Science.gov

Sample records for resolve experimental lung

  1. Noninvasive Imaging of Experimental Lung Fibrosis

    PubMed Central

    Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B.; Ding, Qiang; Nath, Hrudaya; Eary, Janet F.; Thannickal, Victor J.

    2015-01-01

    Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy. PMID:25679265

  2. Energy-resolved computed tomography: first experimental results

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2008-10-01

    First experimental results with energy-resolved computed tomography (CT) are reported. The contrast-to-noise ratio (CNR) in CT has been improved with x-ray energy weighting for the first time. Further, x-ray energy weighting improved the CNR in material decomposition CT when applied to CT projections prior to dual-energy subtraction. The existing CT systems use an energy (charge) integrating x-ray detector that provides a signal proportional to the energy of the x-ray photon. Thus, the x-ray photons with lower energies are scored less than those with higher energies. This underestimates contribution of lower energy photons that would provide higher contrast. The highest CNR can be achieved if the x-ray photons are scored by a factor that would increase as the x-ray energy decreases. This could be performed by detecting each x-ray photon separately and measuring its energy. The energy selective CT data could then be saved, and any weighting factor could be applied digitally to a detected x-ray photon. The CT system includes a photon counting detector with linear arrays of pixels made from cadmium zinc telluride (CZT) semiconductor. A cylindrical phantom with 10.2 cm diameter made from tissue-equivalent material was used for CT imaging. The phantom included contrast elements representing calcifications, iodine, adipose and glandular tissue. The x-ray tube voltage was 120 kVp. The energy selective CT data were acquired, and used to generate energy-weighted and material-selective CT images. The energy-weighted and material decomposition CT images were generated using a single CT scan at a fixed x-ray tube voltage. For material decomposition the x-ray spectrum was digitally spilt into low- and high-energy parts and dual-energy subtraction was applied. The x-ray energy weighting resulted in CNR improvement of calcifications and iodine by a factor of 1.40 and 1.63, respectively, as compared to conventional charge integrating CT. The x-ray energy weighting was also applied

  3. Comparison of stochastic lung deposition fractions with experimental data.

    PubMed

    Majid, Hussain; Hofmann, Werner; Winkler-Heil, Renate

    2012-04-01

    Deposition fractions of inhaled particles predicted by different computational models vary with respect to physical and biological factors and mathematical modeling techniques. These models must be validated by comparison with available experimental data. Experimental data supplied by different deposition studies with surrogate airway models or lung casts were used in this study to evaluate the stochastic deposition model Inhalation, Deposition and Exhalation of Aerosols in the Lung at the airway generation level. Furthermore, different analytical equations derived for the three major deposition mechanisms, diffusion, impaction, and sedimentation, were applied to different cast or airway models to quantify their effect on calculated particle deposition fractions. The experimental results for ultrafine particles (0.00175 and 0.01) were found to be in close agreement with the stochastic model predictions; however, for coarse particles (3 and 8 μm), experimental deposition fractions became higher with increasing flow rate. An overall fair agreement among the calculated deposition fractions for the different cast geometries was found. However, alternative deposition equations resulted in up to 300% variation in predicted deposition fractions, although all equations predicted the same trends as functions of particle diameter and breathing conditions. From this comparative study, it can be concluded that structural differences in lung morphologies among different individuals are responsible for the apparent variability in particle deposition in each generation. The use of different deposition equations yields varying deposition results caused primarily by (i) different lung morphometries employed in their derivation and the choice of the central bifurcation zone geometry, (ii) the assumption of specific flow profiles, and (iii) different methods used in the derivation of these equations.

  4. Time-resolved autofluorescence measurements for the differentiation of lung tissue states

    NASA Astrophysics Data System (ADS)

    Pfeifer, Lutz; Schmalzigaug, K.; Paul, Rene; Lichey, J.; Kemnitz, Klaus; Fink, Frank

    1995-12-01

    The fluorescence properties of fluorophores relevant in tissue metabolism (NADH, flavines, etc.) are characteristic of the clinical states of tissues. Especially the differentiation of healthy, cancerous, and necrotic tissue states is of large interest in lung-tumor diagnostics, e.g. to ensure that biopsies are taken from non-necrotic areas. In contrast to the common fluorescence detection our approach provides both a combination of spectral and time information from autofluorescence and the simultaneous detection of two fluorophores in order to improve differentiation between various tissues. The basis of analysis of autofluorescence is knowledge of the photophysical parameters of the fluorophores. Aqueous solutions of NADH, flavines and their mixtures have been investigated using the method of time-correlated single photon counting. The fluorescence was recorded with a new 'delay-line' microchannel-plate photomultiplier tube, that enables time- and wavelength-resolved measurements simultaneously. Nicotine-adenine-dinucleotide (NADH) and flavine-adenin-dinucleotide (FAD) display their characteristic temporal behavior (NADH: (tau) 1 equals 250 ps, (tau) 2 equals 660 ps; FAD: (tau) 1 equals 160 ps, (tau) 2 equals 2.25 ns, (tau) 3 equals 4.6 ns) in aqueous solution. In a mixture of NADH and FAD both components could be isolated by using global analytical methods. Time-gated fluorescence measurements on lung-tissue samples of 12 patients immediately after surgical resection have been performed with a fiber- based fluorescence detector. It could be demonstrated that NADH measurements are suitable for differentiating tumorous and necrotic tissue while flavine measurements are suitable for differentiating healthy and non-healthy tissue types. Applications of optical fibers facilitate simple combinations of the detection method with common surgical instruments (e.g. biopsy needles).

  5. Stable Isotope Resolved Metabolomics Analysis of Ribonucleotide and RNA Metabolism in Human Lung Cancer Cells

    PubMed Central

    Fan, Teresa W-M.; Tan, Jinlian; McKinney, Martin M.; Lane, Andrew N.

    2015-01-01

    We have developed a simple NMR-based method to determine the turnover of nucleotides and incorporation into RNA by stable isotope resolved metabolomics (SIRM) in A549 lung cancer cells. This method requires no chemical degradation of the nucleotides or chromatography. During cell growth, the free ribonucleotide pool is rapidly replaced by de novo synthesized nucleotides. Using [U-13C]-glucose and [U-13C,15N]-glutamine as tracers, we showed that virtually all of the carbons in the nucleotide riboses were derived from glucose, whereas glutamine was preferentially utilized over glucose for pyrimidine ring biosynthesis, via the synthesis of Asp through the Krebs cycle. Incorporation of the glutamine amido nitrogen into the N3 and N9 positions of the purine rings was also demonstrated by proton-detected 15N NMR. The incorporation of 13C from glucose into total RNA was measured and shown to be a major sink for the nucleotides during cell proliferation. This method was applied to determine the metabolic action of an anti-cancer selenium agent (methylseleninic acid or MSA) on A549 cells. We found that MSA inhibited nucleotide turnover and incorporation into RNA, implicating an important role of nucleotide metabolism in the toxic action of MSA on cancer cells. PMID:26146495

  6. Resolving DOI Based URNs Using Squid: An Experimental System at UKOLN.

    ERIC Educational Resources Information Center

    Powell, Andy

    1998-01-01

    Describes UKOLN's (United Kingdom Office for Library and Information Networking--a national center for support in network information management in the library/information communities) experimental system that allows digital object identifiers (DOIs) encoded as uniform resource names (URNs) to be resolved on behalf of Web browsers by Squid, a…

  7. Experimental systems for mechanistic studies of toxicant induced lung inflammation.

    PubMed

    Wallaert, B; Fahy, O; Tsicopoulos, A; Gosset, P; Tonnel, A B

    2000-03-15

    Human breath contains a large array of complex and poorly characterized mixtures. We can measure the potential risk of these exposures at molecular, cell, organ, organismic levels or in population. This paper emphasizes the characteristics of in vitro tests of lung cells and discusses the use of in vitro systems to determine the health effects of inhaled pollutants. Exposure to gases can be performed with roller bottles fitted with modified rotating caps with tubing connections, or by using dishes on rocker platforms, which tilt back and forth to expose the cell culture to gases. Exposure of cells may also be obtained by using very thin gas-permable membrane on which cells grow. However, it is clear that in using these systems, the culture medium constitutes a barrier between the gas and the target cells and thus does not permit a physiological approach of the toxic effects of gases. This is the reason why an experimental model, using a biphasic cell culture technique in gas phase, was developed. We report the value and the limits of this method using bronchial cells or alveolar macrophages. Exposure of lung cells to gas pollutants or particles may be responsible for either cell injury or cell activation associated with the overexpression of mRNA and the release of various bioactive mediators. In vitro assays have some limitations, particularly because the human pulmonary response to inhaled pollutants is the result of complex interactions involving many different cell types within the lungs. However, cell culture using biphasic systems in aerobiosis opens new ways for the research on the biological effects of gas pollutants.

  8. Elevated Plasma Activity of Lactate Dehydrogenase Isoenzyme-3 (LDH3) in Experimentally Induced Immunologic Lung Injury

    PubMed Central

    Hagadorn, J. E.; Bloor, C. M.; Yang, M. S.

    1971-01-01

    Normal rats injected intravenously with rabbit antiserum to rat lung develop acute pulmonary lesions characterized by an altered vascular permeability. In the present study, an increase in plasma LDH3 activity is shown to be positively correlated with the different levels of circulating antilung antibodies and with the morphologic severity of lung injury elicited by these pathogenic immunoglobulins. Within 24 hours, the acute lung changes are resolved, accompanied by a return of the activities of plasma LDH isoenzymes to normal. It is proposed that the plasma LDH3 isoenzymes are released into the circulation from injured alveolar capillary endothelial cells. ImagesFig 1 PMID:5133518

  9. Serum copper concentration as an index of experimental lung injury

    SciTech Connect

    Ward, W.F.; Molteni, A.; Ts'ao, C.; Ischiropoulos, H. )

    1989-01-01

    Serum copper (Cu) concentration was evaluated as an index of lung injury in two rat models of pneumotoxicity: hemithoracic irradiation and monocrotaline ingestion. In both models there was a dose- and time-dependent increase in serum Cu concentration. This hypercupremia paralleled the development of pulmonary endothelial dysfunction (decreased lung plasminogen activator activity and increased prostacyclin production) and pulmonary fibrosis (hydroxyproline accumulation). In the radiation model, lung injury and hypercupremia persisted for at least 6 months, and were spared similarly when the total dose was delivered in multiple daily fractions as compared to single doses. In irradiated rats, the elevated serum Cu concentration was accompanied by increases in plasma ceruloplasmin, lung Cu concentration, and lung Cu/Zn superoxide dismutase (SOD) activity. In monocrotaline-treated rats, lung damage and hypercupremia also were accompanied by a reduction in liver Cu concentration, and by a direct correlation between the concentrations of Cu and SGOT in the serum. In both models, some but not all modifiers of lung damage (penicillamine, angiotensin converting enzyme inhibitors, pentoxifylline) also partially prevented the insult-induced hypercupremia. In contrast, serum iron concentration was largely independent of treatment in all experiments. These data suggest that elevated serum copper concentration is an accurate and minimally invasive index of lung injury in irradiated and monocrotaline-treated rats.

  10. Lactobacillus rhamnosus GG and Bifidobacterium longum Attenuate Lung Injury and Inflammatory Response in Experimental Sepsis

    PubMed Central

    Khailova, Ludmila; Petrie, Benjamin; Baird, Christine H.; Dominguez Rieg, Jessica A.; Wischmeyer, Paul E.

    2014-01-01

    Introduction Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and shock has not been well explored. Objective Evaluate if Lactobacillus rhamnosus GG (LGG) or Bifidobacterium longum (BL) treatment in a weanling mouse model of cecal ligation and puncture (CLP) peritonitis will protect against lung injury. Methods 3 week-old FVB/N mice were orally gavaged with 200 µl of either LGG, BL or sterile water (vehicle) immediately prior to CLP. Mice were euthanized at 24 h. Lung injury was evaluated via histology and lung neutrophil infiltration was evaluated by myeloperoxidase (MPO) staining. mRNA levels of IL-6, TNF-α, MyD88, TLR-4, TLR-2, NFΚB (p50/p105) and Cox-2 in the lung analyzed via real-time PCR. TNF-α and IL-6 in lung was analyzed via ELISA. Results LGG and BL treatment significantly improved lung injury following experimental infection and sepsis and lung neutrophil infiltration was significantly lower than in untreated septic mice. Lung mRNA and protein levels of IL-6 and TNF-α and gene expression of Cox-2 were also significantly reduced in mice receiving LGG or BL treatment. Gene expression of TLR-2, MyD88 and NFΚB (p50/p105) was significantly increased in septic mice compared to shams and decreased in the lung of mice receiving LGG or BL while TLR-4 levels remained unchanged. Conclusions Treatment with LGG and BL can reduce lung injury following experimental infection and sepsis and is associated with reduced lung inflammatory cell infiltrate and decreased markers of lung inflammatory response. Probiotic therapy may be a promising intervention to improve clinical lung injury following systemic infection and sepsis. PMID:24830455

  11. Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis

    PubMed Central

    Cruz, Fernanda Ferreira; Horta, Lucas Felipe Bastos; Maia, Lígia de Albuquerque; Lopes-Pacheco, Miquéias; da Silva, André Benedito; Morales, Marcelo Marco; Gonçalves-de-Albuquerque, Cassiano Felippe; Takiya, Christina Maeda; de Castro-Faria-Neto, Hugo Caire; Rocco, Patricia Rieken Macedo

    2016-01-01

    Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis. PMID:26789403

  12. Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair

    PubMed Central

    Schiller, Herbert B; Fernandez, Isis E; Burgstaller, Gerald; Schaab, Christoph; Scheltema, Richard A; Schwarzmayr, Thomas; Strom, Tim M; Eickelberg, Oliver; Mann, Matthias

    2015-01-01

    The extracellular matrix (ECM) is a key regulator of tissue morphogenesis and repair. However, its composition and architecture are not well characterized. Here, we monitor remodeling of the extracellular niche in tissue repair in the bleomycin-induced lung injury mouse model. Mass spectrometry quantified 8,366 proteins from total tissue and bronchoalveolar lavage fluid (BALF) over the course of 8 weeks, surveying tissue composition from the onset of inflammation and fibrosis to its full recovery. Combined analysis of proteome, secretome, and transcriptome highlighted post-transcriptional events during tissue fibrogenesis and defined the composition of airway epithelial lining fluid. To comprehensively characterize the ECM, we developed a quantitative detergent solubility profiling (QDSP) method, which identified Emilin-2 and collagen-XXVIII as novel constituents of the provisional repair matrix. QDSP revealed which secreted proteins interact with the ECM, and showed drastically altered association of morphogens to the insoluble matrix upon injury. Thus, our proteomic systems biology study assigns proteins to tissue compartments and uncovers their dynamic regulation upon lung injury and repair, potentially contributing to the development of anti-fibrotic strategies. PMID:26174933

  13. The injured lung: clinical issues and experimental models

    PubMed Central

    Jugg, B. J. A.; Smith, A. J.; Rudall, S. J.; Rice, P.

    2011-01-01

    Exposure of military and civilian populations to inhaled toxic chemicals can take place as a result of deliberate release (warfare, terrorism) or following accidental releases from industrial concerns or transported chemicals. Exposure to inhaled toxic chemicals can result in an acute lung injury, and in severe cases acute respiratory distress syndrome, for which there is currently no specific medical therapy, treatment remaining largely supportive. This treatment often requires intensive care facilities that may become overwhelmed in mass casualty events and may be of limited benefit in severe cases. There remains, therefore, a need for evidence-based treatment to inform both military and civilian medical response teams on the most appropriate treatment for chemically induced lung injury. This article reviews data used to derive potential clinical management strategies for chemically induced lung injury. PMID:21149368

  14. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    DOE PAGES

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; et al

    2016-01-27

    In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less

  15. Experimental Lung Cancer Drug Shows Early Promise | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer A first-of-its-kind drug is showing early promise in attacking certain lung cancers that are hard to treat because they build up resistance to conventional chemotherapy. The drug, CO-1686, performed well in a preclinical study involving xenograft and transgenic mice, as reported in the journal Cancer Discovery. It is now being evaluated for safety and efficacy in Phase I and II clinical trials.

  16. Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images

    SciTech Connect

    Tsekenis, S. A.; McCann, H.; Tait, N.

    2015-03-15

    We present a novel framework and experimental method for the quantification of spatial resolution of a tomography system. The framework adopts the “black box” view of an imaging system, considering only its input and output. The tomography system is locally stimulated with a step input, viz., a sharp edge. The output, viz., the reconstructed images, is analysed by Fourier decomposition of their spatial frequency components, and the local limiting spatial resolution is determined using a cut-off threshold. At no point is an observer involved in the process. The framework also includes a means of translating the quantification region in the imaging space, thus creating a spatially resolved map of objectively quantified spatial resolution. As a case-study, the framework is experimentally applied using a gaseous propane phantom measured by a well-established chemical species tomography system. A spatial resolution map consisting of 28 regions is produced. In isolated regions, the indicated performance is 4-times better than that suggested in the literature and varies by 57% across the imaging space. A mechanism based on adjacent but non-interacting beams is hypothesised to explain the observed behaviour. The mechanism suggests that, as also independently concluded by other methods, a geometrically regular beam array maintains maximum objectivity in reconstructions. We believe that the proposed framework, methodology, and findings will be of value in the design and performance evaluation of tomographic imaging arrays and systems.

  17. Challenges in the diagnosis and treatment of recurrent non-resolving pneumonia - the case of foreign body aspiration in adult mimicking lung neoplasm.

    PubMed

    Ristić, Lidija; Rančić, Milan; Stanojević, Dragan; Radović, Milan; Ćirić, Zorica

    2014-02-01

    Foreign-body tracheobronchial aspiration in adults is fairly rare, and it is caused mostly by the failure of airway protective mechanisms. The symptoms of this clinical entity can mimic many other respiratory diseases, such as recurrent or non-resolving pneumonia, asthma, lung neoplasm etc. Flexible bronchoscopy was indicated in this situation, both for diagnostic and therapeutic purposes. We are reporting on a case of a fiftythree- year old women with recurrent, non-resolving pneumonia, recurrent hemoptysis, dyspnea, fiver, chest pain and radiological presentation of middle lobe neoplasm caused by aspirated chicken neck bone.

  18. Distribution of aerosolized particles in healthy and emphysematous rat lungs: comparison between experimental and numerical studies.

    PubMed

    Oakes, Jessica M; Marsden, Alison L; Grandmont, Céline; Darquenne, Chantal; Vignon-Clementel, Irene E

    2015-04-13

    In silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies.

  19. Therapeutic Transcutaneous Immunization with a Band-Aid Vaccine Resolves Experimental Otitis Media

    PubMed Central

    Novotny, Laura A.; Clements, John D.

    2015-01-01

    Transcutaneous immunization (TCI) is a noninvasive strategy to induce protective immune responses. We describe TCI with a band-aid vaccine placed on the postauricular skin to exploit the unique organization of the stratum corneum and to promote the development of immune responses to resolve active experimental otitis media due to nontypeable Haemophilus influenzae (NTHI). This therapeutic immunization strategy induced significantly earlier resolution of middle ear fluid and rapid eradication of both planktonic and mucosal biofilm-resident NTHI within 7 days after receipt of the first immunizing band-aid vaccine. Efficacy was ascribed to the homing of immunogen-bearing cutaneous dendritic cells to the nasal-associated lymphoid tissue, induction of polyfunctional CD4+ T cells, and the presence of immunogen-specific IgM and IgG within the middle ear. TCI using band-aid vaccines could expand the use of traditional parenteral preventative vaccines to include treatment of active otitis media, in addition to other diseases of the respiratory tract due to NTHI. PMID:26018536

  20. Therapeutic Transcutaneous Immunization with a Band-Aid Vaccine Resolves Experimental Otitis Media.

    PubMed

    Novotny, Laura A; Clements, John D; Bakaletz, Lauren O

    2015-08-01

    Transcutaneous immunization (TCI) is a noninvasive strategy to induce protective immune responses. We describe TCI with a band-aid vaccine placed on the postauricular skin to exploit the unique organization of the stratum corneum and to promote the development of immune responses to resolve active experimental otitis media due to nontypeable Haemophilus influenzae (NTHI). This therapeutic immunization strategy induced significantly earlier resolution of middle ear fluid and rapid eradication of both planktonic and mucosal biofilm-resident NTHI within 7 days after receipt of the first immunizing band-aid vaccine. Efficacy was ascribed to the homing of immunogen-bearing cutaneous dendritic cells to the nasal-associated lymphoid tissue, induction of polyfunctional CD4(+) T cells, and the presence of immunogen-specific IgM and IgG within the middle ear. TCI using band-aid vaccines could expand the use of traditional parenteral preventative vaccines to include treatment of active otitis media, in addition to other diseases of the respiratory tract due to NTHI.

  1. Therapeutic Transcutaneous Immunization with a Band-Aid Vaccine Resolves Experimental Otitis Media.

    PubMed

    Novotny, Laura A; Clements, John D; Bakaletz, Lauren O

    2015-08-01

    Transcutaneous immunization (TCI) is a noninvasive strategy to induce protective immune responses. We describe TCI with a band-aid vaccine placed on the postauricular skin to exploit the unique organization of the stratum corneum and to promote the development of immune responses to resolve active experimental otitis media due to nontypeable Haemophilus influenzae (NTHI). This therapeutic immunization strategy induced significantly earlier resolution of middle ear fluid and rapid eradication of both planktonic and mucosal biofilm-resident NTHI within 7 days after receipt of the first immunizing band-aid vaccine. Efficacy was ascribed to the homing of immunogen-bearing cutaneous dendritic cells to the nasal-associated lymphoid tissue, induction of polyfunctional CD4(+) T cells, and the presence of immunogen-specific IgM and IgG within the middle ear. TCI using band-aid vaccines could expand the use of traditional parenteral preventative vaccines to include treatment of active otitis media, in addition to other diseases of the respiratory tract due to NTHI. PMID:26018536

  2. Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma

    PubMed Central

    Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Bykova, Elena; Wirth, Richard; Dubrovinsky, Leonid

    2011-01-01

    Boron, discovered as an element in 1808 and produced in pure form in 1909, has still remained the last elemental material, having stable natural isotopes, with the ground state crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature. In the present work this enigma has been resolved based on the α-B-to- β-B phase boundary line which we experimentally established in the pressure interval of ∼4 GPa to 8 GPa and linearly extrapolated down to ambient pressure. In a series of high pressure high temperature experiments we synthesised single crystals of the three boron phases (α-B, β-B, and γ-B) and provided evidence of higher thermodynamic stability of α-B. Our work opens a way for reproducible synthesis of α-boron, an optically transparent direct band gap semiconductor with very high hardness, thermal and chemical stability. PMID:22355614

  3. Experimental evolution of sprays in a lung model

    NASA Astrophysics Data System (ADS)

    Burguete, Javier; Aliseda, Alberto

    2015-11-01

    We present the first results of an experiment conceived to observe the evolution of sprays inside the lungs. We have built a model that covers the first 6 generations (from the trachea to segmental bronchi of 5th generation). This setup is placed on a wind tunnel, and the flow inside the model is induced by a vacuum pump that emulates the breathing process using a valve. We inject a previously determined distribution of particles (water droplets), whose average diameter can be modified. Then, we measure the droplet distribution in different branches and compare how the droplet distribution is modified at each generation. The parameters that control the behavior are the average diameter of the original distribution, the airflow rate inside the model and the frequency of the breathing cycle.

  4. Resolving Key Uncertainties in Subsurface Energy Recovery: One Role of In Situ Experimentation and URLs (Invited)

    NASA Astrophysics Data System (ADS)

    Elsworth, D.

    2013-12-01

    Significant uncertainties remain and influence the recovery of energy from the subsurface. These uncertainties include the fate and transport of long-lived radioactive wastes that result from the generation of nuclear power and have been the focus of an active network of international underground research laboratories dating back at least 35 years. However, other nascent carbon-free energy technologies including conventional and EGS geothermal methods, carbon-neutral methods such as carbon capture and sequestration and the utilization of reduced-carbon resources such as unconventional gas reservoirs offer significant challenges in their effective deployment. We illustrate the important role that in situ experiments may play in resolving behaviors at extended length- and time-scales for issues related to chemical-mechanical interactions. Significantly, these include the evolution of transport and mechanical characteristics of stress-sensitive fractured media and their influence of the long-term behavior of the system. Importantly, these interests typically relate to either creating reservoirs (hydroshearing in EGS reservoirs, artificial fractures in shales and coals) or maintaining seals at depth where the permeating fluids may include mixed brines, CO2, methane and other hydrocarbons. Critical questions relate to the interaction of these various fluid mixtures and compositions with the fractured substrate. Important needs are in understanding the roles of key processes (transmission, dissolution, precipitation, sorption and dynamic stressing) on the modification of effective stresses and their influence on the evolution of permeability, strength and induced seismicity on the resulting development of either wanted or unwanted fluid pathways. In situ experimentation has already contributed to addressing some crucial issues of these complex interactions at field scale. Important contributions are noted in understanding the fate and transport of long-lived wastes

  5. Response of lung γδ T cells to experimental sepsis in mice

    PubMed Central

    Hirsh, Mark; Dyugovskaya, Larissa; Kaplan, Viktoria; Krausz, Michael M

    2004-01-01

    γδ T cells link innate and adaptive immune systems and may regulate host defence. Their role in systemic inflammation induced by trauma or infection (sepsis) is still obscured. The present study was aimed to investigate functions of lung γδ T cells and their response to experimental sepsis. Mice were subjected to caecal ligation and puncture (CLP) to induce sepsis and acute lung injury (ALI), or to the sham operation. Animals were killed 1, 4, and 7 days postoperatively; lungs were examined by histology, and isolated cells were studied by flow cytometry. Absolute number of γδ T cells progressively increased in lungs during sepsis, and reached a seven-fold increase at day 7 after CLP (3·84 ± 0·41 × 105/lung; P = 0·0002 versus sham). A cellular dysfunction was revealed one day after CLP, as manifested by low cytolytic activity (22·3 ± 7·1%; P < 0·05 versus sham), low interferon-γ (IFN-γ; 8·5 ± 2·5%; P < 0·05 versus control) and interleukin-10 (IL-10) expression, and high tumour necrosis factor-α expression (19·5 ± 1·7%; P < 0·05 versus control). The restoration of cytotoxicity, and increase in IFN-γ and IL-10 expression was observed at day 7 of CLP-induced sepsis. In summary, our results demonstrate significant progressive accumulation of γδ T cells in lungs during CLP-induced ALI. The temporary functional suppression of lung γδ T cells found early after CLP may influence the outcome of sepsis, possibly being associated with uncontrolled inflammatory lung damage. PMID:15096194

  6. [The transplantation of revascularized thyroid-trachea-lung complex: the experimental study].

    PubMed

    Parshin, V D; Zhidkov, I L; Bazarov, D V; Parshin, V V; Chernyĭ, S S

    2012-01-01

    The osteoplastic tracheobronchopathy affects the trachea, main, lobar and smaller bronchi, causing their stenosis. Nowadays the mainstay of the treatment of such patients is the cryodestruction, laser destruction and the endoscopic buginage of the trachea and bronchi. The palliative nature and low efficacy of these procedures forces to search new ways of treatment. The traditional lung transplantation or separate trachea and lung transplantation is inappropriate because of the complex affection of both trachea and bronchi. The experimental study aimed the possibility of thyreotracheolung revascularized donor complex transplantation.

  7. Effects of surfactant/budesonide therapy on oxidative modifications in the lung in experimental meconium-induced lung injury.

    PubMed

    Mikolka, P; Kopincova, J; Tomcikova Mikusiakova, L; Kosutova, P; Antosova, M; Calkovska, A; Mokra, D

    2016-02-01

    Meconium aspiration syndrome (MAS) is a serious condition, which can be treated with exogenous surfactant and mechanical ventilation. However, meconium-induced inflammation, lung edema and oxidative damage may inactivate delivered surfactant and thereby reduce effectiveness of the therapy. As we presumed that addition of anti-inflammatory agent into the surfactant may alleviate inflammation and enhance efficiency of the therapy, this study was performed to evaluate effects of surfactant therapy enriched with budesonide versus surfactant-only therapy on markers of oxidative stress in experimental model of MAS. Meconium suspension (25 mg/ml, 4 ml/kg) was instilled into the trachea of young rabbits, whereas one group of animals received saline instead of meconium (C group, n = 6). In meconium-instilled animals, respiratory failure developed within 30 min. Then, meconium-instilled animals were divided into 3 groups according to therapy (n = 6 each): with surfactant therapy (M + S group), with surfactant + budesonide therapy (M + S + B), and without therapy (M group). Surfactant therapy consisted of two bronchoalveolar lavages (BAL) with diluted surfactant (Curosurf, 5 mg phospholipids/ml, 10 ml/kg) followed by undiluted surfactant (100 mg phospholipids/kg), which was in M + S + B group enriched with budesonide (Pulmicort, 0.5 mg/ml). Animals were oxygen-ventilated for additional 5 hours. At the end of experiment, blood sample was taken for differential white blood cell (WBC) count. After euthanizing animals, left lung was saline-lavaged and cell differential in BAL was determined. Oxidative damage, i.e. oxidation of lipids (thiobarbituric acid reactive substance (TBARS) and conjugated dienes) and proteins (dityrosine and lysine-lipoperoxidation products) was estimated in lung homogenate and isolated mitochondria. Total antioxidant capacity was evaluated in lung homogenate and plasma. Meconium instillation increased transmigration of neutrophils and production of free

  8. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    SciTech Connect

    Dorchies, F. Fedorov, N.; Lecherbourg, L.

    2015-07-15

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%–20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  9. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy.

    PubMed

    Dorchies, F; Fedorov, N; Lecherbourg, L

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  10. Experimental measurement of spatially resolved electron density in a filament of a pulsed positive streamer discharge in water

    SciTech Connect

    Wen, Xiao Qiong; Niu, Zhi Wen; Ren, Chun-Sheng; Hou, Bo

    2015-06-29

    By combining a high-speed frame camera with a monochromator, the spatially resolved optical emission spectrum of hydrogen α line in a single filament of a pulsed positive streamer discharge in water has been experimentally measured. The spatially resolved electron densities in a single filament of a pulsed positive streamer discharge in water with a conductivity of 200 μS/cm were investigated. During the experiment, the average energy per pulse of discharge was 90.6 ± 13.6 mJ. The results show that the electron density in the streamer filament is 10{sup 17–18}/cm{sup 3}, and present a decreasing tendency along the axial direction of the streamer filament with increasing distance from the tip of the anode.

  11. A novel dual ex vivo lung perfusion technique improves immediate outcomes in an experimental model of lung transplantation.

    PubMed

    Tanaka, Y; Noda, K; Isse, K; Tobita, K; Maniwa, Y; Bhama, J K; D'Cunha, J; Bermudez, C A; Luketich, J D; Shigemura, N

    2015-05-01

    The lungs are dually perfused by the pulmonary artery and the bronchial arteries. This study aimed to test the feasibility of dual-perfusion techniques with the bronchial artery circulation and pulmonary artery circulation synchronously perfused using ex vivo lung perfusion (EVLP) and evaluate the effects of dual-perfusion on posttransplant lung graft function. Using rat heart-lung blocks, we developed a dual-perfusion EVLP circuit (dual-EVLP), and compared cellular metabolism, expression of inflammatory mediators, and posttransplant graft function in lung allografts maintained with dual-EVLP, standard-EVLP, or cold static preservation. The microvasculature in lung grafts after transplant was objectively evaluated using microcomputed tomography angiography. Lung grafts subjected to dual-EVLP exhibited significantly better lung graft function with reduced proinflammatory profiles and more mitochondrial biogenesis, leading to better posttransplant function and compliance, as compared with standard-EVLP or static cold preservation. Interestingly, lung grafts maintained on dual-EVLP exhibited remarkably increased microvasculature and perfusion as compared with lungs maintained on standard-EVLP. Our results suggest that lung grafts can be perfused and preserved using dual-perfusion EVLP techniques that contribute to better graft function by reducing proinflammatory profiles and activating mitochondrial respiration. Dual-EVLP also yields better posttransplant graft function through increased microvasculature and better perfusion of the lung grafts after transplantation.

  12. Inhaled Hydrogen Sulfide Improves Graft Function in an Experimental Model of Lung Transplantation

    PubMed Central

    George, Timothy J.; Arnaoutakis, George J.; Beaty, Claude A.; Jandu, Simran K.; Santhanam, Lakshmi; Berkowitz, Dan E.; Shah, Ashish S.

    2014-01-01

    Objectives: Ischemia-reperfusion(IRI) is a common complication of lung transplantation(LTx). Hydrogen sulfide(H2S) is a novel agent previously shown to slow metabolism and scavenge reactive oxygen species, potentially mitigating IRI. We hypothesized that pre-treatment with inhaled H2S would improve graft function in an ex vivo model of LTx. Methods: Rabbits(n=10) were ventilated for 2 hours prior to heart-lung bloc procurement. The treatment group(n=5) inhaled room air(21% O2) supplemented with 150 ppm H2S while the control group(n=5) inhaled room air alone. Both groups were gradually cooled to 34 C. All heart-lung blocs were then recovered and cold-stored in low potassium dextran solution for 18 hours. Following storage, the blocs were reperfused with donor rabbit blood in an ex vivo apparatus. Serial clinical parameters were assessed and serial tissue biochemistry was examined. Results: Prior to heart-lung bloc procurement, rabbits pre-treated with H2S exhibited similar oxygenation(p=0.1), ventilation(p=0.7), and heart rate(p=0.5); however, treated rabbits exhibited consistently higher mean arterial blood pressures(p=0.01). During reperfusion, lungs pre-treated with H2S had better oxygenation(p<0.01) and ventilation(p=0.02) as well as lower pulmonary artery pressures(p<0.01). Reactive oxygen species levels were lower in treated lungs during reperfusion(p=0.01). Additionally, prior to reperfusion, treated lungs demonstrated more preserved mitochondrial cytochrome c oxidase activity(p=0.01). Conclusions: To our knowledge, this study represents the first reported therapeutic use of inhaled H2S in an experimental model of LTx. After prolonged ischemia, lungs pre-treated with inhaled H2S exhibited improved graft function during reperfusion. Donor pre-treatment with inhaled H2S represents a potentially novel adjunct to conventional preservation techniques and merits further exploration. PMID:22771242

  13. The lung lysosomal hydrolases and phospholipase A in acute experimental pancreatitis with reference to heparin treatment.

    PubMed

    Wereszczyńska, U; Długosz, J; Gabryelewicz, A; Andrzejewska, A

    1986-10-01

    The pulmonary complications are severe sequeles of acute pancreatitis. The pathogenesis of these complications is unsolved. The purpose of this work was to evaluate the status of lung lysosomes and phospholipase A activity in acute experimental pancreatitis (AEP) and the effect of heparin as a potentially protective agent. Taurocholate-induced AEP in rats lasting 24 and 48 hours was treated with heparin intraperitoneally (2 mg/kg every 8 hours). The total activity of cathepsins and B-glucuronidase in lysosomal enriched subfraction increased markedly during 48 hours of AEP in untreated animals, but the relative free activity was maximal after 24 hours. Free activity of cathepsins and acid phosphatase in supernatant was maximal after 24 hours. The phospholipase A activity was maximally elevated (more than twofold) after 48 hours. Heparin prevented the increase of activity of B-glucuronidase, depressed the relative free activity of all investigated lysosomal hydrolases and inhibited the phospholipase A activity in the lung homogenate. Our results indicate the significance of labilization of lung lysosomes and increment of phospholipase A activity in the lungs in the damage of this organ during AEP in the rats, and suggest the beneficial effect of heparin on these factors. PMID:2431400

  14. Estradiol worsens the syndrome of ischemia-reperfusion injury in an experimental lung transplantation model.

    PubMed

    Santana-Rodríguez, Norberto; Clavo, Bernardino; Llontop, Pedro; López, Ana; García-Castellano, José Manuel; Machín, Rubén P; Ponce, Miguel A; Fiuza, María D; García-Herrera, Ricardo; Brito, Yanira; Yordi, Nagib Atallah; Chirino, Ricardo

    2011-06-01

    Ischemia-reperfusion injury (IRI) is a common complication after lung transplantation. There is evidence that reactive oxygen species are involved in its pathogenesis. We designed an experimental study to evaluate whether the administration of antioxidants to lung transplantation recipients protects against IRI and early acute rejection (AR). Twenty-five rats received left lung transplants after 6 h of ischemia. Fifty minutes before the reperfusion, groups of five rats received a single dose of desferrioxamine (20 mg/kg), estradiol (25 mg/kg), or melatonin (10 mg/kg). The animals were killed 48 h after surgery and the postoperative outcome, IRI, and AR were evaluated. The frequency of severe injury and of moderate-to-severe edema was higher in animals treated with estradiol than in the control group (P = 0.022 and P = 0.026, respectively). No significant changes in the degree of IRI or AR were observed in the groups treated with desferrioxamine or melatonin. In our study, treatment with the antioxidants melatonin or desferrioxamine before reperfusion had no effects on IRI damage or on AR frequency or severity. However, treatment with estradiol resulted in a worse postoperative outcome and in severe edema. Therefore, despite the antioxidant capacity of estradiol, it is recommended that an evaluation of these adverse effects of estradiol in human lung transplant recipients be performed.

  15. Experimental melanoma metastasis in lungs of mice with congenital coagulation disorders

    PubMed Central

    Brüggemann, Lois W; Versteeg, Henri H; Niers, Tatjana M; Reitsma, Pieter H; Spek, C Arnold

    2008-01-01

    Experimental animal studies as well as clinical trials have shown that interventions targeting the blood coagulation cascade inhibit cancer cell metastasis. These data support the hypothesis that congenital prothrombotic disorders, like factor V Leiden, facilitate metastasis whereas bleeding disorders, like haemophilia impede metastasis. To test this hypothesis, we subjected factor V Leiden and factor VIII deficient mice to a murine model of experimental lung metastasis. In this model, B16F10 murine melanoma cells are injected into the tail vein resulting in multiple lung metastases within 20 days. Both hemi- and homozygous factor VIII deficient mice were protected against lung metastasis compared to wild-type littermate controls. In contrast, homozygous factor V Leiden mice developed more metastases than wild-type littermates, whereas heterozygous carriers showed an intermediate number of pulmonary foci. Overall, these data show that a congenital susceptibility to either bleeding or thrombosis modifies the metastatic capacity of cancer cells in the bloodstream and suggest that procoagulant phenotypes are a risk factor for tumour metastasis. PMID:18363839

  16. Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement

    NASA Astrophysics Data System (ADS)

    Sawosz, P.; Kacprzak, M.; Weigl, W.; Borowska-Solonynko, A.; Krajewski, P.; Zolek, N.; Ciszek, B.; Maniewski, R.; Liebert, A.

    2012-12-01

    A time-gated intensified CCD camera was applied for time-resolved imaging of light penetrating in an optically turbid medium. Spatial distributions of light penetration probability in the plane perpendicular to the axes of the source and the detector were determined at different source positions. Furthermore, visiting probability profiles of diffuse reflectance measurement were obtained by the convolution of the light penetration distributions recorded at different source positions. Experiments were carried out on homogeneous phantoms, more realistic two-layered tissue phantoms based on the human skull filled with Intralipid-ink solution and on cadavers. It was noted that the photons visiting probability profiles depend strongly on the source-detector separation, the delay between the laser pulse and the photons collection window and the complex tissue composition of the human head.

  17. Extrauterine epithelioid trophoblastic tumors presenting as primary lung carcinomas: morphologic and immunohistochemical features to resolve a diagnostic dilemma.

    PubMed

    Lewin, Sharyn N; Aghajanian, Carol; Moreira, Andre L; Soslow, Robert A

    2009-12-01

    Our objective was to describe the clinicopathologic features of epithelioid trophoblastic tumors (ETTs) in a series of patients who presented with elevated beta-human chorionic gonadotrophin (hCG) levels and extrauterine lesions resembling primary lung carcinomas. Clinical and pathologic materials were reviewed and Shih and Kurman's diagnostic criteria were applied. Three parous women (38, 49, and 34 y of age) with elevated beta-hCG levels had nondiagnostic gynecologic evaluations, including negative dilation and curettage specimens. Imaging revealed isolated pulmonary lesions, 2 to 8.5 cm in size, resembling primary lung carcinomas. Two patients received multiagent chemotherapy consisting of etoposide, methotrexate, dactinomycin, alternating with cisplatin and etoposide, and all underwent pulmonary resection. Histologically, the cytologic features, epithelioid growth pattern, and hyaline-like material simulated the appearance of nonsmall cell lung carcinoma, but overall, the histologic features along with the immunophenotype supported classification as ETT. Follow-up hysterectomy specimens were histologically normal. All 3 patients are alive and well. The rarity of ETT and its resemblance to squamous and pleomorphic carcinomas of lung have led to diagnostic difficulties. When reproductive-age women present with elevated beta-hCG levels, a pulmonary lesion, and no apparent intrauterine disease, primary pulmonary ETT should be considered. Correlating clinical indices with specific morphologic and immunohistochemical features can ensure diagnostic accuracy and appropriate treatment for favorable outcomes.

  18. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics.

    PubMed

    Boschini, F; Hedayat, H; Piovera, C; Dallera, C; Gupta, A; Carpene, E

    2015-01-01

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO2 single crystals as a benchmark.

  19. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    NASA Astrophysics Data System (ADS)

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C.; Gupta, A.; Carpene, E.

    2015-01-01

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO2 single crystals as a benchmark.

  20. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    SciTech Connect

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C.; Gupta, A.; Carpene, E.

    2015-01-15

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO{sub 2} single crystals as a benchmark.

  1. Experimental Research and the Managerial Attitude: A Tension to Be Resolved?

    ERIC Educational Resources Information Center

    Benninghoff, Martin; Sormani, Philippe

    2008-01-01

    This article analyses some typical consequences of a specific research policy on experimental research in biology. The policy is conducted by a national funding agency--the Swiss National Science Foundation--through a particular programme, the "National Centres of Competence in Research" which is designed to promote both "scientific excellence"…

  2. Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements

    NASA Astrophysics Data System (ADS)

    Shao, Bing; Jaffe, Jules S.; Chachisvilis, Mirianas; Esener, Sadik C.

    2006-12-01

    In order to assess the capability to optically identify small marine microbes, both simulations and experiments of angular resolved light scattering (ARLS) were performed. After calibration with 30-nm vesicles characterized by a nearly constant scattering distribution for vertically polarized light (azimuthal angle=90°), ARLS from suspensions of three types of marine picoplankton (two prokaryotes and one eukaryote) in seawater was measured with a scattering device that consisted of an elliptical mirror, a rotating aperture, and a PMT. Scattered light was recorded with adequate signal-to-noise in the 40-140°. Simulations modeled the cells as prolate spheroids with independently measured dimensions. For the prokaryotes, approximated as homogeneous spheroids, simulations were performed using the RM (Rayleigh-Mie) - I method, a hybrid of the Rayleigh-Debye approximation and the generalized Lorentz-Mie theory. For the picoeukaryote, an extended RM - I method was developed for a coated spheroid with different shell thickness distributions. The picoeukaryote was then modeled as a coated sphere with a spherical core. Good overall agreements were obtained between simulations and experiments. The distinctive scattering patterns of the different species hold promise for an identification system based on ARLS.

  3. Experimental lung injury promotes alterations in energy metabolism and respiratory mechanics in the lungs of rats: prevention by exercise.

    PubMed

    da Cunha, Maira J; da Cunha, Aline A; Scherer, Emilene B S; Machado, Fernanda Rossato; Loureiro, Samanta O; Jaenisch, Rodrigo B; Guma, Fátima; Lago, Pedro Dal; Wyse, Angela T S

    2014-04-01

    In the present study we investigated the effects of lung injury on energy metabolism (succinate dehydrogenase, complex II, cytochrome c oxidase, and ATP levels), respiratory mechanics (dynamic and static compliance, elastance and respiratory system resistance) in the lungs of rats, as well as on phospholipids in bronchoalveolar lavage fluid. The protective effect of physical exercise on the alterations caused by lung injury, including lung edema was also evaluated. Wistar rats were submitted to 2 months of physical exercise. After this period the lung injury was induced by intratracheal instillation of lipopolysaccharide. Adult Wistar rats were submitted to 2 months of physical exercise and after this period the lung injury was induced by intratracheal instillation of lipopolysaccharide in dose 100 μg/100 g body weight. The sham group received isotonic saline instillation. Twelve hours after the injury was performed the respiratory mechanical and after the rats were decapitated and samples were collected. The rats subjected to lung injury presented a decrease in activities of the enzymes of the electron transport chain and ATP levels in lung, as well as the formation of pulmonary edema. A decreased lung dynamic and static compliance, as well as an increase in respiratory system resistance, and a decrease in phospholipids content were observed. Physical exercise was able to totally prevent the decrease in succinate dehydrogenase and complex II activities and the formation of pulmonary edema. It also partially prevented the increase in respiratory system resistance, but did not prevent the decrease in dynamic and static compliance, as well as in phospholipids content. These findings suggest that the mitochondrial dysfunction may be one of the important contributors to lung damage and that physical exercise may be beneficial in this pathology, although it did not prevent all changes present in lung injury.

  4. Effect of Quercetin on lipid peroxidation and changes in lung morphology in experimental influenza virus infection.

    PubMed

    Kumar, Pankaj; Sharma, Sonal; Khanna, MadhU; Raj, Hanumantharao Guru

    2003-06-01

    Influenza virus infection, induced experimentally in mice, was associated with marked changes in lung morphology viz. epithelial damage with focal areas of reactive papillary hyperplasia, infiltration of leukocytes and development of oxidative stress, as evidenced by increased superoxide radical production and lipid peroxidation (LPO) products by alveolar macrophages. These effects were observed on the 5th day after virus instillation. The levels of superoxide and LPO were measured spectrophotometrically by the nitroblue tetrazolium (NBT) assay and thiobarbituric acid reactive species (TBARS) assay, respectively. The former increased by 1.5-2 fold and the latter was raised by 85% when compared with normal control. Supplementation of intranasal viral instillation with the anti-oxidant, Quercetin, given orally, resulted in a significant decrease in the levels of both superoxide radicals and LPO products. There was also a significant decrease in the number of infiltrating cells. A mild to moderate protective effect was observed in lung morphology. Thus, Quercetin may be useful as a drug in reducing the oxidative stress induced by influenza virus infection in the lung, and protect it from the toxic effects of the free radicals.

  5. Pulsatility flow around a single cylinder - an experimental model of flow inside an artificial lung

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun; Bull, Joseph L.

    2004-11-01

    Pulsatile flow past a single cylinder is experimentally investigated using particle image velocimetry. This study aims to elucidate the effects of pulstility on the velocity field, which influences the convection-dominated transport within the fluid. The artificial lung device can be connected in parallel or series with the native lungs and may potentially be used as a bridge to transplant or for pulmonary replacement. The artificial lung consists of hollow microfibers through which gas flows and blood flows around. Blood flow through the device is pulsatile because it is driven entirely by the right heart. Steady flow over bluff bodies has been investigated in many contexts, such as heat exchangers. However, few studies have been investigated the effect of pulsatility. The effects of frequency, amplitude of pulsatility, and average flow rate on the formation of vortices after a cylinder are examined. Vortices near the cylinder are found to develop at lower Reynolds number in pulsatile flow than in steady flow. This work is supported by NIH grant R01 HL69420-01.

  6. Ultrasonic evidence of acute interstitial lung edema after SCUBA diving is resolved within 2-3h.

    PubMed

    Ljubkovic, Marko; Gaustad, Svein Erik; Marinovic, Jasna; Obad, Ante; Ivancev, Vladimir; Bilopavlovic, Nada; Breskovic, Toni; Wisloff, Ulrik; Brubakk, Alf; Dujic, Zeljko

    2010-04-30

    Recently, an increase in extravascular lung water (EVLW) accumulation with diminished left ventricular contractility within 60 min after SCUBA diving was reported. We have observed previously that diving was associated with reduced diffusing lung capacity for carbon monoxide (DLCO) and arterial oxygen pressure for up to 60-80 min postdive. Here we investigated whether increased EVLW persists 2-3h after successive deep dives in a group of seven male divers. The echocardiographic indices of pulmonary water accumulation (ultrasound lung comets (ULC)) and left ventricular function, respiratory functional measurements and arterial oxygen saturation (SaO(2)) were assessed 2-3h post diving, while venous gas bubbles (VGB) and the blood levels of NT-proBNP and proANP were analyzed 40 min after surfacing. Spirometry values, flow-volume, DLCO, SaO(2) and ULC were unchanged after each dive, except for significant increase in ULC after the second dive. Left ventricular function was reduced, while NT-proBNP and proANP levels were significantly elevated after majority of dives, suggesting a cardiac strain.

  7. Synergy between acid and endotoxin in an experimental model of aspiration-related lung injury progression.

    PubMed

    Tetenev, Konstantin; Cloutier, Mary E; von Reyn, Jessica A; Ather, Jennifer L; Candon, James; Allen, Gilman B

    2015-11-15

    Aspiration is a common cause of lung injury, but it is unclear why some cases are self-limited while others progress to acute respiratory distress syndrome (ARDS). Sporadic exposure to more than one insult could account for this variable progression. We investigated whether synergy between airway acid and endotoxin (LPS) amplifies injury severity in mice and whether LPS levels in human patients could corroborate our experimental findings. C57BL/6 mice aspirated acid (pH 1.3) or normal saline (NS), followed by LPS aerosol or nothing. Bronchoalveolar lavage fluid (BALF) was obtained 2 to 49 h later. Mice were injected with FITC-dextran 25 h after aspiration and connected to a ventilator, and lung elastance (H) measured periodically following deep inflation (DI). Endotracheal and gastric aspirates were also collected from patients in the intensive care unit and assayed for pH and LPS. Lung instability (ΔH following DI) and pressure-volume hysteresis in acid- or LPS-exposed mice was greater than in controls but markedly greater in the combined acid/LPS group. BALF neutrophils, cytokines, protein, and FITC-dextran in the acid/LPS mice were geometrically higher than all other groups. BALF from acid-only mice markedly amplified LPS-induced TNF-α production in cultured macrophages. Human subjects had variable endotracheal LPS levels with the highest burden in those at higher risk of aspiration. Acid aspiration amplifies LPS signaling in mice to disrupt barrier function and lung mechanics in synergy. High variation in airway LPS and greater airway LPS burden in patients at higher risk of aspiration could help explain the sporadic progression of aspiration to ARDS. PMID:26408552

  8. Resolving Apparent Conflicts between Theoretical and Experimental Models of Phosphate Monoester Hydrolysis

    PubMed Central

    2014-01-01

    Understanding phosphoryl and sulfuryl transfer is central to many biochemical processes. However, despite decades of experimental and computational studies, a consensus concerning the precise mechanistic details of these reactions has yet to be reached. In this work we perform a detailed comparative theoretical study of the hydrolysis of p-nitrophenyl phosphate, methyl phosphate and p-nitrophenyl sulfate, all of which have served as key model systems for understanding phosphoryl and sulfuryl transfer reactions, respectively. We demonstrate the existence of energetically similar but mechanistically distinct possibilities for phosphate monoester hydrolysis. The calculated kinetic isotope effects for p-nitrophenyl phosphate provide a means to discriminate between substrate- and solvent-assisted pathways of phosphate monoester hydrolysis, and show that the solvent-assisted pathway dominates in solution. This preferred mechanism for p-nitrophenyl phosphate hydrolysis is difficult to find computationally due to the limitations of compressing multiple bonding changes onto a 2-dimensional energy surface. This problem is compounded by the need to include implicit solvation to at least microsolvate the system and stabilize the highly charged species. In contrast, methyl phosphate hydrolysis shows a preference for a substrate-assisted mechanism. For p-nitrophenyl sulfate hydrolysis there is only one viable reaction pathway, which is similar to the solvent-assisted pathway for phosphate hydrolysis, and the substrate-assisted pathway is not accessible. Overall, our results provide a unifying mechanistic framework that is consistent with the experimentally measured kinetic isotope effects and reconciles the discrepancies between theoretical and experimental models for these biochemically ubiquitous classes of reaction. PMID:25423607

  9. Development of an experimental model of brain tissue heterotopia in the lung

    PubMed Central

    Quemelo, Paulo Roberto Veiga; Sbragia, Lourenço; Peres, Luiz Cesar

    2007-01-01

    Summary The presence of heterotopic brain tissue in the lung is a rare abnormality. The cases reported thus far are usually associated with neural tube defects (NTD). As there are no reports of experimental models of NTD that present this abnormality, the objective of the present study was to develop a surgical method of brain tissue heterotopia in the lung. We used 24 pregnant Swiss mice divided into two groups of 12 animals each, denoted 17GD and 18GD according to the gestational day (GD) when caesarean section was performed to collect the fetuses. Surgery was performed on the 15th GD, one fetus was removed by hysterectomy and its brain tissue was cut into small fragments and implanted in the lung of its litter mates. Thirty-four live fetuses were obtained from the 17GD group. Of these, eight (23.5%) were used as control (C), eight (23.5%) were sham operated (S) and 18 (52.9%) were used for pulmonary brain tissue implantation (PBI). Thirty live fetuses were obtained from the females of the 18GD group. Of these, eight (26.6%) were C, eight (26.6%) S and 14 (46.6%) were used for PBI. Histological examination of the fetal trunks showed implantation of GFAP-positive brain tissue in 85% of the fetuses of the 17GD group and in 100% of those of the 18GD group, with no significant difference between groups for any of the parameters analysed. The experimental model proved to be efficient and of relatively simple execution, showing complete integration of the brain tissue with pulmonary and pleural tissue and thus representing a model that will permit the study of different aspects of cell implantation and interaction. PMID:17877535

  10. Experimental measurements of lung resonant frequencies in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Finneran, James J.

    2003-04-01

    An acoustic backscatter technique was used to estimate in vivo whole-lung resonant frequencies in a bottlenose dolphin (Tursiops truncatus) and a white whale (Delphinapterus leucas). Subjects were trained to submerge and position themselves near an underwater sound projector and a receiving hydrophone. Acoustic pressure measurements were made near the subjects' lungs while insonified with pure tones at frequencies from 16 to 100 Hz. Whole-lung resonant frequencies were estimated by comparing pressures measured near the subjects' lungs to those measured from the same location without the subject present. Experimentally measured resonant frequencies and damping ratios were much higher than those predicted using equivalent volume spherical air bubble models. The experimental technique, data analysis method, and discrepancy between the observed and predicted values will be discussed. The potential effects of depth on the resonance frequencies will also be discussed.

  11. Resolving small signal measurements in experimental plasma environments using calibrated subtraction of noise signals

    SciTech Connect

    Fimognari, P. J. Demers, D. R.; Chen, X.; Schoch, P. M.

    2014-11-15

    The performance of many diagnostic and control systems within fusion and other fields of research are often detrimentally affected by spurious noise signals. This is particularly true for those (such as radiation or particle detectors) working with very small signals. Common sources of radiated and conducted noise in experimental fusion environments include the plasma itself and instrumentation. The noise complicates data analysis, as illustrated by noise on signals measured with the heavy ion beam probe (HIBP) installed on the Madison Symmetric Torus. The noise is time-varying and often exceeds the secondary ion beam current (in contrast with previous applications). Analysis of the noise identifies the dominant source as photoelectric emission from the detectors induced by ultraviolet light from the plasma. This has led to the development of a calibrated subtraction technique, which largely removes the undesired temporal noise signals from data. The advantages of the technique for small signal measurement applications are demonstrated through improvements realized on HIBP fluctuation measurements.

