently, no comprehensive method for sterol lipid quantification in plants is available. We used nanospray ionization quadrupole-time-of-flight mass spectrometry (Q-TOF MS) to resolve and identify the molecular species of all four sterol lipid classes from Arabidopsis thaliana. Free sterols were derivatized with chlorobetainyl chloride. Sterol esters, sterol glycosides, and acylated sterol glycosides were ionized as ammonium adducts. Quantification of molecular species was achieved in the positive mode after fragmentation in the presence of internal standards. The amounts of sterol lipids quantified by Q-TOF MS/MS were validated by comparison with results obtained with TLC/GC. Quantification of sterol lipids from leaves and roots of phosphate-deprived A. thaliana plants revealed changes in the amounts and molecular species composition. The Q-TOF method is far more sensitive than GC or HPLC. Therefore, Q-TOF MS/MS provides a comprehensive strategy for sterol lipid quantification that can be adapted to other tandem mass spectrometers. PMID:21382968
Ashraf, Kamran; Mujeeb, Mohd; Ahmad, Altaf; Ahmad, Niyaz; Amir, Mohd
2015-09-01
Cucuma longa Linn. (Fam-Zingiberaceae) is a valued medicinal plant contains curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) as major bioactive constituents. Previously reported analytical methods for analysis of curcuminoids were found to suffer from low resolution, lower sensitivity and longer analytical times. In this study, a rapid, sensitive, selective high-throughput ultra high performance liquid chromatography-tandem mass spectrometry (UPLC/Q-TOF-MS) method was developed and validated for the quantification of curcuminoids with an aim to reduce analysis time and enhance efficiency. UPLC/Q-TOF-MS analysis showed large variation (1.408-5.027% w/w) of curcuminoids among different samples with respect to their occurrence of metabolite and their concentration. The results showed that Erode (south province) contains highest quantity of curcuminoids and concluded to be the superior varieties. The results obtained here could be valuable for devising strategies for cultivating this medicinal plant. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Rostam-Khani, P.; Hopstaken, M. J. P.; Vullings, P.; Noij, G.; O'Halloran, O.; Claassen, W.
2004-06-01
Measurement of surface metal contamination on silicon wafers is essential for yield enhancement in IC manufacturing. Vapor phase decomposition coupled with either inductively coupled plasma mass spectrometry (VPD-ICP-MS), or total reflection X-ray fluorescence (VPD-TXRF), TXRF and more recently time of flight secondary ion mass spectrometry (TOF-SIMS) are used to monitor surface metal contamination. These techniques complement each other in their respective strengths and weaknesses. For reliable and accurate quantification, so-called relative sensitivity factors (RSF) are required for TOF-SIMS analysis. For quantification purposes in VPD, the collection efficiency (CE) is important to ensure complete collection of contamination. A standard procedure has been developed that combines the determination of these RSFs as well as the collection efficiency using all the analytical techniques mentioned above. Therefore, sample wafers were intentionally contaminated and analyzed (by TOF-SIMS) directly after preparation. After VPD-ICP-MS, several scanned surfaces were analyzed again by TOF-SIMS. Comparing the intensities of the specific metals before and after the VPD-DC procedure on the scanned surface allows the determination of so-called removing efficiency (RE). In general, very good agreement was obtained comparing the four analytical techniques after updating the RSFs for TOF-SIMS. Progress has been achieved concerning the CE evaluation as well as determining the RSFs more precisely for TOF-SIMS.
NASA Astrophysics Data System (ADS)
Koss, Abigail R.; Sekimoto, Kanako; Gilman, Jessica B.; Selimovic, Vanessa; Coggon, Matthew M.; Zarzana, Kyle J.; Yuan, Bin; Lerner, Brian M.; Brown, Steven S.; Jimenez, Jose L.; Krechmer, Jordan; Roberts, James M.; Warneke, Carsten; Yokelson, Robert J.; de Gouw, Joost
2018-03-01
Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (I- CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of > 0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.
Measurements of Gas and Particle Phase Emissions From Munitions Detonation in a Field Environment
NASA Astrophysics Data System (ADS)
Fortner, E. C.; Knighton, W. B.; Timko, M.; Wood, E.; Onasch, T. B.; Kolb, C. E.; Beardsley, H. M.
2007-12-01
During the Point of Fire (POF) field campaign conducted at Fort Sill Oklahoma U.S.A. in March 2007 a suite of real- time trace gas and fine (submicron) particulate matter (PM) instrumentation characterized the point of fire emission plumes from large, medium and small caliber weapons systems. Muzzle emission plumes were measured and where appropriate, breach plumes and gun crew breathing zone measurements were also conducted. Aerosol measurements were conducted with an aerosol mass spectrometer (Aerodyne CTOF-AMS) for particle composition, condensation particle counter (CPC) for particle number density and DUSTRAK aerosol monitor for particle mass. Gas phase measurements included CO, CO2, NOx and a variety of trace gas species measured by proton transfer reaction mass spectrometry (PTR-MS) including hydrogen cyanide (HCN), acetonitrile, acrylonitrile, benzene, toluene, benzonitrile and styrene. In the majority of the plume measurements, HCN was the most prominent compound measured by PTR-MS. Quantification of HCN by PTR-MS is difficult due to its proton affinity being close enough to that of water to allow a significant backward reaction of protonated HCN with water, reducing the detection sensitivity and making the response dependent on humidity. We have developed a quantification procedure for HCN based on laboratory measurements of a calibration gas standard of HCN, which allows the humidity dependence to be extracted directly from the proton hydrate ion intensities. The correction factors for HCN are quite significant varying between 10 and 30 depending on sample humidity.
Makhoul, Salim; Yener, Sine; Khomenko, Iuliia; Capozzi, Vittorio; Cappellin, Luca; Aprea, Eugenio; Scampicchio, Matteo; Gasperi, Flavia; Biasioli, Franco
2016-09-01
In this study, we demonstrated the suitability of direct injection mass spectrometry headspace analysis for rapid non-invasive quality control of semi-finished dairy ingredients, such as skim milk powder (SMP), whole milk powder (WMP), whey powder (WP) and anhydrous milk fat (AMF), which are widely used as ingredients in the food industry. In this work, for the first time, we applied proton transfer reaction-mass spectrometry (PTR-MS) with a time-of-flight (ToF) analyzer for the rapid and non-invasive analysis of volatile compounds in different samples of SMP, WMP, WP and AMF. We selected different dairy ingredients in various concrete situations (e.g. same producer and different expiration times, different producers and same days of storage, different producers) based on their sensory evaluation. PTR-ToF-MS allowed the separation and characterization of different samples based on the volatile organic compound (VOC) profiles. Statistically significant differences in VOC content were generally coherent with differences in sensory evaluation, particularly for SMP, WMP and WP. The good separation of SMP samples from WMP samples suggested the possible application of PTR-ToF-MS to detect possible cases of adulteration of dairy ingredients for the food industry. Our findings demonstrate the efficient and rapid differentiation of dairy ingredients on the basis of the released VOCs via PTR-ToF-MS analysis and suggest this method as a versatile tool (1) for the facilitation/optimization of the selection of dairy ingredients in the food industry and (2) and for the prompt innovation in the production of dairy ingredients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Serafin, Zbigniew; Strześniewski, Piotr; Lasek, Władysław; Beuth, Wojciech
2012-07-01
The use of contrast media and the time-resolved imaging of contrast kinetics (TRICKS) technique have some theoretical advantages over time-of-flight magnetic resonance angiography (TOF-MRA) in the follow-up of intracranial aneurysms after endovascular treatment. We prospectively compared the diagnostic performance of TRICKS and TOF-MRA with digital subtracted angiography (DSA) in the assessment of occlusion of embolized aneurysms. Seventy-two consecutive patients with 72 aneurysms were examined 3 months after embolization. Test characteristics of TOF-MRA and TRICKS were calculated for the detection of residual flow. The results of quantification of flow were compared with weighted kappa. Intraobserver and interobserver reproducibility was determined. The sensitivity of TOF-MRA was 85% (95% CI, 65-96%) and of TRICKS, 89% (95% CI, 70-97%). The specificity of both methods was 91% (95% CI, 79-98%). The accuracy of the flow quantification ranged from 0.76 (TOF-MRA) to 0.83 (TRICKS). There was no significant difference between the methods in the area under the ROC curve regarding both the detection and the quantification of flow. Intraobserver reproducibility was very good with both techniques (kappa, 0.86-0.89). The interobserver reproducibility was moderate for TOF-MRA and very good for TRICKS (kappa, 0.74-0.80). In this study, TOF-MRA and TRICKS presented similar diagnostic performance; therefore, the use of time-resolved contrast-enhanced MRA is not justified in the follow-up of embolized aneurysms.
Radioembolization and the Dynamic Role of 90Y PET/CT
Pasciak, Alexander S.; Bourgeois, Austin C.; McKinney, J. Mark; Chang, Ted T.; Osborne, Dustin R.; Acuff, Shelley N.; Bradley, Yong C.
2014-01-01
Before the advent of tomographic imaging, it was postulated that decay of 90 Y to the 0+ excited state of 90Zr may result in emission of a positron–electron pair. While the branching ratio for pair-production is small (~32 × 10−6), PET has been successfully used to image 90 Y in numerous recent patients and phantom studies. 90 Y PET imaging has been performed on a variety of PET/CT systems, with and without time-of-flight (TOF) and/or resolution recovery capabilities as well as on both bismuth-germanate and lutetium yttrium orthosilicate (LYSO)-based scanners. On all systems, resolution and contrast superior to bremsstrahlung SPECT has been reported. The intrinsic radioactivity present in LYSO-based PET scanners is a potential limitation associated with accurate quantification of 90 Y. However, intrinsic radioactivity has been shown to have a negligible effect at the high activity concentrations common in 90 Y radioembolization. Accurate quantification is possible on a variety of PET scanner models, with or without TOF, although TOF improves accuracy at lower activity concentrations. Quantitative 90 Y PET images can be transformed into 3-dimensional (3D) maps of absorbed dose based on the premise that the 90 Y activity distribution does not change after infusion. This transformation has been accomplished in several ways, although the most common is with the use of 3D dose-point-kernel convolution. From a clinical standpoint, 90 Y PET provides a superior post-infusion evaluation of treatment technical success owing to its improved resolution. Absorbed dose maps generated from quantitative PET data can be used to predict treatment efficacy and manage patient follow-up. For patients who receive multiple treatments, this information can also be used to provide patient-specific treatment-planning for successive therapies, potentially improving response. The broad utilization of 90 Y PET has the potential to provide a wealth of dose–response information, which may lead to development of improved radioembolization treatment-planning models in the future. PMID:24579065
NASA Astrophysics Data System (ADS)
Loubet, Benjamin; Gonzaga, Lais; Buysse, Pauline; Ciuraru, Raluca; Lafouge, Florence; Decuq, Céline; Zurfluh, Olivier; Fortineau, Alain; Fanucci, Olivier; Sarda-Esteve, Roland; Zannoni, Nora; Truong, Francois; Boissard, Christophe; Gros, Valérie
2017-04-01
Volatile organic compounds (VOC) are essential drivers of atmospheric chemistry. Many VOCs are emitted from and deposited to ecosystems. While forests and grasslands have already been substantially studied, exchanges of VOCs with crops are less known, although these ecosystems represent more than 50% of the surface in France. In this study, we analyze sources and sinks of VOCs in a wheat field (at the ICOS FR-GRI site near Paris) at anthesis based on measurements of fluxes, concentration profiles and branch chambers. The VOCs were measured using a PTR-TOF-Qi-MS (where Qi stands for Quad Ion guide). Air was successively sampled through lines located at different heights within and above the canopy, of which one was used for Eddy Covariance and located near a sonic anemometer. Additional measurements included the standard ICOS meteorological data as well as leaf area index profiles and photosynthesis curves at several heights in the canopy. We report fluxes and profiles for more than 500 VOCs. The deposition velocities of depositing compounds are compared to the maximum exchange velocity and the ozone deposition velocity. The sources and sinks location and magnitude are evaluated by inverse Lagrangian modelling assuming no reaction and simple reaction schemes in the canopy. The sources and sinks of VOC in the canopy are interpreted in terms crop phenology and the potential for reaction with ozone and NOx is evaluated. This study takes place in the ADEME CORTEA COV3ER French project (http://www6.inra.fr/cov3er).
Xenopoulos, Alex; Fadgen, Keith; Murphy, Jim; Skilton, St. John; Prentice, Holly; Stapels, Martha
2012-01-01
Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a “discovery” assay, the latter as a “monitoring” assay. Purified biotherapeutic proteins (e.g., monoclonal antibodies) were digested with trypsin after reduction and alkylation, and the digests were fractionated using reversed-phase (RP) chromatography at high pH (pH 10) by a step gradient in the first dimension, followed by a high-resolution separation at low pH (pH 2.5) in the second dimension. As peptides eluted from the second dimension, a quadrupole time-of-flight mass spectrometer was used to detect the peptides and their fragments simultaneously by alternating the collision cell energy between a low and an elevated energy (MSE methodology). The MSE data was used to identify and quantify the proteins in the mixture using a proven label-free quantification technique (“Hi3” method). The same data set was mined to subsequently develop target peptides and transitions for monitoring the concentration of selected HCPs on a triple quadrupole mass spectrometer in a high-throughput manner (20 min LC-MRM analysis). This analytical methodology was applied to the identification and quantification of low-abundance HCPs in six samples of PTG1, a recombinant chimeric anti-phosphotyrosine monoclonal antibody (mAb). Thirty three HCPs were identified in total from the PTG1 samples among which 21 HCP isoforms were selected for MRM monitoring. The absolute quantification of three selected HCPs was undertaken on two different LC-MRM platforms after spiking isotopically labeled peptides in the samples. Finally, the MRM quantitation results were compared with TOF-based quantification based on the Hi3 peptides, and the TOF and MRM data sets correlated reasonably well. The results show that the assays provide detailed valuable information to understand the relative contributions of purification schemes to the nature and concentrations of HCP impurities in biopharmaceutical samples, and the assays can be used as generic methods for HCP analysis in the biopharmaceutical industry. PMID:22327428
Mühlematter, Urs J; Nagel, Hannes W; Becker, Anton; Mueller, Julian; Vokinger, Kerstin N; de Galiza Barbosa, Felipe; Ter Voert, Edwin E G T; Veit-Haibach, Patrick; Burger, Irene A
2018-05-31
Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18 F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18 F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453-0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438-0.780). TOF reconstruction for 18 F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.
Deposition Fluxes of Terpenes over Grassland
Bamberger, I.; Hörtnagl, L.; Ruuskanen, T. M.; Schnitzhofer, R.; Müller, M.; Graus, M.; Karl, T.; Wohlfahrt, G.; Hansel, A.
2013-01-01
Eddy covariance flux measurements were carried out for two subsequent vegetation periods above a temperate mountain grassland in an alpine valley using a proton-transfer-reaction – mass spectrometer (PTR-MS) and a PTR-time of flight – mass spectrometer (PTR-TOF). In 2008 and during the first half of the vegetation period 2009 the volume mixing ratios (VMRs) for the sum of monoterpenes (MTs) were typically well below 1 ppbv and neither MT emission nor deposition was observed. After a hailstorm in July 2009 an order of magnitude higher amount of terpenes was transported to the site from nearby coniferous forests causing elevated VMRs. As a consequence, deposition fluxes of terpenes to the grassland, which continued over a time period of several weeks without significant re-emission, were observed. For days without precipitation the deposition occurred at velocities close to the aerodynamic limit. In addition to monoterpene uptake, deposition fluxes of the sum of sesquiterpenes (SQTs) and the sum of oxygenated terpenes (OTs) were detected. Considering an entire growing season for the grassland (i.e., 1st of April to 1st of November), the cumulative carbon deposition of monoterpenes reached 276 mg C m−2. This is comparable to the net carbon emission of methanol (329 mg C m−2), which is the dominant non methane volatile organic compound (VOC) emitted from this site, during the same time period. It is suggested that deposition of monoterpenes to terrestrial ecosystems could play a more significant role in the reactive carbon budget than previously assumed. PMID:24383048
NASA Astrophysics Data System (ADS)
Permar, W.; Hu, L.; Fischer, E. V.
2017-12-01
Despite being the second largest primary source of tropospheric volatile organic compounds (VOCs), biomass burning is poorly understood relative to other sources due in part to its large variability and the difficulty inherent to sampling smoke. In light of this, several field campaigns are planned to better characterize wildfire plume emissions and chemistry through airborne sampling of smoke plumes. As part of this effort, we will deploy a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) on the NSF/NCAR C-130 research aircraft during the collaborative Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) mission. PTR-ToF-MS is well suited for airborne measurements of VOC in wildfire smoke plumes due to its ability to collect real time, high-resolution data for the full mass range of ionizable organic species, many of which remain uncharacterized or unidentified. In this work, we will report on our initial measurements from the WE-CAN test flights in September 2017. We will also discuss challenges associated with deploying the instrument for airborne missions targeting wildfire smoke and goals for further study in WE-CAN 2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martí-Climent, Josep M., E-mail: jmmartic@unav.es; Prieto, Elena; Elosúa, César
2014-09-15
Purpose: {sup 90}Y-microspheres are widely used for the radioembolization of metastatic liver cancer or hepatocellular carcinoma and there is a growing interest for imaging {sup 90}Y-microspheres with PET. The aim of this study is to evaluate the performance of a current generation PET/CT scanner for {sup 90}Y imaging and to optimize the PET protocol to improve the assessment and the quantification of {sup 90}Y-microsphere biodistribution after radioembolization. Methods: Data were acquired on a Biograph mCT-TrueV scanner with time of flight (TOF) and point spread function (PSF) modeling. Spatial resolution was measured with a{sup 90}Y point source. Sensitivity was evaluated usingmore » the NEMA 70 cm line source filled with {sup 90}Y. To evaluate the count rate performance, {sup 90}Y vials with activity ranging from 3.64 to 0.035 GBq were measured in the center of the field of view (CFOV). The energy spectrum was evaluated. Image quality with different reconstructions was studied using the Jaszczak phantom containing six hollow spheres (diameters: 31.3, 28.1, 21.8, 16.1, 13.3, and 10.5 mm), filled with a 207 kBq/ml {sup 90}Y concentration and a 5:1 sphere-to-background ratio. Acquisition time was adjusted to simulate the quality of a realistic clinical PET acquisition of a patient treated with SIR-Spheres{sup ®}. The developed methodology was applied to ten patients after SIR-Spheres{sup ®} treatment acquiring a 10 min per bed PET. Results: The energy spectrum showed the{sup 90}Y bremsstrahlung radiation. The {sup 90}Y transverse resolution, with filtered backprojection reconstruction, was 4.5 mm in the CFOV and degraded to 5.0 mm at 10 cm off-axis. {sup 90}Y absolute sensitivity was 0.40 kcps/MBq in the center of the field of view. Tendency of true and random rates as a function of the {sup 90}Y activity could be accurately described using linear and quadratic models, respectively. Phantom studies demonstrated that, due to low count statistics in {sup 90}Y PET acquisition, the optimal parameters for the standard OSEM+PSF reconstruction were only one iteration and a postreconstruction filter of 6 mm FWHM, for both TOF and non-TOF reconstructions. Moreover, when TOF is included, the signal to noise ratio increased and visibility achieved 100% by the experienced observers and 93.3% according to the Rose model of statistical detection. In 50% of patients, TOF allowed the visualization of {sup 90}Y radioembolized lesions not seen without TOF, confirming phantom results. Liver activity was accurately quantified, with no significant differences between reconstructed and actual delivered activity to the whole-liver [mean relative difference (10.2 ± 14.7)%]. Conclusions: Qualitative and quantitative{sup 90}Y PET imaging improved with the introduction of TOF in a PET/CT scanner, thereby allowing the visualization of microsphere deposition in lesions not visible in non-TOF images. This technique accurately quantifies the total activity delivered to the liver during radioembolization with {sup 90}Y-microspheres and allows dose estimation.« less
NASA Astrophysics Data System (ADS)
Ahn, Sung Hee; Hyeon, Taeghwan; Kim, Myung Soo; Moon, Jeong Hee
2017-09-01
In matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF), matrix-derived ions are routinely deflected away to avoid problems with ion detection. This, however, limits the use of a quantification method that utilizes the analyte-to-matrix ion abundance ratio. In this work, we will show that it is possible to measure this ratio by a minor instrumental modification of a simple form of MALDI-TOF. This involves detector gain switching. [Figure not available: see fulltext.
Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge.
Brandsma, Sicco H; van Mourik, Louise; O'Brien, Jake W; Eaglesham, Geoff; Leonards, Pim E G; de Boer, Jacob; Gallen, Christie; Mueller, Jochen; Gaus, Caroline; Bogdal, Christian
2017-03-21
To simultaneously quantify and profile the complex mixture of short-, median-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) in Australian sewage sludge, we applied and further validated a recently developed novel instrumental technique, using quadrupole time-of-flight high resolution mass spectrometry running in the negative atmospheric pressure chemical ionization mode (APCI-qTOF-HRMS). Without using an analytical column the cleaned extracts were directly injected into the qTOF-HRMS followed by quantification of the CPs by a mathematical algorithm. The recoveries of the four SCCP, MCCP and LCCP-spiked sewage sludge samples ranged from 86 to 123%. This APCI-qTOF-HRMS method is a fast and promising technique for routinely measuring SCCPs, MCCPs, and LCCPs in sewage sludge. Australian sewage sludge was dominated by MCCPs with concentrations ranging from 542 to 3645 ng/g dry weight (dw). Lower SCCPs concentrations (<57-1421 ng/g dw) were detected in the Australian sewage sludge, which were comparable with the LCCPs concentrations (116-960 ng/g dw). This is the first time that CPs were reported in Australian sewage sludge. The results of this study gives a first impression on the distribution of the SCCPs, MCCPs, and LCCPs in Australia wastewater treatment plants (WWTPs).
Sensitivity estimation in time-of-flight list-mode positron emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herraiz, J. L.; Sitek, A., E-mail: sarkadiu@gmail.com
Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data,more » which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.« less
Sensitivity estimation in time-of-flight list-mode positron emission tomography.
Herraiz, J L; Sitek, A
2015-11-01
An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.
Assessment of heat treatment of dairy products by MALDI-TOF-MS.
Meltretter, Jasmin; Birlouez-Aragon, Inès; Becker, Cord-Michael; Pischetsrieder, Monika
2009-12-01
The formation of the Amadori product from lactose (protein lactosylation) is a major parameter to evaluate the quality of processed milk. Here, MALDI-TOF-MS was used for the relative quantification of lactose-adducts in heated milk. Milk was heated at a temperature of 70, 80, and 100 degrees C between 0 and 300 min, diluted, and subjected directly to MALDI-TOF-MS. The lactosylation rate of alpha-lactalbumin increased with increasing reaction temperature and time. The results correlated well with established markers for heat treatment of milk (concentration of total soluble protein, soluble alpha-lactalbumin and beta-lactoglobulin at pH 4.6, and fluorescence of advanced Maillard products and soluble tryptophan index; r=0.969-0.997). The method was also applied to examine commercially available dairy products. In severely heated products, protein pre-purification by immobilized metal affinity chromatography improved spectra quality. Relative quantification of protein lactosylation by MALDI-TOF-MS proved to be a very fast and reliable method to monitor early Maillard reaction during milk processing.
Kassebacher, Thomas; Sulzer, Philipp; Jürschik, Simone; Hartungen, Eugen; Jordan, Alfons; Edtbauer, Achim; Feil, Stefan; Hanel, Gernot; Jaksch, Stefan; Märk, Lukas; Mayhew, Chris A; Märk, Tilmann D
2013-01-30
Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals. Copyright © 2012 John Wiley & Sons, Ltd.
Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework
Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.
2016-01-01
Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of TOF scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (Direct Image Reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias vs. variance performance to iterative TOF reconstruction with a matched resolution model. PMID:27032968
Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework
NASA Astrophysics Data System (ADS)
Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.
2016-05-01
Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.
Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol
2016-06-09
The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.
NASA Astrophysics Data System (ADS)
Erickson, M. H.; Jobson, B. T.
2010-12-01
To understand secondary organic aerosol formation it is important to observe the precursors. The large hydrocarbon species found in diesel exhaust is thought to be a major contributor to SOA formation in urban environments. A new method was developed utilizing a proton transfer reaction mass spectrometer (PTR-MS) to measure long chain alkanes (C12 and above). There are two issues involved in directly measuring these alkanes. Diesel exhaust is present in relatively low concentrations, which often close or below the limits of detection. A preconcentration system was built to collect a large sample to increase our signal to noise. Lab tests show that all the alkanes fragment to a common set of m/z values. Interferences from other species occur at these m/z values. To overcome this obstacle, the preconcentration system was operated to discriminate between VOCs and IVOCs. This will allow for minimal interference and better quantification of the alkanes. The PTR-MS was outfitted with a new sample system that contains two inlets to allow for the measurement of VOCs while the IVOCs are being collected, which means a wide range of SOA precursors can be measured. Results from the Carbonaceous Aerosol and Radiative Effects Study in Sacramento, CA will be presented.
Harmful Algae Records in Venice Lagoon and in Po River Delta (Northern Adriatic Sea, Italy)
Bilaničovà, Dagmar; Marcomini, Antonio
2014-01-01
A detailed review of harmful algal blooms (HAB) in northern Adriatic Sea lagoons (Po River Delta and Venice lagoon) is presented to provide “updated reference conditions” for future research and monitoring activities. In the study areas, the high mollusc production requires the necessity to identify better methods able to prevent risks for human health and socioeconomical interests. So, an integrated approach for the identification and quantification of algal toxins is presented by combining microscopy techniques with Liquid Chromatography coupled with High Resolution Time of Flight Mass Spectrometry (HPLC-HR-TOF-MS). The method efficiency was first tested on some samples from the mentioned coastal areas, where Dinophysis spp. occurred during summer in the sites directly affected by seawaters. Although cell abundance was always <200 cells/L, the presence of Pectenotoxin-2 (PTX2), detected by HPLC-HR-TOF-MS, indicated the potential release of detectable amounts of toxins even at low cell abundance. PMID:24683360
Harmful algae records in Venice lagoon and in Po River Delta (northern Adriatic Sea, Italy).
Facca, Chiara; Bilaničovà, Dagmar; Pojana, Giulio; Sfriso, Adriano; Marcomini, Antonio
2014-01-01
A detailed review of harmful algal blooms (HAB) in northern Adriatic Sea lagoons (Po River Delta and Venice lagoon) is presented to provide "updated reference conditions" for future research and monitoring activities. In the study areas, the high mollusc production requires the necessity to identify better methods able to prevent risks for human health and socioeconomical interests. So, an integrated approach for the identification and quantification of algal toxins is presented by combining microscopy techniques with Liquid Chromatography coupled with High Resolution Time of Flight Mass Spectrometry (HPLC-HR-TOF-MS). The method efficiency was first tested on some samples from the mentioned coastal areas, where Dinophysis spp. occurred during summer in the sites directly affected by seawaters. Although cell abundance was always <200 cells/L, the presence of Pectenotoxin-2 (PTX2), detected by HPLC-HR-TOF-MS, indicated the potential release of detectable amounts of toxins even at low cell abundance.
Hessling, Bernd; Büttner, Knut; Hecker, Michael; Becher, Dörte
2013-01-01
Quantitative LC-MALDI is an underrepresented method, especially in large-scale experiments. The additional fractionation step that is needed for most MALDI-TOF-TOF instruments, the comparatively long analysis time, and the very limited number of established software tools for the data analysis render LC-MALDI a niche application for large quantitative analyses beside the widespread LC–electrospray ionization workflows. Here, we used LC-MALDI in a relative quantification analysis of Staphylococcus aureus for the first time on a proteome-wide scale. Samples were analyzed in parallel with an LTQ-Orbitrap, which allowed cross-validation with a well-established workflow. With nearly 850 proteins identified in the cytosolic fraction and quantitative data for more than 550 proteins obtained with the MASCOT Distiller software, we were able to prove that LC-MALDI is able to process highly complex samples. The good correlation of quantities determined via this method and the LTQ-Orbitrap workflow confirmed the high reliability of our LC-MALDI approach for global quantification analysis. Because the existing literature reports differences for MALDI and electrospray ionization preferences and the respective experimental work was limited by technical or methodological constraints, we systematically compared biochemical attributes of peptides identified with either instrument. This genome-wide, comprehensive study revealed biases toward certain peptide properties for both MALDI-TOF-TOF- and LTQ-Orbitrap-based approaches. These biases are based on almost 13,000 peptides and result in a general complementarity of the two approaches that should be exploited in future experiments. PMID:23788530
Hessling, Bernd; Büttner, Knut; Hecker, Michael; Becher, Dörte
2013-10-01
Quantitative LC-MALDI is an underrepresented method, especially in large-scale experiments. The additional fractionation step that is needed for most MALDI-TOF-TOF instruments, the comparatively long analysis time, and the very limited number of established software tools for the data analysis render LC-MALDI a niche application for large quantitative analyses beside the widespread LC-electrospray ionization workflows. Here, we used LC-MALDI in a relative quantification analysis of Staphylococcus aureus for the first time on a proteome-wide scale. Samples were analyzed in parallel with an LTQ-Orbitrap, which allowed cross-validation with a well-established workflow. With nearly 850 proteins identified in the cytosolic fraction and quantitative data for more than 550 proteins obtained with the MASCOT Distiller software, we were able to prove that LC-MALDI is able to process highly complex samples. The good correlation of quantities determined via this method and the LTQ-Orbitrap workflow confirmed the high reliability of our LC-MALDI approach for global quantification analysis. Because the existing literature reports differences for MALDI and electrospray ionization preferences and the respective experimental work was limited by technical or methodological constraints, we systematically compared biochemical attributes of peptides identified with either instrument. This genome-wide, comprehensive study revealed biases toward certain peptide properties for both MALDI-TOF-TOF- and LTQ-Orbitrap-based approaches. These biases are based on almost 13,000 peptides and result in a general complementarity of the two approaches that should be exploited in future experiments.
Plasma protein absolute quantification by nano-LC Q-TOF UDMSE for clinical biomarker verification
ILIES, MARIA; IUGA, CRISTINA ADELA; LOGHIN, FELICIA; DHOPLE, VISHNU MUKUND; HAMMER, ELKE
2017-01-01
Background and aims Proteome-based biomarker studies are targeting proteins that could serve as diagnostic, prognosis, and prediction molecules. In the clinical routine, immunoassays are currently used for the absolute quantification of such biomarkers, with the major limitation that only one molecule can be targeted per assay. The aim of our study was to test a mass spectrometry based absolute quantification method for the verification of plasma protein sets which might serve as reliable biomarker panels for the clinical practice. Methods Six EDTA plasma samples were analyzed after tryptic digestion using a high throughput data independent acquisition nano-LC Q-TOF UDMSE proteomics approach. Synthetic Escherichia coli standard peptides were spiked in each sample for the absolute quantification. Data analysis was performed using ProgenesisQI v2.0 software (Waters Corporation). Results Our method ensured absolute quantification of 242 non redundant plasma proteins in a single run analysis. The dynamic range covered was 105. 86% were represented by classical plasma proteins. The overall median coefficient of variation was 0.36, while a set of 63 proteins was found to be highly stable. Absolute protein concentrations strongly correlated with values reviewed in the literature. Conclusions Nano-LC Q-TOF UDMSE proteomic analysis can be used for a simple and rapid determination of absolute amounts of plasma proteins. A large number of plasma proteins could be analyzed, while a wide dynamic range was covered with low coefficient of variation at protein level. The method proved to be a reliable tool for the quantification of protein panel for biomarker verification in the clinical practice. PMID:29151793
NASA Astrophysics Data System (ADS)
Borycki, Dawid; Kholiqov, Oybek; Zhou, Wenjun; Srinivasan, Vivek J.
2017-03-01
Sensing and imaging methods based on the dynamic scattering of coherent light, including laser speckle, laser Doppler, and diffuse correlation spectroscopy quantify scatterer motion using light intensity (speckle) fluctuations. The underlying optical field autocorrelation (OFA), rather than being measured directly, is typically inferred from the intensity autocorrelation (IA) through the Siegert relationship, by assuming that the scattered field obeys Gaussian statistics. In this work, we demonstrate interferometric near-infrared spectroscopy (iNIRS) for measurement of time-of-flight (TOF) resolved field and intensity autocorrelations in fluid tissue phantoms and in vivo. In phantoms, we find a breakdown of the Siegert relationship for short times-of-flight due to a contribution from static paths whose optical field does not decorrelate over experimental time scales, and demonstrate that eliminating such paths by polarization gating restores the validity of the Siegert relationship. Inspired by these results, we developed a method, called correlation gating, for separating the OFA into static and dynamic components. Correlation gating enables more precise quantification of tissue dynamics. To prove this, we show that iNIRS and correlation gating can be applied to measure cerebral hemodynamics of the nude mouse in vivo using dynamically scattered (ergodic) paths and not static (non-ergodic) paths, which may not be impacted by blood. More generally, correlation gating, in conjunction with TOF resolution, enables more precise separation of diffuse and non-diffusive contributions to OFA than is possible with TOF resolution alone. Finally, we show that direct measurements of OFA are statistically more efficient than indirect measurements based on IA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Tyler; Kuznetsov, Ilya; Willingham, David
The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument hasmore » a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.« less
Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge
2017-01-01
To simultaneously quantify and profile the complex mixture of short-, median-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) in Australian sewage sludge, we applied and further validated a recently developed novel instrumental technique, using quadrupole time-of-flight high resolution mass spectrometry running in the negative atmospheric pressure chemical ionization mode (APCI-qTOF-HRMS). Without using an analytical column the cleaned extracts were directly injected into the qTOF-HRMS followed by quantification of the CPs by a mathematical algorithm. The recoveries of the four SCCP, MCCP and LCCP-spiked sewage sludge samples ranged from 86 to 123%. This APCI-qTOF-HRMS method is a fast and promising technique for routinely measuring SCCPs, MCCPs, and LCCPs in sewage sludge. Australian sewage sludge was dominated by MCCPs with concentrations ranging from 542 to 3645 ng/g dry weight (dw). Lower SCCPs concentrations (<57–1421 ng/g dw) were detected in the Australian sewage sludge, which were comparable with the LCCPs concentrations (116–960 ng/g dw). This is the first time that CPs were reported in Australian sewage sludge. The results of this study gives a first impression on the distribution of the SCCPs, MCCPs, and LCCPs in Australia wastewater treatment plants (WWTPs). PMID:28218842
Zhong, Ruiqin; Cui, Dongtao; Ye, Zheng-Hua
2018-01-01
Wood represents the most abundant biomass produced by plants and one of its major components is acetyl xylan. Acetylation in xylan can occur at O-2 or O-3 of a xylosyl residue, at both O-2 and O-3 of a xylosyl residue, and at O-3 of a xylosyl residue substituted at O-2 with glucuronic acid. Acetyltransferases responsible for the regiospecific acetylation of xylan in tree species have not yet been characterized. Here we report the biochemical characterization of twelve Populus trichocarpa DUF231-containing proteins, named PtrXOATs, for their roles in the regiospecific acetylation of xylan. The PtrXOAT genes were found to be differentially expressed in Populus organs and among them, PtrXOAT1, PtrXOAT2, PtrXOAT9 and PtrXOAT10 exhibited the highest level of expression in stems undergoing wood formation. Activity assays of recombinant proteins demonstrated that all twelve PtrXOAT proteins were able to transfer acetyl groups from acetyl CoA onto a xylohexaose acceptor with PtrXOAT1, PtrXOAT2, PtrXOAT3, PtrXOAT11 and PtrXOAT12 having the highest activity. Structural analysis of the PtrXOAT-catalyzed reaction products using 1H NMR spectroscopy revealed that PtrXOAT1, PtrXAOT2 and PtrXOAT3 mediated 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation of xylosyl residues and PtrXOAT11 and PtrXOAT12 only catalyzed 2-O- and 3-O-monoacetylation of xylosyl residues. Of the twelve PtrXOATs, only PtrXOAT9 and PtrXOAT10 were capable of transferring acetyl groups onto the O-3 position of 2-O-glucuronic acid-substituted xylosyl residues. Furthermore, when expressed in the Arabidopsis eskimo1 mutant, PtrXOAT1, PtrXAOT2 and PtrXOAT3 were able to rescue the defects in xylan acetylation. Together, these results demonstrate that the twelve PtrXOATs are acetyltransferases with different roles in xylan acetylation in P. trichocarpa.
Schoen, Heidi R; Peyton, Brent M; Knighton, W Berk
2016-12-01
A novel analytical system was developed to rapidly and accurately quantify total volatile organic compound (VOC) production from microbial reactor systems using a platinum catalyst and a sensitive CO 2 detector. This system allows nearly instantaneous determination of total VOC production by utilizing a platinum catalyst to completely and quantitatively oxidize headspace VOCs to CO 2 in coordination with a CO 2 detector. Measurement of respiratory CO 2 by bypassing the catalyst allowed the total VOC content to be determined from the difference in the two signals. To the best of our knowledge, this is the first instance of a platinum catalyst and CO 2 detector being used to quantify the total VOCs produced by a complex bioreactor system. Continuous recording of these CO 2 data provided a record of respiration and total VOC production throughout the experiments. Proton transfer reaction-mass spectrometry (PTR-MS) was used to identify and quantify major VOCs. The sum of the individual compounds measured by PTR-MS can be compared to the total VOCs quantified by the platinum catalyst to identify potential differences in detection, identification and calibration. PTR-MS measurements accounted on average for 94 % of the total VOC carbon detected by the platinum catalyst and CO 2 detector. In a model system, a VOC producing endophytic fungus Nodulisporium isolate TI-13 was grown in a solid state reactor utilizing the agricultural byproduct beet pulp as a substrate. Temporal changes in production of major volatile compounds (ethanol, methanol, acetaldehyde, terpenes, and terpenoids) were quantified by PTR-MS and compared to the total VOC measurements taken with the platinum catalyst and CO 2 detector. This analytical system provided fast, consistent data for evaluating VOC production in the nonhomogeneous solid state reactor system.
Performance of the Tachyon Time-of-Flight PET Camera
NASA Astrophysics Data System (ADS)
Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.
2015-02-01
We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm2 side of 6.15 ×6.15 ×25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.
Performance of the Tachyon Time-of-Flight PET Camera.
Peng, Q; Choong, W-S; Vu, C; Huber, J S; Janecek, M; Wilson, D; Huesman, R H; Qi, Jinyi; Zhou, Jian; Moses, W W
2015-02-01
We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 × 25 mm 2 side of 6.15 × 6.15 × 25 mm 3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.
Performance of the Tachyon Time-of-Flight PET Camera
Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.
2015-01-01
We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon’s detector module is optimized for timing by coupling the 6.15 × 25 mm2 side of 6.15 × 6.15 × 25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/− ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3. PMID:26594057
Performance of the Tachyon Time-of-Flight PET Camera
Peng, Q.; Choong, W. -S.; Vu, C.; ...
2015-01-23
We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm 2 side of 6.15 ×6.15 ×25 mm 3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according tomore » the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. We find that the results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.« less
Munaretto, Juliana S; Viera, Mariela de S; Martins, Manoel L; Adaime, Martha B; Zanella, Renato
2016-11-01
Most of the analytical methods currently applied in food control laboratories are focused on the determination of target compounds using LC coupled to tandem MS, which is an effective technique, but low-resolution MS is limited. Thus, a method for determination of pesticide multiresidues in fruits (pear, apple, and grape) using a modified quick, easy, cheap, effective, rugged, and safe method and LC coupled to quadrupole time-of-flight (Q-TOF) MS was developed and validated. The proposed method showed good linearity (r2 > 0.99) from 1 to 100 μg/L. Recoveries for blank samples spiked at 0.01, 0.04, and 0.10 mg/kg were between 66 and 122%, with RSDs <28%. Respective LOQs for apple, pear, and grape matrixes were 0.01 mg/kg for 112, 120, and 118 compounds, and 0.04 mg/kg for 22, 12, and 17 compounds, and average mass accuracy error was 3.2 ppm. LC with Q-TOF MS detection using protonated molecular ion and/or adducts and mass accuracy provided reliability for the method. The proposed method is effective for pesticide residue determination in apple, pear, and grape samples, proving that high-resolution MS using full scan mode can be a powerful and reliable technique for quantification purposes, being adequate for application in the surveillance of maximum residue limits set by different legislations.
Determination of Algorithm Parallelism in NP Complete Problems for Distributed Architectures
1990-03-05
12 structure STACK declare OpenStack (S-.NODE **TopPtr) -+TopPtrI FlushStack(S.-NODE **TopPtr) -*TopPtr PushOnStack(S-.NODE **TopPtr, ITEM *NewltemPtr...OfCoveringSets, CoveringSets, L, Best CoverTime, Vertex, Set3end SCND ADT B.26 structure STACKI declare OpenStack (S-NODE **TopPtr) -+TopPtr FlushStack(S
Graphene Oxide as a Novel Evenly Continuous Phase Matrix for TOF-SIMS.
Cai, Lesi; Sheng, Linfeng; Xia, Mengchan; Li, Zhanping; Zhang, Sichun; Zhang, Xinrong; Chen, Hongyuan
2017-03-01
Using matrix to enhance the molecular ion signals for biomolecule identification without loss of spatial resolution caused by matrix crystallization is a great challenge for the application of TOF-SIMS in real-world biological research. In this report, graphene oxide (GO) was used as a matrix for TOF-SIMS to improve the secondary ion yields of intact molecular ions ([M + H] + ). Identifying and distinguishing the molecular ions of lipids (m/z >700) therefore became straightforward. The spatial resolution of TOF-SIMS imaging could also be improved as GO can form a homogeneous layer of matrix instead of crystalline domain, which prevents high spatial resolution in TOF-SIMS imaging. Lipid mapping in presence of GO revealed the delicate morphology and distribution of single vesicles with a diameter of 800 nm. On GO matrix, the vesicles with similar shape but different chemical composition could be distinguished using molecular ions. This novel matrix holds potentials in such applications as the analysis and imaging of complex biological samples by TOF-SIMS. Graphical Abstract ᅟ.
Graphene Oxide as a Novel Evenly Continuous Phase Matrix for TOF-SIMS
NASA Astrophysics Data System (ADS)
Cai, Lesi; Sheng, Linfeng; Xia, Mengchan; Li, Zhanping; Zhang, Sichun; Zhang, Xinrong; Chen, Hongyuan
2017-03-01
Using matrix to enhance the molecular ion signals for biomolecule identification without loss of spatial resolution caused by matrix crystallization is a great challenge for the application of TOF-SIMS in real-world biological research. In this report, graphene oxide (GO) was used as a matrix for TOF-SIMS to improve the secondary ion yields of intact molecular ions ([M + H]+). Identifying and distinguishing the molecular ions of lipids ( m/z >700) therefore became straightforward. The spatial resolution of TOF-SIMS imaging could also be improved as GO can form a homogeneous layer of matrix instead of crystalline domain, which prevents high spatial resolution in TOF-SIMS imaging. Lipid mapping in presence of GO revealed the delicate morphology and distribution of single vesicles with a diameter of 800 nm. On GO matrix, the vesicles with similar shape but different chemical composition could be distinguished using molecular ions. This novel matrix holds potentials in such applications as the analysis and imaging of complex biological samples by TOF-SIMS.
NASA Astrophysics Data System (ADS)
Perraud, V.; Meinardi, S.; Blake, D. R.; Finlayson-Pitts, B. J.
2015-12-01
Organosulfur compounds (OSC) are naturally emitted via various processes involving phytoplankton and algae in marine regions, from animal metabolism and from biomass decomposition inland. These compounds are malodorant and reactive. Their oxidation to methanesulfonic and sulfuric acids leads to the formation and growth of atmospheric particles, which are known to have negative effects on visibility, climate and human health. In order to predict particle formation events, accurate measurements of the OSC precursors are essential. Here, two different approaches, proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and canister sampling coupled with GC-FID are compared for both laboratory standards [dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and methanethiol (MTO)] and for a complex sample. Results show that both techniques produce accurate quantification of DMS. While PTR-ToF-MS provides real-time measurements of all four OSCs individually, significant fragmentation of DMDS and DMTS occurs, which can complicate their identification in complex mixtures. Canister sampling coupled with GC-FID provides excellent sensitivity for DMS, DMDS and DMTS. However, MTO was observed to react on metal surfaces to produce DMDS and, in the presence of hydrogen sulfide, even DMTS. Avoiding metal in sampling systems seems to be necessary for measuring all but dimethyl sulfide in air.
Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen
2013-12-17
We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.
Integrated quantification and identification of aldehydes and ketones in biological samples.
Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer
2014-05-20
The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by adding chemical information to MS data. Our strategy is based on rapid autosampler-in-needle-derivatization with p-toluenesulfonylhydrazine (TSH). The resulting TSH-hydrazones are separated by ultrahigh-performance liquid chromatography (UHPLC) and detected by electrospray ionization-quadrupole-time-of-flight (ESI-QqTOF) mass spectrometry using a SWATH (Sequential Window Acquisition of all Theoretical Fragment-Ion Spectra) data-independent high-resolution mass spectrometry (HR-MS) approach. Derivatization makes small, poorly ionizable or retained analytes amenable to reversed phase chromatography and electrospray ionization in both polarities. Negatively charged TSH-hydrazone ions furthermore show a simple and predictable fragmentation pattern upon collision induced dissociation, which enables the chemo-selective screening for unknown aldehydes and ketones via a signature fragment ion (m/z 155.0172). By means of SWATH, targeted and nontargeted application scenarios of the suggested derivatization route are enabled in the frame of a single UHPLC-ESI-QqTOF-HR-MS workflow. The method's ability to simultaneously quantify and identify molecules containing aldehyde and ketone groups is demonstrated using 61 target analytes from various compound classes and a (13)C labeled yeast matrix. The identification of unknowns in biological samples is detailed using the example of indole-3-acetaldehyde.
NASA Astrophysics Data System (ADS)
Chiu, Jasper Z. S.; Tucker, Ian G.; McDowell, Arlene
2016-11-01
High sensitivity quantification of the putative cell-penetrating peptide di-arginine-histidine (RRH) associated with poly (ethyl-cyanoacrylate) (PECA) nanoparticles was achieved without analyte separation, using a novel application of isobaric-tagging and high matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) mass spectrometry. Isobaric-tagging reaction equilibrium was reached after 5 min, with 90% or greater RRH peptide successfully isobaric-tagged after 60 min. The accuracy was greater than 90%, which indicates good reliability of using isobaric-tagged RRH as an internal standard for RRH quantification. The sample intra- and inter-spot coefficients of variations were less than 11%, which indicate good repeatability. The majority of RRH peptides in the nanoparticle formulation were physically associated with the nanoparticles (46.6%), whereas only a small fraction remained unassociated (13.7%). The unrecovered RRH peptide (~40%) was assumed to be covalently associated with PECA nanoparticles.
Bayramian, Andy J; Ebbers, Christopher A; Chen, Diana C
2014-05-20
A method of manufacturing a plurality of diffractive optical elements includes providing a partially transmissive slide, providing a first piece of PTR glass, and directing first UV radiation through the partially transmissive slide to impinge on the first piece of PTR glass. The method also includes exposing predetermined portions of the first piece of PTR glass to the first UV radiation and thermally treating the exposed first piece of PTR glass. The method further includes providing a second piece of PTR glass and directing second UV radiation through the thermally treated first piece of PTR glass to impinge on the second piece of PTR glass. The method additionally includes exposing predetermined portions of the second piece of PTR glass to the second UV radiation, thermally treating the exposed second piece of PTR glass, and repeating providing and processing of the second piece of PTR glass using additional pieces of PTR glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potkar, Rewati; Recla, Jill; Busov, Victor, E-mail: vbusov@mtu.edu
2013-02-15
Highlights: ► We show a novel microRNA-mediated mechanism for control of bud dormancy in trees. ► ptr-MIR169a and PtrHAP2–5 gene showed inverse expression during dormancy period. ► The PtrHAP2–5 decline in abundance correlated with high ptr-MIR169a levels. ► PtrHAP2–5 cleavage occurred at the miR169 site during PtrHAP2–5 transcript decline. ► Our results show that miR169 attenuates PtrHAP2–5 transcript during dormancy. -- Abstract: Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed inmore » dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2–5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2–5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2–5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2–5 transcript. We experimentally verified the cleavage of PtrHAP2–5 at the predicted miR169a site at the time when PtrHAP2–5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees.« less
Kislinger, Thomas; Humeny, Andreas; Peich, Carlo C; Zhang, Xiaohong; Niwa, Toshimitsu; Pischetsrieder, Monika; Becker, Cord-Michael
2003-01-01
The nonenzymatic glycation of proteins by reducing sugars, also known as the Maillard reaction, has received increasing recognition from nutritional science and medical research. In this study, we applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to perform relative and simultaneous quantification of the Amadori product, which is an early glycation product, and of N(epsilon)-(carboxymethyl)lysine and imidazolone A, two important advanced glycation end products. Therefore, native lysozyme was incubated with d-glucose for increasing periods of time (1, 4, 8, and 16 weeks) in phosphate-buffered saline pH 7.8 at 50 degrees C. After enzymatic digestion with endoproteinase Glu-C, the N-terminal peptide fragment (m/z 838; amino acid sequence KVFGRCE) and the C-terminal peptide fragment (m/z 1202; amino acid sequence VQAWIRGCRL) were used for relative quantification of the three Maillard products. Amadori product, N(epsilon)-(carboxymethyl)lysine, and imidazolone A were the main glycation products formed under these conditions. Their formation was dependent on glucose concentration and reaction time. The kinetics were similar to those obtained by competitive ELISA, an established method for quantification of N(epsilon)-(carboxymethyl)lysine and imidazolone A. Inhibition experiments showed that coincubation with N(alpha)-acetylargine suppressed formation of imidazolone A but not of the Amadori product or N(epsilon)-(carboxymethyl)lysine. The presence of N(alpha)-acetyllysine resulted in the inhibition of lysine modifications but in higher concentrations of imidazolone A. o-Phenylenediamine decreased the yield of the Amadori product and completely inhibited the formation of N(epsilon)-(carboxymethyl)lysine and imidazolone A. MALDI-TOF-MS proved to be a new analytical tool for the simultaneous, relative quantification of specific products of the Maillard reaction. For the first time, kinetic data of defined products on specific sites of glycated protein could be measured. This characterizes MALDI-TOF-MS as a valuable method for monitoring the Maillard reaction in the course of food processing.
Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing
2008-02-01
Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.
Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin
2016-06-24
Chlorinated paraffins (CPs) are technical products produced and used in bulk for a number of purposes. However, the analysis of CPs is challenging, as they are complex mixtures of compounds and isomers. We herein report the development of an analytical method for the analysis of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) using quadrupole time-of-flight high-resolution mass spectrometry (GC-NCI-qTOF-HRMS). This method employs gas chromatography with a chemical ionization source working in negative mode. The linear relationship between chlorination and the CP total response factors was applied to quantify the CP content and the congener group distribution patterns. In a single injection, 24 SCCP formula groups and 24 MCCP formula groups were quantified. Extraction of accurate masses using qTOF-HRMS allowed the SCCPs and MCCPs to be distinguished, with interference from other chemicals (e.g., PCBs) being largely avoided. The SCCP and MCCP detection limits were 24-81ng/mL and 27-170ng/mL, respectively. Comparison of the obtained results with analytical results from gas chromatography coupled with electron capture negative ionization low-resolution mass spectrometry (GC-ECNI-LRMS) indicate that the developed technique is a more accurate and convenient method for the analysis of CPs in samples from a range of matrices. Copyright © 2016 Elsevier B.V. All rights reserved.
Spainhour, John Christian G; Janech, Michael G; Schwacke, John H; Velez, Juan Carlos Q; Ramakrishnan, Viswanathan
2014-01-01
Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) coupled with stable isotope standards (SIS) has been used to quantify native peptides. This peptide quantification by MALDI-TOF approach has difficulties quantifying samples containing peptides with ion currents in overlapping spectra. In these overlapping spectra the currents sum together, which modify the peak heights and make normal SIS estimation problematic. An approach using Gaussian mixtures based on known physical constants to model the isotopic cluster of a known compound is proposed here. The characteristics of this approach are examined for single and overlapping compounds. The approach is compared to two commonly used SIS quantification methods for single compound, namely Peak Intensity method and Riemann sum area under the curve (AUC) method. For studying the characteristics of the Gaussian mixture method, Angiotensin II, Angiotensin-2-10, and Angiotenisn-1-9 and their associated SIS peptides were used. The findings suggest, Gaussian mixture method has similar characteristics as the two methods compared for estimating the quantity of isolated isotopic clusters for single compounds. All three methods were tested using MALDI-TOF mass spectra collected for peptides of the renin-angiotensin system. The Gaussian mixture method accurately estimated the native to labeled ratio of several isolated angiotensin peptides (5.2% error in ratio estimation) with similar estimation errors to those calculated using peak intensity and Riemann sum AUC methods (5.9% and 7.7%, respectively). For overlapping angiotensin peptides, (where the other two methods are not applicable) the estimation error of the Gaussian mixture was 6.8%, which is within the acceptable range. In summary, for single compounds the Gaussian mixture method is equivalent or marginally superior compared to the existing methods of peptide quantification and is capable of quantifying overlapping (convolved) peptides within the acceptable margin of error.
A multiplexed TOF and DOI capable PET detector using a binary position sensitive network.
Bieniosek, M F; Cates, J W; Levin, C S
2016-11-07
Time of flight (TOF) and depth of interaction (DOI) capabilities can significantly enhance the quality and uniformity of positron emission tomography (PET) images. Many proposed TOF/DOI PET detectors require complex readout systems using additional photosensors, active cooling, or waveform sampling. This work describes a high performance, low complexity, room temperature TOF/DOI PET module. The module uses multiplexed timing channels to significantly reduce the electronic readout complexity of the PET detector while maintaining excellent timing, energy, and position resolution. DOI was determined using a two layer light sharing scintillation crystal array with a novel binary position sensitive network. A 20 mm effective thickness LYSO crystal array with four 3 mm × 3 mm silicon photomultipliers (SiPM) read out by a single timing channel, one energy channel and two position channels achieved a full width half maximum (FWHM) coincidence time resolution of 180 ± 2 ps with 10 mm of DOI resolution and 11% energy resolution. With sixteen 3 mm × 3 mm SiPMs read out by a single timing channel, one energy channel and four position channels a coincidence time resolution 204 ± 1 ps was achieved with 10 mm of DOI resolution and 15% energy resolution. The methods presented here could significantly simplify the construction of high performance TOF/DOI PET detectors.
Løkke, Mette Marie; Edelenbos, Merete; Larsen, Erik; Feilberg, Anders
2012-01-01
Volatile organic compounds (VOCs) in cut onions (Allium cepa L.) were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor) and breakdown products of this compound dominated 0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration. PMID:23443367
Prentice, Boone M; Chumbley, Chad W; Hachey, Brian C; Norris, Jeremy L; Caprioli, Richard M
2016-10-04
Quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) approaches have historically suffered from poor accuracy and precision mainly due to the nonuniform distribution of matrix and analyte across the target surface, matrix interferences, and ionization suppression. Tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity as well as improve signal-to-noise ratios by eliminating interferences from chemical noise, alleviating some concerns about dynamic range. However, conventional MALDI TOF/TOF modalities typically only scan for a single MS/MS event per laser shot, and multiplex assays require sequential analyses. We describe here new methodology that allows for multiple TOF/TOF fragmentation events to be performed in a single laser shot. This technology allows the reference of analyte intensity to that of the internal standard in each laser shot, even when the analyte and internal standard are quite disparate in m/z, thereby improving quantification while maintaining chemical specificity and duty cycle. In the quantitative analysis of the drug enalapril in pooled human plasma with ramipril as an internal standard, a greater than 4-fold improvement in relative standard deviation (<10%) was observed as well as improved coefficients of determination (R 2 ) and accuracy (>85% quality controls). Using this approach we have also performed simultaneous quantitative analysis of three drugs (promethazine, enalapril, and verapamil) using deuterated analogues of these drugs as internal standards.
Ga + TOF-SIMS lineshape analysis for resolution enhancement of MALDI MS spectra of a peptide mixture
NASA Astrophysics Data System (ADS)
Malyarenko, D. I.; Chen, H.; Wilkerson, A. L.; Tracy, E. R.; Cooke, W. E.; Manos, D. M.; Sasinowski, M.; Semmes, O. J.
2004-06-01
The use of mass spectrometry to obtain molecular profiles indicative of alteration of concentrations of peptides in body fluids is currently the subject of intense investigation. For surface-based time-of-flight mass spectrometry the reliability and specificity of such profiling methods depend both on the resolution of the measuring instrument and on the preparation of samples. The present work is a part of a program to use Ga + beam TOF-SIMS alone, and as an adjunct to MALDI, in the development of reliable protein and peptide markers for diseases. Here, we describe techniques to prepare samples of relatively high-mass peptides, which serve as calibration standards and proxies for biomarkers. These are: Arg8-vasopressin, human angiotensin II, and somatostatin. Their TOF-SIMS spectra show repeatable characteristic features, with mass resolution exceeding 2000, including parent peaks and chemical adducts. The lineshape analysis for high-resolution parent peaks is shown to be useful for filter construction and deconvolution of inferior resolution SELDI-TOF spectra of calibration peptide mixture.
Jia, Zhichun; Yang, Li; Sun, Yimin; Xiao, Xunyan; Song, Feng; Luo, Keming
2012-01-01
Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is a rate-limited enzyme in the biosynthesis of anthocyanins and condensed tannins (proanthocyanidins) that catalyzes the reduction of dihydroflavonols to leucoanthocyanins. In this study, two full-length transcripts encoding for PtrDFR1 and PtrDFR2 were isolated from Populus trichocarpa. Sequence alignment of the two PtrDFRs with other known DFRs reveals the homology of these genes. The expression profile of PtrDFRs was investigated in various tissues of P. trichocarpa. To determine their functions, two PtrDFRs were overexpressed in tobacco (Nicotiana tabacum) via Agrobacterium-mediated transformation. The associated color change in the flowers was observed in all 35S:PtrDFR1 lines, but not in 35S:PtrDFR2 lines. Compared to the wild-type control, a significantly higher accumulation of anthocyanins was detected in transgenic plants harboring the PtrDFR1. Furthermore, overexpressing PtrDFR1 in Chinese white poplar (P. tomentosa Carr.) resulted in a higher accumulation of both anthocyanins and condensed tannins, whereas constitutively expressing PtrDFR2 only improved condensed tannin accumulation, indicating the potential regulation of condensed tannins by PtrDFR2 in the biosynthetic pathway in poplars. PMID:22363429
NASA Astrophysics Data System (ADS)
Prentice, Boone M.; Chumbley, Chad W.; Caprioli, Richard M.