  12. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 2. Trimers

    SciTech Connect

    Debreczeny, M.F.; Sauer, K.; Zhou, J.; Bryant, D.A.

    1995-05-18

    Resolution of the absorption spectrum of the {beta}{sub 155} chromophore in C-phycocyanin (PC) trimers is achieved by comparison of the steady state absorption spectra of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3}. Comparison of the anisotropy decays of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3} also greatly aids in the assignment of the dominant kinetic processes in PC trimers. A comparison is made of calculated Foerster rate constants for energy transfer with those rate constants resolved experimentally in the PC trimers. 35 refs.., 10 figs., 2 tabs.

  13. Experimentally Resolving the Atomic Structure of Supported Nanometer-size Gold Clusters

    NASA Astrophysics Data System (ADS)

    Reifenberger, R.; Lovall, D.; Buss, M.; Andres, R. P.

    1998-03-01

    Techniques to soft-land nanometer size particles onto sharp tips have been used to study the structure and stability of Au clusters. These clusters have been deposited on W, Pt, and Pt/Ir tips. Field-ion microcope (FIM) techniques utilizing Ar as an imaging gas allow surface atoms on the clusters to be imaged. Time lapse studies of the FIM micrographs allow the positions of edge and corner atoms on the cluster to be mapped. Careful comparison of experimental images with simulated images allow the structure and orientation of these clusters to be identified. FIM micrographs of annealed, single crystal Au clusters show evidence of a truncated-octahedra (TO) structure with one of the Au(111) hexagonal faces of the cluster resting on the surface of the tip. Unannealed Au clusters show evidence of a multiply-twinned structure. Studies of both annealed and unannealed Au clusters also provide evidence of a high degree of stability, with no indication of structural fluctuations at room temperature.

  14. Effects on symptoms and lung function in humans experimentally exposed to diesel exhaust.

    PubMed Central

    Rudell, B; Ledin, M C; Hammarström, U; Stjernberg, N; Lundbäck, B; Sandström, T

    1996-01-01

    OBJECTIVES: Diesel exhaust is a common air pollutant made up of several gases, hydrocarbons, and particles. An experimental study was carried out which was designed to evaluate if a particle trap on the tail pipe of an idling diesel engine would reduce effects on symptoms and lung function caused by the diesel exhaust, compared with exposure to unfiltered exhaust. METHODS: Twelve healthy non-smoking volunteers (aged 20-37) were investigated in an exposure chamber for one hour during light work on a bicycle ergometer at 75 W. Each subject underwent three separate double blind exposures in a randomised sequence: to air and to diesel exhaust with the particle trap at the tail pipe and to unfiltered diesel exhaust. Symptoms were recorded according to the Borg scale before, every 10 minutes during, and 30 minutes after the exposure. Lung function was measured with a computerised whole body plethysmograph. RESULTS: The ceramic wall flow particle trap reduced the number of particles by 46%, whereas other compounds were relatively constant. It was shown that the most prominent symptoms during exposure to diesel exhaust were irritation of the eyes and nose and an unpleasant smell increasing during exposure. Both airway resistance (R(aw)) and specific airway resistance (SR(aw)) increased significantly during the exposures to diesel exhaust. Despite the 46% reduction in particle numbers by the trap effects on symptoms and lung function were not significantly attenuated. CONCLUSION: Exposure to diesel exhaust caused symptoms and bronchoconstriction which were not significantly reduced by a particle trap. PMID:8943829

  15. SU-E-T-178: Experimental Study of Acceptable Movement Conditions for SBRT Lung Treatments

    SciTech Connect

    Carrasco de Fez, P; Ruiz-Martinez, A; Jornet, N; Eudaldo, T; Latorre-Musoll, A; Ribas, Morales M

    2014-06-01

    Purpose: To experimentally study the acceptable movement conditions for SBRT lung treatments we quantified with film dosimetry the change in dose distributions due to periodic movements of 5 different amplitudes and 4 respiratory gating duty cycles on a SBRT treatment plan. Methods: We planned a SBRT treatment plan for the QUASAR™ (Modus Medical) phantom equipped with the respiratory motion device. We placed a 3 mm water-equivalent sphere simulating a tumour inside the lung-equivalent insert. This sphere is divided in two hemispheres that allow placing films in between. We used radiochromic EBT2™ (Ashland) films. We oriented the lung insert in such a way that sagittal dose distributions could be measured. We applied a sinusoidal movement with 3 s period for 5 different amplitudes of 0(static), 5, 7, 10, 15 and 20 mm without gating. For the 20 mm amplitude we studied the gating technique with 4 duty cycles of 20, 40, 60 and 80% of the respiratory cycle. Each situation was irradiated in a Clinac 2100 linac (Varian) equipped with the RPM™ system. FilmQA Pro™ (Ashland) software together with an Expression 10000XL scanner (EPSON) were used to analyze and compare the measured dose distributions with those planned by the Eclipse™ TPS v. 8.9 (Varian) by means of gamma analysis with 6 criteria: 5%/3mm, 5%/2mm, 5%/1mm, 3%/3mm, 3%/2mm and 2%/2mm (threshold of 10%). Results: Movements with amplitude of less than 7mm do not significantly modified the dosimetry. Gating duty cycles of less than 40% yielded also acceptable results for a 2 cm amplitude movement. Conclusion: To safely perform daily accurate SBRT treatments, movements have to be restricted to 7 mm amplitude (±3.5 mm). Otherwise, a gating strategy should be considered.

  16. Mean lung pressure during adult high-frequency oscillatory ventilation: an experimental study using a lung model.

    PubMed

    Hirayama, Takahiro; Nagano, Osamu; Shiba, Naoki; Yumoto, Tetsuya; Sato, Keiji; Terado, Michihisa; Ugawa, Toyomu; Ichiba, Shingo; Ujike, Yoshihito

    2014-12-01

    In adult high-frequency oscillatory ventilation (HFOV), stroke volume (SV) and mean lung pressure (PLung) are important for lung protection. We measured the airway pressure at the Y-piece and the lung pressure during HFOV using a lung model and HFOV ventilators for adults (R100 and 3100B). The lung model was made of a 20-liter, airtight rigid plastic container (adiabatic compliance: 19.3 ml/cmH2O) with or without a resistor (20 cmH2O/l/sec). The ventilator settings were as follows: mean airway pressure (MAP), 30 cmH2O; frequency, 5-15 Hz (every 1 Hz); airway pressure amplitude (AMP), maximum;and % of inspiratory time (IT), 50% for R100, 33% or 50% for 3100B. The measurements were also performed with an AMP of 2/3 or 1/3 maximum at 5, 10 and 15 Hz. The PLung and the measured MAP were not consistently identical to the setting MAP in either ventilator, and decreasing IT decreased the PLung in 3100B. In conclusion, we must pay attention to the possible discrepancy between the PLung and the setting MAP during adult HFOV. PMID:25519026

  17. The Effect of Temporal Impulse Response on Experimental Reduction of Photon Scatter in Time-Resolved Diffuse Optical Tomography

    PubMed Central

    Valim, Niksa; Brock, James; Leeser, Miriam; Niedre, Mark

    2013-01-01

    New fast detector technology has driven significant renewed interest in time-resolved measurement of early photons in improving imaging resolution in diffuse optical tomography and fluorescence mediated tomography in recent years. In practice, selection of early photons results in significantly narrower instrument photon density sensitivity functions (PDSFs) than the continuous wave case, resulting in a better conditioned reconstruction problem. In this work, we studied the quantitative impact of instrument temporal impulse response function (TIRF) on experimental PDSFs in tissue mimicking optical phantoms. We used a multi-mode fiber dispersion method to vary the system TIRF over a range of representative literature values. Substantial disagreement in PDSF width – by up to 40% - was observed between experimental measurements and Monte Carlo (MC) models of photon propagation over the range of TIRFs studied. On average, PDSFs were broadened by about 0.3 mm at the center plane of the 2 cm wide imaging chamber per 100 ps of instrument TIRF at early times. Further, this broadening was comparable on both the source and detector sides. Results were confirmed by convolution of instrument TIRFs with MC simulations. These data also underscore the importance of correcting imaging PDSFs for instrument TIRF when performing tomographic image reconstruction to ensure accurate data-model agreement. PMID:23257349

  18. The proinflammatory role of HECTD2 in innate immunity and experimental lung injury

    PubMed Central

    Coon, Tiffany A.; McKelvey, Alison C.; Lear, Travis; Rajbhandari, Shristi; Dunn, Sarah R.; Connelly, William; Zhao, Joe Y.; Han, SeungHye; Liu, Yuan; Weathington, Nathaniel M.; McVerry, Bryan J.; Zhang, Yingze; Chen, Bill B.

    2015-01-01

    Invading pathogens may trigger overactivation of the innate immune system, which results in the release of large amounts of proinflammatory cytokines (cytokine storm) and leads to the development of pulmonary edema, multiorgan failure, and shock. PIAS1 is a multifunctional and potent anti-inflammatory protein that negatively regulates several key inflammatory pathways such as Janus kinase (JAK)–signal transducer and activator of transcription (STAT) and nuclear factor κB (NF-κB). We discovered a ubiquitin E3 ligase, HECTD2, which ubiquitinated and mediated the degradation of PIAS1, thus increasing inflammation in an experimental pneumonia model. We found that GSK3b phosphorylation of PIAS1 provided a phosphodegron for HECTD2 targeting. We also identified a mislocalized HECTD2 polymorphism, HECTD2A19P, that was present in 8.5% of the population and functioned to reduce inflammation. This polymorphism prevented HECTD2/PIAS1 nuclear interaction, thus preventing PIAS1 degradation. The HECTD2A19P polymorphism was also protective toward acute respiratory distress syndrome (ARDS). We then developed a small-molecule inhibitor, BC-1382, that targeted HECTD2 and attenuated lipopolysaccharide (LPS)– and Pseudomonas aeruginosa–induced lung inflammation. These studies describe an unreported innate immune pathway and suggest that mutation or antagonism of the E3 ligase HECTD2 results in reduced severity of lung inflammation by selectively modulating the abundance of the anti-inflammatory protein PIAS1. PMID:26157031

  19. Effectiveness of nitric oxide during spontaneous breathing in experimental lung injury.

    PubMed

    Dembinski, Rolf; Hochhausen, Nadine; Terbeck, Sandra; Bickenbach, Johannes; Stadermann, Frederik; Rossaint, Rolf; Kuhlen, Ralf

    2010-04-01

    Inhaled nitric oxide (iNO) improves gas exchange in about 60% of patients with acute respiratory distress syndrome (ARDS). Recruitment of atelectatic lung areas may improve responsiveness and preservation of spontaneous breathing (SB) may cause recruitment. Accordingly, preservation of SB may improve effectiveness of iNO. To test this hypothesis, iNO was evaluated in experimental acute lung injury (ALI) during SB. In 24 pigs with ALI, effects of 10 ppm iNO were evaluated during controlled mechanical ventilation (CMV) and SB in random order. Preservation of SB was provided by 4 different modes: Unassisted SB was enabled by biphasic positive airway pressure (BIPAP), moderate inspiratory assist was provided by pressure support (PS) and volume-assured pressure support (VAPS), maximum assist was ensured by assist control (A/C). Statistical analysis did not reveal gas exchange improvements due to SB alone. Significant gas exchange improvements due to iNO were only achieved during unassisted SB with BIPAP (P <.05) but not during CMV or assisted SB. The authors conclude that effectiveness of iNO may be improved by unassisted SB during BIPAP but not by assisted SB. Thus combined iNO and unassisted SB is possibly most effective to improve gas exchange in severe hypoxemic ARDS.

  20. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments

    NASA Astrophysics Data System (ADS)

    Jiang, Steve B.; Pope, Cynthia; Jarrah, Khaled M. Al; Kung, Jong H.; Bortfeld, Thomas; Chen, George T. Y.

    2003-06-01

    Respiration-induced tumour motion can potentially compromise the use of intensity-modulated radiotherapy (IMRT) as a dose escalation tool for lung tumour treatment. We have experimentally investigated the intra-fractional organ motion effects in lung IMRT treatments delivered by multi-leaf collimator (MLC). An in-house made motor-driven platform, which moves sinusoidally with an amplitude of 1 cm and a period of 4 s, was used to mimic tumour motion. Tumour motion was simulated along cranial-caudal direction while MLC leaves moved across the patient from left to right, as in most clinical cases. The dose to a point near the centre of the tumour mass was measured according to geometric and dosimetric parameters from two five-field lung IMRT plans. For each field, measurement was done for two dose rates (300 and 500 MU min-1), three MLC delivery modes (sliding window, step-and-shoot with 10 and 20 intensity levels) and eight equally spaced starting phases of tumour motion. The dose to the measurement point delivered from all five fields was derived for both a single fraction and 30 fractions by randomly sampling from measured dose values of each field at different initial phases. It was found that the mean dose to a moving tumour differs slightly (<2-3%) from that to a static tumour. The variation in breathing phase at the start of dose delivery results in a maximum variation around the mean dose of greater than 30% for one field. The full width at half maximum for the probability distribution of the point dose is up to 8% for all five fields in a single fraction, but less than 1-2% after 30 fractions. In general, lower dose rate can reduce the motion-caused dose variation and therefore might be preferable for lung IMRT when no motion mitigation techniques are used. From the two IMRT cases we studied where tumour motion is perpendicular to MLC leaf motion, the dose variation was found to be insensitive to the MLC delivery mode.

  1. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments.

    PubMed

    Jiang, Steve B; Pope, Cynthia; Al Jarrah, Khaled M; Kung, Jong H; Bortfeld, Thomas; Chen, George T Y

    2003-06-21

    Respiration-induced tumour motion can potentially compromise the use of intensity-modulated radiotherapy (IMRT) as a dose escalation tool for lung tumour treatment. We have experimentally investigated the intra-fractional organ motion effects in lung IMRT treatments delivered by multi-leaf collimator (MLC). An in-house made motor-driven platform, which moves sinusoidally with an amplitude of 1 cm and a period of 4 s, was used to mimic tumour motion. Tumour motion was simulated along cranial-caudal direction while MLC leaves moved across the patient from left to right, as in most clinical cases. The dose to a point near the centre of the tumour mass was measured according to geometric and dosimetric parameters from two five-field lung IMRT plans. For each field, measurement was done for two dose rates (300 and 500 MU min(-1)), three MLC delivery modes (sliding window, step-and-shoot with 10 and 20 intensity levels) and eight equally spaced starting phases of tumour motion. The dose to the measurement point delivered from all five fields was derived for both a single fraction and 30 fractions by randomly sampling from measured dose values of each field at different initial phases. It was found that the mean dose to a moving tumour differs slightly (<2-3%) from that to a static tumour. The variation in breathing phase at the start of dose delivery results in a maximum variation around the mean dose of greater than 30% for one field. The full width at half maximum for the probability distribution of the point dose is up to 8% for all five fields in a single fraction, but less than 1-2% after 30 fractions. In general, lower dose rate can reduce the motion-caused dose variation and therefore might be preferable for lung IMRT when no motion mitigation techniques are used. From the two IMRT cases we studied where tumour motion is perpendicular to MLC leaf motion, the dose variation was found to be insensitive to the MLC delivery mode. PMID:12870582

  2. Experimental investigation of particle deposition mechanisms in the lung acinus using microfluidic models.

    NASA Astrophysics Data System (ADS)

    Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team

    2014-11-01

    In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.

  3. Viral Replication and Lung Lesions in BALB/c Mice Experimentally Inoculated with Avian Metapneumovirus Subgroup C Isolated from Chickens

    PubMed Central

    She, Ruiping; Hu, Fengjiao; Wang, Jing; Yan, Xu; Zhang, Chunyan; Liu, Shuhang; Quan, Rong; Li, Zixuan; Du, Fang; Wei, Ting; Liu, Jue

    2014-01-01

    Avian metapneumovirus (aMPV) emerged as an important respiratory pathogen causing acute respiratory tract infection in avian species. Here we used a chicken aMPV subgroup C (aMPV/C) isolate to inoculate experimentally BALB/c mice and found that the aMPV/C can efficiently replicate and persist in the lungs of mice for at least 21 days with a peak viral load at day 6 postinoculation. Lung pathological changes were characterized by increased inflammatory cells. Immunochemical assay showed the presence of viral antigens in the lungs and significant upregulation of pulmonary inflammatory cytokines and chemokines including MCP-1, MIP-1α, RANTES, IL-1β, IFN-γ, and TNF-α were detected following inoculation. These results indicate for the first time that chicken aMPV/C may replicate in the lung of mice. Whether aMPV/C has potential as zoonotic pathogen, further investigation will be required. PMID:24637582

  4. COMPARISON OF LUNG ATTENUATION AND HETEROGENEITY BETWEEN CATS WITH EXPERIMENTALLY INDUCED ALLERGIC ASTHMA, NATURALLY OCCURRING ASTHMA AND NORMAL CATS.

    PubMed

    Masseau, Isabelle; Banuelos, Alina; Dodam, John; Cohn, Leah A; Reinero, Carol

    2015-01-01

    Airway remodeling is a prominent feature of feline allergic asthma but requires biopsy for characterization. Computed tomography (CT) has appeal as a minimally invasive diagnostic test. The purpose of this prospective case-control study was to compare indices of airway remodeling between cats with experimentally induced, spontaneous asthma and healthy unaffected cats using CT. We hypothesized that experimental and spontaneous feline asthma would have similar CT airway remodeling characteristics and that these would be significantly different in healthy cats. Experimentally induced asthmatic research cats (n = 5), spontaneously asthmatic pet cats (n = 6), and healthy research cats (n = 5) were scanned unrestrained using a 64-detector row CT scanner. Inspiratory breath-hold CT scans were also performed in experimentally induced asthmatic and healthy cats. Mean ± extent variation of lung attenuation for each cat was determined using an airway inspector software program and CT images were scored for lung heterogeneity by a board-certified veterinary radiologist who was unaware of cat group status. Groups were compared using one-way ANOVA (unrestrained scans) and the Student's t-test (anesthetized scans) with significance defined as P < 0.10. Experimentally asthmatic and spontaneously asthmatic cats had significantly (P = 0.028 and P = 0.073, respectively) increased lung attenuation compared to healthy cats. Heterogeneity scores were higher in experimentally induced asthmatic cat than in healthy cats. Objective quantification of lung heterogeneity and lung volume did not differ among the three groups (P = 0.311, P = 0.181, respectively). Findings supported our hypothesis. Inspiratory breath-hold anesthetized CT scans facilitated discrimination between asthmatic and healthy cats in comparison to unrestrained CT scans.

  5. RC-3095, a Selective Gastrin-Releasing Peptide Receptor Antagonist, Does Not Protect the Lungs in an Experimental Model of Lung Ischemia-Reperfusion Injury

    PubMed Central

    Oliveira-Freitas, Vera L.; Thomaz, Leonardo Dalla Giacomassa Rocha; Simoneti, Lucas Elias Lise; Malfitano, Christiane; De Angelis, Kátia; Ulbrich, Jane Maria; Schwartsmann, Gilberto; Andrade, Cristiano Feijó

    2015-01-01

    RC-3095, a selective GRPR antagonist, has been shown to have anti-inflammatory properties in different models of inflammation. However, its protective effect on lungs submitted to lung ischemia-reperfusion injury has not been addressed before. Then, we administrated RC-3095 intravenously before and after lung reperfusion using an animal model of lung ischemia-reperfusion injury (LIRI) by clamping the pulmonary hilum. Twenty Wistar rats were subjected to an experimental model in four groups: SHAM, ischemia-reperfusion (IR), RC-Pre, and RC-Post. The final mean arterial pressure significantly decreased in IR and RC-Pre compared to their values before reperfusion (P < 0.001). The RC-Post group showed significant decrease of partial pressure of arterial oxygen at the end of the observation when compared to baseline (P = 0.005). Caspase-9 activity was significantly higher in the RC-Post as compared to the other groups (P < 0.013). No significant differences were observed in eNOS activity among the groups. The groups RC-Pre and RC-Post did not show any significant decrease in IL-1β (P = 0.159) and TNF-α (P = 0.260), as compared to IR. The histological score showed no significant differences among the groups. In conclusion, RC-3095 does not demonstrate a protective effect in our LIRI model. Additionally, its use after reperfusion seems to potentiate cell damage, stimulating apoptosis. PMID:25893195

  6. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  7. Biplane angiography for experimental validation of computational fluid dynamic models of blood flow in artificial lungs.

    PubMed

    Jones, Cameron C; Capasso, Patrizio; McDonough, James M; Wang, Dongfang; Rosenstein, Kyle S; Zwischenberger, Joseph B

    2013-01-01

    This article presents an investigation into the validation of velocity fields obtained from computational fluid dynamic (CFD) models of flow through the membrane oxygenators using x-ray digital subtraction angiography (DSA). Computational fluid dynamic is a useful tool in characterizing artificial lung devices, but numerical results must be experimentally validated. We used DSA to visualize flow through a membrane oxygenator at 2 L/min using 37% glycerin at 22°C. A Siemens Artis Zee system acquired biplane x-ray images at 7.5 frames per second, after infusion of an iodinated contrast agent at a rate of 33 ml/s. A maximum cross-correlation (MCC) method was used to track the contrast perfusion through the fiber bundle. For the CFD simulations, the fiber bundle was treated as a single momentum sink according to the Ergun equation. Blood was modeled as a Newtonian fluid, with constant viscosity (3.3 cP) and density (1050 kg/m3). Although CFD results and experimental pressure measurements were in general agreement, the simulated 2 L/min perfusion did not reproduce the flow behavior seen in vitro. Simulated velocities in the fiber bundle were on average 42% lower than experimental values. These results indicate that it is insufficient to use only pressure measurements for validation of the flow field because pressure-validated CFD results can still significantly miscalculate the physical velocity field. We have shown that a clinical x-ray modality, together with a MCC tracking algorithm, can provide a nondestructive technique for acquiring experimental data useful for validation of the velocity field inside membrane oxygenators.

  8. Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury.

    PubMed

    Santana, Maria Cristina E; Garcia, Cristiane S N B; Xisto, Débora G; Nagato, Lilian K S; Lassance, Roberta M; Prota, Luiz Felipe M; Ornellas, Felipe M; Capelozzi, Vera L; Morales, Marcelo M; Zin, Walter A; Pelosi, Paolo; Rocco, Patricia R M

    2009-06-30

    Prone position may delay the development of ventilator-induced lung injury (VILI), but the mechanisms require better elucidation. In experimental mild acute lung injury (ALI), arterial oxygen partial pressure (Pa O2), lung mechanics and histology, inflammatory markers [interleukin (IL)-6 and IL-1 beta], and type III procollagen (PCIII) mRNA expressions were analysed in supine and prone position. Wistar rats were randomly divided into two groups. In controls, saline was intraperitoneally injected while ALI was induced by paraquat. After 24-h, the animals were mechanically ventilated for 1-h in supine or prone positions. In ALI, prone position led to a better blood flow/tissue ratio both in ventral and dorsal regions and was associated with a more homogeneous distribution of alveolar aeration/tissue ratio reducing lung static elastance and viscoelastic pressure, and increasing end-expiratory lung volume and Pa O2. PCIII expression was higher in the ventral than dorsal region in supine position, with no regional changes in inflammatory markers. In conclusion, prone position may protect the lungs against VILI, thus reducing pulmonary stress and strain.

  9. Computational Fluid Dynamics and Experimental Characterization of the Pediatric Pump-Lung

    PubMed Central

    Wu, Zhongjun J; Gellman, Barry; Zhang, Tao; Taskin, M Ertan; Dasse, Kurt A.; Griffith, Bartley P.

    2014-01-01

    The pediatric pump-lung (PediPL) is a miniaturized integrated pediatric pump-oxygenator specifically designed for cardiac or cardiopulmonary support for patients weighing 5-20 kg to allow mobility and extended use for 30 days. The PediPL incorporates a magnetically levitated impeller with uniquely configured hollow fiber membranes into a single unit capable of performing both pumping and gas exchange. A combined computational and experimental study was conducted to characterize the functional and hemocompatibility performances of this newly developed device. The three-dimensional flow features of the PediPL and its hemolytic characteristics were analyzed using computational fluid dynamics based modeling. The oxygen exchange was modeled based on a convection-diffusion-reaction process. The hollow fiber membranes were modeled as a porous medium which incorporates the flow resistance in the bundle by an added momentum sink term. The pumping function was evaluated for the required range of operating conditions (0.5-2.5 L/min and 1000-3000 rpm). The blood damage potentials were further analyzed in terms of flow and shear stress fields, and the calculations of hemolysis index. In parallel, the hydraulic pump performance, oxygen transfer and hemolysis level were quantified experimentally. Based on the computational and experimental results, the PediPL device is found to be functional to provide necessary oxygen transfer and blood pumping requirements for the pediatric patients. Smooth blood flow characteristics and low blood damage potential were observed in the entire device. The in-vitro tests further confirmed that the PediPL can provide adequate blood pumping and oxygen transfer over the range of intended operating conditions with acceptable hemolytic performance. The rated flow rate for oxygenation is 2.5 L/min. The normalized index of hemolysis is 0.065 g/100L at 1.0 L/min and 3000 rpm. PMID:24839468

  10. Changes in breath sound power spectra during experimental oleic acid-induced lung injury in pigs.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2014-01-01

    To evaluate the effect of acute lung injury on the frequency spectra of breath sounds, we made serial acoustic recordings from nondependent, midlung and dependent regions of both lungs in ten 35- to 45-kg anesthetized, intubated, and mechanically ventilated pigs during development of acute lung injury induced with intravenous oleic acid in prone or supine position. Oleic acid injections rapidly produced severe derangements in the gas exchange and mechanical properties of the lung, with an average increase in venous admixture from 16 ± 12 to 62 ± 16% (P < 0.01), and a reduction in dynamic respiratory system compliance from 25 ± 4 to 14 ± 4 ml/cmH2O (P < 0.01). A concomitant increase in sound power was seen in all lung regions (P < 0.05), predominantly in frequencies 150-800 Hz. The deterioration in gas exchange and lung mechanics correlated best with concurrent spectral changes in the nondependent lung regions. Acute lung injury increases the power of breath sounds likely secondary to redistribution of ventilation from collapsed to aerated parts of the lung and improved sound transmission in dependent, consolidated areas.

  11. /sup 111/In-platelet and /sup 125/I-fibrinogen deposition in the lungs in experimental acute pancreatitis

    SciTech Connect

    Goulbourne, I.A.; Watson, H.; Davies, G.C.

    1987-12-01

    An experimental model of acute pancreatitis in rats has been used to study intrapulmonary /sup 125/I-fibrinogen and /sup 111/In-platelet deposition. Pancreatitis caused a significant increase in wet lung weight compared to normal, and this could be abolished by heparin or aspirin pretreatment. /sup 125/I-fibrinogen was deposited in the lungs of animals to a significantly greater degree than in controls (P less than 0.01). /sup 125/I-fibrinogen deposition was reduced to control levels by pretreatment with aspirin or heparin (P less than 0.05). The uptake of radiolabeled platelets was greater in pancreatitis than in controls (P less than 0.001). Pancreatitis appears to be responsible for platelet entrapment in the lungs. Platelet uptake was reduced by heparin treatment but unaffected by aspirin therapy.

  12. Activity of lung neutrophils and matrix metalloproteinases in cyclophosphamide-treated mice with experimental sepsis

    PubMed Central

    Hirsh, Mark; Carmel, Julie; Kaplan, Viktoria; Livne, Erella; Krausz, Michael M

    2004-01-01

    Sepsis in patients receiving chemotherapy may result in acute respiratory distress syndrome, despite decreased number of blood neutrophils [polymorphonuclear neutrophils (PMNs)]. In the present study, we investigated the correlation of cyclophosphamide (CY)-induced neutropenia with the destructive potential of lung PMN in respect to formation of septic acute lung injury (ALI). Mice were treated with 250 mg/kg of CY or saline (control) and subjected to cecal ligation and puncture (CLP) or sham operation. ALI was verified by histological examination. Lung PMNs and matrix metalloproteinases (MMPs) were assessed by flow cytometry and gelatin zymography. CLP in CY-treated mice induced a typical lung injury. Despite profound neutropenia, CY treatment did not attenuate CLP-induced ALI. This might relate to only a partial suppression of PMN: CY has significantly reduced PMN influx into the lungs (P = 0.008) and suppressed their oxidative metabolism, but had no suppressive effect on degranulation (P = 0.227) and even induced MMP-9 activity (P = 0.0003). In CY-untreated animals, peak of CLP-induced ALI coincided with massive PMN influx (P = 0.013), their maximal degranulation (P = 0.014) and activation of lung MMP-9 (P = 0.002). These findings may indicate an important role of the residual lung PMN and activation of MMP-9 in septic lung injury during CY chemotherapy. PMID:15255968

  13. Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay

    PubMed Central

    2013-01-01

    Background Carbon nanotubes (CNT) can induce lung inflammation and fibrosis in rodents. Several studies have identified the capacity of CNT to stimulate the proliferation of fibroblasts. We developed and validated experimentally here a simple and rapid in vitro assay to evaluate the capacity of a nanomaterial to exert a direct pro-fibrotic effect on fibroblasts. Methods The activity of several multi-wall (MW)CNT samples (NM400, the crushed form of NM400 named NM400c, NM402 and MWCNTg 2400) and asbestos (crocidolite) was investigated in vitro and in vivo. The proliferative response to MWCNT was assessed on mouse primary lung fibroblasts, human fetal lung fibroblasts (HFL-1), mouse embryonic fibroblasts (BALB-3T3) and mouse lung fibroblasts (MLg) by using different assays (cell counting, WST-1 assay and propidium iodide PI staining) and dispersion media (fetal bovine serum, FBS and bovine serum albumin, BSA). C57BL/6 mice were pharyngeally aspirated with the same materials and lung fibrosis was assessed after 2 months by histopathology, quantification of total collagen lung content and pro-fibrotic cytokines in broncho-alveolar lavage fluid (BALF). Results MWCNT (NM400 and NM402) directly stimulated fibroblast proliferation in vitro in a dose-dependent manner and induced lung fibrosis in vivo. NM400 stimulated the proliferation of all tested fibroblast types, independently of FBS- or BSA- dispersion. Results obtained by WST1 cell activity were confirmed with cell counting and cell cycle (PI staining) assays. Crocidolite also stimulated fibroblast proliferation and induced pulmonary fibrosis, although to a lesser extent than NM400 and NM402. In contrast, shorter CNT (NM400c and MWCNTg 2400) did not induce any fibroblast proliferation or collagen accumulation in vivo, supporting the idea that CNT structure is an important parameter for inducing lung fibrosis. Conclusions In this study, an optimized proliferation assay using BSA as a dispersant, MLg cells as targets

  14. Assessment of anti-metastatic effects of anticoagulant and antiplatelet agents using animal models of experimental lung metastasis.

    PubMed

    Amirkhosravi, Ali; Mousa, Shaker A; Amaya, Mildred; Meyer, Todd; Davila, Monica; Robson, Theresa; Francis, John L

    2010-01-01

    It is well established that the blood coagulation system is activated in cancer. In addition, there is considerable evidence to suggest that clotting activation plays an important role in the biology of malignant tumors, including the process of blood-borne metastasis. For many years our laboratory has used experimental models of lung metastasis to study the events that follow the introduction of procoagulant-bearing tumor cells into circulating blood. This chapter focuses on the basic methods involved in assessing the anti-metastatic effects of anticoagulants and anti-platelet agents using rodent models of experimental metastasis. In addition, it summarizes our experience with these models, which collectively suggests that intravascular coagulation and platelet activation are a necessary prelude to lung tumor formation and that interruption of coagulation pathways or platelet aggregation may be an effective anti-metastatic strategy. PMID:20617422

  15. Comparison of four lung scoring systems for the assessment of the pathological outcomes derived from Actinobacillus pleuropneumoniae experimental infections

    PubMed Central

    2014-01-01

    Background In this study, four lung lesion scoring methods (Slaughterhouse Pleurisy Evaluation System [SPES], Consolidation Lung Lesion Score [LLS], Image analyses [IA] and Ratio of lung weight/body weight [LW/BW]) were compared for the assessment of the different pathological outcomes derived from an Actinobacillus pleuropneumoniae (App) experimental infection model. Moreover, pathological data was coupled with clinical (fever, inappetence and clinical score), production (average daily weigh gain [ADWG]) and diagnostic (PCR, ELISA and bacterial isolation) parameters within the four infection outcomes (peracute, acute, subclinically infected and non-infected). Results From the 61 inoculated animals, 9 were classified as peracute (presence of severe App-like clinical signs and lesions and sudden death or euthanasia shortly after inoculation), 31 as acutely affected (presence of App-like clinical signs and lesions and survival until the end of the experiment), 12 as subclinically infected (very mild or no clinical signs but App infection confirmed) and 9 as non-infected animals (lack of App-like clinical signs and lack of evidence of App infection). A significant correlation between all lung lesion scoring systems was found with the exception of SPES score versus LW/BW. SPES showed a statistically significant association with all clinical, production and diagnostic (with the exception of PCR detection of App in the tonsil) variables assessed. LLS and IA showed similar statistically significant associations as SPES, with the exception of seroconversion against App at necropsy. In contrast, LW/BW was statistically associated only with App isolation in lungs, presence of App-like lesions and ELISA OD values at necropsy. Conclusions In conclusion, SPES, LLS and IA are economic, fast and easy-to-perform lung scoring methods that, in combination with different clinical and diagnostic parameters, allow the characterization of different outcomes after App infection. PMID

  16. Suppression of colorectal cancer subcutaneous xenograft and experimental lung metastasis using nanoparticle-mediated drug delivery to tumor neovasculature.

    PubMed

    Wang, Chao; Zhao, Mei; Liu, Ya-Rong; Luan, Xin; Guan, Ying-Yun; Lu, Qin; Yu, De-Hong; Bai, Fan; Chen, Hong-Zhuan; Fang, Chao

    2014-01-01

    Antiangiogenic therapy is a validated approach for colorectal cancer (CRC) treatment. However, diverse adverse effects inevitably appear due to the off-target effect of the approved antiangiogenic inhibitors on the physiological functions and homeostasis. This study was to investigate a new tumor vessel targeting nanoparticulate drug delivery system, F56 peptide conjugated nanoparticles loading vincristine (F56-VCR-NP), for the effective treatment of CRC subcutaneous xenograft and experimental lung metastasis model. The controlled release behavior and in vivo pharmacokinetic profile of F56-VCR-NP were characterized. The tumor vessel targeting and antiangiogenic activity of F56-VCR-NP was evaluated in human umbilical vein endothelial cells (HUVEC, a classical cell model mimicking tumor vascular EC), subcutaneous human HCT-15 xenograft in immunodeficient nude mice, and experimental CT-26 lung metastasis model in immunocompetent mice. The therapeutic efficacy (animal survival and toxicity) was further investigated in the model of CT-26 lung metastasis in mice. F56-VCR-NP could achieve 30-day controlled drug release in PBS (pH 7.4) and exhibited favorable long-circulating feature in vivo. F56-VCR-NP could accurately target the CRC neovasculature and elicit nanoparticle internalization in the tumor vascular EC, where the antiangiogenic VCR-induced dramatic EC apoptosis and necrosis of CRC tissue. F56-VCR-NP significantly prolonged the mouse survival with no obvious toxicity (weight loss and anepithymia) in the CT-26 lung metastasis mice model, and this pronounced antitumor effect was closely related with the decreased microvessel density in the metastases. The present nanoparticle-based targeted antiangiogenic therapy may provide a new promising approach for the therapy of CRC and lung metastasis, which deserves further translational research.

  17. [Evaluation of the fibrogenic effect of coke dust on the lungs and internal organs of experimental animals].

    PubMed

    Zyłka-Włoszczyk, M; Ociepiński, M; Szaflarska-Stojko, E

    1991-01-01

    Based on the data collected by the Provincial Regional Administration Unit for Control of Epidemics and Hygiene in Katowice, dust concentration at the MAKOSZOWY Coking Plant in Zabrze at 18 work-places exceeded the TLV's. The purpose of this study was to determine changes within the respiratory systems of experimental animals exposed to intratracheal administration of MAKOSZOWY Coking Plant dust, sampled at the charging larry 3-4 operating stand and at the battery roof. After pulverization the dusts contained 98.1% and 99.6% respirable particles, and 6.5% and 6.0% of SiO2, respectively, determined with the Polezhajev method. They also contained aluminum and iron compounds. Hydroxyproline content in the lungs of the animals following the intratracheal administration of 50 mg of the dusts investigated 3-6 months after the experiment was determined. Determination of Hypro contend within the animals' lungs was pursued with the Stegemann method as modified by Hurych and Chvapil. The biochemical investigation results obtained were statistically analyzed with the t-Student's Test. Single intratracheal administration of dust from the battery roof work stand of the MAKOSZOWY Coking Plant caused within 6 months a statistically significant increase in the lung Hydroxyproline level in experimental animals (t = 13.10). An almost triole Hypro increase with respect to the control group was observed. No analogy between lung Hypro level increase (12.833 mg) and histological change was noted. Such a significant lung Hydroxyproline level increase could have been due to the SiO2 content of dust (6%), as well as to the presence of iron compounds in it (4.98%).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation

    PubMed Central

    Lagares, David; Busnadiego, Oscar; García-Fernández, Rosa Ana; Kapoor, Mohit; Liu, Shangxi; Carter, David E.; Abraham, David; Shi-Wen, Xu; Carreira, Patricia; Fontaine T, Benjamin A; Shea, Barry S; Tager, Andrew M; Leask, Andrew; Lamas, Santiago; Rodríguez-Pascual, Fernando

    2011-01-01

    Objective Enhanced adhesive signaling including activation of the focal adhesion kinase (FAK) is a hallmark of fibroblasts from lung fibrosis patients, and FAK has been therefore hypothesized to be a key mediator of this disease. This study was undertaken to characterize the contribution of FAK to the development of pulmonary fibrosis both in vivo and in vitro. Methods FAK expression and activity were analyzed in lung tissue samples from lung fibrosis patients by immunohistochemistry. Mice orally treated with the FAK inhibitor, PF-562,271, or with siRNA-mediated silencing of FAK, were exposed to intratracheally instilled bleomycin to induce lung fibrosis, and the lungs were harvested for histological and biochemical analysis. Using endothelin-1 (ET-1) as stimulus, cell adhesion and contraction, as well as profibrotic gene expression were studied in fibroblasts isolated from wild type and FAK-deficient mouse embryos. ET-1-mediated FAK activation and gene expression were studied in primary mouse lung fibroblasts, as well as in wild type and integrin β1-deficient fibroblasts. Results Increased FAK expression and activity are upregulated in fibroblast foci and remodeled vessels in lung fibrosis patients. Pharmacological or siRNA-mediated targeting of FAK resulted in marked abrogation of bleomycin-induced lung fibrosis. Loss of FAK impaired the acquisition of a profibrotic phenotype in response to ET-1. Profibrotic gene expression leading to myofibroblast differentiation required cell adhesion, and was driven by Jun N-terminal kinase activation through integrin β1/FAK signaling. Conclusion These results implicate FAK as a central mediator of fibrogenesis, and highlight this kinase as a potential therapeutic target in fibrotic diseases. PMID:22492165

  19. Stereological analysis of bacterial load and lung lesions in nonhuman primates (rhesus macaques) experimentally infected with Mycobacterium tuberculosis

    PubMed Central

    Oslund, Karen L.; Yang, Xiao-wei; Adamson, Lourdes; Ravindran, Resmi; Canfield, Don R.; Tarara, Ross; Hirst, Linda; Christensen, Miles; Lerche, Nicholas W.; Offenstein, Heather; Lewinsohn, David; Ventimiglia, Frank; Brignolo, Laurie; Wisner, Erik R.; Hyde, Dallas M.

    2011-01-01

    Infection with Mycobacterium tuberculosis primarily produces a multifocal distribution of pulmonary granulomas in which the pathogen resides. Accordingly, quantitative assessment of the bacterial load and pathology is a substantial challenge in tuberculosis. Such assessments are critical for studies of the pathogenesis and for the development of vaccines and drugs in animal models of experimental M. tuberculosis infection. Stereology enables unbiased quantitation of three-dimensional objects from two-dimensional sections and thus is suited to quantify histological lesions. We have developed a protocol for stereological analysis of the lung in rhesus macaques inoculated with a pathogenic clinical strain of M. tuberculosis (Erdman strain). These animals exhibit a pattern of infection and tuberculosis similar to that of naturally infected humans. Conditions were optimized for collecting lung samples in a nonbiased, random manner. Bacterial load in these samples was assessed by a standard plating assay, and granulomas were graded and enumerated microscopically. Stereological analysis provided quantitative data that supported a significant correlation between bacterial load and lung granulomas. Thus this stereological approach enables a quantitative, statistically valid analysis of the impact of M. tuberculosis infection in the lung and will serve as an essential tool for objectively comparing the efficacy of drugs and vaccines. PMID:21873450

  20. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases

    SciTech Connect

    D.W. Nigg; Various Others

    2014-06-01

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung.

  1. Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments

    SciTech Connect

    Stambaugh, Cassandra; Nelms, Benjamin E.; Dilling, Thomas; Stevens, Craig; Latifi, Kujtim; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2013-09-15

    Purpose: The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments.Methods: VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D{sub 99%}), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found.Results: For the motion amplitudes and periods obtained from

  2. Magnetic resonance imaging provides sensitive in vivo assessment of experimental ventilator-induced lung injury.

    PubMed

    Kuethe, Dean O; Filipczak, Piotr T; Hix, Jeremy M; Gigliotti, Andrew P; Estépar, Raúl San José; Washko, George R; Baron, Rebecca M; Fredenburgh, Laura E

    2016-08-01

    Animal models play a critical role in the study of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). One limitation has been the lack of a suitable method for serial assessment of acute lung injury (ALI) in vivo. In this study, we demonstrate the sensitivity of magnetic resonance imaging (MRI) to assess ALI in real time in rat models of VILI. Sprague-Dawley rats were untreated or treated with intratracheal lipopolysaccharide or PBS. After 48 h, animals were mechanically ventilated for up to 15 h to induce VILI. Free induction decay (FID)-projection images were made hourly. Image data were collected continuously for 30 min and divided into 13 phases of the ventilatory cycle to make cinematic images. Interleaved measurements of respiratory mechanics were performed using a flexiVent ventilator. The degree of lung infiltration was quantified in serial images throughout the progression or resolution of VILI. MRI detected VILI significantly earlier (3.8 ± 1.6 h) than it was detected by altered lung mechanics (9.5 ± 3.9 h, P = 0.0156). Animals with VILI had a significant increase in the Index of Infiltration (P = 0.0027), and early regional lung infiltrates detected by MRI correlated with edema and inflammatory lung injury on histopathology. We were also able to visualize and quantify regression of VILI in real time upon institution of protective mechanical ventilation. Magnetic resonance lung imaging can be utilized to investigate mechanisms underlying the development and propagation of ALI, and to test the therapeutic effects of new treatments and ventilator strategies on the resolution of ALI.

  3. Histopathological and immunohistological changes in the rabbit lung after experimental exposure to a purified enzyme of Micropolyspora faeni.

    PubMed Central

    Schällibaum, M; Hess, M W; Nicolet, J; König, H

    1977-01-01

    Rabbits were exposed intratracheally to enzyme 1, a highly immunogenic esterase isolated from Micropolyspora faeni. A single exposure to active enzyme 1 induced no histologically or immunohistochemically detectable changes in the lungs of experimental animals, while signs of focal interstitial and perivascular inflammatory reactions were evident following a course of three exposures to the enzyme. Interstitial pneumonia with characteristic generalized vasculitis and perivasculitis was produced following seven or nine inoculations. An enzymatically inactive preparation of enzyme 1, even by repeated administration, proved ineffective in eliciting pneumonia. Intracellular antigen within macrophages/histiocytes was demonstrated in the lungs of all experimental animals, including those which had been exposed to inhibited enzyme. Repeated exposure to the enzymatically active preparation resulted in the deposition of immunoglobulin and complement in association with vascular endothelia and in the walls of small- and medium-sized blood vessels; both immunoglobulin and complement could also be demonstrated within macrophages/histiocytes. On the basis of these findings it is concluded that (1) Farmer's lung-like interstitial pneumonia may be produced in rabbits by exposure to a purified, enzymatically active derivative of M. faeni, (2) an important pathogenic principle of the disease may consist in the rapid vascular deposition of immune complexes (type III reaction), and (3) damage by direct enzyme action may prove to contribute significantly in eliciting tissue damage by (an) ancillary mechanism(s) not yet understood. Images Fig. 1 PMID:330062

  4. Changes in the biophysical properties and ultrastructure of lungs, and intrapulmonary fibrin deposition in experimental acute pancreatitis.

    PubMed Central

    Berry, A R; Davies, G C; Millar, A M; Taylor, T V

    1983-01-01

    Using an experimental model of acute pancreatitis in the rat, we have studied changes in the biophysical properties of lungs and intrapulmonary fibrin deposition in this condition. Acute pancreatitis is associated with a significant decrease in pulmonary compliance (p less than 0.01) and a significant increase in lung weight (p less than 0.01) compared with a control sham operation group. These changes are associated with a 24% increase in intrapulmonary 125I fibrinogen deposition (p less than 0.01), and an 18% increase in 125I fibrinogen deposition per gram of lung tissue (p less than 0.05) in acute pancreatitis, compared with a control sham operation group. The increased fibrinogen deposition is abolished by treatment with low dose heparin. Using the same animal model changes in pulmonary ultrastructure are shown using scanning electron microscopy. The results indicate that pulmonary abnormalities are associated with intrapulmonary fibrin deposition in experimental acute pancreatitis and these findings may be relevant to the well described respiratory complications of the condition in man. Images Fig. 3 Fig. 4 Fig. 7 PMID:6618271

  5. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 1. Monomers

    SciTech Connect

    Debreczeny, M.P.; Sauer, K.; Zhou, J.; Bryant, D.A.

    1995-05-18

    Rate constants for excitation energy transfer in light-harvesting protein, C-phycocyanin (PC), in the monomeric aggregation state, isolated from the cyanobacterium cynechococcus sp. PCC 7002, are calculated, using Foerster theory and compared with the results of time-resolved fluorescence measurements. The assignments of the energy-transfer rate constants in PC monomers are confirmed here by time-resolved fluorescence anisotropy measurements of the PC monomers isolated from both the wild-type and a mutant strain (cpcB/C155S) whose PC is missing the {beta}{sub 155} chromophore. It is concluded that the Foerster model of resonant energy transfer in the weak coupling limit successfully describes the dominant energy-transfer processes in this protein in the monomeric state. 31 refs., 3 figs., 4 tabs.

  6. Effect of positive end-expiratory pressure on acoustic wave propagation in experimental porcine lung injury.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2015-03-01

    To evaluate the effect of positive end-expiratory pressure (PEEP) on sound propagation through injured lungs, we injected a multifrequency broad-band sound signal into the airway of eight anesthetized, intubated and mechanically ventilated pigs, while recording transmitted sound at three locations bilaterally on the chest wall. Oleic acid injections effected a severe pulmonary oedema predominately in the dependent lung regions, with an average increase in venous admixture from 19 ± 15 to 59 ± 14% (P < 0.001), and a reduction in dynamic respiratory system compliance from 34 ± 7 to 14 ± 4 ml cmH2 O(-1) (P < 0.001). A concomitant decrease in sound transit time was seen in the dependent lung regions (P < 0.05); no statistically significant change occurred in the lateral or non-dependent areas. The application of PEEP resulted in a decrease in venous admixture, increase in respiratory system compliance and return of the sound transit time to pre-injury levels in the dependent lung regions. Our results indicate that sound transmission velocity increases in lung tissue affected by permeability-type pulmonary oedema in a manner reversible during alveolar recruitment with PEEP.

  7. Involvement of triplet state in the photodissociation of hydrogen peroxide: experimental evidence from time-resolved EPR study

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, B.; Das, Ranjan

    The dissociation of photoexcited hydrogen peroxide to generate a pair of hydroxyl radicals is generally believed to take place in a repulsive electronic singlet state. The results presented here, based on time-resolved EPR experiments on the spin polarisation pattern of the acetone ketyl radical (CH3)2C•OH, generated on photodissociation of H2O2 in 2-propanol with a 248 nm laser light, strongly indicate significant involvement of a repulsive triplet state of excited hydrogen peroxide.

  8. Effects of atropine and propranolol on lung inflammation in experimental envenomation: comparison of two buthidae venoms

    PubMed Central

    2013-01-01

    Background Previous works had shown that scorpion venom induced neurotransmitter elevation and an inflammatory response associated with various anatomo-pathological modifications. The most dangerous scorpions species in Algeria responsible for these effects are Androctonus australis hector (Aah) and Androctonus amoreuxi (Aam). Results Comparison of the physiopathological effects induced by the two venoms showed differences in the kinetic of cytokine release and in lung injury. The lung edema was only observed in response to Aah venom and it was correlated with cell infiltration. In order to better understand the involved mechanism in inflammatory response, we used two antagonists, atropine (non-selective muscarinic antagonist) and propranolol (β adrenergic antagonist), which lead to a decrease of cell infiltration but has no effect on edema forming. Conclusion These results suggest another pathway in the development of lung injury following envenomation with Aam or Aah venom. PMID:23849182

  9. Fractal Geometry Enables Classification of Different Lung Morphologies in a Model of Experimental Asthma

    NASA Astrophysics Data System (ADS)

    Obert, Martin; Hagner, Stefanie; Krombach, Gabriele A.; Inan, Selcuk; Renz, Harald

    2015-06-01

    Animal models represent the basis of our current understanding of the pathophysiology of asthma and are of central importance in the preclinical development of drug therapies. The characterization of irregular lung shapes is a major issue in radiological imaging of mice in these models. The aim of this study was to find out whether differences in lung morphology can be described by fractal geometry. Healthy and asthmatic mouse groups, before and after an acute asthma attack induced by methacholine, were studied. In vivo flat-panel-based high-resolution Computed Tomography (CT) was used for mice's thorax imaging. The digital image data of the mice's lungs were segmented from the surrounding tissue. After that, the lungs were divided by image gray-level thresholds into two additional subsets. One subset contained basically the air transporting bronchial system. The other subset corresponds mainly to the blood vessel system. We estimated the fractal dimension of all sets of the different mouse groups using the mass radius relation (mrr). We found that the air transporting subset of the bronchial lung tissue enables a complete and significant differentiation between all four mouse groups (mean D of control mice before methacholine treatment: 2.64 ± 0.06; after treatment: 2.76 ± 0.03; asthma mice before methacholine treatment: 2.37 ± 0.16; after treatment: 2.71 ± 0.03; p < 0.05). We conclude that the concept of fractal geometry allows a well-defined, quantitative numerical and objective differentiation of lung shapes — applicable most likely also in human asthma diagnostics.

  10. Total deposition of ultrafine particles in the lungs of healthy men and women: experimental and theoretical results

    PubMed Central

    2016-01-01

    Background Inhaled ultrafine particles (UFP) may induce greater adverse respiratory effects than larger particles occurring in the ambient atmosphere. Due to this potential of UFP to act as triggers for diverse lung injuries medical as well as physical research has been increasingly focused on the exact deposition behavior of the particles in lungs of various probands. Main purpose of the present study was the presentation of experimental and theoretical data of total, regional, and local UFP deposition in the lungs of men and women. Methods Both experiments and theoretical simulations were carried out by using particle sizes of 0.04, 0.06, 0.08, and 0.10 µm [number median diameters (NMD)]. Inhalation of UFP took place by application of predefined tidal volumes (500, 750, and 1,000 mL) and respiratory flow rates (150, 250, 375, and 500 mL·s−1). For male subjects a functional residual capacity (FRC) of 3,911±892 mL was measured, whereas female probands had a FRC of 3,314±547 mL. Theoretical predictions were based on (I) a stochastic model of the tracheobronchial tree; (II) particle transport computations according to a random walk algorithm; and (III) empirical formulae for the description of UFP deposition. Results Total deposition fractions (TDF) are marked by a continuous diminution with increasing particle size. Whilst particles measuring 0.04 µm in size deposit in the respiratory tract by 40–70%, particles with a size of 0.10 µm exhibit deposition values ranging from 20% to 45%. Except for the largest particles studied here TDF of female probands are higher than those obtained for male probands. Differences between experimental and theoretical results are most significant for 0.10 µm particles, but never exceed 20%. Predictions of regional (extrathoracic, tracheobronchial, alveolar) UFP deposition show clearly that females tend to develop higher tracheobronchial and alveolar deposition fractions than males. This discrepancy is also confirmed by

  11. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis

    PubMed Central

    Schmidt, Eric P; Yang, Yimu; Janssen, William J; Gandjeva, Aneta; Perez, Mario J; Barthel, Lea; Zemans, Rachel L; Bowman, Joel C; Koyanagi, Dan E; Yunt, Zulma X; Smith, Lynelle P; Cheng, Sara S; Overdier, Katherine H; Thompson, Kathy R; Geraci, Mark W; Douglas, Ivor S; Pearse, David B; Tuder, Rubin M

    2013-01-01

    Sepsis, a systemic inflammatory response to infection, commonly progresses to acute lung injury (ALI), an inflammatory lung disease with high morbidity. We postulated that sepsis-associated ALI is initiated by degradation of the pulmonary endothelial glycocalyx, leading to neutrophil adherence and inflammation. Using intravital microscopy, we found that endotoxemia in mice rapidly induced pulmonary microvascular glycocalyx degradation via tumor necrosis factor-α (TNF-α)-dependent mechanisms. Glycocalyx degradation involved the specific loss of heparan sulfate and coincided with activation of endothelial heparanase, a TNF-α–responsive, heparan sulfate–specific glucuronidase. Glycocalyx degradation increased the availability of endothelial surface adhesion molecules to circulating microspheres and contributed to neutrophil adhesion. Heparanase inhibition prevented endotoxemia-associated glycocalyx loss and neutrophil adhesion and, accordingly, attenuated sepsis-induced ALI and mortality in mice. These findings are potentially relevant to human disease, as sepsis-associated respiratory failure in humans was associated with higher plasma heparan sulfate degradation activity; moreover, heparanase content was higher in human lung biopsies showing diffuse alveolar damage than in normal human lung tissue. PMID:22820644

  12. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis.

    PubMed

    Schmidt, Eric P; Yang, Yimu; Janssen, William J; Gandjeva, Aneta; Perez, Mario J; Barthel, Lea; Zemans, Rachel L; Bowman, Joel C; Koyanagi, Dan E; Yunt, Zulma X; Smith, Lynelle P; Cheng, Sara S; Overdier, Katherine H; Thompson, Kathy R; Geraci, Mark W; Douglas, Ivor S; Pearse, David B; Tuder, Rubin M

    2012-08-01

    Sepsis, a systemic inflammatory response to infection, commonly progresses to acute lung injury (ALI), an inflammatory lung disease with high morbidity. We postulated that sepsis-associated ALI is initiated by degradation of the pulmonary endothelial glycocalyx, leading to neutrophil adherence and inflammation. Using intravital microscopy, we found that endotoxemia in mice rapidly induced pulmonary microvascular glycocalyx degradation via tumor necrosis factor-α (TNF-α)-dependent mechanisms. Glycocalyx degradation involved the specific loss of heparan sulfate and coincided with activation of endothelial heparanase, a TNF-α-responsive, heparan sulfate-specific glucuronidase. Glycocalyx degradation increased the availability of endothelial surface adhesion molecules to circulating microspheres and contributed to neutrophil adhesion. Heparanase inhibition prevented endotoxemia-associated glycocalyx loss and neutrophil adhesion and, accordingly, attenuated sepsis-induced ALI and mortality in mice. These findings are potentially relevant to human disease, as sepsis-associated respiratory failure in humans was associated with higher plasma heparan sulfate degradation activity; moreover, heparanase content was higher in human lung biopsies showing diffuse alveolar damage than in normal human lung tissue.

  13. Gender influences the response to experimental silica-induced lung fibrosis in mice

    PubMed Central

    Brass, David M.; McGee, Sean P.; Dunkel, Mary K.; Reilly, Sarah M.; Tobolewski, Jacob M.; Sabo-Attwood, Tara

    2010-01-01

    Accumulating evidence suggests that gender can have a profound effect on incidence and severity of a variety of pulmonary diseases. To address the influence of gender on the development of silica-induced pulmonary fibrosis, we instilled 0.2 g/kg silica into male and female C57BL/6 mice and examined the fibrotic and inflammatory response at 14 days postexposure. Both silica-exposed male and female mice had significant increases in total lung hydroxyproline compared with saline controls. However, silica-exposed female mice had significantly less total lung hydroxyproline than silica-exposed male mice. This observation was confirmed by color thresholding image analysis. Interestingly, silica-exposed female mice had significantly more inflammatory cells, the majority of which were macrophages, as well as higher levels of the macrophage-specific chemokines MCP-1 and CCL9 in whole lung lavage compared with silica-exposed male mice. We also show that at baseline, estrogen receptor α (ERα) mRNA expression is lower in female mice than in males and that ERα mRNA expression is decreased by silica exposure. Finally, we show that the response of ovariectomized female mice to silica instillation is similar to that of male mice. These observations together show that gender influences the lung response to silica. PMID:20729388

  14. Inhibition of experimental lung metastasis by aerosol delivery of PEI-p53 complexes.

    PubMed

    Gautam, A; Densmore, C L; Waldrep, J C

    2000-10-01

    Mutations in the p53 tumor suppressor gene and the pathways mediated by the p53 protein are common in many human cancers. Replacement of functional p53 by gene therapy is a potential way of combating these cancers and the associated drug resistance and tumor growth. Aerosol delivery of genes is a noninvasive way of targeting genes to the lung for gene therapy. Here we demonstrate, using a murine melanoma lung metastasis model, that aerosol delivery of polyethyleneimine-p53 (PEI-p53) complexes inhibits the growth of lung metastasis. A significantly reduced number of visible foci were observed in C57BL/6 mice injected with B16-F10 melanoma and treated with PEI-p53 complexes by aerosol for 3 weeks at twice a week. Fifty percent of the mice in the PEI-p53-treated group exhibited no visible tumor foci. There was a significant reduction in the lung weights of p53-treated mice (P < 0.01) compared to control groups. The tumor burden was also significantly lower (P < 0.001) in mice treated with PEI-p53 complexes. No extrapulmonary metastasis was observed in the groups treated with PEI-p53 complexes compared to 50% of the mice in control groups, which showed metastasis to lymph nodes in the neck or abdomen. Treatment with PEI-p53 aerosol also led to about a 50% increase in the mean length of survival of the mice injected with B16-F10 cells. These data suggest that delivery of the p53 gene by aerosol using PEI as the gene delivery vector can inhibit the growth of lung metastasis. PMID:11020346

  15. Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer

    PubMed Central

    2013-01-01

    Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer. PMID:23635329

  16. Time-resolved fluorescence of thioredoxin single-tryptophan mutants: modeling experimental results with minimum perturbation mapping

    NASA Astrophysics Data System (ADS)

    Silva, Norberto D., Jr.; Haydock, Christopher; Prendergast, Franklyn G.

    1994-08-01

    The time-resolved fluorescence decay of single tryptophan (Trp) proteins is typically described using either a distribution of lifetimes or a sum of two or more exponential terms. A possible interpretation for this fluorescence decay heterogeneity is the existence of different isomeric conformations of Trp about its (chi) +1) and (chi) +2) dihedral angles. Are multiple Trp conformations compatible with the remainder of the protein in its crystallographic configuration or do they require repacking of neighbor side chains? It is conceivable that isomers of the neighbor side chains interconvert slowly on the fluorescence timescale and contribute additional lifetime components to the fluorescence intensity. We have explored this possibility by performing minimum perturbation mapping simulations of Trp 28 and Trp 31 in thioredoxin (TRX) using CHARMm 22. Mappings of Trp 29 and Trp 31 give the TRX Trp residue energy landscape as a function of (chi) +1) and (chi) +2) dihedral angles. Time-resolved fluorescence intensity and anisotropy decay of mutant TRX (W28F and W31F) are measured and interpreted in light of the above simulations. Relevant observables, like order parameters and isomerization rates, can be derived from the minimum perturbation maps and compared with experiment.

  17. Experimental study of the phase-shift miscalibration error in phase-shifting interferometry: use of a spectrally resolved white-light interferometer.

    PubMed

    Debnath, Sanjit K; Kothiyal, Mahendra P

    2007-08-01

    The white-light interferogram in a spectrally resolved white-light interferometer is decomposed in its constituent spectral components by a spectrometer and displayed along its chromaticity axis. A piezoelectric transducer phase shifter in such an interferometer can give a desired phase shift of pi/2 only at one wavelength. The phase shift varies continuously at all other wavelengths along the chromaticity axis. This situation is ideal for an experimental study of the phase error due to the phase-shift error in the phase-shifting technique, as it will be shown in this paper.

  18. Experimental chronic obstructive lung disease. I. Bronchopulmonary changes induced in rabbits by prolonged exposure to formaldehyde.

    PubMed

    Ionescu, J; Marinescu, D; Tapu, V; Eskenasy, A

    1978-01-01

    The prolonged exposure to formaldehyde induces in the rabbit lung reactional and dystrophic changes involving the intrapulmonary bronchi, the bronchioli and the lung tissue. These changes are represented by bronchial cell hyperplasia with hypermucigenesis, extrusion of bronchial cells, bronchiolar hypermucigenesis, parcellary squamous metaplasia or necrobiosis of epithelia, thickening of bronchial and bronchiolar walls by subepithelial cell accumulations, destruction of musculo-elastic structures with stenosis or ectasia; the vascular reactions are hyperhaemic and proliferative with an obstructive and fibrous tendency; the parenchymal lesions are atelectasias, intralobular emphysema, and cellular thickening of alveolar walls and interlobular areas. The acid phosphatase, Tween-60-esterase, naphthol-AS-D-acetate-esterase, proline-oxidase and hydroxyproline-2-epimerase activities are increasing, while the leucyl-aminopeptidase and beta-glucuronidase ones are decreasing. The qualitative observations are completed and sustained by quanitative studies of mucous cell kinetics, of cell accumulations and differentiations. PMID:151223

  19. Theoretical, numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy.

    PubMed

    Teulon, Claire; Gusachenko, Ivan; Latour, Gaël; Schanne-Klein, Marie-Claire

    2015-04-01

    Polarization-resolved second harmonic generation (P-SHG) microscopy is an efficient imaging modality for in situ observation of biopolymers structure in tissues, providing information about their mean in-plane orientation and their molecular structure and 3D distribution. Nevertheless, P-SHG signal build-up in a strongly focused regime is not throroughly understood yet, preventing reliable and reproducible measurements. In this study, theoretical analysis, vectorial numerical simulations and experiments are performed to understand how geometrical parameters, such as excitation and collection numerical apertures and detection direction, affect P-SHG imaging in homogeneous collagen tissues. A good agreement is obtained in tendon and cornea, showing that detection geometry significantly affects the SHG anisotropy measurements, but not the measurements of collagen in-plane orientation. PMID:25968762

  20. Percutaneous Radiofrequency Lung Ablation Combined with Transbronchial Saline Injection: An Experimental Study in Swine

    SciTech Connect

    Kawai, T. Kaminou, T. Sugiura, K.; Hashimoto, M.; Ohuchi, Y.; Adachi, A.; Fujioka, S.; Ito, H.; Nakamura, K.; Ihaya, T.; Ogawa, T.

    2010-02-15

    To evaluate the efficacy of radiofrequency lung ablation with transbronchial saline injection. The bilateral lungs of eight living swine were used. A 13-gauge bone biopsy needle was inserted percutaneously into the lung, and 1 ml of muscle paste was injected to create a tumor mimic. In total, 21 nodules were ablated. In the saline injection group (group A), radiofrequency ablation (RFA) was performed for 11 nodules after transbronchial saline injection under balloon occlusion with a 2-cm active single internally cooled electrode. In the control group (group B), conventional RFA was performed for 10 nodules as a control. The infused saline liquid showed a wedge-shaped and homogeneous distribution surrounding a tumor mimic. All 21 RFAs were successfully completed. The total ablation time was significantly longer (13.4 {+-} 2.8 min vs. 8.9 {+-} 3.5 min; P = 0.0061) and the tissue impedance was significantly lower in group A compared with group B (73.1 {+-} 8.8 {Omega} vs. 100.6 {+-} 16.6 {Omega}; P = 0.0002). The temperature of the ablated area was not significantly different (69.4 {+-} 9.1{sup o}C vs. 66.0 {+-} 7.9{sup o}C; P = 0.4038). There was no significant difference of tumor mimic volume (769 {+-} 343 mm{sup 3} vs. 625 {+-} 191 mm{sup 3}; P = 0.2783). The volume of the coagulated area was significantly larger in group A than in group B (3886 {+-} 1247 mm{sup 3} vs. 2375 {+-} 1395 mm{sup 3}; P = 0.0221). Percutaneous radiofrequency lung ablation combined with transbronchial saline injection can create an extended area of ablation.

  1. Models for comparing lung-cancer risks in radon- and plutonium-exposed experimental animals

    SciTech Connect

    Gilbert, E.S.; Cross, F.T.; Sanders, C.L.; Dagle, G.E.

    1990-10-01

    Epidemiologic studies of radon-exposed underground miners have provided the primary basis for estimating human lung-cancer risks resulting from radon exposure. These studies are sometimes used to estimate lung-cancer risks resulting from exposure to other alpha- emitters as well. The latter use, often referred to as the dosimetric approach, is based on the assumption that a specified dose to the lung produces the same lung-tumor risk regardless of the substance producing the dose. At Pacific Northwest Laboratory, experiments have been conducted in which laboratory rodents have been given inhalation exposures to radon and to plutonium ({sup 239}PuO{sub 2}). These experiments offer a unique opportunity to compare risks, and thus to investigate the validity of the dosimetric approach. This comparison is made most effectively by modeling the age-specific risk as a function of dose in a way that is comparable to analyses of human data. Such modeling requires assumptions about whether tumors are the cause of death or whether they are found incidental to death from other causes. Results based on the assumption that tumors are fatal indicate that the radon and plutonium dose-response curves differ, with a linear function providing a good description of the radon data, and a pure quadratic function providing a good description of the plutonium data. However, results based on the assumption that tumors are incidental to death indicate that the dose-response curves for the two exposures are very similar, and thus support the dosimetric approach. 14 refs., 2 figs., 6 tabs.

  2. Effect of tramadol on lung injury induced by skeletal muscle ischemia-reperfusion: an experimental study*

    PubMed Central

    Takhtfooladi, Mohammad Ashrafzadeh; Jahanshahi, Amirali; Sotoudeh, Amir; Jahanshahi, Gholamreza; Takhtfooladi, Hamed Ashrafzadeh; Aslani, Kimia

    2013-01-01

    OBJECTIVE: To determine whether tramadol has a protective effect against lung injury induced by skeletal muscle ischemia-reperfusion. METHODS: Twenty Wistar male rats were allocated to one of two groups: ischemia-reperfusion (IR) and ischemia-reperfusion + tramadol (IR+T). The animals were anesthetized with intramuscular injections of ketamine and xylazine (50 mg/kg and 10 mg/kg, respectively). All of the animals underwent 2-h ischemia by occlusion of the femoral artery and 24-h reperfusion. Prior to the occlusion of the femoral artery, 250 IU heparin were administered via the jugular vein in order to prevent clotting. The rats in the IR+T group were treated with tramadol (20 mg/kg i.v.) immediately before reperfusion. After the reperfusion period, the animals were euthanized with pentobarbital (300 mg/kg i.p.), the lungs were carefully removed, and specimens were properly prepared for histopathological and biochemical studies. RESULTS: Myeloperoxidase activity and nitric oxide levels were significantly higher in the IR group than in the IR+T group (p = 0.001 for both). Histological abnormalities, such as intra-alveolar edema, intra-alveolar hemorrhage, and neutrophil infiltration, were significantly more common in the IR group than in the IR+T group. CONCLUSIONS: On the basis of our histological and biochemical findings, we conclude that tramadol prevents lung tissue injury after skeletal muscle ischemia-reperfusion. PMID:24068264

  3. [The quality of the preservation of lungs using different solutions (an experimental study)].

    PubMed

    Khodzhimatov, G M; Movsesov, R V; Zhavoronkov, N A; Ivanova, A G; Zhidkov, I L; Sheremet'eva, G F; Dement'eva, I I; Perel'man, M I

    1993-01-01

    Effects of different perfusion conditions and storage of isolated dog lungs on the process of edema development were studied. Sixty-nine mongrel dogs were used in the study. In case of a 15 min perfusion via the pulmonary artery and 12 h storage lung condition depended mainly on the type of solution and addition of protective drugs to this solution. Euro-Collins and low-potassium electrolytic solution markedly increased capillary hydrostatic pressure and drastically reduced plasma colloid-osmotic pressure. As a result filtration coefficient increased and as soon as an hour after reperfusion onset a marked pulmonary edema developed. Use of LPD solution without drugs added for 2.5 h reperfusion was associated with a moderate increase of capillary hydrostatic pressure and negligible decrease of plasma colloid-osmotic pressure. If the reperfusion were longer plasma colloid-osmotic pressure reduced, this leading to development of moderate pulmonary edema. A 15 min lung perfusion via the pulmonary artery and 12 h storage at 1 degree C in LPD solution with membrane protectors and antioxidants was associated with virtually unchanged capillary hydrostatic pressure, plasma colloid-osmotic pressure, and filtration coefficient and, hence, no pulmonary edema.

  4. Exogenous Hydrogen Sulfide (H2S) Protects Alveolar Growth in Experimental O2-Induced Neonatal Lung Injury

    PubMed Central

    Vadivel, Arul; Alphonse, Rajesh S.; Ionescu, Lavinia; Machado, Desiree S.; O’Reilly, Megan; Eaton, Farah; Haromy, Al; Michelakis, Evangelos D.; Thébaud, Bernard

    2014-01-01

    Background Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, remains a major health problem. BPD is characterized by impaired alveolar development and complicated by pulmonary hypertension (PHT). Currently there is no specific treatment for BPD. Hydrogen sulfide (H2S), carbon monoxide and nitric oxide (NO), belong to a class of endogenously synthesized gaseous molecules referred to as gasotransmitters. While inhaled NO is already used for the treatment of neonatal PHT and currently tested for the prevention of BPD, H2S has until recently been regarded exclusively as a toxic gas. Recent evidence suggests that endogenous H2S exerts beneficial biological effects, including cytoprotection and vasodilatation. We hypothesized that H2S preserves normal alveolar development and prevents PHT in experimental BPD. Methods We took advantage of a recently described slow-releasing H2S donor, GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) to study its lung protective potential in vitro and in vivo. Results In vitro, GYY4137 promoted capillary-like network formation, viability and reduced reactive oxygen species in hyperoxia-exposed human pulmonary artery endothelial cells. GYY4137 also protected mitochondrial function in alveolar epithelial cells. In vivo, GYY4137 preserved and restored normal alveolar growth in rat pups exposed from birth for 2 weeks to hyperoxia. GYY4137 also attenuated PHT as determined by improved pulmonary arterial acceleration time on echo-Doppler, pulmonary artery remodeling and right ventricular hypertrophy. GYY4137 also prevented pulmonary artery smooth muscle cell proliferation. Conclusions H2S protects from impaired alveolar growth and PHT in experimental O2-induced lung injury. H2S warrants further investigation as a new therapeutic target for alveolar damage and PHT. PMID:24603989

  5. Numerical and Experimental Aspects of Data Acquisition and Processing in Application to Temperature Resolved 3-D Sub-Millimeter Spectroscopy for Astrophysics and Spectral Assignment.

    NASA Astrophysics Data System (ADS)

    Medvedev, Ivan R.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2009-06-01

    Experimental determination of the lower state energy for every transition in molecular spectra, made possible by temperature resolved 3-D spectroscopy, opens new frontiers in our ability to predict molecular spectra over a wide range of temperatures and to assign rotational spectra in many vibrational states. Our improved collisional cooling cell design extends temperature coverage of this technique to 77 K. This enhances our ability to simulate molecular spectra at temperatures of astronomical relevance. We are reporting on experimental and numerical aspects of dealing with exceptionally high information content of these spectra. New data reduction algorithms allow us to process this data in timely fashion in an attempt to make them available to astronomical community.

  6. BN 52021 (a platelet activating factor-receptor antagonist) decreases alveolar macrophage-mediated lung injury in experimental extrinsic allergic alveolitis.

    PubMed Central

    Pérez-Arellano, J L; Martín, T; López-Novoa, J M; Sánchez, M L; Montero, A; Jiménez, A

    1998-01-01

    Several lines of research indirectly suggest that platelet activating factor (PAF) may intervene in the pathogenesis of extrinsic allergic alveolitis (EAA). The specific aim of our study was to evaluate the participation of PAF on macrophage activation during the acute phase of EAA in an experimental model of this disease developed in guinea pigs. Initially we measured the concentration of PAF in bronchoalvedar lavage fluid, blood and lung tissue. In a second phase we evaluate the participation of PAF on alveolar macrophage activation and parenchymal lung injury. The effect of PAF on parenchymal lung injury was evaluated by measuring several lung parenchymatous lesion indices (lung index, bronchoalvedar lavage fluid (BALF) lactic hydrogenase activity and BALF alkaline phosphatase activity) and parameters of systemic response to the challenge (acute phase reagents). We observed that induction of the experimental EAA gave rise to an increase in the concentration of PAF in blood and in lung tissue. The use of the PAF-receptor antagonist BN52021 decreases the release of lysosomal enzymes (beta-glucuronidase and tartrate-sensitive acid phosphatase) to the extracellular environment both in vivo and in vitro. Furthermore, antagonism of the PAF receptors notably decreases pulmonary parenchymatous lesion. These data suggest that lung lesions from acute EAA are partly mediated by local production of PAF. PMID:9705608

  7. The Complete, Temperature Resolved Experimental Spectrum of Methanol (CH3OH) between 214.6 and 265.4 GHz

    NASA Astrophysics Data System (ADS)

    McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-11-01

    The spectrum of methanol (CH3OH) has been characterized between 214.6 and 265.4 GHz for astrophysically significant temperatures. Four hundred and eighty-six spectra with absolute intensity calibration recorded between 240 and 389 K provided a means for the calculation of the complete experimental spectrum (CES) of methanol as a function of temperature. The CES includes contributions from vt = 3 and other higher states that are difficult to model quantum mechanically (QM). It also includes the spectrum of the 13C isotopologue in terrestrial abundance. In general the QM models provide frequencies that are within 1 MHz of their experimental values, but there are several outliers that differ by tens of MHz. As in our recent work on methanol in the 560-654 GHz region, significant intensity differences between our experimental intensities and cataloged values were found. In this work these differences are explored in the context of several QM analyses. The experimental results presented here are analyzed to provide a frequency point-by-point catalog that is well suited for the simulation of crowded and overlapped spectra. Additionally, a catalog in the usual line frequency, line strength, and lower state energy format is provided.

  8. Experimental Investigation of Coronal Plasma Conditions in Direct-Drive ICF Using Time-Resolved X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Regan, S. P.; Goncharov, V. N.; Knauer, J. P.; Epstein, R.; Craxton, R. S.; Delettrez, J. A.; Marshall, F. J.; Yaakobi, B.; Meyerhofer, D. D.; Radha, P. B.; Sangster, T. C.; Seka, W.

    2003-10-01

    The ne and Te of planar plasmas generated with six beams of the OMEGA laser are diagnosed with time-resolved K-shell spectroscopy of microdot tracer layers. Plastic foils (125 μm thick) with buried microdots (Al, KCl) were irradiated with a high-intensity, 100-ps Gaussian pulse (5 × 10^14 W/cm^2) or a low-intensity (3 × 10^13 W/cm^2), 1-ns square pulse, corresponding to the initial stages of direct-drive implosions with and without a short, high-intensity picket at the beginning of the drive pulse. The microdot buried depth was varied (0.1 to 0.5 μm) to probe the plasma at different times. Simulated spectra generated by post-processing hydrocode output (1-D LILAC, 2-D SAGE) with the FLY atomic physics code will be compared with the measured spectra. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  9. Resolving the aluminum ordering in aluminosilicates by a combined experimental/theoretical study of 27Al electric field gradients.

    PubMed

    Rocquefelte, Xavier; Clabau, Frédéric; Paris, Michael; Deniard, Philippe; Le Mercier, Thierry; Jobic, Stéphane; Whangbo, Myung-Hwan

    2007-07-01

    The discrimination between atomic species in light-element materials is a challenging question. An archetypal example is the resolution of the Al/Si ordering in aluminosilicates. Only an average long-range order can be deduced from powder X-ray or neutron diffraction, while magic-angle-spinning NMR provides an accurate picture of the short-range order. The long- and short-range orders thus obtained usually differ, hence raising the question of whether the difference between local and extended orders is intrinsic or caused by the difficulty of obtaining an accurate picture of the long-range order from diffraction techniques. In this communication we resolve this question for the monoclinic phases of BaAl2Si2O8 and SrAl2Si2O8 on the basis of 27Al NMR measurements and ab initio simulation of electric field gradient. Although the long- and short-range orders deduced from our XRD and NMR experiments differ, they become similar when the XRD atomic positions are optimized by ab initio electronic structure calculations.

  10. Targeting SOD1 reduces experimental non–small-cell lung cancer

    PubMed Central

    Glasauer, Andrea; Sena, Laura A.; Diebold, Lauren P.; Mazar, Andrew P.; Chandel, Navdeep S.

    2013-01-01

    Approximately 85% of lung cancers are non–small-cell lung cancers (NSCLCs), which are often diagnosed at an advanced stage and associated with poor prognosis. Currently, there are very few therapies available for NSCLCs due to the recalcitrant nature of this cancer. Mutations that activate the small GTPase KRAS are found in 20% to 30% of NSCLCs. Here, we report that inhibition of superoxide dismutase 1 (SOD1) by the small molecule ATN-224 induced cell death in various NSCLC cells, including those harboring KRAS mutations. ATN-224–dependent SOD1 inhibition increased superoxide, which diminished enzyme activity of the antioxidant glutathione peroxidase, leading to an increase in intracellular hydrogen peroxide (H2O2) levels. We found that ATN-224–induced cell death was mediated through H2O2-dependent activation of P38 MAPK and that P38 activation led to a decrease in the antiapoptotic factor MCL1, which is often upregulated in NSCLC. Treatment with both ATN-224 and ABT-263, an inhibitor of the apoptosis regulators BCL2/BCLXL, augmented cell death. Furthermore, we demonstrate that ATN-224 reduced tumor burden in a mouse model of NSCLC. Our results indicate that antioxidant inhibition by ATN-224 has potential clinical applications as a single agent, or in combination with other drugs, for the treatment of patients with various forms of NSCLC, including KRAS-driven cancers. PMID:24292713

  11. Tilmicosin does not inhibit interleukin-8 gene expression in the bovine lung experimentally infected with Mannheimia (Pasteurella) haemolytica.

    PubMed

    Goubau, S; Morck, D W; Buret, A

    2000-10-01

    The expression of the interleukin-8 (IL-8) gene was examined by in situ hybridization in lung tissues from calves experimentally infected with Mannheimia (Pasteurella) haemolytica and treated with tilmicosin. Interleukin-8 mRNA expression was detected in alveolar areas, particularly along interlobular septa, in the lumen, and in the epithelial cells of some bronchioles. In lesional lung tissues from animals that had received tilmicosin, we found large areas with limited inflammation. There was no staining for IL-8 mRNA in these areas. In contrast, in strongly inflamed areas, the same patterns and intensities of staining for IL-8 mRNA were detected in tilmicosin- and sham-treated animals. We conclude that tilmicosin does not affect the expression of IL-8 mRNA in tissue showing microscopic signs of inflammation. Together with previous reports, this supports the view that the pro-apoptotic properties of tilmicosin on neutrophils do not compromise the host defense mechanisms required to control the infection.

  12. The complete, temperature resolved experimental spectrum of methanol (CH{sub 3}OH) between 560 and 654 GHz

    SciTech Connect

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-02-20

    The complete spectrum of methanol (CH{sub 3}OH) has been characterized over a range of astrophysically significant temperatures in the 560.4-654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248-398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from v{sub t} = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the {sup 13}C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.

  13. Effect of quercetin supplementation on lung antioxidants after experimental influenza virus infection.

    PubMed

    Kumar, Pankaj; Khanna, Madhu; Srivastava, Vikram; Tyagi, Yogesh Kumar; Raj, Hanumanthrao G; Ravi, K

    2005-06-01

    In the mice, instillation of influenza virus A/Udorn/317/72(H3N2) intranasally resulted in a significant decrease in the pulmonary concentrations of catalase, reduced glutathione, and superoxide dismutase. There was a decrease in vitamin E level also. These effects were observed on the 5th day after viral instillation. Oral supplementation with quercetin simultaneous with viral instillation produced significant increases in the pulmonary concentrations of catalase, reduced glutathione, and superoxide dismutase. However, quercetin did not reverse the fall in vitamin E level associated with the viral infection. It is concluded that during influenza virus infection, there is "oxidative stress." Because quercetin restored the concentrations of many antioxidants, it is proposed that it may be useful as a drug in protecting the lung from the deleterious effects of oxygen derived free radicals released during influenza virus infection.

  14. Embryonic lung morphogenesis in organ culture: experimental evidence for a proteoglycan function in the extracellular matrix

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Bassett, K. E.; Spooner, B. S. Jr

    1993-01-01

    The lung rudiment, isolated from mid-gestation (11 day) mouse embryos, can undergo morphogenesis in organ culture. Observation of living rudiments, in culture, reveals both growth and ongoing bronchiolar branching activity. To detect proteoglycan (PG) biosynthesis, and deposition in the extracellular matrix, rudiments were metabolically labeled with radioactive sulfate, then fixed, embedded, sectioned and processed for autoradiography. The sulfated glycosaminoglycan (GAG) types, composing the carbohydrate component of the proteoglycans, were evaluated by selective GAG degradative approaches that showed chondroitin sulfate PG principally associated with the interstitial matrix, and heparan sulfate PG principally associated with the basement membrane. Experiments using the proteoglycan biosynthesis disrupter, beta-xyloside, suggest that when chondroitin sulfate PG deposition into the ECM is perturbed, branching morphogenesis is compromised.

  15. Thermal Ablation of Lung Tissue: In Vivo Experimental Comparison of Microwave and Radiofrequency

    SciTech Connect

    Crocetti, Laura Bozzi, Elena; Faviana, Pinuccia; Cioni, Dania; Della Pina, Clotilde; Sbrana, Alberto; Fontanini, Gabriella; Lencioni, Riccardo

    2010-08-15

    This study was designed to compare feasibility, safety, and effectiveness of microwave (MW) ablation versus radiofrequency (RF) ablation of lung tissue in a rabbit model. Twenty New Zealand White rabbits were submitted to MW (n = 10, group A) or RF ablation (n = 10, group B). The procedures were performed with a prototype MW ablation device with a 1.6-cm radiating section antenna (Valleylab MW Ablation System) and with a 2-cm exposed-tip RF electrode (Cool-tip RF Ablation System). At immediate computed tomography increase in density, maximum diameters (D1-D3) of ablation zones were measured and ablation volume was calculated. Histopathologic assessment was performed 3 and 7 days after the procedure. Technical success was achieved in nine of 10 rabbits in each group. One death occurred in group B. Complications included pneumothorax (group A, n = 4; group B, n = 4), abscess (group A, n = 1; group B, n = 1), and thoracic wall burn (group A, n = 4). No significant differences were demonstrated in attenuation increase (P = 0.73), dimensions (P = 0.28, 0.86, 0.06, respectively, comparing D1-D3) and volume (P = 0.17). At histopathology, ablation zones were similar, with septal necrosis, edema, hemorrhage, and peripheral lymphocytic infiltrate. Complete thrombosis of more than 90% of vessels up to 2 mm in diameter was depicted at the periphery of the ablation zone in group A specimens. In group B specimens, complete thrombosis was depicted in 20% of vessels. Feasibility and safety of MW and RF ablation are similar in a lung rabbit model. MW ablation produces a greater damage to peripheral small vessels inducing thrombosis.

  16. Lung Radiofrequency Ablation: In Vivo Experimental Study with Low-Perfusion-Rate Multitined Electrodes

    SciTech Connect

    Crocetti, Laura Lencioni, Riccardo; Bozzi, Elena; Sbrana, Alberto; Bartolozzi, Carlo

    2008-05-15

    The purpose of this study was to investigate the feasibility and safety of lung radiofrequency (RF) ablation by using low-perfusion-rate, expandable, multitined electrodes in an in vivo animal model. Ten New Zealand White rabbits underwent RF ablation using low-perfusion-rate, expandable, multitined electrodes (Starburst Talon; RITA Medical Systems, Mountain View, CA) and a 200-W RF generator. The electrode was positioned under fluoroscopy guidance and a single percutaneous RF ablation was performed. Saline perfusate was doped with nonionic iodinated contrast agent to render it visible on computed tomography (CT). The pump infused the saline doped with contrast agent into the lateral tines at a rate of 0.1ml/min. The planned ablation was of 3 min, with the hooks deployed to 2 cm at a target temperature of 105{sup o}C. An immediate posttreatment CT scan documented the distribution of the doped saline and the presence of immediate complications. The animals were monitored for delayed complications and sacrificed within 72 h (n = 4), 2 weeks (n = 3), or 4 weeks (n = 3). Assessment of ablation zone and adjacent structures was done at autopsy. Major complications consisted of pneumothorax requiring drainage (n = 2) and skin burn (n = 1). Immediately after the procedure the area of ablation was depicted at CT as a round, well-demarcated area, homogeneously opacified by iodinated contrast medium (mean size, 2.3 {+-} 0.8 cm). The presence of a sharply demarcated area of coagulation necrosis (mean size, 2.1 {+-} 0.4 cm) without severe damage to adjacent structures was confirmed at autopsy. In one case, euthanized at 4 weeks, in whom pneumothorax and pleural effusion were depicted, pleural fibrinous adhesions were demonstrated at autopsy. In conclusion, lung RF ablation performed in an in vivo animal model using low-perfusion-rate, expandable, multitined electrodes is feasible and safe. No severe damage to adjacent structures was demonstrated.

  17. Bilateral vagotomy or atropine pre-treatment reduces experimental diesel-soot induced lung inflammation

    SciTech Connect

    McQueen, D.S. . E-mail: D.S.McQueen@ed.ac.uk; Donaldson, K.; McNeilly, J.D.; Barton, N.J.; Duffin, R.

    2007-02-15

    To investigate the role of the vagus nerve in acute inflammatory and cardiorespiratory responses to diesel particulate (DP) in the rat airway, we measured changes in respiration, blood pressure and neutrophils in lungs of urethane anesthetized Wistar rats 6-h post-instillation of DP (500 {mu}g) and studied the effect of mid-cervical vagotomy or atropine (1 mg kg{sup -1}) pre-treatment. In conscious rats, we investigated DP, with and without atropine pre-treatment. DP increased neutrophil level in BAL (bronchoalveolar lavage) fluid from intact anesthetized rats to 2.5 {+-} 0.7 x 10{sup 6} cells (n = 8), compared with saline instillation (0.3 {+-} 0.1 x 10{sup 6}, n = 7; P < 0.05). Vagotomy reduced DP neutrophilia to 0.8 {+-} 0.2 x 10{sup 6} cells (n = 8; P < 0.05 vs. intact); atropine reduced DP-induced neutrophilia to 0.3 {+-} 0.2 x 10{sup 6} (n = 4; P < 0.05). In conscious rats, DP neutrophilia of 8.5 {+-} 1.8 x 10{sup 6}, n = 4, was reduced by pre-treatment with atropine to 2.2 {+-} 1.2 x 10{sup 6} cells, n = 3. Hyperventilation occurred 6 h after DP in anesthetized rats with intact vagi, but not in bilaterally vagotomized or atropine pre-treated animals and was abolished by vagotomy (P < 0.05, paired test). There were no significant differences in the other variables (mean blood pressure, heart rate and heart rate variability) measured before and 360 min after DP. In conclusion, DP activates a pro-inflammatory vago-vagal reflex which is reduced by atropine. Muscarinic ACh receptors in the rat lung are involved in DP-induced neutrophilia, and hence muscarinic antagonists may reduce airway and/or cardiovascular inflammation evoked by inhaled atmospheric DP in susceptible individuals.

  18. A new experimental setup for the time resolved x-ray diffraction study of self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Vrel, D.; Girodon-Boulandet, N.; Paris, S.; Mazué, J. F.; Couqueberg, E.; Gailhanou, M.; Thiaudière, D.; Gaffet, E.; Bernard, F.

    2002-02-01

    A new experimental setup for time resolved x-ray diffraction is described. Designed for the LURE H10 beamline and its 4 (+2) circles goniometer, it allows simultaneous recordings of x-ray patterns with a rate of 30 patterns per second, a maximum 2θ range of 120°, infrared thermography at the same rate, and thermocouples readings at a frequency of up to 3×104 Hz. Preliminary results obtained using this setup are presented, showing how it is possible to analyze a solid-solid or solid-liquid reaction. As an example, an in situ study of phase transformation and temperature evolution during the self-sustaining synthesis of an FeAl intermetallic compound starting from a mechanically activated mixture is investigated. The versatility of the setup was proved and could even be enhanced by the design of new sample holders, thus expanding its area of use at low cost.

  19. Experimental validation of the van Herk margin formula for lung radiation therapy

    SciTech Connect

    Ecclestone, Gillian; Heath, Emily; Bissonnette, Jean-Pierre

    2013-11-15

    Purpose: To validate the van Herk margin formula for lung radiation therapy using realistic dose calculation algorithms and respiratory motion modeling. The robustness of the margin formula against variations in lesion size, peak-to-peak motion amplitude, tissue density, treatment technique, and plan conformity was assessed, along with the margin formula assumption of a homogeneous dose distribution with perfect plan conformity.Methods: 3DCRT and IMRT lung treatment plans were generated within the ORBIT treatment planning platform (RaySearch Laboratories, Sweden) on 4DCT datasets of virtual phantoms. Random and systematic respiratory motion induced errors were simulated using deformable registration and dose accumulation tools available within ORBIT for simulated cases of varying lesion sizes, peak-to-peak motion amplitudes, tissue densities, and plan conformities. A detailed comparison between the margin formula dose profile model, the planned dose profiles, and penumbra widths was also conducted to test the assumptions of the margin formula. Finally, a correction to account for imperfect plan conformity was tested as well as a novel application of the margin formula that accounts for the patient-specific motion trajectory.Results: The van Herk margin formula ensured full clinical target volume coverage for all 3DCRT and IMRT plans of all conformities with the exception of small lesions in soft tissue. No dosimetric trends with respect to plan technique or lesion size were observed for the systematic and random error simulations. However, accumulated plans showed that plan conformity decreased with increasing tumor motion amplitude. When comparing dose profiles assumed in the margin formula model to the treatment plans, discrepancies in the low dose regions were observed for the random and systematic error simulations. However, the margin formula respected, in all experiments, the 95% dose coverage required for planning target volume (PTV) margin derivation, as

  20. THE COMPLETE, TEMPERATURE-RESOLVED EXPERIMENTAL SPECTRUM OF VINYL CYANIDE (H{sub 2}CCHCN) BETWEEN 210 AND 270 GHz

    SciTech Connect

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.; Medvedev, Ivan R.

    2011-08-10

    The results of an experimental approach to the identification and characterization of the astrophysical weed vinyl cyanide in the 210-270 GHz region are reported. This approach is based on spectrally complete, intensity-calibrated spectra taken at more than 400 different temperatures in the 210-270 GHz region and is used to produce catalogs in the usual astrophysical format: line frequency, line strength, and lower state energy. As in our earlier study of ethyl cyanide, we also include the results of a frequency point-by-point analysis, which is especially well suited for characterizing weak lines and blended lines in crowded spectra. This study shows substantial incompleteness in the quantum-mechanical (QM) models used to calculate astrophysical catalogs, primarily due to their omission of many low-lying vibrational states of vinyl cyanide, but also due to the exclusion of perturbed rotational transitions. Unlike ethyl cyanide, the QM catalogs for vinyl cyanide include analyses of perturbed excited vibrational states, whose modeling is more challenging. Accordingly, we include an empirical study of the frequency accuracy of these QM models. We observe modest frequency differences for some vibrationally excited lines.

  1. Exogenous surfactant suppresses inflammation in experimental endotoxin-induced lung injury.

    PubMed

    Mittal, Neha; Sanyal, Sankar Nath

    2009-01-01

    Our objective was to evaluate the anti-inflammatory effects of exogenous surfactant and surfactant phospholipids on the lipopolysaccharide (LPS)-induced lung injury. Exogenous surfactant (porcine surfactant) and surfactant phospholipid (dipalmitoyl phospholipid DPPC, hexadecanol, tylaxopol) were instilled intratracheally with LPS in rats. Expression of surfactant apoproteins (SP-A) and the cyclooxygenase enzymes (COX-1 and -2) was studied by immunohistochemistry, and apoptosis was analyzed by in situ terminal dUTP nick end labeling TUNEL assay. The intracellular reactive oxygen species (ROS) was measured in the isolated macrophages by fluorescence measurement with dichlorofluorescein diacetate (DCFH-DA). LPS-induced oxidative burst and apoptosis at 72 hours were reduced by both porcine and synthetic surfactant. SP-A as well as COX-1 and -2 expressions were suppressed with synthetic surfactant treatment, whereas with porcine surfactant (P-SF) the SP-A expression was enhanced in response to LPS administration. These results indicate that exogenous surfactant inhibits LPS-induced inflammation. This anti-inflammatory activity may be an important outcome of surfactant therapy in endotoxin-induced respiratory distress.

  2. Experimental and clinical studies with somatostatin analogue octreotide in small cell lung cancer.

    PubMed Central

    Macaulay, V. M.; Smith, I. E.; Everard, M. J.; Teale, J. D.; Reubi, J. C.; Millar, J. L.

    1991-01-01

    We have detected somatostatin receptors (SSR) by autoradiography in 3/4 established small cell lung cancer (SCLC) cell lines but not in two non-SCLC cell lines. The growth of 1/3 SSR positive SCLC cell lines was significantly inhibited by the long-acting somatostatin analogue octreotide (SMS 201-995, Sandostatin) 10(-9) M. We treated 20 SCLC patients with octreotide 250 micrograms three times daily for 1 week prechemotherapy (six patients) or at relapse after chemotherapy (14). Octreotide was well tolerated, and serum insulin-like growth factor-I levels were suppressed to 62 +/- 7% of pre-treatment levels. However there was no evidence of anti-tumour activity measured by tumour bulk or serum levels of neuron-specific enolase. In one patient metastatic skin nodules were shown to be SSR positive before and at the end of 2 weeks octreotide. Despite this the patient had progressive disease, and tumour cells obtained by fine needle aspirate before and after treatment showed no growth inhibition when cultured with octreotide immediately or following establishment as a cell line. In summary we saw little correlation between SSR expression and growth inhibition by octreotide, either in vitro or clinically. Images Figure 4 PMID:1654981

  3. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  4. High pressure and time resolved studies of optical properties of n-type doped GaN/AlN multi-quantum wells: Experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Kaminska, A.; Jankowski, D.; Strak, P.; Korona, K. P.; Beeler, M.; Sakowski, K.; Grzanka, E.; Borysiuk, J.; Sobczak, K.; Monroy, E.; Krukowski, S.

    2016-09-01

    High-pressure and time-resolved studies of the optical emission from n-type doped GaN/AlN multi-quantum-wells (MQWs) with various well thicknesses are analysed in comparison with ab initio calculations of the electronic (band structure, density of states) and optical (emission energies and their pressure derivatives, oscillator strength) properties. The optical properties of GaN/AlN MQWs are strongly affected by quantum confinement and polarization-induced electric fields. Thus, the photoluminescence (PL) peak energy decreases by over 1 eV with quantum well (QW) thicknesses increasing from 1 to 6 nm. Furthermore, the respective PL decay times increased from about 1 ns up to 10 μs, due to the strong built-in electric field. It was also shown that the band gap pressure coefficients are significantly reduced in MQWs as compared to bulk AlN and GaN crystals. Such coefficients are strongly dependent on the geometric factors such as the thickness of the wells and barriers. The transition energies, their oscillator strength, and pressure dependence are modeled for tetragonally strained structures of the same geometry using a full tensorial representation of the strain in the MQWs under external pressure. These MQWs were simulated directly using density functional theory calculations, taking into account two different systems: the semi-insulating QWs and the n-doped QWs with the same charge density as in the experimental samples. Such an approach allowed an assessment of the impact of n-type doping on optical properties of GaN/AlN MQWs. We find a good agreement between these two approaches and between theory and experimental results. We can therefore confirm that the nonlinear effects induced by the tetragonal strain related to the lattice mismatch between the substrates and the polar MQWs are responsible for the drastic decrease of the pressure coefficients observed experimentally.

  5. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  6. Photo-deactivation pathways of a double H-bonded photochromic Schiff base investigated by combined theoretical calculations and experimental time-resolved studies.

    PubMed

    Randino, Carlos; Ziółek, Marcin; Gelabert, Ricard; Organero, Juan Angel; Gil, Michal; Moreno, Miquel; Lluch, José M; Douhal, Abderrazzak

    2011-09-01

    The photophysics of N,N'-bis(salicylidene)-p-phenylenediamine (BSP) is analyzed both theoretically and experimentally. The alternative intramolecular proton-transfer reactions lead to three different tautomers. We performed DFT and TDDFT calculations to analyze the topography of the reactions connecting the three tautomers. Deactivation paths through a Conical Intersection (CI) region are also analyzed to explain the low fluorescence quantum yield of the phototautomers. The complex molecular structure of BSP provides a large number of deactivation paths, almost all of them energetically available following the initial photoexcitation. Femtosecond (fs) time-resolved emission studies in solution and flash photolysis experiments (nano to millisecond regime) were performed to get detailed information on the time domain of the full photocycle. The picture that emerges by combining theoretical and experimental results shows a very fast (less than 100 fs) photoinduced single proton transfer process leading to a phototautomer where a single proton has moved. This species may deactivate through a low-energy CI leading in about 20 ps to a rotameric form in the ground state that has a lifetime of several tens of microseconds in solution. This process competes with another deactivation path taking place prior to the proton-transfer reaction which involves a low-energy CI leading to a rotamer of the enol structure. In the flash photolysis studies, the rotamer of the enol structure was directly identified by the positive transient absorption band in the 250-260 nm and its lifetime in n-hexane (10 ms) is almost 3 orders of magnitude longer than the lifetime of the photochrome (around 40 μs). Our findings do not exclude a double proton transfer reaction in the excited enol form to give a tautomer in less than 100 fs during the first (impulsive) phase of the reaction which reverts back to the photoproducts of the simple proton transfer in 1-3 ps.

  7. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis.

    PubMed

    Wollin, Lutz; Maillet, Isabelle; Quesniaux, Valérie; Holweg, Alexander; Ryffel, Bernhard

    2014-05-01

    The tyrosine kinase inhibitor nintedanib (BIBF 1120) is in clinical development for the treatment of idiopathic pulmonary fibrosis. To explore its mode of action, nintedanib was tested in human lung fibroblasts and mouse models of lung fibrosis. Human lung fibroblasts expressing platelet-derived growth factor (PDGF) receptor-α and -β were stimulated with platelet-derived growth factor BB (homodimer) (PDGF-BB). Receptor activation was assessed by autophosphorylation and cell proliferation by bromodeoxyuridine incorporation. Transforming growth factor β (TGFβ)-induced fibroblast to myofibroblast transformation was determined by α-smooth muscle actin (αSMA) mRNA analysis. Lung fibrosis was induced in mice by intratracheal bleomycin or silica particle administration. Nintedanib was administered every day by gavage at 30, 60, or 100 mg/kg. Preventive nintedanib treatment regimen started on the day that bleomycin was administered. Therapeutic treatment regimen started at various times after the induction of lung fibrosis. Bleomycin caused increased macrophages and lymphocytes in the bronchoalveolar lavage (BAL) and elevated interleukin-1β (IL-1β), tissue inhibitor of metalloproteinase-1 (TIMP-1), and collagen in lung tissue. Histology revealed chronic inflammation and fibrosis. Silica-induced lung pathology additionally showed elevated BAL neutrophils, keratinocyte chemoattractant (KC) levels, and granuloma formation. Nintedanib inhibited PDGF receptor activation, fibroblast proliferation, and fibroblast to myofibroblast transformation. Nintedanib significantly reduced BAL lymphocytes and neutrophils but not macrophages. Furthermore, interleukin-1β, KC, TIMP-1, and lung collagen were significantly reduced. Histologic analysis showed significantly diminished lung inflammation, granuloma formation, and fibrosis. The therapeutic effect was dependent on treatment start and duration. Nintedanib inhibited receptor tyrosine kinase activation and the proliferation and

  8. Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model

    PubMed Central

    2012-01-01

    Introduction Cyclic alveolar recruitment/derecruitment (R/D) is an important mechanism of ventilator-associated lung injury. In experimental models this process can be measured with high temporal resolution by detection of respiratory-dependent oscillations of the paO2 (ΔpaO2). A previous study showed that end-expiratory collapse can be prevented by an increased respiratory rate in saline-lavaged rabbits. The current study compares the effects of increased positive end-expiratory pressure (PEEP) versus an individually titrated respiratory rate (RRind) on intra-tidal amplitude of Δ paO2 and on average paO2 in saline-lavaged pigs. Methods Acute lung injury was induced by bronchoalveolar lavage in 16 anaesthetized pigs. R/D was induced and measured by a fast-responding intra-aortic probe measuring paO2. Ventilatory interventions (RRind (n = 8) versus extrinsic PEEP (n = 8)) were applied for 30 minutes to reduce Δ paO2. Haemodynamics, spirometry and Δ paO2 were monitored and the Ventilation/Perfusion distributions were assessed by multiple inert gas elimination. The main endpoints average and Δ paO2 following the interventions were analysed by Mann-Whitney-U-Test and Bonferroni's correction. The secondary parameters were tested in an explorative manner. Results Both interventions reduced Δ paO2. In the RRind group, ΔpaO2 was significantly smaller (P < 0.001). The average paO2 continuously decreased following RRind and was significantly higher in the PEEP group (P < 0.001). A sustained difference of the ventilation/perfusion distribution and shunt fractions confirms these findings. The RRind application required less vasopressor administration. Conclusions Different recruitment kinetics were found compared to previous small animal models and these differences were primarily determined by kinetics of end-expiratory collapse. In this porcine model, respiratory rate and increased PEEP were both effective in reducing the amplitude of paO2 oscillations. In contrast to

  9. Heat dissipation after nonanatomical lung resection using a laser is mainly due to emission to the environment: an experimental ex vivo study.

    PubMed

    Kirschbaum, A; Ocker, M; Bartsch, D K; Quint, K

    2014-05-01

    Laser-directed resection of lung metastases is performed more frequently in recent years. The energy-loaded laser rays heat up the lung tissue, considerably. It is still unclear which mechanism is more important for tissue heat dissipation: the lung perfusion or the tissue emission. Therefore, we created a special experimental model to investigate the spontaneous heat dissipation after nonanatomical lung resection using a diode-pumped laser with a high output power. Experiments were conducted on paracardiac pig lung lobes (n = 12) freshly dissected at the slaughterhouse. Nonanatomical resection of lung parenchyma was performed without lobe perfusion in group 1 (n = 6), while group 2 (n = 6) was perfused at a physiological pressure of 25 cm H2O at 37 °C with saline via the pulmonary artery. For this, we used a diode-pumped neodymium-doped yttrium aluminum garnet (Nd:YAG) LIMAX® 120 laser (Gebrüder Martin GmbH & Co. KG, Tuttlingen, Germany) with a wavelength of 1,318 nm and a power output of 100 W. Immediately after completing laser resection, the lungs were monitored with an infrared camera (Type IC 120LV; Trotec, Heinsberg, Germany) while allowed to cool down. The resection surface temperature was taken at 10-s intervals and documented in a freeze-frame until a temperature of 37 °C had been reached. The temperature drop per time unit was analyzed in both groups. Immediately after laser resection, the temperature at the lung surface was 84.33 ± 8.08 °C in group 1 and 76.75 ± 5.33 °C in group 2 (p = 0.29). Group 1 attained the final temperature of 37 °C after 182.95 ± 53.76 s, and group 2 after 121.70 ± 16.02 s (p = 0.01). The temperature drop occurred exponentially in both groups. We calculated both groups' decays using nonlinear regression, which revealed nearly identical courses. The mean time of tissue temperature of >42 °C, as a surrogate marker for tissue damage, was 97.14 ± 26.90 s in group 1 and 65.00 ± 13.78 s in group 2 (p = 0.02). Heat

  10. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome.

    PubMed

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Omodeo Salè, Fausta; Van den Steen, Philippe E; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  11. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome

    PubMed Central

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  12. Effect of surfactant on regional lung function in an experimental model of respiratory distress syndrome in rabbit.

    PubMed

    Bayat, Sam; Porra, Liisa; Broche, Ludovic; Albu, Gergely; Malaspinas, Iliona; Doras, Camille; Strengell, Satu; Peták, Ferenc; Habre, Walid

    2015-08-01

    We assessed the changes in regional lung function following instillation of surfactant in a model of respiratory distress syndrome (RDS) induced by whole lung lavage and mechanical ventilation in eight anaesthetized, paralyzed, and mechanically ventilated New Zealand White rabbits. Regional specific ventilation (sV̇) was measured by K-edge subtraction synchrotron computed tomography during xenon washin. Lung regions were classified as poorly aerated (PA), normally aerated (NA), or hyperinflated (HI) based on regional density. A functional category was defined within each class based on sV̇ distribution (High, Normal, and Low). Airway resistance (Raw), respiratory tissue damping (G), and elastance (H) were measured by forced oscillation technique at low frequencies before and after whole lung saline lavage-induced (100 ml/kg) RDS, and 5 and 45 min after intratracheal instillation of beractant (75 mg/kg). Surfactant instillation improved Raw, G, and H (P < 0.05 each), and gas exchange and decreased atelectasis (P < 0.001). It also significantly improved lung aeration and ventilation in atelectatic lung regions. However, in regions that had remained normally aerated after lavage, it decreased regional aeration and increased sV̇ (P < 0.001) and sV̇ heterogeneity. Although surfactant treatment improved both central airway and tissue mechanics and improved regional lung function of initially poorly aerated and atelectatic lung, it deteriorated regional lung function when local aeration was normal prior to administration. Local mechanical and functional heterogeneity can potentially contribute to the worsening of RDS and gas exchange. These data underscore the need for reassessing the benefits of routine prophylactic vs. continuous positive airway pressure and early "rescue" surfactant therapy in very immature infants. PMID:25997942

  13. Farmer's lung: immunological response to a group of extracellular enzymes of Micropolyspora faeni. An experimental and field study.

    PubMed Central

    Nicolet, J; Bannerman, E N; De Haller, R; Wanner, M

    1977-01-01

    Potent immunogenicity of certain extracellular 'chymotrypsin-like' enzymes of Micropolyspora faeni are demonstrated. One of them, Enzyme 1 seems particularly active in stimulating the formation of percipitins after intratracheal exposure in rabbits. Man or cattle exposed naturally to mouldy hay, either with or without clinical farmer's lung symptoms show a rather constant immunological reaction against Enzyme 1 and partly also against others of the same group. The detection of specific percipitins against these enzymes is not likely to improve the diagnostic value of the standard farmer's lung serology. Possible implications of these proteolytic enzymes in the pathogenesis of farmer's lung are discussed. Images Fig. 1 Fig. 2 PMID:862229

  14. Dietary soy isoflavones increase metastasis to lungs in an experimental model of breast cancer with bone micro-tumors.

    PubMed

    Yang, Xujuan; Belosay, Aashvini; Hartman, James A; Song, Huaxin; Zhang, Yukun; Wang, Wendan; Doerge, Daniel R; Helferich, William G

    2015-04-01

    Bone is one of the most common sites for metastasis in breast cancer (BC). Micro-metastasis in bone marrow was detected in 30% of patients with stage I, II, or III BC at primary surgery and is a strong indicator of poor prognosis. The role dietary soy isoflavones play in BC with bone micro-metastasis is unclear. In this study, we examined the effects of genistein, daidzein, (-)-equol or a mixture of soy isoflavones on BC with bone micro-metastasis using an experimental model of murine mammary cancer 4T1 cells engineered with luciferase. A small number (1000) of 4T1 cells were injected into the tibia of female Balb/c mice to establish micro-tumors in bone. Soy isoflavones were supplemented in the AIN-93G diet at 750 mg/kg and were provided to mice from 3 weeks before to 3 weeks after cell injection. Bioluminescent imaging was conducted on day 2 (D2), D6, D8, D16 and D20 post cell injection and the results indicated dietary soy isoflavones enhanced the growth of bone micro-tumors on D8. Furthermore, dietary soy isoflavones stimulated metastatic tumor formation in lungs and increased Ki-67 protein expression in these metastasized tumors. In vitro, soy isoflavones (<10 µM) had limited effects on the growth, motility or invasion of 4T1 cells. Thus, the in vivo stimulatory effect could be likely due to systemic effects between the host, 4T1 tumors and soy isoflavones. In conclusion, soy isoflavones stimulate BC with bone micro-metastasis in mice and further investigations are needed regarding their consumption by BC survivors.

  15. Regulatory T Cell DNA Methyltransferase Inhibition Accelerates Resolution of Lung Inflammation

    PubMed Central

    Singer, Benjamin D.; Mock, Jason R.; Aggarwal, Neil R.; Garibaldi, Brian T.; Sidhaye, Venkataramana K.; Florez, Marcus A.; Chau, Eric; Gibbs, Kevin W.; Mandke, Pooja; Tripathi, Ashutosh; Yegnasubramanian, Srinivasan; King, Landon S.