2017-01-01
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for the visualization of molecular distributions within tissue sections. While providing excellent molecular specificity and spatial information, absolute quantification by MALDI IMS remains challenging. Especially in the low molecular weight region of the spectrum, analysis is complicated by matrix interferences and ionization suppression. Though tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity and improve sensitivity by eliminating chemical noise, typical MALDI MS/MS modalities only scan for a single MS/MS event per laser shot. Herein, we describe TOF/TOF instrumentation that enables multiple fragmentation events to be performed in a single laser shot, allowing the intensity of the analyte to be referenced to the intensity of the internal standard in each laser shot while maintaining the benefits of MS/MS. This approach is illustrated by the quantitative analyses of rifampicin (RIF), an antibiotic used to treat tuberculosis, in pooled human plasma using rifapentine (RPT) as an internal standard. The results show greater than 4-fold improvements in relative standard deviation as well as improved coefficients of determination (R2) and accuracy (>93% quality controls, <9% relative errors). This technology is used as an imaging modality to measure absolute RIF concentrations in liver tissue from an animal dosed in vivo. Each microspot in the quantitative image measures the local RIF concentration in the tissue section, providing absolute pixel-to-pixel quantification from different tissue microenvironments. The average concentration determined by IMS is in agreement with the concentration determined by HPLC-MS/MS, showing a percent difference of 10.6%.
Gas and particulate phase products from the ozonolysis of acenaphthylene
NASA Astrophysics Data System (ADS)
Riva, Matthieu; Healy, Robert M.; Tomaz, Sophie; Flaud, Pierre-Marie; Perraudin, Emilie; Wenger, John C.; Villenave, Eric
2016-10-01
Polycyclic aromatic hydrocarbons (PAHs) are recognized as important secondary organic aerosol (SOA) precursors in the urban atmosphere. In this work, the gas-phase ozonolysis of acenaphthylene was investigated in an atmospheric simulation chamber using a proton transfer reaction time-of-flight-mass spectrometer (PTR-TOF-MS) and an aerosol time-of-flight-mass spectrometer (ATOFMS) for on-line characterization of the oxidation products in the gas and particle phases, respectively. SOA samples were also collected on filters and analyzed by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). The major gas-phase products included a range of oxygenated naphthalene derivatives such as 1,8-naphthalic anhydride, naphthalene 1,8-dicarbaldehyde and naphthaldehyde, as well as a secondary ozonide. Possible reaction mechanisms are proposed for the formation of these products and favoured pathways have been suggested. Many of these products were also found in the particle phase along with a range of oligomeric compounds. The same range of gas and particle phase products was observed in the presence and absence of excess cyclohexane, an OH scavenger, indicating that OH radical production from the ozonolysis of acenaphthylene is negligible. SOA yields in the range 23-37% were determined and indicate that acenaphthylene ozonolysis may contribute to part of the SOA observed in urban areas.
Urso, Elena; Le Pera, Maria; Bossio, Sabrina; Sprovieri, Teresa; Qualtieri, Antonio
2010-07-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been applied to the analysis of a wide range of biomolecules. To date, there are two specific areas of application where MALDI-TOF-MS is viewed as impractical: analysis of low-mass analytes and relative quantitative applications. However, these limitations can be overcome and quantification can be routine. Increased levels of thymosin beta(4) (TB4) have been recently found in cerebrospinal fluid (CSF) from Creutzfeldt-Jakob disease (CJD) patients. Our objective was to apply a label-free quantitative application of MALDI-TOF-MS to measure TB4 levels in human CSF by adding the oxidized form of TB4 as an internal standard. The relative peak area or peak height ratios of the native TB4 to the added oxidized form were evaluated. Considering the relative peak area ratios, healthy individuals showed a mean value of 40.8+/-21.27 ng/ml, whereas CJD patients showed high values with a mean of 154+/-59.07 ng/ml, in agreement with the previous observation found in CJD patients. Similar results were obtained considering peak height ratios. The proposed method may provide a simple and rapid screening method for quantification on CSF of TB4 levels suitable for diagnostic purposes. 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chien-Yuan; Li, Quanzi; Tunlaya-Anukit, Sermsawat
2016-03-11
Class III peroxidases are members of a large plant-specific sequence-heterogeneous protein family. Several sequence-conserved homologs have been associated with lignin polymerization in Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, Zinnia elegans, Picea abies, and Pinus sylvestris. In Populus trichocarpa, a model species for studies of wood formation, the peroxidases involved in lignin biosynthesis have not yet been identified. To do this, we retrieved sequences of all PtrPOs from Peroxibase and conducted RNA-seq to identify candidates. Transcripts from 42 PtrPOs were detected in stem differentiating xylem (SDX) and four of them are the most xylem-abundant (PtrPO12, PtrPO21, PtrPO42, and PtrPO64). PtrPO21 showsmore » xylem-specific expression similar to that of genes encoding the monolignol biosynthetic enzymes. Using protein cleavage-isotope dilution mass spectrometry, PtrPO21 is detected only in the cell wall fraction and not in the soluble fraction. Downregulated transgenics of PtrPO21 have a lignin reduction of ~20% with subunit composition (S/G ratio) similar to wild type. The transgenics show a growth reduction and reddish color of stem wood. The modulus of elasticity (MOE) of the stems of the downregulated PtrPO21-line 8 can be reduced to ~60% of wild type. Differentially expressed gene (DEG) analysis of PtrPO21 downregulated transgenics identified a significant overexpression of PtPrx35, suggesting a compensatory effect within the peroxidase family. No significant changes in the expression of the 49 P. trichocarpa laccases (PtrLACs) were observed.« less
Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng
2014-02-01
Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.
Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng
2014-01-01
Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation. PMID:24394777
Price, B; Gomez, A; Mathys, L; Gardi, O; Schellenberger, A; Ginzler, C; Thürig, E
2017-03-01
Trees outside forest (TOF) can perform a variety of social, economic and ecological functions including carbon sequestration. However, detailed quantification of tree biomass is usually limited to forest areas. Taking advantage of structural information available from stereo aerial imagery and airborne laser scanning (ALS), this research models tree biomass using national forest inventory data and linear least-square regression and applies the model both inside and outside of forest to create a nationwide model for tree biomass (above ground and below ground). Validation of the tree biomass model against TOF data within settlement areas shows relatively low model performance (R 2 of 0.44) but still a considerable improvement on current biomass estimates used for greenhouse gas inventory and carbon accounting. We demonstrate an efficient and easily implementable approach to modelling tree biomass across a large heterogeneous nationwide area. The model offers significant opportunity for improved estimates on land use combination categories (CC) where tree biomass has either not been included or only roughly estimated until now. The ALS biomass model also offers the advantage of providing greater spatial resolution and greater within CC spatial variability compared to the current nationwide estimates.
Lintelmann, Jutta; Wu, Xiao; Kuhn, Evelyn; Ritter, Sebastian; Schmidt, Claudia; Zimmermann, Ralf
2018-05-01
A high-performance liquid chromatographic (HPLC) method with integrated solid-phase extraction for the determination of 1-hydroxypyrene and 1-, 2-, 3-, 4- and 9-hydroxyphenanthrene in urine was developed and validated. After enzymatic treatment and centrifugation of 500 μL urine, 100 μL of the sample was directly injected into the HPLC system. Integrated solid-phase extraction was performed on a selective, copper phthalocyanine modified packing material. Subsequent chromatographic separation was achieved on a pentafluorophenyl core-shell column using a methanol gradient. For quantification, time-programmed fluorescence detection was used. Matrix-dependent recoveries were between 94.8 and 102.4%, repeatability and reproducibility ranged from 2.2 to 17.9% and detection limits lay between 2.6 and 13.6 ng/L urine. A set of 16 samples from normally exposed adults was analyzed using this HPLC-fluorescence detection method. Results were comparable with those reported in other studies. The chromatographic separation of the method was transferred to an ultra-high-performance liquid chromatography pentafluorophenyl core-shell column and coupled to a high-resolution time-of-flight mass spectrometer (HR-TOF-MS). The resulting method was used to demonstrate the applicability of LC-HR-TOF-MS for simultaneous target and suspect screening of monohydroxylated polycyclic aromatic hydrocarbons in extracts of urine and particulate matter. Copyright © 2018 John Wiley & Sons, Ltd.
Assessment of acquisition protocols for routine imaging of Y-90 using PET/CT
2013-01-01
Background Despite the early theoretical prediction of the 0+-0+ transition of 90Zr, 90Y-PET underwent only recently a growing interest for the development of imaging radioembolization of liver tumors. The aim of this work was to determine the minimum detectable activity (MDA) of 90Y by PET imaging and the impact of time-of-flight (TOF) reconstruction on detectability and quantitative accuracy according to the lesion size. Methods The study was conducted using a Siemens Biograph® mCT with a 22 cm large axial field of view. An IEC torso-shaped phantom containing five coplanar spheres was uniformly filled to achieve sphere-to-background ratios of 40:1. The phantom was imaged nine times in 14 days over 30 min. Sinograms were reconstructed with and without TOF information. A contrast-to-noise ratio (CNR) index was calculated using the Rose criterion, taking partial volume effects into account. The impact of reconstruction parameters on quantification accuracy, detectability, and spatial localization of the signal was investigated. Finally, six patients with hepatocellular carcinoma and four patients included in different 90Y-based radioimmunotherapy protocols were enrolled for the evaluation of the imaging parameters in a clinical situation. Results The highest CNR was achieved with one iteration for both TOF and non-TOF reconstructions. The MDA, however, was found to be lower with TOF than with non-TOF reconstruction. There was no gain by adding TOF information in terms of CNR for concentrations higher than 2 to 3 MBq mL−1, except for infra-centimetric lesions. Recovered activity was highly underestimated when a single iteration or non-TOF reconstruction was used (10% to 150% less depending on the lesion size). The MDA was estimated at 1 MBq mL−1 for a TOF reconstruction and infra-centimetric lesions. Images from patients treated with microspheres were clinically relevant, unlike those of patients who received systemic injections of 90Y. Conclusions Only one iteration and TOF were necessary to achieve an MDA around 1 MBq mL−1 and the most accurate localization of lesions. For precise quantification, at least three iterations gave the best performance, using TOF reconstruction and keeping an MDA of roughly 1 MBq mL−1. One and three iterations were mandatory to prevent false positive results for quantitative analysis of clinical data. Trial registration http://IDRCB 2011-A00043-38 P101103 PMID:23414629
Menet, M C; Cottart, C H; Taghi, M; Nivet-Antoine, V; Dargère, D; Vibert, F; Laprévote, O; Beaudeux, J-L
2013-01-25
Resveratrol is a polyphenol that has numerous interesting biological properties, but, per os, it is quickly metabolized. Some of its metabolites are more concentrated than resveratrol, may have greater biological activities, and may act as a kind of store for resveratrol. Thus, to understand the biological impact of resveratrol on a physiological system, it is crucial to simultaneously analyze resveratrol and its metabolites in plasma. This study presents an analytical method based on UHPLC-Q-TOF mass spectrometry for the quantification of resveratrol and of its most common hydrophilic metabolites. The use of (13)C- and D-labeled standards specific to each molecule led to a linear calibration curve on a larger concentration range than described previously. The use of high resolution mass spectrometry in the full scan mode enabled simultaneous identification and quantification of some hydrophilic metabolites not previously described in mice. In addition, UHPLC separation, allowing run times lower than 10 min, can be used in studies that requiring analysis of many samples. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Müller, Markus; Eichler, Philipp; D'Anna, Barbara; Tan, Wen; Wisthaler, Armin
2017-04-01
We used a novel chemical analytical method for measuring submicron particulate organic matter in the atmosphere of three European cities (Innsbruck, Lyon, Valencia). Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) was used in combination with the "chemical analysis of aerosol online" (CHARON) inlet for detecting particulate organic compounds on-line (i.e. without filter pre-collection), in real-time (1-min time resolution), at ng m-3 concentrations, with molecular-level resolution (i.e. obtaining molecular weight and elemental composition information). The CHARON-PTR-ToF-MS system monitored molecular tracers associated with different particle sources including levoglucosan from biomass combustion, PAHs from vehicular traffic, nicotine from cigarette smoking, and monoterpene oxidation products secondarily formed from biogenic emissions. The tracer information was used for interpreting positive matrix factorization (PMF) data which allowed us to apportion the sources of submicron particulate organic matter in the different urban environments. This work was funded through the PIMMS ITN, which was supported by the European Commission's 7th Framework Programme under grant agreement number 287382.
Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.
Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen
2010-11-01
In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.
Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry
Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen
2011-01-01
In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000–15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert’s visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition. PMID:21544266
Shu, Wenbo; Liu, Yingli; Guo, Yinghua; Zhou, Houjun; Zhang, Jin; Zhao, Shutang; Lu, Mengzhu
2015-01-01
The plant hormone auxin is a central regulator of plant growth. TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) is a component of the E3 ubiquitin ligase complex SCFTIR1/AFB and acts as an auxin co-receptor for nuclear auxin signaling. The SCFTIR1/AFB-proteasome machinery plays a central regulatory role in development-related gene transcription. Populus trichocarpa, as a model tree, has a unique fast-growth trait to which auxin signaling may contribute. However, no systematic analyses of the genome organization, gene structure, and expression of TIR1-like genes have been undertaken in this woody model plant. In this study, we identified a total of eight TIR1 genes in the Populus genome that are phylogenetically clustered into four subgroups, PtrFBL1/PtrFBL2, PtrFBL3/PtrFBL4, PtrFBL5/PtrFBL6, and PtrFBL7/PtrFBL8, representing four paralogous pairs. In addition, the gene structure and motif composition were relatively conserved in each paralogous pair and all of the PtrFBL members were localized in the nucleus. Different sets of PtrFBLs were strongly expressed in the leaves, stems, roots, cambial zones, and immature xylem of Populus. Interestingly, PtrFBL1 and 7 were expressed mainly in vascular and cambial tissues, respectively, indicating their potential but different roles in wood formation. Furthermore, Populus FBLs responded differentially upon exposure to various stresses. Finally, over-expression studies indicated a role of FBL1 in poplar stem growth and response to drought stress. Collectively, these observations lay the foundation for further investigations into the potential roles of PtrFBL genes in tree growth and development. PMID:26442033
Topochemical Analysis of Cell Wall Components by TOF-SIMS.
Aoki, Dan; Fukushima, Kazuhiko
2017-01-01
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a recently developing analytical tool and a type of imaging mass spectrometry. TOF-SIMS provides mass spectral information with a lateral resolution on the order of submicrons, with widespread applicability. Sometimes, it is described as a surface analysis method without the requirement for sample pretreatment; however, several points need to be taken into account for the complete utilization of the capabilities of TOF-SIMS. In this chapter, we introduce methods for TOF-SIMS sample treatments, as well as basic knowledge of wood samples TOF-SIMS spectral and image data analysis.
Lee, Byeong Ill; Park, Min-Ho; Heo, Soon Chul; Park, Yuri; Shin, Seok-Ho; Byeon, Jin-Ju; Kim, Jae Ho; Shin, Young G
2018-03-01
A liquid chromatographic-electrospray ionization-time-of-flight/mass spectrometric (LC-ESI-TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro-elution solid-phase extraction (SPE) for sample preparation and LC-ESI-TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro-elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration 2 ), with the equation y = ax 2 + bx + c was used to fit calibration curves over the concentration range of 3.02-2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within-run and the between-run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC-ESI-TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma. Copyright © 2017 John Wiley & Sons, Ltd.
de Souza Moreira, Douglas; Ferreira, Rafael Fernandes; Murta, Silvane M F
2016-01-01
Pteridine reductase (PTR1) is an NADPH-dependent reductase that participates in the salvage of pteridines, which are essential to maintain growth of Leishmania. In this study, we performed the molecular characterization of ptr1 gene in wild-type (WTS) and SbIII-resistant (SbR) lines from Leishmania guyanensis (Lg), Leishmania amazonensis (La), Leishmania braziliensis (Lb) and Leishmania infantum (Li), evaluating the chromosomal location, mRNA levels of the ptr1 gene and PTR1 protein expression. PFGE results showed that the ptr1 gene is located in a 797 kb chromosomal band in all Leishmania lines analyzed. Interestingly, an additional chromosomal band of 1070 kb was observed only in LbSbR line. Northern blot results showed that the levels of ptr1 mRNA are increased in the LgSbR, LaSbR and LbSbR lines. Western blot assays using the polyclonal anti-LmPTR1 antibody demonstrated that PTR1 protein is more expressed in the LgSbR, LaSbR and LbSbR lines compared to their respective WTS counterparts. Nevertheless, no difference in the level of mRNA and protein was observed between the LiWTS and LiSbR lines. Functional analysis of PTR1 enzyme was performed to determine whether the overexpression of ptr1 gene in the WTS L. braziliensis and L. infantum lines would change the SbIII-resistance phenotype of transfected parasites. Western blot results showed that the expression level of PTR1 protein was increased in the transfected parasites compared to the non-transfected ones. IC50 analysis revealed that the overexpression of ptr1 gene in the WTS L. braziliensis line increased 2-fold the SbIII-resistance phenotype compared to the non-transfected counterpart. Furthermore, the overexpression of ptr1 gene in the WTS L. infantum line did not change the SbIII-resistance phenotype. These results suggest that the PTR1 enzyme may be implicated in the SbIII-resistance phenotype in L. braziliensis line. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Changjuan; Huang Zhengxu; Gao Wei
2008-01-15
We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with thismore » instrument.« less
NASA Astrophysics Data System (ADS)
Kajos, M.
2013-12-01
M.K. Kajos1, M. Hill2, H. Hellén3, P. Rantala1, C. C Hoerger2, S. Reimann2, H. Hakola3, T. Petäjä1, T.M. Ruuskanen1 1 Department of Physics, University of Helsinki, P.O.Box 64, 00014 University of Helsinki, Finland 2 Empa, Laboratory for Air Pollution/ Environmental Technology, Ueberlandstr. 129, 8600 Duebendorf, Switzerland 3 Finnish Metorological Institute, P.O.Box 503, 00101 Helsinki, Finland Oxidized volatile organic compounds (OVOCs) such as acetaldehyde and acetone and aromatic VOCs such as benzene and toluene originate from various natural and anthropogenic sources. The lifetimes of these compounds are relatively long, from hundreds of days in the winter to a few days in summer thus they are effectively transported. Some of them are continuously monitored e.g. benzene due to it being carcinogenic. In this study the volume mixing ratios of acetaldehyde, acetone, benzene and toluene, were measured with two different methods; Gas Chromatography-Mass Spectrometry (GC-MS) and Proton Transfer Reaction-Mass Spectrometry (PTR-MS). GC-MS is a well-established and old method to measure these compounds with a low, often one hour, time resolution. However it is rather labor intensive method and often used in short term campaigns. The other method, PTR-MS has a sub-minute time resolution and it is suitable for long term continuous measurements. The disadvantage of the PTR-MS is that the identification of the compounds is based on mass only, thus compounds with the same nominal mass cannot be distinguished. Both methods are widely used at atmospheric measurement stations around the world. The concentrations were measured with two GC-MSs and two PTR-MSs (Ionicon Analytik, Austria) at SMEAR II site (Station for Measuring Forest Ecosystem-Atmosphere Relations, 61°51'N, 24°17'E, 181 m a.s.l.) in Hyytiälä, Southern Finland in April-May 2012. The site is a well characterized atmosphere flagship station located in a rural boreal forest (Hari and Kulmala, 2005). The nearest municipality (Korkeakoski) is about 10 km and the nearest big city (Tampere) is about 50 km from the site. OVOCs and aromatic hydrocarbons arrive to SMEAR II station from both regional and long range sources (Patokoski et al., 2013 accepted). The two GC-MSs and one of the PTR-MSs were using the same c.a. 20 m long inlet line (Teflon PTFE, 8mm id), which was sampling from 10 m height. The inlet of the other PTR-MS, which is part of the permanent measurement set up of the site, was located about 20 m away from the common inlet of the other instruments. The aim of our study was to compare the performance of two different methods for measuring the volume mixing ratios of aromatic and oxidized VOCs in the ambient air of a boreal forest. The preliminary results, which will be presented in the conference, show promising agreement between the instruments. P. Hari and M. Kulmala, Station for measuring Ecosystem-Atmosphere Relations, Boreal Environmental Research 10, 315-322, (2005). Patokoski, J., Ruuskanen, T. M., Hellén, H., Taipale, R., Grönholm, T., Kajos, M. K., Petäjä, T., Hakola, H., Kulmala, M. & Rinne, J. 2014: Winter to spring transition and diurnal variation of VOCs in Finland at an urban background site and a rural site. Boreal Environmental Research 19. In press.
Cerebral TOF Angiography at 7T: Impact of B1+ Shimming with a 16-Channel Transceiver Array
Schmitter, Sebastian; Wu, Xiaoping; Adriany, Gregor; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2014-01-01
Purpose Time-of-flight (TOF) MR imaging is clinically among the most common cerebral non-contrast enhanced MR angiography techniques allowing for high spatial resolution. As shown by several groups TOF contrast significantly improves at ultra-high field (UHF) of B0=7T, however, spatially varying transmit B1 (B1+) fields at 7T reduce TOF contrast uniformity, typically resulting in sub-optimal contrast and reduced vessel conspicuity in the brain periphery. Methods Using a 16-channel B1+ shimming system we compare different dynamically applied B1+ phase shimming approaches on the RF excitation to improve contrast homogeneity for a (0.5 mm)3 resolution multi-slab TOF acquisition. In addition, B1+ shimming applied on the venous saturation pulse was investigated to improve venous suppression, subcutaneous fat signal reduction and enhanced background suppression originating from MT effect. Results B1+ excitation homogeneity was improved by a factor 2.2 to 2.6 on average depending on the shimming approach, compared to a standard CP-like phase setting, leading to improved vessel conspicuity particularly in the periphery. Stronger saturation, higher fat suppression and improved background suppression were observed when dynamically applying B1+ shimming on the venous saturation pulse. Conclusion B1+ shimming can significantly improve high resolution TOF vascular investigations at UHF, holding strong promise for non contrast-enhanced clinical applications. PMID:23640915
Abdullah, Sidrat; Sehgal, Sunish K; Glover, Karl D; Ali, Shaukat
2017-06-01
Rye ( Secale cereale L.) serves as an alternative host of Pyrenophora tritici-repentis ( PTR ) the cause of tan spot on wheat. Rye is cultivated as a forage or cover crop and overlaps with a significant portion of wheat acreage in the U.S. northern Great Plains; however, it is not known whether the rye crop influences the evolution of PTR races. We evaluated a global collection of 211 rye accessions against tan spot and assessed the diversity in PTR population on rye in South Dakota. All the rye genotypes were inoculated with PTR races 1 and 5, and infiltrated with Ptr ToxA and Ptr ToxB, at seedling stage. We observed 21% of the genotypes exhibited susceptibility to race 1, whereas, 39% were susceptible to race 5. All 211 accessions were insensitive to both the Ptr toxins. It indicates that though rye exhibits diversity in reaction to tan spot, it lacks Ptr ToxA and ToxB sensitivity genes. This suggests that unknown toxins or other factors can lead to PTR establishment in rye. We characterized the race structure of 103 PTR isolates recovered from rye in South Dakota. Only 22% of the isolates amplified Ptr ToxA gene and were identified as race 1 based on their phenotypic reaction on the differential set. The remaining 80 isolates were noted to be race 4. Our results show that races 1 and 4 are prevalent on rye in South Dakota with a higher frequency of race 4, suggesting a minimal role of rye in the disease epidemiology.
Abdullah, Sidrat; Sehgal, Sunish K.; Glover, Karl D.; Ali, Shaukat
2017-01-01
Rye (Secale cereale L.) serves as an alternative host of Pyrenophora tritici-repentis (PTR) the cause of tan spot on wheat. Rye is cultivated as a forage or cover crop and overlaps with a significant portion of wheat acreage in the U.S. northern Great Plains; however, it is not known whether the rye crop influences the evolution of PTR races. We evaluated a global collection of 211 rye accessions against tan spot and assessed the diversity in PTR population on rye in South Dakota. All the rye genotypes were inoculated with PTR races 1 and 5, and infiltrated with Ptr ToxA and Ptr ToxB, at seedling stage. We observed 21% of the genotypes exhibited susceptibility to race 1, whereas, 39% were susceptible to race 5. All 211 accessions were insensitive to both the Ptr toxins. It indicates that though rye exhibits diversity in reaction to tan spot, it lacks Ptr ToxA and ToxB sensitivity genes. This suggests that unknown toxins or other factors can lead to PTR establishment in rye. We characterized the race structure of 103 PTR isolates recovered from rye in South Dakota. Only 22% of the isolates amplified Ptr ToxA gene and were identified as race 1 based on their phenotypic reaction on the differential set. The remaining 80 isolates were noted to be race 4. Our results show that races 1 and 4 are prevalent on rye in South Dakota with a higher frequency of race 4, suggesting a minimal role of rye in the disease epidemiology. PMID:28592942
Designing a compact high performance brain PET scanner—simulation study
NASA Astrophysics Data System (ADS)
Gong, Kuang; Majewski, Stan; Kinahan, Paul E.; Harrison, Robert L.; Elston, Brian F.; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V.; Brefczynski-Lewis, Julie A.; Qi, Jinyi
2016-05-01
The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér-Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of-interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact ‘helmet’ design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging.
Designing a compact high performance brain PET scanner—simulation study
Gong, Kuang; Majewski, Stan; Kinahan, Paul E; Harrison, Robert L; Elston, Brian F; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V; Brefczynski-Lewis, Julie A; Qi, Jinyi
2016-01-01
The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér–Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of- interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact ‘helmet’ design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging. PMID:27081753
NASA Astrophysics Data System (ADS)
Fairchild, A.; Chirayath, V.; Gladen, R.; McDonald, A.; Lim, Z.; Chrysler, M.; Koymen, A.; Weiss, A.
Simion 8.1®simulations were used to determine the energy resolution of a 1 meter long Time of Flight Positron annihilation induced Auger Electron Spectrometer (TOF-PAES). The spectrometer consists of: 1. a magnetic gradient section used to parallelize the electrons leaving the sample along the beam axis, 2. an electric field free time of flight tube and 3. a detection section with a set of ExB plates that deflect electrons exiting the TOF tube into a Micro-Channel Plate (MCP). Simulations of the time of flight distribution of electrons emitted according to a known secondary electron emission distribution, for various sample biases, were compared to experimental energy calibration peaks and found to be in excellent agreement. The TOF spectra at the highest sample bias was used to determine the timing resolution function describing the timing spread due to the electronics. Simulations were then performed to calculate the energy resolution at various electron energies in order to deconvolute the combined influence of the magnetic field parallelizer, the timing resolution, and the voltage gradient at the ExB plates. The energy resolution of the 1m TOF-PAES was compared to a newly constructed 3 meter long system. The results were used to optimize the geometry and the potentials of the ExB plates for obtaining the best energy resolution. This work was supported by NSF Grant NSF Grant No. DMR 1508719 and DMR 1338130.
Static Time-of-Flight Secondary Ion Mass Spectrometry (SIMS) | Materials
-Flight Secondary Ion Mass Spectrometry (SIMS) Image of high mass resolution and mass accuracy provided by TOF SIMS We used the high mass resolution and mass accuracy of TOF SIMS to study surface cleanliness acidic wash resulted in contamination by Fe and other metals. Without high mass accuracy, the CaO signal
Kaufmann, Anton; Butcher, Patrick
2006-01-01
Liquid chromatography coupled to orthogonal acceleration time-of-flight mass spectrometry (LC/TOF) provides an attractive alternative to liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS) in the field of multiresidue analysis. The sensitivity and selectivity of LC/TOF approach those of LC/MS/MS. TOF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of commercial TOF instruments ranging from 10 000 to 18 000 full width at half maximum (FWHM) is not, however, sufficient to completely exclude the problem of isobaric interferences (co-elution of analyte ions with matrix compounds of very similar mass). Due to the required data storage capacity, TOF raw data is commonly centroided before being electronically stored. However, centroiding can lead to a loss of data quality. The co-elution of a low intensity analyte peak with an isobaric, high intensity matrix compound can cause problems. Some centroiding algorithms might not be capable of deconvoluting such partially merged signals, leading to incorrect centroids.Co-elution of isobaric compounds has been deliberately simulated by injecting diluted binary mixtures of isobaric model substances at various relative intensities. Depending on the mass differences between the two isobaric compounds and the resolution provided by the TOF instrument, significant deviations in exact mass measurements and signal intensities were observed. The extraction of a reconstructed ion chromatogram based on very narrow mass windows can even result in the complete loss of the analyte signal. Guidelines have been proposed to avoid such problems. The use of sub-2 microm HPLC packing materials is recommended to improve chromatographic resolution and to reduce the risk of co-elution. The width of the extraction mass windows for reconstructed ion chromatograms should be defined according to the resolution of the TOF instrument. Alternative approaches include the spiking of the sample with appropriate analyte concentrations. Furthermore, enhanced software, capable of deconvoluting partially merged mass peaks, may become available. Copyright (c) 2006 John Wiley & Sons, Ltd.
The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus.
Jiang, Yuanzhong; Guo, Li; Ma, Xiaodong; Zhao, Xin; Jiao, Bo; Li, Chaofeng; Luo, Keming
2017-05-01
WRKY transcription factors play important roles in response to diverse environmental stresses, but exact functions of these proteins in poplar defense are still largely unknown. In a previous study, we have shown that poplar WRKY89 is induced by salicylic acid (SA) treatment and plays an important role in resistance against fungi in transgenic poplars. Here, we determined an increase in transcript levels of Group IIa WRKY members in transgenic poplars overexpressing WRKY89 using quantitative real-time polymerase chain reaction analysis. Yeast one-hybrid assay showed that PtrWRKY18 and PtrWRKY35 were potential target genes of WRKY89. Furthermore, we demonstrated that PtrWRKY18 and PtrWRKY35 were localized in the nucleus, and exhibited no transcription activation activity. Constitutive overexpression of PtrWRKY18 and PtrWRKY35 in poplars activated pathogenesis-related genes, and increased resistance to the biotrophic pathogen Melampsora. The results also provided support for the involvement of SA-mediated signaling in Melampsora resistance. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shucai; Li, Eryang; Porth, Ilga
2014-05-23
Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that in phloem. When expressed in Arabidopsis under the control of either 35S or PtrCesA8 promoters, PtrMYB152 increased secondary cell wall thickness, which is likely caused by increased lignification. Accordingly, elevated expression of genes encoding setsmore » of enzymes in secondary wall biosynthesis were observed in transgenic plants expressing PtrMYB152. Arabidopsis protoplast transfection assays suggested that PtrMYB152 functions as a transcriptional activator. Taken together, our results suggest that PtrMYB152 may be part of a regulatory network activating expression of discrete sets of secondary cell wall biosynthesis genes.« less
Nitrogen affects cluster root formation and expression of putative peptide transporters
Paungfoo-Lonhienne, Chanyarat; Schenk, Peer M.; Lonhienne, Thierry G. A.; Brackin, Richard; Meier, Stefan; Rentsch, Doris; Schmidt, Susanne
2009-01-01
Non-mycorrhizal Hakea actites (Proteaceae) grows in heathland where organic nitrogen (ON) dominates the soil nitrogen (N) pool. Hakea actites uses ON for growth, but the role of cluster roots in ON acquisition is unknown. The aim of the present study was to ascertain how N form and concentration affect cluster root formation and expression of peptide transporters. Hydroponically grown plants produced most biomass with low molecular weight ON>inorganic N>high molecular weight ON, while cluster roots were formed in the order no-N>ON>inorganic N. Intact dipeptide was transported into roots and metabolized, suggesting a role for the peptide transporter (PTR) for uptake and transport of peptides. HaPTR4, a member of subgroup II of the NRT1/PTR transporter family, which contains most characterized di- and tripeptide transporters in plants, facilitated transport of di- and tripeptides when expressed in yeast. No transport activity was demonstrated for HaPTR5 and HaPTR12, most similar to less well characterized transporters in subgroup III. The results provide further evidence that subgroup II of the NRT1/PTR family contains functional di- and tripeptide transporters. Green fluorescent protein fusion proteins of HaPTR4 and HaPTR12 localized to tonoplast, and plasma- and endomembranes, respectively, while HaPTR5 localized to vesicles of unknown identity. Grown in heathland or hydroponic culture with limiting N supply or starved of nutrients, HaPTR genes had the highest expression in cluster roots and non-cluster roots, and leaf expression increased upon re-supply of ON. It is concluded that formation of cluster roots and expression of PTR are regulated in response to N supply. PMID:19380419
NASA Astrophysics Data System (ADS)
Singh, Kundan; Siwal, Davinder
2018-04-01
A digital timing algorithm is explored for fast scintillator detectors, viz. LaBr3, BaF2, and BC501A. Signals were collected with CAEN 250 mega samples per second (MSPS) and 500 MSPS digitizers. The zero crossing time markers (TM) were obtained with a standard digital constant fraction timing (DCF) method. Accurate timing information is obtained using cubic spline interpolation of a DCF transient region sample points. To get the best time-of-flight (TOF) resolution, an optimization of DCF parameters is performed (delay and constant fraction) for each pair of detectors: (BaF2-LaBr3), (BaF2-BC501A), and (LaBr3-BC501A). In addition, the slope information of an interpolated DCF signal is extracted at TM position. This information gives a new insight to understand the broadening in TOF, obtained for a given detector pair. For a pair of signals having small relative slope and interpolation deviations at TM, leads to minimum time broadening. However, the tailing in TOF spectra is dictated by the interplay between the interpolation error and slope variations. Best TOF resolution achieved at the optimum DCF parameters, can be further improved by using slope parameter. Guided by the relative slope parameter, events selection can be imposed which leads to reduction in TOF broadening. While the method sets a trade-off between timing response and coincidence efficiency, it provides an improvement in TOF. With the proposed method, the improved TOF resolution (FWHM) for the aforementioned detector pairs are; 25% (0.69 ns), 40% (0.74 ns), 53% (0.6 ns) respectively, obtained with 250 MSPS, and corresponds to 12% (0.37 ns), 33% (0.72 ns), 35% (0.69 ns) respectively with 500 MSPS digitizers. For the same detector pair, event survival probabilities are; 57%, 58%, 51% respectively with 250 MSPS and becomes 63%, 57%, 68% using 500 MSPS digitizers.
Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector
NASA Astrophysics Data System (ADS)
Choe, Hyeok-Jun; Choi, Yong; Hu, Wei; Yan, Jianhua; Jung, Jin Ho
2017-04-01
There has been great interest in developing a time-of-flight (TOF) PET to improve the signal-to-noise ratio of PET image relative to that of non-TOF PET. Silicon photomultiplier (SiPM) arrays have attracted attention for use as a fast TOF PET photosensor. Since numerous SiPM arrays are needed to construct a modern human PET, a multiplexing method providing both good timing performance and high channel reduction capability is required to develop a SiPM-based TOF PET. The purpose of this study was to develop a capacitive multiplexing circuit for the SiPM-based TOF PET. The proposed multiplexing circuit was evaluated by measuring the coincidence resolving time (CRT) and the energy resolution as a function of the overvoltage using three different capacitor values of 15, 30, and 51 pF. A flood histogram was also obtained and quantitatively assessed. Experiments were performed using a 4× 4 array of 3× 3 mm2 SiPMs. Regarding the capacitor values, the multiplexing circuit using a smaller capacitor value showed the best timing performance. On the other hand, the energy resolution and flood histogram quality of the multiplexing circuit deteriorated as the capacitor value became smaller. The proposed circuit was able to achieve a CRT of 260+/- 4 ps FWHM and an energy resolution of 17.1 % with a pair of 2× 2× 20 mm3 LYSO crystals using a capacitor value of 30 pF at an overvoltage of 3.0 V. It was also possible to clearly resolve a 6× 6 array of LYSO crystals in the flood histogram using the multiplexing circuit. The experiment results indicate that the proposed capacitive multiplexing circuit is useful to obtain an excellent timing performance and a crystal-resolving capability in the flood histogram with a minimal degradation of the energy resolution, as well as to reduce the number of the readout channels of the SiPM-based TOF PET detector.
Xu, Zhenzhen; Li, Jianzhong; Chen, Ailiang; Ma, Xin; Yang, Shuming
2018-05-03
The retrospectivity (the ability to retrospect to a previously unknown compound in raw data) is very meaningful for food safety and risk assessment when facing new emerging drugs. Accurate mass and retention time based screening may lead false positive and false negative results so new retrospective, reliable platform is desirable. Different concentration levels of standards with and without matrix were analyzed using ion mobility (IM)-quadrupole-time-of-flight (Q-TOF) for collecting retrospective accurate mass, retention time, drift time and tandem MS evidence for identification in a single experiment. The isomer separation ability of IM and the four-dimensional (4D) feature abundance quantification abilities were evaluated for veterinary drugs for the first time. The sensitivity of the IM-Q-TOF workflow was obviously higher than that of the traditional database searching algorithm [find by formula (FbF) function] for Q-TOF. In addition, the IM-Q-TOF workflow contained most of the results from FbF and removed the false positive results. Some isomers were separated by IM and the 4D feature abundance quantitation removed interference with similar accurate mass and showed good linearity. A new retrospective, multi-evidence platform was built for veterinary drug screening in a single experiment. The sensitivity was significantly improved and the data can be used for quantification. The platform showed its potential to be used for food safety and risk assessment. This article is protected by copyright. All rights reserved.
Ye, Hongping; Hill, John; Kauffman, John; Gryniewicz, Connie; Han, Xianlin
2008-08-15
Isotope tags for relative and absolute quantification (iTRAQ) reagent coupled with matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometric analysis has been evaluated as both a qualitative and quantitative method for the detection of modifications to active pharmaceutical ingredients derived from recombinant DNA technologies and as a method to detect counterfeit drug products. Five types of insulin (human, bovine, porcine, Lispro, and Lantus) were used as model products in the study because of their minor variations in amino acid sequence. Several experiments were conducted in which each insulin variant was separately digested with Glu-C, and the digestate was labeled with one of four different iTRAQ reagents. All digestates were then combined for desalting and MALDI-TOF/TOF mass spectrometric analysis. When the digestion procedure was optimized, the insulin sequence coverage was 100%. Five different types of insulin were readily differentiated, including human insulin (P28K29) and Lispro insulin (K28P29), which differ only by the interchange of two contiguous residues. Moreover, quantitative analyses show that the results obtained from the iTRAQ method agree well with those determined by other conventional methods. Collectively, the iTRAQ method can be used as a qualitative and quantitative technique for the detection of protein modification and counterfeiting.
NASA Astrophysics Data System (ADS)
Joglekar, Prasad; Lim, L.; Satyal, Suman; Kalaskar, Sushant; Shastry, K.; Weiss, Alex
2011-03-01
Time of Flight Positron Annihilation Induced~Auger Electron Spectroscopy~(TOF PAES) is a surface analytical technique with high surface selectivity. TOF PAES is used to study elemental composition, surface defects, and various energy loss mechanisms. Positrons incident on the sample surface at low energies can be trapped in an image-potential well just above the surface Prior to annihilation. Consequently it is possible to use positron annihilation related signals to selectively probe the top-most atomic layer. This poster presents the results of modeling of the charge particle beam transport system performed in connection with the optimization of the the design of the new TOF-PAES system currently under construction at U T Arlington. The system will incorporate a 2 m long drift tube in order to achieve better energy resolution than our previous TOF-PAES system design which used a 1 m long drift tube NSF DMR 0907679, Welch Foundation Y 1100.
Benkali, K; Marquet, P; Rérolle, JP; Le Meur, Y; Gastinel, LN
2008-01-01
Background LC-MALDI-TOF/TOF analysis is a potent tool in biomarkers discovery characterized by its high sensitivity and high throughput capacity. However, methods based on MALDI-TOF/TOF for biomarkers discovery still need optimization, in particular to reduce analysis time and to evaluate their reproducibility for peak intensities measurement. The aims of this methodological study were: (i) to optimize and critically evaluate each step of urine biomarker discovery method based on Nano-LC coupled off-line to MALDI-TOF/TOF, taking full advantage of the dual decoupling between Nano-LC, MS and MS/MS to reduce the overall analysis time; (ii) to evaluate the quantitative performance and reproducibility of nano-LC-MALDI analysis in biomarker discovery; and (iii) to evaluate the robustness of biomarkers selection. Results A pool of urine sample spiked at increasing concentrations with a mixture of standard peptides was used as a specimen for biological samples with or without biomarkers. Extraction and nano-LC-MS variabilities were estimated by analyzing in triplicates and hexaplicates, respectively. The stability of chromatographic fractions immobilised with MALDI matrix on MALDI plates was evaluated by successive MS acquisitions after different storage times at different temperatures. Low coefficient of variation (CV%: 10–22%) and high correlation (R2 > 0.96) values were obtained for the quantification of the spiked peptides, allowing quantification of these peptides in the low fentomole range, correct group discrimination and selection of "specific" markers using principal component analysis. Excellent peptide integrity and stable signal intensity were found when MALDI plates were stored for periods of up to 2 months at +4°C. This allowed storage of MALDI plates between LC separation and MS acquisition (first decoupling), and between MS and MSMS acquisitions while the selection of inter-group discriminative ions is done (second decoupling). Finally the recording of MSMS spectra to obtain structural information was focused only on discriminative ions in order to minimize analysis time. Conclusion Contrary to other classical approaches with direct online coupling of chromatographic separation and on the flight MS and/or MSMS data acquisition for all detected analytes, our dual decoupling strategy allowed us to focus on the most discriminative analytes, giving us more time to acquire more replicates of the same urine samples thus increasing detection sensitivity and mass precision. PMID:19014585
Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang
2015-01-01
This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens.
Duan, Yanjiao; Jiang, Yuanzhong; Ye, Shenglong; Karim, Abdul; Ling, Zhengyi; He, Yunqiu; Yang, Siqi; Luo, Keming
2015-05-01
A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.
Yang, Li; Zhao, Xin; Yang, Fan; Fan, Di; Jiang, Yuanzhong; Luo, Keming
2016-01-28
WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar.
Wang, Han; Zhao, Shicheng; Gao, Yuchi; Yang, Jingli
2017-01-01
The DNA-binding One Zinc Finger (Dof) genes are ubiquitous in many plant species and are especial transcription regulators that participate in plant growth, development and various procedures, including biotic and abiotic stress reactions. In this study, we identified 41 PtrDof members from Populus trichocarpa genomes and classified them into four groups. The conserved motifs and gene structures of some PtrDof genes belonging to the same subgroup were almost the same. The 41 PtrDof genes were dispersed on 18 of the 19 Populus chromosomes. Many key stress- or phytohormone-related cis-elements were discovered in the PtrDof gene promoter regions. Consequently, we undertook expression profiling of the PtrDof genes in leaves and roots in response to osmotic stress and abscisic acid. A total of seven genes (PtrDof14, 16, 25, 27, 28, 37 and 39) in the Populus Dof gene family were consistently upregulated at point in all time in the leaves and roots under osmotic and abscisic acid (ABA) stress. We observed that 12 PtrDof genes could be targeted by 15 miRNAs. Moreover, we mapped the cleavage site in PtrDof30 using the 5’RLM-RACE. The results showed that PtrDofs may have a role in resistance to abiotic stress in Populus trichocarpa. PMID:28095469
Song, W; Koh, S; Czako, M; Marton, L; Drenkard, E; Becker, J M; Stacey, G
1997-01-01
Previously, we identified a peptide transport gene, AtPTR2-B, from Arabidopsis thaliana that was constitutively expressed in all plant organs, suggesting an important physiological role in plant growth and development. To evaluate the function of this transporter, transgenic Arabidopsis plants were constructed expressing antisense or sense AtPTR2-B. Genomic Southern analysis indicated that four independent antisense and three independent sense AtPTR2-B transgenic lines were obtained, which was confirmed by analysis of the segregation of the kanamycin resistance gene carried on the T-DNA. RNA blot data showed that the endogenous AtPTR2-B mRNA levels were significantly reduced in transgenic leaves and flowers, but not in transgenic roots. Consistent with this reduction in endogenous AtPTR2-B mRNA levels, all four antisense lines and one sense line exhibited significant phenotypic changes, including late flowering and arrested seed development. These phenotypic changes could be explained by a defect in nitrogen nutrition due to the reduced peptide transport activity conferred by AtPTR2-B. These results suggest that AtPTR2-B may play a general role in plant nutrition. The AtPTR2-B gene was mapped to chromosome 2, which is closely linked to the restriction fragment length polymorphism marker m246. PMID:9232875
Wang, Wei; Li, Eryang; Porth, Ilga; ...
2016-02-02
Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter,more » PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Li, Eryang; Porth, Ilga
Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter,more » PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.« less
NASA Astrophysics Data System (ADS)
Holzinger, R.; Timkovsky, J.
2011-12-01
During the CALNEX campaign we deployed a thermal-desorption proton-transfer-reaction mass-spectrometer (TD-PTR-MS) at the Caltech ground site near downtown Los Angeles. The instrument was equipped with a time of flight mass spectrometer and a mass resolution power of ~4000 was realized under field conditions. Mass peaks could be determined at accuracy levels of +/- 3 mDa, which allowed identification by the empirical formula rather than by m/z alone. Over 900 ion species have been detected in aerosols. The largest signals (m/z 18.032, NH4+, and 45.991, NO2+) were attributed to ammonia and nitrate, respectively. 350 ion species accounted for 80% of the total measured mass of organic aerosol species. Of these, 66 species contained one nitrogen atom and 73 species contained two nitrogen atoms. Each group accounted for ~15% of the total measured mass. This suggests a ~30% contribution of nitrogen compounds to the total organic aerosol burden. However, this number could still underestimate the real fraction of nitrogen compounds for two reasons: (1) thermal desorption may cause decomposition of nitrogen compounds. E.g. peroxy nitrates rapidly decompose at temperatures above 100°C and produce NO2 which cannot be detected by the PTR-MS. (2) During protonation nitrogen functional groups may be preferentially lost. E.g. alkyl nitrates typically fragment during protonation in the PTR-MS. A minor fraction of the alkyl nitrates is detected as NO2+ and contributes to the signal at m/z 45.991, however, the majority is detected as alkyl ion without nitrogen. At this point it the overall loss of nitrogen due to these processes is hard to quantify. Our findings suggest that nitrogen chemistry plays a crucial role in producing secondary organic aerosol.
Sanyova, Jana; Cersoy, Sophie; Richardin, Pascale; Laprévote, Olivier; Walter, Philippe; Brunelle, Alain
2011-02-01
The painting materials of the Portrait of Nicolaes van Bambeeck (Royal Museums of Fine Arts of Belgium, Brussels, inv. 155) painted by Rembrandt van Rijn in 1641 has been studied using high resolution cluster-TOF-SIMS imaging. In the first step, a moderate spatial resolution (2 μm) was used to characterize the layer structure and the chemical composition of each layer on account of a high mass resolution. Then, in the second step, and despite a low mass resolution, the cluster primary ion beam was focused well below 1 μm in order to reveal smaller structures in the painting sample. The study confirmed the presence of starch in the second ground layer, which is quite surprising and, at least for Rembrandt paintings, has never been reported before. TOF-SIMS also indicated the presence of proteins, which, added to the size and shape of lake particles, suggests that it was manufactured from shearings (waste of textile manufacturing) of dyed wool, used as the source of the dyestuff. The analyses have also shown various lead carboxylates, being the products of the interaction between lead white and the oil of the binding medium. These findings considerably contribute to the understanding of Rembrandt's studio practice and thus demonstrate the importance and potential of cluster-TOF-SIMS imaging in the characterization on a submicrometer scale of artist painting materials.
Gil, Geun-Cheol; Iliff, Bryce; Cerny, Ron; Velander, William H.; Van Cott, Kevin E.
2010-01-01
Appropriate glycosylation of recombinant therapeutic glycoproteins has been emphasized in biopharmaceutical industries because the carbohydrate component can affect safety, efficacy, and consistency of the glycoproteins. Reliable quantification methods are essential to ensure consistency of their products with respect to glycosylation, particularly sialylation. Mass spectrometry (MS) has become a popular tool to analyze glycan profiles and structures, showing high resolution and sensitivity with structure identification ability. However, quantification of sialylated glycans using MS is not as reliable because of the different ionization efficiency between neutral and acidic glycans. We report here that amidation in mild acidic conditions can be used to neutralize acidic N-glycans still attached to the protein. The resulting amidated N-glycans can then released from the protein using PNGase F, and labeled with permanent charges on the reducing end to avoid any modification and the formation of metal adducts during MS analysis. The N-glycan modification, digestion, and desalting steps were performed using a single-pot method that can be done in microcentrifuge tubes or 96-well microfilter plates, enabling high throughput glycan analysis. Using this method we were able to perform quantitative MALDI-TOF MS of a recombinant human glycoprotein to determine changes in fucosylation and changes in sialylation that were in very good agreement with a normal phase HPLC oligosaccharide mapping method. PMID:20586471
Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M
2006-08-01
To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.
NASA Astrophysics Data System (ADS)
Koss, A.; Sekimoto, K.; Gilman, J.; Selimovic, V.; Coggon, M.; Zarzana, K. J.; Yuan, B.; Lerner, B. M.; Brown, S. S.; Jimenez, J. L.; Krechmer, J. E.; Warneke, C.; Yokelson, R. J.; De Gouw, J. A.
2017-12-01
Gas-phase biomass burning emissions can include hundreds, if not thousands, of unique volatile and intermediate-volatility organic compounds. It is crucial to know the composition of these emissions to understand secondary organic aerosol formation, ozone formation, and human health effects resulting from fires. However, the composition can vary greatly with fuel type and fire combustion process. During the FIREX 2016 laboratory intensive at the US Forest Service Fire Sciences Laboratory in Missoula, Montana, high-resolution H3O+-CIMS (PTR-ToF) was deployed to characterize VOC emissions. More than 500 ion masses were consistently enhanced in each of 58 fires, which included a wide variety of fuel types representative of the western United States. Using a combination of extensive literature review, H3O+ and NO+ CIMS with GC preseparation, comparison to other instruments, and mass spectral context, we were able to identify the VOC contributors to 90% of the instrument signal. This provides unprecedented chemical detail in high time resolution. We present chemical characteristics of emissions, including OH reactivity and volatility, and highlight areas where better identification is needed.
New high-resolution electrostatic ion mass analyzer using time of flight
NASA Technical Reports Server (NTRS)
Hamilton, D. C.; Gloeckler, G.; Ipavich, F. M.; Lundgren, R. A.; Sheldon, R. B.
1990-01-01
The design of a high-resolution ion-mass analyzer is described, which is based on an accurate measurement of the time of flight (TOF) of ions within a region configured to produce a harmonic potential. In this device, the TOF, which is independent of ion energy, is determined from a start pulse from secondary electrons produced when the ion passes through a thin carbon foil at the entrance of the TOF region and at a stop pulse from the ion striking a microchannel plate upon exciting the region. A laboratory prototype instrument called 'VMASS' was built and was tested at the Goddard Space Flight Center electrostatic accelerator, showing a good mass resolution of the instrument. Sensors of the VMASS type will form part of the WIND Solar Wind and Suprathermal Ion experiment, the Soho mission, and the Advanced Composition Explorer.
NASA Astrophysics Data System (ADS)
Pan, Yue; Zhang, Qiangling; Zhou, Wenzhao; Zou, Xue; Wang, Hongmei; Huang, Chaoqun; Shen, Chengyin; Chu, Yannan
2017-05-01
Proton transfer reaction mass spectrometry (PTR-MS) has played an important role in the field of real-time monitoring of trace volatile organic compounds (VOCs) due to its advantages such as low limit of detection (LOD) and fast time response. Recently, a new technology of proton extraction reaction mass spectrometry (PER-MS) with negative ions OH- as the reagent ions has also been presented, which can be applied to the detection of VOCs and even inorganic compounds. In this work, we combined the functions of PTR-MS and PER-MS in one instrument, thereby developing a novel technology called dipolar proton transfer reaction mass spectrometry (DP-PTR-MS). The selection of PTR-MS mode and PER-MS mode was achieved in DP-PTR-MS using only water vapor in the ion source and switching the polarity. In this experiment, ketones (denoted by M) were selected as analytes. The ketone (molecular weight denoted by m) was ionized as protonated ketone [M + H]+ [mass-to-charge ratio ( m/z) m + 1] in PTR-MS mode and deprotonated ketone [M - H]- ( m/z m - 1) in PER-MS mode. By comparing the m/z value of the product ions in the two modes, the molecular weight of the ketone can be positively identified as m. Results showed that whether it is a single ketone sample or a mixed sample of eight kinds of ketones, the molecular weights can be detected with DP-PTR-MS. The newly developed DP-PTR-MS not only maintains the original advantages of PTR-MS and PER-MS in sensitive and rapid detection of ketones, but also can estimate molecular weight of ketones.
Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkholder, Frank; Kutscher, Chuck
2009-05-01
Two Schott 2008 model year PTR70 HCEs were tested on NREL's heat loss test stand from 100 - 500 deg C in 50 deg C increments. Absorber emittance was determined from the laboratory testing so that the performance of the HCEs could be modeled in a parabolic trough collector. Collector/HCE simulation results for many different field operation conditions were used to create heat loss correlationcoefficients for Excelergy and SAM. SAM estimates that the decreased emittance of the 2008 PTR70 will decrease the LCOE for parabolic trough power plants by 0.5 cents/kWh and increase the electricity generated by 5% relative tomore » previous PTR70s. These conclusions assume that the 2008 PTR70 is supplied at the same cost and with the same optical performance as earlier PTR70 models.« less
Zou, Xue; Kang, Meng; Li, Aiyue; Shen, Chengyin; Chu, Yannan
2016-03-15
Rapid and sensitive monitoring of benzene in water is very important to the health of people and for environmental protection. A novel and online detection method of spray inlet proton transfer reaction mass spectrometry (SI-PTR-MS) was introduced for rapid and sensitive monitoring of trace benzene in water. A spraying extraction system was coupled with the self-developed PTR-MS. The benzene was extracted from the water sample in the spraying extraction system and continuously detected with PTR-MS. The flow of carrier gas and salt concentration in water were optimized to be 50 sccm and 20% (w/v), respectively. The response time and the limit of detection of the SI-PTR-MS for detection of benzene in water were 55 s and 0.14 μg/L at 10 s integration time, respectively. The repeatability of the SI-PTR-MS was evaluated, and the relative standard deviation of five replicate determinations was 4.3%. The SI-PTR-MS system was employed for monitoring benzene in different water matrices, such as tap water, lake water, and wastewater. The results indicated that the online SI-PTR-MS can be used for rapid and sensitive monitoring of trace benzene in water.
Cologna, Stephanie M.; Crutchfield, Christopher A.; Searle, Brian C.; Blank, Paul S.; Toth, Cynthia L.; Ely, Alexa M.; Picache, Jaqueline A.; Backlund, Peter S.; Wassif, Christopher A.; Porter, Forbes D.; Yergey, Alfred L.
2017-01-01
Protein quantification, identification and abundance determination are important aspects of proteome characterization and are crucial in understanding biological mechanisms and human diseases. Different strategies are available to quantify proteins using mass spectrometric detection, and most are performed at the peptide level and include both targeted and un-targeted methodologies. Discovery-based or un-targeted approaches oftentimes use covalent tagging strategies (i.e., iTRAQ®, TMT™) where reporter ion signals collected in the tandem MS experiment are used for quantification. Herein we investigate the behavior of the iTRAQ 8-plex chemistry using MALDI-TOF/TOF instrumentation. The experimental design and data analysis approach described is simple and straightforward, which allows researchers to optimize data collection and proper analysis within a laboratory. iTRAQ reporter ion signals were normalized within each spectrum to remove peptide biases. An advantage of this approach is that missing reporter ion values can be accepted for purposes of protein identification and quantification with the need for ANOVA analysis. We investigate the distribution of reporter ion peak areas in an equimolar system and a mock biological system and provide recommendations for establishing fold-change cutoff values at the peptide level for iTRAQ datasets. These data provide a unique dataset available to the community for informatics training and analysis. PMID:26288259
Vasudevan, Srivathsan; Chen, George C K; Ahluwalia, Balpreet Singh
2008-12-01
Photothermal response (PTR) is an established pump and probe technique for real-time sensing of biological assays. Continuous and selective PTR monitoring is difficult owing to the Brownian motion changing the relative position of the target with respect to the beams. Integration of laser trapping with PTR is proposed as a solution. The proposed method is verified on red polystyrene microparticles. PTR is continuously monitored for 30 min. Results show that the mean relaxation time variation of the acquired signals is less than 5%. The proposed method is then applied to human red blood cells for continuous and selective PTR.
Effect of Local TOF Kernel Miscalibrations on Contrast-Noise in TOF PET
NASA Astrophysics Data System (ADS)
Clementel, Enrico; Mollet, Pieter; Vandenberghe, Stefaan
2013-06-01
TOF PET imaging requires specific calibrations: accurate characterization of the system timing resolution and timing offset is required to achieve the full potential image quality. Current system models used in image reconstruction assume a spatially uniform timing resolution kernel. Furthermore, although the timing offset errors are often pre-corrected, this correction becomes less accurate with the time since, especially in older scanners, the timing offsets are often calibrated only during the installation, as the procedure is time-consuming. In this study, we investigate and compare the effects of local mismatch of timing resolution when a uniform kernel is applied to systems with local variations in timing resolution and the effects of uncorrected time offset errors on image quality. A ring-like phantom was acquired on a Philips Gemini TF scanner and timing histograms were obtained from coincidence events to measure timing resolution along all sets of LORs crossing the scanner center. In addition, multiple acquisitions of a cylindrical phantom, 20 cm in diameter with spherical inserts, and a point source were simulated. A location-dependent timing resolution was simulated, with a median value of 500 ps and increasingly large local variations, and timing offset errors ranging from 0 to 350 ps were also simulated. Images were reconstructed with TOF MLEM with a uniform kernel corresponding to the effective timing resolution of the data, as well as with purposefully mismatched kernels. To CRC vs noise curves were measured over the simulated cylinder realizations, while the simulated point source was processed to generate timing histograms of the data. Results show that timing resolution is not uniform over the FOV of the considered scanner. The simulated phantom data indicate that CRC is moderately reduced in data sets with locally varying timing resolution reconstructed with a uniform kernel, while still performing better than non-TOF reconstruction. On the other hand, uncorrected offset errors in our setup have a larger potential for decreasing image quality and can lead to a reduction of CRC of up to 15% and an increase in the measured timing resolution kernel up to 40%. However, in realistic conditions in frequently calibrated systems, using a larger effective timing kernel in image reconstruction can compensate uncorrected offset errors.
Chroman-4-One Derivatives Targeting Pteridine Reductase 1 and Showing Anti-Parasitic Activity.
Di Pisa, Flavio; Landi, Giacomo; Dello Iacono, Lucia; Pozzi, Cecilia; Borsari, Chiara; Ferrari, Stefania; Santucci, Matteo; Santarem, Nuno; Cordeiro-da-Silva, Anabela; Moraes, Carolina B; Alcantara, Laura M; Fontana, Vanessa; Freitas-Junior, Lucio H; Gul, Sheraz; Kuzikov, Maria; Behrens, Birte; Pöhner, Ina; Wade, Rebecca C; Costi, Maria Paola; Mangani, Stefano
2017-03-08
Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues ( 1 - 3 ) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic enzymes ( Trypanosoma brucei PTR1- Tb PTR1 and Leishmania major-Lm PTR1) and parasites ( Trypanosoma brucei and Leishmania infantum ). A crystal structure of Tb PTR1 in complex with compound 1 and the first crystal structures of Lm PTR1-flavanone complexes (compounds 1 and 3 ) were solved. The inhibitory activity of the chroman-4-one and chromen-4-one derivatives was explained by comparison of observed and predicted binding modes of the compounds. Compound 1 showed activity both against the targeted enzymes and the parasites with a selectivity index greater than 7 and a low toxicity. Our results provide a basis for further scaffold optimization and structure-based drug design aimed at the identification of potent anti-trypanosomatidic compounds targeting multiple PTR1 variants.