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is a common and often fatal inflammatory lung condition without effective targeted therapies. Regulatory T cells (Tregs) resolve lung inflammation, but mechanisms that enhance Tregs to promote resolution of established damage remain unknown. DNA demethylation at the forkhead box protein 3 (Foxp3) locus and other key Treg loci typify the Treg lineage. To test how dynamic DNA demethylation affects lung injury resolution, we administered the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) to wild-type (WT) mice beginning 24 hours after intratracheal LPS-induced lung injury. Mice that received DAC exhibited accelerated resolution of their injury. Lung CD4+CD25hiFoxp3+ Tregs from DAC-treated WT mice increased in number and displayed enhanced Foxp3 expression, activation state, suppressive phenotype, and proliferative capacity. Lymphocyte-deficient recombinase activating gene-1–null mice and Treg-depleted (diphtheria toxin-treated Foxp3DTR) mice did not resolve their injury in response to DAC. Adoptive transfer of 2 × 105 DAC-treated, but not vehicle-treated, exogenous Tregs rescued Treg-deficient mice from ongoing lung inflammation. In addition, in WT mice with influenza-induced lung inflammation, DAC rescue treatment facilitated recovery of their injury and promoted an increase in lung Treg number. Thus, DNA methyltransferase inhibition, at least in part, augments Treg number and function to accelerate repair of experimental lung injury. Epigenetic pathways represent novel manipulable targets for the treatment of ARDS. PMID:25295995

  16. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis.

    PubMed

    Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Barua, Chandana C; Gogoi, Ranadeep

    2016-08-01

    The present study is designed to assess the antioxidant and antitumor potential of luteolin against benzo(a)pyrene [B(a)P]-induced lung carcinogenesis in Swiss albino mice. Here, we reported that oral administration of B(a)P (50mg/kg body weight) to mice resulted in raised lipid peroxides (LPO), lung specific tumor markers such as carcinoembryonic antigen (CEA) and neuron specific enolase (NSE) with concomitant decrease in the levels of both enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-s-transferase (GST), and non-enzymatic antioxidants such as reduced glutathione (GSH), vitamin E and vitamin C. Luteolin treatment (15mg/kg body weight, p.o) significantly counteracted all these alterations and maintained cellular normalcy. Moreover, assessment of protein expression levels by western blot analysis revealed that luteolin treatment effectively negates B(a)P-induced upregulated expression of proliferating cell nuclear antigen (PCNA), cytochrome P450 1A1 (CYP1A1) and nuclear factor-kappa B (NF-κB). Furthermore, histopathology of lung tissue and immunohistochemistry of CYP1A1 were carried out to substantiate the anti- lung cancer effect of luteolin. Overall, these findings confirm the chemopreventive potential of luteolin against B(a)P induced lung carcinogenesis.

  17. Evaluation of nose-only aerosol inhalation chamber and comparison of experimental results with mathematical simulation of aerosol deposition in mouse lungs.

    PubMed

    Nadithe, Venkatareddy; Rahamatalla, Muhib; Finlay, Warren H; Mercer, John R; Samuel, John

    2003-05-01

    In vivo small rodent efficacy testing of new synthetic and biological molecules for the pulmonary route requires an efficient delivery device. For this purpose, a nose-only inhalation chamber was used to deliver aerosolized aqueous compounds to the respiratory tract of mice. The aim of the study was to determine the efficiency of dose delivery and deposition in the lungs of the mice using this chamber. A secondary goal was to compare the experimental lung deposition results with values predicted from mathematical simulation. Experimental tests were conducted by generating aerosols of a radiolabeled formulation of human serum albumin (HSA) with a mass median aerodynamic diameter (MMAD) of 3.9 +/- 0.5 microm and a geometric standard deviation (GSD) of 1.43 +/- 0.05 using PARI LC STAR jet nebulizers. Based on the total activity placed in the nebulizer, the chamber delivered 0.108 +/- 0.027% to the mice and 0.0087 +/- 0.0021% to the lungs of the mice. In vivo lung deposition was found to be 8.19 +/- 3.56% of total activity deposited in the mouse. Mathematical simulation predictions ranged between 5.89 and 4.40% for various breathing patterns, and did not differ significantly from the in vivo results (p > 0.10). These results provide important quantitative information relevant to aerosol delivery experiments in mouse models. Our results also suggest that the nose-only inhalation chamber would benefit from significant changes to increase the efficiency of deposition in mice such that it can be used for nebulization of expensive therapeutic drugs.

  18. Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI)

    PubMed Central

    Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario

    2016-01-01

    Background Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. Methods 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak’s multiple comparison test (significance, p≤ 0.05). Results In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. Conclusions In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent. PMID:27437704

  19. THE DETERMINATION OF CORRELATION LINKAGES BETWEEN LEVEL OF REACTIVE OXYGEN SPECIES, CONTENTS OF NEUTROPHILES AND BLOOD GAS COMPOSITION IN EXPERIMENTAL ACUTE LUNG INJURY.

    PubMed

    Marushchak, M; Krynytska, I; Petrenko, N; Klishch, I

    2016-04-01

    Acute lung injury (ALI) remains a major cause of acute respiratory failure and death of patients. Despite the achievements at the current stage in treatment, morbidity and mortality of ALI remain high. However, a deeper understanding of the pathogenetic links of ALI, identifying of the predictors that positively or negatively influence on the course of the syndrome, the correlation between some pathogenetic mechanisms will improve therapeutic strategies for patients with ALI, which makes the actuality of this study. The aim of the research was to detect additional pathogenetic mechanisms of the acute lung injury development in rats based on a comparative analysis of the correlations between the level of reactive oxygen species in blood and bronchoalveolar lavage, contents of neutrophils and blood gas composition. The experiments were performed on 54 white nonlinear mature male rats 200-220g in weight. The animals were divided into 5 groups: the 1st - control group (n=6), the 2nd - animals affected by hydrochloric acid for 2 hours (n=12), the 3rd - animals affected by hydrochloric acid for 6 hours (n=12), the 4th - animals affected by hydrochloric acid for 12 hours (n=12), the 5th - animals affected by hydrochloric acid for 24 hours (n=12). Correlation analysis was performed between all the studied indices. Coefficient of linear correlation (r) and its fidelity (p) was calculated that was accordingly denoted in the tables (correlation matrices). The correlation coefficient was significant at p<0.05. Conducted correlative analysis showed that the level of ROS in neutrophils of blood in rats with modeled ALI had a high negative correlative linkage with pH of arterial blood in 2nd and 3rd experimental groups. Conducted correlative analysis of data in BAL showed that the level of ROS in neutrophils in rats with modeled ALI had a strong positive correlative relationship with the number of white blood cells in 3-rd, 4-th and 5-th experimental groups and positive

  20. Nicotine, acetylcholine and bombesin are trophic growth factors in neuroendocrine cell lines derived from experimental hamster lung tumors

    SciTech Connect

    Schueller, H.M.; Nylen, E.; Park, P.; Becker, K.L. George Washington Univ., Washington, DC )

    1990-01-01

    Neuroendocrine hamster lung tumors, induced by exposure to 60% hyperoxia and subcutaneous administration of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) for 12 weeks, were placed in cell culture. By subsequent selective transfer of epithelial cells and maintenance in an atmosphere of 8% CO{sub 2}, cell lines with characteristics of neuroendocrine cells were established. The neuroendocrine markers expressed by these cell lines included electron dense neuroendocrine secretion granules as well as secretion of calcitonin and mammalian bombesin. In keeping with data previously reported for a human neuroendocrine lung tumor cell line, nicotine, acetylcholien, and mammalian bombesin (MB) acted as strongrowth factors in these neuroendocrine hamster tumor lines. The mitogenic effect of nicotine an acetylcholine was abolished by nicotinic receptor inhibition while the effects of mammalian bombesin were inhibited by an antagonist of MB receptors. Our data suggest that a receptor-mediated mitogenic effect of nicotine on neuroendocrine lung cells may be instrumental in the induction of smoking-associated small cell lung cancer.

  1. Isolated lung perfusion.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2012-01-01

    Isolated lung perfusion (ILP) has been historically used as a method to study basic lung physiologic concepts using animal models. More recently, ILP has been applied in lung transplantation and thoracic oncology. In lung transplantation, ILP has been used to assess physiological integrity of donor lungs after the organ is removed from the donor. This procedure is called Ex vivo Lung Perfusion (EVLP), and it has also been proposed as a method for active treatment and repair of injured unsuitable donor organs ex vivo. In oncology, ILP is an attractive method to deliver high dose chemotherapy to treat pulmonary metastatic disease. Since the lung vasculature is isolated in vivo, this technique is called in vivo lung perfusion (IVLP). This review will focus on the rationale, technical aspects, experimental and clinical experience of EVLP and IVLP. A perspective on the future use of these techniques is described. PMID:22202033

  2. Comparative analysis of the protective effects of caffeic acid phenethyl ester (CAPE) on pulmonary contusion lung oxidative stress and serum copper and zinc levels in experimental rat model.

    PubMed

    Sırmalı, Mehmet; Solak, Okan; Tezel, Cagatay; Sırmalı, Rana; Ginis, Zeynep; Atik, Dilek; Agackıran, Yetkin; Koylu, Halis; Delibas, Namık

    2013-01-01

    The aim of this study was to investigate the effects of caffeic acid phenethyl ester (CAPE) in the lungs by biochemical and histopathological analyses in an experimental isolated lung contusion model. Eighty-one male Sprague-Dawley rats were used. The animals were divided randomly into four groups: group 1 (n = 9) was defined as without contusion and without CAPE injection. Group 2 (n = 9) was defined as CAPE 10 μmol/kg injection without lung contusion. Group 3 (n = 36) was defined as contusion without CAPE-administrated group which consisted of four subgroups that were created according to analysis between days 0, 1, 2, and 3. Group 4 (n = 27) was defined as CAPE 10 μmol/kg administrated after contusion group divided into three subgroups according to analysis on days 1, 2, and 3. CAPE 10 μmol/kg was injected intraperitoneally 30 min after trauma and on days 1 and 2. Blood samples were obtained to measure catalase (CAT) and superoxide dismutase (SOD) activities and level of malondialdehyde (MDA) and for blood gas analysis. Trace elements such as zinc and copper were measured in serum. The lung tissue was also removed for histopathological examination. Isolated lung contusion increased serum and tissue SOD and CAT activities and MDA levels (p < 0.05). Both serum and tissue SOD, MDA, and CAT levels on day 3 were lower in group 4 compared to group 3 (p < 0.05). Further, the levels of SOD, MDA, and CAT in group 4 were similar compared to group 1 (p > 0.05). CAPE also had a significant beneficial effect on blood gases (p < 0.05). Both serum zinc and copper levels were (p < 0.05) influenced by the administration of CAPE. Histopathological examination revealed lower scores in group 4 compared to group 3 (p < 0.05) and no significant differences compared to group 1 (p > 0.05). CAPE appears to be effective in protecting against severe oxidative stress and tissue damage caused by pulmonary contusion in an

  3. Xenogeneic lung transplantation models

    PubMed Central

    Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.

    2014-01-01

    Summary Study of lung xenografts has proven useful to understand the remaining barriers to successful transplantation of other organ xenografts. In this chapter, the history and current status of lung xenotransplantation will be briefly reviewed and two different experimental models, the ex vivo porcine-to-human lung perfusion and the in vivo xenogeneic lung transplantation, will be presented. We will focus on the technical details of these lung xenograft models in sufficient detail, list the needed materials and mention analysis techniques to allow others to adopt them with minimal learning curve. PMID:22565996

  4. Diffusion of hyperpolarized 129Xe in the lung: a simplified model of 129Xe septal uptake and experimental results

    NASA Astrophysics Data System (ADS)

    Patz, Samuel; Muradyan, Iga; Hrovat, Mirko I.; Dabaghyan, Mikayel; Washko, George R.; Hatabu, Hiroto; Butler, James P.

    2011-01-01

    We used hyperpolarized 129Xe NMR to measure pulmonary alveolar surface area per unit gas volume SA/Vgas, alveolar septal thickness h and capillary transit time τ, three critical determinants of the lung's primary role as a gas exchange organ. An analytical solution for a simplified diffusion model is described, together with a modification of the xenon transfer contrast imaging technique utilizing 90° radio-frequency pulses applied to the dissolved phase, rather than traditional 180° pulses. With this approach, three-dimensional (3D) maps of SA/Vgas were obtained. We measured global SA/Vgas, h and τ in four normal subjects, two subjects with mild interstitial lung disease (ILD) and two subjects with mild chronic obstructive pulmonary disease (COPD). In normals, SA/Vgas decreased with increasing lung volume from ~320 to 80 cm-1 both h~13 μm and τ~1.5 s were relatively constant. For the two ILD subjects, h was, respectively, 36 and 97% larger than normal, quantifying an increased gas/blood tissue barrier; SA/Vgas and τ were normal. The two COPD subjects had SA/Vgas values ~25% that of normals, quantifying septal surface loss in emphysema; h and τ were normal. These are the first noninvasive, non-radiation-based, quantitative measurements of h and τ in patients with pulmonary disease.

  5. Manual Ventilation and Sustained Lung Inflation in an Experimental Model: Influence of Equipment Type and Operator’s Training

    PubMed Central

    Mascaretti, Renata Suman; Vale, Luciana Assis; Haddad, Luciana Branco

    2016-01-01

    Aim To compare the influence of devices for manual ventilation and individual experience on the applied respiratory mechanics and sustained lung inflation. Methods A total of 114 instructors and non-instructors from the Neonatal Resuscitation Program of the Brazilian Society of Pediatrics participated in this study. Participants ventilated an intubated manikin. To evaluate respiratory mechanics and sustained lung inflation parameters, a direct comparison was made between the self-inflating bag and the T-shaped resuscitator (T-piece), followed by an analysis of the effectiveness of the equipment according to the participants’ education and training. Results A difference between equipment types was observed for the tidal volume, with a median (interquartile range) of 28.5 mL (12.6) for the self-inflating bag and 20.1 mL (8.4) for the T-piece in the instructor group and 31.6 mL (14) for the self-inflating bag and 22.3 mL (8.8) for the T-piece in the non-instructor group. Higher inspiratory time values were observed with the T-piece in both groups of professionals, with no significant difference between them. The operator’s ability to maintain the target pressure over the 10 seconds of sustained lung inflation was evaluated using the area under the pressure-time curve and was 1.7-fold higher with the use of the T-piece. Inspiratory pressure and mean airway pressure applied during sustained lung inflation were greater with the self-inflating bag, as evaluated between the beginning and the end of the procedure. Conclusion The T-piece resulted in lower tidal volume and higher inspiratory time values, irrespective of the operator’s experience, and increased the ease of performing the sustained lung inflation maneuver, as demonstrated by the maintenance of target pressure for the desired period and a higher mean airway pressure than that obtained using the self-inflating bag. PMID:26859896

  6. Experimental electronic structure and Fermi-surface instability of the correlated 3d sulphide BaVS3 : High-resolution angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Mitrovic, S.; Fazekas, P.; Søndergaard, C.; Ariosa, D.; Barišić, N.; Berger, H.; Cloëtta, D.; Forró, L.; Höchst, H.; Kupčić, I.; Pavuna, D.; Margaritondo, G.

    2007-04-01

    The correlated 3d sulphide BaVS3 exhibits an interesting coexistence of one-dimensional and three-dimensional properties. Our experiments determine the electronic band structure and shed light on this puzzle. High-resolution angle-resolved photoemission measurements in a 4-eV -wide range below the Fermi energy level uncover and investigate the coexistence of a1g wide-band and eg narrow-band d electrons, which lead to the complicated electronic properties of this material. We explore the effects of strong correlations and the Fermi surface instability associated with the metal-insulator transition.

  7. Neonatal epithelial hypoxia inducible factor-1α expression regulates the response of the lung to experimental asthma.

    PubMed

    Greenwood, Krista K; Proper, Steven P; Saini, Yogesh; Bramble, Lori A; Jackson-Humbles, Daven N; Wagner, James G; Harkema, Jack R; LaPres, John J

    2012-03-01

    Allergic airway disease is characterized by a T helper type 2 cell-mediated airway inflammation and airway hyperresponsiveness. Little is known about the role of hypoxia-mediated signaling in the progression of the disease. To address this knowledge gap, a mouse model was created in which doxycycline exposure induces the functional deletion of hypoxia inducible factor-1α from alveolar type II and Clara cells of the lung. When hypoxia inducible factor-1α deletion was induced during the early postnatal development period of the lung, the mice displayed an enhanced response to the ovalbumin model of allergic airway disease. These hypoxia inducible factor-1α-deficient mice exhibit increased cellular infiltrates, eosinophilia in the lavage fluid and parenchyma, and T helper type 2 cytokines, as compared with ovalbumin-treated control mice. Moreover, these hypoxia inducible factor-1α-deficient mice display increased airway resistance when compared with their control counterparts. Interestingly, if the loss of hypoxia inducible factor-1α was induced in early adulthood, the exacerbated phenotype was not observed. Taken together, these results suggest that epithelial hypoxia inducible factor-1α plays an important role in establishing the innate immunity of the lung and epithelial-specific deficiency in the transcription factor, during early postnatal development, increases the severity of inflammation and functional airway resistance, following ovalbumin challenge. Finally, these results might explain some of the chronic respiratory pathology observed in premature infants, especially those that receive supplemental oxygen. This early hyperoxic exposure, from normal ambient and supplemental oxygen, would presumably inhibit normal hypoxia inducible factor-1α signaling, mimicking the functional deletion described.

  8. Neonatal epithelial hypoxia inducible factor-1α expression regulates the response of the lung to experimental asthma.

    PubMed

    Greenwood, Krista K; Proper, Steven P; Saini, Yogesh; Bramble, Lori A; Jackson-Humbles, Daven N; Wagner, James G; Harkema, Jack R; LaPres, John J

    2012-03-01

    Allergic airway disease is characterized by a T helper type 2 cell-mediated airway inflammation and airway hyperresponsiveness. Little is known about the role of hypoxia-mediated signaling in the progression of the disease. To address this knowledge gap, a mouse model was created in which doxycycline exposure induces the functional deletion of hypoxia inducible factor-1α from alveolar type II and Clara cells of the lung. When hypoxia inducible factor-1α deletion was induced during the early postnatal development period of the lung, the mice displayed an enhanced response to the ovalbumin model of allergic airway disease. These hypoxia inducible factor-1α-deficient mice exhibit increased cellular infiltrates, eosinophilia in the lavage fluid and parenchyma, and T helper type 2 cytokines, as compared with ovalbumin-treated control mice. Moreover, these hypoxia inducible factor-1α-deficient mice display increased airway resistance when compared with their control counterparts. Interestingly, if the loss of hypoxia inducible factor-1α was induced in early adulthood, the exacerbated phenotype was not observed. Taken together, these results suggest that epithelial hypoxia inducible factor-1α plays an important role in establishing the innate immunity of the lung and epithelial-specific deficiency in the transcription factor, during early postnatal development, increases the severity of inflammation and functional airway resistance, following ovalbumin challenge. Finally, these results might explain some of the chronic respiratory pathology observed in premature infants, especially those that receive supplemental oxygen. This early hyperoxic exposure, from normal ambient and supplemental oxygen, would presumably inhibit normal hypoxia inducible factor-1α signaling, mimicking the functional deletion described. PMID:22180657

  9. Lung Emergencies

    MedlinePlus

    ... Emergencies Cardiac Emergencies Eye Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at ... should be considered an emergency. Symptoms of sudden lung collapse (pneumothorax) Symptoms of a sudden lung collapse ...

  10. Lung Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Lung Cancer What is Lung Cancer? How Tumors Form The body is made ... button on your keyboard.) Two Major Types of Lung Cancer There are two major types of lung ...

  11. Lung metastases

    MedlinePlus

    Metastases to the lung; Metastatic cancer to the lung ... Metastatic tumors in the lungs are cancers that developed at other places in the body (or other parts of the lungs) and spread through the ...

  12. Spatially resolved scattering polarimeter.

    PubMed

    Kohlgraf-Owens, Thomas; Dogariu, Aristide

    2009-05-01

    We demonstrate a compact, spatially resolved polarimeter based on a coherent optical fiber bundle coupled with a thin layer of scattering centers. The use of scattering for polarization encoding allows the polarimeter to work across broad angular and spectral domains. Optical fiber bundles provide high spatial resolution of the incident field. Because neighboring elements of the bundle interact with the incident field differently, only a single interaction of the fiber bundle with the unknown field is needed to perform the measurement. Experimental results are shown to demonstrate the capability to perform imaging polarimetry. PMID:19412259

  13. Effects of Blood Flow and/or Ventilation Restriction on Radiofrequency Coagulation Size in the Lung: An Experimental Study in Swine

    SciTech Connect

    Anai, Hiroshi; Uchida, Barry T.; Pavcnik, Dusan Seong, Chang Kyu; Baker, Phillip; Correa, Luiz Otavio; Corless, Christopher L.; Sakaguchi, Hiroshi; Kichikawa, Kimihiko; Keller, Frederick S.; Roesch, Josef

    2006-10-15

    lung parenchyma is increased by ventilation and particularly by pulmonary artery blood flow restriction. The value of these restrictions for potential clinical use needs to be explored in experimentally induced lung tumors.

  14. Lung cancer

    SciTech Connect

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer.

  15. Experimental Study on How Human Lung Surfactant Protein SP-B1-25 is Oxidized by Ozone in the Presence of Fe(II) and Ascorbic Acid

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Hoffmann, M. R.

    2014-12-01

    We will report the results of experiments on the chemical fate of the human lung surfactant protein SP-B1-25 upon exposure to gaseous ozone in realistic aqueous media simulating the conditions prevalent in epithelial lining fluids in polluted ambient air. Our experiments consist of exposing aqueous microjets containing SP-B1-25, the natural antioxidant ascorbic acid, and the Fe2+ carried by most atmospheric fine particulates, under mild acidic conditions, such as those created by the innate lung host defense response. Reactants and the products of such interactions are detected via online electrospray ionization mass spectrometry. We will show that ascorbic acid largely inhibits the ozonation of SP-B1-25 in the absence of Fe2+, leading to the formation of an ascorbic acid ozonide (Enami et al., PNAS 2008). In the presence of Fe2+, however, the ozonide decomposes into reactive intermediates that result in the partial oxidation of SP-B1-25, presumable affecting its function as surfactant. We infer that these experimental results establish a plausible causal link for the observed synergic adverse health effects of ambient ozone and fine particulates

  16. Increased expression of host iron-binding proteins precedes iron accumulation and calcification of primary lung lesions in experimental tuberculosis in the guinea pig.

    PubMed

    Basaraba, Randall J; Bielefeldt-Ohmann, Helle; Eschelbach, Ellie K; Reisenhauer, Claire; Tolnay, Airn E; Taraba, Lauren C; Shanley, Crystal A; Smith, Erin A; Bedwell, Cathy L; Chlipala, Elizabeth A; Orme, Ian M

    2008-01-01

    The growth and virulence of Mycobacterium tuberculosis depends on its ability to scavenge host iron, an essential and limited micronutrient in vivo. In this study, we show that ferric iron accumulates both intra- and extra-cellularly in the primary lung lesions of guinea pigs aerosol-infected with the H37Rv strain of M. tuberculosis. Iron accumulated within macrophages at the periphery of the primary granulomatous lesions while extra-cellular ferric iron was concentrated in areas of lesion necrosis. Accumulation of iron within primary lesions was preceded by an increase in expression of heavy chain (H) ferritin, lactoferrin and receptors for transferrin, primarily by macrophages and granulocytes. The increased expression of intra-cellular H ferritin and extra-cellular lactoferrin, more so than transferrin receptor, paralleled the development of necrosis within primary lesions. The deposition of extra-cellular ferric iron within necrotic foci coincided with the accumulation of calcium and phosphorus and other cations in the form of dystrophic calcification. Primary lung lesions from guinea pigs vaccinated with Mycobactrium bovis BCG prior to experimental infection, had reduced iron accumulation as well as H ferritin, lactoferrin and transferrin receptor expression. The amelioration of primary lesion necrosis and dystrophic calcification by BCG vaccination was coincident with the lack of extra-cellular ferric iron and lactoferrin accumulation. These data demonstrate that BCG vaccination ameliorates primary lesion necrosis, dystrophic mineralization and iron accumulation, in part by down-regulating the expression of macrophage H ferritin, lactoferrin and transferrin receptors, in vivo.

  17. Effects of gamma oryzanol on factors of oxidative stress and sepsis-induced lung injury in experimental animal model

    PubMed Central

    Zolali, Elmira; Asgharian, Parina; Hamishehkar, Hamed; Kouhsoltani, Maryam; Khodaii, Hajhir; Hamishehkar, Hadi

    2015-01-01

    Objective (s): There is corroborating evidence to substantiate redox imbalance and oxidative stress in sepsis that finally leads to organ damage or even death. Gamma oryzanol (GO) is one of the major bioactive components in rice bran has been considered to function as an antioxidant. The present study was carried out to evaluate the antioxidant activity of gamma oryzanol in vitro and its efficacy in sepsis. Materials and Methods: To induce sepsis, cecal ligation and puncture (CLP) method was performed on the rats. A study group of forty male Wistar rats were divided into the following groups: sham group; CLP group; 50 mg/kg GO- treated CLP group and 100 mg/kg GO- treated CLP group. GO was administered with an oral gavage 2 hr prior to inducing sepsis. Tissue and blood samples were collected 12 hr after CLP to prepare tissue sections for histopathological study and assay the oxidative stress biomarkers including: SOD (Superoxide Dismutase), TAC (total antioxidant capacity), MDA (Malondialdehyde), MPO (Myeloperoxidase) and PAI-1 (Plasminogen Activator Inhibitor-1). Data are given as mean ± SD. The ANOVA with Tukey post hoc test was used to determine the differences between groups and P <0.05 was considered as statistical significance. Results: TAC level increased in GO- treated CLP groups (P<0.05). Inflammation score of lung tissue and MPO activity were significantly lower in GO treated CLP group (P<0.05). Conclusion: It seems that GO has a protective effect on lung inflammation and improves the body redox capacity during sepsis. PMID:26877858

  18. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    SciTech Connect

    Debreczeny, M.P.

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  19. The complete, temperature resolved experimental spectrum of methanol (CH{sub 3}OH) between 214.6 and 265.4 GHz

    SciTech Connect

    McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-11-01

    The spectrum of methanol (CH{sub 3}OH) has been characterized between 214.6 and 265.4 GHz for astrophysically significant temperatures. Four hundred and eighty-six spectra with absolute intensity calibration recorded between 240 and 389 K provided a means for the calculation of the complete experimental spectrum (CES) of methanol as a function of temperature. The CES includes contributions from v{sub t} = 3 and other higher states that are difficult to model quantum mechanically (QM). It also includes the spectrum of the {sup 13}C isotopologue in terrestrial abundance. In general the QM models provide frequencies that are within 1 MHz of their experimental values, but there are several outliers that differ by tens of MHz. As in our recent work on methanol in the 560-654 GHz region, significant intensity differences between our experimental intensities and cataloged values were found. In this work these differences are explored in the context of several QM analyses. The experimental results presented here are analyzed to provide a frequency point-by-point catalog that is well suited for the simulation of crowded and overlapped spectra. Additionally, a catalog in the usual line frequency, line strength, and lower state energy format is provided.

  20. Experimental support for a novel compount motion model for the time-resolved fluorescence anisotropy decay of TMA-PDH in lipid vesicle bilayers

    NASA Astrophysics Data System (ADS)

    Muller, Johan M.; van Faassen, Ernst E.; van Ginkel, Gijsbert

    1994-08-01

    Many structural studies of lipid membrane systems employ fluorescence anisotropy experiments on lipid soluble dyes that have been embedded in the lipid bilayers as optical probes. The conventional models for the interpretation of the anisotropy decay curves have a number of conceptual problems related to the form of the effective potential experienced by the probe molecules due to the interaction with the surrounding lipid environment. Therefore, a new model recently proposed by van der Sijs. (Chem. Phys. Letters 216 (1993) 559). In this paper we test this new compound model in a reanalysis of time-resolved fluorescence anisotropy experiments using TMA-DPH as a fluorescent probe. The orientational order and reorientational dynamics of TMA-DPH in small unilamellar vesicles (SUV) of POPC, DOPC, EGGPC, DLPC, EGGPG, DOPG, SQDG and DGDG was studied. We find that the new model improves the description of the underlying motional processes at short time scales and lacks certain unphysical aspects of previous models, e.g. a population of TMA-DPH probe molecules at and beyond 90° with the local bilayer normal. In contrast with previous models the compound motion model yields a good agreement between our vesicle data and previously published results from oriental lipid bilayers using ESR and AFD.

  1. Ex-vivo lung perfusion.

    PubMed

    Van Raemdonck, Dirk; Neyrinck, Arne; Cypel, Marcelo; Keshavjee, Shaf

    2015-06-01

    This review outlines the new and promising technique of ex vivo lung perfusion and its clinical potential to increase the number of transplantable lungs and to improve the early and late outcome after transplantation. The rationale, the experimental background, the technique and protocols, and available devices for ex vivo lung perfusion are discussed. The current clinical experience worldwide and ongoing clinical trials are reviewed.

  2. Vibrationally resolved NEXAFS at C and N K-edges of pyridine, 2-fluoropyridine and 2,6-difluoropyridine: A combined experimental and theoretical assessment

    NASA Astrophysics Data System (ADS)

    Baiardi, Alberto; Mendolicchio, Marco; Barone, Vincenzo; Fronzoni, Giovanna; Cardenas Jimenez, Gustavo Adolfo; Stener, Mauro; Grazioli, Cesare; de Simone, Monica; Coreno, Marcello

    2015-11-01

    In the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions. For the N K-edge, vertical energies obtained at these levels and broadened by symmetric Gaussian distributions provide spectra in reasonable agreement with the experiment. Vibronic contributions further modulate the band-shapes leading to a better agreement with the experimental results, but are not strictly necessary for semi-quantitative investigations. On the other hand, vibronic contributions are responsible for strong intensity redistribution in the NEXAFS C K-edge spectra, and their inclusion is thus mandatory for a proper description of experiments. In this connection, the simple vertical gradient model is particularly appealing in view of its sufficient reliability and low computational cost. For more quantitative results, the more refined vertical Hessian approach can be employed, and its effectiveness has been improved thanks to a new least-squares fitting approach.

  3. Vibrationally resolved NEXAFS at C and N K-edges of pyridine, 2-fluoropyridine and 2,6-difluoropyridine: A combined experimental and theoretical assessment

    SciTech Connect

    Baiardi, Alberto; Mendolicchio, Marco; Barone, Vincenzo; Fronzoni, Giovanna; Cardenas Jimenez, Gustavo Adolfo; Stener, Mauro; Grazioli, Cesare; Simone, Monica de; Coreno, Marcello

    2015-11-28

    In the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions. For the N K-edge, vertical energies obtained at these levels and broadened by symmetric Gaussian distributions provide spectra in reasonable agreement with the experiment. Vibronic contributions further modulate the band-shapes leading to a better agreement with the experimental results, but are not strictly necessary for semi-quantitative investigations. On the other hand, vibronic contributions are responsible for strong intensity redistribution in the NEXAFS C K-edge spectra, and their inclusion is thus mandatory for a proper description of experiments. In this connection, the simple vertical gradient model is particularly appealing in view of its sufficient reliability and low computational cost. For more quantitative results, the more refined vertical Hessian approach can be employed, and its effectiveness has been improved thanks to a new least-squares fitting approach.

  4. Lung disease

    MedlinePlus

    ... the lungs to take in oxygen and release carbon dioxide. People with this type of lung disorder often ... the lungs to take up oxygen and release carbon dioxide. These diseases may also affect heart function. An ...

  5. Collapsed Lung

    MedlinePlus

    A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a ... is called pneumothorax. If only part of the lung is affected, it is called atelectasis. Causes of ...

  6. THE COMPLETE, TEMPERATURE-RESOLVED EXPERIMENTAL SPECTRUM OF ETHYL CYANIDE (CH{sub 3}CH{sub 2}CN) BETWEEN 210 AND 270 GHz

    SciTech Connect

    Fortman, Sarah M.; Medvedev, Ivan R.; Neese, Christopher F.; De Lucia, Frank C.

    2010-12-20

    This paper reports the extension of a previously reported experimental method for the identification and characterization of astrophysical weeds in millimeter and submillimeter spectra to the widely used 210-270 GHz atmospheric window. At 300 K, these spectra contain contributions from approximately 40 vibrational states in addition to the cataloged ground state. The quantum mechanical analysis of such a large number of states would be a formidable challenge due to the complex interactions among these dense vibrational states. A new heterodyne receiver-based system is reported, as well as its intensity calibration. Results are presented in the standard astrophysical catalog format as well as our previously described point-by-point format that is effective for the characterization of blends. We also describe and validate an additional spectral synthesis approach, based on the much smaller line list catalog, which is useful in the blended line limit.

  7. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages.

    PubMed

    Marchini, Timoteo; Wolf, Dennis; Michel, Nathaly Anto; Mauler, Maximilian; Dufner, Bianca; Hoppe, Natalie; Beckert, Jessica; Jäckel, Markus; Magnani, Natalia; Duerschmied, Daniel; Tasat, Deborah; Alvarez, Silvia; Reinöhl, Jochen; von Zur Muhlen, Constantin; Idzko, Marco; Bode, Christoph; Hilgendorf, Ingo; Evelson, Pablo; Zirlik, Andreas

    2016-07-01

    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease. PMID:27240856

  8. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages.

    PubMed

    Marchini, Timoteo; Wolf, Dennis; Michel, Nathaly Anto; Mauler, Maximilian; Dufner, Bianca; Hoppe, Natalie; Beckert, Jessica; Jäckel, Markus; Magnani, Natalia; Duerschmied, Daniel; Tasat, Deborah; Alvarez, Silvia; Reinöhl, Jochen; von Zur Muhlen, Constantin; Idzko, Marco; Bode, Christoph; Hilgendorf, Ingo; Evelson, Pablo; Zirlik, Andreas

    2016-07-01

    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease.

  9. High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study

    PubMed Central

    2011-01-01

    Background To examine whether acute lung injury from direct and indirect origins differ in susceptibility to ventilator-induced lung injury (VILI) and resultant systemic inflammatory responses. Methods Rats were challenged by acid instillation or 24 h of sepsis induced by cecal ligation and puncture, followed by mechanical ventilation (MV) with either a low tidal volume (Vt) of 6 mL/kg and 5 cm H2O positive end-expiratory pressure (PEEP; LVt acid, LVt sepsis) or with a high Vt of 15 mL/kg and no PEEP (HVt acid, HVt sepsis). Rats sacrificed immediately after acid instillation and non-ventilated septic animals served as controls. Hemodynamic and respiratory variables were monitored. After 4 h, lung wet to dry (W/D) weight ratios, histological lung injury and plasma mediator concentrations were measured. Results Oxygenation and lung compliance decreased after acid instillation as compared to sepsis. Additionally, W/D weight ratios and histological lung injury scores increased after acid instillation as compared to sepsis. MV increased W/D weight ratio and lung injury score, however this effect was mainly attributable to HVt ventilation after acid instillation. Similarly, effects of HVt on oxygenation were only observed after acid instillation. HVt during sepsis did not further affect oxygenation, compliance, W/D weight ratio or lung injury score. Plasma interleukin-6 and tumour necrosis factor-α concentrations were increased after acid instillation as compared to sepsis, but plasma intercellular adhesion molecule-1 concentration increased during sepsis only. In contrast to lung injury parameters, no additional effects of HVt MV after acid instillation on plasma mediator concentrations were observed. Conclusions During MV more severe lung injury develops after acid instillation as compared to sepsis. HVt causes VILI after acid instillation, but not during sepsis. However, this differential effect was not observed in the systemic release of mediators. PMID:22204611

  10. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: Theoretical background

    NASA Astrophysics Data System (ADS)

    Sukstanskii, A. L.; Yablonskiy, D. A.

    2008-02-01

    MRI-based study of 3He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the 3He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients—longitudinal (D) and transverse (D) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D and D and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D and D on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry—evaluation of the geometrical parameters of acinar airways from hyperpolarized 3He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of 3He ADC on the experimentally-controllable diffusion time, Δ. If Δ is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.

  11. SU-F-BRE-07: Experimental Validation of a Lung SBRT Technique Using a Novel, True Volumetric Plenoptic-Plastic-Scintillator Detector

    SciTech Connect

    Goulet, M; Rilling, M; Gingras, L; Beaulieu, L; Archambault, L; Beddar, S

    2014-06-15

    Purpose: Lung SBRT is being used by an increasing number of clinics, including our center which recently treated its first patient. In order to validate this technique, the 3D dose distribution of the SBRT plan was measured using a previously developed 3D detector based on plenoptic camera and plastic scintillator technology. The excellent agreement between the detector measurement and the expected dose from the treatment planning system Pinnacle{sup 3} shows great promise and amply justify the development of the technique. Methods: The SBRT treatment comprised 8 non-coplanar 6MV photon fields with a mean field size of 12 cm{sup 2} at isocentre and a total prescription dose of 12Gy per fraction for a total of 48Gy. The 3D detector was composed of a 10×10×10 cm{sup 2} EJ-260 water-equivalent plastic scintillator embedded inside a truncated cylindrical acrylic phantom of 10cm radius. The scintillation light was recorded using a static R5 light-field camera and the 3D dose was reconstructed at a 2mm resolution in all 3 dimensions using an iterative backprojection algorithm. Results: The whole 3D dose distribution was recorded at a rate of one acquisition per second. The mean absolute dose difference between the detector and Pinnacle{sup 3} was 1.3% over the region with more than 10% of the maximum dose. 3D gamma tests performed over the same region yield passing rates of 98.8% and 96.6% with criteria of 3%/1mm and 2%/1mm, respectively. Conclusion: Experimental results showed that our beam modeling and treatment planning system calculation was adequate for the safe administration of small field/high dose techniques such as SBRT. Moreover, because of the real-time capability of the detector, further validation of small field rotational, dynamic or gated technique can be monitored or verified by this system.

  12. TIME-RESOLVED VIBRATIONAL SPECTROSCOPY

    SciTech Connect

    Andrei Tokmakoff, MIT; Paul Champion, Northeastern University; Edwin J. Heilweil, NIST; Keith A. Nelson, MIT; Larry Ziegler, Boston University

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE’s Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all five of DOE’s grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  13. Lung transplant

    MedlinePlus

    Solid organ transplant - lung ... the new lung Have severe disease of other organs Cannot reliably take their medicines Are unable to ... medicines Damage to your kidneys, liver, or other organs from anti-rejection medicines Future risk of certain ...

  14. Lung surgery

    MedlinePlus

    ... Pneumonectomy; Lobectomy; Lung biopsy; Thoracoscopy; Video-assisted thoracoscopic surgery; VATS ... You will have general anesthesia before surgery. You will be asleep and unable to feel pain. Two common ways to do surgery on your lungs are thoracotomy and video- ...

  15. Ex-vivo lung perfusion.

    PubMed

    Van Raemdonck, Dirk; Neyrinck, Arne; Cypel, Marcelo; Keshavjee, Shaf

    2015-06-01

    This review outlines the new and promising technique of ex vivo lung perfusion and its clinical potential to increase the number of transplantable lungs and to improve the early and late outcome after transplantation. The rationale, the experimental background, the technique and protocols, and available devices for ex vivo lung perfusion are discussed. The current clinical experience worldwide and ongoing clinical trials are reviewed. PMID:24629039

  16. Experimental bacterial pneumonia in rabbits: polymorphonuclear leukocyte margination and sequestration in rabbit lungs and quantitation and kinetics of /sup 51/Cr-labeled polymorphonuclear leukocytes in E. coli-induced lung lesions

    SciTech Connect

    Cybulsky, M.I.; Movat, H.Z.

    1982-12-01

    A relationship between the circulating and marginal polymorphonuclear leukocyte (PMN) pools was documented using /sup 51/Cr-labeled leukocytes as a marker. /sup 51/Cr-leukocytes marginating in the lungs were found to decrease following a first-order exponential decline, while /sup 51/Cr radioactivity accumulated in the liver and the spleen. Intravenously administered endotoxin caused a rapid selective disappearance of PMNs from the circulation. The percentage of infused /sup 51/Cr cells disappearing was equal to the percentage of disappearance of host cells. The PMNs were found to sequester in the lungs, with peak sequestration of labeled cells occurring 5 min after an endotoxin challenge. Over the next 25 min the /sup 51/Cr radioactivity in the lungs declined. Large numbers of PMNs, probably newly derived from the bone marrow, were observed histologically to be sequestered in the lung vasculature 90 min after an endotoxin dose, while the early sequestration of circulating leukocytes could not be assessed histologically. Pulmonary inflammatory lesions were induced selectively with Escherichia coli in the left lower lobes of rabbits, leaving the right lower lobes as intrinsic controls. PMN-accumulation into the lesions was quantitated using /sup 51/Cr-labeled blood leukocytes. With the aid of /sup 125/I-labeled E. coli, a logarithmic dose-response relationship was found between the number of E. coli and of PMNs. Over a 6-hr period circulating PMNs were found to accumulate in a lesion in the left lower lobe, whereas in the control right lower lobe, leukocyte radioactivity declined. These findings were confirmed with the aid of lavages of the right and left lungs. Two peaks of PMN-accumulation were found by studying leukocyte kinetics: a larger peak between 0 and 6 hr and a smaller peak 18-24 hr after instillation of the microorganisms. Histologic studies confirmed the accumulation of leukocytes, and by 3 weeks showed a complete resolution of the lesions.

  17. Lung Organogenesis

    PubMed Central

    Warburton, David; El-Hashash, Ahmed; Carraro, Gianni; Tiozzo, Caterina; Sala, Frederic; Rogers, Orquidea; De Langhe, Stijn; Kemp, Paul J.; Riccardi, Daniela; Torday, John; Bellusci, Saverio; Shi, Wei; Lubkin, Sharon R; Jesudason, Edwin

    2011-01-01

    Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the “molecular embryology” of the lung was first comprehensively reviewed, new challenges have emerged—and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits. PMID:20691848

  18. An important cause of non-resolving pneumonia.

    PubMed

    Shoki, Alborz; Gomes, Marcio M; Gupta, Ashish; Kify, Omar; Pakhale, Smita; Mulpuru, Sunita

    2016-01-01

    We describe the case of a young patient with a history of non-resolving pneumonia. She was diagnosed with a limited form of Granulomatosis with Polyangiitis (GPA), by percutaneous core needle lung biopsy. In this report, we discuss the definition and clinical implications of limited GPA, treatment options, and highlight the importance of considering vasculitis in the differential diagnosis of non-resolving pneumonia. PMID:27482510

  19. Time-Resolved PIV Measurements of Vortical Structures in the Upper Human Airways

    NASA Astrophysics Data System (ADS)

    e, Sebastian Groß; Schröder, Wolfgang; Klaas, Michael

    A detailed knowledge of the three-dimensional flow structures in the human lung is an inevitable prerequisite to optimize respiratory-assist devices. To achieve this goal the indepth analysis of the flow field that evolves during normal breathing conditions is indispensable. This study focuses on the experimental investigation of the steady and oscillatory flow in the first lung bifurcation of a three-dimensional realistic transparent silicone lung model. The particle image velocimetry technique was used for the measurements. To match the refractive index of the model, the fluid was a mixture of water and glycerine. The flow structures occurring in the first bifurcation during steady inflow have been studied in detail at different flow rates and Reynolds numbers ranging from ReD = 1250 to ReD = 1700 based on the hydraulic diameter D of the trachea. The results evidence a highly three-dimensional and asymmetric character of the velocity field in the upper human airways, in which the influence of the asymmetric geometry of the realistic lung model plays a significant role for the development of the flow field in the respiratory system. The inspiration flow shows large zones with secondary vortical flow structures with reduced streamwise velocity near the outer walls of the bifurcation and regions of high-speed fluid in the vicinity of the inner side walls of the bifurcation. Depending on the local geometry of the lung these zones extend to the next generation of the airway system, resulting in a strong impact on the flow-rate distribution in the different branches of the lung. During expiration small zones of reduced streamwise velocity can be observed mainly in the trachea and the flow profile is characterized by typical jet-like structures and an M-shaped velocity profile. To investigate the temporal evolution of the flow phenomena in the first lung bifurcation time-resolved recordings were performed for Womersley numbers α ranging from 3.3 to 5.8 and Reynolds

  20. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.

    PubMed

    Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J

    2016-01-01

    Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients. PMID:27107715

  1. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.

    PubMed

    Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J

    2016-04-23

    Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.

  2. Novel Technologies for Isolated Lung Perfusion: Beyond Lung Transplant.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2016-05-01

    Isolated lung perfusion (ILP) has been examined and developed in lung transplantation and thoracic oncology research. In lung transplantation, ILP has been used to assess physiologic integrity of donor lungs after removal from the donor, and it has also been proposed as a method for active treatment and repair of injured unsuitable donor organs ex vivo. ILP is attractive as a concept to deliver high-dose chemotherapy to treat pulmonary metastatic disease, referred to as in vivo lung perfusion. This article focuses on the rationale, technical aspects, and experimental and clinical experience of in vivo lung perfusion. A perspective on the future application of these techniques is described. PMID:27112253

  3. Converging Stereotactic Radiotherapy Using Kilovoltage X-Rays: Experimental Irradiation of Normal Rabbit Lung and Dose-Volume Analysis With Monte Carlo Simulation

    SciTech Connect

    Kawase, Takatsugu; Kunieda, Etsuo Deloar, Hossain M.; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N.; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    Purpose: To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. Methods and Materials: A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. Results: A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. Conclusions: A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  4. Assessment of Peripheral Lung Mechanics

    PubMed Central

    Bates, Jason H.T.; Suki, Béla

    2008-01-01

    The mechanical properties of the lung periphery are major determinants of overall lung function, and can change dramatically in disease. In this review we examine the various experimental techniques that have provided data pertaining to the mechanical properties of the lung periphery, together with the mathematical models that have been used to interpret these data. These models seek to make a clear distinction between the central and peripheral compartments of the lung by encapsulating functional differences between the conducing airways, the terminal airways and the parenchyma. Such a distinction becomes problematic in disease, however, because of the inevitable onset of regional variations in mechanical behavior throughout the lung. Accordingly, lung models are used both in the inverse sense as vehicles for extracting physiological insight from experimental data, and in the forward sense as virtual laboratories for the testing of specific hypothesis about mechanisms such as the effects of regional heterogeneities. Pathologies such as asthma, acute lung injury and emphysema can alter the mechanical properties of the lung periphery through the direct alteration of intrinsic tissue mechanics, the development of regional heterogeneities in mechanical function, and the complete derecruitment of airspaces due to airway closure and alveolar collapse. We are now beginning to decipher the relative contributions of these various factors to pathological alterations in peripheral lung mechanics, which may eventually lead to the development and assessment of novel therapies. PMID:18463006

  5. DEA based neonatal lung simulator

    NASA Astrophysics Data System (ADS)

    Schlatter, Samuel; Haemmerle, Enrico; Chang, Robin; O'Brien, Benjamin M.; Gisby, Todd; Anderson, Iain

    2011-04-01

    To reduce the likelihood of ventilator induced lung injury a neonatal lung simulator is developed based on Dielectric Elastomer Actuators (DEAs). DEAs are particularly suited for this application due to their natural like response as well as their self-sensing ability. By actively controlling the DEA, the pressure and volume inside the lung simulator can be controlled giving rise to active compliance control. Additionally the capacitance of the DEA can be used as a measurement of volume eliminating the integration errors that plague flow sensors. Based on simulations conducted with the FEA package ABAQUS and experimental data, the characteristics of the lung simulator were explored. A relationship between volume and capacitance was derived based on the self sensing of a bubble actuator. This was then used to calculate the compliance of the experimental bubble actuator. The current results are promising and show that mimicking a neonatal lung with DEAs may be possible.

  6. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    PubMed

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy.

  7. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study

    PubMed Central

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  8. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    PubMed

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  9. Technology and Outcomes Assessment in Lung Transplantation

    PubMed Central

    Yusen, Roger D.

    2009-01-01

    Lung transplantation offers the hope of prolonged survival and significant improvement in quality of life to patients that have advanced lung diseases. However, the medical literature lacks strong positive evidence and shows conflicting information regarding survival and quality of life outcomes related to lung transplantation. Decisions about the use of lung transplantation require an assessment of trade-offs: do the potential health and quality of life benefits outweigh the potential risks and harms? No amount of theoretical reasoning can resolve this question; empiric data are needed. Rational analyses of these trade-offs require valid measurements of the benefits and harms to the patients in all relevant domains that affect survival and quality of life. Lung transplant systems and registries mainly focus outcomes assessment on patient survival on the waiting list and after transplantation. Improved analytic approaches allow comparisons of the survival effects of lung transplantation versus continued waiting. Lung transplant entities do not routinely collect quality of life data. However, the medical community and the public want to know how lung transplantation affects quality of life. Given the huge stakes for the patients, the providers, and the healthcare systems, key stakeholders need to further support quality of life assessment in patients with advanced lung disease that enter into the lung transplant systems. Studies of lung transplantation and its related technologies should assess patients with tools that integrate both survival and quality of life information. Higher quality information obtained will lead to improved knowledge and more informed decision making. PMID:19131538

  10. Lung transplantation

    PubMed Central

    Afonso, José Eduardo; Werebe, Eduardo de Campos; Carraro, Rafael Medeiros; Teixeira, Ricardo Henrique de Oliveira Braga; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2015-01-01

    ABSTRACT Lung transplantation is a globally accepted treatment for some advanced lung diseases, giving the recipients longer survival and better quality of life. Since the first transplant successfully performed in 1983, more than 40 thousand transplants have been performed worldwide. Of these, about seven hundred were in Brazil. However, survival of the transplant is less than desired, with a high mortality rate related to primary graft dysfunction, infection, and chronic graft dysfunction, particularly in the form of bronchiolitis obliterans syndrome. New technologies have been developed to improve the various stages of lung transplant. To increase the supply of lungs, ex vivo lung reconditioning has been used in some countries, including Brazil. For advanced life support in the perioperative period, extracorporeal membrane oxygenation and hemodynamic support equipment have been used as a bridge to transplant in critically ill patients on the waiting list, and to keep patients alive until resolution of the primary dysfunction after graft transplant. There are patients requiring lung transplant in Brazil who do not even come to the point of being referred to a transplant center because there are only seven such centers active in the country. It is urgent to create new centers capable of performing lung transplantation to provide patients with some advanced forms of lung disease a chance to live longer and with better quality of life. PMID:26154550

  11. Lung Diseases

    MedlinePlus

    When you breathe, your lungs take in oxygen from the air and deliver it to the bloodstream. The cells in your body need oxygen to ... you breathe nearly 25,000 times. People with lung disease have difficulty breathing. Millions of people in ...

  12. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  13. Lung diffusion testing

    MedlinePlus

    Lung diffusion testing measures how well the lungs exchange gases. This is an important part of lung testing , because ... gases do not move normally across the lung tissues into the blood vessels of the lung. This ...

  14. Collapsed lung (pneumothorax)

    MedlinePlus

    Air around the lung; Air outside the lung; Pneumothorax dropped lung; Spontaneous pneumothorax ... Collapsed lung can be caused by an injury to the lung. Injuries can include a gunshot or knife wound ...

  15. Lung disease - resources

    MedlinePlus

    Resources - lung disease ... The following organizations are good resources for information on lung disease : American Lung Association -- www.lung.org National Heart, Lung, and Blood Institute -- www.nhlbi.nih.gov ...

  16. Heterogeneous pathological outcomes after experimental pH1N1 influenza infection in ferrets correlate with viral replication and host immune responses in the lung.

    PubMed

    Vidaña, Beatriz; Martínez, Jorge; Martínez-Orellana, Pamela; García Migura, Lourdes; Montoya, María; Martorell, Jaime; Majó, Natàlia

    2014-01-01

    The swine-origin pandemic (p) H1N1 influenza A virus causes mild upper-respiratory tract disease in most human patients. However, some patients developed severe lower-respiratory tract infections with fatal consequences, and the cause of these infections remain unknown. Recently, it has been suggested that different populations have different degrees of susceptibility to pH1N1 strains due to host genetic variations that are associated with inappropriate immune responses against viral genetic characteristics. Here, we tested whether the pathologic patterns of influenza strains that produce different disease outcomes in humans could be reproduced in a ferret model. Our results revealed that the severities of infection did not correspond to particular viral isolate and were not associated with the clinical phenotypes of the corresponding patients. Severe pathological outcomes were associated with higher viral replication, especially in alveolar areas, and with an exacerbated innate cellular immune response that was characterised by substantial phagocytic and cytotoxic cell migration into the lungs. Moreover, detrimental innate cellular responses were linked to the up-regulation of several proinflammatory cytokines and chemokines and the down-regulation of IFNα in the lungs. Additionally, severe lung lesions were associated with greater up-regulations of pro-apoptotic markers and higher levels of apoptotic neutrophils and macrophages. In conclusion, this study confirmed that the clinicopathological outcomes of pH1N1 infection in ferrets were not only due to viral replication abilities but also depended on the hosts' capacities to mount efficient immune responses to control viral infection of the lung.

  17. On localization of wheezing respiratory sounds in human lungs by means of intensimetric processing of signals detected on the chest surface

    NASA Astrophysics Data System (ADS)

    Korenbaum, V. I.; Tagiltcev, A. A.; Gorovoy, S. V.; Shiryaev, A. D.; Kostiv, A. E.

    2016-09-01

    We obtain a set of equations for determining the distance from the chest surface to various sources (monopole, dipole, transverse quadrupole) of wheezing sounds in human lungs. During testing, we experimentally determined anatomically correct estimates for the distances to sources of wheezing sounds in the frequency range of 100-500 Hz. We demonstrate the possibility of resolving the distances to sources of wheezing sounds with different peak frequencies. We analyze the main limitations of the method.

  18. Time resolved analysis of steady and oscillating flow in the upper human airways

    NASA Astrophysics Data System (ADS)

    Große, S.; Schröder, W.; Klaas, M.; Klöckner, A.; Roggenkamp, J.

    2007-06-01

    In this experimental study a thorough analysis of the steady and unsteady flow field in a realistic transparent silicone lung model of the first bifurcation of the upper human airways will be presented. To determine the temporal evolution of the flow time-resolved particle-image velocimetry recordings were performed for a Womersley number range 3.3 ≤ α ≤ 5.8 and Reynolds numbers of Re D = 1,050, 1,400, and 2,100. The results evidence a highly three-dimensional and asymmetric character of the velocity field in the upper human airways, in which the influence of the asymmetric geometry of the realistic lung model plays a significant role for the development of the flow field in the respiratory system. At steady inspiration, the flow shows independent of the Reynolds number a large zone with embedded counter-rotating vortices in the left bronchia ensuring a continuous streamwise transport into the lung. At unsteady flow the critical Reynolds number, which describes the onset of vortices in the first bifurcation, is increased at higher Womersley number and decreased at higher Reynolds number. At expiration the unsteady and steady flows are almost alike.

  19. Which patients are candidates for lung transplantation? Indications for unilateral, bilateral, and heart-lung procedures.