Ranasinghe, Asoka; Ramanathan, Ragu; Jemal, Mohammed; D'Arienzo, Celia J; Humphreys, W Griffith; Olah, Timothy V
2012-03-01
UHPLC coupled with orthogonal acceleration hybrid quadrupole-TOF (Q-TOF)-MS is an emerging technique offering new strategies for the efficient screening of new chemical entities and related molecules at the early discovery stage within the pharmaceutical industry. In the first part of this article, we examine the main instrumental parameters that are critical for the integration of UHPLC-Q-TOF technology to existing bioanalytical workflows, in order to provide simultaneous quantitative and qualitative bioanalysis of samples generated following in vivo studies. Three modern Q-TOF mass spectrometers, including Bruker maXis™, Agilent 6540 and Sciex TripleTOF™ 5600, all interfaced with UHPLC systems, are evaluated in the second part of the article. The scope of this work is to demonstrate the potential of Q-TOF for the analysis of typical small molecules, therapeutic peptides (molecular weight <6000 Da), and enzymatically (i.e., trypsin, chymotrypsin and pepsin) cleaved peptides from larger proteins. This work focuses mainly on full-scan TOF data obtained under ESI conditions, the major mode of TOF operation in discovery bioanalytical research, where the compounds are selected based on their pharmacokinetic/pharmacodynamic behaviors using animal models prior to selecting a few desirable candidates for further development. Finally, important emerging TOF technologies that could potentially benefit bioanalytical research in the semi-quantification of metabolites without synthesized standards are discussed. Particularly, the utility of captive spray ionization coupled with TripleTOF 5600 was evaluated for improving sensitivity and providing normalized MS response for drugs and their metabolites. The workflow proposed compromises neither the efficiency, nor the quality of pharmacokinetic data in support of early drug discovery programs.
Touriño, Sonia; Fuguet, Elisabet; Jáuregui, Olga; Saura-Calixto, Fulgencio; Cascante, Marta; Torres, Josep Lluís
2008-11-01
Grape antioxidant dietary fiber (GADF) is a dietary supplement that combines the benefits of both fiber and antioxidants that help prevent cancer and cardiovascular diseases. The antioxidant polyphenolic components in GADF probably help prevent cancer in the digestive tract, where they are bioavailable. Mass spectrometry coupled to liquid chromatography is a powerful tool for the analysis of complex plant derivatives such as GADF. We use a combination of MS techniques, namely liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) on a triple quadrupole, for the identification of the polyphenolic constituents of the soluble fraction of GADF. First, we separated the mixture into four fractions which were tested for phenolic constituents using the TOF system in the full scan mode. The high sensitivity and resolution of the TOF detector over the triple quadrupole facilitate the preliminary characterization of the fractions. Then we used LC/ESI-MS/MS to identify the individual phenols through MS/MS experiments (product ion scan, neutral loss scan, precursor ion scan). Finally, most of the identities were unequivocally confirmed by accurate mass measurements on the TOF spectrometer. LC/ESI-TOF-MS combined with MS/MS correctly identifies the bioactive polyphenolic components from the soluble fraction of GADF. High-resolution TOF-MS is particularly useful for identifying the structure of compounds with the same LC/ESI-MS/MS fragmentation patterns.
Tandem Repeats in Proteins: Prediction Algorithms and Biological Role.
Pellegrini, Marco
2015-01-01
Tandem repetitions in protein sequence and structure is a fascinating subject of research which has been a focus of study since the late 1990s. In this survey, we give an overview on the multi-faceted aspects of research on protein tandem repeats (PTR for short), including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design. We also touch on the rather open issue of the relationship between PTR and flexibility (or disorder) in proteins. Detection of PTR either from protein sequence or structure data is challenging due to inherent high (biological) signal-to-noise ratio that is a key feature of this problem. As early in silico analytic tools have been key enablers for starting this field of study, we expect that current and future algorithmic and statistical breakthroughs will have a high impact on the investigations of the biological role of PTR.
Ye, Hongping; Hill, John; Kauffman, John; Gryniewicz, Connie; Han, Xianlin
2013-01-01
iTRAQ (isotope tags for relative and absolute quantification) reagent coupled with MALDI TOF/TOF mass spectrometric analysis has been evaluated as both a qualitative and quantitative method for the detection of modifications to active pharmaceutical ingredients derived from recombinant DNA technologies, and as a method to detect counterfeit drug products. Five types of insulin (human, bovine, porcine, Lispro, Lantus®) were used as model products in the study because of their minor variations in amino acid sequence. Several experiments were conducted in which each insulin variant was separately digested with Glu-C, and the digestate was labeled with one of four different iTRAQ reagents. All digestates were then combined for desalting and MALDI TOF/TOF mass spectrometric analysis. When the digestion procedure was optimized, the insulin sequence coverage was 100%. Five different types of insulin were readily differentiated, including Human insulin (P28K29) and Lispro (K28P29), which only differ by the interchange of two contiguous residues. Moreover, quantitative analyses show that the results obtained from the iTRAQ method agree well with those determined by other conventional methods. Collectively, the iTRAQ method can be used as a qualitative and quantitative technique for the detection of protein modification and counterfeiting. PMID:18489896
Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.
2016-01-01
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264
Abdullah, Sidrat; Sehgal, Sunish Kumar; Jin, Yue; Turnipseed, Brent; Ali, Shaukat
2017-01-01
Tan spot (TS), caused by the fungus Pyrenophora tritici-repentis (Died) Drechs, is an important foliar disease of wheat and has become a threat to world wheat production since the 1970s. In this study a globally diverse pre-1940s collection of 247 wheat genotypes was evaluated against Ptr ToxA, P. tritici-repentis race 1, and stem rust to determine if; (i) acquisition of Ptr ToxA by the P. tritici-repentis from Stagonospora nodorum led to increased pathogen virulence or (ii) incorporation of TS susceptibility during development stem rust resistant cultivars led to an increase in TS epidemics globally. Most genotypes were susceptible to stem rust; however, a range of reactions to TS and Ptr ToxA were observed. Four combinations of disease-toxin reactions were observed among the genotypes; TS susceptible-Ptr ToxA sensitive, TS susceptible-Ptr ToxA insensitive, TS resistant-Ptr ToxA insensitive, and TS resistant-Ptr ToxA toxin sensitive. A weak correlation (r = 0.14 for bread wheat and −0.082 for durum) was observed between stem rust susceptibility and TS resistance. Even though there were no reported epidemics in the pre-1940s, TS sensitive genotypes were widely grown in that period, suggesting that Ptr ToxA may not be an important factor responsible for enhanced prevalence of TS. PMID:28381959
Duyvejonck, Hans; Cools, Piet; Decruyenaere, Johan; Roelens, Kristien; Noens, Lucien; Vermeulen, Stefan; Claeys, Geert; Decat, Ellen; Van Mechelen, Els; Vaneechoutte, Mario
2015-01-01
Candida species are known as opportunistic pathogens, and a possible cause of invasive infections. Because of their species-specific antimycotic resistance patterns, reliable techniques for their detection, quantification and identification are needed. We validated a DNA amplification method for direct detection of Candida spp. from clinical samples, namely the ITS2-High Resolution Melting Analysis (direct method), by comparing it with a culture and MALDI-TOF Mass Spectrometry based method (indirect method) to establish the presence of Candida species in three different types of clinical samples. A total of 347 clinical samples, i.e. throat swabs, rectal swabs and vaginal swabs, were collected from the gynaecology/obstetrics, intensive care and haematology wards at the Ghent University Hospital, Belgium. For the direct method, ITS2-HRM was preceded by NucliSENS easyMAG DNA extraction, directly on the clinical samples. For the indirect method, clinical samples were cultured on Candida ID and individual colonies were identified by MALDI-TOF. For 83.9% of the samples there was complete concordance between both techniques, i.e. the same Candida species were detected in 31.1% of the samples or no Candida species were detected in 52.8% of the samples. In 16.1% of the clinical samples, discrepant results were obtained, of which only 6.01% were considered as major discrepancies. Discrepancies occurred mostly when overall numbers of Candida cells in the samples were low and/or when multiple species were present in the sample. Most of the discrepancies could be decided in the advantage of the direct method. This is due to samples in which no yeast could be cultured whereas low amounts could be detected by the direct method and to samples in which high quantities of Candida robusta according to ITS2-HRM were missed by culture on Candida ID agar. It remains to be decided whether the diagnostic advantages of the direct method compensate for its disadvantages.
Radbruch, Alexander; Eidel, Oliver; Wiestler, Benedikt; Paech, Daniel; Burth, Sina; Kickingereder, Philipp; Nowosielski, Martha; Bäumer, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin; Ladd, Mark; Nagel, Armin Michael; Heiland, Sabine
2014-01-01
Purpose To analyze if tumor vessels can be visualized, segmented and quantified in glioblastoma patients with time of flight (ToF) angiography at 7 Tesla and multiscale vessel enhancement filtering. Materials and Methods Twelve patients with newly diagnosed glioblastoma were examined with ToF angiography (TR = 15 ms, TE = 4.8 ms, flip angle = 15°, FOV = 160×210 mm2, voxel size: 0.31×0.31×0.40 mm3) on a whole-body 7 T MR system. A volume of interest (VOI) was placed within the border of the contrast enhancing part on T1-weighted images of the glioblastoma and a reference VOI was placed in the non-affected contralateral white matter. Automated segmentation and quantification of vessels within the two VOIs was achieved using multiscale vessel enhancement filtering in ImageJ. Results Tumor vessels were clearly visible in all patients. When comparing tumor and the reference VOI, total vessel surface (45.3±13.9 mm2 vs. 29.0±21.0 mm2 (p<0.035)) and number of branches (3.5±1.8 vs. 1.0±0.6 (p<0.001) per cubic centimeter were significantly higher, while mean vessel branch length was significantly lower (3.8±1.5 mm vs 7.2±2.8 mm (p<0.001)) in the tumor. Discussion ToF angiography at 7-Tesla MRI enables characterization and quantification of the internal vascular morphology of glioblastoma and may be used for the evaluation of therapy response within future studies. PMID:25415327
Egom, Emmanuel E.; Fitzgerald, Ross; Canning, Rebecca; Pharithi, Rebabonye B.; Murphy, Colin; Maher, Vincent
2017-01-01
Evidence suggests that high-density lipoprotein (HDL) components distinct from cholesterol, such as sphingosine-1-phosphate (S1P), may account for the anti-atherothrombotic effects attributed to this lipoprotein. The current method for the determination of plasma levels of S1P as well as levels associated with HDL particles is still cumbersome an assay method to be worldwide practical. Recently, a simplified protocol based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the sensitive and specific quantification of plasma levels of S1P with good accuracy has been reported. This work utilized a triple quadrupole (QqQ)-based LC-MS/MS system. Here we adapt that method for the determination of plasma levels of S1P using a quadrupole time of flight (Q-Tof) based LC-MS system. Calibration curves were linear in the range of 0.05 to 2 µM. The lower limit of quantification (LOQ) was 0.05 µM. The concentration of S1P in human plasma was determined to be 1 ± 0.09 µM (n = 6). The average accuracy over the stated range of the method was found to be 100 ± 5.9% with precision at the LOQ better than 10% when predicting the calibration standards. The concentration of plasma S1P in the prepared samples was stable for 24 h at room temperature. We have demonstrated the quantification of plasma S1P using Q-Tof based LC-MS with very good sensitivity, accuracy, and precision that can used for future studies in this field. PMID:28820460
Chudáčková, Eva; Walková, Radka
2013-01-01
Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied as an identification procedure in clinical microbiology and has been widely used in routine laboratory practice because of its economical and diagnostic benefits. The range of applications of MALDI-TOF MS has been growing constantly, from rapid species identification to labor-intensive proteomic studies of bacterial physiology. The purpose of this review is to summarize the contribution of the studies already performed with MALDI-TOF MS concerning antibiotic resistance and to analyze future perspectives in this field. We believe that current research should continue in four main directions, including the detection of antibiotic modifications by degrading enzymes, the detection of resistance mechanism determinants through proteomic studies of multiresistant bacteria, and the analysis of modifications of target sites, such as ribosomal methylation. The quantification of antibiotics is suggested as a new approach to study influx and efflux in bacterial cells. The results of the presented studies demonstrate that MALDI-TOF MS is a relevant tool for the detection of antibiotic resistance and opens new avenues for both clinical and experimental microbiology. PMID:23297261
Spraggins, Jeffrey M; Rizzo, David G; Moore, Jessica L; Noto, Michael J; Skaar, Eric P; Caprioli, Richard M
2016-06-01
MALDI imaging mass spectrometry is a powerful analytical tool enabling the visualization of biomolecules in tissue. However, there are unique challenges associated with protein imaging experiments including the need for higher spatial resolution capabilities, improved image acquisition rates, and better molecular specificity. Here we demonstrate the capabilities of ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR IMS platforms as they relate to these challenges. High spatial resolution MALDI-TOF protein images of rat brain tissue and cystic fibrosis lung tissue were acquired at image acquisition rates >25 pixels/s. Structures as small as 50 μm were spatially resolved and proteins associated with host immune response were observed in cystic fibrosis lung tissue. Ultra-high speed MALDI-TOF enables unique applications including megapixel molecular imaging as demonstrated for lipid analysis of cystic fibrosis lung tissue. Additionally, imaging experiments using MALDI FTICR IMS were shown to produce data with high mass accuracy (<5 ppm) and resolving power (∼75 000 at m/z 5000) for proteins up to ∼20 kDa. Analysis of clear cell renal cell carcinoma using MALDI FTICR IMS identified specific proteins localized to healthy tissue regions, within the tumor, and also in areas of increased vascularization around the tumor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Ruokun; Li, Liang
2015-04-06
The effect of sample injection amount on metabolome analysis in a chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) platform was investigated. The performance of time-of-flight (TOF) mass spectrometers with and without a high-dynamic-range (HD) detection system was compared in the analysis of (12)C2/(13)C2-dansyl labeled human urine samples. An average of 1635 ± 21 (n = 3) peak pairs or putative metabolites was detected using the HD-TOF-MS, compared to 1429 ± 37 peak pairs from a conventional or non-HD TOF-MS. In both instruments, signal saturation was observed. However, in the HD-TOF-MS, signal saturation was mainly caused by the ionization process, while in the non-HD TOF-MS, it was caused by the detection process. To extend the MS detection range in the non-HD TOF-MS, an automated switching from using (12)C to (13)C-natural abundance peaks for peak ratio calculation when the (12)C peaks are saturated has been implemented in IsoMS, a software tool for processing CIL LC-MS data. This work illustrates that injecting an optimal sample amount is important to maximize the metabolome coverage while avoiding the sample carryover problem often associated with over-injection. A TOF mass spectrometer with an enhanced detection dynamic range can also significantly increase the number of peak pairs detected. In chemical isotope labeling (CIL) LC-MS, relative metabolite quantification is done by measuring the peak ratio of a (13)C2-/(12)C2-labeled peak pair for a given metabolite present in two comparative samples. The dynamic range of peak ratio measurement does not need to be very large, as only subtle changes of metabolite concentrations are encountered in most metabolomic studies where relative metabolome quantification of different groups of samples is performed. However, the absolute concentrations of different metabolites can be very different, requiring a technique to provide a wide detection dynamic range to allow the detection of as many peak pairs as possible. In this work, we demonstrated that controlling the sample injection amount into LC-MS was critical to achieve the optimal detectability while avoiding sample carry-over problem. In addition, the use of a high-dynamic-range TOF system increased the number of peak pairs detected, compared to a conventional TOF system. We also investigated the ionization and detection saturation factors limiting the dynamic range of detection. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras. Copyright © 2014 Elsevier B.V. All rights reserved.
Yu, Liangliang; Li, Qiong; Zhu, Yingying; Afzal, Muhammad Saddique; Li, Laigeng
2018-05-01
PtrGH9A7, a poplar β-type endo-1,4-β-glucanase gene induced by auxin, promotes both plant growth and lateral root development by enhancing cell expansion. Endo-1,4-β-glucanase (EGase) family genes function in multiple aspects of plant growth and development. Our previous study found that PtrCel9A6, a poplar EGase gene of the β subfamily, is specifically expressed in xylem tissue and is involved in the cellulose biosynthesis required for secondary cell wall formation (Yu et al. in Mol Plant 6:1904-1917, 2013). To further explore the functions and regulatory mechanism of β-subfamily EGases, we cloned and characterized another poplar β-type EGase gene PtrGH9A7, a close homolog of PtrCel9A6. In contrast to PtrCel9A6, PtrGH9A7 is predominantly expressed in parenchyma tissues of the above-ground part; in roots, PtrGH9A7 expression is specifically restricted to lateral root primordia at all stages from initiation to emergence and is strongly induced by auxin application. Heterologous overexpression of PtrGH9A7 promotes plant growth by enhancing cell expansion, suggesting a conserved role for β-type EGases in 1,4-β-glucan chains remodeling, which is required for cell wall loosening. Moreover, the overexpression of PtrGH9A7 significantly increases lateral root number, which might result from improved lateral root primordium development due to enhanced cell expansion. Taken together, these results demonstrate that this β-type EGase induced by auxin signaling has a novel role in promoting lateral root formation as well as in enhancing plant growth.
Nalbant, Demet; Cancelas, José A; Mock, Donald M; Kyosseva, Svetlana V; Schmidt, Robert L; Cress, Gretchen A; Zimmerman, M Bridget; Strauss, Ronald G; Widness, John A
2018-02-01
Critically ill preterm very-low-birthweight (VLBW) neonates (birthweight ≤ 1.5 kg) frequently develop anemia that is treated with red blood cell (RBC) transfusions. Although RBCs transfused to adults demonstrate progressive decreases in posttransfusion 24-hour RBC recovery (PTR 24 ) during storage-to a mean of approximately 85% of the Food and Drug Administration-allowed 42-day storage-limited data in infants indicate no decrease in PTR 24 with storage. We hypothesized that PTR 24 of allogeneic RBCs transfused to anemic VLBW newborns: 1) will be greater than PTR 24 of autologous RBCs transfused into healthy adults and 2) will not decrease with increasing storage duration. RBCs were stored at 4°C for not more than 42 days in AS-3 or AS-5. PTR 24 was determined in 46 VLBW neonates using biotin-labeled RBCs and in 76 healthy adults using 51 Cr-labeled RBCs. Linear mixed-model analysis was used to estimate slopes and intercepts of PTR 24 versus duration of RBC storage. For VLBW newborns, the estimated slope of PTR 24 versus storage did not decrease with the duration of storage (p = 0.18) while for adults it did (p < 0.0001). These estimated slopes differed significantly in adults compared to newborns (p = 0.04). At the allowed 42-day storage limit, projected mean neonatal PTR 24 was 95.9%; for adults, it was 83.8% (p = 0.0002). These data provide evidence that storage duration of allogeneic RBCs intended for neonates can be increased without affecting PTR 24 . This conclusion supports the practice of transfusing RBCs stored up to 42 days for small-volume neonatal transfusions to limit donor exposure. © 2017 AABB.
Tulloch, Lindsay B; Martini, Viviane P; Iulek, Jorge; Huggan, Judith K; Lee, Jeong Hwan; Gibson, Colin L; Smith, Terry K; Suckling, Colin J; Hunter, William N
2010-01-14
Pteridine reductase (PTR1) is a target for drug development against Trypanosoma and Leishmania species, parasites that cause serious tropical diseases and for which therapies are inadequate. We adopted a structure-based approach to the design of novel PTR1 inhibitors based on three molecular scaffolds. A series of compounds, most newly synthesized, were identified as inhibitors with PTR1-species specific properties explained by structural differences between the T. brucei and L. major enzymes. The most potent inhibitors target T. brucei PTR1, and two compounds displayed antiparasite activity against the bloodstream form of the parasite. PTR1 contributes to antifolate drug resistance by providing a molecular bypass of dihydrofolate reductase (DHFR) inhibition. Therefore, combining PTR1 and DHFR inhibitors might improve therapeutic efficacy. We tested two new compounds with known DHFR inhibitors. A synergistic effect was observed for one particular combination highlighting the potential of such an approach for treatment of African sleeping sickness.
In-beam test of the RPC architecture foreseen to be used for the CBM-TOF inner wall
NASA Astrophysics Data System (ADS)
Petriş, M.; Bartoş, D.; Petrovici, M.; Rădulescu, L.; Simion, V.; Deppner, I.; Herrmann, N.; Simon, C.; Frühauf, J.; Kiš, M.; Loizeau, P.-A.
2018-05-01
The Time Of Flight (TOF) subsystem is one of the main detectors of the CBM experiment. The TOF wall in conjunction with Silicon Tracking System (STS) is foreseen to identify charged hadrons, i.e. pions, kaons and protons, with a full azimuthal coverage at 2.50 - 250 polar angles. A system time resolution of at least 80 ps, including all contributions, such as electronics jitter and the resolution of the time reference system, is required. Such a performance should be maintained up to a counting rate larger than 30 kHz/cm2 at the most inner region of TOF wall. Our R&D activity has been focused on the development of two-dimensional position sensitive Multi-gap Resistive Plate Counter (MRPC) prototypes for the forward region of the CBM-TOF subdetector, the most demanding zone in terms of granularity and counting rate. The in-beam tests using secondary particles produced in 30 GeV/u Pb ion collisions on a Pb target at SPS - CERN aimed to test the performance of these prototypes in conditions similar to the ones expected at SIS100 at FAIR. The performance of the prototypes is studied in conditions of exposure of the whole active area of the chamber to high multiplicity of reaction products. The results show that this type of MRPC fulfill the challenging requirements of the CBM-TOF wall. Therefore, such an architecture is recommended as basic solution for CBM-TOF inner zone.
Wavelength-independent constant period spin-echo modulated small angle neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales, Morten, E-mail: lsp260@alumni.ku.dk; Plomp, Jeroen; Bouwman, Wim
2016-06-15
Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved bymore » ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.« less
[3D-TOF MR-angiography with high spatial resolution for surgical planning in insular lobe gliomas].
Bykanov, A E; Pitskhelauri, D I; Pronin, I N; Tonoyan, A S; Kornienko, V N; Zakharova, N E; Turkin, A M; Sanikidze, A Z; Shkarubo, M A; Shkatova, A M; Shults, E I
2015-01-01
Despite the obvious progress in modern neurosurgery, surgery for glial tumors of the insular lobe is often associated with a high risk of postoperative neurological deficit, which is primarily caused by damage to perforating arteries of the M1 segment of the middle cerebral artery. The work is aimed at evaluating the effectiveness of high resolution time-of-flight (3D-TOF) MR angiography in imaging of medial and lateral lenticulostriate arteries and determining their relationship to tumor edge in patients with gliomas of the insula. 3D-TOF MR angiography data were analyzed in 20 patients with primarily diagnosed cerebral gliomas involving the insula. All patients underwent non-contrast enhanced 3D-TOF MR angiography. In 6 cases, 3D-TOF MRA was performed before and after contrast enhancement. 3D-TOF angiography before intravenous contrast injection was capable of visualizing the medial lenticulostriate arteries in 19 patients (95% of all cases) and lateral lenticulostriate arteries in 18 patients (90% of all cases). Contrast-enhanced 3D-TOF angiography allows for better visualization of both the proximal and distal segments of lenticulostriate arteries. Three variants of relationship between the tumor and lenticulostriate arteries were identified. Variant I: the tumor grew over the arteries without their displacement in 2 cases (10% of the total number of observations); variant II: the tumor caused medial displacement of arteries without growing over them in 11 cases (55% of the total number of observations); variant III: the tumor partially grew over and displaced arteries in 2 cases (10%). In 25% of cases (5 patients), tumor was poorly visualized on 3D-TOF MR angiograms because their signal characteristics did not differ from those of the medulla (tumor tissue was T1 isointense). As a result, it was impossible to determine the relationship between the tumor and lenticulostriate arteries. High spatial resolution time-of-flight MR angiography can be recommended for preoperative imaging of lenticulostriate arteries to plan the extent of neurosurgical resection in patients with glial tumors of the insular lobe.
Time-of-flight mass spectrographs—From ions to neutral atoms
NASA Astrophysics Data System (ADS)
Möbius, E.; Galvin, A. B.; Kistler, L. M.; Kucharek, H.; Popecki, M. A.
2016-12-01
After their introduction to space physics in the mid 1980s time-of-flight (TOF) spectrographs have become a main staple in spaceborne mass spectrometry. They have largely replaced magnetic spectrometers, except when extremely high mass resolution is required to identify complex molecules, for example, in the vicinity of comets or in planetary atmospheres. In combination with electrostatic analyzers and often solid state detectors, TOF spectrographs have become key instruments to diagnose space plasma velocity distributions, mass, and ionic charge composition. With a variety of implementation schemes that also include isochronous electric field configurations, TOF spectrographs can respond to diverse science requirements. This includes a wide range in mass resolution to allow the separation of medium heavy isotopes or to simply provide distributions of the major species, such as H, He, and O, to obtain information on source tracers or mass fluxes. With a top-hat analyzer at the front end, or in combination with deflectors for three-axis stabilized spacecraft, the distribution function of ions can be obtained with good time resolution. Most recently, the reach of TOF ion mass spectrographs has been extended to include energetic neutral atoms. After selecting the arrival direction with mechanical collimation, followed by conversion to ions, adapted TOF sensors form a new branch of the spectrograph family tree. We review the requirements, challenges, and implementation schemes for ion and neutral atom spectrographs, including potential directions for the future, while largely avoiding overlap with complementary contributions in this special issue.
Analysis of energy resolution in the KURRI-LINAC pulsed neutron facility
NASA Astrophysics Data System (ADS)
Sano, Tadafumi; Hori, Jun-ichi; Takahashi, Yoshiyuki; Yashima, Hiroshi; Lee, Jaehong; Harada, Hideo
2017-09-01
In this study, we carried out Monte Carlo simulations to obtain the energy resolution of the neutron flux for TOF measurements in the KURRI-LINAC pulsed neutron facility. The simulation was performed on the moderated neutron flux from the pac-man type moderator at the energy range from 0.1 eV to 10 keV. As the result, we obtained the energy resolutions (ΔE/E) of about 0.7% to 1.3% between 0.1 eV to 10 keV. The energy resolution obtained from Monte Carlo simulation agreed with the resolution using the simplified evaluation formula. In addition, we compared the energy resolution among KURRI-LINAC and other TOF facilities, the energy dependency of the energy resolution with the pac-man type moderator in KURRI-LINAC was similar to the J-PARC ANNRI for the single-bunch mode.
Time-of-flight PET time calibration using data consistency
NASA Astrophysics Data System (ADS)
Defrise, Michel; Rezaei, Ahmadreza; Nuyts, Johan
2018-05-01
This paper presents new data driven methods for the time of flight (TOF) calibration of positron emission tomography (PET) scanners. These methods are derived from the consistency condition for TOF PET, they can be applied to data measured with an arbitrary tracer distribution and are numerically efficient because they do not require a preliminary image reconstruction from the non-TOF data. Two-dimensional simulations are presented for one of the methods, which only involves the two first moments of the data with respect to the TOF variable. The numerical results show that this method estimates the detector timing offsets with errors that are larger than those obtained via an initial non-TOF reconstruction, but remain smaller than of the TOF resolution and thereby have a limited impact on the quantitative accuracy of the activity image estimated with standard maximum likelihood reconstruction algorithms.
Physical and clinical performance of the mCT time-of-flight PET/CT scanner.
Jakoby, B W; Bercier, Y; Conti, M; Casey, M E; Bendriem, B; Townsend, D W
2011-04-21
Time-of-flight (TOF) measurement capability promises to improve PET image quality. We characterized the physical and clinical PET performance of the first Biograph mCT TOF PET/CT scanner (Siemens Medical Solutions USA, Inc.) in comparison with its predecessor, the Biograph TruePoint TrueV. In particular, we defined the improvements with TOF. The physical performance was evaluated according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standard with additional measurements to specifically address the TOF capability. Patient data were analyzed to obtain the clinical performance of the scanner. As expected for the same size crystal detectors, a similar spatial resolution was measured on the mCT as on the TruePoint TrueV. The mCT demonstrated modestly higher sensitivity (increase by 19.7 ± 2.8%) and peak noise equivalent count rate (NECR) (increase by 15.5 ± 5.7%) with similar scatter fractions. The energy, time and spatial resolutions for a varying single count rate of up to 55 Mcps resulted in 11.5 ± 0.2% (FWHM), 527.5 ± 4.9 ps (FWHM) and 4.1 ± 0.0 mm (FWHM), respectively. With the addition of TOF, the mCT also produced substantially higher image contrast recovery and signal-to-noise ratios in a clinically-relevant phantom geometry. The benefits of TOF were clearly demonstrated in representative patient images.
Physical and clinical performance of the mCT time-of-flight PET/CT scanner
NASA Astrophysics Data System (ADS)
Jakoby, B. W.; Bercier, Y.; Conti, M.; Casey, M. E.; Bendriem, B.; Townsend, D. W.
2011-04-01
Time-of-flight (TOF) measurement capability promises to improve PET image quality. We characterized the physical and clinical PET performance of the first Biograph mCT TOF PET/CT scanner (Siemens Medical Solutions USA, Inc.) in comparison with its predecessor, the Biograph TruePoint TrueV. In particular, we defined the improvements with TOF. The physical performance was evaluated according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standard with additional measurements to specifically address the TOF capability. Patient data were analyzed to obtain the clinical performance of the scanner. As expected for the same size crystal detectors, a similar spatial resolution was measured on the mCT as on the TruePoint TrueV. The mCT demonstrated modestly higher sensitivity (increase by 19.7 ± 2.8%) and peak noise equivalent count rate (NECR) (increase by 15.5 ± 5.7%) with similar scatter fractions. The energy, time and spatial resolutions for a varying single count rate of up to 55 Mcps resulted in 11.5 ± 0.2% (FWHM), 527.5 ± 4.9 ps (FWHM) and 4.1 ± 0.0 mm (FWHM), respectively. With the addition of TOF, the mCT also produced substantially higher image contrast recovery and signal-to-noise ratios in a clinically-relevant phantom geometry. The benefits of TOF were clearly demonstrated in representative patient images.
A New Mass Spectrometer for Upper Atmospheric Measurements in the Auroral Region
NASA Astrophysics Data System (ADS)
Everett, E. A.; Dyer, J. S.; Watson, M.; Sanderson, W.; Schicker, S.; Work, D.; Mertens, C. J.; Bailey, S. M.; Syrstad, E. A.
2011-12-01
We have previously presented a new rocket-borne time-of-flight mass spectrometer (TOF-MS) for measurements in the mesosphere / lower thermosphere (MLT). Traditionally, mass spectrometry in the MLT has been difficult, mainly due to the elevated ambient pressures of the MLT and high speeds of a sounding rocket flight, which affect the direct sampling of the ambient atmosphere and spatial resolution. The TOF-MS is a versatile, inherently adaptable, axial-sampling instrument, capable of operating in a traditional TOF mode or in a multiplexing Hadamard-transform mode where high spatial resolution is desired. To minimize bow shock effects at low altitudes (~70-110km), the ram surface of the TOF-MS can be cryogenically cooled using liquid He to adsorb impinging gas particles. The vacuum pumping system for the TOF-MS is tailored to the specific mission and instrument configuration. Depending on the instrument gas load and operating altitude, cryo, miniature turbo pump or getter-based pumping systems may be employed. Terrestrial TOF-MS instruments often employ a reflectron, essentially an ion-mirror, to improve mass resolving power and compensate for the thermal velocity distribution of particles being measured. The TOF-MS can be arranged in either a simple linear or reflectron configuration. Simulations and modeling are used to compare instrument mass resolution for linear and reflectron configurations for several variable conditions including vehicle velocity and ambient temperature, ultimately demonstrating the potential to make rocket-borne mass spectrometry measurements with unit-mass resolution up to at least 48 amu. Preliminary analyses suggest that many species of interest (including He, CO2, O2, O2+ , N2, N2+, and NO+) can be measured with an uncertainty below 10% relative standard deviation on a sounding rocket flight. We also present experimental data for a laboratory prototype linear TOF-MS. Experimental data is compared to simulation and modeling efforts to validate and confirm instrument performance and capability. Two proposed rocket campaigns for investigations of the auroral region include the TOF-MS. By making accurate composition measurements of the neutral atmosphere from 70 to 120km, Mass Spectrometry of the Turbopause Region (MSTR) aims to improve the accuracy of temperature measurements in the turbopause region, improve the MSIS model atmosphere and examine the transition from the turbulently mixed lower atmosphere to the diffusive equilibrium of the upper atmosphere. The ROCKet-borne STorm Energetics of Auroral Dosing in the E-region (ROCK-STEADE) mission will study energy transfer in the E-region during an aurora by examining auroral emissions and measuring concentrations of neutrals and ions. The instrument suite for ROCK-STEADE includes two mass spectrometers, one each to measure neutrals and ions in the altitude range of 70 - 170km. The ability of the TOF-MS instrument to make accurate measurements will greatly aid in better understanding the MLT.
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-09-21
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
NASA Astrophysics Data System (ADS)
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-10-01
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
NASA Astrophysics Data System (ADS)
Li, R.; Warneke, C.; Graus, M.; Field, R. A.; Veres, P. R.; Geiger, F.; Soltis, J.; Li, S.; Murphy, S. M.; De Gouw, J. A.
2013-12-01
Natural gas production is associated with emissions of a variety of toxic trace gases. While volatile organic compounds (VOCs) have received considerable attention, H2S is also of concern due to the known health impacts of exposure to this hazardous air pollutant. Here, we present quantitative, fast time-response measurements of hydrogen sulfide (H2S) using Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) instruments. The PTR-MS was operated for measurements of VOCs including H2S at the Horsepool ground site in the Uintah Basin during the Uintah Basin Winter Ozone Study (UBWOS) 2013 campaign. Measurements of H2S from a mobile laboratory in the gas and oil fields were also made by Ultra-Light-Weight PTR-MS (ULW-PTR-MS) during UBWOS 2012. The H2S measurement by PTR-MS is strongly humidity dependent. We compare the humidity dependence determined in the laboratory with in-field calibrations of H2S and determine the H2S mixing ratios for the mobile and ground measurements. The PTR-MS measurements at Horsepool are compared with simultaneous H2S measurements using a Proton-Transfer-Reaction Time-of-Flight (PTR-ToF) and an H2S/CH4 Picarro instrument. The H2S measurements by PTR-MS agree with both instruments within 30% uncertainties. The combination of the two campaigns (UBWOS 2012 & 2013) has shown that on average 1 - 2 ppbv of H2S is present in the Uintah Basin. The correlation between H2S and methane suggests that the source of H2S is associated with the oil and gas extraction in the basin. Significant H2S emissions with mixing ratios of up to 3 ppmv from storage tanks and wells were observed during the mobile lab measurements. This study suggests that H2S emissions associated with oil and gas production can lead to short-term high levels close to point sources, and elevated background levels away from those sources. Our work has also shown that PTR-MS can make reliable measurements of H2S at levels below 1 ppbv.
Stith, B.M.; Slone, D.H.; de Wit, M.; Edwards, H.H.; Langtimm, C.A.; Swain, E.D.; Soderqvist, L.E.; Reid, J.P.
2012-01-01
Haloclines induced by freshwater inflow over tidal water have been identified as an important mechanism for maintaining warm water in passive thermal refugia (PTR) used by Florida manatees Trichechus manatus latirostris during winter in extreme southwestern Florida. Record-setting cold during winter 2009–2010 resulted in an unprecedented number of manatee deaths, adding to concerns that PTR may provide inadequate thermal protection during severe cold periods. Hydrological data from 2009–2010 indicate that 2 canal systems in the Ten Thousand Islands (TTI) region acted as PTR and maintained warm bottom-water temperatures, even during severe and prolonged cold periods. Aerial survey counts of live and dead manatees in TTI during the winter of 2009–2010 suggest that these PTR were effective at preventing mass mortality from hypothermia, in contrast to the nearby Everglades region, which lacks similar artificial PTR and showed high manatee carcass counts. Hydrological data from winter 2008–2009 confirmed earlier findings that without haloclines these artificial PTR may become ineffective as warm-water sites. Tidal pumping of groundwater appears to provide additional heat to bottom water during low tide cycles, but the associated thermal inversion is not observed unless salinity stratification is present. The finding that halocline-driven PTR can maintain warm water even under extreme winter conditions suggests that they may have significant potential as warm-water sites. However, availability and conflicting uses of freshwater and other management issues may make halocline-driven PTR unreliable or difficult to manage during winter.
The Hydrocarbon Fingerprints of Organic-rich Shales
NASA Astrophysics Data System (ADS)
Davies, S. J.; Sommariva, R.; Blake, R.; Ortega, M.; Cuss, R. J.; Harrington, J.; Emmings, J.; Lovell, M.; Monks, P.
2016-12-01
Geological characterization of key source rocks and potential unconventional reservoirs from the UK Mississippian has shed new light on the heterogeneous character of shales (mudstones) and also on the mechanisms for preserving organic matter of different types and abundances. Sedimentological studies of these mudstones suggest that systematic variations in total organic carbon (TOC) content are related to the dominant sediment delivery process (hemipelagic suspension settling vs. sediment gravity flows). Questions remain, however, as to how the physical character and chemical composition (e.g. lithology, mineralogy, organic matter type, maturity and abundance) of a mudstone relates to the volume and type of hydrocarbon gas that could be released. Using novel proof-of-principle laboratory experiments, we demonstrate that it is possible to quantify, in real-time (second by second), methane and a wide range of non-methane hydrocarbons (NMHC) gases as they are released from a crushed mudstone sample. Real time measurements are undertaken using proton-transfer-reaction time-of-flight mass spectrometry (PTR- TOF- MS). The PTR technique is not sensitive to some classes of NHMC and the whole range of hydrocarbons is analyzed using thermal desorption gas chromatography mass spectrometry (TD- GC- MS). Our data indicate that NMHC gases (mostly alkanes and aromatics) are released with temperature and humidity-dependent release rates, which depend on the physio-chemical characteristics of the different hydrocarbons classes and on the mode of storage within the shale. Knowledge of the abundance of methane and the speciated NMHC, and how that relates to geological characteristics of a mudstone is important to understand both the source rock potential and the potential pollutants. Ultimately, we aim to link these results to the geomechanical properties of shales. We discuss the implications of our findings for the environment and for the industrial and commercial exploitation of source rocks and unconventional reservoirs.
NASA Astrophysics Data System (ADS)
Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.
2012-05-01
The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical alternative for groups interested in total OH reactivity observations.
NASA Astrophysics Data System (ADS)
Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.
2012-12-01
The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical alternative for groups interested in total OH reactivity observations.
NASA Astrophysics Data System (ADS)
Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; de Sá, S. S.; Ayres, B. R.; Draper, D.; Fry, J.; Ortega, A. M.; Kiendler-Scharr, A.; Pajunoja, A.; Virtanen, A.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, R. L. N.; Stark, H.; Worsnop, D. R.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.
2015-12-01
A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area in Centreville Supersite, AL (SEARCH network) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 oxidation flow reactors (OFR) were used to expose ambient air to oxidants and their output was analyzed by state-of-the-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a HR Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and Two HR-TOF Chemical Ionization Mass Spectrometers (HRToF-CIMS). Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, NO3 radicals and O3) to investigate the oxidation of BVOCs (including isoprene derived epoxydiols, IEPOX) and SOA formation and aging. Effective OH exposures up to 1×1013 molec cm-3 s were achieved, equivalent to over a month of aging in the atmosphere. Multiple oxidation products from isoprene and monoterpenes including small gas-phase acids were observed in OH OFR. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ~30% of ambient OA, indicating shifting contributions of functionalization vs. fragmentation, consistent with results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than ambient OA. More SOA is typically formed during nighttime when terpenes are higher and photochemistry is absent, and less during daytime when isoprene is higher, although the IEPOX pathway is suppressed in the OFR. SOA is also observed after exposure of ambient air to O3 or NO3, although the amounts and oxidation levels were lower than for OH. Formation of organic nitrates in the NO3 reaction will also be discussed.A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area in Centreville Supersite, AL (SEARCH network) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 oxidation flow reactors (OFR) were used to expose ambient air to oxidants and their output was analyzed by state-of-the-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a HR Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and two HR-TOF Chemical Ionization Mass Spectrometers (HRToF-CIMS). Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, NO3 radicals and O3) to investigate the oxidation of BVOCs (including ambient isoprene-derived epoxydiols, IEPOX) and SOA formation and aging. Effective OH exposures up to 1×1013 molec cm-3 s were achieved, equivalent to over a month of aging in the atmosphere. Multiple oxidation products from isoprene and monoterpenes including small gas-phase acids were observed in OH OFR. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ~30% of ambient OA, indicating shifting contributions of functionalization vs. fragmentation, consistent with results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than ambient OA. More SOA is typically formed during nighttime when terpenes are higher and photochemistry is absent, and less during daytime when isoprene is higher, although the IEPOX pathway is suppressed in the OFR. SOA is also observed after exposure of ambient air to O3 or NO3, although the amounts and oxidation levels were lower than for OH. Formation of organic nitrates in the NO3 reaction will also be discussed.
USDA-ARS?s Scientific Manuscript database
Plant resistance (R) genes typically encode proteins with nucleotide binding site-leucine rich repeat (NLR) domains. We identified a novel, broad-spectrum rice blast R gene, Ptr, encoding a non-NLR protein with four Armadillo repeats. Ptr was originally identified by fast neutron mutagenesis as a ...
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Jun-yan; Wang, Xiao-chun; Wang, Yang
2018-03-01
In this paper, a one-dimensional (1D) thermal-wave model coupled diffuse-photon-density-wave for three-layer dental tissues using modulated laser stimulation was employed to illustrate the relationship between dental caries characteristic (i.e. caries layer thickness, optical absorption coefficient and optical scattering coefficient) and photothermal radiometry (PTR) signal. Experimental investigation of artificial caries was carried out using PTR scanning imaging. The PTR amplitude and phase delay were increased with dental demineralized treatment. The local caries characteristic parameters were obtained by the best-fitting method based on the 1D thermal-wave model. The PTR scanning imaging measurements illustrated that the optical absorption coefficient and scattering coefficient of caries region were much higher than those of the healthy enamel area. The demineralization thickness of caries region was measured by PTR scanning imaging and its average value shows in good agreement with the digital microscope. Experimental results show that PTR scanning imaging has the merits of high contrast for local inhomogeneity of dental caries; furthermore, this method is an allowance to provide a flexibility for non-contact quantitative evaluation of dental caries.
Bailey, Kathleen M; Blair, Kwang-Sun Cho
2015-12-01
This study examined the feasibility and potential efficacy of the family-centered Prevent-Teach-Reinforce (PTR) model with three families of young children with an autism spectrum disorder or language delay with sensory processing problems. Particularly, the study assessed the family adherence to the PTR intervention, changes in child behavior, family use of the Individualized Behavior Rating Scale Tool (IBRST), procedural integrity, and social validity. A multiple-baseline design across families was used to examine the functional relation between parent-implemented PTR intervention and changes in child behavior. Results indicated that the family-centered PTR process was successful in promoting parents to design and implement the PTR intervention plans with fidelity, and the parents' implemented intervention plans were effective in increasing replacement behavior and decreasing problem behavior across children. The results also indicated that the parents successfully used the IBRST to monitor their child's progress and were highly satisfied with the PTR intervention process and outcomes for their children. Copyright © 2015 Elsevier Ltd. All rights reserved.
Montskó, Gergely; Tarjányi, Zita; Mezősi, Emese; Kovács, Gábor L
2014-04-01
Blood cortisol level is routinely analysed in laboratory medicine, but the immunoassays in widespread use have the disadvantage of cross-reactivity with some commonly used steroid drugs. Mass spectrometry has become a method of increasing importance for cortisol estimation. However, current methods do not offer the option of accurate mass identification. Our objective was to develop a mass spectrometry method to analyse salivary, serum total, and serum free cortisol via accurate mass identification. The analysis was performed on a Bruker micrOTOF high-resolution mass spectrometer. Sample preparation involved protein precipitation, serum ultrafiltration, and solid-phase extraction. Limit of quantification was 12.5 nmol L(-1) for total cortisol, 440 pmol L(-1) for serum ultrafiltrate, and 600 pmol L(-1) for saliva. Average intra-assay variation was 4.7%, and inter-assay variation was 6.6%. Mass accuracy was <2.5 ppm. Serum total cortisol levels were in the range 35.6-1088 nmol L(-1), and serum free cortisol levels were in the range 0.5-12.4 nmol L(-1). Salivary cortisol levels were in the range 0.7-10.4 nmol L(-1). Mass accuracy was equal to or below 2.5 ppm, resulting in a mass error less than 1 mDa and thus providing high specificity. We did not observe any interference with routinely used steroidal drugs. The method is capable of specific cortisol quantification in different matrices on the basis of accurate mass identification.
Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J
2017-02-01
Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.
Compton scatter tomography in TOF-PET
NASA Astrophysics Data System (ADS)
Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis
2017-10-01
Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.
NASA Astrophysics Data System (ADS)
Kim, J.; Mandelis, A.; Matvienko, A.; Abrams, S.; Amaechi, B. T.
2012-11-01
The ability of frequency-domain photothermal radiometry (PTR) and modulated luminescence (LUM) to detect secondary caries is presented. Signal behavior upon sequential demineralization and remineralization of a spot (diameter ~1 mm) on a vertical wall of sectioned tooth samples was investigated experimentally. From these studies, it was found that PTR-LUM signals change, showing a certain pattern upon progressive demineralization and remineralization. PTR amplitudes slightly decreased upon progressive demineralization and slightly increased upon subsequent remineralization. The PTR phase increased during both demineralization and remineralization. LUM amplitudes exhibit a decreasing trend at excitation/probe distances larger than 200 μm away from the edge for both demineralization and remineralization; however, at locations close to the edge (up to ~200 μm), LUM signals slightly decrease upon demineralization and slightly increase during subsequent remineralization.
DOI Determination by Rise Time Discrimination in Single-Ended Readout for TOF PET Imaging
Wiener, R.I.; Surti, S.; Karp, J.S.
2013-01-01
Clinical TOF PET systems achieve detection efficiency using thick crystals, typically of thickness 2–3cm. The resulting dispersion in interaction depths degrades spatial resolution for increasing radial positions due to parallax error. Furthermore, interaction depth dispersion results in time pickoff dispersion and thus in degraded timing resolution, and is therefore of added concern in TOF scanners. Using fast signal digitization, we characterize the timing performance, pulse shape and light output of LaBr3:Ce, CeBr3 and LYSO. Coincidence timing resolution is shown to degrade by ~50ps/cm for scintillator pixels of constant cross section and increasing length. By controlling irradiation depth in a scintillator pixel, we show that DOI-dependence of time pickoff is a significant factor in the loss of timing performance in thick detectors. Using the correlated DOI-dependence of time pickoff and charge collection, we apply a charge-based correction to the time pickoff, obtaining improved coincidence timing resolution of <200ps for a uniform 4×4×30mm3 LaBr3 pixel. In order to obtain both DOI identification and improved timing resolution, we design a two layer LaBr3[5%Ce]/LaBr3[30%Ce] detector of total size 4×4×30mm3, exploiting the dependence of scintillator rise time on [Ce] in LaBr3:Ce. Using signal rise time to determine interaction layer, excellent interaction layer discrimination is achieved, while maintaining coincidence timing resolution of <250ps and energy resolution <7% using a R4998 PMT. Excellent layer separation and timing performance is measured with several other commercially-available TOF photodetectors, demonstrating the practicality of this design. These results indicate the feasibility of rise time discrimination as a technique for measuring event DOI while maintaining sensitivity, timing and energy performance, in a well-known detector architecture. PMID:24403611
DOI Determination by Rise Time Discrimination in Single-Ended Readout for TOF PET Imaging.
Wiener, R I; Surti, S; Karp, J S
2013-06-01
Clinical TOF PET systems achieve detection efficiency using thick crystals, typically of thickness 2-3cm. The resulting dispersion in interaction depths degrades spatial resolution for increasing radial positions due to parallax error. Furthermore, interaction depth dispersion results in time pickoff dispersion and thus in degraded timing resolution, and is therefore of added concern in TOF scanners. Using fast signal digitization, we characterize the timing performance, pulse shape and light output of LaBr 3 :Ce, CeBr 3 and LYSO. Coincidence timing resolution is shown to degrade by ~50ps/cm for scintillator pixels of constant cross section and increasing length. By controlling irradiation depth in a scintillator pixel, we show that DOI-dependence of time pickoff is a significant factor in the loss of timing performance in thick detectors. Using the correlated DOI-dependence of time pickoff and charge collection, we apply a charge-based correction to the time pickoff, obtaining improved coincidence timing resolution of <200ps for a uniform 4×4×30mm 3 LaBr 3 pixel. In order to obtain both DOI identification and improved timing resolution, we design a two layer LaBr 3 [5%Ce]/LaBr 3 [30%Ce] detector of total size 4×4×30mm 3 , exploiting the dependence of scintillator rise time on [Ce] in LaBr 3 :Ce. Using signal rise time to determine interaction layer, excellent interaction layer discrimination is achieved, while maintaining coincidence timing resolution of <250ps and energy resolution <7% using a R4998 PMT. Excellent layer separation and timing performance is measured with several other commercially-available TOF photodetectors, demonstrating the practicality of this design. These results indicate the feasibility of rise time discrimination as a technique for measuring event DOI while maintaining sensitivity, timing and energy performance, in a well-known detector architecture.
NASA Astrophysics Data System (ADS)
Jeon, Raymond J.; Hellen, Adam; Matvienko, Anna; Mandelis, Andreas; Abrams, Stephen H.; Amaechi, Bennett T.
2008-02-01
Photothermal radiometry (PTR) and modulated luminescence (LUM) were applied to detect and monitor the demineralization of root and enamel surfaces of human teeth to produce caries lesions and the subsequent remineralization of the produced lesions. The experimental set-up consisted of a semiconductor laser (659 nm, 120 mW), a mercury-cadmium-telluride IR detector for PTR, a photodiode for LUM, and two lock-in amplifiers. A lesion was created on a 1-mm × 4-mm rectangular window, spanning root to enamel surface, using an artificial caries lesion gel to demineralize the tooth surface and create small carious lesions. The samples were subsequently immersed in a remineralization solution. Each sample was examined with PTR/LUM on root and enamel before and after treatment at times from 1 to 10 days of demineralization and 2 to 10 days of remineralization. PTR/LUM signals showed gradual and consistent changes with treatment time. At the completion of the experiments, transverse micro-radiography (TMR) analysis was performed to correlate the PTR/LUM signals to depth of the carious lesions and mineral losses. In this study, TMR showed good correlation with PTR/LUM. It was also found that treatment duration did not correlate well to any technique, PTR/LUM, or TMR, which is indicative of significant variations in demineralization - remineralization rates among different teeth.
Dahro, Bachar; Wang, Fei; Peng, Ting; Liu, Ji-Hong
2016-03-29
Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
NASA Astrophysics Data System (ADS)
Erickson, M. H.; Wallace, H. W.; Jobson, B. T.
2012-02-01
A new approach was developed to measure the total abundance of long chain alkanes (C12 and above) in urban air using thermal desorption with a proton transfer reaction mass spectrometer (PTR-MS). These species are emitted in diesel exhaust and may be important precursors to secondary organic aerosol production in urban areas. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The yield of the fragment ions is a function of drift conditions. At a drift field strength of 80 Townsends, the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Higher drift field strengths yield greater normalized sensitivity implying that the proton affinity of the long chain n-alkanes is less than H2O. Analysis of diesel fuel shows the mass spectrum was dominated by alkanes (CnH2n+1), monocyclic aromatics, and an ion group with formula CnH2n-1 (m/z 97, 111, 125, 139). The PTR-MS was deployed in Sacramento, CA during the Carbonaceous Aerosols and Radiative Effects Study field experiment in June 2010. The ratio of the m/z 97 to 85 ion intensities in ambient air matched that found in diesel fuel. Total diesel exhaust alkane concentrations calculated from the measured abundance of m/z 85 ranged from the method detection limit of ~1 μg m-3 to 100 μg m-3 in several air pollution episodes. The total diesel exhaust alkane concentration determined by this method was on average a factor of 10 greater than the sum of alkylbenzenes associated with spark ignition vehicle exhaust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, M. I.; McComas, D. J.; Allegrini, F.
We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q–40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV–10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinctmore » ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs’ singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.« less
Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.
2015-01-01
Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3×3×20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162±1 ps FWHM, approaching the analytically calculated lower bound within 6.5%. PMID:26083559
NASA Astrophysics Data System (ADS)
Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.
2015-07-01
Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3× 3× 20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162+/- 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.
Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.
2011-01-01
The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716
Ervasti, Jenni; Kivimäki, Mika; Kawachi, Ichiro; Subramanian, S V; Pentti, Jaana; Ahola, Kirsi; Oksanen, Tuula; Pohjonen, Tiina; Vahtera, Jussi; Virtanen, Marianna
2012-05-01
We examined whether having a high percentage of pupils with special educational needs (SEN) in basic education schools increases the risk of sickness absence among teachers and whether this risk is dependent on the pupil-teacher ratio (PTR), an indicator of teacher resources at school. We obtained register data on 8089 teachers working in 404 schools in 10 municipalities in Finland during the school year 2004-2005. We used multilevel multinomial regression models to examine the risk of teachers' short- and long-term sickness absence in relation to the percentage of SEN pupils and the PTR at school. We tested the equality of trends in groups with high and low PTR using PTR × SEN interaction term. After adjustment for teacher and school characteristics, the risk for long-term absences was higher among teachers at schools with a high percentage of SEN pupils than among teachers at schools with a low percentage of SEN pupils [odds ratio (OR) 1.5, 95% confidence interval (95% CI) 1.2-1.8). This was also the case for short-term absences (OR 1.4, 95% CI 1.2-1.7). In analyses stratified by the PTR levels, the association between the percentage of SEN pupils and long-term absences was 15% higher among teachers with a high PTR than among those with a low PTR (P for interaction=0.10). Teachers' sickness absenteeism seems to increase with a higher percentage of SEN pupils, especially when the PTR is high. Teacher resources at schools that have a high percentage of SEN pupils should be well maintained to ensure the health of teachers.
Liu, Dezhao; Nyord, Tavs; Rong, Li; Feilberg, Anders
2018-10-15
Volatile organic compounds (VOC) and hydrogen sulfide are emitted from land spreading of manure slurry to the atmosphere and contribute to odour nuisance, particle formation and tropospheric ozone formation. Data on emissions is almost non-existing partly due to lack of suitable quantitative methods for measuring emissions in full scale. Here we present a method based on application of wind tunnels for simulation of air exchange combined with the use of online mass spectrometry (PTR-MS). The focus was on odorous VOC but all relevant VOC were included. A method for quantification of VOC emission based on calculated proton-transfer reaction rate constants was validated by comparison to reference concentrations for typical VOC emitted from pig manure slurry. Wall losses of volatile sulfur compounds in the wind tunnels were assessed to be insignificant and recoveries >95% were observed for these compounds. An influence of air exchange rate was clearly observed highlighting the need to identify realistic air exchange rates for future application of the method. Emission data was obtained for spreading of pig manure slurry as an example of an important source of gases. Emissions were monitored for ~37 h following land spreading and time-resolved emission data was presented for the first time. Highest emissions were observed for short-chain volatile carboxylic acids (C 2 -C 6 ) with acetic acid being the most abundant compound. Emission peaks were observed immediately following application and were followed by declining emissions until the second day at which emissions reached a second peak for several compounds. This second emission peak was speculated to be caused by a temperature-induced diurnal effect. Emissions of volatile sulfur compounds occurred on a short time-scale and ceased shortly after application. Odour activity values were dominated by C 4 -C 5 carboxylic acids and 4-methylphenol with a less pronounced influence of 4-methylphenol on day 2. Copyright © 2018 Elsevier B.V. All rights reserved.
Metabolic profiling of Arabidopsis thaliana epidermal cells
Ebert, Berit; Zöller, Daniela; Erban, Alexander; Fehrle, Ines; Hartmann, Jürgen; Niehl, Annette; Kopka, Joachim; Fisahn, Joachim
2010-01-01
Metabolic phenotyping at cellular resolution may be considered one of the challenges in current plant physiology. A method is described which enables the cell type-specific metabolic analysis of epidermal cell types in Arabidopsis thaliana pavement, basal, and trichome cells. To achieve the required high spatial resolution, single cell sampling using microcapillaries was combined with routine gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) based metabolite profiling. The identification and relative quantification of 117 mostly primary metabolites has been demonstrated. The majority, namely 90 compounds, were accessible without analytical background correction. Analyses were performed using cell type-specific pools of 200 microsampled individual cells. Moreover, among these identified metabolites, 38 exhibited differential pool sizes in trichomes, basal or pavement cells. The application of an independent component analysis confirmed the cell type-specific metabolic phenotypes. Significant pool size changes between individual cells were detectable within several classes of metabolites, namely amino acids, fatty acids and alcohols, alkanes, lipids, N-compounds, organic acids and polyhydroxy acids, polyols, sugars, sugar conjugates and phenylpropanoids. It is demonstrated here that the combination of microsampling and GC-MS based metabolite profiling provides a method to investigate the cellular metabolism of fully differentiated plant cell types in vivo. PMID:20150518
USDA-ARS?s Scientific Manuscript database
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has proven to be a powerful tool for taxonomic resolution of microorganisms. In this proof-of-concept study, we assessed the effectiveness of this technique to track the current gene sequence-based phylogenet...
Development of a compact laser-based single photon ionization time-of-flight mass spectrometer
NASA Astrophysics Data System (ADS)
Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki
2010-02-01
We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.
Belmondo, Simone; Fiorilli, Valentina; Pérez-Tienda, Jacob; Ferrol, Nuria; Marmeisse, Roland; Lanfranco, Luisa
2014-01-01
Arbuscular mycorrhizal fungi (AMF), which form an ancient and widespread mutualistic symbiosis with plants, are a crucial but still enigmatic component of the plant micro biome. Nutrient exchange has probably been at the heart of the success of this plant-fungus interaction since the earliest days of plants on land. To characterize genes from the fungal partner involved in nutrient exchange, and presumably important for the functioning of the AM symbiosis, genome-wide transcriptomic data obtained from the AMF Rhizophagus irregularis were exploited. A gene sequence, showing amino acid sequence and transmembrane domains profile similar to members of the PTR2 family of fungal oligopeptide transporters, was identified and called RiPTR2. The functional properties of RiPTR2 were investigated by means of heterologous expression in Saccharomyces cerevisiae mutants defective in either one or both of its di/tripeptide transporter genes PTR2 and DAL5. These assays showed that RiPTR2 can transport dipeptides such as Ala-Leu, Ala-Tyr or Tyr-Ala. From the gene expression analyses it seems that RiPTR2 responds to different environmental clues when the fungus grows inside the root and in the extraradical phase.
NASA Astrophysics Data System (ADS)
Kida, Yukihiro; Shimura, Takuya; Deguchi, Mitsuyasu; Watanabe, Yoshitaka; Ochi, Hiroshi; Meguro, Koji
2017-07-01
In this study, the performance of passive time reversal (PTR) communication techniques in multipath rich underwater acoustic environments is investigated. It is recognized empirically and qualitatively that a large number of multipath arrivals could generally raise the demodulation result of PTR. However, the relationship between multipath and the demodulation result is hardly evaluated quantitatively. In this study, the efficiency of the PTR acoustic communication techniques for multipath interference cancelation was investigated quantitatively by applying a PTR-DFE (decision feed-back filter) scheme to a synthetic dataset of a horizontal underwater acoustic channel. Mainly, in this study, we focused on the relationship between the signal-to-interference ratio (SIR) of datasets and the output signal-to-noise ratio (OSNR) of demodulation results by a parametric study approach. As a result, a proportional relation between SIR and OSNR is confirmed in low-SNR datasets. It was also found that PTR has a performance limitation, that is OSNR converges to a typical value depending on the number of receivers. In conclusion, results indicate that PTR could utilize the multipath efficiently and also withstand the negative effects of multipath interference at a given limitation.
NASA Astrophysics Data System (ADS)
Bodnar, Victoria; Ganeev, Alexander; Gubal, Anna; Solovyev, Nikolay; Glumov, Oleg; Yakobson, Viktor; Murin, Igor
2018-07-01
A pulsed direct current glow discharge time-of-flight mass spectrometry (GD TOF MS) method for the quantification of fluorine in insoluble crystal materials with fluorine doped potassium titanyl phosphate (KTP) KTiOPO4:KF as an example has been proposed. The following parameters were optimized: repelling pulse delay, discharge duration, discharge voltage, and pressure in the discharge cell. Effective ionization of fluorine in the space between sampler and skimmer under short repelling pulse delay, related to the high-energy electron impact at the discharge front, has been demonstrated. A combination of instrumental and mathematical correction approaches was used to cope for the interferences of 38Ar2+ and 1H316O + on 19F+. To maintain surface conductivity in the dielectric KTP crystals and insure its effective sputtering in combined hollow cathode cell, silver suspension applied by the dip-coating method was employed. Fluorine quantification was performed using relative sensitivity factors. The analysis of a reference material and scanning electron microscope-energy dispersive X-ray spectroscopy was used for validation. Fluorine limit of detection by pulsed direct current GD TOF MS was 0.01 mass%. Real sample analysis showed that fluorine seems to be inhomogeneously distributed in the crystals. That is why depth profiling of F, K, O, and P was performed to evaluate the crystals' non-stoichiometry. The approaches designed allow for fluorine quantification in insoluble dielectric materials with minimal sample preparation and destructivity as well as performing depth profiling to assess crystal non-stoichiometry.
Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming
2013-01-01
Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362
Jiang, Yuanzhong; Duan, Yanjiao; Yin, Jia; Ye, Shenglong; Zhu, Jingru; Zhang, Faqi; Lu, Wanxiang; Fan, Di; Luo, Keming
2014-01-01
WRKY proteins are a large family of regulators involved in various developmental and physiological processes, especially in coping with diverse biotic and abiotic stresses. In this study, 100 putative PtrWRKY genes encoded the proteins contained in the complete WRKY domain in Populus. Phylogenetic analysis revealed that the members of this superfamily among poplar, Arabidopsis, and other species were divided into three groups with several subgroups based on the structures of the WRKY protein sequences. Various cis-acting elements related to stress and defence responses were found in the promoter regions of PtrWRKY genes by promoter analysis. High-throughput transcriptomic analyses identified that 61 of the PtrWRKY genes were induced by biotic and abiotic treatments, such as Marssonina brunnea, salicylic acid (SA), methyl jasmonate (MeJA), wounding, cold, and salinity. Among these PtrWRKY genes, transcripts of 46 selected genes were observed in different tissues, including roots, stems, and leaves. Quantitative RT-PCR analysis further confirmed the induced expression of 18 PtrWRKY genes by one or more stress treatments. The overexpression of an SA-inducible gene, PtrWRKY89, accelerated expression of PR protein genes and improved resistance to pathogens in transgenic poplar, suggesting that PtrWRKY89 is a regulator of an SA-dependent defence-signalling pathway in poplar. Taken together, our results provided significant information for improving the resistance and stress tolerance of woody plants. PMID:25249073
Fukui, Sadaaki; Davidson, Lori J; Holter, Mark C; Rapp, Charles A
2010-01-01
This study examined the positive effects on recovery outcomes for people with severe and persistent mental illness using peer-led groups based on Pathways to Recovery: A Strengths Recovery Self-Help Workbook (PTR). PTR translates the evidence-supported practice of the Strengths Model into a self-help approach, allowing users to identify and pursue life goals based on personal and environmental strengths. A single-group pretest-posttest research design was applied. Forty-seven members in 6 consumer-run organizations in one Midwestern state participated in a PTR peer-led group, completing a baseline survey before the group and again at the completion of the 12-week sessions. The Rosenberg Self-Esteem Scale, the General Self-Efficacy Scale, Multidimensional Scale of Perceived Social Support, the Spirituality Index of Well-Being, and the Modified Colorado Symptom Index were employed as recovery outcomes. Paired Hotelling's T-square test was conducted to examine the mean differences of recovery outcomes between the baseline and the completion of the group. Findings revealed statistically significant improvements for PTR participants in self-esteem, self-efficacy, social support, spiritual well-being, and psychiatric symptoms. This initial research is promising for establishing PTR as an important tool for facilitating recovery using a peer-led group format. The provision of peer-led service has been emphasized as critical to integrating consumers' perspectives in recovery-based mental health services. Given the current federal funding stream for peer services, continued research into PTR and other peer-led services becomes more important.
Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer.
Rankin, Keegan; Mabury, Scott A
2015-05-19
The degradation of fluorotelomer-based acrylate polymers (FTACPs) has been hypothesized to serve as a source of the environmental contaminants, perfluoroalkyl carboxylates (PFCAs). Studies have relied on indirect measurement of presumed degradation products to evaluate the environmental fate of FTACPs; however, this approach leaves a degree of uncertainty. The present study describes the development of a quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry method as the first direct analysis method for FTACPs. The model FTACP used in this study was poly(8:2 FTAC-co-HDA), a copolymer of 8:2 fluorotelomer acrylate (8:2 FTAC) and hexadecyl acrylate (HDA). Instead of relying on an internal standard polymer, the intensities of 40 poly(8:2 FTAC-co-HDA) signals (911-4612 Da) were normalized to the signal intensity of a matrix-sodium cluster (659 Da). We termed this value the normalized polymer response (P(N)). By using the same dithranol solution for the sample preparation of poly(8:2 FTAC-co-HDA) standards, calibration curves with coefficient of determinations (R(2)) typically >0.98 were produced. When poly(8:2 FTAC-co-HDA) samples were prepared with the same dithranol solution as the poly(8:2 FTAC-co-HDA) standards, quantification to within 25% of the theoretical concentration was achieved. This approach minimized the sample-to-sample variability that typically plagues MALDI-TOF, and is the first method developed to directly quantify FTACPs.
Ko, Guen Bae; Lee, Jae Sung
2015-01-01
Metal package photomultiplier tubes (PMTs) with a metal channel dynode structure have several advanced features for devising such time-of-flight (TOF) and high spatial resolution positron emission tomography (PET) detectors, thanks to their high packing density, large effective area ratio, fast time response, and position encoding capability. Here, we report on an investigation of new metal package PMTs with high quantum efficiency (QE) for high-resolution PET and TOF PET detector modules. The latest metal package PMT, the Hamamatsu R11265 series, is served with two kinds of photocathodes that have higher quantum efficiency than normal bialkali (typical QE ≈ 25%), super bialkali (SBA; QE ≈ 35%), and ultra bialkali (UBA; QE ≈ 43%). In this study, the authors evaluated the performance of the new PMTs with SBA and UBA photocathodes as a PET detector by coupling various crystal arrays. They also investigated the performance improvements of high QE, focusing in particular on a block detector coupled with a lutetium-based scintillator. A single 4 × 4 × 10 mm(3) LYSO, a 7 × 7 array of 3 × 3 × 20 mm(3) LGSO, a 9 × 9 array of 1.2 × 1.2 × 10 mm(3) LYSO, and a 6 × 6 array of 1.5 × 1.5 × 7 mm(3) LuYAP were used for evaluation. All coincidence data were acquired with a DRS4 based fast digitizer. This new PMT shows promising crystal positioning accuracy, energy and time discrimination performance for TOF, and high-resolution PET applications. The authors also found that a metal channel PMT with SBA was enough for both TOF and high-resolution application, although UBA gave a minor improvement to time resolution. However, significant performance improvement was observed in relative low light output crystals (LuYAP) coupled with UBA. The results of this study will be of value as a useful reference to select PMTs for high-performance PET detectors.
ERIC Educational Resources Information Center
Rockey, Marci
2016-01-01
Sauk Valley Community College (SVCC) has returned to the Pathways to Results (PTR) process to analyze and improve a new pathway each year for the last five years. They have become so invested in PTR that they have institutionalized its use into their approach to program review and continuous improvement, creating an institutional PTR team…
ERIC Educational Resources Information Center
Graham, Edmund; McCambly, Heather
2016-01-01
One of the driving forces behind the design of the Pathways to Results (PTR) initiative is to dismantle and redesign systems to produce equitable outcomes. This notion of systems producing the exact outcomes for which they were designed can also be applied to the Pathways to Results methodology itself. After five years of leading PTR initiatives…
NASA Astrophysics Data System (ADS)
Desai, M. I.; Ogasawara, K.; Ebert, R. W.; McComas, D. J.; Allegrini, F.; Weidner, S. E.; Alexander, N.; Livi, S. A.
2015-05-01
We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ˜10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ˜30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.
Desai, M I; Ogasawara, K; Ebert, R W; McComas, D J; Allegrini, F; Weidner, S E; Alexander, N; Livi, S A
2015-05-01
We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.
Tu, Chengjian; Sheng, Quanhu; Li, Jun; Ma, Danjun; Shen, Xiaomeng; Wang, Xue; Shyr, Yu; Yi, Zhengping; Qu, Jun
2015-11-06
The two key steps for analyzing proteomic data generated by high-resolution MS are database searching and postprocessing. While the two steps are interrelated, studies on their combinatory effects and the optimization of these procedures have not been adequately conducted. Here, we investigated the performance of three popular search engines (SEQUEST, Mascot, and MS Amanda) in conjunction with five filtering approaches, including respective score-based filtering, a group-based approach, local false discovery rate (LFDR), PeptideProphet, and Percolator. A total of eight data sets from various proteomes (e.g., E. coli, yeast, and human) produced by various instruments with high-accuracy survey scan (MS1) and high- or low-accuracy fragment ion scan (MS2) (LTQ-Orbitrap, Orbitrap-Velos, Orbitrap-Elite, Q-Exactive, Orbitrap-Fusion, and Q-TOF) were analyzed. It was found combinations involving Percolator achieved markedly more peptide and protein identifications at the same FDR level than the other 12 combinations for all data sets. Among these, combinations of SEQUEST-Percolator and MS Amanda-Percolator provided slightly better performances for data sets with low-accuracy MS2 (ion trap or IT) and high accuracy MS2 (Orbitrap or TOF), respectively, than did other methods. For approaches without Percolator, SEQUEST-group performs the best for data sets with MS2 produced by collision-induced dissociation (CID) and IT analysis; Mascot-LFDR gives more identifications for data sets generated by higher-energy collisional dissociation (HCD) and analyzed in Orbitrap (HCD-OT) and in Orbitrap Fusion (HCD-IT); MS Amanda-Group excels for the Q-TOF data set and the Orbitrap Velos HCD-OT data set. Therefore, if Percolator was not used, a specific combination should be applied for each type of data set. Moreover, a higher percentage of multiple-peptide proteins and lower variation of protein spectral counts were observed when analyzing technical replicates using Percolator-associated combinations; therefore, Percolator enhanced the reliability for both identification and quantification. The analyses were performed using the specific programs embedded in Proteome Discoverer, Scaffold, and an in-house algorithm (BuildSummary). These results provide valuable guidelines for the optimal interpretation of proteomic results and the development of fit-for-purpose protocols under different situations.
NASA Astrophysics Data System (ADS)
Kim, Jungho; Mandelis, Andreas; Abrams, Stephen H.; Vu, Jaclyn T.; Amaechi, Bennett T.
2012-12-01
The main objective of the study was to investigate the ability of frequency-domain photothermal radiometry (PTR) and modulated luminescence (LUM) to detect secondary caries lesions on the walls of restorations (wall lesions). Changes in experimental PTR-LUM signals due to sequential demineralization on entire vertical walls of sectioned tooth samples were investigated. In addition, transverse micro-radiography (TMR) analysis (used as a gold standard) was conducted to measure the degree of demineralization that occurred in each sample. Statistical correlation between TMR results and PTR-LUM signals was determined using Pearson's correlation coefficient. LUM signals were found to be dominated by the scattered component of the incident laser beam. The more clinically relevant cases of localized demineralization and remineralization on vertical walls were also investigated to examine whether PTR-LUM signals are sensitive to demineralization and remineralization of much smaller areas. The overall results demonstrated that PTR-LUM is sensitive to progressive demineralization and remineralization on vertical walls of sectioned tooth samples.
NASA Astrophysics Data System (ADS)
Vintzentz, S. V.; Sandomirsky, V. B.
1992-09-01
An extension of the photothermal surface deformation (PTSD) method to study the macroscopic kinetics of the first-order phase transition (PTr) is given. The movement of the phase interface (PI) over a surface with a PTr locally induced in the subsurface volume by a focused laser pulse is investigated for the first time using radial measurements of the PTSD kinetics. For the known metal-to-semiconductor PTr in VO 2 (a good model system) a procedure is suggested for measuring the maximum size rsm of the "hot" (metal) phase on the surface (a parameter most difficult to determine) as well as for estimating the velocity of the PI movement over the surface, vs, and in the bulk, vb. Besides, it is shown that the PTSD method may be used to determine the "local" threshold energy E0 needed for the laser-induced PTr and the "local" latent heat L of the PTr. This demonstrates the feasibility of scanning surface E0- and L-microscopy.
ERIC Educational Resources Information Center
Rockey, Marci
2016-01-01
Rend Lake College (RLC) has participated in several Pathways to Results (PTR) projects over the last five years. The PTR model has been an essential tool to drive evidence-based changes throughout the College. In 2015, RLC used the PTR Model to evaluate institutional processes related to the Perkins Career and Technical Education (CTE) Student…
NPSNET: Dynamic Terrain and Cultured Feature Depiction
1992-09-01
defaults. bridge(terrain *ptr, vertex pos, bridge mattype bmat ); This constructor takes only the pointer to the underlying terrain, a placement, and a...material to use for construction. bridge(terrain *ptr, vertex pos, bridge-mattype bmat , float dir); This constructor takes a terrain pointer, a...placement position, a material to use, and a direction to run. bridge(terrain *ptr, vertex pos, bridge-mattype bmat , float dir, float width, float height
Hamstring muscle length and pelvic tilt range among individuals with and without low back pain.
Fasuyi, Francis Oluwafunsho; Fabunmi, Ayodele A; Adegoke, Babatunde O A
2017-04-01
Hamstring tightness has been documented not to be related to the pelvic tilt position during static standing posture, but there is limited data on the relationship between hamstring muscle length (HML) and pelvic tilt range (PTR) during the dynamic movement of forward bending. This ex-post facto study was designed to compare each of HML and PTR in individuals with low back pain (LBP) and counterparts without LBP, and the relationship between HML and PTR in individuals with and without LBP. The study involved 30 purposively recruited individuals with LBP and 30 height and weight-matched individuals without LBP. Participants' PTR and HML were assessed using digital inclinometer and active knee extension test respectively. Data were analyzed using t-test and Pearson Correlation (r) at α = 0.05. Participants without LBP had significantly longer (p = 0.01) HML than those with LBP but the PTR of both groups were not significantly different. HML and PTR had indirect but not significant correlations in participants with and without LBP. Hamstring muscle length is significantly reduced in individuals with LBP but it has no significant correlation with pelvic tilt range. Pelvic tilt range reduces as hamstring muscle length increases. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jeon, Raymond J.; Mandelis, Andreas; Abrams, Stephen H.
2003-01-01
Simultaneous measurements from human teeth of photothermal radiometric (PTR) and luminescence (LM) signals induced by an intensity modulated laser have been performed to assess the feasibility of detecting deep lesions and near-surface cracks, to examine the effects of varying enamel thicknesses, the presence of fillings, and stains on the surface of teeth. A commercial dc luminescence monitoring instrument (DIAGNOdent by KaVo) was also used to examine a set of teeth for comparison purposes with PTR and LM. PTR amplitude signals from carious regions and from thin enamel were higher than those from healthy regions and thicker enamel. A crack produces a peak in the PTR amplitude scan, as well as a sudden change in the luminescence amplitude at the corresponding point. At low frequencies (5 Hz), the PTR amplitude showed high sensitivity to a deep (about 2 mm) lesion, while at high frequencies (700 Hz) it was more sensitive to surface cracks. It was concluded that by selecting proper modulation frequencies of the laser, measurements of PTR and LM signals could be used as a dental diagnostic technique with a small, inexpensive, low-power (<30 mW) semiconductor laser as a light source emitting in the optical window range of hard tissue (650-1000 nm).
MAP Reconstruction for Fourier Rebinned TOF-PET Data
Bai, Bing; Lin, Yanguang; Zhu, Wentao; Ren, Ran; Li, Quanzheng; Dahlbom, Magnus; DiFilippo, Frank; Leahy, Richard M.
2014-01-01
Time-of-flight (TOF) information improves signal to noise ratio in Positron Emission Tomography (PET). Computation cost in processing TOF-PET sinograms is substantially higher than for nonTOF data because the data in each line of response is divided among multiple time of flight bins. This additional cost has motivated research into methods for rebinning TOF data into lower dimensional representations that exploit redundancies inherent in TOF data. We have previously developed approximate Fourier methods that rebin TOF data into either 3D nonTOF or 2D nonTOF formats. We refer to these methods respectively as FORET-3D and FORET-2D. Here we describe maximum a posteriori (MAP) estimators for use with FORET rebinned data. We first derive approximate expressions for the variance of the rebinned data. We then use these results to rescale the data so that the variance and mean are approximately equal allowing us to use the Poisson likelihood model for MAP reconstruction. MAP reconstruction from these rebinned data uses a system matrix in which the detector response model accounts for the effects of rebinning. Using these methods we compare performance of FORET-2D and 3D with TOF and nonTOF reconstructions using phantom and clinical data. Our phantom results show a small loss in contrast recovery at matched noise levels using FORET compared to reconstruction from the original TOF data. Clinical examples show FORET images that are qualitatively similar to those obtained from the original TOF-PET data but a small increase in variance at matched resolution. Reconstruction time is reduced by a factor of 5 and 30 using FORET3D+MAP and FORET2D+MAP respectively compared to 3D TOF MAP, which makes these methods attractive for clinical applications. PMID:24504374
Jiang, Yuanzhong; Duan, Yanjiao; Yin, Jia; Ye, Shenglong; Zhu, Jingru; Zhang, Faqi; Lu, Wanxiang; Fan, Di; Luo, Keming
2014-12-01
WRKY proteins are a large family of regulators involved in various developmental and physiological processes, especially in coping with diverse biotic and abiotic stresses. In this study, 100 putative PtrWRKY genes encoded the proteins contained in the complete WRKY domain in Populus. Phylogenetic analysis revealed that the members of this superfamily among poplar, Arabidopsis, and other species were divided into three groups with several subgroups based on the structures of the WRKY protein sequences. Various cis-acting elements related to stress and defence responses were found in the promoter regions of PtrWRKY genes by promoter analysis. High-throughput transcriptomic analyses identified that 61 of the PtrWRKY genes were induced by biotic and abiotic treatments, such as Marssonina brunnea, salicylic acid (SA), methyl jasmonate (MeJA), wounding, cold, and salinity. Among these PtrWRKY genes, transcripts of 46 selected genes were observed in different tissues, including roots, stems, and leaves. Quantitative RT-PCR analysis further confirmed the induced expression of 18 PtrWRKY genes by one or more stress treatments. The overexpression of an SA-inducible gene, PtrWRKY89, accelerated expression of PR protein genes and improved resistance to pathogens in transgenic poplar, suggesting that PtrWRKY89 is a regulator of an SA-dependent defence-signalling pathway in poplar. Taken together, our results provided significant information for improving the resistance and stress tolerance of woody plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Healing disturbance with suture bridge configuration repair in rabbit rotator cuff tear.
Kim, Sae Hoon; Kim, Jangwoo; Choi, Young Eun; Lee, Hwa-Ryeong
2016-03-01
Medial row failure has been reported in the suture bridge technique of rotator cuff repair. This study compared the healing response of suture bridge configuration repair (SBCR) and parallel type transosseous repair (PTR). Acute rotator cuff repair was performed in 32 rabbits. Both shoulders were repaired using PTR or SBCR. In PTR, simple PTR was performed through 2 parallel transosseous tunnels created using a microdrill. In SBCR, 2 additional crisscross transosseous tunnels were added to mimic arthroscopic SBCR. At 1, 2, and 5 weeks postoperatively, comparative biomechanical testing was performed in 8 rabbits, and histologic analysis, including immunohistochemical staining for CD31, was performed in 4 rabbits. Failure loads at 1 week (38.12 ± 20.43 N vs 52.00 ± 27.23 N; P = .284) and 5 weeks (97.93 ± 48.35 N vs 119.60 ± 60.81 N; P = .218) were not statistically different between the SBCR and PTR groups, respectively, but were significantly lower in the SBCR group than in the PTR group (23.56 ± 13.56 N vs. 44.25 ± 12.53 N; P = .009), respectively, at 2 weeks. Markedly greater fibrinoid deposition was observed in the SBCR group than in the PTR group at 2 weeks. For vascularization, there was a tendency that more vessels could be observed in PTR than in SBCR at 2 weeks (15.9 vs 5.6, P = .068). In a rabbit acute rotator cuff repair model, SBCR exhibited inferior mechanical strength, and fewer blood vessels were observed at the healing site at 2 weeks postoperatively. Medial row tendon failure was more common in SBCR. Surgeons should consider the clinical effect of SBCR when performing rotator cuff repair. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Ramakrishnan, Karthik; Braunhofer, Peter; Newsome, Britt; Lubeck, Deborah; Wang, Steven; Deuson, Jennifer; Claxton, Ami J
2014-12-01
Hyperphosphatemia (serum phosphorus >5.5 mg/dL) in hemodialysis patients is a key factor in mineral and bone disorders and is associated with increased hospitalization and mortality risks. Treatment with oral phosphate binders offers limited benefit in achieving target serum phosphorus concentrations due to high daily pill burden (7-10 pills/day) and associated poor medication adherence. The economic value of improving phosphate binder adherence and increasing percent time in range (PTR) for target phosphorus concentrations has not been previously assessed in dialysis patients. The current retrospective analysis was conducted to summarize health care cost savings to United States (US) payers associated with improved phosphate binder adherence and increased PTR for target phosphorus concentrations in adult end-stage renal disease (ESRD) patients receiving hemodialysis therapy. Phosphate binder adherence and PTR were derived from hemodialysis patients who were treated at a large dialysis organization between January 2007 and December 2011. Cost model inputs were derived from US Renal Data System data between July 2007 and December 2009. A cost-offset model was constructed to estimate monthly and annual incremental health care costs (total Medicare; inpatient, outpatient, and Medicare Part B) associated with different levels of phosphate binder adherence and PTR. Model inputs included number of ESRD patients, population adherence to phosphate binders, PTR associated with adherence to phosphate binders, and per-patient per-month cost associated with PTR. A base case model estimated monthly and annual costs of phosphate binder therapy in the population using estimated model inputs. The estimated adherence rate was used to determine number of patients in compliant and noncompliant groups. Monthly costs were calculated as the sum of per-patient per-month cost times the number of patients in adherent and nonadherent groups. Annual costs were monthly costs times 12 and assumed the same level of adherence, PTR, and per-patient per-month costs over time. To study the impact of improving phosphate binder adherence and PTR on cost outcomes, we hypothetically and simultaneously increased both base phosphate binders adherence and PTR for adherent patients (adherence/PTR: 10/20%, 20/40%, 30/60%). Monthly and annual costs were derived for each scenario and compared against the results of the base case model. One-way sensitivity analysis was performed to test model robustness. The base case model estimated total Medicare and inpatient costs of $5,152,342 and $1,435,644, respectively (N = 1,000). When base case model costs were compared to results of each extended model scenario, overall Medicare cost savings (range 0.3-1.9%) and inpatient cost savings (range 1.2-5.7%) were observed. The one-way sensitivity analysis indicated that results were sensitive to PTR for adherent and nonadherent patients and the factor used to increase adherence rate and PTR associated with adherence in the hypothetical scenarios. However, cost savings in overall Medicare costs and inpatient costs were still noted. Increasing phosphate binder adherence and improving phosphorus control were associated with increased cost savings in total Medicare costs and inpatient costs.
NASA Astrophysics Data System (ADS)
Walrand, Stephan; Hesse, Michel; Jamar, François; Lhommel, Renaud
2018-04-01
Our literature survey revealed a physical effect unknown to the nuclear medicine community, i.e. internal bremsstrahlung emission, and also the existence of long energy resolution tails in crystal scintillation. None of these effects has ever been modelled in PET Monte Carlo (MC) simulations. This study investigates whether these two effects could be at the origin of two unexplained observations in 90Y imaging by PET: the increasing tails in the radial profile of true coincidences, and the presence of spurious extrahepatic counts post radioembolization in non-TOF PET and their absence in TOF PET. These spurious extrahepatic counts hamper the microsphere delivery check in liver radioembolization. An acquisition of a 32P vial was performed on a GSO PET system. This is the ideal setup to study the impact of bremsstrahlung x-rays on the true coincidence rate when no positron emission and no crystal radioactivity are present. A MC simulation of the acquisition was performed using Gate-Geant4. MC simulations of non-TOF PET and TOF-PET imaging of a synthetic 90Y human liver radioembolization phantom were also performed. Internal bremsstrahlung and long energy resolution tails inclusion in MC simulations quantitatively predict the increasing tails in the radial profile. In addition, internal bremsstrahlung explains the discrepancy previously observed in bremsstrahlung SPECT between the measure of the 90Y bremsstrahlung spectrum and its simulation with Gate-Geant4. However the spurious extrahepatic counts in non-TOF PET mainly result from the failure of conventional random correction methods in such low count rate studies and poor robustness versus emission-transmission inconsistency. A novel proposed random correction method succeeds in cleaning the spurious extrahepatic counts in non-TOF PET. Two physical effects not considered up to now in nuclear medicine were identified to be at the origin of the unusual 90Y true coincidences radial profile. TOF reconstruction removing of the spurious extrahepatic counts was theoretically explained by a better robustness against emission-transmission inconsistency. A novel random correction method was proposed to overcome the issue in non-TOF PET. Further studies are needed to assess the novel random correction method robustness.
Tong, Louis; Zhou, Xi Yuan; Jylha, Antti; Aapola, Ulla; Liu, Dan Ning; Koh, Siew Kwan; Tian, Dechao; Quah, Joanne; Uusitalo, Hannu; Beuerman, Roger W; Zhou, Lei
2015-02-06
Tear proteins are intimately related to the pathophysiology of the ocular surface. Many recent studies have demonstrated that the tear is an accessible fluid for studying eye diseases and biomarker discovery. This study describes a high resolution multiple reaction monitoring (HR-MRM) approach for developing assays for quantification of biologically important tear proteins. Human tear samples were collected from 1000 subjects with no eye complaints (411 male, 589 female, average age: 55.5±14.5years) after obtaining informed consent. Tear samples were collected using Schirmer's strips and pooled into a single global control sample. Quantification of proteins was carried out by selecting "signature" peptides derived by trypsin digestion. A 1-h nanoLC-MS/MS run was used to quantify the tear proteins in HR-MRM mode. Good reproducibility of signal intensity (using peak areas) was demonstrated for all 47 HR-MRM assays with an average coefficient of variation (CV%) of 4.82% (range: 1.52-10.30%). All assays showed consistent retention time with a CV of less than 0.80% (average: 0.57%). HR-MRM absolute quantitation of eight tear proteins was demonstrated using stable isotope-labeled peptides. In this study, we demonstrated for the first time the technique to quantify 47 human tear proteins in HR-MRM mode using approximately 1μl of human tear sample. These multiplexed HR-MRM-based assays show great promise of further development for biomarker validation in human tear samples. Both discovery-based and targeted quantitative proteomics can be achieved in a single quadrupole time-of-flight mass spectrometer platform (TripleTOF 5600 system). Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, SangWook; Lee, Jong Hyun; Kwon, Hyuck Gi; Laurell, Thomas; Jeong, Ok Chan; Kim, Soyoun
2018-01-01
Here, we report a sol-gel integrated affinity microarray for on-chip matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that enables capture and identification of prostate?specific antigen (PSA) in samples. An anti-PSA antibody (H117) was mixed with a sol?gel, and the mixture was spotted onto a porous silicon (pSi) surface without additional surface modifications. The antibody easily penetrates the sol-gel macropore fluidic network structure, making possible high affinities. To assess the capture affinity of the platform, we performed a direct assay using fluorescein isothiocyanate-labeled PSA. Pure PSA was subjected to on-chip MALDI-TOF-MS analysis, yielding three clear mass peptide peaks (m/z = 1272, 1407, and 1872). The sol-gel microarray platform enables dual readout of PSA both fluorometric and MALDI-TOF MS analysis in biological samples. Here we report a useful method for a means for discovery of biomarkers in complex body fluids.
Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J.
2017-01-01
Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer–Lambert Law. Thus, iNIRS is a promising approach for quantitative and non-invasive monitoring of perfusion and optical properties in vivo. PMID:28146535
High time-resolution photodetectors for PET applications
Ronzhin, Anatoly
2016-02-01
This paper describes recent developments aiming at the improvement of the time resolution of photodetectors used in positron emission tomography (PET). Promising photodetector candidates for future PET-time-of-flight (TOF) applications are also discussed.
Field measurements of methylglyoxal using Proton Transfer Reaction-Time of flight-Mass Spectrometry
NASA Astrophysics Data System (ADS)
Dusanter, S.; Michoud, V.; Sauvage, S.; Leonardis, T.; Locoge, N.
2017-12-01
Methylglyoxal (MGLY) is an atmospheric α-dicarbonyl species whose photolysis is an important source of peroxy radicals. MGLY can therefore significantly impact the oxidizing capacity of the atmosphere and, as such, the formation rate of organic aerosols and ozone. However, despite its importance, only a few techniques exhibit time resolutions and detection limits that are suitable for atmospheric measurements. This presentation will report the first field measurements of MGLY by Proton Transfer Reaction-Time of Flight Mass Spectrometry (PTR-ToFMS) performed during ChArMEx SOP2. This field campaign took place during summer 2013 at a Mediterranean site characterized by intense biogenic emissions and low levels of anthropogenic trace gases. Concomitant measurements of MGLY were performed using the 2,4-dinitrophenylhydrazine (DNPH) derivatization technique and High Performance Liquide Chromatography (HPLC) with UV detection. PTR-ToFMS and DNPH-HPLC measurements ranging from 28-365 pptv are compared to assess the reliability of the two techniques, discussing potential calibration issues, spectrometric interferences, water-dependant artefacts, and memory effects. The MGLY budget at this remote site will also be briefly discussed.
Computational Fluid Dynamic Investigation of Loss Mechanisms in a Pulse-Tube Refrigerator
NASA Astrophysics Data System (ADS)
Martin, K.; Esguerra, J.; Dodson, C.; Razani, A.
2015-12-01
In predicting Pulse-Tube Cryocooler (PTC) performance, One-Dimensional (1-D) PTR design and analysis tools such as Gedeon Associates SAGE® typically include models for performance degradation due to thermodynamically irreversible processes. SAGE®, in particular, accounts for convective loss, turbulent conductive loss and numerical diffusion “loss” via correlation functions based on analysis and empirical testing. In this study, we compare CFD and SAGE® estimates of PTR refrigeration performance for four distinct pulse-tube lengths. Performance predictions from PTR CFD models are compared to SAGE® predictions for all four cases. Then, to further demonstrate the benefits of higher-fidelity and multidimensional CFD simulation, the PTR loss mechanisms are characterized in terms of their spatial and temporal locations.
NASA Astrophysics Data System (ADS)
Fairchild, A. J.; Chirayath, V. A.; Gladen, R. W.; Chrysler, M. D.; Koymen, A. R.; Weiss, A. H.
2017-01-01
In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed.
NASA Astrophysics Data System (ADS)
Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.
2018-05-01
A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.
First Biogenic VOC Flux Results from the UCI Fluxtron Plant Chamber Facility
NASA Astrophysics Data System (ADS)
Seco, R.; Gu, D.; Joo, E.; Nagalingam, S.; Aristizabal, B. H.; Basu, C.; Kim, S.; Guenther, A. B.
2017-12-01
Atmospheric biogenic volatile organic compounds (BVOCs) have key environmental, ecological and biological roles, and can influence atmospheric chemistry, secondary aerosol formation, and regional climate. Quantifying BVOC emission rates and their impact on atmospheric chemistry is one of the greatest challenges with respect to predicting future air pollution in the context of a changing climate. A new facility, the UCI Fluxtron, has been developed at the Department of Earth System Science at the University of California Irvine to study the response of BVOC emissions to extreme weather and pollution stress. The UCI Fluxtron is designed for automated, continuous measurement of plant physiology and multi-modal BVOC chemical analysis from multiple plants. It consists of two controlled-environment walk-in growth chambers that contain several plant enclosures, a gas make-up system to precisely control the composition (e.g., H2O, CO2, O3 and VOC concentrations) of the air entering each enclosure. A sample manifold with automated inlet switching is used for measurements with in-situ and real-time VOC analysis instruments: H2O, CO2 fluxes can be measured continually with an infrared gas analyzer (IRGA) and BVOCs with a proton transfer reaction -time of flight- mass spectrometer (PTR-TOF-MS). Offline samples can also be taken via adsorbent cartridges to be analyzed in a thermal desorption gas chromatograph coupled to a TOF-MS detector. We present the first results of H2O, CO2 and BVOC fluxes, including the characterization and testing of the Fluxtron system. For example, measurements of young dragon tree (Paulownia elongata) individuals using whole-plant enclosures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Wooyoung; Bazer, Fuller W.; Song, Gwonhwa, E-mail: ghsong@korea.ac.kr
The low oxygen environment in the uterine environment requires pre-implantation embryos to adapt to oxygen deficiency. Hypoxia-inducible factor (HIF)-1 is a master regulator whereby cells adapt to changes in oxygen concentrations. In addition to hypoxic conditions, non-hypoxic stimuli such as growth factors also activate expression of HIF-1. In this study, the mechanisms underlying low oxygen-dependent and epidermal growth factor (EGF)-dependent expression of HIF-1α were explored using porcine trophectoderm (pTr) cells. The results indicated that expression of HIF-1α and HIF-1β mRNAs was not affected by low concentrations of oxygen; however, hypoxic conditions markedly increased the abundance of HIF-1α protein, especially inmore » nuclei of pTr cells. Even under normoxic conditions, the abundance of HIF-1α protein increased in response to EGF. This EGF-mediated increase in HIF-1α protein was blocked through inhibition of translation by cycloheximide. The inhibitors LY294002 (PI3K-AKT inhibitor), U0126 (inhibitor of ERK1/2) and rapamycin (mTOR inhibitor) also blocked the ability of EGF to increase HIF-1α protein and to phosphorylate AKT, ERK1/2 and mTOR proteins. Both hypoxia and EGF induced proliferation of pTr cells. This ability of EGF to stimulate proliferation of pTr cells was suppressed by EGFR siRNA, but not HIF-1α siRNA, but a significant decrease in EGF-induced HIF-1α protein occurred when pTr cells were transfected with HIF-1α siRNA. The results of the present study suggest that pTr cells adapt to oxygen deficiency and proliferate in response to an oxygen-dependent HIF-1 system, and that EGF at maternal–conceptus interface can increase the abundance of HIF-1α protein via translational regulation through AKT, ERK1/2 and mTOR signaling cascades. - Highlights: • HIF-1α expression is up-regulated in pTr cells under low oxygen concentrations. • EGF induces HIF-1α accumulation in pTr cells. • EGF-induced HIF-1α accumulation is blocked by de-novo translation inhibitor. • EGF-induced HIF-1α accumulation is mediated by AKT, ERK1/2 and mTOR pathways. • Oxygen deficiency and EGF has stimulatory effect on proliferation of pTr cells.« less
Real-time motion artifacts compensation of ToF sensors data on GPU
NASA Astrophysics Data System (ADS)
Lefloch, Damien; Hoegg, Thomas; Kolb, Andreas
2013-05-01
Over the last decade, ToF sensors attracted many computer vision and graphics researchers. Nevertheless, ToF devices suffer from severe motion artifacts for dynamic scenes as well as low-resolution depth data which strongly justifies the importance of a valid correction. To counterbalance this effect, a pre-processing approach is introduced to greatly improve range image data on dynamic scenes. We first demonstrate the robustness of our approach using simulated data to finally validate our method using sensor range data. Our GPU-based processing pipeline enhances range data reliability in real-time.
Nguyen, Van Tang; Sakoff, Jennette A; Scarlett, Christopher J
2017-04-01
Xao tam phan (Paramignya trimera (Oliv.) Guillaum) has been used as a medicinal plant for cancer prevention and treatment in recent years. The objective of this study was to determine the physicochemical, antioxidant, and cytotoxic properties of crude P. trimera root (PTR) extract and its fractions using MeOH as a solvent and microwave-assisted extraction as an advanced technique for preparation of the PTR extract. The results showed that the PTR extract had high contents of saponins, phenolics, flavonoids, and proanthocyanidins (7731.05 mg escin equiv. (EE), 238.13 mg gallic acid equiv. (GAE), 81.49 mg rutin equiv., and 58.08 mg catechin equiv. (CE)/g dried extract, resp.). Antioxidant activity of PTR extract was significantly higher (P < 0.05) than those of four its fractions and ostruthin, a key bioactive compound in the P. trimera, while potent cytotoxic capacity of PTR extract on various cancer cell lines in terms of MiaPaCa-2 (pancreas), HT29 (colon), A2780 (ovarian), H460 (lung), A431 (skin), Du145 (prostate), BE2-C (neuroblastoma), MCF-7 (breast), MCF-10A (normal breast), and U87, SJ-G2, SMA (glioblastoma) was observed with GI 50 values ranging from 15 to 32 μg/ml. Cytotoxic potential on pancreatic cancer cells of PTR extract (100 - 200 μg/ml) was significantly higher (P < 0.05) than those of its four fractions (50 μg/ml), ostruthin (20 μg/ml) and gemcitabine (50 nm), and being comparable to a saponin-enriched extract from quillajia bark, a commercial product. Based on the results achieved, we can conclude that the PTR extract is a potential source for application of in the nutraceutical, medical, and pharmaceutical industries. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Bae, Hyoung Won; Lee, Sang Yeop; Kim, Sangah; Park, Chan Keum; Lee, Kwanghyun; Kim, Chan Yun; Seong, Gong Je
2018-01-01
To assess whether the asymmetry in the peripapillary retinal nerve fiber layer (pRNFL) thickness between superior and inferior hemispheres on optical coherence tomography (OCT) is useful for early detection of glaucoma. The patient population consisted of Training set (a total of 60 subjects with early glaucoma and 59 normal subjects) and Validation set (30 subjects with early glaucoma and 30 normal subjects). Two kinds of ratios were employed to measure the asymmetry between the superior and inferior pRNFL thickness using OCT. One was the ratio of the superior to inferior peak thicknesses (peak pRNFL thickness ratio; PTR), and the other was the ratio of the superior to inferior average thickness (average pRNFL thickness ratio; ATR). The diagnostic abilities of the PTR and ATR were compared to the color code classification in OCT. Using the optimal cut-off values of the PTR and ATR obtained from the Training set, the two ratios were independently validated for diagnostic capability. For the Training set, the sensitivities/specificities of the PTR, ATR, quadrants color code classification, and clock-hour color code classification were 81.7%/93.2%, 71.7%/74.6%, 75.0%/93.2%, and 75.0%/79.7%, respectively. The PTR showed a better diagnostic performance for early glaucoma detection than the ATR and the clock-hour color code classification in terms of areas under the receiver operating characteristic curves (AUCs) (0.898, 0.765, and 0.773, respectively). For the Validation set, the PTR also showed the best sensitivity and AUC. The PTR is a simple method with considerable diagnostic ability for early glaucoma detection. It can, therefore, be widely used as a new screening method for early glaucoma. © Copyright: Yonsei University College of Medicine 2018
Volatile organic compounds in the Uintah Basin, Utah: first results of the new PTR-MS system
NASA Astrophysics Data System (ADS)
Geiger, F.; Warneke, C.; Graus, M.; Gilman, J.; Lerner, B.; de Gouw, J.; Roberts, J. M.; Neumaier, M.; Zahn, A.
2012-04-01
Volatile organic compounds (VOCs) are emitted into the Earth's atmosphere from various sources. They are controlling the photochemical production of ozone (together with reactive nitrogen) or influencing directly (via e.g. acetone) or indirectly (via ozone) the Earth's oxidation capacity. VOCs play the key role in a lot of different chemical processes that take place in every layer of the atmosphere and are therefore an important player in the Earth's climate. The need for a better understanding of the dynamical and chemical processes with VOCs is for that reason obvious. Measuring VOCs can be done accurately and fast with Proton-Transfer-Reactions Mass Spectrometry (PTR-MS). The presented measurements have been carried out with a newly developed PTR-MS system, which is extremely lightweight and compact compared to commercially available instruments. The weight and space savings have been possible by designing new vacuum chamber and electronics and are necessary for future deployments on the research aircraft HALO (High Altitude And Long Range Research Aircraft - German Science Foundation) and the passenger aircraft used during CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container - Lufthansa). First deployment of the ultra-light-weight PTR-MS (ULW-PTR-MS) has been performed during the ground-based field campaign "Energy and Environment - Uintah Basin Winter Ozone Study" (E&E UBWOS 2012) in Utah (USA), together with ~20 instruments from our research groups. This gave the opportunity to compare the instrument to standard PTR-MS and GC-MS. The Uintah basin has large oil and gas exploration which cause very high mixing ratios of VOCs and even wintertime ozone exceedances. Highly elevated values have been observed. Preliminary results of the campaign and in particular of the PTR-MS measurements will be shown.
NASA Astrophysics Data System (ADS)
Garibaldi, F.; Capuani, S.; Colilli, S.; Cosentino, L.; Cusanno, F.; De Leo, R.; Finocchiaro, P.; Foresta, M.; Giove, F.; Giuliani, F.; Gricia, M.; Loddo, F.; Lucentini, M.; Maraviglia, B.; Meddi, F.; Monno, E.; Musico, P.; Pappalardo, A.; Perrino, R.; Ranieri, A.; Rivetti, A.; Santavenere, F.; Tamma, C.
2013-02-01
Prostate cancer is the most common disease in men and the second leading cause of cancer death. Generic large instruments for diagnosis have sensitivity, spatial resolution, and contrast inferior with respect to dedicated prostate imagers. Multimodality imaging can play a significant role merging anatomical and functional details coming from simultaneous PET and MRI. The TOPEM project has the goal of designing, building, and testing an endorectal PET-TOF MRI probe. The performance is dominated by the detector close to the source. Results from simulation show spatial resolution of ∼1.5 mm for source distances up to 80 mm. The efficiency is significantly improved with respect to the external PET. Mini-detectors have been built and tested. We obtained, for the first time, to our best knowledge, timing resolution of <400 ps and at the same time Depth Of Interaction (DOI) resolution of 1 mm or less.
ERIC Educational Resources Information Center
Graham, Edmund
2016-01-01
Since the creation of Pathways to Results (PTR) in 2009, Illinois Central College (ICC) has participated in all but one year, working to improve outcomes across a number of different pathways. ICC has been innovative in its use of PTR over the years, and the 2014/2015 PTR project was no different. The ICC team worked to identify parallels between…
NASA Astrophysics Data System (ADS)
Chen, Zhong-Qiang; Tong, Jinnan; Liao, Zhuo-Ting; Chen, Jing
2010-08-01
The Permian/Triassic (P/Tr) transition is ecologically assessed based on examining 23 shelly communities from five shallow platform, ramp and shelf basin facies Permian-Triassic boundary (PTB) sections in South China. The shelly communities have undergone two major collapses coinciding with the two episodes of the end-Permian mass extinction. The first P/Tr extinction event devastated shelly communities in all types of settings to some extent. The basin communities have been more severely impacted than both platform and ramp communities. The survival faunas have rebounded more rapidly in shallow niches than in relatively deep habitats. The second P/Tr crisis destroyed the survival communities in shallow setting and had little impact on the basin communities in terms of community structures. The early Griesbachian communities are overall low-diversity and high-dominance. The governorship switch from brachiopods to bivalves in marine communities has been facilitated by two pulses of the end-Permian mass extinction and the whole takeover process took about 200 ka across the P/Tr boundary. Bivalve ecologic takeover initially occurred immediately after the first P/Tr extinction in shallow water habitats and was eventually completed in all niches after the second P/Tr event. Some post-extinction communities have the irregular rarefaction curves due to the unusual community structures rather than sampling intensities.
Moskal, P; Rundel, O; Alfs, D; Bednarski, T; Białas, P; Czerwiński, E; Gajos, A; Giergiel, K; Gorgol, M; Jasińska, B; Kamińska, D; Kapłon, Ł; Korcyl, G; Kowalski, P; Kozik, T; Krzemień, W; Kubicz, E; Niedźwiecki, Sz; Pałka, M; Raczyński, L; Rudy, Z; Sharma, N G; Słomski, A; Silarski, M; Strzelecki, A; Wieczorek, A; Wiślicki, W; Witkowski, P; Zieliński, M; Zoń, N
2016-03-07
Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the [Formula: see text] configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the [Formula: see text] matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of [Formula: see text]0.170 ns for 15 cm axial field-of-view (AFOV) and [Formula: see text]0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.
Basic performance of Mg co-doped new scintillator used for TOF-DOI-PET systems
NASA Astrophysics Data System (ADS)
Kobayashi, Takahiro; Yamamoto, Seiichi; Okumura, Satoshi; Yeom, Jung Yeol; Kamada, Kei; Yoshikawa, Akira
2017-01-01
Phoswich depth-of-interaction (DOI) detectors utilizing multiple scintillators with different decay time are a useful device for developing a high spatial resolution, high sensitivity PET scanner. However, in order to apply pulse shape discrimination (PSD), there are not many combinations of scintillators for which phoswich technique can be implemented. Ce doped Gd3Ga3Al2O12 (GFAG) is a recently developed scintillator with a fast decay time. This scintillator is similar to Ce doped Gd3Al2Ga3O12 (GAGG), which is a promising scintillator for PET detector with high light yield. By stacking these scintillators, it may be possible to realize a high spatial resolution and high timing resolution phoswich DOI detector. Such phoswich DOI detector may be applied to time-of-flight (TOF) systems with high timing performance. Therefore, in this study, we tested the basic performance of the new scintillator -GFAG for use in a TOF phoswich detector. The measured decay time of a GFAG element of 2.9 mmx2.9 mmx10 mm in dimension, which was optically coupled to a photomultiplier tube (PMT), was faster (66 ns) than that of same sized GAGG (103 ns). The energy resolution of the GFAG element was 5.7% FWHM which was slightly worse than that of GAGG with 4.9% FWHM for 662 keV gamma photons without saturation correction. Then we assembled the GFAG and the GAGG crystals in the depth direction to form a 20 mm long phoswich element (GFAG/GAGG). By pulse shape analysis, the two types of scintillators were clearly resolved. Measured timing resolution of a pair of opposing GFAG/GAGG phoswich scintillator coupled to Silicon Photomultipliers (Si-PM) was good with coincidence resolving time of 466 ps FWHM. These results indicate that the GFAG combined with GAGG can be a candidate for TOF-DOI-PET systems.
NASA Astrophysics Data System (ADS)
Moskal, P.; Rundel, O.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Giergiel, K.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Słomski, A.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Witkowski, P.; Zieliński, M.; Zoń, N.
2016-03-01
Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2× 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2× 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of ≈ 0.170 ns for 15 cm axial field-of-view (AFOV) and ≈ 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.
Wu, W J; Wang, Q; Zhang, W; Li, L
2016-07-25
To identified differentially expressed proteins associated with platinum resistance in platinum resistance epithelial oarian cancer(EOC)patients in serum and investigate their clinical value. A total of 106 patients withoverian tumor in affiliated tumor hospital of Guangxi Medical University from August 1998 to September 2013 were enrolled in this study, which include 52 cases od platinum-sensitive(PTS), 44 cases of platinum-resistant(PTR)and 10 cases of benign ovarian cyst(BOC). Thirty-three cases of normal women proceeded physical examination in our hospital in 2008 were chosen as control group(NC). Four groups of patients serum samples of 4 groups were collected and preserved.(1)Differentially express level of serum proteins of 10 cases of every group(PTS & PTR vs NC, PTS & PTR vs BOC, PTS vs PTR)were identified with isobaric tags for relative and absolute quantitative(iTRAQ)based quantitative proteomic approach and then was subjected to bioinformatics analysis.(2)Proteins that played a important role in multidrug resistance were validated by western blot(WB)and ELISA in 44 PTR patients, 52 PRS patients and 33 NC women.(3)Pearson correlation analysis was used to explain the relationship between proteins and clinical pathological parameters of PTR individuals. Kaplan-Meier method was supposed to explore serum biomarkers associated with clinical prognosis data. Receiver operating characteristic(ROC)curves were used to determine the diagnostic value of the markers. (1)Based on the result of bioinformatics analysis, 56 proteins, 39 proteins and 62 proteins were identified respectively among PTS & PTR vs NC, PTS & PTR vs BOC, PTS vs PTR. It showed that C6 and CNTN1 have a positive seletion effect among Asians and BCHE among Europeans through searching Haplotter database. CRP, FN1, S100A9, TF, ALB, VWF, APOC2, APOE, CD44, F2, GPX3 and ACTB proein were further verified related with platinum resistance by taking intersection analysis in the COREMINE database and TCGA.(2)The expression level of SERPINA1 protein in serum of PTR group, PTS group and NC groupwere 41.7±9.2, 32.8±6.6 and 14.2±3.6 respectively using WB assay, and(816±246),(686±205)and(756 ± 244)μg/μl respectively using ELISA; the expression level of ORM1 protein in PTR, PTS and NC serum were 37.9±7.0, 27.0±22.5 and 21.7±2.6 respectively using WB assay, and(221±35),(174±23)and(157±18)μg/μl respectively using ELISA; the expression level of FN1 protein in PTR, PTS and NC serum were 30.3±11.4, 18.2±5.2, 23.7±3.9 respectively by WB assay, and(71±13),(62±13),(69±13)ng/μl respectively by ELISA; the expression level of GPX3 protein in PTR, PTS and NC serum were 1.2±0.3, 2.2± 0.3, 1.6±0.3 respectively WB assay. The expression of each protein by using western blot method and ELISA method had the same trend as that using iTRAQ technology.(3)Pearson correlation analysis showed, the expression of SERPINA1, FN1 and ORM1 had a positive correlation with recurrence and death of PTR patients(P <0.01, P <0.05), but was negatively correlated with progress free survival of PTR patients(P <0.05). Kaplan-Meier analysis indicated that clinical stage, initial treatment outcomes, the express level of SERPINA1, FN1 and ORM1 were significantly related with progression-free survival(P <0.05), the initial treatment outcomes was related with overall survival(P=0.027). The overall predictive accuracy of each protein was reflected by the area under the ROC curve(AUC), FN1 ORM1 and SERPINA with ROC areas of 0.679, 0.910 and 0.666 respectively. The diagnosis value of ORM1 protein in ovarian cancer patients with platinum resistance performance is significantly higher than that of FN1 and SERPINA1 protein(P=0.000) CONCLUSIONS: The differentially express level of FN1, SERPINA1 and ORM1 between PTS and PTR play a essential role in measuring subtle changes in response to platinum-based chemotherapy and may be involved in biological processes of platinum resistance. ORM1 has higher diagnostic efficiency of platinum resistance in ovarian cancer patients. It may be a promising candidate biomarker for screening and diagnosis of ovarian cancer patients with platinum resistance.
Escalante-Pérez, María; Jaborsky, Mario; Lautner, Silke; Fromm, Jörg; Müller, Tobias; Dittrich, Marcus; Kunert, Maritta; Boland, Wilhelm; Hedrich, Rainer; Ache, Peter
2012-01-01
Many plant species grow extrafloral nectaries and produce nectar to attract carnivore arthropods as defenders against herbivores. Two nectary types that evolved with Populus trichocarpa (Ptr) and Populus tremula × Populus tremuloides (Ptt) were studied from their ecology down to the genes and molecules. Both nectary types strongly differ in morphology, nectar composition and mode of secretion, and defense strategy. In Ptt, nectaries represent constitutive organs with continuous merocrine nectar flow, nectary appearance, nectar production, and flow. In contrast, Ptr nectaries were found to be holocrine and inducible. Neither mechanical wounding nor the application of jasmonic acid, but infestation by sucking insects, induced Ptr nectar secretion. Thus, nectaries of Ptr and Ptt seem to answer the same threat by the use of different mechanisms. PMID:22573802
Marcinkowski, R; España, S; Van Holen, R; Vandenberghe, S
2014-12-07
The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15 × 15 2 × 2 × 22 mm(3) pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4 × 4 LYSO matrix of 1.9 × 1.9 × 22 mm(3) crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die.
A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer
NASA Astrophysics Data System (ADS)
Garibaldi, F.; Beging, S.; Canese, R.; Carpinelli, G.; Clinthorne, N.; Colilli, S.; Cosentino, L.; Finocchiaro, P.; Giuliani, F.; Gricia, M.; Lucentini, M.; Majewski, S.; Monno, E.; Musico, P.; Santavenere, F.; Tödter, J.; Wegener, H.; Ziemons, K.
2017-09-01
Prostate cancer is the most common disease in men and the second leading cause of death from cancer. Generic large imaging instruments used in cancer diagnosis have sensitivity, spatial resolution, and contrast which are inadequate for the task of imaging details of a small organ such as the prostate. In addition, multimodality imaging can play a significant role in merging anatomical and functional details coming from simultaneous PET and MRI. Indeed, multiparametric PET/MRI was demonstrated to improve diagnosis, but it suffers from too many false positives. In order to address the above limits of the current techniques, we have proposed, built and tested, thanks to the TOPEM project funded by Italian National Institute of Nuclear Phisics, a prototype of an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry, performance is dominated by a high-resolution detector placed closer to the source. The expected spatial resolution in the selected geometry is about 1.5mm FWHM and efficiency of a factor 2 with respect to what was obtained with the conventional PET scanner. In our experimental studies, we have obtained a timing resolution of ˜ 320 ps FWHM and at the same time a Depth of Interaction (DOI) resolution of under 1mm. Tests also showed that mutual adverse PET-MR effects are minimal. In addition, the matching endorectal RF coil was designed, built and tested. In the next planned studies, we expect that benefiting from the further progress in scintillator crystal surface treatment, in SiPM technology and associated electronics would allow us to significantly improve TOF resolution.
Zhao, Xiangsheng; Wei, Jianhe; Yang, Meihua
2018-05-03
Morinda officinalis is an important herbal medicine and functional food, and its main constituents include anthraquinone and iridoid glycosides. Quantification of the main compounds is a necessary step to understand the quality and therapeutic properties of M. officinalis , but this has not yet been performed based on liquid chromatography/tandem mass spectrometry (LC-MS/MS). Analytes were extracted from M. officinalis by reflux method. Ultrahigh-performance liquid chromatography coupled with a triple quadrupole mass spectrometry (UPLC-QqQ-MS) using multiple reaction monitoring (MRM) mode was applied for quantification. Fragmentation pathways of deacetyl asperulosidic acid and rubiadin were investigated based on UPLC with quadrupole time-of-flight tandem mass spectrometry (Q/TOF-MS) in the MS E centroid mode. The method showed a good linearity over a wide concentration range (R² ≥ 0.9930). The limits of quantification of six compounds ranged from 2.6 to 27.57 ng/mL. The intra- and inter-day precisions of the investigated components exhibited an RSD within 4.5% with mean recovery rates of 95.32⁻99.86%. Contents of selected compounds in M. officinalis varied significantly depending on region. The fragmentation pathway of deacetyl asperulosidic and rubiadin was proposed. A selective and sensitive method was developed for determining six target compounds in M. officinalis by UPLC-MS/MS. Furthermore, the proposed method will be helpful for quality control and identification main compounds of M. officinalis .
Aoyagi, Satoka; Abe, Kiyoshi; Yamagishi, Takayuki; Iwai, Hideo; Yamaguchi, Satoru; Sunohara, Takashi
2017-11-01
Blood adsorption onto the inside surface of hollow fiber dialysis membranes was investigated by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and near-field infrared microscopy (NFIR) in order to evaluate the biocompatibility and permeability of dialysis membranes. TOF-SIMS is useful for the imaging of particular molecules with a high spatial resolution of approximately 100 nm. In contrast, infrared spectra provide quantitative information and NFIR enables analysis with a high spatial resolution of less than 1 μm, which is close to the resolution of TOF-SIMS. A comparison was made of one of the most widely used dialysis membranes made of polysulfone (PSf), that has an asymmetric and inhomogeneous pore structure, and a newly developed asymmetric cellulose triacetate (ATA) membrane that also has an asymmetric pore structure, even though the conventional cellulose triacetate membrane has a symmetric and homogeneous pore structure. As a result, it was demonstrated that blood adsorption on the inside surface of the ATA membrane is more reduced than that on the PSf membrane. Graphical abstract Analysis of blood adsorption on inside surface of hollow fiber membrane.
Lanthanum halide scintillators for time-of-flight 3-D pet
Karp, Joel S [Glenside, PA; Surti, Suleman [Philadelphia, PA
2008-06-03
A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.
Testing of Front End Electronics for 10ps Time of Flight Detectors
NASA Astrophysics Data System (ADS)
Kimball, Matthew; EIC PID Consortium Collaboration
2016-09-01
To fully achieve the physics goals of the future Electron Ion Collider (EIC), continued development of the detectors involved is needed. One area of research involves improving the timing resolution of Time of Flight (ToF) detectors from 100ps to 10ps. When the timing resolution of these ToF detectors is improved, better particle identification can be achieved. In addition, as ToF detectors are being constructed with ever improving timing resolution, the need to improve the high speed performance of the fast electronics used in their front-end electronics (FEE) increases. A series of careful measurements has been performed to investigate the performance and efficiency of each element in the FEE chain. The focus of these tests lies on the amplitude transmission efficiency of the high speed signals as a function of frequency, also known as the bandwidth. The components tested include balanced to unbalanced (balun) boards, signal pre-amps, and waveform digitizers. These tests were performed on individual components and with all elements connected over a frequency range of 1MHz to 1GHz. The results of these tests will be presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.