    PubMed

    Ettinger, N A

    1994-01-01

    Single-lung transplantation, long successful in resolving interstitial lung disease, can now be used in COPD patients and shows promise in managing pulmonary hypertension. The bilateral procedure, which often avoids cardiopulmonary bypass, is preferred when chronic airway infection is present. Heart-lung transplants, now rare, are used when pulmonary hypertension is complicated by congestive cardiomyopathy or irreparable cardiac defects. Mechanical ventilation, prior cardiothoracic surgery, and corticosteroid use no longer constitute absolute contraindications to lung transplantation. The growing scarcity of donor organs is increasing waiting times; thus, earlier recognition of potential recipients is necessary.

  20. Radon and lung cancer.

    PubMed

    Sethi, Tarsheen K; El-Ghamry, Moataz N; Kloecker, Goetz H

    2012-03-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Radon exposure is the second leading cause of lung cancer, following tobacco smoke. Radon is not only an independent risk factor; it also increases the risk of lung cancer in smokers. Numerous cohort, case-control, and experimental studies have established the carcinogenic potential of radon. The possibility of radon having a causative effect on other cancers has been explored but not yet proven. One of the postulated mechanisms of carcinogenesis is DNA damage by alpha particles mediated by the production of reactive oxygen species. The latter are also thought to constitute one of the common mechanisms underlying the synergistic effect of radon and tobacco smoke. With an estimated 21,000 lung cancer deaths attributable to radon in the United States annually, the need for radon mitigation is well acknowledged. The Environmental Protection Agency (EPA) has established an indoor limit of 4 picocuries (pCi)/L, and various methods are available for indoor radon reduction when testing shows higher levels. Radon mitigation should accompany smoking cessation measures in lung cancer prevention efforts.

  1. Time-resolved optical spectroscopic quantification of red blood cell damage caused by cardiovascular devices

    NASA Astrophysics Data System (ADS)

    Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.

    2008-02-01

    Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.

  2. Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons

    SciTech Connect

    Deutsch-Wenzel, R.P.; Brune, H.; Grimmer, G.; Dettbarn, G.; Misfeld, J.

    1983-09-01

    The biologic activity of eight highly purified polycyclic aromatic hydrocarbons (PAH) widely distributed in the human environment was tested in the respiratory tracts of rats. These studies were performed for the examination of carcinogenic activity of the compounds and determination of a dose-response relationship. The lung implantation method was used in 3-month-old female OM rats. A dose-response relationship was obtained for benzo(a)pyrene (BaP), anthanthrene (ANT), benzo(b)fluoranthene (BbF), indeno(1,2,3-cd)pyrene (IND), benzo(j)fluoranthene (BjF), and benzo(k)fluoranthene (BkF). Benzo(e)pyrene and benzo(ghi)perylene showed no tumor-producing effect in this system when given at doses of 5 mg. The histologic and mathematical evaluations indicated that the investigated compounds had distinct carcinogenic potencies. After probit analysis of the results, the carcinogenic potencies of PAH investigated in the lung implantation model rank as follows: BaP, 1.00; ANT, 0.19; BbF, 0.11; IND, 0.08; BkF, 0.03; and BjF, 0.03.

  3. Proton MRI as a noninvasive tool to assess elastase-induced lung damage in spontaneously breathing rats.

    PubMed

    Quintana, Harry Karmouty; Cannet, Catherine; Zurbruegg, Stefan; Blé, François-Xavier; Fozard, John R; Page, Clive P; Beckmann, Nicolau

    2006-12-01

    Elastase-induced changes in lung morphology and function were detected in spontaneously breathing rats using conventional proton MRI at 4.7 T. A single dose of porcine pancreatic elastase (75 U/100 g body weight) or vehicle (saline) was administered intratracheally (i.t.) to male Brown Norway (BN) rats. MRI fluid signals were detected in the lungs 24 hr after administration of elastase and resolved within 2 weeks. These results correlated with perivascular edema and cellular infiltration observed histologically. Reductions in MRI signal intensity of the lung parenchyma, and increases in lung volume were detected as early as 2 weeks following elastase administration and remained uniform throughout the study, which lasted 8 weeks. Observations were consistent with air trapping resulting from emphysema detected histologically. In a separate experiment, animals were treated daily intraperitoneally (i.p.) with all-trans-retinoic acid (ATRA; 500 microg/kg body weight) or its vehicle (triglyceride oil) starting on day 21 after elastase administration and continuing for 12 days. Under these conditions, ATRA did not elicit a reversal of elastase-induced lung damage as measured by MRI and histology. The present approach complements other validated applications of proton MRI in experimental lung research as a method for assessing drugs in rat models of respiratory diseases. PMID:17029230

  4. Radionuclide injury to the lung.

    PubMed Central

    Dagle, G E; Sanders, C L

    1984-01-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequency observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. PMID:6376095

  5. Resolving writer's block.

    PubMed Central

    Huston, P.

    1998-01-01

    PROBLEM BEING ADDRESSED: Writer's block, or a distinctly uncomfortable inability to write, can interfere with professional productivity. OBJECTIVE OF PROGRAM: To identify writer's block and to outline suggestions for its early diagnosis, treatment, and prevention. MAIN COMPONENTS OF PROGRAM: Once the diagnosis has been established, a stepwise approach to care is recommended. Mild blockage can be resolved by evaluating and revising expectations, conducting a task analysis, and giving oneself positive feedback. Moderate blockage can be addressed by creative exercises, such as brainstorming and role-playing. Recalcitrant blockage can be resolved with therapy. Writer's block can be prevented by taking opportunities to write at the beginning of projects, working with a supportive group of people, and cultivating an ongoing interest in writing. CONCLUSIONS: Writer's block is a highly treatable condition. A systematic approach can help to alleviate anxiety, build confidence, and give people the information they need to work productively. PMID:9481467

  6. Open lung biopsy

    MedlinePlus

    Biopsy - open lung ... An open lung biopsy is done in the hospital using general anesthesia , which means you are asleep and pain- ... The open lung biopsy is done to evaluate lung problems seen on x-ray or CT scan .

  7. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  8. Resource Prospector: The RESOLVE Payload

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Smith, J.; J., Captain; Paz, A.; Colaprete, A.; Elphic, R.; Zacny, K.

    2015-10-01

    NASA has been developing a lunar volatiles exploration payload named RESOLVE. Now the primary science payload on-board the Resource Prospector (RP) mission, RESOLVE, consists of several instruments that evaluate lunar volatiles.

  9. Tsunami lung.

    PubMed

    Inoue, Yoshihiro; Fujino, Yasuhisa; Onodera, Makoto; Kikuchi, Satoshi; Shozushima, Tatsuyori; Ogino, Nobuyoshi; Mori, Kiyoshi; Oikawa, Hirotaka; Koeda, Yorihiko; Ueda, Hironobu; Takahashi, Tomohiro; Terui, Katsutoshi; Nakadate, Toshihide; Aoki, Hidehiko; Endo, Shigeatsu

    2012-04-01

    We encountered three cases of lung disorders caused by drowning in the recent large tsunami that struck following the Great East Japan Earthquake. All three were females, and two of them were old elderly. All segments of both lungs were involved in all the three patients, necessitating ICU admission and endotracheal intubation and mechanical ventilation. All three died within 3 weeks. In at least two cases, misswallowing of oil was suspected from the features noted at the time of the detection. Sputum culture for bacteria yielded isolation of Stenotrophomonas maltophilia, Legionella pneumophila, Burkholderia cepacia, and Pseudomonas aeruginosa. The cause of tsunami lung may be a combination of chemical induced pneumonia and bacterial pneumonia.

  10. Protective effect of carvacrol on acute lung injury induced by lipopolysaccharide in mice.

    PubMed

    Feng, Xiaosheng; Jia, Aiqing

    2014-08-01

    Carvacrol, the major component of Plectranthus amboinicus, has been known to exhibit anti-inflammatory activities. The aim of this study was to investigate the effects of carvacrol on lipopolysaccharide (LPS)-induced endotoxemia and acute lung injury (ALI) in mice. Mice were injected intraperitoneally (i.p.) with LPS and the mortality of mice for 7 days were observed twice a day. Meanwhile, the protective effect of carvacrol (20, 40 or 80 mg/kg) on LPS-induced endotoxemia were detected. Using an experimental model of LPS-induced ALI, we examined the effect of carvacrol in resolving lung injury. The results showed that carvacrol could improve survival during lethal endotoxemia and attenuate LPS-induced ALI in mice. The anti-inflammatory mechanisms of carvacrol may be due to its ability to inhibit NF-κB and MAPKs signaling pathways, thereby inhibiting inflammatory cytokines TNF-α, IL-6 and IL-1β production. PMID:24577726

  11. Cloud Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.

  12. RESOLVE 2010 Field Test

    NASA Technical Reports Server (NTRS)

    Captain, J.; Quinn, J.; Moss, T.; Weis, K.

    2010-01-01

    This slide presentation reviews the field tests conducted in 2010 of the Regolith Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE). The Resolve program consist of several mechanism: (1) Excavation and Bulk Regolith Characterization (EBRC) which is designed to act as a drill and crusher, (2) Regolith Volatiles Characterization (RVC) which is a reactor and does gas analysis,(3) Lunar Water Resources Demonstration (LWRD) which is a fluid system, water and hydrogen capture device and (4) the Rover. The scientific goal of this test is to demonstrate evolution of low levels of hydrogen and water as a function of temperature. The Engineering goals of this test are to demonstrate:(1) Integration onto new rover (2) Miniaturization of electronics rack (3) Operation from battery packs (elimination of generator) (4) Remote command/control and (5) Operation while roving. Views of the 2008 and the 2010 mechanisms, a overhead view of the mission path, a view of the terrain, the two drill sites, and a graphic of the Master Events Controller Graphical User Interface (MEC GUI) are shown. There are descriptions of the Gas chromatography (GC), the operational procedure, water and hydrogen doping of tephra. There is also a review of some of the results, and future direction for research and tests.

  13. Wavelength resolved specific optical rotations and homochiral equilibria.

    PubMed

    Polavarapu, P L; Covington, C L

    2015-09-01

    The fundamental expressions governing specific optical rotations (SORs) of homochiral systems exhibiting monomer-dimer equilibria are presented. These equations are then utilized with the experimental measurements of wavelength resolved circular birefringence for (R)-(-)-α-hydroxy-β,β-dimethyl-γ-butyrolactone, to determine the wavelength resolved SORs of monomer and dimer components for the first time. Density functional theory predictions on the corresponding dispersion properties of monomer and dimer are found to match with experimentally determined quantities within a factor of ∼2. The wavelength resolved circular birefringence in the liquid solution phase thus provides a powerful means to investigate the molecular properties involved in homochiral equilibria. PMID:26227210

  14. Image-based modeling of lung structure and function

    PubMed Central

    Tawhai, Merryn H.; Lin, Ching-Long

    2010-01-01

    Current state-of-the-art in image-based modeling allows derivation of patient-specific models of the lung, lobes, airways, and pulmonary vascular trees. The application of traditional engineering analyses of fluid and structural mechanics to image-based subject-specific models has the potential to provide new insight into structure-function relationships in the individual via functional interpretation that complements imaging and experimental studies. Three major issues that are encountered in studies of air flow through the bronchial airways are the representation of airway geometry, the imposition of physiological boundary conditions, and the treatment of turbulence. Here we review some efforts to resolve each of these issues, with particular focus on image-based models that have been developed to simulate air flow from the mouth to the terminal bronchiole, and subjected to physiologically meaningful boundary conditions via image registration and soft tissue mechanics models. PMID:21105146

  15. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment.

    PubMed

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  16. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment

    PubMed Central

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C.; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  17. Spin-resolved photoionization studies

    NASA Astrophysics Data System (ADS)

    Snell, G.; Berrah, N.; Langer, B.; Bozek, J. D.

    2000-06-01

    We performed spin-polarization measurements of the Xe N_45O_23O_23, Kr M_45N_23N_23 and Ar L_23M_23M_23 Auger electron with circularly polarized light from the ALS fom threshold up to 540 eV photon energy. The spin-resolved electron spectra were recorded by a new spectrometer system that combines our time-of flight spectrometers with a retarding field Mott polarimeter of the Burnett et al. design.footnote C. Burnett, T. J. Monroe, and F. B. Dunning, Rev. Sci. Instrum. 65,1893 (1994). From our measurements, the orientation parameter A_10 of the Xe 4d-1, Kr 3d-1 and Ar 2p-1 hole states were obtained over a broad photon energy range covering the shape resonance (≈ 100 eV) and the Cooper minimum (≈ 175 eV) of the photoionization cross section. Our measurements are the first direct experimental proof that in the Cooper minimum of a d-subshell photoionziation the outgoing electrons have a purely p character. This work was funded by DOE/BES/Chem.Sci.

  18. Lung oxidative damage by hypoxia.

    PubMed

    Araneda, O F; Tuesta, M

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described. PMID:22966417

  19. Preterm nutrition and the lung.

    PubMed

    Moya, Fernando

    2014-01-01

    Experimental and clinical evidence show that fetal and neonatal nutrition and metabolism can markedly modulate pulmonary growth, development, and function, as well as long-term lung health and disease risks. Intrauterine growth restriction has been linked to an increased risk for respiratory distress syndrome and chronic lung disease, while excessive fetal growth reduced forced expiratory volume. Postnatal undernutrition adversely affected pulmonary function in animal models and was associated to a higher risk of chronic lung disease in very low birth weight infants. The supply of specific nutrients to very low birth weight infants, including fluids, protein, carbohydrates, inositol, docosahexaenoic acid, calcium, phosphorus and the vitamins A and E has been associated with lung development and function and deserves further evaluation. In infants with evolving or established chronic lung disease, excess fluid administration and high intravenous glucose infusion rates should be avoided and the provision of vitamin A be considered. Opportunities exist for further research relating to neonatal nutrition and lung health, for example exploring optimal strategies and effects of providing vitamin A, docosahexaenoic acid and intravenous lipid emulsions.

  20. Lung Oxidative Damage by Hypoxia

    PubMed Central

    Araneda, O. F.; Tuesta, M.

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described. PMID:22966417

  1. Lung oxidative damage by hypoxia.

    PubMed

    Araneda, O F; Tuesta, M

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.

  2. Neurogenic inflammation in lung disease: burnt out?

    PubMed

    Rogers, D F

    1997-01-01

    Neurogenic inflammation results from activation of sensory nerves which, acting in an 'efferent' manner, release sensory neuropeptides to induce a wide variety of physiological and immunological responses. This process is easy to demonstrate experimentally in the airways of small laboratory animal species but in human airways is equivocal and, at best, minor compared with cholinergic neural control. Nevertheless, sensory neuropeptides (calcitonin gene-related peptide and the tachykinins, substance P and neurokinin A) induce airway responses in both laboratory animals and humans which suggest a potential for sensory-efferent control of human airways. In addition, there is indirect evidence for an increased 'expression' of sensory nerves and tachykinin receptors in asthma and bronchitis, which indicates that neurogenic inflammation contributes to pathophysiology of these airway conditions. In contrast, clinical trials using different classes of drugs to inhibit sensory nerve responses have failed to resolve whether neurogenic inflammation is involved in asthma, although there are concerns about the relevance of some of these studies. In contrast to their involvement in airway neurogenic inflammation, sensory nerves may be important in initiating protective reflexes, including coughing and sneezing, acting via their afferent pathways. Thus, although flickering, the concept of neurogenic inflammation in lung disease is not yet burnt out. However, it needs the rekindling of interest which re-evaluation as a protective process may bring, together with data from more appropriate clinical studies in asthma and chronic bronchitis. PMID:17657611

  3. What is the best method to fit time-resolved data? A comparison of the residual minimization and the maximum likelihood techniques as applied to experimental time-correlated, single-photon counting data

    DOE PAGES

    Santra, Kalyan; Zhan, Jinchun; Song, Xueyu; Smith, Emily A.; Vaswani, Namrata; Petrich, Jacob W.

    2016-02-10

    The need for measuring fluorescence lifetimes of species in subdiffraction-limited volumes in, for example, stimulated emission depletion (STED) microscopy, entails the dual challenge of probing a small number of fluorophores and fitting the concomitant sparse data set to the appropriate excited-state decay function. This need has stimulated a further investigation into the relative merits of two fitting techniques commonly referred to as “residual minimization” (RM) and “maximum likelihood” (ML). Fluorescence decays of the well-characterized standard, rose bengal in methanol at room temperature (530 ± 10 ps), were acquired in a set of five experiments in which the total number ofmore » “photon counts” was approximately 20, 200, 1000, 3000, and 6000 and there were about 2–200 counts at the maxima of the respective decays. Each set of experiments was repeated 50 times to generate the appropriate statistics. Each of the 250 data sets was analyzed by ML and two different RM methods (differing in the weighting of residuals) using in-house routines and compared with a frequently used commercial RM routine. Convolution with a real instrument response function was always included in the fitting. While RM using Pearson’s weighting of residuals can recover the correct mean result with a total number of counts of 1000 or more, ML distinguishes itself by yielding, in all cases, the same mean lifetime within 2% of the accepted value. For 200 total counts and greater, ML always provides a standard deviation of <10% of the mean lifetime, and even at 20 total counts there is only 20% error in the mean lifetime. Here, the robustness of ML advocates its use for sparse data sets such as those acquired in some subdiffraction-limited microscopies, such as STED, and, more importantly, provides greater motivation for exploiting the time-resolved capacities of this technique to acquire and analyze fluorescence lifetime data.« less

  4. Rheumatoid lung disease

    MedlinePlus

    Lung disease - rheumatoid arthritis; Rheumatoid nodules; Rheumatoid lung ... Elsevier Saunders; 2016:chap 65. Lake F, Proudman S. Rheumatoid arthritis and lung disease: from mechanisms to a practical approach. Semin Respir ...

  5. How Lungs Work

    MedlinePlus

    ... Health and Diseases > How Lungs Work How Lungs Work The Respiratory System Your lungs are part of ... Parts of the Respiratory System and How They Work Airways SINUSES are hollow spaces in the bones ...

  6. Lung Carcinoid Tumor: Surgery

    MedlinePlus

    ... for lung carcinoid tumor symptoms Surgery to treat lung carcinoid tumors Surgery is the main treatment for ... often be cured by surgery alone. Types of lung surgery Different operations can be used to treat ( ...

  7. Interstitial lung disease in scleroderma.

    PubMed

    Schoenfeld, Sara R; Castelino, Flavia V

    2015-05-01

    Systemic sclerosis is a heterogeneous disease of unknown etiology with limited effective therapies. It is characterized by autoimmunity, vasculopathy, and fibrosis and is clinically manifested by multiorgan involvement. Interstitial lung disease is a common complication of systemic sclerosis and is associated with significant morbidity and mortality. The diagnosis of interstitial lung disease hinges on careful clinical evaluation and pulmonary function tests and high-resolution computed tomography. Effective therapeutic options are still limited. Several experimental therapies are currently in early-phase clinical trials and show promise.

  8. Lung surgery - discharge

    MedlinePlus

    Thoracotomy - discharge; Lung tissue removal - discharge; Pneumonectomy - discharge; Lobectomy - discharge; Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - ...

  9. Interstitial lung disease

    MedlinePlus

    Diffuse parenchymal lung disease; Alveolitis; Idiopathic pulmonary pneumonitis (IPP) ... The lungs contain tiny air sacs (alveoli), which is where oxygen is absorbed. These air sacs expand with each ...

  10. Importance of mast cell Prss31/transmembrane tryptase/tryptase-γ in lung function and experimental chronic obstructive pulmonary disease and colitis.

    PubMed

    Hansbro, Philip M; Hamilton, Matthew J; Fricker, Michael; Gellatly, Shaan L; Jarnicki, Andrew G; Zheng, Dominick; Frei, Sandra M; Wong, G William; Hamadi, Sahar; Zhou, Saijun; Foster, Paul S; Krilis, Steven A; Stevens, Richard L

    2014-06-27

    Protease serine member S31 (Prss31)/transmembrane tryptase/tryptase-γ is a mast cell (MC)-restricted protease of unknown function that is retained on the outer leaflet of the plasma membrane when MCs are activated. We determined the nucleotide sequences of the Prss31 gene in different mouse strains and then used a Cre/loxP homologous recombination approach to create a novel Prss31(-/-) C57BL/6 mouse line. The resulting animals exhibited no obvious developmental abnormality, contained normal numbers of granulated MCs in their tissues, and did not compensate for their loss of the membrane tryptase by increasing their expression of other granule proteases. When Prss31-null MCs were activated with a calcium ionophore or by their high affinity IgE receptors, they degranulated in a pattern similar to that of WT MCs. Prss31-null mice had increased baseline airway reactivity to methacholine but markedly reduced experimental chronic obstructive pulmonary disease and colitis, thereby indicating both beneficial and adverse functional roles for the tryptase. In a cigarette smoke-induced model of chronic obstructive pulmonary disease, WT mice had more pulmonary macrophages, higher histopathology scores, and more fibrosis in their small airways than similarly treated Prss31-null mice. In a dextran sodium sulfate-induced acute colitis model, WT mice lost more weight, had higher histopathology scores, and contained more Cxcl-2 and IL-6 mRNA in their colons than similarly treated Prss31-null mice. The accumulated data raise the possibility that inhibitors of this membrane tryptase may provide additional therapeutic benefit in the treatment of humans with these MC-dependent inflammatory diseases.

  11. Lung Circulation.

    PubMed

    Suresh, Karthik; Shimoda, Larissa A

    2016-04-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. PMID:27065170

  12. Who Needs a Lung Transplant?

    MedlinePlus

    ... from the NHLBI on Twitter. Who Needs a Lung Transplant? Your doctor may recommend a lung transplant ... lungs to pick up oxygen. Applying to a Lung Transplant Program Lung transplants are done in medical ...

  13. RESOLVE and ECO: Survey Design

    NASA Astrophysics Data System (ADS)

    Kannappan, Sheila; Moffett, Amanda J.; Norris, Mark A.; Eckert, Kathleen D.; Stark, David; Berlind, Andreas A.; Snyder, Elaine M.; Norman, Dara J.; Hoversten, Erik A.; RESOLVE Team

    2016-01-01

    The REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey is a volume-limited census of stellar, gas, and dynamical mass as well as star formation and galaxy interactions within >50,000 cubic Mpc of the nearby cosmic web, reaching down to dwarf galaxies of baryonic mass ~10^9 Msun and spanning multiple large-scale filaments, walls, and voids. RESOLVE is surrounded by the ~10x larger Environmental COntext (ECO) catalog, with matched custom photometry and environment metrics enabling analysis of cosmic variance with greater statistical power. For the ~1500 galaxies in its two equatorial footprints, RESOLVE goes beyond ECO in providing (i) deep 21cm data with adaptive sensitivity ensuring HI mass detections or upper limits <10% of the stellar mass and (ii) 3D optical spectroscopy including both high-resolution ionized gas or stellar kinematic data for each galaxy and broad 320-725nm spectroscopy spanning [OII] 3727, Halpha, and Hbeta. RESOLVE is designed to complement other radio and optical surveys in providing diverse, contiguous, and uniform local/global environment data as well as unusually high completeness extending into the gas-dominated dwarf galaxy regime. RESOLVE also offers superb reprocessed photometry including full, deep NUV coverage and synergy with other equatorial surveys as well as unique northern and southern facilities such as Arecibo, the GBT, and ALMA. The RESOLVE and ECO surveys have been supported by funding from NSF grants AST-0955368 and OCI-1156614.

  14. Air pollution and lung cancer.

    PubMed

    Böhm, G M

    1982-01-01

    Epidemiological evidence proves conclusively that lung cancer correlates with air pollution. However, data on lung cancer death rates and smoking show that mankind accepts the risk of long-term and low-level exposure to carcinogens. As a rule, immediate benefits are sought and remote hazards ignored. Fear of atmospheric contamination by radioactive fallout seems to be the main factor for awareness of air pollution. Experimental works help us to understand physics of particle deposition in the lungs (inertial impactation, sedimentation, Brownian movement), shed light on carcinogenesis (eg, bay region theory in case of polycyclic aromatic hydrocarbons and surface charge changes regarding asbestos), show that atmospheric particulates accepted as harmless may act as co-carcinogens (eg, iron and benzo(a)pyrene) and stress the importance of in vitro researches (bacterial mutation tests, organ cultures, sister chromatid exchange system) to screen pollutants for their malignant potential and study their pathogenesis.

  15. Air pollution and lung cancer

    SciTech Connect

    Boehm, G.M.

    1982-01-01

    Epidemiological evidence proves conclusively that lung cancer correlates with air pollution. However, data on lung cancer death rates and smoking show that mankind accepts the risk of long-term and low-level exposure to carcinogens. As a rule, immediate benefits are sought and remote hazards ignored. Fear of atmospheric contamination by radioactive fallout seems to be the main factor for awareness of air pollution. Experimental works help us to understand physics of particle deposition in the lungs (inertial impactation, sedimentation, Brownian movement), shed light on carcinogenesis (eg, bay region theory in case of polycyclic aromatic hydrocarbons and surface charge changes regarding asbestos), show that atmospheric particulates accepted as harmless may act as co-carcinogens (eg, iron and benzo(a)pyrene) and stress the importance of in vitro research (bacterial mutation tests, organ cultures, sister chromatid exchange system) to screen pollutants for their malignant potential and study their pathogenesis.

  16. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  17. Synchrotron beam coherence: a spatially resolved measurement

    NASA Astrophysics Data System (ADS)

    Tran, C. Q.; Peele, A. G.; Roberts, A.; Nugent, K. A.; Paterson, D.; McNulty, I.

    2005-01-01

    We report a precise and spatially resolved measurement of the complex degree of coherence of a one-dimensional 1.5-keV beam produced by a third-generation synchrotron source. The method of phase-space tomography is used, which requires only measurements of the x-ray intensity. We find that the field is statistically stationary to within experimental error, the correlations are very well approximated by a Gaussian distribution, and the measured coherence length is in excellent agreement with expectations.

  18. Lung Cancer Screening

    MedlinePlus

    ... Cancer Treatment Small Cell Lung Cancer Treatment Lung cancer is the leading cause of cancer death in the United States. Lung cancer is ... non- skin cancer in the United States. Lung cancer is the leading cause of cancer death in men and in women. ...

  19. Interstitial Lung Diseases

    MedlinePlus

    Interstitial lung disease is the name for a large group of diseases that inflame or scar the lungs. The inflammation and scarring make it hard to ... air is responsible for some types of interstitial lung diseases. Specific types include Black lung disease among ...

  20. The lung microbiome after lung transplantation.

    PubMed

    Becker, Julia; Poroyko, Valeriy; Bhorade, Sangeeta

    2014-04-01

    Lung transplantation survival remains significantly impacted by infections and the development of chronic rejection manifesting as bronchiolitis obliterans syndrome (BOS). Traditional microbiologic data has provided insight into the role of infections in BOS. Now, new non-culture-based techniques have been developed to characterize the entire population of microbes resident on the surfaces of the body, also known as the human microbiome. Early studies have identified that lung transplant patients have a different lung microbiome and have demonstrated the important finding that the transplant lung microbiome changes over time. Furthermore, both unique bacterial populations and longitudinal changes in the lung microbiome have now been suggested to play a role in the development of BOS. In the future, this technology will need to be combined with functional assays and assessment of the immune responses in the lung to help further explain the microbiome's role in the failing lung allograft.

  1. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. PMID:26700566

  2. Epidemiology of Lung Cancer

    PubMed Central

    Ridge, Carole A.; McErlean, Aoife M.; Ginsberg, Michelle S.

    2013-01-01

    Incidence and mortality attributed to lung cancer has risen steadily since the 1930s. Efforts to improve outcomes have not only led to a greater understanding of the etiology of lung cancer, but also the histologic and molecular characteristics of individual lung tumors. This article describes this evolution by discussing the extent of the current lung cancer epidemic including contemporary incidence and mortality trends, the risk factors for development of lung cancer, and details of promising molecular targets for treatment. PMID:24436524

  3. Two-color ghost imaging with enhanced angular resolving power

    SciTech Connect

    Karmakar, Sanjit; Shih, Yanhua

    2010-03-15

    This article reports an experimental demonstration on nondegenerate, two-color, biphoton ghost imaging which reproduced a ghost image with enhanced angular resolving power by means of a greater field of view compared with that of classical imaging. With the same imaging magnification, the enhanced angular resolving power and field of view compared with those of classical imaging are 1.25:1 and 1.16:1, respectively. The enhancement of angular resolving power depends on the ratio between the idler and the signal photon frequencies, and the enhancement of the field of view depends mainly on the same ratio and also on the distances of the object plane and the imaging lens from the two-photon source. This article also reports the possibility of reproducing a ghost image with the enhancement of the angular resolving power by means of a greater imaging amplification compared with that of classical imaging.

  4. Endobronchial Echinococcosis Presenting as Non-Resolving Pneumonia

    PubMed Central

    Lev-Tzion, Raffi; Goldbart, Aviv D.

    2011-01-01

    Summary Hydatid disease of the lungs is caused by larval cysts of the Echinococcus tapeworm. Pulmonary cysts may occasionally invade bronchi or pleura as a result of coughing, trauma or elevated intra-abdominal pressure. We present the case of a patient evaluated for non-resolving pneumonia whose radiographic and bronchoscopic findings were strikingly similar to those seen in pulmonary tuberculosis with endobronchial invasion; he was ultimately diagnosed with pulmonary echinococcosis. This case underscores the importance of considering unusual diagnoses even when typical features of more common conditions are present. PMID:22162447

  5. Interstitial lung disease - adults - discharge

    MedlinePlus

    Diffuse parenchymal lung disease - discharge; Alveolitis - discharge; Idiopathic pulmonary pneumonitis - discharge; IPP - discharge; Chronic interstitial lung - discharge; Chronic respiratory interstitial lung - ...

  6. Effects of Chorioamnionitis on the Fetal Lung

    PubMed Central

    Jobe, Alan

    2012-01-01

    SYNOPSIS Very preterm infants are commonly exposed to a chronic, often asymptomatic chorioamnionitis that is diagnosed only after delivery by histologic evaluation of the placenta. The reported effects of these exposures on fetal lungs are inconsistent because exposure to different organisms, durations of exposure, and fetal/maternal responses impact outcomes. In experimental models, chorioamnionitis can both injure and mature the fetal lung and cause immune nodulation. Postnatal care strategies also change how chorioamnionitis relates to clinical outcomes such as BPD. PMID:22954262

  7. Structural relaxation of acridine orange dimer in bulk water and inside a single live lung cell

    NASA Astrophysics Data System (ADS)

    Chowdhury, Rajdeep; Nandi, Somen; Halder, Ritaban; Jana, Biman; Bhattacharyya, Kankan

    2016-02-01

    Structural relaxation of the acridine orange (AO) dimer in bulk water and inside a single live lung cell is studied using time resolved confocal microscopy and molecular dynamics (MD) simulations. The emission maxima ( λem max ˜ 630 nm) of AO in a lung cancer cell (A549) and a non-cancer lung fibroblast cell (WI38) suggest that AO exists as a dimer inside the cell. Time-dependent red shift in emission maximum indicates dynamic relaxation of the AO dimer (in the excited state) with a time constant of 500-600 ps, both in bulk water and inside the cell. We have calculated the equilibrium relaxation dynamics of the AO dimer in the ground state using MD simulations and found a slow component of time scale ˜350 ps. The intra- and inter-molecular components of the total relaxation dynamics of the AO dimer reveal the presence of a slow component of the order of a few hundred picoseconds. Upon restricting intra-molecular dye dynamics by harmonic constraint between AO monomers, the slow component vanishes. Combining the experimental observations and MD simulation results, we ascribe the slow component of the dynamic relaxation of the AO dimer to the structural relaxation, namely, fluctuations in the distance between the two monomers and associated fluctuation in the number of water molecules.

  8. [Lung cancer in elderly patients: lung cancer and lung function].

    PubMed

    Tanita, Tatsuo

    2005-07-01

    The incidence of bronchogenic carcinoma is increasing as life expectancy rises. With increase in the aged population in Japan, the number of patients suffering from lung cancer and candidates for lung resections are increasing. In this paper, the author lists up indispensable procedures for diagnosis, namely, lung function tests, unilateral pulmonary arterial occlusion test and exercise tolerance test. The cut-offs for identifying candidates for elderly patients for lung resections can be applied the same cut-offs for younger patients. Also the author indicates the importance of postoperative management for lung lobe resections. In order to prevent postoperative problems such as congestive heart failure that might be a fetal complication, the most useful check values after the lung surgery for elderly patients are rate of transfusion and urine volume. In conclusion, when elderly patients assert their rights to undergo lung surgery, we, the thoracic surgeons, should reply their requests under the equal quality of safe surgery as that for younger patients. Besides, it is desirable that even elderly patients, over 80 years old, who undergo lung surgery should guarantee their quality of daily life after surgery.

  9. Pulmonary mass and multiple lung nodules mimicking a lung neoplasm as amiodarone-induced pulmonary toxicity.

    PubMed

    Rodríguez-García, J L.; García-Nieto, J C.; Ballesta, F; Prieto, E; Villanueva, M A.; Gallardo, J

    2001-07-01

    Amiodarone is an effective anti-arrhythmic agent. However, during long-term therapy, patients can develop severe adverse pulmonary reactions that are potentially life-threatening. A case of amiodarone-induced pulmonary toxicity is presented in a 78-year-old woman. She developed dyspnea and a pulmonary mass with associated multiple lung nodules mimicking a lung cancer following 5 years of treatment with amiodarone for atrial fibrillation. After drug withdrawal, and without any additional treatment, clinical and radiological improvement was observed, and radiological findings resolved completely within 6 months.

  10. Epidemiology of Lung Cancer

    PubMed Central

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  11. Epidemiology of Lung Cancer.

    PubMed

    Mao, Yousheng; Yang, Ding; He, Jie; Krasna, Mark J

    2016-07-01

    Lung cancer has been transformed from a rare disease into a global problem and public health issue. The etiologic factors of lung cancer become more complex along with industrialization, urbanization, and environmental pollution around the world. Currently, the control of lung cancer has attracted worldwide attention. Studies on the epidemiologic characteristics of lung cancer and its relative risk factors have played an important role in the tertiary prevention of lung cancer and in exploring new ways of diagnosis and treatment. This article reviews the current evolution of the epidemiology of lung cancer. PMID:27261907

  12. Multiphoton microscopy as a diagnostic imaging modality for lung cancer

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Peters, Rachel M.; Weiss, Robert S.; Webb, Watt W.

    2010-02-01

    Lung cancer is the leading killer among all cancers for both men and women in the US, and is associated with one of the lowest 5-year survival rates. Current diagnostic techniques, such as histopathological assessment of tissue obtained by computed tomography guided biopsies, have limited accuracy, especially for small lesions. Early diagnosis of lung cancer can be improved by introducing a real-time, optical guidance method based on the in vivo application of multiphoton microscopy (MPM). In particular, we hypothesize that MPM imaging of living lung tissue based on twophoton excited intrinsic fluorescence and second harmonic generation can provide sufficient morphologic and spectroscopic information to distinguish between normal and diseased lung tissue. Here, we used an experimental approach based on MPM with multichannel fluorescence detection for initial discovery that MPM spectral imaging could differentiate between normal and neoplastic lung in ex vivo samples from a murine model of lung cancer. Current results indicate that MPM imaging can directly distinguish normal and neoplastic lung tissues based on their distinct morphologies and fluorescence emission properties in non-processed lung tissue. Moreover, we found initial indication that MPM imaging differentiates between normal alveolar tissue, inflammatory foci, and lung neoplasms. Our long-term goal is to apply results from ex vivo lung specimens to aid in the development of multiphoton endoscopy for in vivo imaging of lung abnormalities in various animal models, and ultimately for the diagnosis of human lung cancer.

  13. Plasticity of lung development in the amphibian, Xenopus laevis

    PubMed Central

    Rose, Christopher S.; James, Brandon

    2013-01-01

    Summary Contrary to previous studies, we found that Xenopus laevis tadpoles raised in normoxic water without access to air can routinely complete metamorphosis with lungs that are either severely stunted and uninflated or absent altogether. This is the first demonstration that lung development in a tetrapod can be inhibited by environmental factors and that a tetrapod that relies significantly on lung respiration under unstressed conditions can be raised to forego this function without adverse effects. This study compared lung development in untreated, air-deprived (AD) and air-restored (AR) tadpoles and frogs using whole mounts, histology, BrdU labeling of cell division and antibody staining of smooth muscle actin. We also examined the relationship of swimming and breathing behaviors to lung recovery in AR animals. Inhibition and recovery of lung development occurred at the stage of lung inflation. Lung recovery in AR tadpoles occurred at a predictable and rapid rate and correlated with changes in swimming and breathing behavior. It thus presents a new experimental model for investigating the role of mechanical forces in lung development. Lung recovery in AR frogs was unpredictable and did not correlate with behavioral changes. Its low frequency of occurrence could be attributed to developmental, physical and behavioral changes, the effects of which increase with size and age. Plasticity of lung inflation at tadpole stages and loss of plasticity at postmetamorphic stages offer new insights into the role of developmental plasticity in amphibian lung loss and life history evolution. PMID:24337117

  14. Children's Use of Gesture to Resolve Lexical Ambiguity

    ERIC Educational Resources Information Center

    Kidd, Evan; Holler, Judith

    2009-01-01

    We report on a study investigating 3-5-year-old children's use of gesture to resolve lexical ambiguity. Children were told three short stories that contained two homonym senses; for example, "bat" (flying mammal) and "bat" (sports equipment). They were then asked to re-tell these stories to a second experimenter. The data were coded for the means…

  15. The clinical potential of ex vivo lung perfusion.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2012-02-01

    The number of patients listed for lung transplantation largely exceeds the number of available transplantable organs because of both a shortage of organ donors and a low utilization rate of donor lungs. Normothermic ex vivo lung perfusion (EVLP) is a method that maintains the organ in physiologically protective conditions outside the body during preservation, and shows great promise to increase utilization of donor lungs by allowing more accurate evaluation, as well as treatment and repair, of damaged donor lungs prior to transplantation. This article will cover the rationale, technical details and results of experimental and clinical studies with EVLP. The significant potential applications of EVLP in lung transplantation, lung regeneration and oncology are discussed. PMID:22283576

  16. Ultrafast time resolved vibrational spectroscopy in liquid systems

    NASA Astrophysics Data System (ADS)

    Seifert, G.; Hofmann, M.; Weidlich, K.; Graener, H.

    1996-04-01

    The ultrafast dynamics of small molecules in the liquid phase can successfully be studied tracing the relaxation pathways of vibrational excess energy. Two complementing experimental techniques, picosecond IR double resonance spectroscopy and time resolved incoherent Anti-Stokes Raman spectroscopy, are very powerful tools for such studies. The capabilities of investigations combining these methods are discussed on the example of new experimental data on liquid dichloromethane (CH2Cl2).

  17. Production of Experimental Malignant Pleural Effusions Is Dependent on Invasion of the Pleura and Expression of Vascular Endothelial Growth Factor/Vascular Permeability Factor by Human Lung Cancer Cells

    PubMed Central

    Yano, Seiji; Shinohara, Hisashi; Herbst, Roy S.; Kuniyasu, Hiroki; Bucana, Corazon D.; Ellis, Lee M.; Fidler, Isaiah J.

    2000-01-01

    We determined the molecular mechanisms that regulate the pathogenesis of malignant pleural effusion (PE) associated with advanced stage of human, non-small-cell lung cancer. Intravenous injection of human PC14 and PC14PE6 (adenocarcinoma) or H226 (squamous cell carcinoma) cells into nude mice yielded numerous lung lesions. PC14 and PC14PE6 lung lesions invaded the pleura and produced PE containing a high level of vascular endothelial growth factor (VEGF)-localized vascular hyperpermeability. Lung lesions produced by H226 cells were confined to the lung parenchyma with no PE. The level of expression of VEGF mRNA and protein by the cell lines directly correlated with extent of PE formation. Transfection of PC14PE6 cells with antisense VEGF165 gene did not inhibit invasion into the pleural space but reduced PE formation. H226 cells transfected with either sense VEGF 165 or sense VEGF 121 genes induced localized vascular hyperpermeability and produced PE only after direct implantation into the thoracic cavity. The production of PE was thus associated with the ability of tumor cells to invade the pleura, a property associated with expression of high levels of urokinase-type plasminogen activator and low levels of TIMP-2. Collectively, the data demonstrate that the production of malignant PE requires tumor cells to invade the pleura and express high levels of VEGF/VPF. PMID:11106562

  18. Interacting galaxies resolved by IRAS

    NASA Technical Reports Server (NTRS)

    Mazzarella, Joseph M.; Surace, Jason A.

    1994-01-01

    We discuss procedures, limitations and results of high resolution processing of interacting galaxies observed by the Infrared Astronomical Satellite (IRAS). Among 56 potentially resolvable interacting groups selected from the IRAS Bright Galaxy Sample, 22 systems have been resolved yielding fluxes for a total of 51 galaxies. In about 2/3 of the resolved pairs, both galaxies were detected in the far-infrared. A set of isolated non-interacting galaxies was chosen from the Bright Galaxy Sample for comparison with the interacting galaxies. For the current sample, which naturally excludes close pairs and ultraluminous merging systems, the primary conclusions are: (1) It is not possible to distinguish individual interacting galaxies from isolated galaxies of similar luminosity on the basis of infrared properties alone. (2) No direct correlation was found between measures of interaction strength and indicators of enhanced star formation within the resolved systems. (3) Comparison of the interacting and isolated samples indicates statistically significant differences between their distributions of far-infrared color ratios, luminosities, and surface brightnesses. Even during the early stages of interaction spanned by these systems, in a statistical sense, tidal perturbations substantially boost far-infrared indicators of star formation compared to non-interacting systems. We also briefly discuss future prospects for pushing the IRAS data to its limits for additional interacting systems.

  19. Resolving Ethical Issues at School

    ERIC Educational Resources Information Center

    Benninga, Jacques S.

    2013-01-01

    Although ethical dilemmas are a constant in teachers' lives, the profession has offered little in the way of training to help teachers address such issues. This paper presents a framework, based on developmental theory, for resolving professional ethical dilemmas. The Four-Component Model of Moral Maturity, when used in conjunction with a…

  20. Virginia Resolves, 1993-1994.

    ERIC Educational Resources Information Center

    Morrow, S. Rex, Ed.

    1994-01-01

    These two issues of "Virginia Resolves" provide articles of interest to the social studies reader and provides ideas for social studies instruction and curriculum. The fall issue features seven articles: (1) "Death and the Young Child" (Rosanne J. Marek); (2) "Simulations: Bibliography for the Middle and Elementary Teachers" (William Coleman Redd…

  1. Ex vivo lung perfusion.

    PubMed

    Machuca, Tiago N; Cypel, Marcelo

    2014-08-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  2. Lung Diseases and Conditions

    MedlinePlus

    ... Share this page from the NHLBI on Twitter. Lung Diseases and Conditions Breathing is a complex process. ... your bronchial tubes ( bronchitis ) or deep in your lungs ( pneumonia ). These infections cause a buildup of mucus ...

  3. Lung needle biopsy

    MedlinePlus

    ... not improve, a chest tube is inserted to expand your lung. In rare cases, pneumothorax can be ... Philadelphia, PA: Elsevier Saunders; 2011:chap 197. Silvestri GA, Jett JR. Clinical aspects of lung cancer. In: ...

  4. American Lung Association

    MedlinePlus

    ... Washington DC West Virginia Wisconsin Wyoming November Is Lung Cancer Awareness Month If you or someone you ... RESEARCH Our vision is a world FREE OF LUNG DISEASE Make Each Breath Count: Learn, Engage, Act! ...

  5. Ex vivo lung perfusion

    PubMed Central

    Machuca, Tiago N.

    2014-01-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  6. Diet and obstructive lung diseases.

    PubMed

    Romieu, I; Trenga, C

    2001-01-01

    three times the Recommended Dietary Allowance. Although the amplitude of the effect was modest, if these effects accumulate over 20-30 years, they could have a meaningful impact on the rate at which pulmonary function declines, particularly in symptomatic subjects (85). Longitudinal data support the hypothesis that fresh fruit consumption has a beneficial impact on the lung (95). Among children, consumption of fresh fruit, particularly fruit high in vitamin C, has been related to a lower prevalence of asthma symptoms and higher lung function (64). This effect was observed event at low levels of fruit consumption (one or two servings per week vs. less than one serving per week), which suggests that a small increase in dietary intake could have a beneficial effect. Consumption of fish has also been related to lower airway hyperreactivity among children (75) and higher lung function in adults (100); however, longitudinal data do not provide evidence that increased omega-3 fatty acid intake protects against lung disease (101). Experimental studies of persons with asthma suggest that magnesium infusion may have a place in the acute treatment of asthma, but it does not seem to have long-term benefits. The studies of sodium, selenium, and fish oils do not show convincing evidence of clinical benefits. Studies of vitamin C supplementation suggest a short-term protective effect on airway responsiveness and pulmonary function. It remains to be proven whether consistent use of vitamin C would have a protective effect on the evolution of chronic asthma. Results from supplementation studies conducted among subjects exposed to high levels of oxidants (57-60) suggest that daily intake of antioxidant vitamins exceeding the Recommended Dietary Allowance may have a beneficial effect on lung airways and that intake higher than the Recommended Dietary Allowance should be recommended for populations chronically exposed to photooxidant air pollutants (such as ozone), cigarette smoking, or

  7. Hypertrophic osteoarthropathy as a clinical manifestation of lung cancer.

    PubMed

    Davis, Melissa C; Sherry, Victoria

    2011-10-01

    Hypertrophic osteoarthropathy is a paraneoplastic syndrome most often found in non-small cell lung cancer. Diagnosis is confirmed by the presence of clubbing on physical examination and periostitis on bone scintigram, and the syndrome generally resolves with treatment of the underlying malignancy. This article presents a case study and describes symptom management options, including nonsteroidal anti-inflammatory agents, octreotide, and bisphosphonates.

  8. Time-resolved photoelectron spectroscopy: from wavepackets to observables.

    PubMed

    Wu, Guorong; Hockett, Paul; Stolow, Albert

    2011-11-01

    Time-resolved photoelectron spectroscopy (TRPES) is a powerful tool for the study of intramolecular dynamics, particularly excited state non-adiabatic dynamics in polyatomic molecules. Depending on the problem at hand, different levels of TRPES measurements can be performed: time-resolved photoelectron yield; time- and energy-resolved photoelectron yield; time-, energy-, and angle-resolved photoelectron yield. In this pedagogical overview, a conceptual framework for time-resolved photoionization measurements is presented, together with discussion of relevant theory for the different aspects of TRPES. Simple models are used to illustrate the theory, and key concepts are further amplified by experimental examples. These examples are chosen to show the application of TRPES to the investigation of a range of problems in the excited state dynamics of molecules: from the simplest vibrational wavepacket on a single potential energy surface; to disentangling intrinsically coupled electronic and nuclear motions; to identifying the electronic character of the intermediate states involved in non-adiabatic dynamics by angle-resolved measurements in the molecular frame, the most complete measurement.

  9. Seventh international conference on time-resolved vibrational spectroscopy

    SciTech Connect

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  10. Overview of ultrasound-induced lung hemorrhage

    NASA Astrophysics Data System (ADS)

    O'Brien, William D.; Simpson, Douglas G.; Frizzell, Leon A.; Oelze, Michael L.; Zachary, James F.

    2003-10-01

    It is well documented that ultrasound-induced lung hemorrhage can occur in mice, rats, rabbits, pigs, and monkeys. Our own experimental studies have focused on mice, rats, and pigs as animal models. The characteristics of the lesions produced in mice, rats and pigs were similar to those described in studies by our research group and others, suggesting a common pathogenesis for the initiation and propagation of the lesions at the macroscopic and microscopic levels. Five experimental in vivo studies have been conducted to evaluate whether cavitation is responsible for ultrasound-induced lung hemorrhage. The studies evaluated the dependencies of hydrostatic pressure, frequency, pulse polarity, contrast agents and lung inflation, and the results of each study appeared inconsistent with the hypothesis that the mechanism for the production of a lung hemorrhage was inertial cavitation. Other dependencies evaluated included beam width, pulse repetition frequency, pulse duration, exposure duration, and animal species and age. The thresholds for producing ultrasound-induced lung hemorrhage, in general, were less than the FDA's regulatory limit of a Mechanical Index (MI) of 1.9. Further, the MI does not appear to provide a risk-based index for lung hemorrhage. [Work supported by NIH Grant No. R01EB02641.

  11. Glutamine Attenuates Acute Lung Injury Caused by Acid Aspiration

    PubMed Central

    Lai, Chih-Cheng; Liu, Wei-Lun; Chen, Chin-Ming

    2014-01-01

    Inadequate ventilator settings may cause overwhelming inflammatory responses associated with ventilator-induced lung injury (VILI) in patients with acute respiratory distress syndrome (ARDS). Here, we examined potential benefits of glutamine (GLN) on a two-hit model for VILI after acid aspiration-induced lung injury in rats. Rats were intratracheally challenged with hydrochloric acid as a first hit to induce lung inflammation, then randomly received intravenous GLN or lactated Ringer’s solution (vehicle control) thirty min before different ventilator strategies. Rats were then randomized to receive mechanical ventilation as a second hit with a high tidal volume (TV) of 15 mL/kg and zero positive end-expiratory pressure (PEEP) or a low TV of 6 mL/kg with PEEP of 5 cm H2O. We evaluated lung oxygenation, inflammation, mechanics, and histology. After ventilator use for 4 h, high TV resulted in greater lung injury physiologic and biologic indices. Compared with vehicle treated rats, GLN administration attenuated lung injury, with improved oxygenation and static compliance, and decreased respiratory elastance, lung edema, extended lung destruction (lung injury scores and lung histology), neutrophil recruitment in the lung, and cytokine production. Thus, GLN administration improved the physiologic and biologic profiles of this experimental model of VILI based on the two-hit theory. PMID:25100435

  12. Time-resolved photon emission from layered turbid media

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.

    1996-02-01

    We present numerical and experimental results of time-resolved emission profiles from various layered turbid media. Numerical solutions determined by time-resolved Monte Carlo simulations are compared with measurements on layered-tissue phantoms made from gelatin. In particular, we show that in certain cases the effects of the upper layers can be eliminated. As a practical example, these results are used to analyze in vivo measurements on the human head. This demonstrates the influence of skin, skull, and meninges on the determination of the blood oxygenation in the brain.

  13. CFTR and lung homeostasis.

    PubMed

    Collawn, James F; Matalon, Sadis

    2014-12-15

    CFTR is a cAMP-activated chloride and bicarbonate channel that is critical for lung homeostasis. Decreases in CFTR expression have dire consequences in cystic fibrosis (CF) and have been suggested to be a component of the lung pathology in chronic obstructive pulmonary disease. Decreases or loss of channel function often lead to mucus stasis, chronic bacterial infections, and the accompanying chronic inflammatory responses that promote progressive lung destruction, and, eventually in CF, lung failure. Here we discuss CFTR's functional role airway surface liquid hydration and pH, in regulation of other channels such as the epithelial sodium channel, and in regulating inflammatory responses in the lung. PMID:25381027

  14. Lung cancer in women.

    PubMed

    Coscio, Angela M; Garst, Jennifer

    2006-07-01

    Lung cancer is the most common cancer in both men and women; however, there are some clear gender-based differences. As the incidence of lung cancer is declining in men, the incidence of lung cancer is increasing in women. Women are more likely than men to have adenocarcinoma, a histologic subtype that correlates with worsened prognosis, but women have improved survival compared with men. Genetic predisposition and the presence of estrogen receptors in lung cancer cells may predispose women to developing lung cancer. Further studies are needed to understand the mechanism and significance of these findings. PMID:17254523

  15. The lung in space

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim

    2005-01-01

    The lung is exquisitely sensitive to gravity, which induces gradients in ventilation, blood flow, and gas exchange. Studies of lungs in microgravity provide a means of elucidating the effects of gravity. They suggest a mechanism by which gravity serves to match ventilation to perfusion, making for a more efficient lung than anticipated. Despite predictions, lungs do not become edematous, and there is no disruption to, gas exchange in microgravity. Sleep disturbances in microgravity are not a result of respiratory-related events; obstructive sleep apnea is caused principally by the gravitational effects on the upper airways. In microgravity, lungs may be at greater risk to the effects of inhaled aerosols.

  16. Lung Cancer Screening.

    PubMed

    Deffebach, Mark E; Humphrey, Linda

    2015-10-01

    Screening for lung cancer in high-risk individuals with annual low-dose computed tomography has been shown to reduce lung cancer mortality by 20% and is recommended by multiple health care organizations. Lung cancer screening is not a specific test; it is a process that involves appropriate selection of high-risk individuals, careful interpretation and follow-up of imaging, and annual testing. Screening should be performed in the context of a multidisciplinary program experienced in the diagnosis and management of lung nodules and early-stage lung cancer.

  17. Angle-resolved photoemission extended fine structure

    SciTech Connect

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs.

  18. Approaches to resolving trade disputes.

    PubMed

    Wilson, D W; Thiermann, A B

    2003-08-01

    The authors discuss the various approaches to resolving trade disputes available to Member Countries of the OIE (World organisation for animal health). The paper first describes the rights and obligations of Member Countries in setting health measures for the importation of animals and animal products, according to the provisions of the World Trade Organization (WTO) Agreement on the Application of Sanitary and Phytosanitary Measures (the SPS Agreement). The authors indicate how OIE standards may be used to set import measures and introduce issues such as equivalence and the use of provisional measures, which are both areas of potential conflict. The authors then describe the options available for resolving disputes--bilateral discussions, mediation through the OIE, the use of the WTO SPS Committee and the formal WTO dispute settlement process, discussing the advantages and disadvantages of each. PMID:15884603

  19. Time-resolved molecular imaging

    NASA Astrophysics Data System (ADS)

    Xu, Junliang; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2016-06-01

    Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

  20. Resolving Phase Ambiguities In OQPSK

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1991-01-01

    Improved design for modulator and demodulator in offset-quaternary-phase-key-shifting (OQPSK) communication system enables receiver to resolve ambiguity in estimated phase of received signal. Features include unique-code-word modulation and detection and digital implementation of Costas loop in carrier-recovery subsystem. Enchances performance of carrier-recovery subsystem, reduces complexity of receiver by removing redundant circuits from previous design, and eliminates dependence of timing in receiver upon parallel-to-serial-conversion clock.

  1. [Lung cancer screening].

    PubMed

    Sánchez González, M

    2014-01-01

    Lung cancer is a very important disease, curable in early stages. There have been trials trying to show the utility of chest x-ray or computed tomography in Lung Cancer Screening for decades. In 2011, National Lung Screening Trial results were published, showing a 20% reduction in lung cancer mortality in patients with low dose computed tomography screened for three years. These results are very promising and several scientific societies have included lung cancer screening in their guidelines. Nevertheless we have to be aware of lung cancer screening risks, such as: overdiagnosis, radiation and false positive results. Moreover, there are many issues to be solved, including choosing the appropriate group to be screened, the duration of the screening program, intervals between screening and its cost-effectiveness. Ongoing trials will probably answer some of these questions. This article reviews the current evidence on lung cancer screening.

  2. RONI Based Secured and Authenticated Indexing of Lung CT Images

    PubMed Central

    Jasmine Selvakumari Jeya, I.; Suganthi, J.

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks. PMID:26078782

  3. RONI Based Secured and Authenticated Indexing of Lung CT Images.

    PubMed

    Jasmine Selvakumari Jeya, I; Suganthi, J

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks.