NASA Astrophysics Data System (ADS)
Yang, Zhongyu
This thesis describes the design, experimental performance, and theoretical simulation of a novel time-of-flight analyzer that was integrated into a high resolution electron energy loss spectrometer (TOF-HREELS). First we examined the use of an interleaved comb chopper for chopping a continuous electron beam. Both static and dynamic behaviors were simulated theoretically and measured experimentally, with very good agreement. The finite penetration of the field beyond the plane of the chopper leads to non-ideal chopper response, which is characterized in terms of an "energy corruption" effect and a lead or lag in the time at which the beam responds to the chopper potential. Second we considered the recovery of spectra from pseudo-random binary sequence (PRBS) modulated TOF-HREELS data. The effects of the Poisson noise distribution and the non-ideal behavior of the "interleaved comb" chopper were simulated. We showed, for the first time, that maximum likelihood methods can be combined with PRBS modulation to achieve resolution enhancement, while properly accounting for the Poisson noise distribution and artifacts introduced by the chopper. Our results indicate that meV resolution, similar to that of modern high resolution electron energy loss spectrometers, can be achieved with a dramatic performance advantage over conventional, serial detection analyzers. To demonstrate the capabilities of the TOF-HREELS instrument, we made measurements on a highly oriented thin film polytetrafluoroethylene (PTFE) sample. We demonstrated that the TOF-HREELS can achieve a throughput advantage of a factor of 85 compared to the conventional HREELS instrument. Comparisons were made between the experimental results and theoretical simulations. We discuss various factors which affect inversion of PRBS modulated Time of Flight (TOF) data with the Lucy algorithm. Using simulations, we conclude that the convolution assumption was good under the conditions of our experiment. The chopper rise time, Poisson noise, and artifacts of the chopper response are evaluated. Finally, we conclude that the maximum likelihood algorithms are able to gain a multiplex advantage in PRBS modulation, despite the Poisson noise in the detector.
Dacia M. Meneguzzo; Greg C. Liknes; Mark D. Nelson
2013-01-01
Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics....
Laser Setup for Volume Diffractive Optical Elements Recording in Photo-Thermo-Refractive Glass
2016-04-14
material and an optical glass . PTR glass is a Na2O-ZnO-Al2O3- SiO2 glass doped with silver (Ag), cerium (Ce), and fluorine (F). It is transparent from...SECURITY CLASSIFICATION OF: Recorded in photo-thermo-refractive (PTR) glass volume Bragg gratings (VBGs) have found great applications for...power laser applications, is restrained because of absence of available lasers emitting on PTR glass photosensitivity region (300-350 nm) with large
Drug screening in medical examiner casework by high-resolution mass spectrometry (UPLC-MSE-TOF).
Rosano, Thomas G; Wood, Michelle; Ihenetu, Kenneth; Swift, Thomas A
2013-10-01
Postmortem drug findings yield important analytical evidence in medical examiner casework, and chromatography coupled with nominal mass spectrometry (MS) serves as the predominant general unknown screening approach. We report screening by ultra performance liquid chromatography (UPLC) coupled with hybrid quadrupole time-of-flight mass spectrometer (MS(E)-TOF), with comparison to previously validated nominal mass UPLC-MS and UPLC-MS-MS methods. UPLC-MS(E)-TOF screening for over 950 toxicologically relevant drugs and metabolites was performed in a full-spectrum (m/z 50-1,000) mode using an MS(E) acquisition of both molecular and fragment ion data at low (6 eV) and ramped (10-40 eV) collision energies. Mass error averaged 1.27 ppm for a large panel of reference drugs and metabolites. The limit of detection by UPLC-MS(E)-TOF ranges from 0.5 to 100 ng/mL and compares closely with UPLC-MS-MS. The influence of column recovery and matrix effect on the limit of detection was demonstrated with ion suppression by matrix components correlating closely with early and late eluting reference analytes. Drug and metabolite findings by UPLC-MS(E)-TOF were compared with UPLC-MS and UPLC-MS-MS analyses of postmortem blood in 300 medical examiner cases. Positive findings by all methods totaled 1,528, with a detection rate of 57% by UPLC-MS, 72% by UPLC-MS-MS and 80% by combined UPLC-MS and UPLC-MS-MS screening. Compared with nominal mass screening methods, UPLC-MS(E)-TOF screening resulted in a 99% detection rate and, in addition, offered the potential for the detection of nontargeted analytes via high-resolution acquisition of molecular and fragment ion data.
NASA Astrophysics Data System (ADS)
Timkovsky, J.; Gankema, P.; Pierik, R.; Holzinger, R.
2012-12-01
Biogenic emissions account for almost 90% of total non-methane organic carbon emissions in the atmosphere. The goal of this project is to study the effect of pollution (ozone, NOx) and UV radiation on the emission of real plants. We have designed and built a setup where we combine plant chambers with a reaction chamber (75L volume) allowing the addition of pollutants at different locations. The main analytical tool is a PTR-TOF-MS instrument that can be optionally coupled with a GC system for improved compound identification. The setup is operational since March 2012 and first measurements indicate interesting results, three types of experiments will be presented: 1. Ozonolysis of b-pinene. In this experiment the reaction chamber was flushed with air containing b-pinene at approximate levels of 50 nmol/mol. After ~40 min b-pinene levels reached equilibrium in the reaction chamber and a constant supply of ozone was provided. Within 30 minutes this resulted in a 10 nmol/mol decrease of b-pinene levels in accordance with a reaction rate constant of 1.5*10-17 cm3molec-1s-1 and a residence time of 10 minutes in the reaction chamber. In addition we observed known oxidation products such as formaldehyde, acetone, and nopinone the molar yields of which were also in accordance with reported values. 2. Ozonolysis of biogenic emissions from tomato plants. The air containing the emissions from tomato plants was supplied to the reaction chamber. After adding ozone we observed the decrease of monoterpene concentrations inside the reaction chamber. The observed decrease is consistent for online PTR-MS and GC/PTR-MS measurements. Several ozonolysis products have been observed in the chamber. 3. The effect of UV-B radiation on biogenic emissions of tomato plants. Tomato plants were exposed to UV-B radiation and their emissions measured during and after the treatment. We observed significant changes in the emissions of volatile organic compounds, with specific compounds increasing at different times during the first 24h of the experiment. In situ BVOC emission changes as response to UV-B radiation provide interesting clues to the biological functions of the emitted compounds. These first results show the potential of this system to be a powerful tool to study the effect of pollution and UV radiation on real emissions from plants.
NASA Astrophysics Data System (ADS)
Rimetz-Planchon, J.; Dhooghe, F.; Schoon, N.; Vanhaecke, F.; Amelynck, C.
2011-04-01
A Flowing Afterglow-Tandem Mass Spectrometer (FA-TMS) was used to investigate the feasibility of selective on-line detection of a series of seven sesquiterpenes (SQTs). These SQTs were chemically ionized by either H3O+ or NO+ reagent ions in the FA, resulting among others in protonated SQT and SQT molecular ions, respectively. These and other Chemical Ionization (CI) product ions were subsequently subjected to dissociation by collisions with Ar atoms in the collision cell of the tandem mass spectrometer. The fragmentation spectra show similarities with mass spectra obtained for these compounds with other instruments such as a Proton Transfer Reaction-Linear Ion Trap (PTR-LIT), a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), a Triple Quadrupole-Mass Spectrometer (QqQ-MS) and a Selected Ion Flow Tube-Mass Spectrometer (SIFT-MS). Fragmentation of protonated SQT is characterized by fragment ions at the same masses but with different intensities for the individual SQT. Distinction of SQTs is based on well-chosen intensity ratios and collision energies. The fragmentation patterns of SQT molecular ions show specific fragment ion tracers at m/z 119, m/z162, m/z 137 and m/z 131 for α-cedrene, δ-neoclovene, isolongifolene and α-humulene, respectively. Consequently, chemical ionization of SQT by NO+, followed by MS/MS of SQT+ seems to open a way for selective quantification of SQTs in mixtures.
Matsushige, T; Kraemer, M; Sato, T; Berlit, P; Forsting, M; Ladd, M E; Jabbarli, R; Sure, U; Khan, N; Schlamann, M; Wrede, K H
2018-06-07
Collateral networks in Moyamoya angiopathy have a complex angioarchitecture difficult to comprehend on conventional examinations. This study aimed to evaluate morphologic patterns and the delineation of deeply seated collateral networks using ultra-high-field MRA in comparison with conventional DSA. Fifteen white patients with Moyamoya angiopathy were investigated in this prospective trial. Sequences acquired at 7T were TOF-MRA with 0.22 × 0.22 × 0.41 mm 3 resolution and MPRAGE with 0.7 × 0.7 × 0.7 mm 3 resolution. Four raters evaluated the presence of deeply seated collateral networks and image quality in a consensus reading of DSA, TOF-MRA, and MPRAGE using a 5-point scale in axial source images and maximum intensity projections. Delineation of deeply seated collateral networks by different imaging modalities was compared by means of the McNemar test, whereas image quality was compared using the Wilcoxon signed-rank test. The relevant deeply seated collateral networks were classified into 2 categories and 6 pathways. A total of 100 collateral networks were detected on DSA; 106, on TOF-MRA; and 73, on MPRAGE. Delineation of deeply seated collateral networks was comparable between TOF-MRA and DSA ( P = .25); however, both were better than MPRAGE ( P < .001). This study demonstrates excellent delineation of 6 distinct deeply seated collateral network pathways in Moyamoya angiopathy in white adults using 7T TOF-MRA, comparable to DSA. © 2018 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Yuan, Bin; Koss, Abigail; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Stark, Harald; de Gouw, Joost A.
2016-07-01
Proton transfer reactions between hydronium ions (H3O+) and volatile organic compounds (VOCs) provide a fast and highly sensitive technique for VOC measurements, leading to extensive use of proton-transfer-reaction mass spectrometry (PTR-MS) in atmospheric research. Based on the same ionization approach, we describe the development of a high-resolution time-of-flight chemical ionization mass spectrometer (ToF-CIMS) utilizing H3O+ as the reagent ion. The new H3O+ ToF-CIMS has sensitivities of 100-1000 cps ppb-1 (ion counts per second per part-per-billion mixing ratio of VOC) and detection limits of 20-600 ppt at 3σ for a 1 s integration time for simultaneous measurements of many VOC species of atmospheric relevance. The ToF analyzer with mass resolution (m/Δm) of up to 6000 allows the separation of isobaric masses, as shown in previous studies using similar ToF-MS. While radio frequency (RF)-only quadrupole ion guides provide better overall ion transmission than ion lens system, low-mass cutoff of RF-only quadrupole causes H3O+ ions to be transmitted less efficiently than heavier masses, which leads to unusual humidity dependence of reagent ions and difficulty obtaining a humidity-independent parameter for normalization. The humidity dependence of the instrument was characterized for various VOC species and the behaviors for different species can be explained by compound-specific properties that affect the ion chemistry (e.g., proton affinity and dipole moment). The new H3O+ ToF-CIMS was successfully deployed on the NOAA WP-3D research aircraft for the SONGNEX campaign in spring of 2015. The measured mixing ratios of several aromatics from the H3O+ ToF-CIMS agreed within ±10 % with independent gas chromatography measurements from whole air samples. Initial results from the SONGNEX measurements demonstrate that the H3O+ ToF-CIMS data set will be valuable for the identification and characterization of emissions from various sources, investigation of secondary formation of many photochemical organic products and therefore the chemical evolution of gas-phase organic carbon in the atmosphere.
Xiong, Bo; Wang, Ling-Ling; Li, Qiong; Nie, Yu-Ting; Cheng, Shuang-Shuang; Zhang, Hui; Sun, Ren-Qiang; Wang, Yu-Jiao; Zhou, Hong-Bin
2015-11-01
A parallel microscope-based laser-induced fluorescence (LIF), ultraviolet-visible absorbance (UV) and time-of-flight mass spectrometry (TOF-MS) detection for high performance liquid chromatography (HPLC) was achieved and used to determine glucosamine in urines. First, a reliable and convenient LIF detection was developed based on an inverted microscope and corresponding modulations. Parallel HPLC-LIF/UV/TOF-MS detection was developed by the combination of preceding Microscope-based LIF detection and HPLC coupled with UV and TOF-MS. The proposed setup, due to its parallel scheme, was free of the influence from photo bleaching in LIF detection. Rhodamine B, glutamic acid and glucosamine have been determined to evaluate its performance. Moreover, the proposed strategy was used to determine the glucosamine in urines, and subsequent results suggested that glucosamine, which was widely used in the prevention of the bone arthritis, was metabolized to urines within 4h. Furthermore, its concentration in urines decreased to 5.4mM at 12h. Efficient glucosamine detection was achieved based on a sensitive quantification (LIF), a universal detection (UV) and structural characterizations (TOF-MS). This application indicated that the proposed strategy was sensitive, universal and versatile, and it was capable of improved analysis, especially for analytes with low concentrations in complex samples, compared with conventional HPLC-UV/TOF-MS. Copyright © 2015 Elsevier B.V. All rights reserved.
Adam, T W; Clairotte, M; Streibel, T; Elsasser, M; Pommeres, A; Manfredi, U; Carriero, M; Martini, G; Sklorz, M; Krasenbrink, A; Astorga, C; Zimmermann, R
2012-07-01
Resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS) is a robust method for real-time analysis of monocyclic and polycyclic aromatic hydrocarbons in complex emissions. A mobile system has been developed which enables direct analysis on site. In this paper, we utilize a multicomponent calibration scheme based on the analytes' photo-ionisation cross-sections relative to a calibrated species. This allows semi-quantification of a great number of components by only calibrating one compound of choice, here toluene. The cross-sections were determined by injecting nebulised solutions of aromatic compounds into the TOF-MS ion source with the help of a HPLC pump. Then, REMPI-TOF-MS was implemented at various chassis dynamometers and test cells and the exhaust of the following vehicles and engines investigated: a compression ignition light-duty (LD) passenger car, a compression ignition LD van, two spark ignition LD passenger cars, 2 two-stroke mopeds, and a two-stroke engine of a string gas trimmer. The quantitative time profiles of benzene are shown. The results indicate that two-stroke engines are a significant source for toxic and cancerogenic compounds. Air pollution and health effects caused by gardening equipment might still be underestimated.
Technologies in the Whole-Genome Age: MALDI-TOF-Based Genotyping.
Vogel, Nicolas; Schiebel, Katrin; Humeny, Andreas
2009-01-01
With the decipherment of the human genome, new questions have moved into the focus of today's research. One key aspect represents the discovery of DNA variations capable to influence gene transcription, RNA splicing, or regulating processes, and their link to pathology. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a powerful tool for the qualitative investigation and relative quantification of variations like single nucleotide polymorphisms, DNA methylation, microsatellite instability, or loss of heterozygosity. After its introduction into proteomics, efforts were made to adopt this technique to DNA analysis. Initially intended for peptide/protein analysis, it held several difficulties for application to nucleic acids. Today, MALDI-TOF-MS has reached worldwide acceptance and application in nucleic acid research, with a wide spectrum of methods being available. One of the most versatile approaches relies on primer extension to genotype single alleles, microsatellite repeat lengths or the methylation status of a given cytosine. Optimized methods comprising intelligent primer design and proper nucleotide selection for primer extension enabled multiplexing of reactions, rendering the analysis more economic due to parallel genotyping of several alleles in a single experiment. Laboratories equipped with MALDI-TOF-MS possess a universal technical platform for the analysis of a large variety of different molecules.
An absolute method for determination of misalignment of an immersion ultrasonic transducer.
Narayanan, M M; Singh, Narender; Kumar, Anish; Babu Rao, C; Jayakumar, T
2014-12-01
An absolute methodology has been developed for quantification of misalignment of an ultrasonic transducer using a corner-cube retroreflector. The amplitude based and the time of flight (TOF) based C-scans of the reflector are obtained for various misalignments of the transducer. At zero degree orientation of the transducer, the vertical positions of the maximum amplitude and the minimum TOF in the C-scan coincide. At any other orientation of the transducer with the horizontal plane, there is a vertical shift in the position of the maximum amplitude with respect to the minimum TOF. The position of the minimum (TOF) remains the same irrespective of the orientation of the transducer and hence is used as a reference for any misalignment of the transducer. With the measurement of the vertical shift and the horizontal distance between the transducer and the vertex of the reflector, the misalignment of the transducer is quantified. Based on the methodology developed in the present study, retroreflectors are placed in the Indian 500MWe Prototype Fast Breeder Reactor for assessment of the orientation of the ultrasonic transducer prior to the under-sodium ultrasonic scanning for detection of any protrusion of the subassemblies. Copyright © 2014 Elsevier B.V. All rights reserved.
Astrobee Periodic Technical Review (PTR) Delta 3
NASA Technical Reports Server (NTRS)
Provencher, Christopher; Smith, Marion F.; Smith, Ernest Everett; Bualat, Maria Gabriele; Barlow, Jonathan Spencer
2017-01-01
Astrobee is a free flying robot for the inside of the International Space Station (ISS). The Periodic Technical Review (PTR) delta 3 is the final design review of the system presented to stakeholders.
[PHYSICAL EXERCISE FOR PEOPLE WITH MULTIPLE SCLEROSIS: EFFECTS, RECOMMENDATIONS AND BARRIERS].
Barak, Sharon; Hutzler, Yeshayahu; Dubnov-Raz, Gal; Achiron, Anat
2016-06-01
This review summarizes the existing knowledge regarding the effects and recommendations for physical training (PTr) in patients with multiple sclerosis (MS). In addition, perceived benefits and barriers to PTr in this population are reviewed. One of the primary aims of rehabilitation for patients with MS is to increase their levels of activity and independence. PTr is a central component in the rehabilitation process. Nonetheless, the use of PTr in the rehabilitation of patients with MS has been a controversial issue for years. Nowadays, strong evidence exists that aerobic training in individuals with MS has a positive effect on overall physical conditioning, gait speed, fatigue, depression and cognition. Unlike aerobic training, the number of studies that investigated strength training effects in this population is limited. However, the available data show that resistance training also has beneficial effects on MS patients. It is important to note, that PTr has no deleterious effects in MS patients. In the various studies, there was diversity with regard to the duration and the frequency of PTr, while intensity was often poorly described. It is recommended that individuals with MS engage in aerobic training (at 60-80% of maximal heart rate), strength training (1-3 sets of 8-15 repetitions), the range of motion, balance and ambulation exercises. Awareness of the benefits of physical activity and sense of achievement are not sufficient to promote exercise participation in persons with MS. Factors relating to physical exertion, sports facilities availability and self-efficacy play an important role in promoting exercise participation.
Two-step recording of visible holographic elements in photo-thermo-refractive glass
NASA Astrophysics Data System (ADS)
Kompan, Fedor; Divliansky, Ivan; Smirnov, Vadim; Glebov, Leonid B.
2018-02-01
Photo-thermo-refractive (PTR) glass) is a photosensitive silicate glass doped with Ce3+ where a permanent refractive index decrement is produced by UV exposure followed by thermal development. This material provides high efficiency and low losses combined with high thermal, ionizing and laser tolerance of holographic optical elements (HOEs). This is why PTR glass is widely used for holographic recording of volume Bragg gratings (trivial holograms produced by interference of two collimated beams) and phase plates operating in near UV, visible, and near IR spectral regions. It would be very beneficial though to record also complex HOEs (lenses and curved mirrors) for those spectral regions. However, PTR is not sensitive to visible or IR radiation and therefore does not allow the recording of nonplanar holograms for these regions. The present paper describes a technique for recording complex HOEs using visible radiation in Ce3+ doped PTR glass. This two-step technique includes a blank exposure to UV radiation followed by structured exposure to a visible beam. It was found that the second exposure decreases the refractive index decrement induced in the UV exposed glass after thermal development. This means that areas, which underwent double exposure, have refractive index lower than in unexposed areas but higher than in just UV exposed ones. Thus, this technique provides refractive index increment after visible irradiation of UV exposed PTR glass. Using this approach, complex holograms (curved mirrors and lenses) operating in the visible region, were recorded in PTR glass.
DIGE Analysis Software and Protein Identification Approaches.
Hmmier, Abduladim; Dowling, Paul
2018-01-01
DIGE is a high-resolution two-dimensional gel electrophoresis method, with excellent dynamic range obtained by fluorescent tag labeling of protein samples. Scanned images of DIGE gels show thousands of protein spots, each spot representing a single or a group of protein isoforms. By using commercially available software, each protein spot is defined by an outline, which is digitized and correlated with the quantity of proteins present in each spot. Software packages include DeCyder, SameSpots, and Dymension 3. In addition, proteins of interest can be excised from post-stained gels and identified with conventional mass spectrometry techniques. High-throughput mass spectrometry is performed using sophisticated instrumentation including matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), MALDI-TOF/TOF, and liquid chromatography tandem mass spectrometry (LC-MS/MS). Tandem MS (MALDI-TOF/TOF or LC-MS/MS), analyzes fragmented peptides, resulting in amino acid sequence information, especially useful when protein spots are low abundant or where a mixture of proteins is present.
Advances in time-of-flight PET
Surti, Suleman; Karp, Joel S.
2016-01-01
This paper provides a review and an update on time-of-flight PET imaging with a focus on PET instrumentation, ranging from hardware design to software algorithms. We first present a short introduction to PET, followed by a description of TOF PET imaging and its history from the early days. Next, we introduce the current state-of-art in TOF PET technology and briefly summarize the benefits of TOF PET imaging. This is followed by a discussion of the various technological advancements in hardware (scintillators, photo-sensors, electronics) and software (image reconstruction) that have led to the current widespread use of TOF PET technology, and future developments that have the potential for further improvements in the TOF imaging performance. We conclude with a discussion of some new research areas that have opened up in PET imaging as a result of having good system timing resolution, ranging from new algorithms for attenuation correction, through efficient system calibration techniques, to potential for new PET system designs. PMID:26778577
Development of a 4 K Separate Two-Stage Pulse Tube Refrigerator with High Efficiency
NASA Astrophysics Data System (ADS)
Qiu, L. M.; He, Y. L.; Gan, Z. H.; Chen, G. B.
2006-04-01
Compared to the traditional 4 K cryocoolers, the separate 4 K pulse tube refrigerator (PTR) consists of two independent PTRs, which are thermally connected between the cold end of the first stage and some middle position of the second stage regenerator. It is possible to use different frequency, valve timing, phase shifter and even compressor for each stage for better cooling performance. A 4 K separate two-stage PTR was designed and manufactured. The first stage was separately optimized. A minimum temperature of 12.6 K and cooling capacity of 59.0 W at 40 K was achieved for the first stage by adding some Er3Ni at the cold part of the regenerator. An experimental investigation of valve timing effects on the cooling performance of the 4 K separate two-stage PTR is reported. The experiments show that the optimization of valve timing can considerably improve the cooling performance of the PTR. Cooling capacity of 0.59 W at 4.2 K and 15.4 W at 37.0 K were achieved with an actual input power of 6.6 kW. Effect of frequency on the performance of the separate two-stage PTR is also presented.
The MRPC-based ALICE time-of-flight detector: Status andperformance
NASA Astrophysics Data System (ADS)
Alici, A.; ALICE Collaboration
2013-04-01
The large time-of-flight (TOF) array is one of the main detectors devoted to charged hadron identification in the mid-rapidity region of the ALICE experiment at the LHC. It allows separation among pions, kaons and protons up to a few GeV/c, covering the full azimuthal angle and -0.9<η<0.9. The TOF exploits the innovative MRPC technology capable of an intrinsic time resolution better than 50 ps with an efficiency close to 100% and a large operational plateau; the full array consists of 1593 MRPCs covering a cylindrical surface of 141 m2. The TOF detector has been efficiently taking data since the first pp collisions recorded in ALICE in December 2009. In this report, the status of the TOF detector and the performance achieved for both pp and Pb-Pb collisions aredescribed.
Anthropogenic, Biogenic and Biomass Burning VOCs in the Southeast of the United States during SENEX
NASA Astrophysics Data System (ADS)
Graus, M.; Warneke, C.; De Gouw, J. A.; Trainer, M.; Aikin, K.; Brown, S. S.; Gilman, J.; Hanisco, T. F.; Holloway, J.; Kaiser, J.; Keutsch, F. N.; Lee, B.; Lerner, B. M.; Lopez-Hilfiker, F.; Min, K.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Thornton, J. A.; Veres, P. R.; Wolfe, G. M.
2013-12-01
The NOAA field study SENEX was designed to investigate the source strengths and spatial distribution of man-made air pollutants and natural emissions, their interaction to form secondary pollutants, and the atmospheric fate of aerosol and trace gases at the nexus of air quality and climate change. To this end the NOAA research aircraft WP-3D was equipped with instrumentation for the analysis of aerosol and trace gases and this flying atmospheric science laboratory performed 18 research flights over the Southeast of the United States in June and July 2013. VOCs such as isoprene and monoterpenes are released into the atmosphere by vegetation. Aromatics come from incomplete combustion of transportation fuels as well as from oil and natural gas production, and they are found in biomass burning plumes along with the distinct tracer acetonitrile. Oxygenated species such as alcohols, aldehydes and ketones are directly emitted from natural and anthropogenic sources and can be formed by photo oxidation of organic trace gases. At sufficiently high levels of nitrogen oxides, VOCs fuel the production of tropospheric ozone and they contribute to the formation and growth of secondary organic aerosol. Hence one key instrument onboard WP-3D was a PTR-MS for the time-resolved quantification of VOCs. The WP-3D performed plume study patterns downwind of coal- and gas-fired power plants. Isoprene concentrations were modulated in the high NOx regime as the plume evolved and the SENEX dataset will be used to constrain the chemistry in such plumes. City plumes of Atlanta (GA), Birmingham (AL), Indianapolis (IN), and St Louis (MO) showed modest concentrations of aromatics due to the decrease in hydrocarbon emissions from cars in comparison with previous studies. One flight leg targeted the plume of a large biofuel refinery, which will allow for an independent estimate of the primary emissions from this industry. A number of plumes of small fires in the study region were sampled as well as biomass burning plumes, several days old, likely from fires in the Western US. Besides plume studies, several flights were dedicated to the quantification of advection fluxes of hydrocarbons from oil and natural gas production in the Haynesville shale (LA, TX), Fayetteville shale (AR), and Marcellus shale (PA) for a top-down quantification of the emissions from these oil and gas fields. In this presentation PTR-MS data from the SENEX study will be shown and discussed in the context of the science goals of the study.
NASA Astrophysics Data System (ADS)
Acton, W. Joe F.; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Tillmann, Ralf; Tomlinson, Sam J.; Dragosits, Ulrike; Gianelle, Damiano; Hewitt, C. Nicholas; Nemitz, Eiko
2016-06-01
This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS) and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (using PTR-MS) and eddy covariance (using PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean daytime flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) isoprene emission algorithms (Guenther et al., 2006). A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC-MS) to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.
NASA Astrophysics Data System (ADS)
Acton, W. J. F.; Schallhart, S.; Langford, B.; Valach, A.; Rantala, P.; Fares, S.; Carriero, G.; Tillmann, R.; Tomlinson, S. J.; Dragosits, U.; Gianelle, D.; Hewitt, C. N.; Nemitz, E.
2015-10-01
This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton transfer reaction-mass spectrometer (PTR-MS) and a proton transfer reaction-time of flight-mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (PTR-MS) and eddy covariance (PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean day-time flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28 day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the MEGAN isoprene emissions algorithms (Guenther et al., 2006). A detailed tree species distribution map for the site enabled the leaf-level emissions of isoprene and monoterpenes recorded using GC-MS to be scaled up to produce a "bottom-up" canopy-scale flux. This was compared with the "top-down" canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.
Deng, Shuang; Scott, David; Myers, Douglas; Garg, Uttam
2016-01-01
Triosephosphate isomerase (TPI) is a glycolytic enzyme which catalyzes the interconversion between glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP). TPI deficiency results in accumulation of DHAP in human red blood cells and other tissues. The disease is characterized by congenital hemolytic anemia, and progressive neuromuscular dysfunction. The laboratory diagnosis is generally made by measurement of TPI activity in RBCs. Measurement of DHAP can be useful in further confirmation and follow-up of the disease. We developed HPLC/TOF-MS method for quantitation of DHAP in RBCs. The method involves simple protein precipitation, reverse phase C8 column chromatography, ion pairing with tributylamine, and long run time of 50 min to separate the two isomers (G3P and DHAP).
Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A
2003-09-10
A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.
Sound field inside acoustically levitated spherical drop
NASA Astrophysics Data System (ADS)
Xie, W. J.; Wei, B.
2007-05-01
The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.
Yan, Jing; Zhou, Mowei; Gilbert, Joshua D; Wolff, Jeremy J; Somogyi, Árpád; Pedder, Randall E; Quintyn, Royston S; Morrison, Lindsay J; Easterling, Michael L; Paša-Tolić, Ljiljana; Wysocki, Vicki H
2017-01-03
Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.
NASA Astrophysics Data System (ADS)
Cui, Long; Zhang, Zhou; Huang, Yu; Lee, Shun Cheng; Blake, Donald Ray; Ho, Kin Fai; Wang, Bei; Gao, Yuan; Wang, Xin Ming; Kwok Keung Louie, Peter
2016-12-01
Volatile organic compound (VOC) control is an important issue of air quality management in Hong Kong because ozone formation is generally VOC limited. Several oxygenated volatile organic compound (OVOC) and VOC measurement techniques - namely, (1) offline 2,4-dinitrophenylhydrazine (DNPH) cartridge sampling followed by high-performance liquid chromatography (HPLC) analysis; (2) online gas chromatography (GC) with flame ionization detection (FID); and (3) offline canister sampling followed by GC with mass spectrometer detection (MSD), FID, and electron capture detection (ECD) - were applied during this study. For the first time, the proton transfer reaction-mass spectrometry (PTR-MS) technique was also introduced to measured OVOCs and VOCs in an urban roadside area of Hong Kong. The integrated effect of ambient relative humidity (RH) and temperature (T) on formaldehyde measurements by PTR-MS was explored in this study. A Poly 2-D regression was found to be the best nonlinear surface simulation (r = 0.97) of the experimental reaction rate coefficient ratio, ambient RH, and T for formaldehyde measurement. This correction method was found to be better than correcting formaldehyde concentrations directly via the absolute humidity of inlet sample, based on a 2-year field sampling campaign at Mong Kok (MK) in Hong Kong. For OVOC species, formaldehyde, acetaldehyde, acetone, and MEK showed good agreements between PTR-MS and DNPH-HPLC with slopes of 1.00, 1.10, 0.76, and 0.88, respectively, and correlation coefficients of 0.79, 0.75, 0.60, and 0.93, respectively. Overall, fair agreements were found between PTR-MS and online GC-FID for benzene (slope = 1.23, r = 0.95), toluene (slope = 1.01, r = 0.96) and C2-benzenes (slope = 1.02, r = 0.96) after correcting benzene and C2-benzenes levels which could be affected by fragments formed from ethylbenzene. For the intercomparisons between PTR-MS and offline canister measurements by GC-MSD/FID/ECD, benzene showed good agreement, with a slope of 1.05 (r = 0.62), though PTR-MS had lower values for toluene and C2-benzenes with slopes of 0.78 (r = 0.96) and 0.67 (r = 0.92), respectively. All in all, the PTR-MS instrument is suitable for OVOC and VOC measurements in urban roadside areas.
Control of trichome formation in Arabidopsis by poplar single-repeat R3 MYB transcription factors
Zhou, Limei; Zheng, Kaijie; Wang, Xiaoyu; Tian, Hainan; Wang, Xianling; Wang, Shucai
2014-01-01
In Arabidopsis, trichome formation is regulated by the interplay of R3 MYBs and several others transcription factors including the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1), the R2R3 MYB transcription factor GLABRA1 (GL1), the bHLH transcription factor GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3), and the homeodomain protein GLABRA2 (GL2). R3 MYBs including TRICHOMELESS1 (TCL1), TCL2, TRYPTICHON (TRY), CAPRICE (CPC), ENHANCER OF TRY AND CPC1 (ETC1), ETC2 and ETC3 negatively regulate trichome formation by competing with GL1 for binding GL3 or EGL3, thus blocking the formation of TTG1–GL3/EGL3–GL1, an activator complex required for the activation of the trichome positive regulator gene GL2. However, it is largely unknown if R3 MYBs in other plant species especially woody plants have similar functions. By BLASTing the Populus trichocarpa protein database using the entire amino acid sequence of TCL1, an Arabidopsis R3 MYB transcription factor, we identified a total of eight R3 MYB transcription factor genes in poplar, namely P. trichocarpa TRICHOMELESS1 through 8 (PtrTCL1–PtrTCL8). The amino acid signature required for interacting with bHLH transcription factors and the amino acids required for cell-to-cell movement of R3 MYBs are not fully conserved in all PtrTCLs. When tested in Arabidopsis protoplasts, however, all PtrTCLs interacted with GL3. Expressing each of the eight PtrTCL genes in Arabidopsis resulted in either glabrous phenotypes or plants with reduced trichome numbers, and expression levels of GL2 in all transgenic plants tested were greatly reduced. Expression of PtrTCL1 under the control of TCL1 native promoter almost completely complemented the mutant phenotype of tcl. In contrast, expression of PtrTCL1 under the control of TRY native promoter in the try mutant, or under the control of CPC native promoter in the cpc mutant resulted in glabrous phenotypes, suggesting that PtrTCL1 functions similarly to TCL1, but not TRY and CPC. PMID:24959169
Current position of high-resolution MS for drug quantification in clinical & forensic toxicology.
Meyer, Markus R; Helfer, Andreas G; Maurer, Hans H
2014-08-01
This paper reviews high-resolution MS approaches published from January 2011 until March 2014 for the quantification of drugs (of abuse) and/or their metabolites in biosamples using LC-MS with time-of-flight or Orbitrap™ mass analyzers. Corresponding approaches are discussed including sample preparation and mass spectral settings. The advantages and limitations of high-resolution MS for drug quantification, as well as the demand for a certain resolution or a specific mass accuracy are also explored.
NASA Astrophysics Data System (ADS)
Hoek, M.; Cardinali, M.; Corell, O.; Dickescheid, M.; Ferretti B., M. I.; Lauth, W.; Schlimme, B. S.; Sfienti, C.; Thiel, M.
2017-12-01
A prototype detector, called FLASH (Fast Light Acquiring Start Hodoscope), was built to provide precise Time-of-Flight (TOF) measurements and reference timestamps for detector setups at external beam lines. Radiator bars, made of synthetic fused silica, were coupled to a fast MCP-PMT with 64 channels and read out with custom electronics using Time-over-Threshold (TOT) for signal characterization. The TRB3 system, a high-precision TDC implemented in an FPGA, was used as data acquisition system. The performance of a system consisting of two FLASH units was investigated at a dedicated test experiment at the Mainz Microtron (MAMI) accelerator using its 855 MeV electron beam. The TOT measurement enabled time walk corrections and an overall TOF resolution of ∼70 ps could be achieved which translates into a resolution of ∼50 ps per FLASH unit. The intrinsic resolution of the frontend electronics including the TDC was measured to be less than 25 ps.
An, Meichen; Liu, Ning
2010-02-01
A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.
Thoen, Hendrik; Keereman, Vincent; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan
2013-09-21
The optimization of a whole-body PET system remains a challenging task, as the imaging performance is influenced by a complex interaction of different design parameters. However, it is not always clear which parameters have the largest impact on image quality and are most eligible for optimization. To determine this, we need to be able to assess their influence on image quality. We performed Monte-Carlo simulations of a whole-body PET scanner to predict the influence on image quality of three detector parameters: the TOF resolution, the transverse pixel size and depth-of-interaction (DOI)-correction. The inner diameter of the PET scanner was 65 cm, small enough to allow physical integration into a simultaneous PET-MR system. Point sources were used to evaluate the influence of transverse pixel size and DOI-correction on spatial resolution as function of radial distance. To evaluate the influence on contrast recovery and pixel noise a cylindrical phantom of 35 cm diameter was used, representing a large patient. The phantom contained multiple hot lesions with 5 mm diameter. These lesions were placed at radial distances of 50, 100 and 150 mm from the center of the field-of-view, to be able to study the effects at different radial positions. The non-prewhitening (NPW) observer was used for objective analysis of the detectability of the hot lesions in the cylindrical phantom. Based on this analysis the NPW-SNR was used to quantify the relative improvements in image quality due to changes of the variable detector parameters. The image quality of a whole-body PET scanner can be improved significantly by reducing the transverse pixel size from 4 to 2.6 mm and improving the TOF resolution from 600 to 400 ps and further from 400 to 200 ps. Compared to pixel size, the TOF resolution has the larger potential to increase image quality for the simulated phantom. The introduction of two layer DOI-correction only leads to a modest improvement for the spheres at radial distance of 150 mm from the center of the transaxial FOV.
Belgacem, O; Pittenauer, E; Openshaw, M E; Hart, P J; Bowdler, A; Allmaier, G
2016-02-15
For the last two decades, curved field reflectron technology has been used in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometers, assisting in the generation of post-source-decay (PSD) or collision-induced dissociation (CID) without decelerating precursor ions, producing true high-energy CID spectra. The result was the generation of product ion mass spectra with product ions typical of high-energy (10 keV and beyond) collision processes. The disadvantage of this approach was the lack of resolution in CID spectra resulting from the excess laser energy deposition used to generate those MS/MS spectra. The work presented in this study overcomes this limitation and includes comprehensive examples of high-energy and high-resolution CID MALDI-MS/MS spectra of biomolecules. The devices used in this study are TOF/RTOF instruments equipped with a high-vacuum MALDI ion source. High-resolution and high-energy CID spectra result from the use of axial spatial distribution focusing (ASDF) in combination with curved field reflectron technology. A CID spectrum of the P14 R1 peptide exhibits product ion resolution in excess of 10,000 (FWHM) but at the same time yields typical high-energy product ions such as w- and [y-2]-type ion series. High-energy CID spectra of lipids, exemplified by a glycerophospholipid and triglyceride, demonstrate C-C backbone fragmentation elucidating the presence of a hydroxyl group in addition to double-bond positioning. A complex high mannose carbohydrate (Man)8 (GlcNAc)2 was also studied at 20 keV collision energy and revealed further high-energy product ions with very high resolution, allowing unambiguous detection and characterization of cross-ring cleavage-related ions. This is the first comprehensive study using a MALDI-TOF/RTOF instrument equipped with a curved field reflectron and an ASDF device prior to the reflectron. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.
Jin, Zhihua; Jin, Xin; Jin, Qingchao
2010-03-01
Improving pristinamycin production from Streptomyces pristinaespiralis was performed by introducing the resistance gene ptr followed by selection for enhanced tolerance to pristinamycin and fermentation test. To transfer ptr into S. pristinaespiralis, an effective method was established for the first time by using the intergeneric conjugation of DNA from Escherichia coli to S. pristinaespiralis. The procedure was optimized with heat treatment, spore concentration, optimum medium used in conjugation, concentration of MgCl(2), etc. With the optimized conditions, the conjugation frequency was up to 1.36 x 10(-3) exconjugants per recipient. The procedure was used to transfer the ptr gene into S. pristinaespiralis, resulting in 146 exconjugants. These exconjugants were screened on the pristinamycin-resistant plates, and then the fermentation test subsequently. Finally, two strains (SPR1 and SPR2) were obtained with a high yield of 0.11 and 0.15 g/l, respectively, which is about six to eight times more than that of wild-strain ATCC25486. The subculture experiments indicated that the hereditary character of the high-producing S. pristinaespiralis SPR1 and SPR2 was stable. Our work suggests that introducing resistance gene ptr into S. pristinaespiralis could be the way to improve the production of pristinamycin through the enhancement of antibiotic tolerance.
Analysis of protein glycation products by MALDI-TOF/MS.
Kislinger, Thomas; Humeny, Andreas; Peich, Carlo C; Becker, Cord-Michael; Pischetsrieder, Monika
2005-06-01
Matrix-assisted laser desorption ionization-mass spectrometry with time-of-flight detection (MALDI-TOF/MS) is a promising tool to analyze advanced glycation end product (AGE)-modified proteins. The combination of soft ionization (MALDI) with time-of-flight mass detection allows analysis of peptides and proteins of a molecular mass up to 300 kDa with minimal sample workup. Because the direct structural analysis of intact AGE proteins is not possible due to the formation of broad and poorly resolved peaks, peptide mapping was introduced into the analysis of AGE proteins by MALDI-TOF/MS, allowing site-specific analysis of defined AGEs. When methylglyoxal-modified lysozyme was subjected to MALDI-TOF/MS peptide mapping, methylimidazolone and argpyrimidine attached to the arginine residue and carboxyethyl (CEL) bound to the lysine were detected on peptide(aa1-7) (KVFGRCE). In contrast, only one methylimidazolone was found on peptide(aa8-35) (LAAAMKRHGLDNYRGYSLGNWVCAAKFE) and peptide(aa120-129) (VQAWIRGCRL), respectively. The analysis of AGE protein, which had been incubated with glucose, revealed the presence of an Amadori product and a carboxymethyl residue (CML) on peptide(aa1-7) and peptide(aa8-35), as well as an imidazolone A on peptide(aa120-129). Furthermore, the early Maillard reaction of lysozyme, which had been glycated by seven different sugars, was monitored by MALDI-TOF/MS peptide mapping. Finally, this approach was successfully applied for site- and product-specific relative quantification of AGEs. For example, kinetics of CML and Amadori product formation on peptide(aa1-7), as well as imidazolone A formation on peptide(aa120-129), were determined.
Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang
2016-10-01
Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients (R (2) ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.
2002-10-01
A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.
Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS
NASA Astrophysics Data System (ADS)
Dronov, Alexey; Gavrilin, Ilya; Kirilenko, Elena; Dronova, Daria; Gavrilov, Sergey
2018-03-01
High resolution Scanning Auger Electron Spectroscopy (AES) and Time-of-Flight Secondary Ion Mass-Spectrometry (ToF SIMS) were used to investigate structure and elemental composition variation of both across an array of TiO2 nanotubes (NTs) and single tube of an array. The TiO2 NT array was grown by anodic oxidation of Ti foil in fluorine-containing ethylene glycol electrolyte. It was found that the studied anodic TiO2 nanotubes have a layered structure with rather sharp interfaces. The differences in AES depth profiling results of a single tube with the focused primary electron beam (point analysis) and over an area of 75 μm in diameter of a nanotube array with the defocused primary electron beam are discussed. Depth profiling by ToF SIMS was carried out over approximately the same size of a nanotube array to determine possible ionic fragments in the structure. The analysis results show that the combination of both mentioned methods is useful for a detailed analysis of nanostructures with complex morphology and multi-layered nature.
Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo
2005-12-01
The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.
NASA Astrophysics Data System (ADS)
Brégonzio-Rozier, Lola; Siekmann, Frank; Giorio, Chiara; Temime-Roussel, Brice; Pangui, Edouard; Morales, Sébastien; Gratien, Aline; Ravier, Sylvain; Monod, Anne; Doussin, Jean-Francois
2014-05-01
It is acknowledged that atmospheric photo-oxidation of Volatile Organic Compounds (VOC) leads to the formation of less volatile oxidized species. These compounds can undergo gas-to-particle conversion, leading to the formation of Secondary Organic Aerosols (SOA) in the atmosphere. Nevertheless, some of these oxidized species are water soluble and could also partition into cloud droplets. Higher molecular weight and less volatile compounds could be produced in the aqueous phase and remain in the particle phase after water evaporation (Ervens et al., 2011). The aim of the present work is to study SOA formation in the presence of cloud droplets during isoprene photo-oxidation. To this end, an original multiphase approach in a simulation chamber was set up in order to investigate the chemistry occurring in the gaseous, particulate and aqueous phases, and the exchange between these phases. Experiments were performed, within the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM chamber (Wang et al., 2011). This chamber was designed to investigate multiphase processes under realistic actinic flux, and accurate control of both temperature and relative humidity. A specific protocol was set up to produce cloud events in the simulation chamber exhibiting a significant lifetime in the presence of light (10-12 minutes). By using this protocol, many clouds could be generated in a single experiment. In each experiment, around 800 ppb of isoprene was injected in the chamber together with HONO under dry conditions before irradiation. A Fourier Transform Infrared Spectrometer (FTIR), a Proton Transfer Reaction Mass Spectrometer (PTR-TOF-MS) and NOx and O3 analyzers were used to analyze gas-phase composition. Dried SOA size distributions and total concentrations were measured by a Scanning Mobility Particle Sizer (SMPS). An Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS) was also used to investigate aerosol composition. Cloud droplets size distributions were measured by a white light Optical Particle Counter (OPC). In all experiments, the dissolution of gaseous oxidation products into aqueous phase and SOA production have been observed during isoprene photo-oxidation in the presence of a cloud event. The overall results in additional SOA mass production and the dynamic of gaseous oxidation products and SOA mass concentrations will be presented. Ervens, B. et al. (2011). Atmospheric Chemistry and Physics 11(21): 11069-11102. Wang, J. et al. (2011). Atmospheric Measurement Techniques 4(11): 2465-2494.
NASA Astrophysics Data System (ADS)
Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.
2015-11-01
A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.
Özyürek, Taha; Demiryürek, Ebru Özsezer
2016-04-01
The aim of this study was to compare the cleanliness of root canal walls after retreatment using ProTaper Next (PTN; Dentsply Maillefer, Ballaigues, Switzerland), Twisted File Adaptive (TFA; Axis/SybronEndo, Orange, CA), Reciproc (PRC; VDW, Munich, Germany), and ProTaper Universal retreatment (PTR, Dentsply Maillefer) nickel-titanium systems and the time required for gutta-percha and sealer removal. Eighty human maxillary central incisors with single and straight root canals were instrumented up to #40.02 with manual K-files (Dentsply Maillefer) and obturated using the continuous wave of condensation technique. Removal of the gutta-percha and sealer was performed using 1 of the following nickel-titanium systems: PTN, TFA, RPC, or PTR. The teeth were sectioned, and digital images were captured. The photographs were analyzed using AutoCAD software (Autodesk, San Rafael, CA). Also, the total time required for gutta-percha removal was calculated by a chronometer. The total retreatment time was significantly shorter in the PTR group compared with the other groups (P < .05). There was a significant difference between the groups according to the total residual gutta-percha and sealer (P < .05). The PTN and PTR groups left significantly less gutta-percha and sealer remnant than the TFA and RPC groups (P < .05). Within the limitations of this study, the PTN and the PTR groups showed less residual gutta-percha and sealer than the TFA and RPC groups. The time required for gutta-percha and sealer removal was similar for all the groups, except for the PTR group. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Benn, Peter
2016-06-01
Noninvasive prenatal screening (NIPS) for fetal chromosome defects has high sensitivity and specificity but is not fully diagnostic. In response to a desire to provide more information to individual women with positive NIPS results, 2 online calculators have been developed to calculate posttest risk (PTR). Use of these calculators is critically reviewed. There is a mathematically dictated requirement for a precise estimate for the specificity to provide an accurate PTR. This is illustrated by showing that a 0.1% decrease in the value for specificities for trisomies 21, 18, and 13 can reduce the PTR from 79-64% for trisomy 21, 39-27% for trisomy 18, and 21-13% for trisomy 13, respectively. Use of the calculators assumes that sensitivity and specificity are constant for all women receiving the test but there is evidence that discordancy between screening results and true fetal karyotype is more common for older women. Use of an appropriate value for the prior risk is also important and for rare disorders there is considerable uncertainty regarding prevalence. For example, commonly used rates for trisomy 13, monosomy-X, triploidy, and 22q11.2 deletion syndrome can vary by >4-fold and this can translate into large differences in PTR. When screening for rare disorders, it may not be possible to provide a reliable PTR if there is uncertainty over the false-positive rate and/or prevalence. These limitations, per se, do not negate the value of screening for rare conditions. However, counselors need to carefully weigh the validity of PTR before presenting them to patients. Additional epidemiologic and NIPS outcome data are needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat.
Liu, Zhaohui; Zurn, Jason D; Kariyawasam, Gayan; Faris, Justin D; Shi, Gongjun; Hansen, Jana; Rasmussen, Jack B; Acevedo, Maricelis
2017-06-01
Tan spot susceptibility is conferred by multiple interactions of necrotrophic effector and host sensitivity genes. Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with the corresponding host sensitivity (S) genes in an inverse gene-for-gene manner to induce disease. However, it is unknown if the effects of these NE-S gene interactions contribute additively to the development of tan spot. In this work, we conducted disease evaluations using different races and quantitative trait loci (QTL) analysis in a wheat recombinant inbred line (RIL) population derived from a cross between two susceptible genotypes, LMPG-6 and PI 626573. The two parental lines each harbored a single known NE sensitivity gene with LMPG-6 having the Ptr ToxC sensitivity gene Tsc1 and PI 626573 having the Ptr ToxA sensitivity gene Tsn1. Transgressive segregation was observed in the population for all races. QTL mapping revealed that both loci (Tsn1 and Tsc1) were significantly associated with susceptibility to race 1 isolates, which produce both Ptr ToxA and Ptr ToxC, and the two genes contributed additively to tan spot susceptibility. For isolates of races 2 and 3, which produce only Ptr ToxA and Ptr ToxC, only Tsn1 and Tsc1 were associated with tan spot susceptibility, respectively. This work clearly demonstrates that tan spot susceptibility in this population is due primarily to two NE-S interactions. Breeders should remove both sensitivity genes from wheat lines to obtain high levels of tan spot resistance.
Performance simulation of a compact PET insert for simultaneous PET/MR breast imaging
NASA Astrophysics Data System (ADS)
Liang, Yicheng; Peng, Hao
2014-07-01
We studied performance metrics of a small PET ring designed to be integrated with a breast MRI coil. Its performance was characterized using a Monte Carlo simulation of a system with the best possible design features we believe are technically available, with respect to system geometry, spatial resolution, shielding, and lesion detectability. The results indicate that the proposed system is able to achieve about 6.2% photon detection sensitivity at the center of field-of-view (FOV) (crystal design: 2.2×2.2×20 mm3, height: 3.4 cm). The peak noise equivalent count rate (NECR) is found to be 7886 cps with a time resolution of 250 ps (time window: 500 ps). With the presence of lead shielding, the NECR increases by a factor of 1.7 for high activity concentrations within the breast (>0.9 μCi/mL), while no noticeable benefit is observed in the range of activities currently being used in the clinical setting. In addition, the system is able to achieve spatial resolution of 1.6 mm (2.2×2.2×20 mm3 crystal) and 0.77 mm (1×1×20 mm3 crystal) at the center of FOV, respectively. The incorporation of 10 mm DOI resolution can help mitigate parallax error towards the edge of FOV. For both 2.2 mm and 1 mm crystal designs, the spatial resolution is around 3.2-3.5 mm at 5 cm away from the center. Finally, time-of-flight (TOF) helps in improving image quality, reduces the required number of iteration numbers and the scan time. The TOF effect was studied with 3 different time resolution settings (1 ns, 500 ps and 250 ps). With a TOF of 500 ps time resolution, we expect 3 mm diameter spheres where 5:1 activity concentration ratio will be detectable within 5 min achieving contrast to noise ratio (CNR) above 4.
Field and laboratory measurements of biomass burning and vehicle exhaust using a PTR-MS
NASA Astrophysics Data System (ADS)
VanderSchelden, Graham Samuel
The Proton Transfer Reaction Mass Spectrometer (PTR-MS) is a powerful tool for analyzing organic compounds in air and has been applied in field and laboratory applications to assess emissions from biomass burning and vehicles. Biomass burning is an important source of air pollution globally in the form of wild fires, burning of crop stubble, and combustion of organic material for home energy. In the United States, residential wood combustion combined with low inversion heights in winter time has caused air quality problems. Through field deployment of the PTR-MS in Xi'an China during August of 2011, it was determined that 27%, 16%, 26%, and 12% of ambient carbon monoxide (CO), acetaldehyde, benzene, and toluene could be attributed to biomass burning. The PTR-MS was also deployed to Yakima, Washington in January of 2013, finding that residential wood combustion was a substantial source of air toxics and PM. Residential wood combustion contributed 100%, 73%, 69%, 55%, 36%, 19%, 19%, and 17% of organic PM1, formaldehyde, acetaldehyde, black carbon, benzene, toluene, C2-alkylbenzenes, and CO respectively. Diesel vehicles are becoming a larger fraction of the vehicle fleet and can be held responsible for a substantial fraction of air pollution emissions from on and off road mobile sources. Diesel engines are a source of low volatility products that are difficult to measure and are thought to be important in the formation of secondary organic aerosol (SOA). This work focuses on measuring important diesel exhaust compounds with the PTR-MS and assessing oxidation processes of these compounds. When the PTR-MS was deployed to the field along with a thermal desorption pre-concentration system, we estimated that diesel vehicles were about 3-15% of the vehicle activity influencing our study site in Yakima, WA using the ratio of m/z 157 to m/z 129. SOA yields of diesel exhaust compounds were assessed and about 48% of the SOA was attributed to compounds measured by the PTR-MS; with 21% attributed to alkylbenzenes, 20% attributed to alkanes, 3% attributed to alkylnaphthalenes, 3% attributed to molecular weight 178 polycyclic aromatic hydrocarbons, and 1% attributable to cycloalkanes.
Estimation of Trees Outside Forests using IRS High Resolution data by Object Based Image Analysis
NASA Astrophysics Data System (ADS)
Pujar, G. S.; Reddy, P. M.; Reddy, C. S.; Jha, C. S.; Dadhwal, V. K.
2014-11-01
Assessment of Trees outside forests (TOF) is widely being recognized as a pivotal theme, in sustainable natural resource management, due to their role in offering variety of goods, such as timber, fruits and fodder as well as services like water, carbon, biodiversity. Forest Conservation efforts involving reduction of deforestation and degradation may have to increasingly rely on alternatives provided by TOF in catering to economic demands in forest edges. Spatial information systems involving imaging, analysis and monitoring to achieve objectives under protocols like REDD+, require incorporation of information content from areas under forest as well as trees outside forests, to aid holistic decisions. In this perspective, automation in retrieving information on area under trees, growing outside forests, using high resolution imaging is essential so that measuring and verification of extant carbon pools, are strengthened. Retrieval of this tree cover is demonstrated herewith, using object based image analysis in a forest edge of dry deciduous forests of Eastern Ghats, in Khammam district of Telangana state of India. IRS high resolution panchromatic 2.5 m data (Cartosat-1 Orthorectified) used in tandem with 5.8 m multispectral LISS IV data, discerns tree crowns and clusters at a detailed scale and hence semi-automated approach is attempted to classify TOF from a pair of image from relatively crop and cloud free season. Object based image analysis(OBIA) approach as implemented in commercial suite of e-Cognition (Ver 8.9) consists of segmentation at user defined scale followed by application of wide range of spectral, textural and object geometry based parameters for classification. Software offers innovative blend of raster and vector features that can be juxtaposed flexibly, across scales horizontally or vertically. Segmentation was carried out at multiple scales to discern first the major land covers, such as forest, water, agriculture followed by that at a finer scale, within cultivated landscape. Latter scale aimed to segregate TOF in configurations such as individual or scattered crowns, linear formations and patch TOF. As per the adopted norms in India for defining tree cover, units up to 1 ha area were considered as candidate TOF. Classification of fine scale (at 10) segments was accomplished using size, shape and texture. A customised parameter involving ratio of area of segment to its main skeleton length discerned linear formations consistently. Texture of Cartosat-1 2.5 m data was also used segregate tree cover from smoother crop patches in patch TOF category. In view of the specificity of the landscape character, continuum of cultivated area (b) and pockets of cultivation within forest (c) as well as the entire study area (a) were considered as three envelopes for evaluating the accuracy of the method. Accuracies not less than 75.1 per cent were reported in all the envelopes with a kappa accuracy of not less than 0.58. Overall accuracy of entire study area was 75.9 per cent with Kappa of 0.59 followed by 75.1 per cent ( Kappa: 0.58 ) of agricultural landscape (b). In pockets of cultivation context(c) accuracy was higher at 79.2 per cent ( Kappa: 0.64 ) possibly due to smaller population. Assessment showed that 1,791 ha of 24,140 ha studied (7.42 %) was under tree cover as per the definitions adopted. Strength of accuracy demonstrated obviously points to the potential of IRS high resolution data combination in setting up procedures to monitor the TOF in Indian context using OBIA approach so as to cater to the evolving demands of resource assessment and monitoring.
Luedemann, Alexander; Strassburg, Katrin; Erban, Alexander; Kopka, Joachim
2008-03-01
Typical GC-MS-based metabolite profiling experiments may comprise hundreds of chromatogram files, which each contain up to 1000 mass spectral tags (MSTs). MSTs are the characteristic patterns of approximately 25-250 fragment ions and respective isotopomers, which are generated after gas chromatography (GC) by electron impact ionization (EI) of the separated chemical molecules. These fragment ions are subsequently detected by time-of-flight (TOF) mass spectrometry (MS). MSTs of profiling experiments are typically reported as a list of ions, which are characterized by mass, chromatographic retention index (RI) or retention time (RT), and arbitrary abundance. The first two parameters allow the identification, the later the quantification of the represented chemical compounds. Many software tools have been reported for the pre-processing, the so-called curve resolution and deconvolution, of GC-(EI-TOF)-MS files. Pre-processing tools generate numerical data matrices, which contain all aligned MSTs and samples of an experiment. This process, however, is error prone mainly due to (i) the imprecise RI or RT alignment of MSTs and (ii) the high complexity of biological samples. This complexity causes co-elution of compounds and as a consequence non-selective, in other words impure MSTs. The selection and validation of optimal fragment ions for the specific and selective quantification of simultaneously eluting compounds is, therefore, mandatory. Currently validation is performed in most laboratories under human supervision. So far no software tool supports the non-targeted and user-independent quality assessment of the data matrices prior to statistical analysis. TagFinder may fill this gap. TagFinder facilitates the analysis of all fragment ions, which are observed in GC-(EI-TOF)-MS profiling experiments. The non-targeted approach allows the discovery of novel and unexpected compounds. In addition, mass isotopomer resolution is maintained by TagFinder processing. This feature is essential for metabolic flux analyses and highly useful, but not required for metabolite profiling. Whenever possible, TagFinder gives precedence to chemical means of standardization, for example, the use of internal reference compounds for retention time calibration or quantitative standardization. In addition, external standardization is supported for both compound identification and calibration. The workflow of TagFinder comprises, (i) the import of fragment ion data, namely mass, time and arbitrary abundance (intensity), from a chromatography file interchange format or from peak lists provided by other chromatogram pre-processing software, (ii) the annotation of sample information and grouping of samples into classes, (iii) the RI calculation, (iv) the binning of observed fragment ions of equal mass from different chromatograms into RI windows, (v) the combination of these bins, so-called mass tags, into time groups of co-eluting fragment ions, (vi) the test of time groups for intensity correlated mass tags, (vii) the data matrix generation and (viii) the extraction of selective mass tags supported by compound identification. Thus, TagFinder supports both non-targeted fingerprinting analyses and metabolite targeted profiling. Exemplary TagFinder workspaces and test data sets are made available upon request to the contact authors. TagFinder is made freely available for academic use from http://www-en.mpimp-golm.mpg.de/03-research/researchGroups/01-dept1/Root_Metabolism/smp/TagFinder/index.html.
Revelsky, A I; Samokhin, A S; Virus, E D; Rodchenkov, G M; Revelsky, I A
2011-04-01
The method of high sensitive gas chromatographic/time-of-flight mass-spectrometric (GC/TOF-MS) analysis of steroids was developed. Low-resolution TOF-MS instrument (with fast spectral acquisition rate) was used. This method is based on the formation of the silyl derivatives of steroids; exchange of the reagent mixture (pyridine and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)) for tert-butylmethylether; offline large sample volume injection of this solution based on sorption concentration of the respective derivatives from the vapour-gas mixture flow formed from the solution and inert gas flows; and entire analytes solvent-free concentrate transfer into the injector of the gas chromatograph. Detection limits for 100 µl sample solution volume were 0.5-2 pg/µl (depending on the component). Application of TOF-MS model 'TruTOF' (Leco, St Joseph, MO, USA) coupled with gas chromatograph and ChromaTOF software (Leco, St Joseph, MO, USA) allowed extraction of the full mass spectra and resolving coeluted peaks. Due to use of the proposed method (10 µl sample aliquot) and GC/TOF-MS, two times more steroid-like compounds were registered in the urine extract in comparison with the injection of 1 µl of the same sample solution. Copyright © 2010 John Wiley & Sons, Ltd.
Adaptive bilateral filter for image denoising and its application to in-vitro Time-of-Flight data
NASA Astrophysics Data System (ADS)
Seitel, Alexander; dos Santos, Thiago R.; Mersmann, Sven; Penne, Jochen; Groch, Anja; Yung, Kwong; Tetzlaff, Ralf; Meinzer, Hans-Peter; Maier-Hein, Lena
2011-03-01
Image-guided therapy systems generally require registration of pre-operative planning data with the patient's anatomy. One common approach to achieve this is to acquire intra-operative surface data and match it to surfaces extracted from the planning image. Although increasingly popular for surface generation in general, the novel Time-of-Flight (ToF) technology has not yet been applied in this context. This may be attributed to the fact that the ToF range images are subject to considerable noise. The contribution of this study is two-fold. Firstly, we present an adaption of the well-known bilateral filter for denoising ToF range images based on the noise characteristics of the camera. Secondly, we assess the quality of organ surfaces generated from ToF range data with and without bilateral smoothing using corresponding high resolution CT data as ground truth. According to an evaluation on five porcine organs, the root mean squared (RMS) distance between the denoised ToF data points and the reference computed tomography (CT) surfaces ranged from 3.0 mm (lung) to 9.0 mm (kidney). This corresponds to an error-reduction of up to 36% compared to the error of the original ToF surfaces.
Lee, Dongwook; Jang, Jun Hyeong; Cha, Seho; Seo, Taegun
2016-12-01
A pink-pigmented, gram-negative, non-motile, non-gliding, flexirubin-negative, rod-shaped and strictly aerobic bacterial strain, designated PTR3 T , was isolated from a soil sample from Goyang, South Korea. Growth occurred between 10 and 42 °C (optimum 30 °C), 0-4 % (w/v) NaCl (optimum 0 %) and pH 6-9 (optimum 7-8). Phylogenetic analysis based on 16S rRNA sequences showed that strain PTR3 T forms a distinct clade with type strains of the closely related genus, Dyadobacter, with similarities of 93.6 and 91.3-93.6 %, respectively. The strain produces a pink carotenoid pigment(s). The major polar lipids are an unidentified aminophospholipid and an aminolipid. Strain PTR3 T was found to contain MK-7 as the predominant menaquinone and C 16:1 ω7c and/or C 16:1 ω6c as the major fatty acids. The DNA G + C content of strain PTR3 T was deterrmined to be 45.9 mol %. Based on the chemotaxonomic, phylogenetic and other physiological properties, strain PTR3 T (=KCTC 42819 T = JCM 31133 T ) is concluded to represent a novel species in a new genus within the family Cytophagaceae, for which the name Telluribacter humicola gen nov., sp. nov., is proposed.
Development of a TOF SIMS setup at the Zagreb heavy ion microbeam facility
NASA Astrophysics Data System (ADS)
Tadić, Tonči; Bogdanović Radović, Iva; Siketić, Zdravko; Cosic, Donny Domagoj; Skukan, Natko; Jakšić, Milko; Matsuo, Jiro
2014-08-01
We describe a new Time-of-flight Secondary Ion Mass Spectrometry (TOF SIMS) setup for MeV SIMS application, which is constructed and installed at the heavy ion microbeam facility at the Ruđer Bošković Institute in Zagreb. The TOF-SIMS setup is developed for high sensitivity molecular imaging using a heavy ion microbeam that focuses ion beams (from C to I) with sub-micron resolution. Dedicated pulse processing electronics for MeV SIMS application have been developed, enabling microbeam-scanning control, incoming ion microbeam pulsing and molecular mapping. The first results showing measured MeV SIMS spectra as well as molecular maps for samples of interest are presented and discussed.
Neutron cross-sections for next generation reactors: new data from n_TOF.
Colonna, N; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; de Albornoz, A Carrillo; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K
2010-01-01
In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry. Copyright 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.
Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. Here in this study, an SID device was designed and successfully installed in amore » hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. Lastly, SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.
Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybridmore » FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less
Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; ...
2016-12-02
Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. Here in this study, an SID device was designed and successfully installed in amore » hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. Lastly, SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less
NASA Astrophysics Data System (ADS)
Coll, P.; Cabane, M.; Mahaffy, P. R.; Brinckerhoff, W. B.; Sam Team
The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. The Sample Analysis at Mars (SAM) suite consists of a group of tightly-integrated experiments that would analyze samples delivered directly from a coring drill or by a facility sample processing and delivery (SPAD) mechanism. SAM consists of an advanced GC/MS system and a laser desorption mass spectrometer (LDMS). The combined capabilities of these techniques can address Mars science objectives with much improved sensitivity, resolution, and analytical breadth over what has been previously possible in situ. The GC/MS system analyzes the bulk composition (both molecular and isotopic) of solid-phase and atmospheric samples. Solid samples are introduced with a highly flexible chemical derivatization/pyrolysis subsystem (Pyr/GC/MS) that is significantly more capable than the mass spectrometers on Viking. The LDMS analyzes local elemental and molecular composition in solid samples vaporized and ionized with a pulsed laser. We will describe how each of these capabilities has particular strengths that can achieve key measurement objectives at Mars. In addition, the close codevelopment of the GC/MS and LDMS along with a sample manipulation system enables the the sharing of resources, the correlation of results, and the utilization of certain approaches that would not be possible with separate instruments. For instance, the same samples could be analyzed with more than one technique, increasing efficiency and providing cross-checks for quantification. There is also the possibility of combining methods, such as by permitting TOF-MS analyses of evolved gas (Pyr/EI-TOF-MS) or GC/MS analyses of laser evaporated gas (LD-GC/MS).
Angelakis, Emmanouil; Million, Matthieu; Henry, Mireille; Raoult, Didier
2011-10-01
Probiotic food is manufactured by adding probiotic strains simultaneously with starter cultures in fermentation tanks. Here, we investigate the accuracy and feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for bacterial identification at the species level in probiotic food and yoghurts. Probiotic food and yoghurts were cultured in Columbia and Lactobacillus specific agar and tested by quantitative real-time PCR (qPCR) for the detection and quantification of Lactobacillus sp. Bacterial identification was performed by MALDI-TOF analysis and by amplification and sequencing of tuf and 16S rDNA genes. We tested 13 probiotic food and yoghurts and we identified by qPCR that they presented 10(6) to 10(7) copies of Lactobacillus spp. DNA/g. All products contained very large numbers of living bacteria varying from 10(6) to 10(9) colony forming units/g. These bacteria were identified as Lactobacillus casei, Lactococcus lactis, Bifidobacterium animalis, Lactobacillus delbrueckii, and Streptococcus thermophilus. MALDI-TOF MS presented 92% specificity compared to the molecular assays. In one product we found L. lactis, instead of Bifidus spp. which was mentioned on the label and for another L. delbrueckii and S. thermophilus instead of Bifidus spp. MALDI-TOF MS allows a rapid and accurate bacterial identification at the species level in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified. Practical Application: MALDI-TOF MS is rapid and specific for the identification of bacteria in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified. © 2011 Institute of Food Technologists®
Wang, Jin; Cao, Xianshuang; Jiang, Hao; Qi, Yadong; Chin, Kit L; Yue, Yongde
2014-12-17
Hibiscus sabdariffa has gained attention for its antioxidant activity. There are many accessions of H. sabdariffa in the world. However, information on the quantification of antioxidant compounds in different accessions is rather limited. In this paper, a liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) method for simultaneous determination of five antioxidant compounds (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, and isoquercitrin) in H. sabdariffa leaves was developed. The method was validated for linearity, sensitivity, precision, repeatability and accuracy. The validated method has been successfully applied for determination of the five analytes in eight accessions of H. sabdariffa. The eight accessions of H. sabdariffa were evaluated for their antioxidant activities by DPPH free radical scavenging assay. The investigated accessions of H. sabdariffa were rich in rutin and exhibited strong antioxidant activity. The two accessions showing the highest antioxidant activities were from Cuba (No. 2) and Taiwan (No. 5). The results indicated that H. sabdariffa leaves could be considered as a potential antioxidant source for the food industry. The developed LC-Q-TOF-MS method is helpful for quality control of H. sabdariffa.
NASA Astrophysics Data System (ADS)
Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin
2012-08-01
In this work, a new pre-analysis method for tetracyclines (TCs) detection from the milk samples was established. As a good accomplishment for the existing accurate quantification strategies for TCs detection, the new pre-analysis method was demonstrated to be simple, sensitive, fast, cost effective, and high throughput, which would do a great favor to the routine quality pre-analysis of TCs from milk samples. Graphene or graphene oxide was utilized, for the first time, as a duel-platform to enrich and detect the TCs by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). All together, four TCs were chosen as models: tetracycline, oxytetracycline, demeclocycline, and chlortetracycline. Due to the excellent electronic, thermal, and mechanical properties, graphene and graphene oxide were successfully applied as matrices for MALDI-TOF MS with free background inference in low mass range. Meanwhile, graphene or graphene oxide has a large surface area and strong interaction force with the analytes. By taking the advantage of these features, TCs were effectively enriched with the limit of detection (LOD) as low as 2 nM.
Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua
2018-04-01
Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H] - ) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Yuan, B.; Liggio, J.; Wentzell, J.; Li, S.-M.; Stark, H.; Roberts, J. M.; Gilman, J.; Lerner, B.; Warneke, C.; Li, R.; Leithead, A.; Osthoff, H. D.; Wild, R.; Brown, S. S.; de Gouw, J. A.
2015-10-01
We describe the results from online measurements of nitrated phenols using a time of flight chemical ionization mass spectrometer (ToF-CIMS) with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2), primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP) and dinitrophenols (DNP). The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF) techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding of the evolution of primary VOCs in the atmosphere.
NASA Astrophysics Data System (ADS)
Yuan, Bin; Liggio, John; Wentzell, Jeremy; Li, Shao-Meng; Stark, Harald; Roberts, James M.; Gilman, Jessica; Lerner, Brian; Warneke, Carsten; Li, Rui; Leithead, Amy; Osthoff, Hans D.; Wild, Robert; Brown, Steven S.; de Gouw, Joost A.
2016-02-01
We describe the results from online measurements of nitrated phenols using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2), primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP), and dinitrophenols (DNP). The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF) techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding on the evolution of primary VOCs in the atmosphere.
Domingo-Almenara, Xavier; Perera, Alexandre; Brezmes, Jesus
2016-11-25
Gas chromatography-mass spectrometry (GC-MS) produces large and complex datasets characterized by co-eluted compounds and at trace levels, and with a distinct compound ion-redundancy as a result of the high fragmentation by the electron impact ionization. Compounds in GC-MS can be resolved by taking advantage of the multivariate nature of GC-MS data by applying multivariate resolution methods. However, multivariate methods have to be applied in small regions of the chromatogram, and therefore chromatograms are segmented prior to the application of the algorithms. The automation of this segmentation process is a challenging task as it implies separating between informative data and noise from the chromatogram. This study demonstrates the capabilities of independent component analysis-orthogonal signal deconvolution (ICA-OSD) and multivariate curve resolution-alternating least squares (MCR-ALS) with an overlapping moving window implementation to avoid the typical hard chromatographic segmentation. Also, after being resolved, compounds are aligned across samples by an automated alignment algorithm. We evaluated the proposed methods through a quantitative analysis of GC-qTOF MS data from 25 serum samples. The quantitative performance of both moving window ICA-OSD and MCR-ALS-based implementations was compared with the quantification of 33 compounds by the XCMS package. Results shown that most of the R 2 coefficients of determination exhibited a high correlation (R 2 >0.90) in both ICA-OSD and MCR-ALS moving window-based approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
Peixoto, Maria Paula Garofo; Kaiser, Samuel; Verza, Simone Gasparin; de Resende, Pedro Ernesto; Treter, Janine; Pavei, Cabral; Borré, Gustavo Luís; Ortega, George González
2012-01-01
Ilex paraguariensis A. St. Hil. (mate) is known in several South American countries because of the use of its leaves in stimulant herbal beverages. High saponin contents were reported in mate leaves and unripe fruits that possess a dissimilar composition. Two LC-UV methods previously reported for mate saponins assay focused on mate leaves and the quantification of the less polar saponin fraction in mate fruits. To develop and validate a LC-UV method to assay the total content of saponins in unripe mate fruits and characterise the chemical structure of triterpenic saponins by UPLC/Q-TOF-MS. From unripe fruits of mate a crude ethanolic extract was prepared (EX40) and the mate saponin fraction (MSF) purified by solid phase extraction. The LC-UV method was validated using ilexoside II as external standard. UPLC/Q-TOF-MS was adjusted from the LC-UV method to obtain the fragmentation patterns of the main saponins present in unripe fruits. Both LC-UV and UPLC/Q-TOF-MS methods indicate a wide range of Ilex saponins polarity. The ilexoside II and total saponin content of EX40 were 8.20% (w/w) and 47.60% (w/w), respectively. The total saponin content in unripe fruits was 7.28% (w/w). The saponins present in MSF characterised by UPLC/Q-TOF-MS are derived mainly from ursolic/oleanolic, acetyl ursolic or pomolic acid. The validated LC-UV method was shown to be linear, precise, accurate and to cover several saponins previously isolated from Ilex species and could be applied for the quality control of unripe fruit saponins. Copyright © 2011 John Wiley & Sons, Ltd.
Hufnagel, P.; Glandorf, J.; Körting, G.; Jabs, W.; Schweiger-Hufnagel, U.; Hahner, S.; Lubeck, M.; Suckau, D.
2007-01-01
Analysis of complex proteomes often results in long protein lists, but falls short in measuring the validity of identification and quantification results on a greater number of proteins. Biological and technical replicates are mandatory, as is the combination of the MS data from various workflows (gels, 1D-LC, 2D-LC), instruments (TOF/TOF, trap, qTOF or FTMS), and search engines. We describe a database-driven study that combines two workflows, two mass spectrometers, and four search engines with protein identification following a decoy database strategy. The sample was a tryptically digested lysate (10,000 cells) of a human colorectal cancer cell line. Data from two LC-MALDI-TOF/TOF runs and a 2D-LC-ESI-trap run using capillary and nano-LC columns were submitted to the proteomics software platform ProteinScape. The combined MALDI data and the ESI data were searched using Mascot (Matrix Science), Phenyx (GeneBio), ProteinSolver (Bruker and Protagen), and Sequest (Thermo) against a decoy database generated from IPI-human in order to obtain one protein list across all workflows and search engines at a defined maximum false-positive rate of 5%. ProteinScape combined the data to one LC-MALDI and one LC-ESI dataset. The initial separate searches from the two combined datasets generated eight independent peptide lists. These were compiled into an integrated protein list using the ProteinExtractor algorithm. An initial evaluation of the generated data led to the identification of approximately 1200 proteins. Result integration on a peptide level allowed discrimination of protein isoforms that would not have been possible with a mere combination of protein lists.
NASA Technical Reports Server (NTRS)
Young, David T.
1991-01-01
This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.
TOFSIMS-P: a web-based platform for analysis of large-scale TOF-SIMS data.
Yun, So Jeong; Park, Ji-Won; Choi, Il Ju; Kang, Byeongsoo; Kim, Hark Kyun; Moon, Dae Won; Lee, Tae Geol; Hwang, Daehee
2011-12-15
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been a useful tool to profile secondary ions from the near surface region of specimens with its high molecular specificity and submicrometer spatial resolution. However, the TOF-SIMS analysis of even a moderately large size of samples has been hampered due to the lack of tools for automatically analyzing the huge amount of TOF-SIMS data. Here, we present a computational platform to automatically identify and align peaks, find discriminatory ions, build a classifier, and construct networks describing differential metabolic pathways. To demonstrate the utility of the platform, we analyzed 43 data sets generated from seven gastric cancer and eight normal tissues using TOF-SIMS. A total of 87 138 ions were detected from the 43 data sets by TOF-SIMS. We selected and then aligned 1286 ions. Among them, we found the 66 ions discriminating gastric cancer tissues from normal ones. Using these 66 ions, we then built a partial least square-discriminant analysis (PLS-DA) model resulting in a misclassification error rate of 0.024. Finally, network analysis of the 66 ions showed disregulation of amino acid metabolism in the gastric cancer tissues. The results show that the proposed framework was effective in analyzing TOF-SIMS data from a moderately large size of samples, resulting in discrimination of gastric cancer tissues from normal tissues and identification of biomarker candidates associated with the amino acid metabolism.
Li, Jian-Xun; Li, Xiao-Ying; Chang, Qiao-Ying; Li, Yan; Jin, Ling-He; Pang, Guo-Fang; Fan, Chun-Lin
2018-05-03
Because of its unique characteristics of accurate mass full-spectrum acquisition, high resolution, and fast acquisition rates, GC-quadrupole-time-of-flight MS (GC-Q-TOF/MS) has become a powerful tool for pesticide residue analysis. In this study, a TOF accurate mass database and Q-TOF spectrum library of 439 pesticides were established, and the parameters of the TOF database were optimized. Through solid-phase extraction (SPE), whereby pesticides are extracted from fruit and vegetable substrates by using 40 mL 1% acetic acid in acetonitrile (v/v), purified by the Carbon/NH₂ SPE cartridge, and finally detected by GC-Q-TOF/MS, the rapid analysis of 439 pesticides in fruits and vegetables can be achieved. The methodology verification results show that more than 70 and 91% of pesticides, spiked in fruits and vegetables with concentrations of 10 and 100 μg/kg, respectively, saw recoveries that conform to the European Commission's criterion of between 70 and 120% with RSD ≤20%. Eighty-one percent of pesticides have screening detection limits lower than 10 μg/kg, which makes this a reliable analysis technology for the monitoring of pesticide residues in fruits and vegetables. This technology was further validated for its characteristics of high precision, high speed, and high throughput through successful detection of 9817 samples during 2013-2015.
Chemical Visualization of Sweat Pores in Fingerprints Using GO-Enhanced TOF-SIMS.
Cai, Lesi; Xia, Meng-Chan; Wang, Zhaoying; Zhao, Ya-Bin; Li, Zhanping; Zhang, Sichun; Zhang, Xinrong
2017-08-15
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used in imaging of small molecules (<500 Da) in fingerprints, such as gunshot residues and illicit drugs. However, identifying and mapping relatively high mass molecules are quite difficult owing to insufficient ion yield of their molecular ions. In this report, graphene oxide (GO)-enhanced TOF-SIMS was used to detect and image relatively high mass molecules such as poison, alkaloids (>600 Da) and controlled drugs, and antibiotics (>700 Da) in fingerprints. Detail features of fingerprints such as the number and distribution of sweat pores in a ridge and even the delicate morphology of one pore were clearly revealed in SIMS images of relatively high mass molecules. The detail features combining with identified chemical composition were sufficient to establish a human identity and link the suspect to a crime scene. The wide detectable mass range and high spatial resolution make GO-enhanced TOF-SIMS a promising tool in accurate and fast analysis of fingerprints, especially in fragmental fingerprint analysis.
Sánchez-López, José A; Zimmermann, Ralf; Yeretzian, Chahan
2014-12-02
Using proton-transfer-reaction time-of-flight mass-spectrometry (PTR-ToF-MS), we investigated the extraction dynamic of 95 ion traces in real time (time resolution = 1 s) during espresso coffee preparation. Fifty-two of these ions were tentatively identified. This was achieved by online sampling of the volatile organic compounds (VOCs) in close vicinity to the coffee flow, at the exit of the extraction hose of the espresso machine (single serve capsules). Ten replicates of six different single serve coffee types were extracted to a final weight between 20-120 g, according to the recommended cup size of the respective coffee capsule (Ristretto, Espresso, and Lungo), and analyzed. The results revealed considerable differences in the extraction kinetics between compounds, which led to a fast evolution of the volatile profiles in the extract flow and consequently to an evolution of the final aroma balance in the cup. Besides exploring the time-resolved extraction dynamics of VOCs, the dynamic data also allowed the coffees types (capsules) to be distinguished from one another. Both hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed full separation between the coffees types. The methodology developed provides a fast and simple means of studying the extraction dynamics of VOCs and differentiating between different coffee types.
González-Méndez, Ramón; Watts, Peter; Olivenza-León, David; Reich, D Fraser; Mullock, Stephen J; Corlett, Clive A; Cairns, Stuart; Hickey, Peter; Brookes, Matthew; Mayhew, Chris A
2016-11-01
A key issue with any analytical system based on mass spectrometry with no initial separation of compounds is to have a high level of confidence in chemical assignment. This is particularly true for areas of security, such as airports, and recent terrorist attacks have highlighted the need for reliable analytical instrumentation. Proton transfer reaction mass spectrometry is a useful technology for these purposes because the chances of false positives are small owing to the use of a mass spectrometric analysis. However, the detection of an ion at a given m/z for an explosive does not guarantee that that explosive is present. There is still some ambiguity associated with any chemical assignment owing to the presence of isobaric compounds and, depending on mass resolution, ions with the same nominal m/z. In this article we describe how for the first time the use of a radio frequency ion-funnel (RFIF) in the reaction region (drift tube) of a proton transfer reaction-time-of-flight-mass spectrometer (PTR-ToF-MS) can be used to enhance specificity by manipulating the ion-molecule chemistry through collisional induced processes. Results for trinitrotoluene, dinitrotoluenes, and nitrotoluenes are presented to demonstrate the advantages of this new RFIF-PTR-ToF-MS for analytical chemical purposes.
Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas
2015-01-01
Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045
USDA-ARS?s Scientific Manuscript database
ToxA, the first discovered fungal proteinaceous host-selective toxin, was originally identified from the tan spot fungus Pyrenophora tritici-repentis (Ptr). Homologues of the PtrToxA gene have not been identified from any other ascomycetes except the leaf/glume blotch fungus Stagonospora nodorum, w...
ERIC Educational Resources Information Center
Woods, Bonnie
2013-01-01
Prevent-Teach-Reinforce (PTR) is a collaborative, standardized process that was developed as a way to address identified barriers to completing effective functional behavior assessments (FBAs) in public schools. Current research literature documents the effectiveness of the PTR process in decreasing problematic behaviors and increasing social…
Rai, Arpita; Acharya, Ashith B; Naikmasur, Venkatesh G
2016-01-01
Age estimation of living or deceased individuals is an important aspect of forensic sciences. Conventionally, pulp-to-tooth area ratio (PTR) measured from periapical radiographs have been utilized as a nondestructive method of age estimation. Cone-beam computed tomography (CBCT) is a new method to acquire three-dimensional images of the teeth in living individuals. The present study investigated age estimation based on PTR of the maxillary canines measured in three planes obtained from CBCT image data. Sixty subjects aged 20-85 years were included in the study. For each tooth, mid-sagittal, mid-coronal, and three axial sections-cementoenamel junction (CEJ), one-fourth root level from CEJ, and mid-root-were assessed. PTR was calculated using AutoCAD software after outlining the pulp and tooth. All statistical analyses were performed using an SPSS 17.0 software program. Linear regression analysis showed that only PTR in axial plane at CEJ had significant age correlation ( r = 0.32; P < 0.05). This is probably because of clearer demarcation of pulp and tooth outline at this level.
Analysis of the regulatory region of the protease III (ptr) gene of Escherichia coli K-12.
Claverie-Martin, F; Diaz-Torres, M R; Kushner, S R
1987-01-01
The ptr gene of Escherichia coli encodes protease III (Mr 110,000) and a 50-kDa polypeptide, both of which are found in the periplasmic space. The gene is physically located between the recC and recB loci on the E. coli chromosome. The nucleotide sequence of a 1167-bp EcoRV-ClaI fragment of chromosomal DNA containing the promoter region and 885 bp of the ptr coding sequence has been determined. S1 nuclease mapping analysis showed that the major 5' end of the ptr mRNA was localized 127 bp upstream from the ATG start codon. The open reading frame (ORF), preceded by a Shine-Dalgarno sequence, extends to the end of the sequenced DNA. Downstream from the -35 and -10 regions is a sequence that strongly fits the consensus sequence of known nitrogen-regulated promoters. A signal peptide of 23 amino acids residues is present at the N terminus of the derived amino acid sequence. The cleavage site as well as the ORF were confirmed by sequencing the N terminus of mature protease III.
2017-01-01
Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei (Tb). We solved crystal structures of several TbPTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of TbPTR1 with low toxicity. In particular, compound 4m, a biphenyl-thiadiazole-2,5-diamine with IC50 = 16 μM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti-T. brucei agents can be obtained. PMID:28983525
Linciano, Pasquale; Dawson, Alice; Pöhner, Ina; Costa, David M; Sá, Monica S; Cordeiro-da-Silva, Anabela; Luciani, Rosaria; Gul, Sheraz; Witt, Gesa; Ellinger, Bernhard; Kuzikov, Maria; Gribbon, Philip; Reinshagen, Jeanette; Wolf, Markus; Behrens, Birte; Hannaert, Véronique; Michels, Paul A M; Nerini, Erika; Pozzi, Cecilia; di Pisa, Flavio; Landi, Giacomo; Santarem, Nuno; Ferrari, Stefania; Saxena, Puneet; Lazzari, Sandra; Cannazza, Giuseppe; Freitas-Junior, Lucio H; Moraes, Carolina B; Pascoalino, Bruno S; Alcântara, Laura M; Bertolacini, Claudia P; Fontana, Vanessa; Wittig, Ulrike; Müller, Wolfgang; Wade, Rebecca C; Hunter, William N; Mangani, Stefano; Costantino, Luca; Costi, Maria P
2017-09-30
Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei ( Tb ). We solved crystal structures of several Tb PTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of Tb PTR1 with low toxicity. In particular, compound 4m , a biphenyl-thiadiazole-2,5-diamine with IC 50 = 16 μM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC 50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti- T. brucei agents can be obtained.
Kehrer-Sawatzki, H; Sandig, C A; Goidts, V; Hameister, H
2005-01-01
During this study, we analysed the pericentric inversion that distinguishes human chromosome 12 (HSA12) from the homologous chimpanzee chromosome (PTR10). Two large chimpanzee-specific duplications of 86 and 23 kb were observed in the breakpoint regions, which most probably occurred associated with the inversion. The inversion break in PTR10p caused the disruption of the SLCO1B3 gene in exon 11. However, the 86-kb duplication includes the functional SLCO1B3 locus, which is thus retained in the chimpanzee, although inverted to PTR10q. The second duplication spans 23 kb and does not contain expressed sequences. Eleven genes map to a region of about 1 Mb around the breakpoints. Six of these eleven genes are not among the differentially expressed genes as determined previously by comparing the human and chimpanzee transcriptome of fibroblast cell lines, blood leukocytes, liver and brain samples. These findings imply that the inversion did not cause major expression differences of these genes. Comparative FISH analysis with BACs spanning the inversion breakpoints in PTR on metaphase chromosomes of gorilla (GGO) confirmed that the pericentric inversion of the chromosome 12 homologs in GGO and PTR have distinct breakpoints and that humans retain the ancestral arrangement. These findings coincide with the trend observed in hominoid karyotype evolution that humans have a karyotype close to an ancestral one, while African great apes present with more derived chromosome arrangements. Copyright (c) 2005 S. Karger AG, Basel.
Zhao, Liang; Lou, Zi-Yang; Zhu, Zhen-Yu; Zhang, Guo-Qing; Chai, Yi-Feng
2008-01-01
A reliable and rapid method based on rapid-resolution liquid chromatography-diode array detection (RRLC-DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF/MS) has been developed for the isolation and characterization of multiple constituents in the root of Stellera chamaejasme L., which was extracted by sonication with methanol in an optimized procedure. Separation of the multiple constituents was achieved on an Agilent Zorbax XDB-C18 (50x3.0 mm i.d.; 1.8 microm) column using a gradient elution at a flow rate of 0.4 mL/min. The detection wavelength was 210 nm. Mass spectra were acquired in both positive and negative modes. A formula database of the known chemical constituents in the root of Stellera chamaejasme L. was established by an Agilent software. Twenty-two obvious peaks appeared in the total ion chromatogram and nine of them were characterized by TOF/MS. The RRLC-DAD and ESI-TOF/MS method with ultrasonic extraction would be useful for rapid and effective characterization of chemical constituents in the root of Stellera chamaejasme L. Copyright (c) 2007 John Wiley & Sons, Ltd.
Performance studies towards a TOF-PET sensor using Compton scattering at plastic scintillators
NASA Astrophysics Data System (ADS)
Kuramoto, M.; Nakamori, T.; Gunji, S.; Kamada, K.; Shoji, Y.; Yoshikawa, A.; Aoki, T.
2018-01-01
We have developed a sensor head for a time-of-flight (TOF) PET scanner using plastic scintillators that have a very fast timing property. Given the very small cross section of photoelectric absorption in plastic scintillators at 511 keV, we use Compton scattering in order to compensate for detection efficiency. The detector will consist of two layers of scatterers and absorbers which are made of plastic and inorganic scintillators such as GAGG:Ce, respectively. Signals are read by monolithic Multi Pixel Photon Counters, and with energy deposits and interaction time stamps are being acquired. The scintillators are built to be capable of resolving interaction position in three dimensions, so that our system has also a function of depth-of-interaction (DOI) PET scanners. TOF resolution of ~ 200 ps (FWHM) is achieved in both cases of using the leading-edge discriminator and time-walk correction and using a configuration sensitive to DOI. Both the position resolution and spectroscopy are demonstrated using the prototype data acquisition system, with Compton scattering events subsequently being obtained. We also demonstrated that the background rejection technique using the Compton cone constraint could be valid with our system.
Kulkarni, Purva; Dost, Mina; Bulut, Özgül Demir; Welle, Alexander; Böcker, Sebastian; Boland, Wilhelm; Svatoš, Aleš
2018-01-01
Spatially resolved analysis of a multitude of compound classes has become feasible with the rapid advancement in mass spectrometry imaging strategies. In this study, we present a protocol that combines high lateral resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging with a multivariate data analysis (MVA) approach to probe the complex leaf surface chemistry of Populus trichocarpa. Here, epicuticular waxes (EWs) found on the adaxial leaf surface of P. trichocarpa were blotted on silicon wafers and imaged using TOF-SIMS at 10 μm and 1 μm lateral resolution. Intense M +● and M -● molecular ions were clearly visible, which made it possible to resolve the individual compound classes present in EWs. Series of long-chain aliphatic saturated alcohols (C 21 -C 30 ), hydrocarbons (C 25 -C 33 ) and wax esters (WEs; C 44 -C 48 ) were clearly observed. These data correlated with the 7 Li-chelation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, which yielded mostly molecular adduct ions of the analyzed compounds. Subsequently, MVA was used to interrogate the TOF-SIMS dataset for identifying hidden patterns on the leaf's surface based on its chemical profile. After the application of principal component analysis (PCA), a small number of principal components (PCs) were found to be sufficient to explain maximum variance in the data. To further confirm the contributions from pure components, a five-factor multivariate curve resolution (MCR) model was applied. Two distinct patterns of small islets, here termed 'crystals', were apparent from the resulting score plots. Based on PCA and MCR results, the crystals were found to be formed by C 23 or C 29 alcohols. Other less obvious patterns observed in the PCs revealed that the adaxial leaf surface is coated with a relatively homogenous layer of alcohols, hydrocarbons and WEs. The ultra-high-resolution TOF-SIMS imaging combined with the MVA approach helped to highlight the diverse patterns underlying the leaf's surface. Currently, the methods available to analyze the surface chemistry of waxes in conjunction with the spatial information related to the distribution of compounds are limited. This study uses tools that may provide important biological insights into the composition of the wax layer, how this layer is repaired after mechanical damage or insect feeding, and which transport mechanisms are involved in deploying wax constituents to specific regions on the leaf surface. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Pressure calibrants in the hydrothermal diamond-anvil cell
Chou, I.-Ming
2007-01-01
Based on the equation of state of water (EOSW), experimental pressure in the hydrothermal diamond-anvil cell (HDAC) using pure water or dilute aqueous solutions as a pressure medium can be accurately determined at each measured temperature. Consequently, meaningful interpretations can be obtained for observations in the HDAC, which has been widely accepted as a versatile, modern apparatus for hydrothermal experiments. However, this is not true when other pressure media were used because there is no reliable way to determine experimental pressure other than the use of in situ pressure sensors. Most of the available pressure sensors are difficult to apply because they either require expensive facilities to perform the measurements or are unable to provide the accuracy needed for the interpretation of hydrothermal experiments. The only exception is to use the interferometric method to detect the ??-?? quartz transition, although such applications are limited to temperatures above 573??C. In this study, three pressure calibrants were calibrated for applications at lower temperatures, and they were based on visual observation of the ferroelastic phase transitions in BaTiO3 (tetragonal/cubic), Pb3(PO4)2 (monoclinic/trigonal), and PbTiO3 (tetragonal/cubic). For the phase transitions in BaTiO3 and Pb3(PO4)2, the temperature at which twinning disappears during heating was taken as the transition temperature (Ttr); the phase transition pressures (Ptr) can be calculated, respectively, from Ptr (MPa; ??3%) = 0.17 - 21.25 [(Ttr) - 115.3], and Ptr (MPa; ??2%) = 1.00 - 10.62 [(Ttr) - 180.2], where Ttr is in ??C. For the phase transition in PbTiO3, the temperature at which the movement of phase front begins (or ends) on heating (or cooling) was taken as the transition temperature (Ttr,h or Ttr,c), and the phase transition pressures on heating (Ptr,h) and cooling (Ptr,c) can be calculated from Ptr,h (MPa; ??4%) = 7021.7 - 14.235 (Ttr,h), and Ptr,c (MPa; ??4%) = 6831.3 - 14.001 (Ttr,c). Phase transitions for these three pressure calibrants are easy to detect visually, and their P-T phase boundaries have negative slopes and intersect isochors of most of the geologic fluids at high angles and, therefore, are easy to apply. Copyright ?? 2007 by V. H. Winston & Son, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronzhin, A.; Los, S.; Martens, M.
2011-02-01
We report on work to develop a system with about 100 picoseconds (ps) time resolution for time of flight positron emission tomography [TOF-PET]. The chosen photo detectors for the study were Silicon Photomultipliers (SiPM's). This study was based on extensive experience in studying timing properties of SiPM's. The readout of these devices used the commercial high speed digitizer DRS4. We applied different algorithms to get the best time resolution of 155 ps Guassian (sigma) for a LYSO crystal coupled to a SiPM. We consider the work as a first step in building a prototype TOF-PET module. The field of positron-emission-tomographymore » (PET) has been rapidly developing. But there are significant limitations in how well current PET scanners can reconstruct images, related to how fast data can be acquired, how much volume they can image, and the spatial and temporal resolution of the generated photons. Typical modern scanners now include multiple rings of detectors, which can image a large volume of the patient. In this type of scanner, one can treat each ring as a separate detector and require coincidences only within the ring, or treat the entire region viewed by the scanner as a single 3 dimensional volume. This 3d technique has significantly better sensitivity since more photon pair trajectories are accepted. However, the scattering of photons within the volume of the patient, and the effect of random coincidences limits the technique. The advent of sub-nanosecond timing resolution detectors means that there is potentially much better rejection of scattered photon events and random coincidence events in the 3D technique. In addition, if the timing is good enough, then the origin of photons pairs can be determined better, resulting in improved spatial resolution - so called 'Time-of-Flight' PET, or TOF-PET. Currently a lot of activity has occurred in applications of SiPMs for TOF-PET. This is due to the devices very good time resolution, low profile, lack of high voltage needed, and their non-sensitivity to magnetic fields. While investigations into this technique have begun elsewhere, we feel that the extensive SiPM characterization and data acquisition expertise of Fermilab, and the historical in-depth research of PET imaging at University of Chicago will combine to make significant strides in this field. We also benefit by a working relationship with the SiPM producer STMicroelectronics (STM).« less
Variability in Perisylvian Brain Anatomy in Healthy Adults
ERIC Educational Resources Information Center
Knaus, Tracey A.; Bollich, Angela M.; Corey, David M.; Lemen, Lisa C.; Foundas, Anne L.
2006-01-01
Gray matter volumes of Heschl's gyrus (HG), planum temporale (PT), pars triangularis (PTR), and pars opercularis were measured on MRI in 48 healthy right-handers. There was the expected leftward PT asymmetry in 70.8%, and leftward PTR asymmetry in 64.6% of the sample. When asymmetry patterns within individuals were examined, there was not one…
Effects of Prevent-Teach-Reinforce on Academic Engagement and Disruptive Behavior
ERIC Educational Resources Information Center
DeJager, Brett W.; Filter, Kevin J.
2015-01-01
This study assessed the effectiveness of prevent-teach-reinforce (P-T-R), a functional behavioral assessment-based intervention for students with behavior problems, using an A-B-A-B design with follow-up. Participants included three students in kindergarten, fourth grade, and fifth grade in a rural Midwestern school district. P-T-R interventions…
Ionas, Alin C; Ballesteros Gómez, Ana; Uchida, Natsuyo; Suzuki, Go; Kajiwara, Natsuko; Takata, Kyoko; Takigami, Hidetaka; Leonards, Pim E G; Covaci, Adrian
2015-10-01
The presence and levels of flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (PFRs), was determined in textile home furnishings, such as carpets and curtains from stores in Belgium. A comprehensive characterisation of FRs in textile was done by ambient high resolution mass spectrometry (qualitative screening), gas chromatography-mass spectrometry (GC-MS) (quantitation), and environmental forensic microscopy (surface distribution). Ambient ionisation coupled to a time-of-flight (TOF) high resolution mass spectrometer (direct probe-TOF-MS) was investigated for the rapid screening of FRs. Direct probe-TOF-MS proved to be useful for a first screening step of textiles to detect FRs below the levels required to impart flame retardancy and to reduce, in this way, the number of samples for further quantitative analysis. Samples were analysed by GC-MS to confirm the results obtained by ambient mass spectrometry and to obtain quantitative information. The levels of PBDEs and PFRs were typically too low to impart flame retardancy. Only high levels of BDE-209 (11-18% by weight) were discovered and investigated in localised hotspots by employing forensic microscopy techniques. Most of the samples were made of polymeric materials known to be inherently flame retarded to some extent, so it is likely that other alternative and halogen-free FR treatments/solutions are preferred for the textiles on the Belgian market. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlier, Thomas, E-mail: thomas.carlier@chu-nantes.fr; Willowson, Kathy P.; Fourkal, Eugene
Purpose: {sup 90}Y -positron emission tomography (PET) imaging is becoming a recognized modality for postinfusion quantitative assessment following radioembolization therapy. However, the extremely low counts and high random fraction associated with {sup 90}Y -PET may significantly impair both qualitative and quantitative results. The aim of this work was to study image quality and noise level in relation to the quantification and bias performance of two types of Siemens PET scanners when imaging {sup 90}Y and to compare experimental results with clinical data from two types of commercially available {sup 90}Y microspheres. Methods: Data were acquired on both Siemens Biograph TruePointmore » [non-time-of-flight (TOF)] and Biograph microcomputed tomography (mCT) (TOF) PET/CT scanners. The study was conducted in three phases. The first aimed to assess quantification and bias for different reconstruction methods according to random fraction and number of true counts in the scan. The NEMA 1994 PET phantom was filled with water with one cylindrical insert left empty (air) and the other filled with a solution of {sup 90}Y . The phantom was scanned for 60 min in the PET/CT scanner every one or two days. The second phase used the NEMA 2001 PET phantom to derive noise and image quality metrics. The spheres and the background were filled with a {sup 90}Y solution in an 8:1 contrast ratio and four 30 min acquisitions were performed over a one week period. Finally, 32 patient data (8 treated with Therasphere{sup ®} and 24 with SIR-Spheres{sup ®}) were retrospectively reconstructed and activity in the whole field of view and the liver was compared to theoretical injected activity. Results: The contribution of both bremsstrahlung and LSO trues was found to be negligible, allowing data to be decay corrected to obtain correct quantification. In general, the recovered activity for all reconstruction methods was stable over the range studied, with a small bias appearing at extremely high random fraction and low counts for iterative algorithms. Point spread function (PSF) correction and TOF reconstruction in general reduce background variability and noise and increase recovered concentration. Results for patient data indicated a good correlation between the expected and PET reconstructed activities. A linear relationship between the expected and the measured activities in the organ of interest was observed for all reconstruction method used: a linearity coefficient of 0.89 ± 0.05 for the Biograph mCT and 0.81 ± 0.05 for the Biograph TruePoint. Conclusions: Due to the low counts and high random fraction, accurate image quantification of {sup 90}Y during selective internal radionuclide therapy is affected by random coincidence estimation, scatter correction, and any positivity constraint of the algorithm. Nevertheless, phantom and patient studies showed that the impact of number of true and random coincidences on quantitative results was found to be limited as long as ordinary Poisson ordered subsets expectation maximization reconstruction algorithms with random smoothing are used. Adding PSF correction and TOF information to the reconstruction greatly improves the image quality in terms of bias, variability, noise reduction, and detectability. On the patient studies, the total activity in the field of view is in general accurately measured by Biograph mCT and slightly overestimated by the Biograph TruePoint.« less
Wang, Aili; Liu, Li; Peng, Yanchun; Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun
2015-01-01
Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes.
Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun
2015-01-01
Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes. PMID:26407296
High-performance electronics for time-of-flight PET systems
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.
High-performance electronics for time-of-flight PET systems.
Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.
Ecosystem scale VOC exchange measurements at Bosco Fontana (IT) and Hyytiälä (FI)
NASA Astrophysics Data System (ADS)
Schallhart, S.; Rantala, P.; Taipale, R.; Nemitz, E.; Tillmann, R.; Mentel, T. F.; Ruuskanen, T.; Rinne, J.
2013-12-01
The ozone production and destruction mechanisms in the troposphere depend on the abundance of NOx and volatile organic compounds (VOCs). As the latter originate not only from human activities, but to a large extent from vegetation it is important to quantify these biogenic sources as well. The VOC-fluxes were measured in Bosco Fontana forest as a part of an intensive measurement campaign of the Eclaire project, which investigates how climate change alters the threat of air pollution. Measurements were carried out at the Nature Reserve 'Bosco della Fontana' in the Po valley, Italy. The area of the forest is 198 ha and the dominanting tree species are Quercus robur (English oak), Quercus cerris (Turkey oak) and Carpinus betulus (hornbeam). The fluxes were measured on at a height of 32 metres using the eddy covariance method. A PTR-TOF (Ionicon Analytik, Austria) measured volatile organic compounds up to a mass of 300 atomic mass units. The instrument is capable of recording full spectra of VOCs in real-time with a resolution of 10 Hz. In addition to the mass spectrometer a 3D Anemometer was placed next to the inlet. Results will be presented and compared with disjunct eddy covariance measurements (Taipale et al. 2011) from a Pinus sylvestris (Scots Pine) dominated forest in Hyytiälä, Finland. The two forests are characterized by a different emission profile; the Bosco Fontana forest emits large amounts of isoprene, whereas the terpenoid emissions from Hyytiälä forest are dominated by monoterpenes. The magnitude of the emissions differs as emission from Bosco Fontana is much higher. The monoterpene emission from Bosco Fontana is likely to follow different dynamics than that from Hyytiälä as it correlates well with the radiation. This leads to the conclusion, that monoterpenes are released right after they are produced (de novo). In Hyytiälä the emissions are light and temperature dependent, which is caused by de novo and storage emissions. Pines have large monoterpenes storages, which are emitted at high temperatures. The results of both forests are consistent with the cuvette measurements of Ghirardo et al. (2010). This research received funding from the EC Seventh Framework Programme (Collaborative project "ECLAIRE" grant no. 282910) and by the Academy of Finland Center of Excellence program (project number 141135). References.: Ghirardo, A., Koch, K., Taipale, R., Zimmer, I., Schnitzler, J-P. and Rinne, J. Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant, Cell & Environment,33,5,781-792,2010. Taipale, R., Kajos, M.K., Patokoski, J., Rantala, P., Ruuskanen, T.M. and Rinne, J. Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest. Biogeosciences, 8, 8, 2247-2255, 2011.
TDC-based readout electronics for real-time acquisition of high resolution PET bio-images
NASA Astrophysics Data System (ADS)
Marino, N.; Saponara, S.; Ambrosi, G.; Baronti, F.; Bisogni, M. G.; Cerello, P.,; Ciciriello, F.; Corsi, F.; Fanucci, L.; Ionica, M.; Licciulli, F.; Marzocca, C.; Morrocchi, M.; Pennazio, F.; Roncella, R.; Santoni, C.; Wheadon, R.; Del Guerra, A.
2013-02-01
Positron emission tomography (PET) is a clinical and research tool for in vivo metabolic imaging. The demand for better image quality entails continuous research to improve PET instrumentation. In clinical applications, PET image quality benefits from the time of flight (TOF) feature. Indeed, by measuring the photons arrival time on the detectors with a resolution less than 100 ps, the annihilation point can be estimated with centimeter resolution. This leads to better noise level, contrast and clarity of detail in the images either using analytical or iterative reconstruction algorithms. This work discusses a silicon photomultiplier (SiPM)-based magnetic-field compatible TOF-PET module with depth of interaction (DOI) correction. The detector features a 3D architecture with two tiles of SiPMs coupled to a single LYSO scintillator on both its faces. The real-time front-end electronics is based on a current-mode ASIC where a low input impedance, fast current buffer allows achieving the required time resolution. A pipelined time to digital converter (TDC) measures and digitizes the arrival time and the energy of the events with a timestamp of 100 ps and 400 ps, respectively. An FPGA clusters the data and evaluates the DOI, with a simulated z resolution of the PET image of 1.4 mm FWHM.
Cheng, Yulin; Yao, Juanni; Zhang, Hongchang; Huang, Lili; Kang, Zhensheng
2015-07-01
Cereal powdery mildews caused by Blumeria graminis and cereal rusts caused by Puccinia spp. are constant disease threats that limit the production of almost all important cereal crops. Rice is an intensively grown agricultural cereal that is atypical because of its immunity to all powdery mildew and rust fungi. We analyzed the nonhost interactions between rice and the wheat powdery mildew fungus B. graminis f. sp. tritici (Bgt) and the wheat leaf rust fungus Puccinia triticina (Ptr) to identify the basis of nonhost resistance (NHR) in rice against cereal powdery mildew and rust fungi at cytological and molecular levels. No visible symptoms were observed on rice leaves inoculated with Bgt or Ptr. Microscopic observations showed that both pathogens exhibited aberrant differentiation and significantly reduced penetration frequencies on rice compared to wheat. The development of Bgt and Ptr was also completely arrested at early infection stages in cases of successful penetration into rice leaves. Attempted infection of rice by Bgt and Ptr induced similar defense responses, including callose deposition, accumulation of reactive oxygen species, and hypersensitive response in rice epidermal and mesophyll cells, respectively. Furthermore, a set of defense-related genes were upregulated in rice against Bgt and Ptr infection. Rice is an excellent monocot model for genetic and molecular studies. Therefore, our results demonstrate that rice is a useful model to study the mechanisms of NHR to cereal powdery mildew and rust fungi, which provides useful information for the development of novel and durable strategies to control these important pathogens.
Ozyurek, Taha; Ozsezer-Demiryurek, Ebru
2017-01-01
The aim of this study was to compare the cleanliness of root canal walls after retreatment using ProTaper Next (PTN), ProTaper Universal Retreatment (PTR) nickel-titanium (NiTi) systems and Hedström hand files in curved mesial canals of mandibular molar teeth and the time required for gutta-percha and sealer removal. Ninety mandibular molar teeth with curved mesial roots were instrumented up to #35.04 with Mtwo NiTi rotary instruments and obturated using the continuous wave of condensation technique. Removal of gutta-percha and sealer was performed using one of the following: PTN and PTR NiTi systems and Hedström hand files. Samples were placed on the VistaScan phosphor plates in the mesio-distal direction and the radiographs were taken. The digital radiographs were analyzed using AutoCAD software. Also, the total time required for gutta-percha removal was calculated by a chronometer. The total retreatment time was significantly shorter in the PTN and PTR groups compared with the manual group (p<0.05). There was a significant difference between the groups according to the total residual gutta-percha and sealer (p<0.05). The PTN and PTR groups left significantly less gutta-percha and sealer remnant than the manual group (p<0.001). Within the limitations of this study, the PTN and PTR groups showed less residual gutta-percha and sealer than the manual group. The NiTi rotary systems were significantly faster than the manual group in the time required for gutta-percha and sealer removal.
Kumar, Nerella Narendra; Panchaksharappa, Mamatha Gowda; Annigeri, Rajeshwari G
2016-04-01
The aim of the present study is to estimate the age of Davangere population by evaluating the pulp to tooth area ratio (PTR) by using digitized intraoral periapical radiographs of permanent mandibular second molar. 400 intraoral periapical radiograph (IOPA) of permanent mandibular 2nd molar of both the sexes aged 14-60 years were used. Digital camera was used to image the radiographs. Images were computed and PTR was calculated by AUTOCAD software. Intra and Inter observer variability was also assessed. Regression analysis was used to estimate the age of an individual by taking PTR as dependent variable. The mean PTR of males and females was 0.10 ± 0.02 and 0.09 ± 0.02 respectively. Negative correlation was observed, when age was compared with PTR {r = -0.441, -0.406 & -0.419 among males, females and total subjects (p < 0.001)}. Regression analysis showed a Standard Error of Estimate (SEE) of 12 years. The Kappa coefficient value for the intra and inter examiner variability was 0.85 & 0.83 respectively. Our results showed that permanent mandibular 2(nd) molar can be taken as an index tooth for estimating the age of the adults using digitized periapical radiograph and AUTOCAD software. Also high differences were observed between estimated and chronological age of 12 years which is not in the acceptable range. But it provides a new window for research in the forensic sciences in estimating the adult age. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Wisthaler, Armin; Mikoviny, Tomas; Müller, Markus; Schiller, Sven Arne; Feil, Stefan; Hanel, Gernot; Jordan, Alfons; Mutschlechner, Paul; Crawford, James H.; Singh, Hanwant B.; Millet, Dylan
2017-04-01
Reactive organic gases (ROGs) play an important role in atmospheric chemistry as they affect the rates of ozone production, particle formation and growth, and oxidant consumption. Measurements of ROGs are analytically challenging because of their large variety and low concentrations in the Earth's atmosphere, and because they are easily affected by measurement artefacts. On aircraft, ROGs are typically measured by canister sampling followed by off-line analysis in the laboratory, fast online gas chromatography or online chemical ionization mass spectrometry. In this work, we will briefly sum up the state-of-the-art in this field before focusing on proton-transfer-reaction mass spectrometry (PTR-MS) and its deployment onboard NASA's airborne science laboratories. We will show how airborne PTR-MS was successfully used in NASA missions for characterizing emissions of ROGs from point sources, for following the photochemical evolution of ROGs in a biomass burning plume, for determining biosphere-atmosphere fluxes of selected ROGs and for validating satellite data. We will also present the airborne PTR-MS instrument in its most recent evolution which includes a radiofrequency ion funnel and ion guide combined with a compact time-of-flight mass spectrometer and discuss its superior performance characteristics. The development of the airborne PTR-MS instrument was supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG) (grants #833451, #847967). This work was also partly supported by NASA under grant #NNX14AP89G.
Niitsu, Hiroaki; Hinoi, Takao; Shimomura, Manabu; Egi, Hiroyuki; Hattori, Minoru; Ishizaki, Yasuyo; Adachi, Tomohiro; Saito, Yasufumi; Miguchi, Masashi; Sawada, Hiroyuki; Kochi, Masatoshi; Mukai, Shoichiro; Ohdan, Hideki
2015-04-24
In stage IV colorectal cancer (CRC) with unresectable metastases, whether or not resection of the primary tumor should be indicated remains controversial. We aim to determine the impact of primary tumor resection on the survival of stage IV CRC patients with unresectable metastases. We retrospectively investigated 103 CRC patients with stage IV colorectal cancer with metastases, treated at Hiroshima University Hospital between 2007 and 2013. Of these, those who had resectable primary tumor but unresectable metastases and received any chemotherapy were included in the study. We analyzed the overall survival (OS) and short-term outcomes between the patients who received up-front systemic chemotherapy (USC group) and those who received primary tumor resection followed by chemotherapy (PTR group). Of the 57 included patients, 15 underwent USC and 42 PTR. The median survival times were 13.4 and 23.9 months in the USC and PTR groups, respectively (P = 0.093), but multivariate analysis for the overall survival showed no significant difference between the two groups (hazard ratio, 1.30; 95% confidence interval (CI), 0.60 to 2.73, P = 0.495). In the USC group, the disease control rate of primary tumor was observed in 12 patients (80.0%), but emergency laparotomy was required for 1 patient. Morbidity in the PTR group was observed in 18 cases (42.9%). The overall survival did not differ significantly between the USC and PTR groups. USC may help avoid unnecessary resection and consequently the high morbidity rate associated with primary tumor resection for stage IV CRC with unresectable metastases.
Mass spectrometry and renal calculi
Purcarea, VL; Sisu, I; Sisu, E
2010-01-01
The present review represents a concise and complete survey of the literature covering 2004–2009, concerning the mass spectrometric techniques involved in the structural investigation of renal calculi. After a short presentation of the fundamental mass spectrometric techniques (MALDI–TOF, QTOF, MS–MS) as well as hyphenated methods (GC–MS, LC–MS, CE–MS), an extensive study of the urinary proteome analysis as well as the detection and quantification by mass spectrometry of toxins, drugs and metabolites from renal calculi is presented. PMID:20968197
Rapid development of Proteomic applications with the AIBench framework.
López-Fernández, Hugo; Reboiro-Jato, Miguel; Glez-Peña, Daniel; Méndez Reboredo, José R; Santos, Hugo M; Carreira, Ricardo J; Capelo-Martínez, José L; Fdez-Riverola, Florentino
2011-09-15
In this paper we present two case studies of Proteomics applications development using the AIBench framework, a Java desktop application framework mainly focused in scientific software development. The applications presented in this work are Decision Peptide-Driven, for rapid and accurate protein quantification, and Bacterial Identification, for Tuberculosis biomarker search and diagnosis. Both tools work with mass spectrometry data, specifically with MALDI-TOF spectra, minimizing the time required to process and analyze the experimental data. Copyright 2011 The Author(s). Published by Journal of Integrative Bioinformatics.
NASA Astrophysics Data System (ADS)
Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.
2013-09-01
A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ievlev, Anton V.; Belianinov, Alexei; Jesse, Stephen
Time of flight secondary ion mass spectrometry (ToF SIMS) is one of the most powerful characterization tools allowing imaging of the chemical properties of various systems and materials. It allows precise studies of the chemical composition with sub-100-nm lateral and nanometer depth spatial resolution. However, comprehensive interpretation of ToF SIMS results is challengeable, because of the data volume and its multidimensionality. Furthermore, investigation of the samples with pronounced topographical features are complicated by the spectral shift. In this work we developed approach for the comprehensive ToF SIMS data interpretation based on the data analytics and automated extraction of the samplemore » topography based on time of flight shift. We further applied this approach to investigate correlation between biological function and chemical composition in Arabidopsis roots.« less
Ievlev, Anton V.; Belianinov, Alexei; Jesse, Stephen; ...
2017-12-06
Time of flight secondary ion mass spectrometry (ToF SIMS) is one of the most powerful characterization tools allowing imaging of the chemical properties of various systems and materials. It allows precise studies of the chemical composition with sub-100-nm lateral and nanometer depth spatial resolution. However, comprehensive interpretation of ToF SIMS results is challengeable, because of the data volume and its multidimensionality. Furthermore, investigation of the samples with pronounced topographical features are complicated by the spectral shift. In this work we developed approach for the comprehensive ToF SIMS data interpretation based on the data analytics and automated extraction of the samplemore » topography based on time of flight shift. We further applied this approach to investigate correlation between biological function and chemical composition in Arabidopsis roots.« less
Neutron cross section measurements at n-TOF for ADS related studies
NASA Astrophysics Data System (ADS)
Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Bustreo, N.; aumann, P.; vá, F. Be; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; itzpatrick, L.; Frais-Kölbl, H.; Fujii, K.; Furman, W.; Guerrero, C.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krti ka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescherand, M.; Wisshak, K.
2006-05-01
A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.
Roncali, Emilie; Schmall, Jeffrey P.; Viswanath, Varsha; Berg, Eric; Cherry, Simon R.
2014-01-01
Current developments in positron emission tomography (PET) focus on improving timing performance for scanners with time-of-flight (TOF) capability, and incorporating depth-of-interaction (DOI) information. Recent studies have shown that incorporating DOI correction in TOF detectors can improve timing resolution, and that DOI also becomes more important in long axial field-of-view scanners. We have previously reported the development of DOI-encoding detectors using phosphor-coated scintillation crystals; here we study the timing properties of those crystals to assess the feasibility of providing some level of DOI information without significantly degrading the timing performance. We used Monte Carlo simulations to provide a detailed understanding of light transport in phosphor-coated crystals which cannot be fully characterized experimentally. Our simulations used a custom reflectance model based on 3D crystal surface measurements. Lutetium oxyorthosilicate (LSO) crystals were simulated with a phosphor coating in contact with the scintillator surfaces and an external diffuse reflector (teflon). Light output, energy resolution, and pulse shape showed excellent agreement with experimental data obtained on 3 × 3 × 10 mm3 crystals coupled to a photomultiplier tube (PMT). Scintillator intrinsic timing resolution was simulated with head-on and side-on configurations, confirming the trends observed experimentally. These results indicate that the model may be used to predict timing properties in phosphor-coated crystals and guide the coating for optimal DOI resolution/timing performance trade-off for a given crystal geometry. Simulation data suggested that a time stamp generated from early photoelectrons minimizes degradation of the timing resolution, thus making this method potentially more useful for TOF-DOI detectors than our initial experiments suggested. Finally, this approach could easily be extended to the study of timing properties in other scintillation crystals, with a range of treatments and materials attached to the surface. PMID:24694727
ERIC Educational Resources Information Center
Lapsley, Daniel K.; Daytner, Katrina M.; Kelly, Ken; Maxwell, Scott E.