  4. RONI Based Secured and Authenticated Indexing of Lung CT Images.

    PubMed

    Jasmine Selvakumari Jeya, I; Suganthi, J

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks. PMID:26078782

  5. 75 FR 66771 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... HUMAN SERVICES National Institutes of Health National Heart, Lung, and Blood Institute; Notice of Closed.... ] Name of Committee: National Heart, Lung, and Blood Institute Special Emphasis Panel; Centers for Advanced Diagnostics and Experimental Therapeutics in Lung Diseases (CADET I). Date: November 18-19,...

  6. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    PubMed

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  7. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume

    PubMed Central

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J.

    2016-01-01

    ABSTRACT In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of

  8. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    PubMed

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  9. Concept of proton radiography using energy resolved dose measurement.

    PubMed

    Bentefour, El H; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-21

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams 'proton imaging field' are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons. PMID:27435446

  10. Concept of proton radiography using energy resolved dose measurement

    NASA Astrophysics Data System (ADS)

    Bentefour, El H.; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-01

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams ‘proton imaging field’ are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.

  11. Does aluminum smelting cause lung disease

    SciTech Connect

    Abramson, M.J.; Wlodarczyk, J.H.; Saunders, N.A.; Hensley, M.J.

    1989-04-01

    The evidence concerning a relationship between work in the aluminum industry and lung disease has been reviewed using epidemiologic criteria. Adequate data on environmental exposure are rarely presented. Case series on aluminum potroom workers over the past 50 years have identified an asthmalike syndrome that appears to be due to an irritant rather than an allergic mechanism. These studies have been supported by evidence of within shift variability of measures of lung function. However, to date, there is inadequate evidence to resolve the question of whether potroom exposure initiates asthma or merely precipitates asthmalike symptoms in a predisposed individual. Cross-sectional studies have demonstrated evidence of reduced lung function, consistent with chronic airflow limitation. In exposed aluminum smelter workers compared to unexposed control subjects. Cigarette smoking, the major potential confounding variable, has been measured and accounted for in multivariate analyses. To date, evidence is lacking from longitudinal studies about the development of disabling chronic obstructive lung disease. Exposure to coal tar pitch volatiles in the production and consumption of anodes has biologic plausibility for an association of lung cancer with work in an aluminum smelter. Although retrospective mortality studies have failed to account for the probable high prevalence of smoking in blue collar workers, the relative risk of lung cancer is very low if present at all. Pulmonary fibrosis has not been shown to be a significant problem in aluminum smelter workers. Future research in the aluminum industry needs to concentrate on longitudinal studies, preferably with an inception cohort for the investigation of potroom asthma. 92 references.

  12. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway

  13. Lung transplantation at Duke

    PubMed Central

    Gray, Alice L.; Hartwig, Matthew G.

    2016-01-01

    Lung transplantation represents the gold-standard therapy for patients with end-stage lung disease. Utilization of this therapy continues to rise. The Lung Transplant Program at Duke University Medical Center was established in 1992, and since that time has grown to one of the highest volume centers in the world. The program to date has performed over 1,600 lung transplants. This report represents an up-to-date review of the practice and management strategies employed for safe and effective lung transplantation at our center. Specific attention is paid to the evaluation of candidacy for lung transplantation, donor selection, surgical approach, and postoperative management. These evidence-based strategies form the foundation of the clinical transplantation program at Duke. PMID:27076968

  14. Fusobacterium necrophorum presenting as isolated lung nodules.

    PubMed

    Sonti, Rajiv; Fleury, Christine

    2015-01-01

    Fusobacterium necrophorum causes Lemierre's syndrome - a dramatic and distinct condition beginning with pharyngitis before proceeding to internal jugular vein septic thrombophlebitis and respiratory tract infection in otherwise healthy individuals. It is rare, but by far the most common pathway to parenchymal lung disease with this organism. Here we describe we a 34 year old healthy lady who was nontoxic without any antecedent illness who presented with lung nodules due to fusobacterium necrophorum as the sole manifestation of disease. Leading diagnostic consideration prior to culture data was pulmonary vasculitis. Identifying her disease process was a somewhat chance occurrence, and it began to resolve prior to antibiotic therapy. Though it would be difficult to recommend keen awareness of this organism given its rarity, it is important to consider that its scope may be broader than traditionally considered. PMID:26236610

  15. ICAM-1-dependent and ICAM-1-independent neutrophil lung infiltration by porcine reproductive and respiratory syndrome virus infection.

    PubMed

    Liu, Jie; Hou, Make; Yan, Meiping; Lü, Xinhui; Gu, Wei; Zhang, Songlin; Gao, Jianfeng; Liu, Bang; Wu, Xiaoxiong; Liu, Guoquan

    2015-08-01

    Neutrophils are innate immune cells that play a crucial role in the first line of host defense. It is also known that neutrophil lung recruitment and infiltration may cause lung injury. The roles of neutrophils in virus infection-induced lung injury are not clear. We explore the mechanisms of neutrophil lung infiltration and the potential biomarkers for lung injury in a swine model of lung injury caused by natural or experimental porcine reproductive and respiratory syndrome virus (PRRSV) infection. Neutrophil lung infiltration was determined by measurement of myeloperoxidase expression and enzyme activity of lung tissues. Myeloperoxidase expression and enzyme activity were dramatically increased in the naturally and experimentally infected lung tissues. Chemokine analysis by quantitative PCR and ELISA showed that IL-8 expression was increased in both infections, while monocyte chemoattractant protein-1 expression was increased only in experimentally infected lung tissues. Expression of the cell adhesion molecules VCAM-1 and ICAM-1 was measured by quantitative PCR and Western blotting. VCAM-1 expression was increased in experimentally and naturally infected lungs, whereas ICAM-1 expression was increased only in the naturally infected lung samples. Our results suggest that neutrophil lung infiltrations in the infected animals are both ICAM-1- and -independent and that combined expression of VCAM-1 and IL-8 may serve as the biomarker for lung injury induced by virus infection.

  16. Resolving the formation of modern Chladni figures

    NASA Astrophysics Data System (ADS)

    Tuan, P. H.; Tung, J. C.; Liang, H. C.; Chiang, P. Y.; Huang, K. F.; Chen, Y. F.

    2015-09-01

    The resonant spectrum of a thin plate driven with a mechanical oscillator is precisely measured to distinguish modern Chladni figures (CFs) observed at the resonant frequencies from classical CFs observed at the non-resonant frequencies. Experimental results reveal that modern CFs generally display an important characteristic of avoided crossings of nodal lines, whereas the nodal lines of classical CFs form a regular grid. The formation of modern CFs and the resonant frequency spectrum are resolved with a theoretical model that characterizes the interaction between the plate and the driving source into the inhomogeneous Kirchhoff-Love equation. The derived formula for determining resonant frequencies is shown to be exactly identical to the meromorphic function given in singular billiards that deals with the coupling strength on the transition between integrable and chaotic features. The good agreement between experimental results and theoretical predictions verifies the significant role of the strong-coupling effect in the formation of modern CFs. More importantly, it is confirmed that the apparatus for generating modern CFs can be developed to serve as an expedient system for exploring the nodal domains of chaotic wave functions as well as the physics of the strong coupling with a point scatterer.

  17. Linear dimensions and volumes of human lungs

    SciTech Connect

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does not improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.

  18. Linear dimensions and volumes of human lungs

    DOE PAGES

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does notmore » improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.« less

  19. Advances in lung preservation.

    PubMed

    Machuca, Tiago N; Cypel, Marcelo; Keshavjee, Shaf

    2013-12-01

    After a brief review of conventional lung preservation, this article discusses the rationale behind ex vivo lung perfusion and how it has shifted the paradigm of organ preservation from conventional static cold ischemia to the utilization of functional normothermia, restoring the lung's own metabolism and its reparative processes. Technical aspects and previous clinical experience as well as opportunities to address specific donor organ injuries in a personalized medicine approach are also reviewed. PMID:24206857

  20. Lung Cancer Screening.

    PubMed

    Wu, Geena X; Raz, Dan J

    2016-01-01

    Lung cancer is the leading cause of cancer mortality in the United States and worldwide. Since lung cancer outcomes are dependent on stage at diagnosis with early disease resulting in longer survival, the goal of screening is to capture lung cancer in its early stages when it can be treated and cured. Multiple studies have evaluated the use of chest X-ray (CXR) with or without sputum cytologic examination for lung cancer screening, but none has demonstrated a mortality benefit. In contrast, the multicenter National Lung Screening Trial (NLST) from the United States found a 20 % reduction in lung cancer mortality following three consecutive screenings with low-dose computed tomography (LDCT) in high-risk current and former smokers. Data from European trials are not yet available. In addition to a mortality benefit, lung cancer screening with LDCT also offers a unique opportunity to promote smoking cessation and abstinence and may lead to the diagnoses of treatable chronic diseases, thus decreasing the overall disease burden. The risks of lung cancer screening include overdiagnosis, radiation exposure, and false-positive results leading to unnecessary testing and possible patient anxiety and distress. However, the reduction in lung cancer mortality is a benefit that outweighs the risks and major health organizations currently recommend lung cancer screening using age, smoking history, and quit time criteria derived from the NLST. Although more research is needed to clearly define and understand the application and utility of lung cancer screening in the general population, current data support that lung cancer screening is effective and should be offered to eligible beneficiaries. PMID:27535387

  1. Lung Cancer Screening.

    PubMed

    Wu, Geena X; Raz, Dan J

    2016-01-01

    Lung cancer is the leading cause of cancer mortality in the United States and worldwide. Since lung cancer outcomes are dependent on stage at diagnosis with early disease resulting in longer survival, the goal of screening is to capture lung cancer in its early stages when it can be treated and cured. Multiple studies have evaluated the use of chest X-ray (CXR) with or without sputum cytologic examination for lung cancer screening, but none has demonstrated a mortality benefit. In contrast, the multicenter National Lung Screening Trial (NLST) from the United States found a 20 % reduction in lung cancer mortality following three consecutive screenings with low-dose computed tomography (LDCT) in high-risk current and former smokers. Data from European trials are not yet available. In addition to a mortality benefit, lung cancer screening with LDCT also offers a unique opportunity to promote smoking cessation and abstinence and may lead to the diagnoses of treatable chronic diseases, thus decreasing the overall disease burden. The risks of lung cancer screening include overdiagnosis, radiation exposure, and false-positive results leading to unnecessary testing and possible patient anxiety and distress. However, the reduction in lung cancer mortality is a benefit that outweighs the risks and major health organizations currently recommend lung cancer screening using age, smoking history, and quit time criteria derived from the NLST. Although more research is needed to clearly define and understand the application and utility of lung cancer screening in the general population, current data support that lung cancer screening is effective and should be offered to eligible beneficiaries.

  2. Epidemiology of Lung Cancer.

    PubMed

    Schwartz, Ann G; Cote, Michele L

    2016-01-01

    Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines. PMID:26667337

  3. Nicotine and lung development.

    PubMed

    Maritz, Gert S

    2008-03-01

    Nicotine is found in tobacco smoke. It is a habit forming substance and is prescribed by health professionals to assist smokers to quit smoking. It is rapidly absorbed from the lungs of smokers. It crosses the placenta and accumulates in the developing fetus. Nicotine induces formation of oxygen radicals and at the same time also reduces the antioxidant capacity of the lungs. Nicotine and the oxidants cause point mutations in the DNA molecule, thereby changing the program that controls lung growth and maintenance of lung structure. The data available indicate that maternal nicotine exposure induces a persistent inhibition of glycolysis and a drastically increased cAMP level. These metabolic changes are thought to contribute to the faster aging of the lungs of the offspring of mothers that are exposed to nicotine via the placenta and mother's milk. The lungs of these animals are more susceptible to damage as shown by the gradual deterioration of the lung parenchyma. The rapid metabolic and structural aging of the lungs of the animals that were exposed to nicotine via the placenta and mother's milk, and thus during phases of lung development characterized by rapid cell division, is likely due to "programming" induced by nicotine. It is, therefore, not advisable to use nicotine during gestation and lactation. PMID:18383131

  4. Antioxidant vitamins and prevention of lung disease

    SciTech Connect

    Menzel, D.B. )

    1992-09-30

    Although the evidence for oxidative stress for air pollution in the human lung is fragmentary, the hypothesis that oxidative stress is an important, if not the sole, mechanism of toxicity of oxidizing air pollutants and tobacco smoke is compelling and growing. First, biochemical mechanisms have been worked out for oxidation of lung lipids by the gas phase of cigarette smoke, NO[sub 2] and O[sub 3]. The oxidation of lung lipids can be prevented by both vitamins C and E. Vitamin C is more effective in preventing oxidation by NO[sub 2], and vitamin E is more effective against O[sub 3]. Second, multiple species of experimental animals develop lung disease similar to human bronchitis and emphysema from exposure to NO[sub 2] and O[sub 3], respectively. The development of these diseases occurs over a near lifetime exposure when the levels of NO[sub 2] or O[sub 3] are at near ambient air pollution values. Third, isolated human cells are protected against oxidative damage from NO[sub 2] and O[sub 3] by both vitamins C and E. Fourth, the vitamin C level in the lung either declines on exposure to NO[sub 2] for short-term exposures or increases on chronic cigarette smoke exposure. The effects of cigarette smoking on serum vitamin C is apparently complex and may be related to the daily intake of vitamin C as well as smoking. Serum vitamin C levels may be poor indicators of lung demands when daily vitamin C intakes are above 100 mg/day. Fifth, vitamin C supplementation protects against the effects of ambient levels of air pollution in adults as measured by histamine challenge. An augmented response to histamine challenge may represent increased lung permeability brought about by air pollution. In experimental animal and human experiments, the amount of vitamin C or E that afforded protection was in excess of the current recommended dietary allowance.

  5. Spatially resolved in vitro molecular ecology.

    PubMed

    McCaskill, J S

    1997-06-30

    Sensitive CCD-based fluorescence detection has made spatially resolved studies of evolving cell-free molecular systems possible. In recent years our attention has focussed on making the transition to open and interacting spatially-resolved amplification systems using silicon microreactor technology and on providing a hardware platform for individual based simulation of such systems. Significant progress has been achieved in this direction. Open microflow reactors have been realized in zero (well-mixed), one and two dimensions with volumes small enough to allow long-time studies with limited biochemical materials. The primer directed 3SR reaction (amplifying DNA and RNA) has been used as a basis for constructing interacting model systems with both predator-prey and cooperative amplification character. Theoretical work has demonstrated the need for individual based modeling of such systems: a significant fraction of the population consists of distinct sequence polymers in any case. A massively parallel processor-configurable computer NGEN has been designed and constructed which allows the high speed simulation in hardware of relatively large populations of locally interacting individual strings of chosen length (e.g. up to 2000*2000 for 64 bases), in addition to its application as an evolvable hardware machine. Simulations show self-replicating spots to stabilize the cooperative amplification in evolving systems (a mechanism proposed by the author in 1994). Both oscillatory kinetics and pattern formation are expected in the experimental model systems under investigation which profoundly affect the course of evolution. Such in vitro model systems serve both to test current theories of cooperative evolution and provide clues for optimisation strategies in molecular biotechnology. PMID:9362557

  6. Drugs Approved for Lung Cancer

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Lung Cancer This page lists cancer ... in lung cancer that are not listed here. Drugs Approved for Non-Small Cell Lung Cancer Abitrexate ( ...

  7. Genetics Home Reference: lung cancer

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions lung cancer lung cancer Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Lung cancer is a disease in which certain cells ...

  8. 6 Common Cancers - Lung Cancer

    MedlinePlus

    ... Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents ... for Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the ...

  9. TUBERCULOSIS AND LUNG CANCER.

    PubMed

    Tamura, Atsuhisa

    2016-01-01

    The occurrence of pulmonary tuberculosis (PTB) and lung cancer as comorbidities has been extensively discussed in many studies. In the past, it was well known that lung cancer is a specific epidemiological successor of PTB and that lung cancer often develops in scars caused by PTB. In recent years, the relevance of the two diseases has drawn attention in terms of the close epidemiological connection and chronic inflammation-associated carcinogenesis. In Japanese case series studies, most lung cancer patients with tuberculous sequelae received supportive care alone in the past, but more recently, the use of aggressive lung cancer treatment is increasing. Many studies on PTB and lung cancer as comorbidities have revealed that active PTB is noted in 2-5% of lung cancer cases, whereas lung cancer is noted in 1-2% of active PTB cases. In such instances of comorbidity, many active PTB cases showed Type II (non-extensively cavitary disease) and Spread 2-3 (intermediate-extensive diseases) on chest X-rays, but standard anti-tuberculosis treatment easily eradicates negative conversion of sputum culture for M. tuberculosis; lung cancer cases were often stage III- IV and squamous cell carcinoma predominant, and the administration of aggressive treatment for lung cancer is increasing. The major clinical problems associated with PTB and lung cancer as comorbidities include delay in diagnosis (doctor's delay) and therapeutic limitations. The former involves two factors of radiographic interpretation: the principles of parsimony (Occam's razor) and visual search; the latter involves three factors of lung cancer treatment: infectivity of M.tuberculosis, anatomical limitation due to lung damage by tuberculosis, and drug-drug interactions between rifampicin and anti-cancer drugs, especially molecularly targeted drugs. The comorbidity of these two diseases is an important health-related issue in Japan. In the treatment of PTB, the possibility of concurrent lung cancer should be kept

  10. Theory of time-resolved inelastic x-ray diffraction

    SciTech Connect

    Lorenz, Ulf; Moeller, Klaus B.; Henriksen, Niels E.

    2010-02-15

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam.

  11. A two-dimensional angular-resolved proton spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, Su; Yuan, Xiaohui; Fang, Yuan; Ge, Xulei; Deng, Yanqing; Wei, Wenqing; Gao, Jian; Fu, Feichao; Jiang, Tao; Liao, Guoqian; Liu, Feng; Chen, Min; Li, Yutong; Zhao, Li; Ma, Yanyun; Sheng, Zhengming; Zhang, Jie

    2016-10-01

    We present a novel design of two-dimensional (2D) angular-resolved spectrometer for full beam characterization of ultrashort intense laser driven proton sources. A rotated 2D pinhole array was employed, as selective entrance before a pair of parallel permanent magnets, to sample the full proton beam into discrete beamlets. The proton beamlets are subsequently dispersed without overlapping onto a planar detector. Representative experimental result of protons generated from femtosecond intense laser interaction with thin foil target is presented.

  12. One-lung anesthesia update.

    PubMed

    Mirzabeigi, Edwin; Johnson, Calvin; Ternian, Alen

    2005-09-01

    One-lung ventilation is used during a variety of cardiac, thoracic, and major vascular procedures. Endobronchial tubes, bronchial blockers, and occasionally, single-lumen tubes are used to isolate the lungs. Patients with difficult airways and pediatric patients provide special challenges for lung isolation. Finally, intraoperative hypoxia and hypercarbia in patients with intrinsic lung disease frequently complicate one-lung anesthesia. The concepts and controversies in lung isolation techniques are discussed.

  13. Aerosol delivery of synthetic lung surfactant

    PubMed Central

    Hernández-Juviel, José M.; Waring, Alan J.

    2014-01-01

    Background. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C) and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits. Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant), a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant), with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity), we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV. Results. Particle size distribution of the surfactant aerosols was within the 1–3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg), aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of ventilatory support

  14. Resolving thermoelectric "paradox" in superconductors.

    PubMed

    Shelly, Connor D; Matrozova, Ekaterina A; Petrashov, Victor T

    2016-02-01

    For almost a century, thermoelectricity in superconductors has been one of the most intriguing topics in physics. During its early stages in the 1920s, the mere existence of thermoelectric effects in superconductors was questioned. In 1944, it was demonstrated that the effects may occur in inhomogeneous superconductors. Theoretical breakthrough followed in the 1970s, when the generation of a measurable thermoelectric magnetic flux in superconducting loops was predicted; however, a major crisis developed when experiments showed puzzling discrepancies with the theory. Moreover, different experiments were inconsistent with each other. This led to a stalemate in bringing theory and experiment into agreement. With this work, we resolve this stalemate, thus solving this long-standing "paradox," and open prospects for exploration of novel thermoelectric phenomena predicted recently. PMID:26933688

  15. Time-resolved fluorescence microscopy.

    PubMed

    Suhling, Klaus; French, Paul M W; Phillips, David

    2005-01-01

    In fluorescence microscopy, the fluorescence emission can be characterised not only by intensity and position, but also by lifetime, polarization and wavelength. Fluorescence lifetime imaging (FLIM) can report on photophysical events that are difficult or impossible to observe by fluorescence intensity imaging, and time-resolved fluorescence anisotropy imaging (TR-FAIM) can measure the rotational mobility of a fluorophore in its environment. We compare different FLIM methods: a chief advantage of wide-field time-gating and phase modulation methods is the speed of acquisition whereas for time-correlated single photon counting (TCSPC) based confocal scanning it is accuracy in the fluorescence decay. FLIM has been used to image interactions between proteins such as receptor oligomerisation and to reveal protein phosphorylation by detecting fluorescence resonance energy transfer (FRET). In addition, FLIM can also probe the local environment of fluorophores, reporting, for example, on the local pH, refractive index, ion or oxygen concentration without the need for ratiometric measurements.

  16. Lycopene and Lung Cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although epidemiological studies have shown dietary intake of lycopene is associated with decreased risk of lung cancer, the effect of lycopene on lung carcinogenesis has not been well studied. A better understanding of lycopene metabolism and the mechanistic basis of lycopene chemoprevention must ...

  17. Staging of Lung Cancer

    MedlinePlus

    ... of N2 means cancer has spread to the middle part of the chest (called the mediastinum). A rating ... so that the surgeon can remove the cancerous part of the lung and/or lymph node ... biopsied are your lungs, bones, and brain. These types of biopsies can be done with ...

  18. Lung Cancer Indicators Recurrence

    Cancer.gov

    This study describes prognostic factors for lung cancer spread and recurrence, as well as subsequent risk of death from the disease. The investigators observed that regardless of cancer stage, grade, or type of lung cancer, patients in the study were more

  19. Experimental studies on the effect of (Lambda-Cyhalothrin) insecticide on lungs and the ameliorating effect of plant extracts (Ginseng (Panax Ginseng) and garlic (Allium sativum L.) on asthma development in albino rats

    PubMed Central

    2014-01-01

    Background Lambda-cyhalothrin (LTC) is a synthetic pyrethroid insecticide for agricultural and public health applications. This study was to determine the pathological alterations of LTC in lungs, which has not previously been studied, and the ameliorating effects of plant extracts (ginseng and garlic) on the development of asthma in albino rats. Methods Four groups (gps) of albino rats, (n = 20, average body weight = 200 gm with an age of 4 months), were formed. Gp 1 was kept as control. Gp 2 was injected intraperitoneally (i.p.) with LTC at a dose of 1/6 LD50 that is 9.34 mg/kg body weight (w.t.) daily for 21 days (d). Gp 3 & 4 were injected (i.p.) with ginseng at the dose of 200 mg/kg b.wt and garlic (Allium sativum L.) at the dose of 100 mg/kg b.wt., respectively, one hour before being given LTC at a dose of 1/6 LD50 (9.34 mg/kg b.wt.) daily. Each groups were divided into two sacrificed, at 15 and 21 d p.i. Blood and lung samples were collected for hematological and histopathological examinations. Results Hematological findings showed that the animals in gps 2 and 3, which were treated for 21 days, showed a significant difference in RBC counts (P > .001), Hb (P > .007), PCV% (P > .004), (P > .008) in comparison with the control group. Signs of cough and nasal discharge were seen in gp 2, which became mild in gp 4. Grossly, the lungs showed congestion and consolidation in gp 2. Histopathologically, macroabscesses and interstitial alveolitis were seen in gp 2, which led to obstruction in the lumen of the bronchioles at 21 d p.i. Meanwhile, thickening in the interalveolar septa with mononuclear cells was seen in gps. 3 and 4 at 21d p.i. Conclusions The study shows 3 gps of rats injected with LHC alone or combined with garlic and ginseng extract, each group were divided into two sacrificed (15 and 21 d p.i.). Lambda cyhalothrin causes bronchial obstruction in the lungs of the rats (15 and 21 d p.i), which decreased into mild to

  20. Recurrent Recruitment Manoeuvres Improve Lung Mechanics and Minimize Lung Injury during Mechanical Ventilation of Healthy Mice

    PubMed Central

    Reiss, Lucy Kathleen; Kowallik, Anke; Uhlig, Stefan

    2011-01-01

    Introduction Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. Methods Mice were ventilated at low tidal volume VT = 8 mL/kg or high tidal volume VT = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cmH2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. Results MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. Conclusions Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and

  1. Comparative Pathobiology of Environmentally Induced Lung Cancers in Humans and Rodents

    PubMed Central

    Pandiri, Arun

    2014-01-01

    Lung cancer is the number one cause of cancer-related deaths in humans worldwide. Environmental factors play an important role in the epidemiology of these cancers. Rodents are the most common experimental model to study human lung cancers and are frequently used in bioassays to identify environmental exposure hazards associated with lung cancer. Lung tumors in rodents are common, particularly in certain strains of mice. Rodent lung tumors are predominantly bronchioloalveolar carcinomas and usually follow a progressive continuum of hyperplasia to adenoma to carcinoma. Human lung cancers are phenotypically more diverse and broadly constitute 2 types: small cell lung cancers or non-small cell lung cancers. Rodent lung tumors resulting from exposure to environmental agents are comparable to certain adenocarcinomas that are a subset of human non-small cell lung cancers. Human pulmonary carcinomas differ from rodent lung tumors by exhibiting greater morphologic heterogeneity (encompassing squamous cell, neuroendocrine, mucinous, sarcomatoid, and multiple cell combinations), higher metastatic rate, higher stromal response, aggressive clinical behavior, and lack of a clear continuum of proliferative lesions. In spite of these differences, rodent lung tumors recapitulate several fundamental aspects of human lung tumor biology at the morphologic and molecular level especially in lung cancers resulting from exposure to environmental carcinogens. PMID:25351923

  2. Immunotherapy in Lung Cancer.

    PubMed

    Castellanos, Emily H; Horn, Leora

    2016-01-01

    Lung cancer has not traditionally been viewed as an immune-responsive tumor. However, it is becoming evident that tumor-induced immune suppression is vital to malignant progression. Immunotherapies act by enhancing the patient's innate immune response and hold promise for inducing long-term responses in select patients with non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Immune checkpoint inhibitors, in particular, inhibitors to cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have shown promise in early studies and are currently in clinical trials in both small cell lung cancer and non-small cell lung cancer patients. Two large randomized phase III trials recently demonstrated superior overall survival (OS) in patients treated with anti-PD-1 therapy compared to chemotherapy in the second-line setting.

  3. Industrial Lung Cancer

    PubMed Central

    Fitch, Maxwell

    1982-01-01

    There are many known chemical and physical causes of industrial lung cancer. Their common feature is a long latent period—usually ten to 40 years—between initial exposure to the carcinogen and clinical recognition of the lesion. Occupationally induced lung cancer is indistinguishable from lung cancer of unknown etiology or that caused by cigaret smoking. Smoking alone is responsible for a very large proportion of all lung cancer and it potentiates the effect of most other carcinogens. Most cases of lung cancer in the next 20-30 years will be the result of exposures which have already occurred. In these cases, early diagnosis of pre-invasive resectable lesions offers the only hope for prolonging life. PMID:21286559

  4. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  5. Estimation of Lung Ventilation

    NASA Astrophysics Data System (ADS)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  6. Occupational lung cancer

    SciTech Connect

    Coultas, D.B.; Samet, J.M. )

    1992-06-01

    The overall importance of occupational agents as a cause of lung cancer has been a controversial subject since the 1970s. A federal report, released in the late 1970s, projected a surprisingly high burden of occupational lung cancer; for asbestos and four other agents, from 61,000 to 98,000 cases annually were attributed to these agents alone. Many estimates followed, some much more conservative. For example, Doll and Peto estimated that 15% of lung cancer in men and 5% in women could be attributed to occupational exposures. A number of population-based case-control studies also provide relevant estimates. In a recent literature review, Vineis and Simonato cited attributable risk estimates for occupation and lung cancer that ranged from 4% to 40%; for asbestos alone, the estimates ranged from 1% to 5%. These estimates would be expected to vary across locations and over time. Nevertheless, these recent estimates indicate that occupation remains an important cause of lung cancer. Approaches to Prevention. Prevention of lung cancer mortality among workers exposed to agents or industrial processes that cause lung cancer may involve several strategies, including eliminating or reducing exposures, smoking cessation, screening, and chemo-prevention. For example, changes in industrial processes that have eliminated or reduced exposures to chloromethyl ethers and nickel compounds have provided evidence of reduced risk of lung cancer following these changes. Although occupational exposures are important causes of lung cancer, cigarette smoking is the most important preventable cause of lung cancer. For adults, the work site offers an important location to target smoking cessation efforts. In fact, the work site may be the only place to reach many smokers.

  7. Radiation effects in the lung

    SciTech Connect

    Coggle, J.E.; Lambert, B.E.; Moores, S.R.

    1986-12-01

    This article outlines the principles of radiobiology that can explain the time of onset, duration, and severity of the complex reactions of the lung to ionizing radiation. These reactions have been assayed biochemically, cell kinetically, physiologically, and pathologically. Clinical and experimental data are used to describe the acute and late reactions of the lung to both external and internal radiation including pneumonitis, fibrosis and carcinogenesis. Acute radiation pneumonitis, which can be fatal, develops in both humans and animals within 6 months of exposure to doses greater than or equal to 8 Gy of low LET radiation. It is divisible into a latent period lasting up to 4 weeks; an exudative phase (3-8 weeks) and with an acute pneumonitic phase between 2 and 6 months. There is much evidence to suggest that pneumonitis is an epithelial reaction and some evidence to suggest that this early damage may not be predictive of late fibrosis. However, despite detailed work on collagen metabolism, the pathogenesis of radiation fibrosis remains unknown. The data on radiation-induced pulmonary cancer, both in man and experimental animals from both external and internal irradiation following the inhalation of both soluble and insoluble alpha and beta emitting radionuclides are reviewed. 312 references. (Abstract Truncated)

  8. Personalized therapy for lung cancer.

    PubMed

    Moreira, Andre L; Eng, Juliana

    2014-12-01

    The past decade has seen an enormous advancement in the therapy for lung cancer, predominantly seen in adenocarcinoma, ranging from the introduction of histology-based drugs to the discovery of targetable mutations. These events have led to a personalized therapeutic approach with the delivery of drugs that target specific oncogenic pathways active in a given tumor with the intent of acquiring the best response rate. The discovery of sensitizing mutation in the epidermal growth factor receptor gene as the basis for clinical response to tyrosine kinase inhibitors led to a systematic search for other molecular targets in lung cancer. Currently, there are several molecular alterations that can be targeted by experimental drugs. These new discoveries would not be possible without a parallel technological evolution in diagnostic molecular pathology. Next-generation sequencing (NGS) is a technology that allows for the evaluation of multiple molecular alterations in the same sample using a small amount of tissue. Selective evaluation of targeted cancer genes, instead of whole-genome evaluation, is the approach that is best suited to enter clinical practice. This technology allows for the detection of most molecular alteration with a single test, thus saving tissue for future discoveries. The use of NGS is expected to increase and gain importance in clinical and experimental approaches, since it can be used as a diagnostic tool as well as for new discoveries. The technique may also help us elucidate the interplay of several genes and their alteration in the mechanism of drug response and resistance.

  9. Resolving Seamounts in Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Marks, K. M.; Smith, W. H.

    2006-12-01

    We have examined three factors influencing the use of satellite altimeter data to map seamounts and guyots in the deep ocean: (1) the resolution of seamount and guyot gravity anomalies by altimetry; (2) the non-linearity of the relationship between gravity and bathymetry; and (3) the homogeneity of the mass density within the seamount or guyot. When altimeter data are used to model the marine gravity anomaly field the result may have limited resolution due to noise levels in the altimeter data, track spacing of the satellite profiles, inclination angles of the orbits, and filters used to combine and interpolate the data (Sandwell and Smith, JGR, 1997). We compared the peak-to-trough amplitude of gravity anomalies in Sandwell and Smith`'s version 15.1 field to peak-to-trough amplitudes measured by gravimeters on board ships. The satellite gravity field amplitudes match ship measurements well over seamounts and guyots having volumes exceeding ~2000 km3. Over smaller volume seamounts, where the anomalies have most of their power at quite short wavelengths, the satellite field under-estimates the anomaly amplitude. If less filtering could be done, or a new mission with a lower noise level were flown, more of the anomalies associated with small seamounts might be resolved. Smith and Sandwell (Science, 1997) predicted seafloor topography from altimetric gravity assuming that the density of seafloor topography is nearly constant over ~100 km distances, and that the relationship between gravity and topography may be approximated by a liner filter over those distances. In fact, the true theoretical relationship is non-linear (Parker, Geophys. J. R. astr. Soc, 1972); it can be expressed as an N-th order expansion, with the N=1 term representing a linear filter and the N>1 terms accounting for higher-order corrections. We find that N=2 is a sufficient approximation at both seamounts and guyots. Constant density models of large volume guyots do not fit the observed gravity

  10. [Lung hyperinflation after single lung transplantation to treat emphysema].

    PubMed

    Samano, Marcos Naoyuki; Junqueira, Jader Joel Machado; Teixeira, Ricardo Henrique de Oliveira Braga; Caramori, Marlova Luzzi; Pêgo-Fernandes, Paulo Manuel; Jatene, Fabio Biscegli

    2010-01-01

    Despite preventive measures, lung hyperinflation is a relatively common complication following single lung transplantation to treat pulmonary emphysema. The progressive compression of the graft can cause mediastinal shift and respiratory failure. In addition to therapeutic strategies such as independent ventilation, the treatment consists of the reduction of native lung volume by means of lobectomy or lung volume reduction surgery. We report two cases of native lung hyperinflation after single lung transplantation. Both cases were treated by means of lobectomy or lung volume reduction surgery.

  11. Lung Cancer Screening Update.

    PubMed

    Ruchalski, Kathleen L; Brown, Kathleen

    2016-07-01

    Since the release of the US Preventive Services Task Force and Centers for Medicare and Medicaid Services recommendations for lung cancer screening, low-dose chest computed tomography screening has moved from the research arena to clinical practice. Lung cancer screening programs must reach beyond image acquisition and interpretation and engage in a multidisciplinary effort of clinical shared decision-making, standardization of imaging and nodule management, smoking cessation, and patient follow-up. Standardization of radiologic reports and nodule management will systematize patient care, provide quality assurance, further reduce harm, and contain health care costs. Although the National Lung Screening Trial results and eligibility criteria of a heavy smoking history are the foundation for the standard guidelines for low-dose chest computed tomography screening in the United States, currently only 27% of patients diagnosed with lung cancer would meet US lung cancer screening recommendations. Current and future efforts must be directed to better delineate those patients who would most benefit from screening and to ensure that the benefits of screening reach all socioeconomic strata and racial and ethnic minorities. Further optimization of lung cancer screening program design and patient eligibility will assure that lung cancer screening benefits will outweigh the potential risks to our patients. PMID:27306387

  12. Lung alveolar wall disruption in three-dimensional space identified using second-harmonic generation and multiphoton excitation fluorescence

    NASA Astrophysics Data System (ADS)

    Abraham, Thomas; Hogg, James

    2010-02-01

    Second harmonic generation and multiphoton excited fluorescence microscopy methods were used to examine structural remodeling of the extracellular matrix in human lung alveolar walls undergoing emphysematous destruction. Fresh lung samples removed from a patient undergoing lung transplantation for very severe chronic obstructive pulmonary disease were compared to similar samples from an unused donor lung that served as a control. The generated spatially resolved 3D images show the spatial distribution of collagen, elastin and other endogenously fluorescent tissue components such as macrophages. In the case of control lung tissue, we found well ordered alveolar walls with composite type structure made up of collagen matrix and relatively fine elastic fibers. In contrast, lung tissue undergoing emphysematous destruction was highly disorganized with increased alveolar wall thickness compared to control lung tissue.

  13. Time-Resolved Fluorescence Assays.

    PubMed

    Ma, Chen-Ting; Sergienko, Eduard A

    2016-01-01

    Fluorescence-based detection techniques are popular in high throughput screening due to sensitivity and cost-effectiveness. Four commonly used techniques exist, each with distinct characteristics. Fluorescence intensity assays are the simplest to run, but suffer the most from signal interference. Fluorescence polarization assays show less interference from the compounds or the instrument, but require a design that results in change of fluorophore-containing moiety size and usually have narrow assay signal window. Fluorescence resonance energy transfer (FRET) is commonly used for detecting protein-protein interactions and is constrained not by the sizes of binding partners, but rather by the distance between fluorophores. Time-resolved fluorescence resonance energy transfer (TR-FRET), an advanced modification of FRET approach utilizes special fluorophores with long-lived fluorescence and earns its place near the top of fluorescent techniques list by its performance and robustness, characterized by larger assay window and minimized compound spectral interference. TR-FRET technology can be applied in biochemical or cell-based in vitro assays with ease. It is commonly used to detect modulation of protein-protein interactions and in detection of products of biochemical reactions and cellular activities. PMID:27316992

  14. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    SciTech Connect

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  15. Current status of pig lung xenotransplantation.

    PubMed

    Kubicki, Natalia; Laird, Christopher; Burdorf, Lars; Pierson, Richard N; Azimzadeh, Agnes M

    2015-11-01

    Human organ transplantation has improved duration and quality of life for many people, but its full potential is critically limited by short supply of available organs. One solution is xenotransplantation, although this comes with its own set of challenges. Lungs in particular are highly sensitive to injury, during the transplantation process generally, and to multiple immune rejection mechanisms. Using pig lung donors, our lab has been working on lung transplants into baboons as a surrogate for a human recipient. Several ex vivo human blood perfusion models have also proven useful. The combination of these experiments allows us to test large animal models as well as whole organ or isolated endothelial reactions to perfusion with human blood. We have found that a multi-modality therapeutic approach to prevent various pathogenic cascades - such as antibody-driven complement activation, other immune pathway activation, thrombosis, and tissue ischemia-reperfusion injury - has met with progressively greater success to protect the xeno lung from injury. Pig gene knockout and human gene transfer has been perhaps the greatest contributor. This review will discuss mechanisms of xeno lung injury, relevant experimental models, as well as recent results and future targets for research.

  16. [Air pollution and the lung: epidemiological approach].

    PubMed

    Annesi-Maesano, Isabella; Dab, William

    2006-01-01

    Epidemiological evidence has concurred with clinical and experimental evidence to correlate current levels of ambient air pollution, both indoors and outdoors, with respiratory effects. In this respect, the use of specific epidemiological methods has been crucial. Common outdoor pollutants are particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and ozone. Short-term effects of outdoor air pollution include changes in lung function, respiratory symptoms and mortality due to respiratory causes. Increase in the use of health care resources has also been associated with short-term effects of air pollution. Long-term effects of cumulated exposure to urban air pollution include lung growth impairment, chronic obstructive pulmonary disease (COPD), lung cancer, and probably the development of asthma and allergies. Lung cancer and COPD have been related to a shorter life expectancy. Common indoor pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens. Concentrations of these pollutants can be many times higher indoors than outdoors. Indoor air pollution may increase the risk of irritation phenomena, allergic sensitisation, acute and chronic respiratory disorders and lung function impairment. Recent conservative estimates have shown that 1.5-2 million deaths per year worldwide could be attributed to indoor air pollution. Further epidemiological research is necessary to better evaluate the respiratory health effects of air pollution and to implement protective programmes for public health.

  17. Risks of Lung Cancer Screening

    MedlinePlus

    ... Cancer Treatment Small Cell Lung Cancer Treatment Lung cancer is the leading cause of cancer death in the United States. Lung cancer is ... non- skin cancer in the United States. Lung cancer is the leading cause of cancer death in men and in women. ...

  18. Lung disease in farmers.

    PubMed Central

    Warren, C. P.

    1977-01-01

    Lung diseases in farmers attributable to their occupation include (a) farmer's lung, caused by exposure to mouldy hay, (b) the asthma caused by exposure to grain dust and (c) silo-filler's disease. Their prevalence in Canada is unknown. Farmer's lung results from inhalation of mould spores in hay; the mechanism is immunologic. The exact cause and mechanism of grain dust asthma are unknown but may be immunologic. Silo-filler's disease is caused by the toxic effects of inhaled nitrogen dioxide. PMID:321110

  19. Microgravity and the lung

    NASA Technical Reports Server (NTRS)

    West, John B.

    1991-01-01

    Results are presented from studies of the effect of microgravity on the lungs of rats flown on the Cosmos 2044 mission, and from relevant laboratory experiments. The effects of microgravity fall into five categories: topographical structure and function, the lung volumes and mechanics, the intrathoracic blood pressures and volumes, the pulmonary deposition of aerosol, and denitrogenaton during EVA. The ultrastructure of the left lungs of rats flown for 14 days on the Cosmos 2044 spacecraft and that of some tail-suspended rats disclosed presence of red blood cells in the alveolar spaces, indicating that pulmonary hemorrhage and pulmonary edema occurred in these rats. Possible causes for this phenomenon are discussed.

  20. Tropical parasitic lung diseases.

    PubMed

    Vijayan, V K

    2008-01-01

    Though parasitic lung diseases are frequently seen in tropical countries, these are being increasingly reported from many parts of the world due to globalisation and travel across the continents. In addition, the emergence of human immunodeficiency virus (HIV) infection/acquired immunodeficiency syndrome (AIDS), the frequent use of immunosuppressive drugs in many diseases and the increasing numbers of organ transplantations have resulted in a renewed interest in many tropical parasitic lung diseases. This review outlines the recent developments in the pathogenesis, diagnosis and management of common and rare parasitic lung diseases.

  1. Radiation effects in the lung.

    PubMed Central

    Coggle, J E; Lambert, B E; Moores, S R

    1986-01-01

    This article outlines the principles of radiobiology that can explain the time of onset, duration, and severity of the complex reactions of the lung to ionizing radiation. These reactions have been assayed biochemically, cell kinetically, physiologically, and pathologically. Clinical and experimental data are used to describe the acute and late reactions of the lung to both external and internal radiation including pneumonitis, fibrosis and carcinogenesis. Acute radiation pneumonitis, which can be fatal, develops in both humans and animals within 6 months of exposure to doses greater than or equal to 8 Gy of low LET radiation. It is divisible into a latent period lasting up to 4 weeks; an exudative phase (3-8 weeks) and with an acute pneumonitic phase between 2 and 6 months. The latter is an inflammatory reaction with intra-alveolar and septal edema accompanied by epithelial and endothelial desquamation. The critical role of type II pneumonocytes is discussed. One favored hypothesis suggests that the primary response of the lung is an increase in microvascular permeability. The plasma proteins overwhelm the lymphatic and other drainage mechanisms and this elicits the secondary response of type II cell hyperplasia. This, in its turn, produces an excess of surfactant that ultimately causes the fall in compliance, abnormal gas exchange values, and even respiratory failure. The inflammatory early reaction may progress to chronic fibrosis. There is much evidence to suggest that pneumonitis is an epithelial reaction and some evidence to suggest that this early damage may not be predictive of late fibrosis. However, despite detailed work on collagen metabolism, the pathogenesis of radiation fibrosis remains unknown. The data on radiation-induced pulmonary cancer, both in man and experimental animals from both external and internal irradiation following the inhalation of both soluble and insoluble alpha and beta emitting radionuclides are reviewed. Emphasis is placed on

  2. Validating Excised Rodent Lungs for Functional Hyperpolarized Xenon-129 MRI

    PubMed Central

    Lilburn, David M. L.; Hughes-Riley, Theodore; Six, Joseph S.; Stupic, Karl F.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp) 129Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp 129Xe. Straightforward hp 129Xe MRI protocols provide residual lung volume (RV) data and permit for spatially resolved tracking of small hp 129Xe probe volumes during the inhalation cycle. Hp 129Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies. PMID:24023683

  3. Overview of Clinical Lung Transplantation

    PubMed Central

    Yeung, Jonathan C.; Keshavjee, Shaf

    2014-01-01

    Since the first successful lung transplant 30 years ago, lung transplantation has rapidly become an established standard of care to treat end-stage lung disease in selected patients. Advances in lung preservation, surgical technique, and immunosuppression regimens have resulted in the routine performance of lung transplantation around the world for an increasing number of patients, with wider indications. Despite this, donor shortages and chronic lung allograft dysfunction continue to prevent lung transplantation from reaching its full potential. With research into the underlying mechanisms of acute and chronic lung graft dysfunction and advances in personalized diagnostic and therapeutic approaches to both the donor lung and the lung transplant recipient, there is increasing confidence that we will improve short- and long-term outcomes in the near future. PMID:24384816

  4. Diaphragm and lungs (image)

    MedlinePlus

    The diaphragm, located below the lungs, is the major muscle of respiration. It is a large, dome-shaped muscle ... most of the time, involuntarily. Upon inhalation, the diaphragm contracts and flattens and the chest cavity enlarges. ...

  5. Abscess in the Lungs

    MedlinePlus

    ... abscesses are streptococci and staphylococci, including methicillin-resistant Staphylococcus aureus (MRSA), which is a serious infection. Obstruction ... night sweats. In contrast, lung abscesses caused by Staphylococcus aureus or MRSA can be fatal within days, ...

  6. Lung Cancer Prevention

    MedlinePlus

    ... from the breakdown of uranium in rocks and soil. It seeps up through the ground, and leaks ... substances increases the risk of lung cancer: Asbestos . Arsenic . Chromium. Nickel. Beryllium. Cadmium . Tar and soot. These ...

  7. Biomarkers of Lung Injury

    EPA Science Inventory

    Unlike the hepatic, cardiovascular, nervous, or excretory organ systems, where there .ls a strong contribution of host factors or extracellular biochemical milieu in causing organ damage, the causes of lung injuries and subsequent diseases are primarily from direct environmental ...

  8. Women and Lung Cancer

    MedlinePlus

    ... Horrigan Conners Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, April, ... Lung Cancer in Women: The Differences in Epidemiology, Biology and Treatment Outcomes, Maria Patricia Rivera MD Expert ...

  9. Reflux and Lung Disease

    MedlinePlus

    ... Reflux and Lung Disease Proper Hydration Sodium Dangers Plant-Based Diets Why Breakfast Matters Patients & Visitors Giving For Professionals About Us Treatment & Programs Health Insights Doctors & Departments Research & Science Education & Training Make an Appointment Make a Donation ...

  10. Lung gallium scan

    MedlinePlus

    ... inflammation in the lungs, most often due to sarcoidosis or a certain type of pneumonia. Normal Results ... up very little gallium. What Abnormal Results Mean Sarcoidosis Other respiratory infections, most often pneumocystis jirovecii pneumonia ...

  11. Justice and lung cancer.

    PubMed

    Wilson, Aaron

    2013-04-01

    Lung cancer is the leading cause of cancer deaths, yet research funding is by far the lowest for lung cancer than for any other cancer compared with respective death rates. Although this discrepancy should appear alarming, one could argue that lung cancer deserves less attention because it is more attributable to poor life choices than other common cancers. Accordingly, the general question that I ask in this article is whether victims of more avoidable diseases, such as lung cancer, deserve to have their needs taken into less consideration than those of less avoidable diseases, on the grounds of either retributive or distributive justice. Such unequal treatment may be the "penalty" one incurs for negligent or reckless behavior. However, I hope to show that such unequal treatment cannot be supported by any coherent accounts of retributive or distributive justice.

  12. Justice and lung cancer.

    PubMed

    Wilson, Aaron

    2013-04-01

    Lung cancer is the leading cause of cancer deaths, yet research funding is by far the lowest for lung cancer than for any other cancer compared with respective death rates. Although this discrepancy should appear alarming, one could argue that lung cancer deserves less attention because it is more attributable to poor life choices than other common cancers. Accordingly, the general question that I ask in this article is whether victims of more avoidable diseases, such as lung cancer, deserve to have their needs taken into less consideration than those of less avoidable diseases, on the grounds of either retributive or distributive justice. Such unequal treatment may be the "penalty" one incurs for negligent or reckless behavior. However, I hope to show that such unequal treatment cannot be supported by any coherent accounts of retributive or distributive justice. PMID:23449364

  13. Lungs and Respiratory System

    MedlinePlus

    ... called alveoli, where the exchange of oxygen and carbon dioxide actually takes place. Each lung houses about 300- ... growth. Without oxygen, the body's cells would die. Carbon dioxide is the waste gas produced when carbon is ...

  14. What Are the Lungs?

    MedlinePlus

    ... oxygen from the air. They also help remove carbon dioxide (a waste gas that can be toxic) from ... The lungs' intake of oxygen and removal of carbon dioxide is called gas exchange. Gas exchange is part ...

  15. Radiation-induced pulmonary fibrosis resolves spontaneously if dense scars are not formed

    SciTech Connect

    Pickrell, J.A.; Diel, J.H.; Slauson, D.O.; Halliwell, W.H.; Mauderly, J.L.

    1983-02-01

    The relation of static compliance of excised lungs to collagen accumulation and histologic fibrosis was examined in Syrian hamsters inhaling sufficient /sup 238/PuO2 particles to achieve initial lung burdens of 50 or 100 nCi. Control animals were exposed to nonradioactive aerosols. Irradiated lungs from hamsters at both dose levels had compliance reduced to the same extent at point of maximal reduction. However, collagen accumulation was more closely related to /sup 238/Pu exposure level than the compliance measurements. Histologic examination revealed both diffuse alveolar thickening and some dense fibrous scars, the former predominating at lower dose levels. Hamsters exposed to 50 nCi /sup 238/PuO2 showed normal collagen content and static lung compliance with minimal histologic fibrosis 288 days after exposure. In contrast, hamsters exposed to 100 nCi had significant pulmonary fibrosis at that time and the highest incidence of dense scars at any time period. Such findings are consistent with a stiffening of lung parenchyma. They suggest that the diffuse interstitial fibrosis developed by this injury resolves spontaneously; dense fibrous scars, however, do not.

  16. Preclinical models for interrogating drug action in human cancers using Stable Isotope Resolved Metabolomics (SIRM)

    PubMed Central

    Lane, Andrew N.; Higashi, Richard M.; Fan, Teresa W-M.

    2016-01-01

    Aims In this review we compare the advantages and disadvantages of different model biological systems for determining the metabolic functions of cells in complex environments, how they may change in different disease states, and respond to therapeutic interventions. Background All preclinical drug-testing models have advantages and drawbacks. We compare and contrast established cell, organoid and animal models with ex vivo organ or tissue culture and in vivo human experiments in the context of metabolic readout of drug efficacy. As metabolism reports directly on the biochemical state of cells and tissues, it can be very sensitive to drugs and/or other environmental changes. This is especially so when metabolic activities are probed by stable isotope tracing methods, which can also provide detailed mechanistic information on drug action. We have developed and been applying Stable Isotope-Resolved Metabolomics (SIRM) to examine metabolic reprogramming of human lung cancer cells in monoculture, in mouse xenograft/explant models, and in lung cancer patients in situ (Lane et al. 2011; T. W. Fan et al. 2011; T. W-M. Fan et al. 2012; T. W. Fan et al. 2012; Xie et al. 2014b; Ren et al. 2014a; Sellers et al. 2015b). We are able to determine the influence of the tumor microenvironment using these models. We have now extended the range of models to fresh human tissue slices, similar to those originally described by O. Warburg (Warburg 1923), which retain the native tissue architecture and heterogeneity with a paired benign versus cancer design under defined cell culture conditions. This platform offers an unprecedented human tissue model for preclinical studies on metabolic reprogramming of human cancer cells in their tissue context, and response to drug treatment (Xie et al. 2014a). As the microenvironment of the target human tissue is retained and individual patient's response to drugs is obtained, this platform promises to transcend current limitations of drug selection

  17. The Lung Alveolar Lipofibroblast: An Evolutionary Strategy Against Neonatal Hyperoxic Lung Injury

    PubMed Central

    Torday, John S.

    2014-01-01

    Abstract Significance: Oxygen, the main mode of support for premature infants with immature lungs, can cause toxicity by producing reactive oxygen species (ROS) that disrupt homeostasis; yet, these same molecules were entrained to promote vertebrate lung phylogeny. By providing a deeper understanding of this paradox, we propose physiologically rational strategies to prevent chronic lung disease (CLD) of prematurity. Recent Advances: To prevent neonatal hyperoxic lung damage biologically, we have exploited the alveolar defense mechanism(s) that evolutionarily evolved to combat increased atmospheric oxygen during the vertebrate water to land transition. Critical Issues: Over the course of vertebrate lung evolution, ROS promoted the formation of lipofibroblasts, specialized adepithelial cells, which protect the alveoli against oxidant injury; peroxisome proliferator-activated receptor gamma (PPARγ), the master switch for lipofibroblast differentiation, prevents such oxidant lung injury, both by directly promoting mesodermal differentiation and its antioxidant defenses, and indirectly by stimulating the developmental epithelial–mesenchymal paracrine interactions that have physiologically determined lung surfactant production in accord with the lung's phylogenetic adaptation to atmospheric oxygen, preventing Respiratory Distress Syndrome at birth. Future Directions: The molecular strategy (PPARγ agonists) to prevent CLD of prematurity, proposed by us, although seems to be robust, effective, and safe under experimental conditions, it awaits detailed pharmacokinetic and pharmacodynamic studies for its safe and effective clinical translation to human infants. Antioxid. Redox Signal. 21, 1893–1904. “I have procured air [oxygen]…between five and six times as good as the best common air that I have ever met with.” —Joseph Priestley, 1775 PMID:24386954

  18. Helping You Buy: Link Resolver Tools

    ERIC Educational Resources Information Center

    Singer, Ross

    2006-01-01

    To any library with an electronic collection of any significance, the OpenURL link resolver has (or should) become an indispensable service for helping its users retrieve full text from citations. Although they are a relatively new technology (in library terms, at any rate), link resolvers arguably have become as important as the OPAC; they locate…

  19. Indium Lung Disease

    PubMed Central

    Nakano, Makiko; Omae, Kazuyuki; Takeuchi, Koichiro; Chonan, Tatsuya; Xiao, Yong-long; Harley, Russell A.; Roggli, Victor L.; Hebisawa, Akira; Tallaksen, Robert J.; Trapnell, Bruce C.; Day, Gregory A.; Saito, Rena; Stanton, Marcia L.; Suarthana, Eva; Kreiss, Kathleen

    2012-01-01

    Background: Reports of pulmonary fibrosis, emphysema, and, more recently, pulmonary alveolar proteinosis (PAP) in indium workers suggested that workplace exposure to indium compounds caused several different lung diseases. Methods: To better understand the pathogenesis and natural history of indium lung disease, a detailed, systematic, multidisciplinary analysis of clinical, histopathologic, radiologic, and epidemiologic data for all reported cases and workplaces was undertaken. Results: Ten men (median age, 35 years) who produced, used, or reclaimed indium compounds were diagnosed with interstitial lung disease 4-13 years after first exposure (n = 7) or PAP 1-2 years after first exposure (n = 3). Common pulmonary histopathologic features in these patients included intraalveolar exudate typical of alveolar proteinosis (n = 9), cholesterol clefts and granulomas (n = 10), and fibrosis (n = 9). Two patients with interstitial lung disease had pneumothoraces. Lung disease progressed following cessation of exposure in most patients and was fatal in two. Radiographic data revealed that two patients with PAP subsequently developed fibrosis and one also developed emphysematous changes. Epidemiologic investigations demonstrated the potential for exposure to respirable particles and an excess of lung abnormalities among coworkers. Conclusions: Occupational exposure to indium compounds was associated with PAP, cholesterol ester crystals and granulomas, pulmonary fibrosis, emphysema, and pneumothoraces. The available evidence suggests exposure to indium compounds causes a novel lung disease that may begin with PAP and progress to include fibrosis and emphysema, and, in some cases, premature death. Prospective studies are needed to better define the natural history and prognosis of this emerging lung disease and identify effective prevention strategies. PMID:22207675

  20. [Pathology of lung cancer].