This large-scale evaluation of Indiana's Prime Time, a funding mechanism designed to reduce class size or pupil-teacher ratio (PTR) in grades K-3 examined the academic performance of nearly 11,000 randomly selected third graders on the state mandated standardized achievement test as a function of class size, PTR, and presence of an instructional…
USDA-ARS?s Scientific Manuscript database
The ascomycete Pyrenophora tritici-repentis (Ptr) is an important fungal pathogen worldwide that causes tan spot of wheat. The fungus is self-fertile because each isolate contains both mating type (MAT) idiomorphs. In this work, we developed knockouts of the MAT genes in Ptr and tested fertility of ...
Rai, Arpita; Acharya, Ashith B.; Naikmasur, Venkatesh G.
2016-01-01
Background: Age estimation of living or deceased individuals is an important aspect of forensic sciences. Conventionally, pulp-to-tooth area ratio (PTR) measured from periapical radiographs have been utilized as a nondestructive method of age estimation. Cone-beam computed tomography (CBCT) is a new method to acquire three-dimensional images of the teeth in living individuals. Aims: The present study investigated age estimation based on PTR of the maxillary canines measured in three planes obtained from CBCT image data. Settings and Design: Sixty subjects aged 20–85 years were included in the study. Materials and Methods: For each tooth, mid-sagittal, mid-coronal, and three axial sections—cementoenamel junction (CEJ), one-fourth root level from CEJ, and mid-root—were assessed. PTR was calculated using AutoCAD software after outlining the pulp and tooth. Statistical Analysis Used: All statistical analyses were performed using an SPSS 17.0 software program. Results and Conclusions: Linear regression analysis showed that only PTR in axial plane at CEJ had significant age correlation (r = 0.32; P < 0.05). This is probably because of clearer demarcation of pulp and tooth outline at this level. PMID:28123269
NASA Astrophysics Data System (ADS)
Lindinger, W.; Hansel, A.; Jordan, A.
1998-02-01
A proton transfer reaction mass spectrometer (PTR-MS) system has been developed which allows for on-line measurements of trace components with concentrations as low as a few pptv. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common volatile organic compounds (VOCs) but do not react with any of the components present in clean air. Medical applications by means of breath analysis allow for monitoring of metabolic processes in the human body, and examples of food research are discussed on the basis of VOC emissions from fruit, coffee and meat. Environmental applications include investigations of VOC emissions from decaying biomatter which have been found to be an important source for tropospheric acetone, methanol and ethanol. On-line monitoring of the diurnal variations of VOCs in the troposphere yield data demonstrating the present sensitivity of PTR-MS to be in the range of a few pptv. Finally, PTR-MS has proven to be an ideal tool to measure Henry's law constants and their dependencies on temperature as well as on the salt content of water.
NASA Astrophysics Data System (ADS)
Krüger, Harald; Stephan, Thomas; Engrand, Cécile; Briois, Christelle; Siljeström, Sandra; Merouane, Sihane; Baklouti, Donia; Fischer, Henning; Fray, Nicolas; Hornung, Klaus; Lehto, Harry; Orthous-Daunay, Francois-Régis; Rynö, Jouni; Schulz, Rita; Silén, Johan; Thirkell, Laurent; Trieloff, Mario; Hilchenbach, Martin
2015-11-01
COmetary Secondary Ion Mass Analyzer (COSIMA) is a time-of-flight secondary ion mass spectrometry (TOF-SIMS) instrument on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust particles. It has a mass resolution m/Δm of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these minerals, we have calculated relative sensitivity factors for a suite of major and minor elements in order to provide a basis for element quantification for the possible identification of major mineral classes present in the cometary particles.
NASA Astrophysics Data System (ADS)
Antao, Dion Savio
Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization of the systems over a wide range of operating conditions helped to better understand the factors that govern and affect the performance of the PTR. The operating frequency of the linear motor driving the PTR affected the systems' performance the most. Other parameters that resulted in performance variations were the mean operating pressure, the pressure amplitude output from the linear motor, and the geometry of the inertance tube. The effect of the inertance tube's geometry was controlled by a single parameter labeled the "inertance". External/ambient conditions affected the performance of the cryocoolers too. To prevent the influence of the ambient conditions on the performance, a vacuum chamber was fabricated to isolate the low temperature regions of the PTR from the variable ambient atmosphere. The experiments provided important information and guidelines for the simulation studies of the PTR that were carried out concurrently. A time-dependent high fidelity computational fluid dynamic model of the entire PTR system was developed to gain a better understanding of internal interactions between the refrigerant fluid and the porous heat-exchangers in its various components and to facilitate better design of PTR systems based on the knowledge gained. The compressible forms of the conservation of mass, momentum and energy equations are solved in the gas and porous media (appropriate estimation of fluid dynamics in heat-exchangers) regions. The heat transfer in the porous regions is governed by a thermal non-equilibrium heat transfer model that calculates a separate gas and solid temperature and accounts for heat transfer between the two. The numerical model was validated using both temporal and quasi-steady state results obtained from the experimental studies. The validated model was applied to study the effects of different operating parameters (frequency, pressure and geometry of the components) on the PTR's performance. The simulations revealed interesting steady-periodic flow patterns that develop in the pulse tube due to the fluctuations caused by the piston and the presence of the inertance tube. Similar to the experiments, the simulations provided important information that help guide the design of efficient PTR systems.
Hayward, Douglas G; Wong, Jon W; Zhang, Kai; Chang, James; Shi, Feng; Banerjee, Kaushik; Yang, Paul
2011-01-01
Five different mass spectrometers interfaced to GC or LC were evaluated for their application to targeted and nontargeted screening of pesticides in two foods, spinach and ginseng. The five MS systems were capillary GC/MS/MS, GC-high resolution time-of-flight (GC/HR-TOF)-MS, TOF-MS interfaced with a comprehensive multidimensional GC (GCxGC/TOF-MS), an MS/MS ion trap hybrid mass (qTrap) system interfaced with an ultra-performance liquid chromatograph (UPLC-qTrap), and UPLC interfaced to an orbital trap high resolution mass spectrometer (UPLC/Orbitrap HR-MS). Each MS system was tested with spinach and ginseng extracts prepared through a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure. Each matrix was fortified at 10 and 50 ng/g for spinach or 25 and 100 ng/g for ginseng with subsets of 486 pesticides, isomers, and metabolites representing most pesticide classes. HR-TOF-MS was effective in a targeted search for characteristic accurate mass ions and identified 97% of 170 pesticides in ginseng at 25 ng/g. A targeted screen of either ginseng or spinach found 94-95% of pesticides fortified for analysis at 10 ng/g with GC/MS/MS or LC/MS/MS using multiple reaction monitoring (MRM) procedures. Orbitrap-MS successfully found 89% of 177 fortified pesticides in spinach at 25 ng/g using a targeted search of accurate mass pseudomolecular ions in the positive electrospray ionization mode. A comprehensive GCxGC/TOF-MS system provided separation and identification of 342 pesticides and metabolites in a single 32 min acquisition with standards. Only 67 or 81% of the pesticides were identified in ginseng and spinach matrixes at 25 ng/g or 10 ng/g, respectively. MS/MS or qTrap-MS operated in the MRM mode produced the lowest false-negative rates, at 10 ng/g. Improvements to instrumentation, methods, and software are needed for efficient use of nontargeted screens in parallel with triple quadrupole MS.
Proteins involved in neuronal differentiation of neuroblastoma cell line N1E-115.
Oh, Ji-Eun; Freilinger, Angelika; Gelpi, Ellen; Pollak, Arnold; Hengstschläger, Markus; Lubec, Gert
2007-06-01
Neuronal differentiation (ND) represents a well-defined phenomenon in biological terms but proteins involved have not been studied systematically. We therefore aimed to study ND by retinoic acid (RA) in a widely used neuroblastoma cell line by comparative proteomics. The ND was induced in the N1E-115 cell line by serum deprivation and RA treatment. Undifferentiated cells and cells undergoing serum deprivation served as controls. Protein extracts were run on 2-DE followed by MALDI-TOF or MALDI-TOF-TOF analysis. Quantification was carried out using specific software and stringent statistical analysis was performed. Tubulin beta 5, cat eye syndrome critical region protein 5 homolog, putative GTP-binding protein PTD004 homolog, and the metabolic proteins glyceraldehyde-3-phosphate dehydrogenase and transketolase were differentially regulated. Differential protein levels of cytoskeleton proteins including tubulins and metabolic proteins have been reported to be regulated by ND. Herein, specific signaling differences as reflected by putative GTP-binding protein PTD004 changes in differentiated cells are shown and a possible role for the Cat eye syndrome critical region protein 5 homolog is proposed. The protein disulfide isomerase associated 3 protein fits the already proposed findings of chaperon regulation by ND. The study forms the molecular basis for further evaluation of the functional roles of the differentially expressed proteins in ND.
Cao, Yan; Chen, Xiao-Fei; Lü, Di-Ya; Dong, Xin; Zhang, Guo-Qing; Chai, Yi-Feng
2012-01-01
An offline two-dimensional system combining a rat cardiac muscle cell membrane chromatography time-of-flight mass spectrometry (CMC-TOF/MS) with a high Performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF/MS) was established for investigating the parent components and metabolites in rat urine samples after administration of the roots of Aconitum carmichaeli. On the basis ofthe analysis of the first dimension, retention components of the urine sample were collected into 30 fractions (one fraction per minute). Then offline analysis of the second dimension was carried out. 34 compounds including 24 parent alkaloids and 10 potential metabolites were identified from the dosed rat urine, and then binding affinities of different compounds on cell membranes were compared and influences of some functional groups on activity were estimated with the semi-quantification and curve fitting method. As a result, binding affinities decreased along with the process of deacylation, debenzoylation and demethylation, which may be related to the alleviation of toxicity in the procedure of herb processing or metabolism. Moreover, some minor components in rat urine (Songorine, 14-benzoylneoline, Deoxyaconitine, etc.) exerted relatively strong affinity on cell membranes are worth exploring. The results delivered by the System suggest that the CMC can be applied to in vivo study. PMID:29403691
NASA Astrophysics Data System (ADS)
Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua
2018-01-01
Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H]-) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko
In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanningmore » transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.« less
Visualization of water transport into soybean nodules by Tof-SIMS cryo system.
Iijima, Morio; Watanabe, Toshimasa; Yoshida, Tomoharu; Kawasaki, Michio; Kato, Toshiyuki; Yamane, Koji
2015-04-15
This paper examined the route of water supply into soybean nodules through the new visualization technique of time of flight secondary ion mass spectrometry (Tof-SIMS) cryo system, and obtained circumstantial evidence for the water inflow route. The maximum resolution of the Tof-SIMS imaging used by this study was 1.8 μm (defined as the three pixel step length), which allowed us to detect water movement at the cellular level. Deuterium-labeled water was supplied to soybean plants for 4h and the presence of deuterium in soybean nodules was analyzed by the Tof-SIMS cryo system. Deuterium ions were found only in the endodermis tissue surrounding the central cylinder in soybean nodules. Neither xylem vessels nor phloem complex itself did not indicate any deuterium accumulation. Deuterium-ion counts in the endodermis tissue were not changed by girdling treatment, which restricted water movement through the phloem complex. The results strongly indicated that nodule tissues did not receive water directly from the phloem complex, but received water through root cortex apoplastic pathway from the root axis. Copyright © 2015 Elsevier GmbH. All rights reserved.
APD Response Time Measurements for Future TOF-E Systems
NASA Astrophysics Data System (ADS)
Starkey, M. J.; Ogasawara, K.; Dayeh, M. A.; Desai, M. I.
2017-12-01
In space physics, the ability to detect ions is crucial to understanding plasma distributions in the solar wind. This usually typically requires the determination of the particle's mass, charge, and total energy. Current ion detection schemes are implemented in three sequential parts; an electrostatic analyzer for energy per charge (E/Q) measurements, a time-of-flight (TOF) for mass per charge (M/Q) measurements, and a solid-state detector (SSD) for total energy (E) measurements. Recent work has suggested the use of avalanche photodiode detectors (APD) for a simultaneous TOF and total energy (TOF-E) measurement system, which would replace traditional SSDs, simplify design, and reduce costs. Although TOF based ion spectrometry typically requires timing resolution of <1ns, the timing profile for ion detection by APDs is not well understood. In this study we examine the timing profile of 3 different APDs for ion measurements over a suprathermal energy range of 50-300 keV. The three APDs differ by their doping type (N or P) and their detector thickness (30 μm or 150 μm). We find that APD P30, which is P doped and 30μm thick, provides the fastest rise times of the three APDs. Furthermore, these rise times are species independent and less than 1 ns. Our study shows that APDs are capable of sub-nanosecond response times for low energy ions and thus supports the future use of APDs in replacing SSDs in some TOF-E systems.
Zhan, Xianquan; Yang, Haiyan; Peng, Fang; Li, Jianglin; Mu, Yun; Long, Ying; Cheng, Tingting; Huang, Yuda; Li, Zhao; Lu, Miaolong; Li, Na; Li, Maoyu; Liu, Jianping; Jungblut, Peter R
2018-04-01
Two-dimensional gel electrophoresis (2DE) in proteomics is traditionally assumed to contain only one or two proteins in each 2DE spot. However, 2DE resolution is being complemented by the rapid development of high sensitivity mass spectrometers. Here we compared MALDI-MS, LC-Q-TOF MS and LC-Orbitrap Velos MS for the identification of proteins within one spot. With LC-Orbitrap Velos MS each Coomassie Blue-stained 2DE spot contained an average of at least 42 and 63 proteins/spot in an analysis of a human glioblastoma proteome and a human pituitary adenoma proteome, respectively, if a single gel spot was analyzed. If a pool of three matched gel spots was analyzed this number further increased up to an average of 230 and 118 proteins/spot for glioblastoma and pituitary adenoma proteome, respectively. Multiple proteins per spot confirm the necessity of isotopic labeling in large-scale quantification of different protein species in a proteome. Furthermore, a protein abundance analysis revealed that most of the identified proteins in each analyzed 2DE spot were low-abundance proteins. Many proteins were present in several of the analyzed spots showing the ability of 2DE-MS to separate at the protein species level. Therefore, 2DE coupled with high-sensitivity LC-MS has a clearly higher sensitivity as expected until now to detect, identify and quantify low abundance proteins in a complex human proteome with an estimated resolution of about 500 000 protein species. This clearly exceeds the resolution power of bottom-up LC-MS investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Parker, J. D.; Harada, M.; Hattori, K.; Iwaki, S.; Kabuki, S.; Kishimoto, Y.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nishimura, H.; Oku, T.; Sawano, T.; Shinohara, T.; Suzuki, J.-I.; Takada, A.; Tanimori, T.; Ueno, K.; Ikeno, M.; Tanaka, M.; Uchida, T.
2014-04-01
The realization of high-intensity, pulsed spallation neutron sources such as J-PARC in Japan and SNS in the US has brought time-of-flight (TOF) based neutron techniques to the fore and spurred the development of new detector technologies. When combined with high-resolution imaging, TOF-based methods become powerful tools for direct imaging of material properties, including crystal structure/internal strain, isotopic/temperature distributions, and internal and external magnetic fields. To carry out such measurements in the high-intensities and high gamma backgrounds found at spallation sources, we have developed a new time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber (μPIC) coupled with a field-programmable-gate-array-based data acquisition system. The detector combines 100μm-level (σ) spatial and sub-μs time resolutions with low gamma sensitivity of less than 10-12 and a rate capability on the order of Mcps (mega-counts-per-second). Here, we demonstrate the application of our detector to TOF-based techniques with examples of Bragg-edge transmission and neutron resonance transmission imaging (with computed tomography) carried out at J-PARC. We also consider the direct imaging of magnetic fields with our detector using polarized neutrons.
Schalbetter, Stephanie A; Mansoubi, Sahar; Chambers, Anna L; Downs, Jessica A; Baxter, Jonathan
2015-08-18
Faithful genome duplication and inheritance require the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA precatenation formed. Although fork rotation predominates at replication termination, in vitro studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and precatenation may influence other replication-associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and precatenation preferentially occur in contexts that inhibit topoisomerase action ahead of the fork, including stable protein-DNA fragile sites and termination. However, generally, fork rotation and precatenation are actively inhibited by Timeless/Tof1 and Tipin/Csm3. In the absence of Tof1/Timeless, excessive fork rotation and precatenation cause extensive DNA damage following DNA replication. With Tof1, damage related to precatenation is focused on the fragile protein-DNA sites where fork rotation is induced. We conclude that although fork rotation and precatenation facilitate unwinding in hard-to-replicate contexts, they intrinsically disrupt normal chromosome duplication and are therefore restricted by Timeless/Tipin.
VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS
C. Warneke; J. M. Roberts; P. Veres; J. Gilman; W. C. Kuster; I. Burling; R. Yokelson; J. A. de Gouw
2011-01-01
Volatile organic compounds (VOCs) emitted from fires of biomass commonly found in the southeast and southwest U.S. were investigated with PTR-MS and PIT-MS, which are capable of fast measurements of a large number of VOCs. Both instruments were calibrated with gas standards and mass dependent calibration curves are determined. The sensitivity of the PIT-MS linearly...
Sulcal Morphology and Volume of Broca's Area Linked to Handedness and Sex
ERIC Educational Resources Information Center
Powell, Joanne L.; Kemp, Graham J.; Roberts, Neil; Garcia-Finana, Marta
2012-01-01
We investigated the effect of handedness and sex on: (i) sulcal contours defining PO and PTR and (ii) volume estimates of PO and PTR subfields in 40 left- and 42 right-handers. Results show an effect of handedness on discontinuity of the inferior frontal sulcus (IFS: P less than 0.01). Discontinuity of IFS was observed in: 43% left- and 62% right…
Correale, P; Micheli, L; Vecchio, M T Del; Sabatino, M; Petrioli, R; Pozzessere, D; Marsili, S; Giorgi, G; Lozzi, L; Neri, P; Francini, G
2001-01-01
Bone metastases are one of the most common events in patients with prostate carcinoma. PTH-rP, a protein produced by prostate carcinoma and other epithelial cancers, is a key agent for the development of bone metastases. A PTH-rP-derived peptide, designated PTR-4 was identified, which is capable to bind HLA-A2.1 molecules and to generate PTH-rP-specific cytotoxic T cell (CTL) lines from healthy HLA-A2.1+ individual peripheral-blood-mononuclear-cells (PBMC). In this model, we investigated the in vitro possibility of generating an efficient PTH-rP specific CTL response by cyclical stimulations with IL-2 and PTR-4 peptide-pulsed autologous dendritic cells (DC), of HLA-A2.1+ tumour infiltrating lymphocytes (TIL) derived from a patient with metastatic prostate carcinoma. A T cell line generated in this way (called TM-PTR-4) had a CD3+, CD5+, CD4−, CD8+, CD45Ro+, CD56− immunophenotype and a HLA-A2.1 restricted cytotoxic activity to PTR-4-peptide pulsed CIR-A2 (HLA-A2.1+) target cells, PTH-rP+/HLA-A2.1+ CIR-A2 transfected with PTH-rP gene, prostate carcinoma LNCaP cells, and autologous metastatic prostate cancer cells (M-CaP). These lymphocytes were not cytotoxic to HLA-A2.1+ targets not producing PTH-rP, such as peptide-unpulsed CIR-A2 and colon carcinoma SW-1463, cell lines. Our results provide evidence that PTR-4 peptide-pulsed autologous DC may break the tolerance of human TIL against the autologous tumour by inducing a PTH-rP-specific CTL immune reaction. In conclusion PTR-4 peptide-pulsed autologous DC may be a promising approach for vaccine-therapy and antigen-specific CTL adoptive immunotherapy of hormone-resistant prostrate cancer. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11742494
Reactivity and Air Composition at Taehwa Research Forest During KORUS-AQ 2016
NASA Astrophysics Data System (ADS)
Sanchez, D.; Seco, R.; Gu, D.; Jeong, D.; Blake, D. R.; Herndon, S. C.; Lee, Y.; Mak, J. E.; McGee, T. J.; Guenther, A. B.; Kim, S.
2017-12-01
The existence of unmeasured volatile organic compounds (VOCs) has been strongly suggested by past studies. Combining OH reactivity (inverse OH lifetime) observations, or total reactivity of ambient air, with VOC and other trace gas observations allows us to examine reactive gas budgets. Previous studies at various field sites have shown that significant amounts of OH reactivity cannot be accounted for, especially in areas influenced by biogenic VOCs and their oxidation products. Thus, we will present the improvements in completing the OH reactivity budget at the Taehwa research forest using the OH reactivity, VOC, and other trace gas observations conducted from May to June during the KORUS-AQ 2016 campaign in South Korea. OH reactivity was measured using the comparative reactivity method with chemical ionization mass spectrometry (CRM-CIMS). The VOCs were measured using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). A preliminary assessment of the OH reactivity budget at the Taehwa research using only conventionally measured trace gases and VOCs demonstrated that 54% of OH reactivity remained unaccounted. However, the improved mass resolution and sensitivity towards higher mass compounds (m/z > 100) of the PTR-ToF-MS allowed us to observe typically unmeasured VOCs. Identification of these VOCs may help account for the remaining missing OH reactivity observed at the Taehwa research forest.
Peng, Syu-Jyun; Harnod, Tomor; Tsai, Jang-Zern; Huang, Chien-Chun; Ker, Ming-Dou; Chiou, Jun-Chern; Chiueh, Herming; Wu, Chung-Yu; Hsin, Yue-Loong
2014-01-01
To investigate white matter (WM) abnormalities in neocortical epilepsy, we extract supratentorial WM parameters from raw tensor magnetic resonance images (MRI) with automated region-of-interest (ROI) registrations. Sixteen patients having neocortical seizures with secondarily generalised convulsions and 16 age-matched normal subjects were imaged with high-resolution and diffusion tensor MRIs. Automated demarcation of supratentorial fibers was accomplished with personalized fiber-labeled atlases. From the individual atlases, we observed significant elevation of mean diffusivity (MD) in fornix (cres)/stria terminalis (FX/ST) and sagittal stratum (SS) and a significant difference in fractional anisotropy (FA) among FX/ST, SS, posterior limb of the internal capsule (PLIC), and posterior thalamic radiation (PTR). For patients with early-onset epilepsy, the diffusivities of the SS and the retrolenticular part of the internal capsule were significantly elevated, and the anisotropies of the FX/ST and SS were significantly decreased. In the drug-resistant subgroup, the MDs of SS and PTR and the FAs of SS and PLIC were significantly different. Onset age was positively correlated with increases in FAs of the genu of the corpus callosum. Patients with neocortical seizures and secondary generalisation had microstructural anomalies in WM. The changes in WM are relevant to early onset, progression, and severity of epilepsy. PMID:24883310
NASA Astrophysics Data System (ADS)
Koss, Abigail; Yuan, Bin; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Veres, Patrick R.; Peischl, Jeff; Eilerman, Scott; Wild, Rob; Brown, Steven S.; Thompson, Chelsea R.; Ryerson, Thomas; Hanisco, Thomas; Wolfe, Glenn M.; St. Clair, Jason M.; Thayer, Mitchell; Keutsch, Frank N.; Murphy, Shane; de Gouw, Joost
2017-08-01
VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March-April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.
Ye, Hongping; Hill, John; Kauffman, John; Han, Xianlin
2010-05-01
The capability of iTRAQ (isotope tags for relative and absolute quantification) reagents coupled with matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) as a qualitative and quantitative technique for the analysis of complicated protein pharmaceutical mixtures was evaluated. Mixtures of Somavert and Miacalcin with a small amount of bovine serum albumin (BSA) as an impurity were analyzed. Both Somavert and Miacalcin were qualitatively identified, and BSA was detected at levels as low as 0.8mol%. Genotropin and Somavert were compared in a single experiment, and all of the distinct amino acid residues from the two proteins were readily identified. Four somatropin drug products (Genotropin, Norditropin, Jintropin, and Omnitrope) were compared using the iTRAQ/MALDI-MS method to determine the similarity between their primary structures and quantify the amount of protein in each product. All four product samples were well labeled and successfully compared when a filtration cleanup step preceded iTRAQ labeling. The quantitative accuracy of the iTRAQ method was evaluated. In all cases, the accuracy of experimentally determined protein ratios was higher than 90%, and the relative standard deviation (RSD) was less than 10%. The iTRAQ and global internal standard technology (GIST) methods were compared, and the iTRAQ method provided both higher sequence coverage and enhanced signal intensity. Published by Elsevier Inc.
Solid-phase reductive amination for glycomic analysis.
Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George
2017-04-15
Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.
2014-01-01
Background The purpose of this study was to compare the efficacy of nickel-titanium rotary systems with or without the retreatment instruments in the removal of gutta-percha from the apical third. Methods The systems compared were as follows: ProTaper Universal (PT), ProTaper Universal Retreatment (PTr), Mtwo (M2) and Mtwo Retreatment (M2r). Sixty extracted mandibular incisors were treated with a crown-down technique and filled with gutta-percha and sealer. The apical diameter was standardized in 0.30 mm, 1 mm from the apex. The teeth were distributed into 4 experimental groups: PT, PTr, M2 and M2r. In PTr and M2r groups, filling materials were removed by PTr/M2r followed by root canals preparation up to a PT F4/M2 40; in groups PT/M2, the filling materials were removed and the root canals were prepared by PT up to a PT F4/M2 up to a M2 40. The roots were split and photomicrographing. The percentage of clean area in the apical 5 mm was calculated using software. Data were analyzed with the Kruskal-Wallis test. Results Remaining material was found in all hemisections and there was no statistically significant difference between the groups (p = 0.09). Considering the surface of the canal walls of all teeth, the mean of the percentage of clean area was 54%. Conclusions Considering the applied methodology, remaining filling material was found in all hemisections, regardless of the retreatment technique and PT or M2 were as effective as PTr/PT or M2r/M2. PMID:25128277
Lin, Ying-Chung; Li, Wei; Sun, Ying-Hsuan; Kumari, Sapna; Wei, Hairong; Li, Quanzi; Tunlaya-Anukit, Sermsawat; Sederoff, Ronald R.; Chiang, Vincent L.
2013-01-01
Wood is an essential renewable raw material for industrial products and energy. However, knowledge of the genetic regulation of wood formation is limited. We developed a genome-wide high-throughput system for the discovery and validation of specific transcription factor (TF)–directed hierarchical gene regulatory networks (hGRNs) in wood formation. This system depends on a new robust procedure for isolation and transfection of Populus trichocarpa stem differentiating xylem protoplasts. We overexpressed Secondary Wall-Associated NAC Domain 1s (Ptr-SND1-B1), a TF gene affecting wood formation, in these protoplasts and identified differentially expressed genes by RNA sequencing. Direct Ptr-SND1-B1–DNA interactions were then inferred by integration of time-course RNA sequencing data and top-down Graphical Gaussian Modeling–based algorithms. These Ptr-SND1-B1-DNA interactions were verified to function in differentiating xylem by anti-PtrSND1-B1 antibody-based chromatin immunoprecipitation (97% accuracy) and in stable transgenic P. trichocarpa (90% accuracy). In this way, we established a Ptr-SND1-B1–directed quantitative hGRN involving 76 direct targets, including eight TF and 61 enzyme-coding genes previously unidentified as targets. The network can be extended to the third layer from the second-layer TFs by computation or by overexpression of a second-layer TF to identify a new group of direct targets (third layer). This approach would allow the sequential establishment, one two-layered hGRN at a time, of all layers involved in a more comprehensive hGRN. Our approach may be particularly useful to study hGRNs in complex processes in plant species resistant to stable genetic transformation and where mutants are unavailable. PMID:24280390
NASA Astrophysics Data System (ADS)
Ujj, L.; Jäger, F.; Popp, A.; Atkinson, G. H.
1996-12-01
The vibrational spectrum of the K-590 intermediate, thought to contribute significantly to the energy storage and transduction mechanism in the bacteriorhodopsin (BR) photocycle, is measured at room temperature using picosecond time-resolved resonance coherent anti-Stokes Raman scattering (PTR/CARS). The room-temperature BR photocycle is initiated by the 3 ps, 570 nm excitation of the ground-state species, BR-570, prepared in both H 2O and D 2O suspensions of BR. PTR/CARS data, recorded 50 ps after BR-570 excitation, at which time only BR-570 and K-590 are present, have an excellent S/N which provides a significantly more detailed view of the K-590 vibrational degrees of freedom than previously available. Two picosecond (6 ps FWHM) laser pulses, ω1 (633.4 nm) and ωS (675-700 nm), are used to record PTR/CARS data via electronic resonance enhancement in both BR-570 and K-590, each of which contains a distinct retinal structure (assigned as 13- rans, 15- anti, 13- cis, respectively). To obtain the vibrational spectrum of K-590 separately, the PTR/CARS spectra from the mixture of isomeric retinals is quantitatively analyzed in terms of third-order susceptibility ( η(3)) relationships. PTR/CARS spectra of K-590 recorded from both H 2O and D 2O suspensions of BR are compared with the analogous vibrational data obtained via spontaneous resonance Raman (RR) scattering at both low (77 K) and room temperature. Analyses of these vibrational spectra identify temperature-dependent effects and changes assignable to the substitution of deuterium at the Schiff-base nitrogen not previously reported.
MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument
NASA Astrophysics Data System (ADS)
McFadden, J. P.; Kortmann, O.; Curtis, D.; Dalton, G.; Johnson, G.; Abiad, R.; Sterling, R.; Hatch, K.; Berg, P.; Tiu, C.; Gordon, D.; Heavner, S.; Robinson, M.; Marckwordt, M.; Lin, R.; Jakosky, B.
2015-12-01
The MAVEN SupraThermal And Thermal Ion Compostion (STATIC) instrument is designed to measure the ion composition and distribution function of the cold Martian ionosphere, the heated suprathermal tail of this plasma in the upper ionosphere, and the pickup ions accelerated by solar wind electric fields. STATIC operates over an energy range of 0.1 eV up to 30 keV, with a base time resolution of 4 seconds. The instrument consists of a toroidal "top hat" electrostatic analyzer with a 360° × 90° field-of-view, combined with a time-of-flight (TOF) velocity analyzer with 22.5° resolution in the detection plane. The TOF combines a -15 kV acceleration voltage with ultra-thin carbon foils to resolve H+, He^{++}, He+, O+, O2+, and CO2+ ions. Secondary electrons from carbon foils are detected by microchannel plate detectors and binned into a variety of data products with varying energy, mass, angle, and time resolution. To prevent detector saturation when measuring cold ram ions at periapsis (˜10^{1 1} eV/cm2 s sr eV), while maintaining adequate sensitivity to resolve tenuous pickup ions at apoapsis (˜103 eV/cm2 s sr eV), the sensor includes both mechanical and electrostatic attenuators that increase the dynamic range by a factor of 103. This paper describes the instrument hardware, including several innovative improvements over previous TOF sensors, the ground calibrations of the sensor, the data products generated by the experiment, and some early measurements during cruise phase to Mars.
NASA Astrophysics Data System (ADS)
Uniyal, S.; Singh, S.; Rao, S. S.
2017-12-01
Trees Outside Forest (TOF) grow on a variety of landscapes , e.g. linear, scattered, block etc. and include unique range of species that are specific to the local environmental and socio-cultural conditions. TOF usefulness came into knowledge when the ongoing anthropogenic activities increases the CO2 concentration in the atmosphere and it has been understood that CO2 can also be sequestered by increasing rate of afforestation.This study illustrates a methodology to estimate individual tree phytomass, their contribution to the environment and microclimate, spatial distribution of TOF phytomass and their carbon storage in Gwalior and Sheopur districts of Madhya Pradesh using very high resolution satellite data. Attempt has been made to estimate phytomass at pixel level also using various regression models. Phytomass is an important parameter to assess the atmospheric carbon that is harvested by trees .More the amount of phytomass more will be the Carbon content of trees and in similar way more will be their contribution for regulation of CO2 and vice versa. Tree Canopies extraction was done using very high resolution satellite data within an area of 5´5 km grids using various remote sensing techniques. Field data were collected from different types of TOFs, e.g. linear, scattered, block etc. from varying plot shapes and sizes, and Stratum-wise phytomass was estimated. Findings of study reported here says that varying phytomass range has been observed for road, agriculture and settlement with varying number of individual trees.The Phytomass in scattered TOFs varied from 0.22 to 15.68 t/ha and carbon content 0.104 to 7.4tC whereas, in linear TOFs it varied from 5.26 to 156.71 t/ha with carbon content 2.49 to 74.43tC. Phytomass along the road-side varied from 20.75 to 879.8 t/ha and carbon content 9.85 to 417.90 tC. Stratum-wise total phytomass and carbon content in areas having TOF was estimated. Of the 10 grids considered, the maximum Phytomass of 1363 tonnes with carbon content 647.425tC was recorded around Gwalior airport and minimum of 367.55 tonnes and carbon content 174.325tC in the surroundings of Mohana town. Analysis has been performed on how climatic variables affect the growth and structure of these trees and vice versa.
Avalanche photodiode based time-of-flight mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.
2015-08-15
This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. Bymore » replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.« less
Gao, Boyan; Luo, Yinghua; Lu, Weiying; Liu, Jie; Zhang, Yaqiong; Yu, Liangli Lucy
2017-03-01
A supercritical CO 2 ultra-performance convergence chromatography (UPC 2 ) system was utilized with a quadrupole time-of-flight mass spectrometry (Q-TOF MS) to examine the triacylglycerol compositions of sunflower, corn and soybean oils. UPC 2 provided an excellent resolution and separation for the triacylglycerols, while the high performance Q-TOF MS system was able to provide the molecular weight and fragment ions information for triacylglycerol compound characterization. A total of 33 triacylglycerols were identified based on their elementary compositions and MS 2 fragment ion profiles, and their levels in the three oils were estimated. The combination of UPC 2 and Q-TOF MS may determine triacylglycerol compositions for oils and fats, and provide sn-position information for fatty acids, which may be important for food nutritional value and stability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prchalová, Jana; Kovařík, František; Ševčík, Rudolf; Čížková, Helena; Rajchl, Aleš
2014-09-01
Direct analysis in real time (DART) is a novel technique with great potential for rapid screening analysis. The DART ionization method coupled with high-resolution time-of-flight mass spectrometry (TOF-MS) has been used for characterization of mustard seeds and table mustard. The possibility to use DART to analyse glucosinolates was confirmed on determination of sinalbin (4-hydroxybenzyl glucosinolate). The DART-TOF-MS method was optimized and validated. A set of samples of mustard seeds and mustard products was analyzed. High-performance liquid chromatography and DART-TOF-MS were used to determine glucosinolates in mustard seeds and compared. The correlation equation between these methods was DART = 0.797*HPLC + 6.987, R(2) = 0.972. The DART technique seems to be a suitable method for evaluation of the quality of mustard seeds and mustard products. Copyright © 2014 John Wiley & Sons, Ltd.
Particle identification with the ALICE Time-Of-Flight detector at the LHC
NASA Astrophysics Data System (ADS)
Alici, A.
2014-12-01
High performance Particle Identification system (PID) is a distinguishing characteristic of the ALICE experiment at the CERN Large Hadron Collider (LHC). Charged particles in the intermediate momentum range are identified in ALICE by the Time-Of-Flight (TOF) detector. The TOF exploits the Multi-gap Resistive Plate Chamber (MRPC) technology, capable of an intrinsic time resolution at the level of few tens of ps with an overall efficiency close to 100% and a large operation plateau. The full system is made of 1593 MRPC chambers with a total area of 141 m2, covering the pseudorapidity interval [-0.9,+0.9] and the full azimuthal angle. The ALICE TOF system has shown very stable operation during the first 3 years of collisions at the LHC. In this paper a summary of the system performance as well as main results with data from collisions will be reported.
Hatakeyama, Naoki; Hori, Tsukasa; Yamamoto, Masaki; Inazawa, Natsuko; Iesato, Kotoe; Miyazaki, Toru; Ikeda, Hisami; Tsutsumi, Hiroyuki; Suzuki, Nobuhiro
2011-12-01
PTR is a serious problem in patients being treated for hematologic disorders. Two patients with acute leukemia developed PTR after allogeneic BMT from one HLA-antigen-mismatched mother attributable to HLA antibodies, which could not be detected in their serum before BMT. HLA antibodies, whose specificity resembled that of each patient, were detected in each donor's serum. Each donor had probably been immunized during pregnancy by their partner's HLA antigens expressed by the fetus, consequently, transplanted donor-derived cells provoked HLA antibodies in each recipient early after BMT, and those HLA antibodies induced PTR. If the mothers are selected as donors for their children, they should be tested for the presence of HLA antibodies. © 2010 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis
2014-09-15
An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution ofmore » (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with the retarding ratio can be well approximated by applying Liouville's theorem of constant emittance to the electron trajectories inside the lens system. The performance of the setup is demonstrated by characterizing the laser fluence-dependent transient surface photovoltage response of a laser-excited Si(100) sample.« less
Development of a 25 K Pulse Tube Refrigerator for Future HTS-Series Products in Power Engineering
NASA Astrophysics Data System (ADS)
Gromoll, B.; Huber, N.; Dietrich, M.; Yang, L. W.; Thummes, G.
2006-04-01
Demands are made on refrigerators for future HTS-series products like generators, motors, transformers, which are only partly fulfilled by commercially available refrigerators. Based on the experiences with HTS-prototypes, pulse tube refrigerators (PTRs) are considered to have the highest potential to fulfill the identified requirements. Siemens have therefore started the development of a high-performance PTR together with TransMIT Giessen. Design target is a PTR with a cooling power of 80 W near 25 K based on an oil-free CFIC — linear compressor with a power input of 2 × 5 kW. The initial tests on the first single-stage laboratory version of this PTR with stainless steel mesh regenerator revealed high regenerator losses from circulating mass flow that manifests itself in form of an azimuthal temperature asymmetry in the regenerator. The circulating flow can be greatly reduced by increasing the transverse heat conductance of the matrix by use of stacks of different materials. So far, the minimum no-load temperature of the PTR is 35 K and a cooling power of 75 W is available at 50 K with a compressor efficiency of about 80 %. Further optimization of the regenerator matrix appears to be possible.
Vohra, Nasreen A; Brinkley, Jason; Kachare, Swapnil; Muzaffar, Mahvish
2018-03-02
Primary tumor resection (PTR) in metastatic breast cancer is not a standard treatment modality, and its impact on survival is conflicting. The primary objective of this study was to analyze impact of PTR on survival in metastatic patients with breast cancer. A retrospective study of metastatic patients with breast cancer was conducted using the 1988-2011 Surveillance, Epidemiology, and End Results (SEER) data base. Cox proportional hazards regression models were used to evaluate the relationship between PTR and survival and to adjust for the heterogeneity between the groups, and a propensity score-matched analysis was also performed. A total of 29 916 patients with metastatic breast cancer were included in the study, and 15 129 (51%) of patients underwent primary tumor resection, and 14 787 (49%) patients did not undergo surgery. Overall, decreasing trend in PTR for metastatic breast cancer in last decades was noted. Primary tumor resection was associated with a longer median OS (34 vs 18 months). In a propensity score-matched analysis, prognosis was also more favorable in the resected group (P = .0017). Primary tumor resection in metastatic breast cancer was associated with survival improvement, and the improvement persisted in propensity-matched analysis. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warburton, P.E.; Gosden, J.; Lawson, D.
1996-04-15
Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize andmore » spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.« less
Meneguzzo, Dacia M; Liknes, Greg C; Nelson, Mark D
2013-08-01
Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.
SIMS Studies of Allende Projectiles Fired into Stardust-type Aluminum Foils at 6 km/s
NASA Technical Reports Server (NTRS)
Hoppe, Peter; Stadermann, Frank J.; Stephan, Thomas; Floss, Christine; Leitner, Jan; Marhas, Kuljeet; Horz, Friedrich
2006-01-01
We have explored the feasibility of C-, N-, and O-isotopic measurements by NanoSIMS and of elemental abundance determinations by TOF-SIMS on residues of Allende projectiles that impacted Stardust-type aluminum foils in the laboratory at 6 km/s. These investigations are part of a consortium study aimed at providing the foundation for the characterization of matter associated with micro-craters that were produced during the encounter of the Stardust space probe with comet 81P/Wild 2. Eleven experimental impact craters were studied by NanoSIMS and eighteen by TOF-SIMS. Crater sizes were between 3 and 190 microns. The NanoSIMS measurements have shown that the crater morphology has only a minor effect on spatial resolution and on instrumental mass fractionation. The achievable spatial resolution is always better than 200 nm, and C- and O-isotopic ratios can be measured with a precision of several percent at a scale of several 100 nm, the typical size of presolar grains. This clearly demonstrates that presolar matter, provided it survives the impact into the aluminum foil partly intact, is recognizable even if embedded in material of Solar System origin. TOF-SIMS studies are restricted to materials from the crater rim. The element ratios of the major rockforming elements in the Allende projectiles are well characterized by the TOF-SIMS measurements, indicating that fractionation of those elements during impact can be expected to be negligible. This permits information on the type of impactor material to be obtained. For any more detailed assignments to specific chondrite groups, however, information on the abundances of the light elements, especially C, is crucial.
Rauniyar, Navin
2015-01-01
The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379
NASA Astrophysics Data System (ADS)
Bauer, Daniel R.; Stevens, Benjamin; Taft, Jefferson; Chafin, David; Petre, Vinnie; Theiss, Abbey P.; Otter, Michael
2014-03-01
Recently, it has been demonstrated that the preservation of cancer biomarkers, such as phosphorylated protein epitopes, in formalin-fixed paraffin-embedded tissue is highly dependent on the localized concentration of the crosslinking agent. This study details a real-time diffusion monitoring system based on the acoustic time-of-flight (TOF) between pairs of 4 MHz focused transducers. Diffusion affects TOF because of the distinct acoustic velocities of formalin and interstitial fluid. Tissue is placed between the transducers and vertically translated to obtain TOF values at multiple locations with a spatial resolution of approximately 1 mm. Imaging is repeated for several hours until osmotic equilibrium is reached. A post-processing technique, analogous to digital acoustic interferometry, enables detection of subnanosecond TOF differences. Reference subtraction is used to compensate for environmental effects. Diffusion measurements with TOF monitoring ex vivo human tonsil tissue are well-correlated with a single exponential curve (R2>0.98) with a magnitude of up to 50 ns, depending on the tissue size (2-6 mm). The average exponential decay constant of 2 and 6 mm diameter samples are 20 and 315 minutes, respectively, although times varied significantly throughout the tissue (σmax=174 min). This technique can precisely monitor diffusion progression and could be used to mitigate effects from tissue heterogeneity and intersample variability, enabling improved preservation of cancer biomarkers distinctly sensitive to degradation during preanalytical tissue processing.
The n_TOF facility: Neutron beams for challenging future measurements at CERN
NASA Astrophysics Data System (ADS)
Chiaveri, E.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.
2017-09-01
The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.
NASA Astrophysics Data System (ADS)
Seifert, Stefan; van der Lei, Gerben; van Dam, Herman T.; Schaart, Dennis R.
2013-05-01
Monolithic scintillator detectors can offer a combination of spatial resolution, energy resolution, timing performance, depth-of-interaction information, and detection efficiency that make this type of detector a promising candidate for application in clinical, time-of-flight (TOF) positron emission tomography (PET). In such detectors the scintillation light is distributed over a relatively large number of photosensor pixels and the light intensity per pixel can be relatively low. Therefore, monolithic scintillator detectors are expected to benefit from the low readout noise offered by a novel photosensor called the digital silicon photomultiplier (dSiPM). Here, we present a first experimental characterization of a TOF PET detector comprising a 24 × 24 × 10 mm3 LSO:Ce,0.2%Ca scintillator read out by a dSiPM array (DPC-6400-44-22) developed by Philips Digital Photon Counting. A spatial resolution of ˜1 mm full-width-at-half-maximum (FWHM) averaged over the entire crystal was obtained (varying from just below 1 mm FWHM in the detector center to ˜1.2 mm FWHM close to the edges). Furthermore, the bias in the position estimation at the crystal edges that is typically found in monolithic scintillators is well below 1 mm even in the corners of the crystal.
Kaneta, Tomohiro; Ogawa, Matsuyoshi; Motomura, Nobutoku; Iizuka, Hitoshi; Arisawa, Tetsu; Hino-Shishikura, Ayako; Yoshida, Keisuke; Inoue, Tomio
2017-10-11
The goal of this study was to evaluate the performance of the Celesteion positron emission tomography/computed tomography (PET/CT) scanner, which is characterized by a large-bore and time-of-flight (TOF) function, in accordance with the NEMA NU-2 2012 standard and version 2.0 of the Japanese guideline for oncology fluorodeoxyglucose PET/CT data acquisition protocol. Spatial resolution, sensitivity, count rate characteristic, scatter fraction, energy resolution, TOF timing resolution, and image quality were evaluated according to the NEMA NU-2 2012 standard. Phantom experiments were performed using 18 F-solution and an IEC body phantom of the type described in the NEMA NU-2 2012 standard. The minimum scanning time required for the detection of a 10-mm hot sphere with a 4:1 target-to-background ratio, the phantom noise equivalent count (NEC phantom ), % background variability (N 10mm ), % contrast (Q H,10mm ), and recovery coefficient (RC) were calculated according to the Japanese guideline. The measured spatial resolution ranged from 4.5- to 5-mm full width at half maximum (FWHM). The sensitivity and scatter fraction were 3.8 cps/kBq and 37.3%, respectively. The peak noise-equivalent count rate was 70 kcps in the presence of 29.6 kBq mL -1 in the phantom. The system energy resolution was 12.4% and the TOF timing resolution was 411 ps at FWHM. Minimum scanning times of 2, 7, 6, and 2 min per bed position, respectively, are recommended for visual score, noise-equivalent count (NEC) phantom , N 10mm , and the Q H,10mm to N 10mm ratio (QNR) by the Japanese guideline. The RC of a 10-mm-diameter sphere was 0.49, which exceeded the minimum recommended value. The Celesteion large-bore PET/CT system had low sensitivity and NEC, but good spatial and time resolution when compared to other PET/CT scanners. The QNR met the recommended values of the Japanese guideline even at 2 min. The Celesteion is therefore thought to provide acceptable image quality with 2 min/bed position acquisition, which is the most common scan protocol in Japan.
Wowra, Berndt; Muacevic, Alexander; Tonn, Jörg-Christian; Schoenberg, Stefan O; Reiser, Maximilian; Herrmann, Karin A
2009-02-01
To investigate the time-dependent obliteration of cerebral arteriovenous malformations (cAVM) after CyberKnife radiosurgery (CKRS) (Accuray, Inc., Sunnyvale, CA) by means of sequential 3-T, 3-dimensional (3D), time-of-flight (TOF) magnetic resonance angiography (MRA), and volumetry of the arteriovenous malformation (AVM) nidus. In this prospective study, 3D TOF MRA was performed on 20 patients with cAVMs treated by single-fraction CKRS. Three-dimensional TOF MRA was performed on a 3-T, 32-channel magnetic resonance scanner (Magnetom TIM Trio; Siemens Medical Solutions, Erlangen, Germany) with isotropic voxel size at a spatial resolution of 0.6 x 0.6 x 0.6 mm3. The time-dependent relative decay of the transnidal blood flow evidenced by 3D TOF MRA was referred to as "obliteration dynamics." Volumetry of the nidus size was performed with OsiriX imaging software (OsiriX Foundation, Geneva, Switzerland). All patients had 3 to 4 follow-up examinations at 3- to 6-month intervals over a minimum follow-up period of 9 months. Subtotal obliteration was determined if the residual nidus volume was 5% or less of the initial nidus volume. Stata/IC software (Version 10.0; Stata Corp., College Station, TX) was used for statistical analysis and to identify potential factors of AVM obliteration. Regarding their clinical status, case history, and pretreatments, the participants of this study represent difficult-to-treat cAVM patients. The median nidus volume was 1.8 mL (range, 0.4-12.5 mL); the median minimum dose prescribed to the nidus was 22 Gy (range, 16-24 Gy) delivered to the 67% isodose line (range, 55-80%). CKRS was well tolerated, with complications in 2 patients. No further hemorrhages occurred after RS, except 1 small and clinically inapparent incident. The median follow-up period after RS was 25.0 months (range, 11.7-36.8 months). After RS, a statistically significant obliteration was observed in all patients. However, the obliteration dynamics of the cAVMs showed a pronounced variability, with 2 types of post-therapeutic behavior identified. cAVMs of Group A showed a faster reduction of transnidal blood flow than cAVMs in Group B. The median time to subtotal obliteration was 23.8 months for all patients, 11.6 months for patients in Group A, and 27.8 months for patients in Group B (P = 0.05). Logistic regression analysis revealed dose homogeneity and the circumscribed isodose to be the only variables (P < 0.01) associated with the obliteration dynamics in this study. The cumulative complete angiographic obliteration rate was 67% (95% confidence interval, 32-95%) 2 years after RS. The use of sequential 3D TOF MRA at 3 T and nidus volumetry enables a noninvasive quantitative assessment of the dynamic obliteration process induced by CKRS in cAVMs. This method may be helpful to identify factors related to AVM obliteration after RS when larger patient cohorts become available.
Software Measurement Guidebook Version 01.00.00
1991-06-01
However, if PTR closures fall off in the presence of declining PTR openings, then the closure procedure is just catching up with the volume of PTRs, and...the activities in the development process in the WBS. The development activi- ties’ cost accounts should tier up to the CSCI total development cost...34* Establish separate WBS cost accounts for each CSCI. Establish separate CSCI-specific cost accounts for each development activity or phase that tier up
1984-08-08
transmission PTR signal changes whenever the transmitted thermal wave crosses a void. This provides a means of nondestructive subsurface imaging of defects...and Busse and Renk( 2 2 ) have demonstrated a new stereoscopic subsurface imaging technique involving two adjacent modulated PT source for...modulation frequencies. In all cases of subsurface imaging , the authors preferred to use the shape or the phase of the PTR signal rather than the amplitude
Distributed Object Oriented Programming
1990-02-01
of the object oriented model of computation. Therefore, object oriented programming can provide the programmer with good conceptual tools to divide his...LABOR SALES-COMMISSION). The symbol + refers to the addition function and takes any number of numeric arguments. The third subtype of list forms is the...2) ’(:SEND-DONE) (SEWF (AREF OBJECT-i1-MESSAGES-SENT 2) ’(PROGN (FORMAT T "-s methd completely executed instr-ptr -s-V NAME %INSTR-PTR%) (INCF
Synchronism of the Siberian Traps and the Permian-Triassic boundary
Campbell, I.H.; Czamanske, G.K.; Fedorenko, V.A.; Hill, R.I.; Stepanov, V.
1992-01-01
Uranium-lead ages from an ion probe were taken for zircons from the ore-bearing Noril'sk I intrusion that is comagmatic with, and intrusive to, the Siberian Traps. These values match, within an experimental error of ??4 million years, the dates for zircons extracted from a tuff at the Permian-Triassic (P-Tr) boundary. The results are consistent with the hypothesis that the P-Tr extinction was caused by the Siberian basaltic flood volcanism. It is likely that the eruption of these magmas was accompanied by the injection of large amounts of sulfur dioxide into the upper atmosphere, which may have led to global cooling and to expansion of the polar ice cap. The P-Tr extinction event may have been caused by a combination of acid rain and global cooling as well as rapid and extreme changes in sea level resulting from expansion of the polar ice cap.
NASA Astrophysics Data System (ADS)
Bruinen, Anne L.; Fisher, Gregory L.; Balez, Rachelle; van der Sar, Astrid M.; Ooi, Lezanne; Heeren, Ron M. A.
2018-06-01
A unique method for identification of biomolecular components in different biological specimens, while preserving the capability for high speed 2D and 3D molecular imaging, is employed to investigate cellular response to oxidative stress. The employed method enables observing the distribution of the antioxidant α-tocopherol and other molecules in cellular structures via time-of-flight secondary ion mass spectrometry (TOF-SIMS (MS1)) imaging in parallel with tandem mass spectrometry (MS2) imaging, collected simultaneously. The described method is employed to examine a network formed by neuronal cells differentiated from human induced pluripotent stem cells (iPSCs), a model for investigating human neurons in vitro. The antioxidant α-tocopherol is identified in situ within different cellular layers utilizing a 3D TOF-SIMS tandem MS imaging analysis. As oxidative stress also plays an important role in mediating inflammation, the study was expanded to whole body tissue sections of M. marinum-infected zebrafish, a model organism for tuberculosis. The TOF-SIMS tandem MS imaging results reveal an increased presence of α-tocopherol in response to the pathogen. [Figure not available: see fulltext.
High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN
NASA Astrophysics Data System (ADS)
Sabaté-Gilarte, M.; Barbagallo, M.; Colonna, N.; Gunsing, F.; Žugec, P.; Vlachoudis, V.; Chen, Y. H.; Stamatopoulos, A.; Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Villacorta, A.; Guerrero, C.; Damone, L.; Audouin, L.; Berthoumieux, E.; Cosentino, L.; Diakaki, M.; Finocchiaro, P.; Musumarra, A.; Papaevangelou, T.; Piscopo, M.; Tassan-Got, L.; Aberle, O.; Andrzejewski, J.; Bécares, V.; Bacak, M.; Baccomi, R.; Balibrea, J.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chiaveri, E.; Cortés, G.; Deo, K.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Frost, R. J. W.; Furman, V.; Göbel, K.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M. S.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Wolf, C.; Woods, P. J.; Weiss, C.; Wright, T.
2017-10-01
A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.
Wu, Xiaofang; Ding, Wenjing; Zhong, Jiasheng; Wan, Jinzhi; Xie, Zhiyong
2013-06-01
An effective and comprehensive method was developed for the simultaneous analysis of phenolic compounds in the dried exudate of Aloe barbadensis Mill by liquid chromatography-mass spectrometry-ion trap-time-of-flight (LCMS-IT-TOF) and high performance liquid chromatography-diode array detector (HPLC-DAD). Qualitative analysis of all the compounds presented in A. barbadensis Mill was performed on LCMS-IT-TOF, and the diagnostic fragmentation patterns of different types of phenolic compounds (chromones, phenyl pyrones, naphthalene derivative, anthrones and anthraquinones) were discussed on the basis of ESI-IT-TOF MS of components in A. barbadensis Mill and eleven authentic standards. Under the optimal HPLC-DAD chromatographic conditions, quantification of 11 typical phenolic compounds in 15 batches of A. barbadensis Mill was achieved on an Agilent TC-C18 column using gradient elution with a solvent system of methanol and water at a flow rate of 1.0mLmin(-1) and detected at 230nm. All calibration curves exhibited good linear relationship (r(2)>0.9991). The relative standard deviation values for intraday precision were less than 2% with accuracies between 98.21% and 104.57%. The recoveries of the eleven analytes ranged from 97.53 to 105.00% with RSDs less than 2%. This is the first simultaneous characterization and quantitative determination of multiple phenolic compounds in A. barbadensis Mill from locally grown cultivars in China by LCMS-IT-TOF and HPLC-DAD, which can be applied to standardize the quality of A. barbadensis Mill and the future design of nutraceutical and cosmetic preparations. Copyright © 2013 Elsevier B.V. All rights reserved.
Towards high-resolution 4D flow MRI in the human aorta using kt-GRAPPA and B1+ shimming at 7T.
Schmitter, Sebastian; Schnell, Susanne; Uğurbil, Kâmil; Markl, Michael; Van de Moortele, Pierre-François
2016-08-01
To evaluate the feasibility of aortic 4D flow magnetic resonance imaging (MRI) at 7T with improved spatial resolution using kt-GRAPPA acceleration while restricting acquisition time and to address radiofrequency (RF) excitation heterogeneities with B1+ shimming. 4D flow MRI data were obtained in the aorta of eight subjects using a 16-channel transmit/receive coil array at 7T. Flow quantification and acquisition time were compared for a kt-GRAPPA accelerated (R = 5) and a standard GRAPPA (R = 2) accelerated protocol. The impact of different dynamic B1+ shimming strategies on flow quantification was investigated. Two kt-GRAPPA accelerated protocols with 1.2 × 1.2 × 1.2 mm(3) and 1.8 × 1.8 × 2.4 mm(3) spatial resolution were compared. Using kt-GRAPPA, we achieved a 4.3-fold reduction in net acquisition time resulting in scan times of about 10 minutes. No significant effect on flow quantification was observed compared to standard GRAPPA with R = 2. Optimizing the B1+ fields for the aorta impacted significantly (P < 0.05) the flow quantification while specific B1+ settings were required for respiration navigators. The high-resolution protocol yielded similar flow quantification, but allowed the depiction of branching vessels. 7T in combination with B1+ shimming allows for high-resolution 4D flow MRI acquisitions in the human aorta, while kt-GRAPPA limits total scan times without affecting flow quantification. J. Magn. Reson. Imaging 2016;44:486-499. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jiang, Xiao-Pan; Zhang, Zi-Liang; Qin, Xiu-Bo; Yu, Run-Sheng; Wang, Bao-Yi
2010-12-01
Positronium time of flight spectroscopy (Ps-TOF) is an effective technique for porous material research. It has advantages over other techniques for analyzing the porosity and pore tortuosity of materials. This paper describes a design for Ps-TOF apparatus based on the Beijing intense slow positron beam, supplying a new material characterization technique. In order to improve the time resolution and increase the count rate of the apparatus, the detector system is optimized. For 3 eV o-Ps, the time broadening is 7.66 ns and the count rate is 3 cps after correction.
Wang, Saihua; Niu, Hongyun; Cai, Yaqi; Cao, Dong
2018-05-01
High-throughput and rapid detection of hazardous compounds in complicated samples is essential for the solution of environmental problems. We have prepared a "pH-paper-like" chip which can rapidly "indicate" the occurrence of organic contaminants just through dipping the chip in water samples for short time followed by fast analysis with surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). The chips are composed of polyvinylidene fluoride membrane (PVDFM), polydopamine (PDA) film and Au nanoparticles (Au NPs), which are layer-by-layer assembled according to the adhesion, self-polymerization and reduction property of dopamine. In the Au NPs loaded polydopamine-polyvinylidene fluoride membrane (Au NPs-PDA-PVDFM) chips, PVDFM combined with PDA film are responsible for the enrichment of organic analyte through hydrophobic interactions and π-π stacking; Au NPs serve as effective SALDI matrix for the rapid detection of target analyte. After dipping into water solution for minutes, the Au-PDA-PVDFM chips with enriched organic analytes can be detected directly with SALDI-TOF MS. The good solid-phase extraction performance of the PDA-PVDFM components, remarkable matrix effect of the loaded AuNPs, and sensitivity of the SALDI-TOF MS technique ensure excellent sensitivity and reproducibility for the quantification of trace levels of organic contaminants in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Onghena, Matthias; Van Hoeck, Els; Van Loco, Joris; Ibáñez, María; Cherta, Laura; Portolés, Tania; Pitarch, Elena; Hernandéz, Félix; Lemière, Filip; Covaci, Adrian
2015-11-01
This work presents a strategy for elucidation of unknown migrants from plastic food contact materials (baby bottles) using a combination of analytical techniques in an untargeted approach. First, gas chromatography (GC) coupled to mass spectrometry (MS) in electron ionisation mode was used to identify migrants through spectral library matching. When no acceptable match was obtained, a second analysis by GC-(electron ionisation) high resolution mass spectrometry time of flight (TOF) was applied to obtain accurate mass fragmentation spectra and isotopic patterns. Databases were then searched to find a possible elemental composition for the unknown compounds. Finally, a GC hybrid quadrupole-TOF-MS with an atmospheric pressure chemical ionisation source was used to obtain the molecular ion or the protonated molecule. Accurate mass data also provided additional information on the fragmentation behaviour as two acquisition functions with different collision energies were available (MS(E) approach). In the low-energy function, limited fragmentation took place, whereas for the high-energy function, fragmentation was enhanced. For less volatile unknowns, ultra-high pressure liquid chromatography-quadrupole-TOF-MS was additionally applied. Using a home-made database containing common migrating compounds and plastic additives, tentative identification was made for several positive findings based on accurate mass of the (de)protonated molecule, product ion fragments and characteristic isotopic ions. Six illustrative examples are shown to demonstrate the modus operandi and the difficulties encountered during identification. The combination of these techniques was proven to be a powerful tool for the elucidation of unknown migrating compounds from plastic baby bottles. Copyright © 2015 John Wiley & Sons, Ltd.