    PubMed

    Theegarten, D; Hager, T

    2016-09-01

    Lung cancer is the leading cause of cancer death in men and the second most frequent cause in women. The pathology of lung tumors is of special relevance concerning therapy and prognosis and current classification systems have to be taken into consideration. The results of molecular tissue subtyping allow further classification and therapeutic options. The histological entities are mainly associated with typical X‑ray morphological features. PMID:27495784

  1. Scotland's first iron lung.

    PubMed

    Porter, I A; Williams, M J

    1997-08-01

    The history of artificial ventilation and the development of the iron lung in the USA by Drinker and his colleagues is discussed. The building and use of an iron lung by Dr R G Henderson in Aberdeen in 1933 is described. The development of other types of ventilator in the UK is recorded and the circumstances whereby positive pressure ventilation was introduced in Denmark in 1952 is outlined. PMID:9507591

  2. Lung epinephrine synthesis

    SciTech Connect

    Kennedy, B.; Elayan, H.; Ziegler, M.G. )

    1990-04-01

    We studied in vitro and in vivo epinephrine (E) synthesis by rat lung. Nine days after removal of the adrenal medullas, circulating E was reduced to 7% of levels found in sham-operated rats but 30% of lung E remained. Treatment of demedullated rats with 6 hydroxydopamine plus reserpine did not further reduce lung E. In the presence of S-(3H)adenosylmethionine lung homogenates readily N-methylated norepinephrine (NE) to form (3H)E. The rate of E synthesis by lung homogenates was progressively more rapid with increasing NE up to a concentration of 3 mM, above which it declined. The rate of E formation was optimal at an incubation pH of 8 and at temperatures of approximately 55 degrees C. We compared the E-forming enzyme(s) of lung homogenates with those of adrenal and cardiac ventricle. The adrenal contains mainly phenylethanolamine N-methyltransferase (PNMT), which is readily inhibited by SKF 29661 and methylates dopamine (DA) very poorly. Cardiac ventricles contain mainly nonspecific N-methyltransferase (NMT), which is poorly inhibited by SKF 29661 and readily methylates both DA and NE. Lung homogenates were inhibited by SKF 29661 about half as well as adrenal but more than ventricle. We used the rate of E formation from NE as an index of PNMT-like activity and deoxyepinephrine synthesis from DA as an index of NMT-like activity. PNMT and NMT activity in rat lung homogenates were not correlated with each other, displayed different responses to change in temperature, and were affected differently by glucocorticoids.

  3. Spatially resolved scatter measurement of diffractive micromirror arrays.

    PubMed

    Sicker, Cornelius; Heber, Jörg; Berndt, Dirk

    2016-06-01

    Spatial light modulators (SLMs) support flexible system concepts in modern optics and especially phase-only SLMs such as micromirror arrays (MMAs) appear attractive for many applications. In order to achieve a precise phase modulation, which is crucial for optical performance, careful characterization and calibration of SLM devices is required. We examine an intensity-based measurement concept, which promises distinct advantages by means of a spatially resolved scatter measurement that is combined with the MMA's diffractive principle. Measurements yield quantitative results, which are consistent with measurements of micromirror roughness components, by white-light interferometry. They reveal relative scatter as low as 10-4, which corresponds to contrast ratios up to 10,000. The potential of the technique to resolve phase changes in the subnanometer range is experimentally demonstrated. PMID:27411205

  4. Resolving fundamental limits of adhesive bonding in microfabrication.

    SciTech Connect

    Hall, Jessica S.; Frischknecht, Amalie Lucile; Emerson, John Allen; Adkins, Douglas Ray; Kent, Michael Stuart; Read, Douglas H.; Giunta, Rachel Knudsen; Lamppa, Kerry P.; Kawaguchi, Stacie; Holmes, Melissa A.

    2004-04-01

    As electronic and optical components reach the micro- and nanoscales, efficient assembly and packaging require the use of adhesive bonds. This work focuses on resolving several fundamental issues in the transition from macro- to micro- to nanobonding. A primary issue is that, as bondline thicknesses decrease, knowledge of the stability and dewetting dynamics of thin adhesive films is important to obtain robust, void-free adhesive bonds. While researchers have studied dewetting dynamics of thin films of model, non-polar polymers, little experimental work has been done regarding dewetting dynamics of thin adhesive films, which exhibit much more complex behaviors. In this work, the areas of dispensing small volumes of viscous materials, capillary fluid flow, surface energetics, and wetting have all been investigated. By resolving these adhesive-bonding issues, we are allowing significantly smaller devices to be designed and fabricated. Simultaneously, we are increasing the manufacturability and reliability of these devices.

  5. Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model

    NASA Astrophysics Data System (ADS)

    Geoghegan, P. H.; Buchmann, N. A.; Soria, J.; Jermy, M. C.

    2013-05-01

    Compliant (flexible) structures play an important role in several biological flows including the lungs, heart and arteries. Coronary heart disease is caused by a constriction in the artery due to a build-up of atherosclerotic plaque. This plaque is also of major concern in the carotid artery which supplies blood to the brain. Blood flow within these arteries is strongly influenced by the movement of the wall. To study these problems experimentally in vitro, especially using flow visualisation techniques, can be expensive due to the high-intensity and high-repetition rate light sources required. In this work, time-resolved particle image velocimetry using a relatively low-cost light-emitting diode illumination system was applied to the study of a compliant flow phantom representing a stenosed (constricted) carotid artery experiencing a physiologically realistic flow wave. Dynamic similarity between in vivo and in vitro conditions was ensured in phantom construction by matching the distensibility and the elastic wave propagation wavelength and in the fluid system through matching Reynolds ( Re) and Womersley number ( α) with a maximum, minimum and mean Re of 939, 379 and 632, respectively, and a α of 4.54. The stenosis had a symmetric constriction of 50 % by diameter (75 % by area). Once the flow rate reached a critical value, Kelvin-Helmholtz instabilities were observed to occur in the shear layer between the main jet exiting the stenosis and a reverse flow region that occurred at a radial distance of 0.34 D from the axis of symmetry in the region on interest 0-2.5 D longitudinally downstream from the stenosis exit. The instability had an axis-symmetric nature, but as peak flow rate was approached this symmetry breaks down producing instability in the flow field. The characteristics of the vortex train were sensitive not only to the instantaneous flow rate, but also to whether the flow was accelerating or decelerating globally.

  6. Radiation-induced lung injury

    SciTech Connect

    Rosiello, R.A.; Merrill, W.W. )

    1990-03-01

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references.

  7. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  8. [Lobectomy for lung cancer using the Da Vinci surgical system].

    PubMed

    Nakamura, Hiroshige

    2014-05-01

    Robot-assisted surgery using the da Vinci surgical system has attracted attention because of excellent operability without shaking by joint forceps under the clear vision of a three-dimensional high-definition camera in lung cancer surgery. Although this form of advanced medical care is not yet approved for insurance coverage, it is at the stage of clinical research and expected to be useful in hilar exposure, lymph node dissection, and suturing of the lung parenchyma or bronchus. Lung cancer surgery with the da Vinci system has the advantage of combining thoracotomy and minimally invasive surgery in video-assisted thoracic surgery. However, safety management, education, and significant cost are problems to be resolved. Several important issues such as sharing knowledge and technology of robotic surgery, education, training, development of new instruments, and acquisition of advanced medical insurance are discussed for the future development of robotic surgical systems. PMID:24946522

  9. [Lobectomy for lung cancer using the Da Vinci surgical system].

    PubMed

    Nakamura, Hiroshige

    2014-05-01

    Robot-assisted surgery using the da Vinci surgical system has attracted attention because of excellent operability without shaking by joint forceps under the clear vision of a three-dimensional high-definition camera in lung cancer surgery. Although this form of advanced medical care is not yet approved for insurance coverage, it is at the stage of clinical research and expected to be useful in hilar exposure, lymph node dissection, and suturing of the lung parenchyma or bronchus. Lung cancer surgery with the da Vinci system has the advantage of combining thoracotomy and minimally invasive surgery in video-assisted thoracic surgery. However, safety management, education, and significant cost are problems to be resolved. Several important issues such as sharing knowledge and technology of robotic surgery, education, training, development of new instruments, and acquisition of advanced medical insurance are discussed for the future development of robotic surgical systems.

  10. Lung models: strengths and limitations.

    PubMed

    Martonen, T B; Musante, C J; Segal, R A; Schroeter, J D; Hwang, D; Dolovich, M A; Burton, R; Spencer, R M; Fleming, J S

    2000-06-01

    The most widely used particle dosimetry models are those proposed by the National Council on Radiation Protection, International Commission for Radiological Protection, and the Netherlands National Institute of Public Health and the Environment (the RIVM model). Those models have inherent problems that may be regarded as serious drawbacks: for example, they are not physiologically realistic. They ignore the presence and commensurate effects of naturally occurring structural elements of lungs (eg, cartilaginous rings, carinal ridges), which have been demonstrated to affect the motion of inhaled air. Most importantly, the surface structures have been shown to influence the trajectories of inhaled particles transported by air streams. Thus, the model presented herein by Martonen et al may be perhaps the most appropriate for human lung dosimetry. In its present form, the model's major "strengths" are that it could be used for diverse purposes in medical research and practice, including: to target the delivery of drugs for diseases of the respiratory tract (eg, cystic fibrosis, asthma, bronchogenic carcinoma); to selectively deposit drugs for systemic distribution (eg, insulin); to design clinical studies; to interpret scintigraphy data from human subject exposures; to determine laboratory conditions for animal testing (ie, extrapolation modeling); and to aid in aerosolized drug delivery to children (pediatric medicine). Based on our research, we have found very good agreement between the predictions of our model and the experimental data of Heyder et al, and therefore advocate its use in the clinical arena. In closing, we would note that for the simulations reported herein the data entered into our computer program were the actual conditions of the Heyder et al experiments. However, the deposition model is more versatile and can simulate many aerosol therapy scenarios. For example, the core model has many computer subroutines that can be enlisted to simulate the

  11. Animal models of beryllium-induced lung disease

    SciTech Connect

    Finch, G.L.; Hoover, M.D.; Hahn, F.F.

    1996-10-01

    The Inhalation Toxicology Research Institute (ITRI) is conducting research to improve the understanding of chronic beryllium disease (CBD) and beryllium-induced lung cancer. Initial animal studies examined beagle dogs that inhaled BeO calcined at either 500 or 1000{degrees}C. At similar lung burdens, the 500{degrees}C BeO induced more severe and extensive granulomatous pneumonia, lymphocytic infiltration into the lung, and positive Be-specific lymphocyte proliferative responses in vitro than the 1000{degrees}C BeO. However, the progressive nature of human CBD was not duplicated. More recently, Strains A/J and C3H/HeJ mice were exposed to Be metal by inhalation. This produced a marked granulomatous pneumonia, diffuse infiltrates, and multifocal aggregates of interstitial lymphocytes with a pronounced T helper component and pulmonary in situ lymphocyte proliferation. With respect to lung cancer, at a mean lung burden as low as 17 pg Be/g lung, inhaled Be metal induced benign and/or malignant lung tumors in over 50% of male and female F344 rats surviving {ge}1 year on study. Substantial tumor multiplicity was found, but K-ras and p53 gene mutations were virtually absent. In mice, however, a lung burden of approximately 60 {mu}g ({approximately}300 {mu}g Be/g lung) caused only a slight increase in crude lung tumor incidence and multiplicity over controls in strain A/J mice and no elevated incidence in strain C3H mice. Taken together, this research program constitutes a coordinated effort to understand beryllium-induced lung disease in experimental animal models. 47 refs., 1 fig., 3 tabs.

  12. Radiofrequency Ablation of Lung Malignancies: Where Do We Stand?

    SciTech Connect

    Lencioni, Riccardo Crocetti, Laura; Cioni, Roberto; Mussi, Alfredo; Fontanini, Gabriella; Ambrogi, Marcello; Franchini, Chiara; Cioni, Dania; Fanucchi, Olivia; Gemignani, Raffaello; Baldassarri, Rubia; Angeletti, Carlo Alberto; Bartolozzi, Carlo

    2004-11-15

    Percutaneous radiofrequency (RF) ablation is a minimally invasive technique used to treat solid tumors. Because of its ability to produce large volumes of coagulation necrosis in a controlled fashion, this technique has gained acceptance as a viable therapeutic option for unresectable liver malignancies. Recently, investigation has been focused on the clinical application of RF ablation in the treatment of lung malignancies. In theory, lung tumors are well suited to RF ablation because the surrounding air in adjacent normal parenchyma provides an insulating effect, thus facilitating energy concentration within the tumor tissue. Experimental studies in rabbits have confirmed that lung RF ablation can be safely and effectively performed via a percutaneous, transthoracic approach, and have prompted the start of clinical investigation. Pilot clinical studies have shown that RF ablation enables successful treatment of relatively small lung malignancies with a high rate of complete response and acceptable morbidity, and have suggested that the technique could represent a viable alternate or complementary treatment method for patients with non-small cell lung cancer or lung metastases of favorable histotypes who are not candidates for surgical resection. This article gives an overview of lung RF ablation, discussing experimental animal findings, rationale for clinical application, technique and methodology, clinical results, and complications.

  13. Fetal lung development in the diabetic pregnancy.

    PubMed

    Bourbon, J R; Farrell, P M

    1985-03-01

    It seems quite likely that the normal process of fetal lung biochemical maturation is delayed by maternal diabetes and that abnormalities in the pulmonary surfactant system are involved. The appearance of PG in amniotic fluid and possibly in fetal lung is impaired or at least delayed. The same is possibly true for DSPC, the main constituent of surfactant, but recent discrepant data call for further clarification of this specific point. Careful determination of the fetal lung phospholipid profile by amniotic fluid analysis helps predict and prevent RDS in IDM, along with a careful control of the maternal diabetic condition. A study of alveolar surfactant at birth, if it could be performed in addition to amniotic fluid analysis, would help to better characterize surfactant deficiency in IDM. On the basis of both in vivo and in vitro experimental approaches, it seems clear that hyperglycemia and fetal reactional hyperinsulinism are both involved in the processes delaying fetal lung maturation. Further advances in the understanding of cellular and molecular mechanisms leading to this delay will be conditional on the availability of animal models reproducing the features of the metabolic and hormonal environment of human fetuses in diabetic pregnancies. The appropriateness of in vivo models needs to be defined by two kinds of criteria: 1) presence of simultaneous hyperglycemia and hyperinsulinemia in the fetus; 2) the presence of delayed fetal lung maturation as judged by morphology and morphometry of epithelial lung cells, by physiological assessment of surfactant, and by the phospholipid composition of the lung (and including lung tissue per se, bronchoalveolar lavage fluid, lamellar bodies, and/or isolated surfactant fractions). Therefore, future studies must necessarily be comprehensive in scope and include information indicating that fetal growth, blood glucose, and circulating insulin are all increased. Such models already exist in rats and rabbits. Rat models are

  14. Can resistive breathing injure the lung? Implications for COPD exacerbations

    PubMed Central

    Vassilakopoulos, Theodoros; Toumpanakis, Dimitrios

    2016-01-01

    In obstructive lung diseases, airway inflammation leads to bronchospasm and thus resistive breathing, especially during exacerbations. This commentary discusses experimental evidence that resistive breathing per se (the mechanical stimulus) in the absence of underlying airway inflammation leads to lung injury and inflammation (mechanotransduction). The potential implications of resistive breathing-induced mechanotrasduction in COPD exacerbations are presented along with the available clinical evidence. PMID:27713628

  15. Temperature Resolved 3-D Submillimeter Spectroscopy of Astronomical `WEEDs'.

    NASA Astrophysics Data System (ADS)

    Fortman, Sarah M.; Medvedev, Ivan R.; Neese, Christopher F.; De Lucia, Frank C.

    2009-06-01

    We have previously reported on the experimental spectroscopic approach that makes possible the calculation of lower state energy levels and transition strengths without the need for spectral assignment. Analysis of the temperature dependent measurements significantly improves the estimate of the lower state energy, recovered by division of temperature dependent spectral intensities. Also, this approach provides results both in the standard astronomical catalog form (frequency, line strength, lower state energy) and as experimental temperature dependent spectra. We are reporting on temperature resolved 3-D spectroscopy of ethyl cyanide -- a well known astronomical `weed'. "An experimental approach to the prediction of complete millimeter and submillimeter spectra at astrophysical temperatures: Applications to confusion-limited astrophysical observations," I. R. Medvedev and F. C. De Lucia, Ap. J. 656, 621-628 (2007).

  16. CXCR4 Blockade Attenuates Hyperoxia Induced Lung Injury in Neonatal Rats

    PubMed Central

    Drummond, Shelley; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Suguihara, Cleide; Young, Karen C.

    2015-01-01

    Background Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. Whether antagonism of CXCR4 will alleviate lung inflammation in neonatal hyperoxia-induced lung injury is unknown. Objective To determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods Newborn rats exposed to normoxia (RA) or hyperoxia (FiO2=0.9) from postnatal day 2 (P2)-P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis, and inflammation were evaluated at P16. Results As compared to RA, hyperoxic-PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in bronchoalveolar lavage fluid macrophage and neutrophil count and reduced lung myeloperoxidase activity. Conclusion CXCR4 antagonism decreases lung inflammation and improves alveolar as well as vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD. PMID:25825119

  17. Live Imaging of the Lung

    PubMed Central

    Looney, Mark R.; Bhattacharya, Jahar

    2015-01-01

    Live lung imaging has spanned the discovery of capillaries in the frog lung by Malpighi to the current use of single and multiphoton imaging of intravital and isolated perfused lung preparations incorporating fluorescent molecular probes and transgenic reporter mice. Along the way, much has been learned about the unique microcirculation of the lung, including immune cell migration and the mechanisms by which cells at the alveolar-capillary interface communicate with each other. In this review, we highlight live lung imaging techniques as applied to the role of mitochondria in lung immunity, mechanisms of signal transduction in lung compartments, studies on the composition of alveolar wall liquid, and neutrophil and platelet trafficking in the lung under homeostatic and inflammatory conditions. New applications of live lung imaging and the limitations of current techniques are discussed. PMID:24245941

  18. Receptor Tyrosine Kinase EphA5 Is a Functional Molecular Target in Human Lung Cancer*

    PubMed Central

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-01-01

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. PMID:25623065

  19. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    SciTech Connect

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.

  20. Crackles and instabilities during lung inflation

    NASA Astrophysics Data System (ADS)

    Alencar, Adriano M.; Majumdar, Arnab; Hantos, Zoltan; Buldyrev, Sergey V.; Eugene Stanley, H.; Suki, Béla

    2005-11-01

    In a variety of physico-chemical reactions, the actual process takes place in a reactive zone, called the “active surface”. We define the active surface of the lung as the set of airway segments that are closed but connected to the trachea through an open pathway, which is the interface between closed and open regions in a collapsed lung. To study the active surface and the time interval between consecutive openings, we measured the sound pressure of crackles, associated with the opening of collapsed airway segments in isolated dog lungs, inflating from the collapsed state in 120 s. We analyzed the sequence of crackle amplitudes, inter-crackle intervals, and low frequency energy from acoustic data. The series of spike amplitudes spans two orders of magnitude and the inter-crackle intervals spans over five orders of magnitude. The distribution of spike amplitudes follows a power law for nearly two decades, while the distribution of time intervals between consecutive crackles shows two regimes of power law behavior, where the first region represents crackles coming from avalanches of openings whereas the second region is due to the time intervals between separate avalanches. Using the time interval between measured crackles, we estimated the time evolution of the active surface during lung inflation. In addition, we show that recruitment and instabilities along the pressure-volume curve are associated with airway opening and recruitment. We find a good agreement between the theory of the dynamics of lung inflation and the experimental data which combined with numerical results may prove useful in the clinical diagnosis of lung diseases.

  1. Selective differences in macrophage populations and monokine production in resolving pulmonary granuloma and fibrosis.

    PubMed Central

    Lemaire, I.

    1991-01-01

    Alveolar macrophages (AM) and their production of interleukin-1-like activity (IL-1) and macrophage-derived growth factor for fibroblasts (MDGF) were examined during chronic inflammatory reactions leading to either granuloma formation or fibrosis. Groups of five rats each received, respectively, a single transtracheal injection of xonotlite, attapulgite, short chrysotile 4T30, UICC chrysotile B asbestos, or saline. One month later, such treatments induced either no change (xonotlite), granuloma formation (attapulgite and short chrysotile 4T30), or fibrosis (UICC chrysotile B). By 8 months, however, the granulomatous reactions had resolved or greatly diminished, whereas the fibrosis persisted irreversibly. Parallel examination of cell populations obtained by bronchoalveolar lavage revealed that multinucleated giant macrophages (MGC) were present in lavage fluids of animals with resolving granulomatous reactions but absent in those obtained from animals with lung fibrosis. Evaluation of monokine production by inflammatory macrophages also revealed significant differences. Enhanced production of IL-1-like activity was seen in both types of lung injury, although especially during the early stage (1 month) and decreased thereafter (8 months). By contrast, augmentation of MDGF production was observed in animals with lung fibrosis only and persisted up to 9 months. Taken together, these data indicate that production of selected cytokines, as well as AM differentiation along a given pathway, may modulate the outcome of a chronic inflammatory response. PMID:1992772

  2. Immunological Priming Requires Tregs and Interleukin-10-Producing Macrophages to Accelerate Resolution from Severe Lung Inflammation

    PubMed Central

    Eto, Yoshiki; Tripathi, Ashutosh; Mandke, Pooja; Mock, Jason R.; Garibaldi, Brian T.; Singer, Benjamin D.; Sidhaye, Venkataramana K.; Horton, Maureen R.; King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and non-infectious agents, and is a leading cause of mortality world-wide. In that context, immunomodulatory strategies may be utilized to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose lipopolysaccharide can immunologically prime the lung to augment alveolar macrophage production of interleukin-10 and enhance resolution of lung inflammation induced by a lethal dose of lipopolysaccharide or by pseudomonas bacterial pneumonia. Interleukin-10 deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage interleukin-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared to low-dose lipopolysaccharide, but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal lipopolysaccharide exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures. PMID:24688024

  3. Lung Cancer Statistics.

    PubMed

    Torre, Lindsey A; Siegel, Rebecca L; Jemal, Ahmedin

    2016-01-01

    Lung cancer is the leading cause of cancer death among both men and women in the United States. It is also the leading cause of cancer death among men and the second leading cause of cancer death among women worldwide. Lung cancer rates and trends vary substantially by sex, age, race/ethnicity, socioeconomic status, and geography because of differences in historical smoking patterns. Lung cancer mortality rates in the United States are highest among males, blacks, people of lower socioeconomic status, and in the mid-South (e.g., Kentucky, Mississippi, Arkansas, and Tennessee). Globally, rates are highest in countries where smoking uptake began earliest, such as those in North America and Europe. Although rates are now decreasing in most of these countries (e.g., United States, United Kingdom, Australia), especially in men, they are increasing in countries where smoking uptake occurred later. Low- and middle-income countries now account for more than 50% of lung cancer deaths each year. This chapter reviews lung cancer incidence and mortality patterns in the United States and globally.

  4. Donor management and lung preservation for lung transplantation.

    PubMed

    Munshi, Laveena; Keshavjee, Shaf; Cypel, Marcelo

    2013-06-01

    Although lung transplantation has become a life-saving option for patients with end-stage lung disease, this intervention is hampered by a shortage of lungs in view of the growing number of people on the waiting list. Lungs are retrieved from only a small percentage of multiorgan donors, and the transplantation and intensive-care communities have recognised the need to develop innovative methods to expand the donor pool. Advancements in lung-preservation techniques in the preretrieval and postretrieval periods have increased the pool of available donors, and novel research and discoveries in this area have steadily improved post-transplantation adverse events. This Review summarises current best practice and the latest research on intensive-care management of a potential lung donor. We also discuss lung-preservation techniques, including advancements in normothermic ex-vivo lung perfusion, and the potential for a personalised medicine approach to the organ. PMID:24429157

  5. Layer-Resolved Magnetic Moments in Ni/Pt Multilayers

    NASA Astrophysics Data System (ADS)

    Wilhelm, F.; Poulopoulos, P.; Ceballos, G.; Wende, H.; Baberschke, K.; Srivastava, P.; Benea, D.; Ebert, H.; Angelakeris, M.; Flevaris, N. K.; Niarchos, D.; Rogalev, A.; Brookes, N. B.

    2000-07-01

    The magnetic moments in Ni/Pt multilayers are thoroughly studied by combining experimental and ab initio theoretical techniques. SQUID magnetometry probes the samples' magnetizations. X-ray magnetic circular dichroism separates the contribution of Ni and Pt and provides a layer-resolved magnetic moment profile for the whole system. The results are compared to band-structure calculations. Induced Pt magnetic moments localized mostly at the interface are revealed. No magnetically ``dead'' Ni layers are found. The magnetization per Ni volume is slightly enhanced compared to bulk NiPt alloys.

  6. Microsecond-resolved SDR-based cavity ring down ellipsometry.

    PubMed

    Sofikitis, D; Spiliotis, A K; Stamataki, K; Katsoprinakis, G E; Bougas, L; Samartzis, P C; Loppinet, B; Rakitzis, T P; Surligas, M; Papadakis, S

    2015-06-20

    We present an experimental apparatus that allows microsecond-resolved ellipsometric and absorption measurements. The apparatus is based on an optical cavity containing a Dove prism, in which light undergoes total internal reflection (TIR), while the data acquisition is based on software defined radio technology and custom-built drivers. We demonstrate the ability to sense rapid variations in the refractive index above the TIR interface for arbitrarily long times with a temporal resolution of at least 2 μs. PMID:26193040

  7. How Is Childhood Interstitial Lung Disease Treated?

    MedlinePlus

    ... the NHLBI on Twitter. How Is Childhood Interstitial Lung Disease Treated? Childhood interstitial lung disease (chILD) is ... prevent acid reflux, which can lead to aspiration. Lung Transplant A lung transplant may be an option ...

  8. Types of Childhood Interstitial Lung Disease

    MedlinePlus

    ... the NHLBI on Twitter. Types of Childhood Interstitial Lung Disease The broad term "childhood interstitial lung disease" ( ... affect are shown in the illustration below. Normal Lungs and Lung Structures Figure A shows the location ...

  9. Molecular developmental mechanism in polypterid fish provides insight into the origin of vertebrate lungs

    PubMed Central

    Tatsumi, Norifumi; Kobayashi, Ritsuko; Yano, Tohru; Noda, Masatsugu; Fujimura, Koji; Okada, Norihiro; Okabe, Masataka

    2016-01-01

    The lung is an important organ for air breathing in tetrapods and originated well before the terrestrialization of vertebrates. Therefore, to better understand lung evolution, we investigated lung development in the extant basal actinopterygian fish Senegal bichir (Polypterus senegalus). First, we histologically confirmed that lung development in this species is very similar to that of tetrapods. We also found that the mesenchymal expression patterns of three genes that are known to play important roles in early lung development in tetrapods (Fgf10, Tbx4, and Tbx5) were quite similar to those of tetrapods. Moreover, we found a Tbx4 core lung mesenchyme-specific enhancer (C-LME) in the genomes of bichir and coelacanth (Latimeria chalumnae) and experimentally confirmed that these were functional in tetrapods. These findings provide the first molecular evidence that the developmental program for lung was already established in the common ancestor of actinopterygians and sarcopterygians. PMID:27466206

  10. Time-Resolved Photoluminescence and Photovoltaics

    SciTech Connect

    Metzger, W. K.; Ahrenkiel, R. K.; Dippo, P.; Geisz, J.; Wanlass, M. W.; Kurtz, S.

    2005-01-01

    The time-resolved photoluminescence (TRPL) technique and its ability to characterize recombination in bulk photovoltaic semiconductor materials are reviewed. Results from a variety of materials and a few recent studies are summarized and compared.

  11. High-resolving mass spectrographs and spectrometers

    NASA Astrophysics Data System (ADS)

    Wollnik, Hermann

    2015-11-01

    Discussed are different types of high resolving mass spectrographs and spectrometers. In detail outlined are (1) magnetic and electric sector field mass spectrographs, which are the oldest systems, (2) Penning Trap mass spectrographs and spectrometers, which have achieved very high mass-resolving powers, but are technically demanding (3) time-of-flight mass spectrographs using high energy ions passing through accelerator rings, which have also achieved very high mass-resolving powers and are equally technically demanding, (4) linear time-of-flight mass spectrographs, which have become the most versatile mass analyzers for low energy ions, while the even higher performing multi-pass systems have only started to be used, (5) orbitraps, which also have achieved remarkably high mass-resolving powers for low energy ions.

  12. Rovibrationally resolved photodissociation of SH+

    NASA Astrophysics Data System (ADS)

    McMillan, E. C.; Shen, G.; McCann, J. F.; McLaughlin, B. M.; Stancil, P. C.

    2016-04-01

    Photodissociation cross sections for the SH+ radical are computed from all rovibrational (RV) levels of the ground electronic state {{X}}{}3{{{Σ }}}- for wavelengths from threshold to 500 Å. The five electronic transitions, 2{}3{{{Σ }}}- ≤ftarrow {{X}}{}3{{{Σ }}}-,3{}3{{{Σ }}}- ≤ftarrow {{X}}{}3{{{Σ }}}-, A{}3{{\\Pi }} ≤ftarrow {{X}}{}3{{{Σ }}}-,2{}3{{\\Pi }} ≤ftarrow {{X}}{}3{{{Σ }}}-, and 3{}3{{\\Pi }} ≤ftarrow {{X}}{}3{{{Σ }}}-, are treated with a fully quantum-mechanical two-state model, i.e. nonadiabatic couplings between excited states were not included. The photodissociation calculations incorporate adiabatic potentials and transition dipole moment functions computed in the multireference configuration interaction approach along with the Davidson correction (MRCI+Q), but adjusted to match available experimental molecular data and asymptotic atomic limits. Local thermodynamic equilibrium (LTE) photodissociation cross sections were computed which assume a Boltzmann distribution of RV levels in the {{X}}{}3{{{Σ }}}- molecular state of the SH+ cation. The LTE cross sections are presented for temperatures in the range 1000-10 000 K. Applications of the current photodissociation cross sections to interstellar gas, photon-dominated regions, and stellar atmospheres are briefly discussed.

  13. Screening for lung cancer.

    PubMed Central

    Carter, D.

    1981-01-01

    The survival from bronchogenic carcinoma is highly dependent upon stage at the time of treatment. This is particularly true for squamous cell carcinoma, adenocarcinoma, and large cell carcinoma, but holds true for small cell carcinoma as well. The problem presented to the medical profession has been to find a practical means of detecting lung cancer while it is still at an early stage. Three studies in progress have indicated that a larger proportion of the patients may be found to have early stage lung cancer when screened with a combination of chest X-rays and sputum cytology. However, the detection of these early stage cases has not yet been translated into an improvement in the overall mortality rate from lung cancer. PMID:6278787

  14. Mitochondria in Lung Diseases

    PubMed Central

    Aravamudan, Bharathi; Thompson, Michael A.; Pabelick, Christina M.; Prakash, Y. S.

    2014-01-01

    Summary Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering, and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, COPD, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed. PMID:23978003

  15. [Indium lung disease].

    PubMed

    Nakano, Makiko; Omae, Kazuyuki

    2014-02-01

    "Indium lung" is a new occupational lung disease. The global demand for indium, the major material used in manufacturing flat-screen display panels, has skyrocketed since the 1990s (Japan comprises 85% of the worldwide demand). The first case was reported in Japan in 2003, followed by seven cases (interstitial pneumonia and emphysema) in Japan. Two pulmonary alveolar proteinosis (PAP) cases in the USA followed in 2011. Indium lung has been described as interstitial pneumonia, pneumothorax, emphysema, and PAP. In 2013, The Japan Ministry of Health, Labor and Welfare issued an "Ordinance on the Prevention of Hazards Due to Specified Chemical Substances" requiring employers to provide regular health checks for employees and measurements of work environment concentrations of respirable indium dust.

  16. Lung pair phantom

    DOEpatents

    Olsen, P.C.; Gordon, N.R.; Simmons, K.L.

    1993-11-30

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  17. Lung pair phantom

    DOEpatents

    Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.

    1993-01-01

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  18. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  19. Angle-resolved diffraction grating biosensor based on porous silicon

    NASA Astrophysics Data System (ADS)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  20. Lung mass, right upper lung - chest x-ray (image)

    MedlinePlus

    This picture is a chest x-ray of a person with a lung mass. This is a front view, where the lungs are the two dark areas and ... visible in the middle of the chest. The x-ray shows a mass in the right upper lung, ...

  1. Adenocarcinoma of Lung Presenting as Interstitial Lung Disease.

    PubMed

    Mohapatra, Prasanta R; Aggarwal, Deepak; Punia, Rajpal S; Janmeja, Ashok K

    2015-01-01

    Interstitial lung diseases (ILDs) presenting as lung cancer have been reported rarely from India. The present case describes a possibly primary lung cancer in a non-smoker who presented radiologically as a case of ILD. The possible mechanisms available in the literature are discussed.

  2. Time-resolved fluorescence anisotropy imaging.

    PubMed

    Suhling, Klaus; Levitt, James; Chung, Pei-Hua

    2014-01-01

    Fluorescence can be characterized by its intensity, position, wavelength, lifetime, and polarization. The more of these features are acquired in a single measurement, the more can be learned about the sample, i.e., the microenvironment of the fluorescence probe. Polarization-resolved fluorescence lifetime imaging-time-resolved fluorescence anisotropy imaging, TR-FAIM-allows mapping of viscosity or binding or of homo-FRET which can indicate dimerization or generally oligomerization.

  3. Multipulse interferometric frequency-resolved optical gating

    SciTech Connect

    Siders, C.W.; Siders, J.L.W.; Omenetto, F.G.; Taylor, A.J.

    1999-04-01

    The authors review multipulse interferometric frequency-resolved optical gating (MI-FROG) as a technique, uniquely suited for pump-probe coherent spectroscopy using amplified visible and near-infrared short-pulse systems and/or emissive targets, for time-resolving ultrafast phase shifts and intensity changes. Application of polarization-gate MI-FROG to the study of ultrafast ionization in gases is presented.

  4. Lung cancer stem cells and implications for future therapeutics.

    PubMed

    Wang, Jing; Li, Ze-hong; White, James; Zhang, Lin-bo

    2014-07-01

    Lung cancer is the most dreaded of all cancers because of the higher mortality rates associated with it worldwide. The various subtypes of lung cancer respond differently to a particular treatment regime, which makes the therapeutic interventions all the more complicated. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. The CSCs may have significant role in the development of lung tumorigenesis based on the identification of the CSCs which respond during injury. The properties of multi-potency and self-renewal are shared in common by the lung CSCs with the normal pluripotent stem cells which can be isolated using the similar markers. This review deals with the origin and characteristics of the lung cancer stem cells. The role of different markers used to isolate lung CSCs like CD44, ALDH (aldehyde dehydrogenase), CD133 and ABCG2 (ATP binding cassette sub family G member 2) have been discussed in detail. Analysis of the developmental signaling pathways such as Wnt/β-catenin, Notch, hedgehog in the regulation and maintenance of the lung CSCs have been done. Finally, before targeting the lung CSC biomarkers for potential therapeutics, challenges faced in lung cancer stem cell research need to be taken into account. With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.

  5. Particles causing lung disease.

    PubMed Central

    Kilburn, K H

    1984-01-01

    The lung has a limited number of patterns of reaction to inhaled particles. The disease observed depends upon the location: conducting airways, terminal bronchioles and alveoli, and upon the nature of inflammation induced: acute, subacute or chronic. Many different agents cause narrowing of conducting airways (asthma) and some of these cause permanent distortion or obliteration of airways as well. Terminal bronchioles appear to be particularly susceptible to particles which cause goblet cell metaplasia, mucous plugging and ultimately peribronchiolar fibrosis. Cancer is the last outcome at the bronchial level and appears to depend upon continuous exposure to or retention of an agent in the airway and failure of the affected cells to be exfoliated which may be due to squamous metaplasia. Alveoli are populated by endothelial cells, Type I or pavement epithelial cells and metabolically active cuboidal Type II cells that produce the lungs specific surfactant, dipalmytol lecithin. Disturbances of surfactant lead to edema in distal lung while laryngeal edema due to anaphylaxis or fumes may produce asphyxia. Physical retention of indigestible particles or retention by immune memory responses may provoke hyaline membranes, stimulate alveolar lipoproteinosis and finally fibrosis. This later exuberant deposition of connective tissue has been best studied in the occupational pneumoconioses especially silicosis and asbestosis. In contrast emphysema a catabolic response, appears frequently to result from leakage or release of lysosomal proteases into the lung during processing of cigarette smoke particles. The insidious and probably most important human lung disease due to particles is bronchiolar obstruction and obliteration, producing progressive impairment of air flow. The responsible particle is the complex combination of poorly digestive lipids and complex carbohydrates with active chemicals which we call cigarette smoke. More research is needed to perfect, correct and

  6. The ALCHEMIST Lung Cancer Trial

    Cancer.gov

    A collection of material about the ALCHEMIST lung cancer trial that will examine tumor tissue from patients with early-stage, completely resected lung cancer for gene mutations in the EGFR and ALK genes, and a

  7. Lung Cancer Rates by State

    MedlinePlus

    ... HPV-Associated Ovarian Prostate Skin Uterine Cancer Home Lung Cancer Rates by State Language: English Español (Spanish) ... incidence data are currently available. Rates of Getting Lung Cancer by State The number of people who ...

  8. Lung-MAP Clinical Trial

    Cancer.gov

    A collection of material about the Lung-MAP study, which will examine treatment outcomes for patients with squamous cell lung cancer assigned to different targeted drugs based on the results of genomic tumor profiling.

  9. The ALCHEMIST Lung Cancer Trials

    Cancer.gov

    A collection of material about the ALCHEMIST lung cancer trials that will examine tumor tissue from patients with early-stage, completely resected lung cancer for gene mutations in the EGFR and ALK genes, and a

  10. National Lung Screening Trial (NLST)

    Cancer.gov

    The National Lung Screening Trial (NLST), a research study sponsored by the National Cancer Institute that used low-dose helical CT scans or chest X-ray to screen men and women at risk for lung cancer.

  11. Lung imaging of laboratory rodents in vivo

    NASA Astrophysics Data System (ADS)

    Cody, Dianna D.; Cavanaugh, Dawn; Price, Roger E.; Rivera, Belinda; Gladish, Gregory; Travis, Elizabeth

    2004-10-01

    We have been acquiring respiratory-gated micro-CT images of live mice and rats for over a year with our General Electric (formerly Enhanced Vision Systems) hybrid scanner. This technique is especially well suited for the lung due to the inherent high tissue contrast. Our current studies focus on the assessment of lung tumors and their response to experimental agents, and the assessment of lung damage due to chemotherapy agents. We have recently installed a custom-built dual flat-panel cone-beam CT scanner with the ability to scan laboratory animals that vary in size from mice to large dogs. A breath-hold technique is used in place of respiratory gating on this scanner. The objective of this pilot study was to converge on scan acquisition parameters and optimize the visualization of lung damage in a mouse model of fibrosis. Example images from both the micro-CT scanner and the flat-panel CT scanner will be presented, as well as preliminary data describing spatial resolution, low contrast resolution, and radiation dose parameters.

  12. Experimental model of swine pneumonic pasteurellosis using crude Actinobacillus pleuropneumoniae cytotoxin and Pasteurella multocida given endobronchially.

    PubMed Central

    Chung, W B; Bäckström, L R; Collins, M T

    1994-01-01

    This study was designed to develop and characterize a swine pneumonic pasteurellosis model by concurrent introduction of Pasteurella multocida type A and Actinobacillus pleuropneumoniae crude cytotoxin. After a series of preliminary experiments, a combination of 4 x 10(9) P. multocida and 4,000 toxic units of A. pleuropneumoniae crude cytotoxin was determined to produce optimal results. A total of 48 pigs were divided into four groups of 12 pigs each. The control group received buffered saline only. Four pigs from each group were randomly selected for necropsy 3, 7 and 14 days postinoculation (PI). Inoculation of pigs with P. multocida and A. pleuropneumoniae cytotoxin (group 1) resulted in moderate to severe pneumonia. Pasteurella multocida was isolated from pneumonic lesions, grossly normal lung, and bronchial lymph nodes of all group 1 pigs throughout the 14 day experimental period. Pathological changes typical of field cases of swine pneumonic pasteurellosis were produced. Pigs inoculated with P. multocida alone (group 2) had pneumonic lesions and P. multocida was reisolated from lungs at three days PI. Pasteurella multocida was not isolated from these pigs at 7 and 14 days PI, except for one pig in which an abscess developed in the thorax. Pulmonary lesions induced by A. pleuropneumoniae crude cytotoxin alone (group 3) were transient and resolved by seven days PI. Group 1 pigs had significantly greater lung lesion volumes than group 2 and 3 pigs at 3, 7 and 14 days PI. Statistical analysis indicated a significant interactive effect of P. multocida and A. pleuropneumoniae cytotoxin on the development of lung lesion volumes at 7 and 14 days PI (p < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. PMID:8143249

  13. Radon and lung cancer

    SciTech Connect

    Samet, J.M.

    1989-05-10

    Radon, an inert gas released during the decay of uranium-238, is ubiquitous in indoor and outdoor air and contaminates many underground mines. Extensive epidemiologic evidence from studies of underground miners and complementary animal data have documented that radon causes lung cancer in smokers and nonsmokers. Radon must also be considered a potentially important cause of lung cancer for the general population, which is exposed through contamination of indoor air by radon from soil, water, and building materials. This review describes radon's sources, levels in U.S. homes, dosimetry, the epidemiologic evidence from studies of miners and the general population, and the principal, recent risk assessments.91 references.

  14. Radon and lung cancer.

    PubMed

    Samet, J M

    1989-05-10

    Radon, an inert gas released during the decay of uranium-238, is ubiquitous in indoor and outdoor air and contaminates many underground mines. Extensive epidemiologic evidence from studies of underground miners and complementary animal data have documented that radon causes lung cancer in smokers and nonsmokers. Radon must also be considered a potentially important cause of lung cancer for the general population, which is exposed through contamination of indoor air by radon from soil, water, and building materials. This review describes radon's sources, levels in U.S. homes, dosimetry, the epidemiologic evidence from studies of miners and the general population, and the principal, recent risk assessments.

  15. Multifocal nodular periostitis associated with prolonged voriconazole therapy in a lung transplant recipient.

    PubMed

    Ayub, Asad; Kenney, Charles V; McKiernan, Fergus E

    2011-03-01

    We report a case of painful, nodular periostitis in a lung transplant recipient on long-term voriconazole therapy. Symptoms, signs, and laboratory abnormalities resolved quickly after drug withdrawal. The presentation more closely resembles periostitis deformans than hypertrophic osteoarthropathy, suggesting that the fluoride moiety of voriconazole may be pathogenic for this condition. Clinicians should be aware of this association.

  16. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.

  17. Time-resolved resonance Raman spectroscopy: exploring reactive intermediates.

    PubMed

    Sahoo, Sangram Keshari; Umapathy, Siva; Parker, Anthony W

    2011-10-01

    The study of reaction mechanisms involves systematic investigations of the correlation between structure, reactivity, and time. The challenge is to be able to observe the chemical changes undergone by reactants as they change into products via one or several intermediates such as electronic excited states (singlet and triplet), radicals, radical ions, carbocations, carbanions, carbenes, nitrenes, nitrinium ions, etc. The vast array of intermediates and timescales means there is no single "do-it-all" technique. The simultaneous advances in contemporary time-resolved Raman spectroscopic techniques and computational methods have done much towards visualizing molecular fingerprint snapshots of the reactive intermediates in the microsecond to femtosecond time domain. Raman spectroscopy and its sensitive counterpart resonance Raman spectroscopy have been well proven as means for determining molecular structure, chemical bonding, reactivity, and dynamics of short-lived intermediates in solution phase and are advantageous in comparison to commonly used time-resolved absorption and emission spectroscopy. Today time-resolved Raman spectroscopy is a mature technique; its development owes much to the advent of pulsed tunable lasers, highly efficient spectrometers, and high speed, highly sensitive multichannel detectors able to collect a complete spectrum. This review article will provide a brief chronological development of the experimental setup and demonstrate how experimentalists have conquered numerous challenges to obtain background-free (removing fluorescence), intense, and highly spectrally resolved Raman spectra in the nanosecond to microsecond (ns-μs) and picosecond (ps) time domains and, perhaps surprisingly, laid the foundations for new techniques such as spatially offset Raman spectroscopy. PMID:21986070

  18. The roles of diol epoxide and o-quinone pathways in mouse lung tumorigenesis induced by benzo(a)pyrene: relevance to human lung carcinogenesis

    EPA Science Inventory

    There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...

  19. Lung Ventilation/Perfusion Scan

    MedlinePlus

    ... from the NHLBI on Twitter. What Is a Lung Ventilation/Perfusion Scan? A lung ventilation/perfusion scan, or VQ scan, is a ... that measures air and blood flow in your lungs. A VQ scan most often is used to ...

  20. Environmental radiation and the lung

    PubMed Central

    Hamrick, Philip E.; Walsh, Phillip J.

    1974-01-01

    Environmental sources of radioactive materials and their relation to lung doses and lung burdens are described. The approaches used and the problems encountered in estimating lung doses are illustrated. Exposure to radon daughter products is contrasted to exposure to plutonium as particular examples of the hazards associated with radioactive materials of different chemical and physical characteristics. PMID:4620334

  1. Experimental radioimmunotherapy.

    PubMed

    Buchsbaum, D J; Langmuir, V K; Wessels, B W

    1993-01-01

    Radiolabeled monoclonal antibodies have been used for radioimmunotherapy studies with human tumor spheroids and murine and human tumor xenografts in experimental animals. This paper reviews the work that has been performed in these models with different types of cancer, and highlights those papers that have presented dosimetry estimates and attempts to correlate the findings. Radioimmunotherapy studies in multicell spheroids, as a model for micrometastases, have been performed in human neuroblastoma, colon cancer, and melanoma cell lines using 131I-, 125I-, 186Re-, and 212Bi-labeled antibodies. The uniform geometry of the spheroid has allowed radiation dose estimates to be made. Up to three logs of cell kill have been achieved with 131I- and 186Re-specific antibody with minimal toxicity from labeled nonspecific antibody, but 212Bi-antibody had little effect because of its short half-life as shown by Langmuir. It appears that the two most important factors for therapeutic efficacy in this model are good penetration of the radiolabeled antibody and an adequate radionuclide half-life to allow penetration of the immunoconjugate prior to significant radionuclide decay. Radioimmunotherapy studies in animals bearing transplants of colon cancer, leukemia, lymphoma, hepatoma, renal cell carcinoma, neuroblastoma, glioma, mammary carcinoma, small cell lung carcinoma, cervical carcinoma, ovarian carcinoma, and bladder cancer have been performed with 131I, 90Y, 186Re, 153Sm, and 177Lu beta emitting, and 212Bi alpha emitting radionuclides conjugated to monoclonal antibodies. A few studies compared different radionuclides in the same model system. The approaches that have been used in these studies to estimate tumor dosimetry include the MIRD approach, thermoluminescent dosimetry, autoradiography, and comparison to external irradiation. The majority of investigators have estimated the dose to tumor and normal organs using MIRD-based calculations (time-activity curve and

  2. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure.

    PubMed

    Thorneloe, Kevin S; Cheung, Mui; Bao, Weike; Alsaid, Hasan; Lenhard, Stephen; Jian, Ming-Yuan; Costell, Melissa; Maniscalco-Hauk, Kristeen; Krawiec, John A; Olzinski, Alan; Gordon, Earl; Lozinskaya, Irina; Elefante, Lou; Qin, Pu; Matasic, Daniel S; James, Chris; Tunstead, James; Donovan, Brian; Kallal, Lorena; Waszkiewicz, Anna; Vaidya, Kalindi; Davenport, Elizabeth A; Larkin, Jonathan; Burgert, Mark; Casillas, Linda N; Marquis, Robert W; Ye, Guosen; Eidam, Hilary S; Goodman, Krista B; Toomey, John R; Roethke, Theresa J; Jucker, Beat M; Schnackenberg, Christine G; Townsley, Mary I; Lepore, John J; Willette, Robert N

    2012-11-01

    Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF. TRPV4 immunolabeling of human lung sections demonstrated expression of TRPV4 in the pulmonary vasculature that was enhanced in sections from HF patients compared to controls. GSK2193874 was identified as a selective, orally active TRPV4 blocker that inhibits Ca(2+) influx through recombinant TRPV4 channels and native endothelial TRPV4 currents. In isolated rodent and canine lungs, TRPV4 blockade prevented the increased vascular permeability and resultant pulmonary edema associated with elevated PVP. Furthermore, in both acute and chronic HF models, GSK2193874 pretreatment inhibited the formation of pulmonary edema and enhanced arterial oxygenation. Finally, GSK2193874 treatment resolved pulmonary edema already established by myocardial infarction in mice. These findings identify a crucial role for TRPV4 in the formation of HF-induced pulmonary edema and suggest that TRPV4 blockade is a potential therapeutic strategy for HF patients.

  3. Matrix composition and mechanics of decellularized lung scaffolds.

    PubMed

    Petersen, Thomas H; Calle, Elizabeth A; Colehour, Maegen B; Niklason, Laura E

    2012-01-01

    The utility of decellularized native tissues for tissue engineering has been widely demonstrated. Here, we examine the production of decellularized lung scaffolds from native rodent lung using two different techniques, principally defined by use of either the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or sodium dodecyl sulfate (SDS). All viable cellular material is removed, including at least 99% of DNA. Histochemical staining and mechanical testing indicate that collagen and elastin are retained in the decellularized matrices with CHAPS-based decellularization, while SDS-based decellularization leads to loss of collagen and decline in mechanical strength. Quantitative assays confirm that most collagen is retained with CHAPS treatment but that about 80% of collagen is lost with SDS treatment. In contrast, for both detergent methods, at least 60% of elastin content is lost along with about 95% of native proteoglycan content. Mechanical testing of the decellularized scaffolds indicates that they are mechanically similar to native lung using CHAPS decellularization, including retained tensile strength and elastic behavior, demonstrating the importance of collagen and elastin in lung mechanics. With SDS decellularization, the mechanical integrity of scaffolds is significantly diminished with some loss of elastic function as well. Finally, a simple theoretical model of peripheral lung matrix mechanics is consonant with our experimental findings. This work demonstrates the feasibility of producing a decellularized lung scaffold that can be used to study lung matrix biology and mechanics, independent of the effects of cellular components.

  4. Targeted delivery of liquid microvolumes into the lung.

    PubMed

    Kim, Jinho; O'Neill, John D; Dorrello, N Valerio; Bacchetta, Matthew; Vunjak-Novakovic, Gordana

    2015-09-15

    The ability to deliver drugs to specific sites in the lung could radically improve therapeutic outcomes of a variety of lung diseases, including cystic fibrosis, severe bronchopneumonia, chronic obstructive pulmonary disease, and lung cancer. Using conventional methods for pulmonary drug administration, precise, localized delivery of exact doses of drugs to target regions remains challenging. Here we describe a more controlled delivery of soluble reagents (e.g., drugs, enzymes, and radionuclides) in microvolume liquid plugs to targeted branches of the pulmonary airway tree: upper airways, small airways (bronchioles), or the most distal alveoli. In this approach, a soluble liquid plug of very small volume (<1 mL) is instilled into the upper airways, and with programmed air ventilation of the lungs, the plug is pushed into a specific desired (more distal) airway to achieve deposition of liquid film onto the lung epithelium. The plug volume and ventilation conditions were determined by mathematical modeling of plug transport in a tubular geometry, and targeted liquid film deposition was demonstrated in rat lungs by three different in vivo imaging modalities. The experimental and modeling data suggest that instillation of microvolumes of liquid into a ventilated pulmonary airway could be an effective strategy to deliver exact doses of drugs to targeted pathologic regions of the lung, especially those inaccessible by bronchoscopy, to increase in situ efficacy of the drug and minimize systemic side effects. PMID:26324893

  5. A comprehensive computational model of sound transmission through the porcine lung.

    PubMed

    Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J

    2014-09-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment. PMID:25190415

  6. A comprehensive computational model of sound transmission through the porcine lung

    PubMed Central

    Dai, Zoujun; Peng, Ying; Henry, Brian M.; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2014-01-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This “subject-specific” model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment. PMID:25190415

  7. Modeling the nuclear magnetic resonance behavior of lung: from electrical engineering to critical care medicine.

    PubMed

    Cutillo, A G; Ailion, D C

    1999-01-01

    The present article reviews the basic principles of a new approach to the characterization of pulmonary disease. This approach is based on the unique nuclear magnetic resonance (NMR) properties of the lung and combines experimental measurements (using specially developed NMR techniques) with theoretical simulations. The NMR signal from inflated lungs decays very rapidly compared with the signal from completely collapsed (airless) lungs. This phenomenon is due to the presence of internal magnetic field inhomogeneity produced by the alveolar air-tissue interface (because air and water have different magnetic susceptibilities). The air-tissue interface effects can be detected and quantified by magnetic resonance imaging (MRI) techniques using temporally symmetric and asymmetric spin-echo sequences. Theoretical models developed to explain the internal (tissue-induced) magnetic field inhomogeneity in aerated lungs predict the NMR lung behavior as a function of various technical and physiological factors (e.g., the level of lung inflation) and simulate the effects of various lung disorders (in particular, pulmonary edema) on this behavior. Good agreement has been observed between the predictions obtained from the mathematical models and the results of experimental NMR measurements in normal and diseased lungs. Our theoretical and experimental data have important pathophysiological and clinical implications, especially with respect to the characterization of acute lung disease (e.g., pulmonary edema) and the management of critically ill patients.

  8. Particles causing lung disease

    SciTech Connect

    Kilburn, K.H.