Qiu, Yunping; Moir, Robyn D; Willis, Ian M; Seethapathy, Suresh; Biniakewitz, Robert C; Kurland, Irwin J
2018-01-18
Identifying non-annotated peaks may have a significant impact on the understanding of biological systems. In silico methodologies have focused on ESI LC/MS/MS for identifying non-annotated MS peaks. In this study, we employed in silico methodology to develop an Isotopic Ratio Outlier Analysis (IROA) workflow using enhanced mass spectrometric data acquired with the ultra-high resolution GC-Orbitrap/MS to determine the identity of non-annotated metabolites. The higher resolution of the GC-Orbitrap/MS, together with its wide dynamic range, resulted in more IROA peak pairs detected, and increased reliability of chemical formulae generation (CFG). IROA uses two different 13 C-enriched carbon sources (randomized 95% 12 C and 95% 13 C) to produce mirror image isotopologue pairs, whose mass difference reveals the carbon chain length (n), which aids in the identification of endogenous metabolites. Accurate m/z, n, and derivatization information are obtained from our GC/MS workflow for unknown metabolite identification, and aids in silico methodologies for identifying isomeric and non-annotated metabolites. We were able to mine more mass spectral information using the same Saccharomyces cerevisiae growth protocol (Qiu et al. Anal. Chem 2016) with the ultra-high resolution GC-Orbitrap/MS, using 10% ammonia in methane as the CI reagent gas. We identified 244 IROA peaks pairs, which significantly increased IROA detection capability compared with our previous report (126 IROA peak pairs using a GC-TOF/MS machine). For 55 selected metabolites identified from matched IROA CI and EI spectra, using the GC-Orbitrap/MS vs. GC-TOF/MS, the average mass deviation for GC-Orbitrap/MS was 1.48 ppm, however, the average mass deviation was 32.2 ppm for the GC-TOF/MS machine. In summary, the higher resolution and wider dynamic range of the GC-Orbitrap/MS enabled more accurate CFG, and the coupling of accurate mass GC/MS IROA methodology with in silico fragmentation has great potential in unknown metabolite identification, with applications for characterizing model organism networks.
NASA Astrophysics Data System (ADS)
Slowik, J. G.; Vlasenko, A.; McGuire, M.; Evans, G. J.; Abbatt, J. P. D.
2009-03-01
During the winter component of the SPORT (Seasonal Particle Observations in the Region of Toronto) field campaign, particulate non-refractory chemical composition and concentration of selected volatile organic compounds (VOCs) were measured by an Aerodyne time-of-flight aerosol mass spectrometer (AMS) and a proton transfer reaction-mass spectrometer (PTR-MS), respectively. Sampling was performed in downtown Toronto ~15 m from a major road. The mass spectra from the AMS and PTR-MS were combined into a unified dataset, which was analyzed using positive matrix factorization (PMF). The two instruments were given equal weight in the PMF analysis by application of a scaling factor to the uncertainties of each instrument. A residual based metric, Δesc, was used to evaluate the relative weight. The PMF analysis yielded a 5-factor solution that included factors characteristic of regional transport, local traffic emissions, charbroiling, and oxidative processing. The unified dataset provides information on particle and VOC sources and atmospheric processing that cannot be obtained from the datasets of the individual instruments, such as apportionment of oxygenated VOCs to direct emission sources vs. secondary reaction products, improved correlation of oxygenated aerosol factors with photochemical age, and increased detail regarding the composition of oxygenated organic aerosol factors. This analysis represents the first application of PMF to a unified AMS/PTR-MS dataset.
Application of PTR-MS for Measuring Odorant Emissions from Soil Application of Manure Slurry
Feilberg, Anders; Bildsoe, Pernille; Nyord, Tavs
2015-01-01
Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed. PMID:25585103
A Neutron Diffractometer for a Long Pulsed Neutron Source
NASA Astrophysics Data System (ADS)
Sokol, Paul; Wang, Cailin
Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.
Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development
NASA Astrophysics Data System (ADS)
Hamilton, Hannah; Phenix Collaboration
2015-10-01
Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.
MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.
Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth
2018-02-02
Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value<1.7. Two strains could not be identified at first as they represented a mix of two different species. These mixes were Rhodotorula babjevae with Meyerozyma caribbica and Clavispora lusitaniae with Debaryomyces hansenii. After separation, all four species could be correctly identified with scores>1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Le Breton, Michael; Hallquist, Åsa M.; Kant Pathak, Ravi; Simpson, David; Wang, Yujue; Zheng, Jing; Yang, Yudong; Shang, Dongjie; Wang, Haichao; Lu, Keding; Guo, Song; Hu, Min; Hallquist, Mattias
2017-04-01
Severe pollution events across China pose a major threat to air quality and climate through the direct emission of pollutants, but also via the production of photochemically induced secondary pollutants. Nitryl chloride (ClNO2), produced from heterogeneous reactions of dinitrogen pentoxide (N2O5) and aerosols containing chloride, is photolysed rapidly in sunlight and activates chlorine. Subsequent daytime oxidation via the chlorine atom can proceed orders of magnitude faster than that of the hydroxyl radical and therefore significantly perturb radical budgets and concentrations of ozone and secondary pollutants. Knowledge of the formation pathways, abundance and fate of these secondary pollutants, which can depend on ClNO2 abundance, is not fully understood but is necessary to support abatement strategies which will efficiently account for both primary and secondary pollutants. A Time of Flight Chemical Ionisation Mass Spectrometer (ToF CIMS) utilising the Filter Inlet for Gases and AEROsols (FIGAERO) was deployed in Changping, Beijing, during June and July, 2016 as part of an intercollaborative project to assess the photochemical smog in China. Concentrations of ClNO2 regularly exceeded 500 ppt throughout the campaign and reached a maximum concentration of 2.8 ppb, whereas relatively low N2O5 concentrations were observed, indicating a rapid heterogeneous production of ClNO2. Correlation of particulate chloride and carbon monoxide during the campaign suggests an anthropogenic chlorine source, also supported by high daytime Cl2 concentrations. Observations of ClNO2 desorptions using the FIGAERO suggest a possible unaccounted particulate reservoir of active chlorine in highly polluted regions. The persistence of ClNO2 several hours passed sunrise significantly increases the atomic chlorine production rate throughout the day further perturbing standard daytime oxidation processes. Simultaneous ToF CIMS measurements of Cl2, ClNO2, HCl, HOCl, OClO and ClONO2 were implemented into steady state calculations using the Master Chemical Mechanism (MCM) to assess how the daytime activation of chlorine competes with OH as a dominant oxidant in this heavily polluted region. The reactions of atomic chlorine with VOCs are traced and assessed via the gas and particle phase measurements of chlorinated VOCs and supporting Proton Transfer Reaction Mass Spectrometer (PTR MS) VOC measurements. This provides the first high frequency measurements of unique tracers for chlorine atom chemistry, several of which are represented in the MCM, in both the gas and particle phase and enable the detailed assessment of their diurnal variation and importance for photochemical smog formation.
Fernández Del Río, R; O'Hara, M E; Pemberton, P; Whitehouse, T; Mayhew, C A
2016-10-12
Isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether), C 3 H 2 ClF 5 O, is a commonly used inhalation anaesthetic. Using a proton transfer reaction mass spectrometer (PTR-MS) we have detected isoflurane in the breath of patients several weeks following major surgery. That isoflurane is detected in the breath of patients so long after being anaesthetised raises questions about when cognitive function has fully returned to a patient. Temporal profiles of isoflurane concentrations in breath are presented for five patients (F/M 3/2, mean age 50 years, min-max 36-58 years) who had undergone liver transplant surgery. In addition, results from a headspace analysis of isoflurane are presented so that the product ions resulting from the reactions of H 3 O + with isoflurane in PTR-MS could be easily identified in the absence of the complex chemical environment of breath. Six product ions were identified. In order of increasing m/z (using the 35 Cl isotope where appropriate) these are [Formula: see text] (m/z 51), CHFCl + (m/z 67), CF 3 CHCl + (m/z 117), C 3 F 4 OCl + (m/z 163), C 3 H 2 F 4 OCl + (m/z 165), and C 3 F 4 OCl + H 2 O (m/z 183). No protonated parent was detected. For the headspace study both clean air and CO 2 enriched clean air (4% CO 2 ) were used as buffer gases in the drift tube of the PTR-MS. The CO 2 enriched air was used to determine if exhaled breath would affect the product ion branching ratios. Importantly no significant differences were observed, and therefore for isoflurane the product ion distributions determined in a normal air mixture can be used for breath analysis. Given that PTR-MS can be operated under different reduced electric fields (E/N), the dependence of the product ion branching percentages for isoflurane on E/N (96-138 Td) are reported.
NASA Astrophysics Data System (ADS)
Yang, H.; Chen, Z.; Wang, Y. B.; Ou, W.; Liao, W.; Mei, X.
2013-12-01
The Permian-Triassic (P-Tr) carbonate successions are often characterized by the presence of microbialite buildups worldwide. The widespread microbialites are believed as indication of microbial proliferation immediately after the P-Tr mass extinction. The death of animals representing the primary consumer trophic structure of marine ecosystem in the P-Tr crisis allows the bloom of microbes as an important primary producer in marine trophic food web structure. Thus, the PTB microbialite builders have been regarded as disaster taxa of the P-Tr ecologic crisis. Microbialite ecosystems were suitable for most organisms to inhabit. However, increasing evidence show that microbialite dwellers are also considerably abundant and diverse, including mainly foraminifers Earlandia sp. and Rectocornuspira sp., lingulid brachiopods, ostrocods, gastropods, and microconchids. In particular, ostracods are extremely abundant in this special ecosystem. Microconchid-like calcareous tubes are also considerably abundant. Here, we have sampled systematically a PTB microbialite deposit from the Dajiang section, southern Guizhou Province, southwest China and have extracted abundant isolated specimens of calcareous worm tubes. Quantitative analysis enables to investigate stratigraphic and facies preferences of microconchids in the PTB microbialites. Our preliminary result indicates that three microconchid species Microconchus sp., Helicoconchus elongates and Microconchus aberrans inhabited in microbialite ecosystem. Most microconchilds occurred in the upper part of the microbialite buildup and the grainstone-packstone microfacies. Very few microconchilds were found in the rocks bearing well-developed microbialite structures. Their stratigraphic and environmental preferences indicate proliferation of those metazoan organisms is coupled with ebb of the microbialite development. They also proliferated in some local niches in which microbial activities were not very active even if those microconchids occur in the PTB microbialite buildups. In addition, the combination of previously published data and present studies indicates that the PTB microbialite ecosystem contained much higher biodiversity than previously expected. The PTB microbialite ecosystems provided habitable niches for some particular fossil groups to survive the P-Tr mass extinction.
NASA Technical Reports Server (NTRS)
Koss, Abigail; Yuan, Bin; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Veres, Patrick R.; Peischl, Jeff; Eilerman, Scott; Wild, Rob; Brown, Steven S.;
2017-01-01
VOCs (Volatile Organic Compounds) related to oil and gas extraction operations in the United States were measured by H3O (sup plus) chemical ionization time-of-flight mass spectrometry (H3O (sup plus) ToFCIMS/PTR-ToF-MS (Time of Flight Chemical Ionization Mass Spectrometry/Proton Transfer Reaction-Time of Flight-Mass Spectroscopy) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March-April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O (sup plus) ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O (sup plus) ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O (sup plus) ion chemistry previously reported in the literature, including several new or alternate interpretations.
Garcia, M; Naraghi, R; Zumbrunn, T; Rösch, J; Hastreiter, P; Dörfler, A
2012-08-01
High-resolution MR imaging is useful for diagnosis and preoperative planning in patients with NVC. Because high-field MR imaging promises higher SNR and resolution, the aim of this study was to determine the value of high-resolution 3D-CISS and 3D-TOF MRA at 3T compared with 1.5T in patients with NVC. Forty-seven patients with NVC, trigeminal neuralgia, hemifacial spasm, and glossopharyngeal neuralgia were examined at 1.5T and 3T, including high-resolution 3D-CISS and 3D-TOF MRA sequences. Delineation of anatomic structures, overall image quality, severity of artifacts, visibility of NVC, and assessment of the SNR and CNR were compared between field strengths. SNR and CNR were significantly higher at 3T (P < .001). Significantly better anatomic conspicuity, including delineation of CNs, nerve branches, and assessment of small vessels, was obtained at 3T (P < .02). Severity of artifacts was significantly lower at 3T (P < .001). Consequently, overall image quality was significantly higher at 3T. NVC was significantly better delineated at 3T (P < .001). Six patients in whom NVC was not with certainty identifiable at 1.5T were correctly diagnosed at 3T. Patients with NVC may benefit from the higher resolution and greater sensitivity of 3T for preoperative assessment of NVC, and 3T may be of particular value when 1.5T is equivocal.
Sommella, Eduardo; Pepe, Giacomo; Pagano, Francesco; Tenore, Gian Carlo; Dugo, Paola; Manfra, Michele; Campiglia, Pietro
2013-10-01
We have developed a fast ultra HPLC with ion-trap TOF-MS method for the analysis of flavonoids in Citrus bergamia juice. With respect to the typical methods for the analysis of these matrices based on conventional HPLC techniques, a tenfold faster separation was attained. The use of a core-shell particle column ensured high resolution within the fast analysis time of only 5 min. Unambiguous determination of flavonoid identity was obtained by the employment of a hybrid ion-trap TOF mass spectrometer with high mass accuracy (average error 1.69 ppm). The system showed good retention time and peak area repeatability, with maximum RSD% values of 0.36 and 3.86, respectively, as well as good linearity (R(2) ≥ 0.99). Our results show that ultra HPLC can be a useful tool for ultra fast qualitative/quantitative analysis of flavonoid compounds in citrus fruit juices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Cuimei; Hua, Zhendong; Bai, Yanping
2015-12-01
The illicit manufacture of heroin results in the formation of trace levels of acidic and neutral manufacturing impurities that provide valuable information about the manufacturing process used. In this work, a new ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF) method; that features high resolution, mass accuracy and sensitivity for profiling neutral and acidic heroin manufacturing impurities was developed. After the UPLC-Q-TOF analysis, the retention times and m/z data pairs of acidic and neutral manufacturing impurities were detected, and 19 peaks were found to be evidently different between heroin samples from "Golden Triangle" and "Golden Crescent". Based on the data set of these 19 impurities in 150 authentic heroin samples, classification of heroin geographic origins was successfully achieved utilizing partial least squares discriminant analysis (PLS-DA). By analyzing another data set of 267 authentic heroin samples, the developed discrimiant model was validated and proved to be accurate and reliable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Exposomics research using suspect screening and non ...
High-resolution mass spectrometry (HRMS) is used for suspect screening (SSA) and non-targeted analysis (NTA) in an attempt to characterize xenobiotic chemicals in various samples broadly and efficiently. These important techniques aid characterization of the exposome, the totality of human exposures, and provide critical information on thousands of chemicals in commerce for which exposure data are lacking. The Environmental Protection Agency (EPA) SSA and NTA capabilities consist of analytical instrumentation [liquid chromatography (LC) with time of flight (TOF) and quadrupole-TOF (Q-TOF) HRMS], workflows (feature extraction, formula generation, structure prediction, spectral matching, chemical confirmation), and tools (databases; models for predicting retention time, functional use, media occurrence, and media concentration; and schemes for ranking features and chemicals). Suspect screening (SSA) and non-targeted analysis (NTA) are used to characterize xenobiotic chemicals in various samples and aid characterization of the exposome, the totality of human exposures, and provide critical information on thousands of chemicals in commerce for which exposure data are lacking.
NASA Astrophysics Data System (ADS)
Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye
2015-11-01
In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.
Yu, Yanfei; Wu, Guangyan; Zhai, Zhipeng; Yao, Huochun; Lu, Chengping; Zhang, Wei
2015-01-01
Haemophilus parasuis (H. parasuis) is associated with meningitis, polyserositis, polyarthritis and bacterial pneumonia. At present, its prevention and control is difficult because of the lack of suitable subunit vaccines. Nowadays, high-throughput methods, immunoproteomics, are available to screen for more vaccine candidates. A protein extraction method for H. parasuis and two-dimensional electrophoresis (2-DE) were optimized to provide high-resolution profiles covering pH 3 to 10. Twenty immunoreactive spots were excised from gels after strict comparison between 2-DE Western blot membranes and the relevant gels. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and MALDI-TOF-TOF-MS successfully identified 16 different proteins. Fifteen of them were reported as immunoreactive proteins in H. parasuis for the first time. In addition, recombinant HP5-7 (ABC transporter, periplasmic-binding protein) showed immunoreactivity both with hyperimmune rabbit serum and convalescent swine serum. Four recombinants of the 14 successfully expressed genes showed immunoreactivity with hyperimmune rabbit serum.
Comparison of SANS instruments at reactors and pulsed sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiyagarajan, P.; Epperson, J.E.; Crawford, R.K.
1992-09-01
Small angle neutron scattering is a general purpose technique to study long range fluctuations and hence has been applied in almost every field of science for material characterization. SANS instruments can be built at steady state reactors and at the pulsed neutron sources where time-of-flight (TOF) techniques are used. The steady state instruments usually give data over small q ranges and in order to cover a large q range these instruments have to be reconfigured several times and SANS measurements have to be made. These instruments have provided better resolution and higher data rates within their restricted q ranges untilmore » now, but the TOF instruments are now developing to comparable performance. The TOF-SANS instruments, by using a wide band of wavelengths, can cover a wide dynamic q range in a single measurement. This is a big advantage for studying systems that are changing and those which cannot be exactly reproduced. This paper compares the design concepts and performances of these two types of instruments.« less
NASA Astrophysics Data System (ADS)
De Haan, D. O.; Riva, M.; Surratt, J. D.; Cazaunau, M.; Doussin, J. F.
2016-12-01
Minimal organic aerosol forms when aerosol particles are exposed to gas-phase methylglyoxal, but condensed phase laboratory studies of aerosol chemistry have suggested that methylglyoxal is a significant source of oligomerized aerosol material. In this study, various types of seed particles were exposed to gaseous methylglyoxal and then cloud-processed in the CESAM chamber. The gas phase was continuously probed by high-resolution PTR-MS during the experiments, and the particle phase WSOC was chemically characterized by high-resolution UPLC/ESI-DAD-QTOFMS. Uptake of methylglyoxal to dry particles caused optical rather than size changes, along with the release of imine products to the gas phase. High RH and cloud processing released some particle-bound methylglyoxal back to the gas phase but triggered an uptake of imine products. Analysis of the particle phase identified N-containing aldol condensation products derived from methylglyoxal, imine (produced from methylglyoxal and amine reactions), acetaldehyde (produced by methylglyoxal photolysis) and hydroxyacetone (produced by methylglyoxal disproportionation) monomers.
A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance.
Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen
2014-01-15
A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.
Berg, Eric; Roncali, Emilie; Kapusta, Maciej; Du, Junwei; Cherry, Simon R
2016-02-01
In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3-3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%-7% with phosphor-coated crystals compared to uncoated crystals. These results demonstrate the feasibility of obtaining TOF-DOI capabilities with simple block detector readout using phosphor-coated crystals.
Olaguer, Eduardo P; Erickson, Matthew H; Wijesinghe, Asanga; Neish, Bradley S
2016-02-01
A mobile laboratory equipped with a proton transfer reaction mass spectrometer (PTR-MS) operated in Galena Park, Texas, near the Houston Ship Channel during the Benzene and other Toxics Exposure Study (BEE-TEX). The mobile laboratory measured transient peaks of benzene of up to 37 ppbv in the afternoon and evening of February 19, 2015. Plume reconstruction and source attribution were performed using the four-dimensional (4D) variational data assimilation technique and a three-dimensional (3D) micro-scale forward and adjoint air quality model based on mobile PTR-MS data and nearby stationary wind measurements at the Galena Park Continuous Air Monitoring Station (CAMS). The results of inverse modeling indicate that significant pipeline emissions of benzene may at least partly explain the ambient concentration peaks observed in Galena Park during BEE-TEX. Total pipeline emissions of benzene inferred within the 16-km(2) model domain exceeded point source emissions by roughly a factor of 2 during the observational episode. Besides pipeline leaks, the model also inferred significant benzene emissions from marine, railcar, and tank truck loading/unloading facilities, consistent with the presence of a tanker and barges in the Kinder Morgan port terminal during the afternoon and evening of February 19. Total domain emissions of benzene exceeded corresponding 2011 National Emissions Inventory (NEI) estimates by a factor of 2-6. Port operations involving petrochemicals may significantly increase emissions of air toxics from the transfer and storage of materials. Pipeline leaks, in particular, can lead to sporadic emissions greater than in emission inventories, resulting in higher ambient concentrations than are sampled by the existing monitoring network. The use of updated methods for ambient monitoring and source attribution in real time should be encouraged as an alternative to expanding the conventional monitoring network.
Ozonolysis of α-phellandrene - Part 1: Gas- and particle-phase characterisation
NASA Astrophysics Data System (ADS)
Mackenzie-Rae, Felix A.; Liu, Tengyu; Deng, Wei; Saunders, Sandra M.; Fang, Zheng; Zhang, Yanli; Wang, Xinming
2017-06-01
The ozonolysis of α-phellandrene, a highly reactive conjugated monoterpene largely emitted by Eucalypt species, is characterised in detail for the first time using a smog chamber at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. Gas-phase species were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF), with yields from a large number of products obtained, including formaldehyde (5-9 %), acetaldehyde (0.2-8 %), glyoxal (6-23 %), methyl glyoxal (2-9 %), formic acid (22-37 %) and acetic acid (9-22 %). Higher m/z second-generation oxidation products were also observed, with products tentatively identified according to a constructed degradation mechanism. OH yields from α-phellandrene and its first-generation products were found to be 35 ± 12 and 15 ± 7 %, respectively, indicative of prominent hydroperoxide channels. An average first-generation rate coefficient was determined as 1.0 ± 0.7 × 10-16 cm3 molecule-1 s-1 at 298 K, showing ozonolysis as a dominant loss process for both α-phellandrene and its first-generation products in the atmosphere. Endocyclic conjugation in α-phellandrene was also found to be conducive to the formation of highly condensible products with a large fraction of the carbon mass partitioning into the aerosol phase, which was monitored with a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (AMS). Nucleation was observed almost instantaneously upon ozonolysis, indicating the rapid formation of extremely low-volatility compounds. Particle nucleation was found to be suppressed by the addition of either NO2 or a Criegee scavenger, with it being proposed that stabilised Criegee intermediates are important for new particle formation in the system. Aerosol yields ranged from 25 to 174 % depending on mass loadings, with both first- and second-generation products identified as large contributors to the aerosol mass. In short, with a high chemical reactivity and aerosol-forming propensity, α-phellandrene is expected to have an immediate impact on the local environment to which it is emitted, with ozonolysis likely to be an important contributor to the significant blue haze and frequent nocturnal nucleation events observed over Eucalypt forests.
NASA Astrophysics Data System (ADS)
Juran, Stanislav; Vecerova, Kristyna; Holisova, Petra; Zapletal, Milos; Pallozzi, Emanuele; Guidolotti, Gabriele; Calfapietra, Carlo; Vecera, Zbynek; Cudlin, Pavel; Urban, Otmar
2015-04-01
Dynamics of nitrogen oxides (NOx) and ozone concentration and their depositions were investigated on the Norway spruce forest at Bily Kriz experimental station at the Silesian Beskydy Mountains (north-eastern part of the Czech Republic). Both NOx and ozone concentration and fluxes were modelled for the whole season and covering thus different climate conditions. Data were recorded for three consecutive years and therefore deeper analyses were performed. During the summer 2014 BVOC field campaign was carried out using proton-transfer-reaction-time-of-flight-mass-spectrometry (PTR-TOF, Ionicon Analytik GmbH, Innsbruck, Austria) and volatile organic compound of biogenic origin (BVOC) were measured at the different levels of tree canopies. By the same time BVOC were trapped into the Tenax tubes (Markes International Ltd., UK) and put afterwards for thermal desorption (Markes Unity System 2, Markes International Ltd., UK) to GS-MS analysis (TSQ Quntum XLS triple Quadrupole, Thermo Scientific, USA). Thus data of different levels of canopies together with different spectra of monoterpenes were obtained. Interesting comparison of both methods will be shown. It was the first BVOC field campaign using PTR technique at any of the forest in the Czech Republic. Highest fluxes and concentrations were recorded around the noon hours, represented particularly by monoterpenes, especially α-pinen and limonene. Other BVOCs than monoterpenes were negligible. Variation of fluxes between different canopies levels was observed, highlighting difference in shaded and sun exposed leaves. Sun leaves emitted up to 2.4 nmol m-2 s-1 of monoterpenes, while shaded leaves emitted only up to 0.6 nmol m-2 s-1 when measured under standard conditions (irradiance 1000 µmol m-2 s-1; temperature 30°C). We discuss here the importance of the most common Norway spruce tree forests in the Czech Republic in bi-directional exchanges of important secondary pollutant such as ozone and nitrogen oxides, their production and deposition and interaction with BVOCs at low nitrogen oxides polluted area. Forests of Beskydy Mountains could play a key role in pollutants removal because of closeness to highest ozone and aerosol polluted area of the Czech Republic - Ostrava region, where heavy industry is located.
A study of time over threshold (TOT) technique for plastic scintillator counter
NASA Astrophysics Data System (ADS)
Wu, Jin-Jie; Heng, Yue-Kun; Sun, Zhi-Jia; Wu, Chong; Zhao, Yu-Da; Yang, Gui-An; Jiang, Chun-Hua
2008-03-01
A new charge measurement method, time over threshold (TOT), has been used in some gas detectors lately. Here TOT is studied for TOF system, made of plastic scintillator counter, which can simplify the electronics of the system. The signal characteristics are measured and analyzed with a high quality oscilloscope, including noise, pedestal, signal amplitude, total charge, rise time and the correlation between them. The TOT and charge are related and can be fitted by some empirical formula. The charge measurement resolution by TOT is given and this will help the design of TOF electronics. Supported by BEPCII Project, CAS Knowledge Innovation Program U602 and U-34 (IHEP)
SPAD array based TOF SoC design for unmanned vehicle
NASA Astrophysics Data System (ADS)
Pan, An; Xu, Yuan; Xie, Gang; Huang, Zhiyu; Zheng, Yanghao; Shi, Weiwei
2018-03-01
As for the requirement of unmanned-vehicle mobile Lidar system, this paper presents a SoC design based on pulsed TOF depth image sensor. This SoC has a detection range of 300m and detecting resolution of 1.5cm. Pixels are made of SPAD. Meanwhile, SoC adopts a structure of multi-pixel sharing TDC, which significantly reduces chip area and improve the fill factor of light-sensing surface area. SoC integrates a TCSPC module to achieve the functionality of receiving each photon, measuring photon flight time and processing depth information in one chip. The SOC is designed in the SMIC 0.13μm CIS CMOS technology
NASA Astrophysics Data System (ADS)
Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao
2018-01-01
Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.
Heat-driven thermoacoustic cryocooler operating at liquid hydrogen temperature with a unique coupler
NASA Astrophysics Data System (ADS)
Hu, J. Y.; Luo, E. C.; Li, S. F.; Yu, B.; Dai, W.
2008-05-01
A heat-driven thermoacoustic cryocooler is constructed. A unique coupler composed of a tube, reservoir, and elastic diaphragm is introduced to couple a traveling-wave thermoacoustic engine (TE) and two-stage pulse tube refrigerator (PTR). The amplitude of the pressure wave generated in the engine is first amplified in the coupler and the wave then passes into the refrigerator to pump heat. The TE uses nitrogen as its working gas and the PTR still uses helium as its working gas. With this coupler, the efficiency of the system is doubled. The engine and coupler match at a much lower operating frequency, which is of great benefit for the PTR to obtain a lower cooling temperature. The coupling place between the coupler and engine is also optimized. The onset problem is effectively solved. With these improvements, the heat-driven thermoacoustic cryocooler reaches a lowest temperature of 18.1K, which is the demonstration of heat-driven thermoacoustic refrigeration technology used for cooling at liquid hydrogen temperatures.
Exploring the inhibitory activity of Withaferin-A against Pteridine reductase-1 of L. donovani.
Chandrasekaran, Sambamurthy; Veronica, Jalaja; Gundampati, Ravi Kumar; Sundar, Shyam; Maurya, Radheshyam
2016-12-01
Withaferin A is an abundant withanolide present in Withania somnifera leaves and to some extent in roots. It has been known for its profound anti-cancer properties, but its role in counteracting the Leishmania donovani infection has to be explored. Pteridine reductase 1 (PTR1) is involved in pteridine salvage and an important enzyme for the parasite growth, which could be targeted for the development of an efficient antileishmanial drug. We employed molecular docking studies to identify the binding mode of withaferin A with PTR1 in silico. We further cloned, expressed, and purified PTR1 of L. donovani and performed the enzyme kinetics using the Michaelis-Menten equation and enzyme inhibition studies with withaferin A by plotting the Lineweaver-Burk graph, which followed an uncompetitive mode of inhibition. We also showed the inhibition of the enzyme in the crude lysate of treated parasites. Thus, our study contributes towards understanding the mode of action of withaferin A against L. donovani parasite.
NASA Astrophysics Data System (ADS)
Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.
2017-12-01
In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.
TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia
Naeser, Margaret A.; Martin, Paula I.; Theoret, Hugo; Kobayashi, Masahito; Fregni, Felipe; Nicholas, Marjorie; Tormos, Jose M.; Steven, Megan S.; Baker, Errol H.; Pascual-Leone, Alvaro
2011-01-01
This study sought to discover if an optimum 1 cm2 area in the non-damaged right hemisphere (RH) was present, which could temporarily improve naming in chronic, nonfluent aphasia patients when suppressed with repetitive transcranial magnetic stimulation (rTMS). Ten minutes of slow, 1 Hz rTMS was applied to suppress different RH ROIs in eight aphasia cases. Picture naming and response time (RT) were examined before, and immediately after rTMS. In aphasia patients, suppression of right pars triangularis (PTr) led to significant increase in pictures named, and significant decrease in RT. Suppression of right pars opercularis (POp), however, led to significant increase in RT, but no change in number of pictures named. Eight normals named all pictures correctly; similar to aphasia patients, RT significantly decreased following rTMS to suppress right PTr, versus right POp. Differential effects following suppression of right PTr versus right POp suggest different functional roles for these regions. PMID:21864891
Kitamura, Kenji; Kinsui, Eldaa Zefany Banami; Abe, Fumiyoshi
2017-02-01
Blasticidin S (BlaS) interferes in the cell growth of both eukaryotes and prokaryotes. Its mode of action as a protein synthesis inhibitor has been investigated extensively. However, the mechanism of BlaS transport into the target cells is not understood well. Here, we show that Ptr2, a member of the proton-dependent oligopeptide transporter (POT) family, is responsible for the uptake of BlaS in yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae. Notably, some mutants of Ptr2 that are dysfunctional in dipeptide uptake were still competent to transport BlaS. Mouse-derived oligopeptide transporter PepT1 conferred BlaS sensitivity in the S. cerevisiae ptr2∆ mutant. Furthermore, bacterial POT family proteins also potentiated the BlaS sensitivity of E. coli. The role of the POT family oligopeptide transporters in the uptake of BlaS is conserved across species from bacteria to mammals. Copyright © 2016 Elsevier B.V. All rights reserved.
Gassner, Christoph; Meyer, Stefan; Frey, Beat M; Vollmert, Caren
2013-01-01
Although matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry (MALDI-TOF MS) has previously been reported for high throughput blood group genotyping, those reports are limited to only a few blood group systems. This review describes the development of a large cooperative Swiss-German project, aiming to employ MALDI-TOF MS for the molecular detection of the blood groups Rh, Kell, Kidd, Duffy, MNSs, a comprehensive collection of low incidence antigens, as well as the platelet and granulocyte antigens HPA and HNA, representing a total of 101 blood group antigens, encoded by 170 alleles, respectively. Recent reports describe MALDI-TOF MS as a technology with short time-to-resolution, ability for high throughput, and cost-efficiency when used in genetic analysis, including forensics, pharmacogenetics, oncology and hematology. Furthermore, Kell and RhD genotyping have been performed on fetal DNA from maternal plasma with excellent results. In summary, this article introduces a new technological approach for high throughput blood group genotyping by means of MALDI-TOF MS. Although all data presented are preliminary, the observed success rates, data quality and concordance with known blood group types are highly impressive, underlining the accuracy and reliability of this cost-efficient high throughput method. Copyright © 2013 Elsevier Inc. All rights reserved.
Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass
NASA Astrophysics Data System (ADS)
Ivanov, S. A.; Nikonorov, N. V.; Dubrovin, V. D.; Krykova, V. A.
2017-05-01
In this research, we present new holographic material based on fluoride photo-thermo-refractive glass(PTR) - chloride PTR glass. One of the benefit of this type of PTR glass is positive refractive index change. During this work, for the first-time volume Bragg gratings were recorded in this kind of material. The first experiments revealed that such gratings are mixed i.e. possess both absorption and phase components. Complex analysis shows that both refractive index and absorption coefficient are modulated inside the grating structure. We found out that at first there is no strict dependence of the refractive index change from dosage, but as we continue the process of thermal treatment - dependence is appear. Exposure influence on the refractive index change for this glass differs from fluoride one and shows some sort of saturation after the exposure of 4-6 J/cm2 . We distinguished refractive index change and absorption coefficient change and observed both behavior with increasing thermal treatment time. We found out that the increase of thermal treatment time results in the significant refractive index change. At the same time the absorption does `not practically change. It was found that maximum modulation of refractive index is comparable with fluoride PTR glass and achieves value of 1600 ppm. The modulation of absorption is equal to induced absorption caused by silver nanoparticles and depends from reading wavelength. Our study shows that almost all absorption is modulated inside the grating.
NASA Astrophysics Data System (ADS)
Slowik, J. G.; Vlasenko, A.; McGuire, M.; Evans, G. J.; Abbatt, J. P. D.
2010-02-01
During the winter component of the SPORT (Seasonal Particle Observations in the Region of Toronto) field campaign, particulate non-refractory chemical composition and concentration of selected volatile organic compounds (VOCs) were measured by an Aerodyne time-of-flight aerosol mass spectrometer (AMS) and a proton transfer reaction-mass spectrometer (PTR-MS), respectively. Sampling was performed in downtown Toronto ~15 m from a major road. The mass spectra from the AMS and PTR-MS were combined into a unified dataset, which was analysed using positive matrix factorization (PMF). The two instruments were given balanced weight in the PMF analysis by the application of a scaling factor to the uncertainties of each instrument. A residual based metric, Δesc, was used to evaluate the instrument relative weight within each solution. The PMF analysis yielded a 6-factor solution that included factors characteristic of regional transport, local traffic emissions, charbroiling and oxidative processing. The unified dataset provides information on emission sources (particle and VOC) and atmospheric processing that cannot be obtained from the datasets of the individual instruments: (1) apportionment of oxygenated VOCs to either direct emission sources or secondary reaction products; (2) improved correlation of oxygenated aerosol factors with photochemical age; and (3) increased detail regarding the composition of oxygenated organic aerosol factors. This analysis represents the first application of PMF to a unified AMS/PTR-MS dataset.
Identification and Quantification of Alkaloid in KHR98 and Fragmentation Pathways in HPLC-Q-TOF-MS.
Long, Jiakun; Wang, Yang; Xu, Chen; Liu, Tingting; Duan, Gengli; Yu, Yingjia
2018-05-01
Uncaria rhynchophylla is woody climber plant distributed mainly in China and Japan, the stems and hooks of which can be collected as "Gou-Teng" for the treatment of hyperpyrexia, epilepsy and preeclampsia. Fudan University first manufactured KHR98, the extract of Uncaria rhynchophylla. In order to study the active components and structural information of KHR98, we established a HPLC coupled with quadrupole time-of-flight (Q-TOF)-MS method for rapid analysis of alkaloids. In qualitative analysis, a total of eight compounds, including four known alkaloids and four unknown components, were detected and identified. The fragmentation behaviors, such as the fragment ion information and the fragmentation pathways of the eight components were summarized simultaneously, and the concentration of the above components was determined by HPLC-MS method. The quantitative method was proved to be reproducible, precise and accurate. This study shed light on the standardization and quality control of the KHR98 and provided a foundation for the further research on pharmacology, follow-up clinical research and New Drug Applications.
Wang, Jun; Chen, Wen Feng; Li, Qing X
2012-02-24
The need of quick diagnostics and increasing number of bacterial species isolated necessitate development of a rapid and effective phenotypic identification method. Mass spectrometry (MS) profiling of whole cell proteins has potential to satisfy the requirements. The genus Mycobacterium contains more than 154 species that are taxonomically very close and require use of multiple genes including 16S rDNA for phylogenetic identification and classification. Six strains of five Mycobacterium species were selected as model bacteria in the present study because of their 16S rDNA similarity (98.4-99.8%) and the high similarity of the concatenated 16S rDNA, rpoB and hsp65 gene sequences (95.9-99.9%), requiring high identification resolution. The classification of the six strains by MALDI TOF MS protein barcodes was consistent with, but at much higher resolution than, that of the multi-locus sequence analysis of using 16S rDNA, rpoB and hsp65. The species were well differentiated using MALDI TOF MS and MALDI BioTyper™ software after quick preparation of whole-cell proteins. Several proteins were selected as diagnostic markers for species confirmation. An integration of MALDI TOF MS, MALDI BioTyper™ software and diagnostic protein fragments provides a robust phenotypic approach for bacterial identification and classification. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Acton, William; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Mentel, Thomas; Tomlinson, Sam; Dragosits, Ulrike; Hewitt, Nicholas; Nemitz, Eiko
2015-04-01
Plants emit a wide range of Biogenic Volatile Organic Compounds (BVOCs) into the atmosphere. These BVOCs are a major source of reactive carbon into the troposphere and play an important role in atmospheric chemistry by, for example, acting as an OH sink and contributing to the formation of secondary organic aerosol. While the emission rates of some of these compounds are relatively well understood, large uncertainties are still associated with the emission estimates of many compounds. Here the fluxes and mixing ratios of BVOCs recorded during June/July 2012 over the Bosco Fontana forest reserve in northern Italy are reported and discussed, together with a comparison of three methods of flux calculation. This work was carried out as a part of the EC FP7 project ECLAIRE (Effects of Climate Change on Air Pollution and Response Strategies for European Ecosystems). The Bosco Fontana reserve is a semi natural deciduous forest dominated by Carpinus betulus (hornbeam), Quercus robur (pedunculate oak) and Quercus rubra (northern red oak). Virtual disjunct eddy covariance measurements made using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) were used to calculate fluxes and mixing ratios of BVOCs above the forest canopy at Bosco Fontana. BVOC mixing ratios were dominated by methanol with acetaldehyde, acetone, acetic acid, isoprene, the sum of methyl vinyl ketone and methacrolein, methyl ethyl ketone and monoterpenes also recorded. A large flux of isoprene was observed as well as significant fluxes of monoterpenes, methanol, acetaldehyde and methyl vinyl ketone / methacrolein. The fluxes recorded using the PTR-MS and PTR-ToF-MS showed good agreement. Comparison of the isoprene fluxes calculated using these instruments also agreed well with fluxes modelled using the MEGAN algorithms (Guenther et al. 2006). The detailed tree distribution maps for the forest at Bosco Fontana compiled by Dalponte et al. 2007 enable the estimation of flux from leaf level emissions data. This 'bottom up' estimate will be compared with the fluxes recorded using PTR-MS and PTR-ToF-MS. References Dalponte M., Gianelle D. and Bruzzone L.: Use of hyperspectral and LIDAR data for classification of complex forest areas. Canopy Analysis and Dynamics of a Floodplain Forest: 25-37, 2007 Guenther A., Karl T., Harley P., Wiedinmyer C., Palmer P.I. and Geron C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3180-3210, 2006
Xie, Shuanglu; Shi, Yuanyuan; Wang, Yixiang; Wu, Chunyong; Liu, Wenyuan; Feng, Feng; Xie, Ning
2013-01-01
Uncaria rhynchophylla (UR) is a species of Uncaria that is distributed mainly in China and Japan. In this study, the chemical constituents, including alkaloids, flavonoids, and quinic acids, in UR have been systematically identified and quantified by a developed method of high-performance liquid chromatography coupled with diode-array detection and quadrupole time-of-flight mass spectrometry (Q-TOF-MS). Tetracyclic monoterpenoid oxindole alkaloids (TMOAs) are characteristic compounds in this herb, and their fragmentations in Q-TOF-MS have been investigated. Diagnostic fragmentation ions (DFIs) were first delineated for isorhynchophylline-type (7S, C20-ethyl) and corynoxeine-type (7R, C20-vinyl) TMOAs, and these were used for identification of these alkaloids in UR. In this study, a total of 29 compounds, comprising 18 alkaloids, six flavonoids, and five quinic acids, were identified. Among them, there are four novel TMOAs, named as 22-O-β-glucopyranosyl isorhynchophyllic acid (10), 22-O-β-glucopyranosyl rhynchophyllic acid (11), 9-hydroxy isocorynoxeine (16), and 9-hydroxy corynoxeine (20), which have not been reported previously. Furthermore, eight marker compounds, namely chlorogenic acid (3), catechin (8), epicatechin (9), isocorynoxeine (24), rhynchophylline (25), isorhynchophylline (27), vincoside lactam (28), and corynoxeine (29), have been simultaneously quantified. The developed method has been validated and successfully applied to analyze three samples of UR from Jiangxi Province. The contents of the marker compounds have been detected and compared. Copyright © 2013 Elsevier B.V. All rights reserved.
Abstract ID: 242 Simulation of a Fast Timing Micro-Pattern Gaseous Detector for TOF-PET.
Radogna, Raffaella; Verwilligen, Piet
2018-01-01
Micro-Pattern Gas Detectors (MPGDs) are a new generation of gaseous detectors that have been developed thanks to advances in micro-structure technology. The main features of the MPGDs are: high rate capability (>50 MHz/cm 2 ); excellent spatial resolution (down to 50 μm); good time resolution (down to 3 ns); reduced radiation length, affordable costs, and possible flexible geometries. A new detector layout has been recently proposed that aims at combining both the high spatial resolution and high rate capability (100 MHz/cm 2 ) of the current state-of-the-art MPGDs with a high time resolution. This new type of MPGD is named the Fast Timing MPGD (FTM) detector [1,2]. The FTM developed for detecting charged particles can potentially reach sub-millimeter spatial resolution and 100 ps time resolution. This contribution introduces a Fast Timing MPGD technology optimized to detect photons, as an innovative PET imaging detector concept and emphases the importance of full detector simulation to guide the design of the detector geometry. The design and development of a new FTM, combining excellent time and spatial resolution, while exploiting the advantages of a reasonable energy resolution, will be a boost for the design of affordable TOF-PET scanner with improved image contrast. The use of such an affordable gas detector allows to instrument large areas in a cost-effective way, and to increase in image contrast for shorter scanning times (lowering the risk for the patient) and better diagnosis of the disease. In this report a dedicated simulation study is performed to optimize the detector design in the contest of the INFN project MPGD-Fatima. Results are obtained with ANSYS, COMSOL, GARFIELD++ and GEANT4 simulation tools. The final detector layout will be trade-off between fast time and good energy resolution. Copyright © 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogunovic, Hrvoje; Pozo, Jose Maria; Villa-Uriol, Maria Cruz
Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D x-ray reconstruction angiography (3DRA) and time of flight magnetic resonance angiography (TOF-MRA) images available in the clinical routine. Methods: Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols, and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA andmore » TOF-MRA. Images were obtained from two clinical centers, each using different imaging equipment. Evaluation included qualitative and quantitative analyses of the segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: isointensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an intermodality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. Results: Both GAR and ISE differed from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatability of GAR was superior to manual measurements and ISE. The intermodality agreement was similar between GAR and the manual measurements. Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.« less
NASA Astrophysics Data System (ADS)
Jin, Xiao; Chan, Chung; Mulnix, Tim; Panin, Vladimir; Casey, Michael E.; Liu, Chi; Carson, Richard E.
2013-08-01
Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided with accurate motion data, event-by-event correction has better accuracy than frame-based methods. Therefore, the goal of this work was to develop a list-mode reconstruction with novel physics modeling for the Siemens Biograph mCT with event-by-event motion correction, based on the MOLAR platform (Motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction). Application of MOLAR for the mCT required two algorithmic developments. First, in routine studies, the mCT collects list-mode data in 32 bit packets, where averaging of lines-of-response (LORs) by axial span and angular mashing reduced the number of LORs so that 32 bits are sufficient to address all sinogram bins. This degrades spatial resolution. In this work, we proposed a probabilistic LOR (pLOR) position technique that addresses axial and transaxial LOR grouping in 32 bit data. Second, two simplified approaches for 3D time-of-flight (TOF) scatter estimation were developed to accelerate the computationally intensive calculation without compromising accuracy. The proposed list-mode reconstruction algorithm was compared to the manufacturer's point spread function + TOF (PSF+TOF) algorithm. Phantom, animal, and human studies demonstrated that MOLAR with pLOR gives slightly faster contrast recovery than the PSF+TOF algorithm that uses the average 32 bit LOR sinogram positioning. Moving phantom and a whole-body human study suggested that event-by-event motion correction reduces image blurring caused by respiratory motion. We conclude that list-mode reconstruction with pLOR positioning provides a platform to generate high quality images for the mCT, and to recover fine structures in whole-body PET scans through event-by-event motion correction.
Elschot, Mattijs; Vermolen, Bart J.; Lam, Marnix G. E. H.; de Keizer, Bart; van den Bosch, Maurice A. A. J.; de Jong, Hugo W. A. M.
2013-01-01
Background After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry. Methodology/Principal Findings SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. Conclusions/Significance In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y microsphere distribution after radioembolization. PMID:23405207
NASA Astrophysics Data System (ADS)
Kolstein, M.; Chmeissani, M.
2016-01-01
The Voxel Imaging PET (VIP) Pathfinder project presents a novel design using pixelated semiconductor detectors for nuclear medicine applications to achieve the intrinsic image quality limits set by physics. The conceptual design can be extended to a Compton gamma camera. The use of a pixelated CdTe detector with voxel sizes of 1 × 1 × 2 mm3 guarantees optimal energy and spatial resolution. However, the limited time resolution of semiconductor detectors makes it impossible to use Time Of Flight (TOF) with VIP PET. TOF is used in order to improve the signal to noise ratio (SNR) by using only the most probable portion of the Line-Of-Response (LOR) instead of its entire length. To overcome the limitation of CdTe time resolution, we present in this article a simulation study using β+-γ emitting isotopes with a Compton-PET scanner. When the β+ annihilates with an electron it produces two gammas which produce a LOR in the PET scanner, while the additional gamma, when scattered in the scatter detector, provides a Compton cone that intersects with the aforementioned LOR. The intersection indicates, within a few mm of uncertainty along the LOR, the origin of the beta-gamma decay. Hence, one can limit the part of the LOR used by the image reconstruction algorithm.
Fast SiPM Readout of the PANDA TOF Detector
NASA Astrophysics Data System (ADS)
Böhm, M.; Lehmann, A.; Motz, S.; Uhlig, F.
2016-05-01
For the identification of low momentum charged particles and for event timing purposes a barrel Time-of-Flight (TOF) detector surrounding the interaction point is planned for the PANDA experiment at FAIR . Since the boundary conditions in terms of available radial space and radiation length are quite strict the favored layout is a hodoscope composed of several thousand small scintillating tiles (SciTils) read out by silicon photomultipliers (SiPMs). A time resolution of well below 100 ps is aimed for. With the originally proposed 30 × 30 × 5 mm3 SciTils read out by two single 3 × 3 mm2 SiPMs at the rims of the scintillator the targeted time resolution can be just reached, but with a considerable position dependence across the scintillator surface. In this paper we discuss other design options to further improve the time resolution and its homogeneity. It will be shown that wide scintillating rods (SciRods) with a size of, e.g., 50 × 30 × 5 mm3 or longer and read out at opposite sides by a chain of four serially connected SiPMs a time resolution down to 50 ps can be reached without problems. In addition, the position dependence of the time resolution is negligible. These SciRods were tested in the laboratory with electrons of a 90Sr source and under real experimental conditions in a particle beam at CERN. The measured time resolutions using fast BC418 or BC420 plastic scintillators wrapped in aluminum foil were consistently between 45 and 75 ps dependent on the SciRod design. This is a significant improvement compared to the original SciTil layout.
Huang, Shih-Ying; Savic, Dragana; Yang, Jaewon; Shrestha, Uttam; Seo, Youngho
2014-11-01
Simultaneous imaging systems combining positron emission tomography (PET) and magnetic resonance imaging (MRI) have been actively investigated. A PET/MR imaging system (GE Healthcare) comprised of a time-of-flight (TOF) PET system utilizing silicon photomultipliers (SiPMs) and 3-tesla (3T) MRI was recently installed at our institution. The small-ring (60 cm diameter) TOF PET subsystem of this PET/MRI system can generate images with higher spatial resolution compared with conventional PET systems. We have examined theoretically and experimentally the effect of uniform magnetic fields on the spatial resolution for high-energy positron emitters. Positron emitters including 18 F, 124 I, and 68 Ga were simulated in water using the Geant4 Monte Carlo toolkit in the presence of a uniform magnetic field (0, 3, and 7 Tesla). The positron annihilation position was tracked to determine the 3D spatial distribution of the 511-keV gammy ray emission. The full-width at tenth maximum (FWTM) of the positron point spread function (PSF) was determined. Experimentally, 18 F and 68 Ga line source phantoms in air and water were imaged with an investigational PET/MRI system and a PET/CT system to investigate the effect of magnetic field on the spatial resolution of PET. The full-width half maximum (FWHM) of the line spread function (LSF) from the line source was determined as the system spatial resolution. Simulations and experimental results show that the in-plane spatial resolution was slightly improved at field strength as low as 3 Tesla, especially when resolving signal from high-energy positron emitters in the air-tissue boundary.
Recent Developments in PET Instrumentation
Peng, Hao; Levin, Craig S.
2013-01-01
Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121
Quantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations
Higgs, Richard E.; Butler, Jon P.; Han, Bomie; Knierman, Michael D.
2013-01-01
Recent improvements in the mass accuracy and resolution of mass spectrometers have led to renewed interest in label-free quantification using data from the primary mass spectrum (MS1) acquired from data-dependent proteomics experiments. The capacity for higher specificity quantification of peptides from samples enriched for proteins of biological interest offers distinct advantages for hypothesis generating experiments relative to immunoassay detection methods or prespecified peptide ions measured by multiple reaction monitoring (MRM) approaches. Here we describe an evaluation of different methods to post-process peptide level quantification information to support protein level inference. We characterize the methods by examining their ability to recover a known dilution of a standard protein in background matrices of varying complexity. Additionally, the MS1 quantification results are compared to a standard, targeted, MRM approach on the same samples under equivalent instrument conditions. We show the existence of multiple peptides with MS1 quantification sensitivity similar to the best MRM peptides for each of the background matrices studied. Based on these results we provide recommendations on preferred approaches to leveraging quantitative measurements of multiple peptides to improve protein level inference. PMID:23710359
Schlittenbauer, Linda; Seiwert, Bettina; Reemtsma, Thorsten
2016-02-01
Parabens are preservatives widely used in personal care products, pharmaceutical formulations as well as in food, and they are considered endocrine disruptors. For application in biomonitoring studies we developed a method for the determination of eight parabens from human urine. Sample preparation was enhanced and simplified by the combination of ultrasound-assisted enzymatic hydrolysis of conjugates (glucuronide and sulfate) followed by an extraction-free cleanup step. Quantification, using deuterated parabens as internal standards, was performed by ultrahigh-performance liquid chromatography coupled to either triple-quadrupole (UPLC-QqQ) or time-of-flight (UPLC-QqTOF) mass spectrometry. Full chromatographic separation of three butyl paraben isomers was achieved. Limits of quantification for both mass analyzers ranged from 0.1 to 0.5 μg/L for methyl, ethyl, n-/isopropyl, n-/isobutyl, and benzyl paraben in 200 μL of urine sample. The method was tested for applicability and showed high precision (intra- and interday 0.9-14.5%) as well as high accuracy (relative recovery 95-132%). A total of 39 urine samples were analyzed by both mass analyzers. The results agreed well, with a trend to higher deviation at low concentrations (less than 10 μg/L). Methyl, ethyl, and n-propyl paraben were detected most frequently (in more than 87% of the samples) with median concentrations ranging from 0.8 to 16.6 μg/L. Female urine showed higher median concentrations for all parabens, which may indicate higher exposure due to lifestyle. This method permits accurate and high-throughput analysis of parabens for epidemiological studies. Further, the UPLC-QqTOF approach provides additional information on human exposure to other compounds by post-acquisition analysis.
Multielement analysis of interplanetary dust particles using TOF-SIMS
NASA Technical Reports Server (NTRS)
Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.
1993-01-01
Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.
Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K
2004-10-15
The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions.
Silvertown, Josh D.; Abrams, Stephen H.; Sivagurunathan, Koneswaran S.; Kennedy, Julia; Jeon, Jinseok; Mandelis, Andreas; Hellen, Adam; Hellen, Warren; Elman, Gary; Ehrlich, Richard; Chouljian, Raffy; Finer, Yoav; Amaechi, Bennett T.
2017-01-01
Introduction: A clinical study was initiated to investigate a caries detection device (The Canary System (CS)), based on photothermal radiometry and modulated luminescence (PTR-LUM). The primary objective of this study was to determine if PTR-LUM values (in the form of Canary Numbers; CN) correlate with International Caries Diagnostic and Assessment System (ICDAS II) scores and clinical situations. The secondary objectives of this study were to monitor the safety of PTR-LUM, and collect data to determine how CN values could be used to differentiate healthy from decayed tooth surfaces on a normalized scale. Methods: The trial was a four site, non-blinded study. Data was collected from 92 patients, resulting in 842 scanned tooth surfaces over multiple appointments. Surfaces were assessed according to ICDAS II, and further stratified into five clinical situation categories: 1) healthy surface, 2) non-cavitated white and/or brown spots; 3) caries lesions; 4) cavitation and 5) teeth undergoing remineralization therapy. CN data was analyzed separately for smooth and occlusal surfaces. Using a semi-logarithmic graph to plot raw CN (rCN) and normalized (CN) values, rCN data was normalized into a scale of 0-100. Results: Linear correlations (R2) between CN and ICDAS II groupings for smooth and occlusal surfaces were calculated as 0.9759 and 0.9267, respectively. The mean CN values derived from smooth (20.2±0.6) and occlusal (19±1.0) surfaces identified as healthy had significantly lower CN values (P<0.05) compared with the values from the other clinical situation categories. No adverse events were reported. Conclusion: The present study demonstrated the safety of PTR-LUM for clinical application and its ability to distinguish sound from carious tooth surfaces. A clear shift from the baseline in both PTR and LUM in carious enamel was observed depending on the type and nature of the lesion, and correlated to ICDAS II classification codes, which enabled the preliminary development of a Canary Scale. PMID:29290842
Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry.
Yao, Jingwen; Utsunomiya, Shin-Ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi
2014-01-01
A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/).
Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry
Yao, Jingwen; Utsunomiya, Shin-ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi
2014-01-01
A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/). PMID:26819872
Laser-desorption tandem time-of-flight mass spectrometry with continuous liquid introduction
NASA Astrophysics Data System (ADS)
Williams, Evan R.; Jones, Glenn C., Jr.; Fang, LiLing; Nagata, Takeshi; Zare, Richard N.
1992-05-01
A new method to combine aqueous sample introduction with matrix assisted laser desorption mass spectrometry (MS) for interfacing liquid-chromatographic techniques, such as capillary electrophoresis, to MS is described. Aqueous sample solution is introduced directly into the ion source of a time-of-. flight (TOF) mass spectrometer through a fused silica capillary; evaporative cooling results in ice formation at the end of the capillary. The ice can be made to extrude continuously by using localized resistive heating. With direct laser desorption, molecular ions from proteins as large as bovine insulin (5734 Da) can be produced. Two-step desorption/photoionization with a variety of wavelengths is demonstrated, and has the advantages of improved resolution and shot-to-shot reproducibility. Ion structural information is obtained using surface-induced dissociation with an in-line collision device in the reflectron mirror of the TOF instrument. Product ion resolution of ~70 is obtained at m/z77. Extensive fragmentation can be produced with dissociation efficiencies between 7-15% obtained for molecular ions of small organic molecules. Efficiencies approaching 30% are obtained for larger peptide ions.
Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugenschmidt, Christoph; Legl, Stefan; Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching
2006-10-15
Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter andmore » a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E{approx_equal}1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.« less
Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons
NASA Astrophysics Data System (ADS)
Hugenschmidt, Christoph; Legl, Stefan
2006-10-01
Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1eV at high electron energies up to E ≈1000eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.
NASA Astrophysics Data System (ADS)
Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto
We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.
Time-of-Flight Polarized Neutron Reflectometry on PLATYPUS: Status and Future Developments
NASA Astrophysics Data System (ADS)
Saerbeck, T.; Cortie, D. L.; Brück, S.; Bertinshaw, J.; Holt, S. A.; Nelson, A.; James, M.; Lee, W. T.; Klose, F.
Time-of-flight (ToF) polarized neutron reflectometry enables the detailed investigation of depth-resolved magnetic structures in thin film and multilayer magnetic systems. The general advantage of the time-of-flight mode of operation over monochromatic instruments is a decoupling of spectral shape and polarization of the neutron beam with variable resolution. Thus, a wide Q-range can be investigated using a single angle of incidence, with resolution and flux well-adjusted to the experimental requirement. Our paper reviews the current status of the polarization equipment of the ToF reflectometer PLATYPUS and presents first results obtained on stratified Ni80Fe20/α-Fe2O3 films, revealing the distribution of magnetic moments in an exchange bias system. An outlook on the future development of the PLATYPUS polarization system towards the implementation of a polarized 3He cell is presented and discussed with respect to the efficiency and high Q-coverage up to 1 Å-1 and 0.15 Å-1 in the vertical and lateral momentum transfer, respectively.
Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A
2014-01-01
Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048