    1984-04-01

    The lung has a limited number of patterns of reaction to inhaled particles. The disease observed depends upon the location: conducting airways, terminal bronchioles and alveoli, and upon the nature of inflammation induced: acute, subacute or chronic. Many different agents cause narrowing of conducting airways (asthma) and some of these cause permanent distortion or obliteration of airways as well. Terminal bronchioles appear to be particularly susceptible to particles which cause goblet cell metaplasia, mucous plugging and ultimately peribronchiolar fibrosis. Cancer is the last outcome at the bronchial level and appears to depend upon continuous exposure to or retention of an agent in the airway and failure of the affected cells to be exfoliated which may be due to squamous metaplasia. Alveoli are populated by endothelial cells, Type I or pavement epithelial cells and metabolically active cuboidal Type II cells that produce the lungs specific surfactant, dipalmytol lecithin. Disturbances of surfactant lead to edema in distal lung while laryngeal edema due to anaphylaxis or fumes may produce asphyxia. Physical retention of indigestible particles or retention by immune memory responses may provoke hyaline membranes, stimulate alveolar lipoproteinosis and finally fibrosis. This later exuberant deposition of connective tissue has been best studied in the occupational pneumoconioses especially silicosis and asbestosis. In contrast emphysema a catabolic response appears frequently to result from leakage or release of lysosomal proteases into the lung during processing of cigarette smoke particles. 164 references, 1 figure, 2 tables.

  9. Lung and Bronchus Cancer

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 224,390 % of All New Cancer Cases 13.3% Estimated Deaths in 2016 158,080 % of All Cancer ... of This Cancer : In 2013, there were an estimated 415,707 people living with lung and bronchus ...

  10. Subclinical Interstitial Lung Disease

    PubMed Central

    Doyle, Tracy J.; Hunninghake, Gary M.

    2012-01-01

    The widespread use of high-resolution computed tomography in clinical and research settings has increased the detection of interstitial lung abnormalities (ILA) in asymptomatic and undiagnosed individuals. We reported that in smokers, ILA were present in about 1 of every 12 high-resolution computed tomographic scans; however, the long-term significance of these subclinical changes remains unclear. Studies in families affected with pulmonary fibrosis, smokers with chronic obstructive pulmonary disease, and patients with inflammatory lung disease have shown that asymptomatic and undiagnosed individuals with ILA have reductions in lung volume, functional limitations, increased pulmonary symptoms, histopathologic changes, and molecular profiles similar to those observed in patients with clinically significant interstitial lung disease (ILD). These findings suggest that, in select at-risk populations, ILA may represent early stages of pulmonary fibrosis or subclinical ILD. The growing interest surrounding this topic is motivated by our poor understanding of the inciting events and natural history of ILD, coupled with a lack of effective therapies. In this perspective, we outline past and current research focused on validating radiologic, physiological, and molecular methods to detect subclinical ILD. We discuss the limitations of the available cross-sectional studies and the need for future longitudinal studies to determine the prognostic and therapeutic implications of subclinical ILD in populations at risk of developing clinically significant ILD. PMID:22366047

  11. Chemoprevention of Lung Cancer

    PubMed Central

    Szabo, Eva; Mao, Jenny T.; Lam, Stephen; Reid, Mary E.

    2013-01-01

    Background: Lung cancer is the most common cause of cancer death in men and women in the United States. Cigarette smoking is the main risk factor. Former smokers are at a substantially increased risk of developing lung cancer compared with lifetime never smokers. Chemoprevention refers to the use of specific agents to reverse, suppress, or prevent the process of carcinogenesis. This article reviews the major agents that have been studied for chemoprevention. Methods: Articles of primary, secondary, and tertiary prevention trials were reviewed and summarized to obtain recommendations. Results: None of the phase 3 trials with the agents β-carotene, retinol, 13-cis-retinoic acid, α-tocopherol, N-acetylcysteine, acetylsalicylic acid, or selenium has demonstrated beneficial and reproducible results. To facilitate the evaluation of promising agents and to lessen the need for a large sample size, extensive time commitment, and expense, surrogate end point biomarker trials are being conducted to assist in identifying the most promising agents for later-stage chemoprevention trials. With the understanding of important cellular signaling pathways and the expansion of potentially important targets, agents (many of which target inflammation and the arachidonic acid pathway) are being developed and tested which may prevent or reverse lung carcinogenesis. Conclusions: By integrating biologic knowledge, additional early-phase trials can be performed in a reasonable time frame. The future of lung cancer chemoprevention should entail the evaluation of single agents or combinations that target various pathways while working toward identification and validation of intermediate end points. PMID:23649449

  12. Lung Cancer Brain Metastases.

    PubMed

    Goldberg, Sarah B; Contessa, Joseph N; Omay, Sacit B; Chiang, Veronica

    2015-01-01

    Brain metastases are common among patients with lung cancer and have been associated with significant morbidity and limited survival. However, the treatment of brain metastases has evolved as the field has advanced in terms of central nervous system imaging, surgical technique, and radiotherapy technology. This has allowed patients to receive improved treatment with less toxicity and more durable benefit. In addition, there have been significant advances in systemic therapy for lung cancer in recent years, and several treatments including chemotherapy, targeted therapy, and immunotherapy exhibit activity in the central nervous system. Utilizing systemic therapy for treating brain metastases can avoid or delay local therapy and often allows patients to receive effective treatment for both intracranial and extracranial disease. Determining the appropriate treatment for patients with lung cancer brain metastases therefore requires a clear understanding of intracranial disease burden, tumor histology, molecular characteristics, and overall cancer prognosis. This review provides updates on the current state of surgery and radiotherapy for the treatment of brain metastases, as well as an overview of systemic therapy options that may be effective in select patients with intracranial metastases from lung cancer.

  13. Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity.

    PubMed

    Walton, Richard D; Bernus, Olivier

    2015-01-01

    The spatiotemporal dynamics of arrhythmias are likely to be complex three-dimensional phenomena. Yet, the lack of high-resolution three-dimensional imaging techniques, both in the clinic and the experimental lab, limits our ability to better understand the mechanisms of such arrhythmias. Optical mapping using voltage-sensitive dyes is a widely used tool in experimental electrophysiology. It has been known for decades that even in its most basic application, epi-fluorescence, the optical signal contains information from within a certain intramural volume. Understanding of this fundamental property of optical signals has paved the way towards novel three-dimensional optical imaging techniques. Here, we review our current understanding of the three-dimensional nature of optical signals; how penetration depths of cardiac optical imaging can be improved by using novel imaging modalities and finally, we highlight new techniques inspired from optical tomography and aiming at full depth-resolved optical mapping of cardiac electrical activity. PMID:26238062

  14. Fingerprints of Majorana fermions in spin-resolved subgap spectroscopy

    NASA Astrophysics Data System (ADS)

    Chirla, Razvan; Moca, Cǎtǎlin Paşcu

    2016-07-01

    When a strongly correlated quantum dot is tunnel coupled to a superconductor, it leads to the formation of Shiba bound states inside the superconducting gap. They have been measured experimentally in a superconductor-quantum dot-normal lead setup. Side coupling the quantum dot to a topological superconducting wire that supports Majorana bound states at its ends, drastically affects the structure of the Shiba states and induces supplementary in-gap states. The anomalous coupling between the Majorana bound states and the quantum dot gives rise to a characteristic imbalance in the spin-resolved spectral functions for the dot operators. These are clear fingerprints for the existence of Majorana fermions and they can be detected experimentally in transport measurements. In terms of methods employed, we have used analytical approaches combined with the numerical renormalization group approach.

  15. Trace element load in cancer and normal lung tissue

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś , A.; Braziewicz, J.; Banaś , D.; Majewska, U.; Góź Dź , S.; Urbaniak, A.

    1999-04-01

    Samples of malignant and benign human lung tissues were analysed by two complementary methods, i.e., particle induced X-ray emission (PIXE) and total reflection X-ray fluorescence (TRXRF). The concentration of trace elements of P, S, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Se, Sr, Hg and Pb was determined in squamous cancer of lung tissue from 65 people and in the benign lung tumour tissue from 5 people. Several elements shows enhancement in cancerous lung tissue of women in comparison to men, i.e., titanium show maximum enhancement by 48% followed by Cr (20%) and Mn (36%). At the same time trace element concentration of Sr and Pb are declaimed by 30% and 20% in women population. Physical basis of used analytical methods, experimental set-up and the procedure of sample preparation are described.

  16. Resolving the forbidden band of SF6.

    PubMed

    Boudon, V; Manceron, L; Kwabia Tchana, F; Loëte, M; Lago, L; Roy, P

    2014-01-28

    Sulfur hexafluoride is an important molecule for modeling thermophysical and polarizability properties. It is also a potent greenhouse gas of anthropogenic origin, whose concentration in the atmosphere, although very low is increasing rapidly; its global warming power is mostly conferred by its strong infrared absorption in the ν3 S-F stretching region near 948 cm(-1). This heavy species, however, features many hot bands at room temperature (at which only 31% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6 = 1 vibrational state. Unfortunately, the ν6 band itself (near 347 cm(-1)), in the first approximation, is both infrared- and Raman-inactive, and no reliable spectroscopic information could be obtained up to now and this has precluded a correct modeling of the hot bands. It has been suggested theoretically and experimentally that this band might be slightly activated through Coriolis interaction with infrared-active fundamentals and appears in high pressure measurements as a very faint, unresolved band. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 163 ± 2 K temperature, coupled to synchrotron radiation and a high resolution interferometer, the spectrum of the ν6 far-infrared region has been recorded. Low temperature was used to avoid the presence of hot bands. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution, is indeed ν6. The fully resolved spectrum has been analyzed, thanks to the XTDS software package. The band appears to be activated by faint Coriolis interactions with the strong ν3 and ν4 fundamental bands, resulting in the appearance of a small first-order dipole moment term, inducing unusual selection rules. The band center (ν6 = 347.736707(35) cm(-1)) and rovibrational parameters are now accurately determined for the v6 = 1 level. The ν6 perturbation-induced dipole moment is estimated to be 33 ± 3

  17. Resolving the forbidden band of SF6.

    PubMed

    Boudon, V; Manceron, L; Kwabia Tchana, F; Loëte, M; Lago, L; Roy, P

    2014-01-28

    Sulfur hexafluoride is an important molecule for modeling thermophysical and polarizability properties. It is also a potent greenhouse gas of anthropogenic origin, whose concentration in the atmosphere, although very low is increasing rapidly; its global warming power is mostly conferred by its strong infrared absorption in the ν3 S-F stretching region near 948 cm(-1). This heavy species, however, features many hot bands at room temperature (at which only 31% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6 = 1 vibrational state. Unfortunately, the ν6 band itself (near 347 cm(-1)), in the first approximation, is both infrared- and Raman-inactive, and no reliable spectroscopic information could be obtained up to now and this has precluded a correct modeling of the hot bands. It has been suggested theoretically and experimentally that this band might be slightly activated through Coriolis interaction with infrared-active fundamentals and appears in high pressure measurements as a very faint, unresolved band. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 163 ± 2 K temperature, coupled to synchrotron radiation and a high resolution interferometer, the spectrum of the ν6 far-infrared region has been recorded. Low temperature was used to avoid the presence of hot bands. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution, is indeed ν6. The fully resolved spectrum has been analyzed, thanks to the XTDS software package. The band appears to be activated by faint Coriolis interactions with the strong ν3 and ν4 fundamental bands, resulting in the appearance of a small first-order dipole moment term, inducing unusual selection rules. The band center (ν6 = 347.736707(35) cm(-1)) and rovibrational parameters are now accurately determined for the v6 = 1 level. The ν6 perturbation-induced dipole moment is estimated to be 33 ± 3

  18. AN EXPERIMENTAL STUDY OF DIATHERMY

    PubMed Central

    Christie, Ronald V.; Ehrich, Wilhelm; Binger, Carl A. L.

    1928-01-01

    1. An experimental pneumonia with more or less lobar distribution has been produced in dogs by the method of intrabronchial insufflation of B. friedlænderi, Type B, and Pneumococcus, Type I. 2. Such dogs as showed evidences of a pulmonary lesion when photographed by x-ray were selected for lung temperature measurements. 3. Measurements of lung temperature were made by means of thermocouples before and during diathermy. 4. The thermocouples which recorded the temperature in the consolidated lobes showed in most instances a more rapid rate of heating during diathermy than those in the normal lobes. The final increase in temperature in the pathological lobes over the normal lobes amounted to slightly more than 1°C. 5. When local heating occurred during diathermy it was of the order of magnitude found in a lung in which the branch of the pulmonary artery supplying it had been clamped. 6. Histological examination of the lungs showed the pathological reaction to consist of intraalveolar exudate composed of polymorphonuclear leucocytes and desquamated alveolar epithelium. In some sections the exudate was sufficient to cause compression and emptying of the alveolar capillaries. 7. The local heating, we believe, depends upon this ischemic state of the smaller vessels. 8. Further evidence for an imparied circulation in the pneumonic lung is furnished by injection preparations in which the uninjected area corresponded exactly to the gross pathological lesion. PMID:19869441

  19. Time-resolved transillumination and optical tomography

    NASA Astrophysics Data System (ADS)

    de Haller, Emmanuel B.

    1996-01-01

    In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.

  20. Hypo-Elastic Model for Lung Parenchyma

    SciTech Connect

    Freed, Alan D.; Einstein, Daniel R.

    2012-03-01

    A simple elastic isotropic constitutive model for the spongy tissue in lung is derived from the theory of hypoelasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted by some as indicating extensional anisotropy. In contrast, we show that this behavior arises natural from an analysis of isotropic hypoelastic invariants, and is a likely result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model is characterized against published experimental data for dog lung. Future work includes non-elastic model behavior.

  1. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome

    PubMed Central

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G.; Britton, Steven L.; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses. PMID:25978669

  2. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome.

    PubMed

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G; Britton, Steven L; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses.

  3. The conforming brain and deontological resolve.

    PubMed

    Pincus, Melanie; LaViers, Lisa; Prietula, Michael J; Berns, Gregory

    2014-01-01

    Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  4. Time-resolved optical diffusion tomography

    NASA Astrophysics Data System (ADS)

    Appledorn, C. Robert; Kruger, Robert A.; Liu, Pingyu

    1994-05-01

    A mathematical model is proposed describing time-resolved output measurements obtained on the surface of a diffusely scattering body due to an input pulse of near-IR light at a different location also on the surface. Such measurements can be obtained using a pulsed near-IR laser coupled with a CCD streak camera. The scattering body is assumed to exhibit homogenous scattering and spatially varying absorption. Using this model, an iterative algorithm is derived using maximum likelihood methods that allows the reconstruction of the spatial absorption pattern from a set of time-resolved tomographic measurements. The methodology places no restrictions upon the time-of-arrival of the detected photons, thus permitting the entire time-resolved signal to be used in the reconstruction process. The reconstruction algorithm is easily initialized and preliminary results indicate that stable reconstructions can be performed.

  5. Pharmacological inhibition of caspase-8 limits lung tumour outgrowth

    PubMed Central

    Terlizzi, Michela; Di Crescenzo, Vincenzo Giuseppe; Perillo, Giuseppe; Galderisi, Antonio; Pinto, Aldo; Sorrentino, Rosalinda

    2015-01-01

    Background and Purpose Lung cancer is one of the leading causes of cancer death worldwide. Despite advances in therapy, conventional therapy is still the main treatment and has a high risk of chemotherapy resistance. Caspase-8 is involved in cell death and is a recognized marker for poor patient prognosis. Experimental Approach To elucidate the role of caspase-8 in lung carcinoma, we used human samples of non-small cell lung cancer (NSCLC) and a mouse model of carcinogen-induced lung cancer. Key Results Healthy and cancerous NSCLC samples had similar levels of the active form of caspase-8. Similarly, lung tumour-bearing mice had high levels of the active form of caspase-8. Pharmacological inhibition of caspase-8 by z-IETD-FMK robustly reduced tumour outgrowth and this was closely associated with a reduction in the release of pro-inflammatory cytokines, IL-6, TNF-α, IL-18, IL-1α, IL-33, but not IL-1β. Furthermore, inhibition of caspase-8 reduced the recruitment of innate suppressive cells, such as myeloid-derived suppressor cells, but not of regulatory T cells to lungs of tumour-bearing mice. However, despite the well-known role of caspase-8 in cell death, the apoptotic cascade (caspase-3, caspase-9 and Bcl-2 dependent) was not active in lungs of z-IETD-treated tumour-bearing mice, but instead higher levels of the short segment of c-FLIP (c-FLIPs) were detected. Similarly, human healthy lung samples had higher levels of c-FLIPs than cancerous samples. Conclusions and Implications Our data suggest that caspase-8 is an important orchestrator of cancer-associated inflammation and the presence of short segment of c-FLIP determines whether caspase-8 induces tumour proliferation or tumour arrest/regression in the lung. PMID:25917370

  6. Lung isolation, one-lung ventilation and hypoxaemia during lung isolation

    PubMed Central

    Purohit, Atul; Bhargava, Suresh; Mangal, Vandana; Parashar, Vinod Kumar

    2015-01-01

    Lung isolation is being used more frequently in both adult and paediatric age groups due to increasing incidence of thoracoscopy and video-assisted thoracoscopic surgery in these patients. Various indications for lung isolation and one-lung ventilation include surgical and non-surgical reasons. Isolation can be achieved by double-lumen endotracheal tubes or bronchial blocker. Different issues arise in prone and semi-prone position. The management of hypoxia with lung isolation is a stepwise drill of adding inhaled oxygen, adding positive end-expiratory pressure to ventilated lung and continuous positive airway pressure to non-ventilated side. PMID:26556920

  7. Supine to upright lung mechanics: do changes in lung shape influence lung tissue deformation?

    PubMed

    Chan, Ho-Fung; Tawhai, Merryn H; Levin, David L; Bartholmai, Brian B; Clark, Alys R

    2014-01-01

    In this study we analyze lung shape change between the upright and supine postures and the effect of this shape change on the deformation of lung tissue under gravity. We use supine computed tomography images along with upright tomosynthesis images obtained on the same day to show that there is significant diaphragmatic movement between postures. Using a continuum model of lung tissue deformation under gravity we show that the shape changes due to this diaphragmatic movement could result in different lung tissue expansion patterns between supine and upright lungs. This is an essential consideration when interpreting imaging data acquired in different postures or translating data acquired in supine imaging to upright function.

  8. Quantum state resolved gas-surface reaction dynamics experiments: a tutorial review.

    PubMed

    Chadwick, Helen; Beck, Rainer D

    2016-07-01

    We present a tutorial review of our quantum state resolved experiments designed to study gas-surface reaction dynamics. The combination of a molecular beam, state specific reactant preparation by infrared laser pumping, and ultrahigh vacuum surface analysis techniques make it possible to study chemical reactivity at the gas-surface interface in unprecedented detail. We describe the experimental techniques used for state specific reactant preparation and for detection of surface bound reaction products developed in our laboratory. Using the example of the reaction of methane on Ni and Pt surfaces, we show how state resolved experiments uncovered clear evidence for vibrational mode specificity and bond selectivity, as well as steric effects in chemisorption reactions. The state resolved experimental data provides valuable benchmarks for comparison with theoretical models for gas-surface reactivity aiding in the development of a detailed microscopic understanding of chemical reactivity at the gas-surface interface. PMID:26235656

  9. Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator β-glucan in a two-case ex vivo non-small-cell lung cancer study

    PubMed Central

    Fan, Teresa W.-M.; Warmoes, Marc O.; Sun, Qiushi; Song, Huan; Turchan-Cholewo, Jadwiga; Martin, Jeremiah T.; Mahan, Angela; Higashi, Richard M.; Lane, Andrew N.

    2016-01-01

    Cancer and stromal cell metabolism is important for understanding tumor development, which highly depends on the tumor microenvironment (TME). Cell or animal models cannot recapitulate the human TME. We have developed an ex vivo paired cancerous (CA) and noncancerous (NC) human lung tissue approach to explore cancer and stromal cell metabolism in the native human TME. This approach enabled full control of experimental parameters and acquisition of individual patient's target tissue response to therapeutic agents while eliminating interferences from genetic and physiological variations. In this two-case study of non-small-cell lung cancer, we performed stable isotope-resolved metabolomic (SIRM) experiments on paired CA and NC lung tissues treated with a macrophage activator β-glucan and 13C6-glucose, followed by ion chromatography–Fourier transform mass spectrometry (IC-FTMS) and nuclear magnetic resonance (NMR) analyses of 13C-labeling patterns of metabolites. We demonstrated that CA lung tissue slices were metabolically more active than their NC counterparts, which recapitulated the metabolic reprogramming in CA lung tissues observed in vivo. We showed β-glucan-enhanced glycolysis, Krebs cycle, pentose phosphate pathway, antioxidant production, and itaconate buildup in patient UK021 with chronic obstructive pulmonary disease (COPD) and an abundance of tumor-associated macrophages (TAMs) but not in UK049 with no COPD and much less macrophage infiltration. This metabolic response of UK021 tissues was accompanied by reduced mitotic index, increased necrosis, and enhaced inducible nitric oxide synthase (iNOS) expression. We surmise that the reprogrammed networks could reflect β-glucan M1 polarization of human macrophages. This case study presents a unique opportunity for investigating metabolic responses of human macrophages to immune modulators in their native microenvironment on an individual patient basis. PMID:27551682

  10. Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator β-glucan in a two-case ex vivo non-small-cell lung cancer study.

    PubMed

    Fan, Teresa W-M; Warmoes, Marc O; Sun, Qiushi; Song, Huan; Turchan-Cholewo, Jadwiga; Martin, Jeremiah T; Mahan, Angela; Higashi, Richard M; Lane, Andrew N

    2016-07-01

    Cancer and stromal cell metabolism is important for understanding tumor development, which highly depends on the tumor microenvironment (TME). Cell or animal models cannot recapitulate the human TME. We have developed an ex vivo paired cancerous (CA) and noncancerous (NC) human lung tissue approach to explore cancer and stromal cell metabolism in the native human TME. This approach enabled full control of experimental parameters and acquisition of individual patient's target tissue response to therapeutic agents while eliminating interferences from genetic and physiological variations. In this two-case study of non-small-cell lung cancer, we performed stable isotope-resolved metabolomic (SIRM) experiments on paired CA and NC lung tissues treated with a macrophage activator β-glucan and (13)C6-glucose, followed by ion chromatography-Fourier transform mass spectrometry (IC-FTMS) and nuclear magnetic resonance (NMR) analyses of (13)C-labeling patterns of metabolites. We demonstrated that CA lung tissue slices were metabolically more active than their NC counterparts, which recapitulated the metabolic reprogramming in CA lung tissues observed in vivo. We showed β-glucan-enhanced glycolysis, Krebs cycle, pentose phosphate pathway, antioxidant production, and itaconate buildup in patient UK021 with chronic obstructive pulmonary disease (COPD) and an abundance of tumor-associated macrophages (TAMs) but not in UK049 with no COPD and much less macrophage infiltration. This metabolic response of UK021 tissues was accompanied by reduced mitotic index, increased necrosis, and enhaced inducible nitric oxide synthase (iNOS) expression. We surmise that the reprogrammed networks could reflect β-glucan M1 polarization of human macrophages. This case study presents a unique opportunity for investigating metabolic responses of human macrophages to immune modulators in their native microenvironment on an individual patient basis. PMID:27551682

  11. Time resolved thermal lens in edible oils

    NASA Astrophysics Data System (ADS)

    Albuquerque, T. A. S.; Pedreira, P. R. B.; Medina, A. N.; Pereira, J. R. D.; Bento, A. C.; Baesso, M. L.

    2003-01-01

    In this work time resolved thermal lens spectrometry is applied to investigate the optical properties of the following edible oils: soya, sunflower, canola, and corn oils. The experiments were performed at room temperature using the mode mismatched thermal lens configuration. The results showed that when the time resolved procedure is adopted the technique can be applied to investigate the photosensitivity of edible oils. Soya oil presented a stronger photochemical reaction as compared to the other investigated samples. This observation may be relevant for future studies evaluating edible oils storage conditions and also may contribute to a better understanding of the physical and chemical properties of this important foodstuff.

  12. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice.

    PubMed

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L; Jerome, Jacob A; Madsen, Daniel H; Christofidou-Solomidou, Melpo; Speicher, David W; Bachovchin, William W; Feghali-Bostwick, Carol; Puré, Ellen

    2016-04-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung.

  13. Effects of lung volume on clearance of solutes from the air spaces of lungs

    SciTech Connect

    Peterson, B.T.; James, H.L.; McLarty, J.W.

    1988-03-01

    Several investigators have shown that the clearance rate of aerosolized 99mTc-labeled diethylenetriamine pentaacetate (DTPA, mol wt = 492, radius = 0.6 nm) from the air spaces of the lungs of humans and experimental animals increases with lung volume. To further investigate this phenomenon we performed a compartmental analysis of the 2-h clearance of DTPA from the lungs of anesthetized sheep using a new method to more accurately correct for the effects of DTPA recirculation. This analysis showed that the DTPA clearance in eight sheep ventilated with zero end-expired pressure was best described by a one-compartment model with a clearance rate of 0.42 +/- 0.15%/min. Ventilating eight sheep with an end-expired pressure of 10 cmH/sub 2/O throughout the study increased the end-expired volume 0.4 +/- 0.1 liter BTPS and created a clearance curve that was best described by a two-compartment model. In these sheep 56 +/- 16% of the DTPA cleared from the lungs at a rate of 7.9 +/- 2.9%/min. The remainder cleared at a rate similar to that measured in the sheep ventilated with zero end-expired pressure (0.35 +/- 0.18%/min). Additional control and lung inflation experiments were performed using /sup 99m/Tc-labeled human serum albumin (mol wt = 66,000, radius = 3.6 nm). In six control sheep ventilated with zero end-expired pressure the albumin clearance was best described by a one-compartment model with a clearance rate of 0.06 +/- 0.02%/min. The clearance rate in six sheep with increased lung volume was slightly larger (0.09 +/- 0.02, P less than 0.05) but was well described by a one-compartment model.

  14. Wavelet based rotation invariant texture feature for lung tissue classification and retrieval

    NASA Astrophysics Data System (ADS)

    Dash, Jatindra Kumar; Mukhopadhyay, Sudipta; Das Gupta, Rahul; Garg, Mandeep Kumar; Prabhakar, Nidhi; Khandelwal, Niranjan

    2014-03-01

    This paper evaluates the performance of recently proposed rotation invariant texture feature extraction method for the classi¯cation and retrieval of lung tissues a®ected with Interstitial Lung Diseases (ILDs). The method makes use of principle texture direction as the reference direction and extracts texture features using Discrete Wavelet Transform (DWT). A private database containing high resolution computed tomography (HRCT) images belonging to ¯ve category of lung tissue is used for the experiment. The experimental result shows that the texture appearances of lung tissues are anisotropic in nature and hence rotation invariant features achieve better retrieval as well as classi¯cation accuracy.

  15. [Interstitial lung diseases].

    PubMed

    Mazzoccoli, Gianluigi; Carughi, Stefano; De Cata, Angelo; Giuliani, Antonio; Masciale, Nunzia; La Viola, Marco; Puzzolante, Felice; Balzanelli, Mario

    2003-05-01

    Interstitial lung diseases (ILD) are an heterogeneous group of inflammatory diseases characterized by an anatomical distortion of peripheral airways and interstitium, determined by a first stage of alveolitis and a following stage of fibrosis. Natural history of several ILD is characterized by slow and progressive destruction of alveolar-capillary functional units, often with respiratory failure and death. For their smoldering evolution and not specificity of symptoms (exertional dyspnea and cough) ILD may remain not diagnosed and not treated for a long time.

  16. Angiosarcoma of the lung

    PubMed Central

    Grafino, Mónica; Alves, Paula; de Almeida, Margarida Mendes; Garrido, Patrícia; Hasmucrai, Direndra; Teixeira, Encarnação; Sotto-Mayor, Renato

    2016-01-01

    Angiosarcoma is a rare malignant vascular tumor. Pulmonary involvement is usually attributable to metastasis from other primary sites, primary pulmonary angiosarcoma therefore being quite uncommon. We report a case of angiosarcoma with pulmonary involvement, probably primary to the lung, which had gone untreated for more than two years. We describe this rare neoplasm and its growth, as well as the extensive local invasion and hematogenous metastasis at presentation. We also discuss its poor prognosis. PMID:26982044

  17. Hyperoxic Acute Lung Injury

    PubMed Central

    Kallet, Richard H; Matthay, Michael A

    2013-01-01

    Prolonged breathing of very high FIO2 (FIO2 ≥ 0.9) uniformly causes severe hyperoxic acute lung injury (HALI) and, without a reduction of FIO2, is usually fatal. The severity of HALI is directly proportional to PO2 (particularly above 450 mm Hg, or an FIO2 of 0.6) and exposure duration. Hyperoxia produces extraordinary amounts of reactive O2 species that overwhelms natural antioxidant defenses and destroys cellular structures through several pathways. Genetic predisposition has been shown to play an important role in HALI among animals, and some genetics-based epidemiologic research suggests that this may be true for humans as well. Clinically, the risk of HALI likely occurs when FIO2exceeds 0.7, and may become problematic when FIO2 exceeds 0.8 for an extended period of time. Both high-stretch mechanical ventilation and hyperoxia potentiate lung injury and may promote pulmonary infection. During the 1960s, confusion regarding the incidence and relevance of HALI largely reflected such issues as the primitive control of FIO2, the absence of PEEP, and the fact that at the time both ALI and ventilator-induced lung injury were unknown. The advent of PEEP and precise control over FIO2, as well as lung-protective ventilation, and other adjunctive therapies for severe hypoxemia, has greatly reduced the risk of HALI for the vast majority of patients requiring mechanical ventilation in the 21st century. However, a subset of patients with very severe ARDS requiring hyperoxic therapy is at substantial risk for developing HALI, therefore justifying the use of such adjunctive therapies. PMID:23271823

  18. Bronchoscopy-Derived Correlates of Lung Injury Following Inhalational Injuries: A Prospective Obervational Study

    EPA Science Inventory

    Acute lung injury (ALI) is a major factor determining morbidity following burns and inhalational injury. In experimental models, factors potentially contributing to ALI risk include inhalation of toxins directly causing cell damage; inflammation; and infection. However, few studi...

  19. Measurement of thermal transport using time-resolved thermal wave microscopy

    SciTech Connect

    Marat Khafizov; David H. Hurley

    2011-10-01

    A theoretical and experimental analysis of time-resolved thermal wave microscopy (TRTWM) technique used for thermal wave imaging is presented. TRTWM combines the elements of both frequency and time domain laser based thermoreflectance approaches widely used for thermal wave imaging and measurement of thermal transport. An analytical thermal wave model used for analysis is described and compared to experimental results. Implementation of TRTWM to measure thermal conductivities of materials of interest is demonstrated.

  20. Screening for lung cancer.

    PubMed

    Miettinen, O S

    2000-05-01

    Screening for lung cancer serves to prevent deaths from this disease insofar as earlier resections are associated with higher rates of cure. There is good reason to believe that this is the case: in stage I, the 5-year survival rate with resection is 70%, whereas without resection the corresponding rate is only 10%. Before this evidence emerged, various authoritative organizations and agencies in North America advised against screening for lung cancer on the grounds of the results of several RCTs. As for CXR, I argue that the study results are consistent with up to 40% reduction in the fatality rate. Moreover, modern helical CT screening provides for detecting much smaller tumors than were detected in those studies. It is time to revoke the conclusion that screening for lung cancer does not serve to prevent deaths from this disease, and to quantify the usefulness of CT screening in particular. As for the requisite research, the prevailing orthodoxy has it that RCTs are to be used, but I argue that more meaningful results are obtainable, more rapidly and much less expensively, by the use of noncomparative (and hence unrandomized) studies. PMID:10855255

  1. [Grading of lung cancer].

    PubMed

    Bohle, R M; Schnabel, P A

    2016-07-01

    In comparison with other tumor entities there is no common generally accepted grading system for lung cancer with clearly defined criteria and clinical relevance. In the recent fourth edition of the World Health Organization (WHO) classification from 2015 of tumors of the lungs, pleura, thymus and heart, there is no generally applicable grading for pulmonary adenocarcinomas, squamous cell carcinomas or rarer forms of carcinoma. Since the new IASLC/ATS/ERS classification of adenocarcinomas published in 2011, 5 different subtypes with significantly different prognosis are proposed. This results in an architectural (histologic) grading, which is usually applied to resection specimens. For squamous cell carcinoma the number of different histological subtypes in the new WHO classification was reduced compared to earlier versions but without a common grading system. In recent publications nesting and budding were proposed as the main (histologic) criteria for a grading of squamous cell carcinomas. The grading of neuroendocrine tumors (NET) of the lungs in comparison with NET in other organs is presented in a separate article in this issue. Certain rare tumor types are high grade per definition: small cell, large cell and pleomorphic carcinomas, carcinosarcomas and pulmonary blastomas. In the future it is to be expected that these developments will be further refined, e. g. by adding further subtypes for adenocarcinomas and cytologic and/or nuclear criteria for adenocarcinoma and/or squamous cell carcinomas. PMID:27356985

  2. Evaluation study of building-resolved urban dispersion models

    SciTech Connect

    Flaherty, Julia E.; Allwine, K Jerry; Brown, Mike J.; Coirier, WIlliam J.; Ericson, Shawn C.; Hansen, Olav R.; Huber, Alan H.; Kim, Sura; Leach, Martin J.; Mirocha, Jeff D.; Newsom, Rob K.; Patnaik, Gopal; Senocak, Inanc

    2007-09-10

    For effective emergency response and recovery planning, it is critically important that building-resolved urban dispersion models be evaluated using field data. Several full-physics computational fluid dynamics (CFD) models and semi-empirical building-resolved (SEB) models are being advanced and applied to simulating flow and dispersion in urban areas. To obtain an estimate of the current state-of-readiness of these classes of models, the Department of Homeland Security (DHS) funded a study to compare five CFD models and one SEB model with tracer data from the extensive Midtown Manhattan field study (MID05) conducted during August 2005 as part of the DHS Urban Dispersion Program (UDP; Allwine and Flaherty 2007). Six days of tracer and meteorological experiments were conducted over an approximately 2-km-by-2-km area in Midtown Manhattan just south of Central Park in New York City. A subset of these data was used for model evaluations. The study was conducted such that an evaluation team, independent of the six modeling teams, provided all the input data (e.g., building data, meteorological data and tracer release rates) and run conditions for each of four experimental periods simulated. Tracer concentration data for two of the four experimental periods were provided to the modeling teams for their own evaluation of their respective models to ensure proper setup and operation. Tracer data were not provided for the second two experimental periods to provide for an independent evaluation of the models. The tracer concentrations resulting from the model simulations were provided to the evaluation team in a standard format for consistency in inter-comparing model results. An overview of the model evaluation approach will be given followed by a discussion on the qualitative comparison of the respective models with the field data. Future model developments efforts needed to address modeling gaps identified from this study will also be discussed.

  3. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGES

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; et al

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  4. Spectrally resolving single-shot polarimeter.

    PubMed

    Knitter, Sebastian; Hellwig, Tim; Kues, Michael; Fallnich, Carsten

    2011-08-15

    We demonstrate a spectrally resolving single-shot polarimeter. The system consists of a commercial imaging spectrograph, modified by a birefringent wedge and a segmented polarizer. The physical operating principle and limitations of the apparatus as well as preliminary polarimetric measurements on the emission of random lasers are reported. PMID:21847155

  5. Families and Schools: Resolving Disputes through Mediation.

    ERIC Educational Resources Information Center

    Consortium for Appropriate Dispute Resolution in Special Education (CADRE), Eugene, OR.

    This publication attempts to answer common questions that parents, teachers, administrators, and others have about mediation as a means of resolving conflicts between parents of a child with a disability and the school district. Four real life stories are used to show how experienced mediators use a variety of methods to help participants work out…

  6. A Student Activity on Visual Resolving Power

    ERIC Educational Resources Information Center

    Warren, T. H.; Henriksen, P. N.; Ramsier, R. D.

    2003-01-01

    We present a simple activity in which students measure the resolving power of their eyes. The approach can be used at various levels of sophistication with students having a wide variety of skills and scientific training. We discuss our experiences using this activity with a class of non-science majors as well as with a group of pre-engineering…

  7. Resolving superimposed MUAPs using particle swarm optimization.

    PubMed

    Marateb, Hamid Reza; McGill, Kevin C

    2009-03-01

    This paper presents an algorithm to resolve superimposed action potentials encountered during the decomposition of electromyographic signals. The algorithm uses particle swarm optimization with a variety of features including randomization, crossover, and multiple swarms. In a simulation study involving realistic superpositions of two to five motor-unit action potentials, the algorithm had an accuracy of 98%.

  8. Resolving Negotiations Impasses in Public Education.

    ERIC Educational Resources Information Center

    Neal, Richard G., Ed.

    This publication is intended to help school management personnel become more familiar with the nature of and the means for resolving negotiations impasses. Aspects of mediation and arbitration are discussed, and basic negotiating techniques that help school boards win arbitration cases are presented. Also provided are a sample arbitration case…

  9. Resolvability and the Tetrahedral Configuration of Carbon.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1983-01-01

    Discusses evidence for the tetrahedral configuration of the carbon atom, indicating that three symmetrical configurations are theoretically possible for coordination number four. Includes table indicating that resolvability of compounds of type CR'R"R"'R"" is a necessary but not sufficient condition for proving tetrahedral configuration. (JN)

  10. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    PubMed

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  11. Synchronous Multiple Lung Adenocarcinomas: Estrogen Concentration in Peripheral Lung

    PubMed Central

    Shinchi, Yusuke; Sanada, Mune; Motooka, Yamato; Fujino, Kosuke; Mori, Takeshi; Suzuki, Makoto

    2016-01-01

    Background The detection rate of synchronous multiple lung adenocarcinomas (SMLA), which display multiple ground glass opacity nodules in the peripheral lung, is increasing due to advances in high resolution computed tomography. The backgrounds of multicentric development of adenocarcinoma are unknown. In this study, we quantitated estrogen concentration in the peripheral lungs of postmenopausal female patients with SMLA. Methods The tissue concentration of estrogens (estrone [E1] and estdadiol [E2]) in the noncancerous peripheral lung were measured with liquid chromatography/electrospray tandem mass spectrometry in postmenopausal female patients with lung adenocarcinoma. The expression levels of CYP19A1 in the normal lung were also quantitated with real-time PCR. Thirty patients with SMLA and 79 cases of control patients with single lung adenocarcinoma were analyzed. Results The concentrations of E1 and E2 in the noncancerous tissue were significantly higher in SMLA cases than control cases (P = 0.004 and P = 0.02, respectively). The minor allele (A) of single nucleotide polymorphism rs3764221 were significantly associated with higher concentration of E1 and E2 (P = 0.002 and P = 0.01, respectively) and higher CYP19A1 mRNA expression (P = 0.03). Conclusion The tissue estrogen concentration of peripheral lung was significantly higher in SMLA than control cases. The high concentration of estrogen may be one of the causes of multicentric development of peripheral lung adenocarcinomas. PMID:27526096

  12. Dirac cones, Floquet side bands, and theory of time-resolved angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Farrell, Aaron; Arsenault, A.; Pereg-Barnea, T.

    2016-10-01

    Pump-probe techniques with high temporal resolution allow one to drive a system of interest out of equilibrium and at the same time probe its properties. Recent advances in these techniques open the door to studying new, nonequilibrium phenomena such as Floquet topological insulators and superconductors. These advances also necessitate the development of theoretical tools for understanding the experimental findings and predicting new ones. In the present paper, we provide a theoretical foundation to understand the nonequilibrium behavior of a Dirac system. We present detailed numerical calculations and simple analytic results for the time evolution of a Dirac system irradiated by light. These results are framed by appealing to the recently revitalized notion of side bands [A. Farrell and T. Pereg-Barnea, Phys. Rev. Lett. 115, 106403 (2015), 10.1103/PhysRevLett.115.106403; Phys. Rev. B 93, 045121 (2016), 10.1103/PhysRevB.93.045121], extended to the case of nonperiodic drive where the fast oscillations are modified by an envelope function. We apply this formalism to the case of photocurrent generated by a second probe pulse. We find that, under the application of circularly polarized light, a Dirac point only ever splits into two copies of side bands. Meanwhile, the application of linearly polarized light leaves the Dirac point intact while producing side bands. In both cases the population of the side bands are time dependent through their nonlinear dependence on the envelope of the pump pulse. Our immediate interest in this work is in connection to time- and angle-resolved photoemission experiments, where we find excellent qualitative agreement between our results and those in the literature [Wang et al., Science 342, 453 (2013), 10.1126/science.1239834]. However, our results are general and may prove useful beyond this particular application and should be relevant to other pump-probe experiments.

  13. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  14. Lung Cancer in Never Smokers.

    PubMed

    Rivera, Gabriel Alberto; Wakelee, Heather

    2016-01-01

    Lung cancer is predominantly associated with cigarette smoking; however, a substantial minority of patients with the disease have never smoked. In the US it is estimated there are 17,000-26,000 annual deaths from lung cancer in never smokers, which as a separate entity would be the seventh leading cause of cancer mortality. Controversy surrounds the question of whether or not the incidence of lung cancer in never-smokers is increasing, with more data to support this observation in Asia. There are several factors associated with an increased risk of developing lung cancer in never smokers including second hand smoke, indoor air pollution, occupational exposures, and genetic susceptibility among others. Adenocarcinoma is the most common histology of lung cancer in never smokers and in comparison to lung cancer in smokers appears less complex with a higher likelihood to have targetable driver mutations. PMID:26667338

  15. Cholinergic Targets in Lung Cancer.

    PubMed

    Spindel, Eliot R

    2016-01-01

    Lung cancers express an autocrine cholinergic loop in which secreted acetylcholine can stimulate tumor growth through both nicotinic and muscarinic receptors. Because activation of mAChR and nAChR stimulates growth; tumor growth can be stimulated by both locally synthesized acetylcholine as well as acetylcholine from distal sources and from nicotine in the high percentage of lung cancer patients who are smokers. The stimulation of lung cancer growth by cholinergic agonists offers many potential new targets for lung cancer therapy. Cholinergic signaling can be targeted at the level of choline transport; acetylcholine synthesis, secretion and degradation; and nicotinic and muscarinic receptors. In addition, the newly describe family of ly-6 allosteric modulators of nicotinic signaling such as lynx1 and lynx2 offers yet another new approach to novel lung cancer therapeutics. Each of these targets has their potential advantages and disadvantages for the development of new lung cancer therapies which are discussed in this review. PMID:26818857

  16. The microbiome and the lung.

    PubMed

    Cui, Lijia; Morris, Alison; Huang, Laurence; Beck, James M; Twigg, Homer L; von Mutius, Erika; Ghedin, Elodie

    2014-08-01

    Investigation of the human microbiome has become an important field of research facilitated by advances in sequencing technologies. The lung, which is one of the latest body sites being explored for the characterization of human-associated microbial communities, has a microbiome that is suspected to play a substantial role in health and disease. In this review, we provide an overview of the basics of microbiome studies. Challenges in the study of the lung microbiome are highlighted, and further attention is called to the optimization and standardization of methodologies to explore the role of the lung microbiome in health and disease. We also provide examples of lung microbial communities associated with disease or infection status and discuss the role of fungal species in the lung. Finally, we review studies demonstrating that the environmental microbiome can influence lung health and disease, such as the finding that the diversity of microbial exposure correlates inversely with the development of childhood asthma.

  17. Effect of lung liquid volume on respiratory performance after caesarean delivery in the lamb.

    PubMed Central

    Berger, P J; Smolich, J J; Ramsden, C A; Walker, A M

    1996-01-01

    1. The volume of liquid in the lungs of the fetal lamb is reported to fall in the final days of gestation and during labour itself. We aimed to test the hypothesis that this fall in liquid volume adapts the lungs for air breathing and pulmonary gas exchange. 2. In twelve chronically catheterized fetal lambs we measured lung liquid volume at 140 days gestation (term is 147 days) and then delivered the fetuses by Caesarean section under maternal spinal anaesthesia. In five fetuses we removed approximately half the liquid contained in the lungs just before delivery (experimental group) while the remaining seven fetuses were delivered without change to their lung liquid (control group). 3. Lambs born with reduced lung liquid volume improved their arterial blood gas and acid-base status more quickly than lambs born without alteration to lung liquid. 4. Carotid arterial blood gas values in the first 60 min of postnatal life were significantly related to the volume of liquid present in the lungs at birth, with higher arterial partial pressure of oxygen (Pa,02) and arterial oxygen saturation (Sa,02) and lower arterial partial pressure of carbon dioxide (Pa,CO2) levels being associated with lower lung liquid volumes. 5. We conclude that postnatal gas exchange is enhanced by a reduction in the volume of liquid remaining in the lungs when breathing starts. PMID:8735000

  18. Four-dimensional proton treatment planning for lung tumors

    SciTech Connect

    Engelsman, Martijn . E-mail: martijn.engelsman@maastro.nl; Rietzel, Eike; Kooy, Hanne M.

    2006-04-01

    Purpose: In proton radiotherapy, respiration-induced variations in density lead to changes in radiologic path lengths and will possibly result in geometric misses. We compared different treatment planning strategies for lung tumors that compensate for respiratory motion. Methods and Materials: Particle-specific treatment planning margins were applied to standard helical computed tomography (CT) scans as well as to 'representative' CT scans. Margins were incorporated beam specific laterally by aperture widening and longitudinally by compensator smearing. Furthermore, treatment plans using full time-resolved 4D-computed tomography data were generated. Results: Four-dimensional treatment planning guaranteed target coverage throughout a respiratory cycle. Use of a standard helical CT data set resulted in underdosing the target volume to 36% of the prescribed dose. For CT data representing average target positions, coverage can be expected but not guaranteed. In comparison to this strategy, 4D planning decreased the mean lung dose by up to 16% and the lung volume receiving 20 Gy (prescribed target dose 72 Gy) by up to 15%. Conclusion: When the three planning strategies are compared, only 4D proton treatment planning guarantees delivery of the prescribed dose throughout a respiratory cycle. Furthermore, the 4D planning approach results in equal or reduced dose to critical structures; even the ipsilateral lung is spared.

  19. Retrospective Analysis of Lung Transplant Recipients Found to Have Unexpected Lung Cancer in Explanted Lungs.

    PubMed

    Nakajima, Takahiro; Cypel, Marcelo; de Perrot, Marc; Pierre, Andrew; Waddell, Tom; Singer, Lianne; Roberts, Heidi; Keshavjee, Shaf; Yasufuku, Kazuhiro

    2015-01-01

    Unexpected lung cancer is sometimes found in explanted lungs. The objective of this study was to review these patients and their outcomes to better understand and optimize management protocols for lung transplant candidates with pulmonary nodules. Retrospective analysis of pretransplant imaging and clinicopathologic characteristics of patients who were found to have lung cancer in their explanted lungs was performed. From January 2003 to December 2012, 13 of 853 lung transplant recipients were found to have unexpected lung cancer in their explanted lung (1.52%). Of them, 9 cases were for interstitial lung disease (2.8%; 9/321 recipients) and 4 cases were for chronic obstructive pulmonary disease (1.57%; 4/255 recipients). The median period between computed tomographic scan and lung transplantation was 2.40 months (range: 0.5-19.2). On computed tomographic scan, only 3 cases were shown to possibly have a neoplasm by the radiologist. The staging of these lung cancers was as follows: 3 cases of IA, 1 case of IB, 5 cases of IIA, 1 case of IIIA, and 3 cases of IV. Of 13 cases, 9 died owing to cancer progression. On the contrary, only 1 stage I case with small cell lung cancer showed cancer recurrence. The median survival time was 339 days, and the 3-year survival rate was 11.0%. In conclusion, most of the patients with unexpected lung cancer showed poor prognosis except for the early-stage disease. The establishment of proper protocol for management of such nodules is important to improve the management of candidates who are found to have pulmonary nodules on imaging. PMID:26074103

  20. Lucas–Kanade fluid trajectories for time-resolved PIV

    NASA Astrophysics Data System (ADS)

    Yegavian, Robin; Leclaire, Benjamin; Champagnat, Frédéric; Illoul, Cédric; Losfeld, Gilles

    2016-08-01

    We introduce a new method for estimating fluid trajectories in time-resolved PIV. It relies on a Lucas–Kanade paradigm and consists in a simple and direct extension of a two-frame estimation with FOLKI-PIV (Champagnat et al 2011 Exp. Fluids 50 1169–82). The so-called Lucas–Kanade Fluid Trajectories (LKFT) are assumed to be polynomial in time, and are found as the minimizer of a global functional, in which displacements are sought so as to match the intensities of a series of images pairs in the sequence, in the least-squares sense. All pairs involve the central image, similar to other recent time-resolved approaches (FTC (Lynch and Scarano 2013 Meas. Sci. Technol. 24 035305) and FTEE (Jeon et al 2014 Exp. Fluids 55 1–16)). As switching from a two-frame to a time-resolved objective simply amounts to adding terms in a functional, no significant additional algorithmic element is required. Similar to FOLKI-PIV the method is very well suited for GPU acceleration, which is an important feature as computational complexity increases with the image sequence size. Tests on synthetic data exhibiting peak-locking show that increasing the image sequence size strongly reduces both associated bias and random error, and that LKFT has a remaining total error comparable to that of FTEE on this case. Results on case B of the third PIV challenge (Stanislas et al 2008 Exp. Fluids 45 27–71) also show its ability to drastically reduce the error in situations with low signal-to-noise ratio. These results are finally confirmed on experimental images acquired in the near-field of a low Reynolds number jet. Strong reductions in peak-locking, spatial and temporal noise compared to two-frame estimation are also observed, on the displacement components themselves, as well as on spatial or temporal derivatives, such as vorticity and material acceleration.

  1. Lucas-Kanade fluid trajectories for time-resolved PIV

    NASA Astrophysics Data System (ADS)

    Yegavian, Robin; Leclaire, Benjamin; Champagnat, Frédéric; Illoul, Cédric; Losfeld, Gilles

    2016-08-01

    We introduce a new method for estimating fluid trajectories in time-resolved PIV. It relies on a Lucas-Kanade paradigm and consists in a simple and direct extension of a two-frame estimation with FOLKI-PIV (Champagnat et al 2011 Exp. Fluids 50 1169-82). The so-called Lucas-Kanade Fluid Trajectories (LKFT) are assumed to be polynomial in time, and are found as the minimizer of a global functional, in which displacements are sought so as to match the intensities of a series of images pairs in the sequence, in the least-squares sense. All pairs involve the central image, similar to other recent time-resolved approaches (FTC (Lynch and Scarano 2013 Meas. Sci. Technol. 24 035305) and FTEE (Jeon et al 2014 Exp. Fluids 55 1-16)). As switching from a two-frame to a time-resolved objective simply amounts to adding terms in a functional, no significant additional algorithmic element is required. Similar to FOLKI-PIV the method is very well suited for GPU acceleration, which is an important feature as computational complexity increases with the image sequence size. Tests on synthetic data exhibiting peak-locking show that increasing the image sequence size strongly reduces both associated bias and random error, and that LKFT has a remaining total error comparable to that of FTEE on this case. Results on case B of the third PIV challenge (Stanislas et al 2008 Exp. Fluids 45 27-71) also show its ability to drastically reduce the error in situations with low signal-to-noise ratio. These results are finally confirmed on experimental images acquired in the near-field of a low Reynolds number jet. Strong reductions in peak-locking, spatial and temporal noise compared to two-frame estimation are also observed, on the displacement components themselves, as well as on spatial or temporal derivatives, such as vorticity and material acceleration.

  2. Resolving Cognitive Conflict in a Realistic Situation with Modeling Characteristics: Coping with a Changing Reference in Fractions

    ERIC Educational Resources Information Center

    Shahbari, Juhaina Awawdeh; Peled, Irit

    2015-01-01

    This study investigates the effect of using a realistic situation with modeling characteristics in creating and resolving a cognitive conflict to promote understanding of a changing reference in fraction calculations. The study was conducted among 96 seventh graders divided into 2 experimental groups and 1 control group. The experimental groups…

  3. Stress amplification effect of lung.

    PubMed

    Zhou, Hongyuan; Ma, Guowei

    2010-01-01

    Under a blast or impact load, rapid movement of the thoracic wall generates stress in lung, a foam-like structure of high compressibility, which is different from general solids. Due to this unique characteristic, it is hypothesized that when lung is subjected to a blast or impact load, there will be an initial low stress progressively developed into a high stress in a short duration in a thin layer of parenchyma at the lung surface. Compared to the incident stress, the actual stress value experienced by lung is amplified, which may cause alveolar-capillary walls to burst, subsequently results in injuries such as edema or hemorrhage. This hypothesis can explain one significant phenomenon observed in animal tests that the gross thoracic compression do not cause major lung injury and there is a close relationship between thoracic wall velocity and the lung injury degree. According to the hypothesis, under a blast or impact load, there should be a significant injury degree discrepancy between a thin layer of parenchyma at the lung surface and the rest of the lung. Serious injuries should be mainly found in this thin layer, which can be employed to test whether this amplified effect exists or not. The hypothesis may shed some light on the mechanism of blast lung injury.

  4. Lung disease in rheumatoid arthritis.

    PubMed

    Yunt, Zulma X; Solomon, Joshua J

    2015-05-01

    Rheumatoid arthritis (RA) affects approximately 1% of the US population frequently has extra-articular manifestations. Most compartments of the lung are susceptible to disease. Interstitial lung disease (ILD) and airways disease are the most common forms of RA-related lung disease. RA-ILD carries the worst prognosis and most often manifests in a histologic pattern of usual interstitial pneumonia or nonspecific interstitial pneumonia. There have been no large, well-controlled prospective studies investigating therapies for RA-ILD. Treatment usually entails immunomodulatory agents. Further studies are needed to better understand pathogenic mechanisms of disease that lead to lung involvement in these patients.

  5. Diverse macrophage populations mediate acute lung inflammation and resolution

    PubMed Central

    King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS. PMID:24508730

  6. Cloud-System Resolving Models: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncreiff, Mitch

    2008-01-01

    Cloud-system resolving models (CRM), which are based on the nonhydrostatic equations of motion and typically have a grid-spacing of about a kilometer, originated as cloud-process models in the 1970s. This paper reviews the status and prospects of CRMs across a wide range of issues, such as microphysics and precipitation; interaction between clouds and radiation; and the effects of boundary-layer and surface-processes on cloud systems. Since CRMs resolve organized convection, tropical waves and the large-scale circulation, there is the prospect for several advances in both basic knowledge of scale-interaction requisite to parameterizing mesoscale processes in climate models. In superparameterization, CRMs represent convection, explicitly replacing many of the assumptions necessary in contemporary parameterization. Global CRMs have been run on an experimental basis, giving prospect to a new generation of climate weather prediction in a decade, and climate models due course. CRMs play a major role in the retrieval of surface-rain and latent heating from satellite measurements. Finally, enormous wide dynamic ranges of CRM simulations present new challenges for model validation against observations.

  7. Near-Threshold, Vibrationally-Resolved Photoionization of Molecular Nitrogen

    NASA Astrophysics Data System (ADS)

    Vangyseghem, Gaetan; Gorczyca, Thomas; Ballance, Connor

    2016-05-01

    Photoionization of molecular nitrogen N2 is investigated near the first ionization threshold using an R-matrix, multi-channel quantum defect theory (MQDT) approach. Building on an existing fixed-nuclei R-matrix photoionization model, which, in turn, is built on the UKRmol suite of codes, photoionization cross sections, as well as scattering and dipole matrices, are computed in the Born-Oppenheimer approximation. By varying the internuclear separation, potential energy curves have been constructed for the N2 and N 2 + states and compared to quantum chemistry calculations. Using these fixed-nuclei potential energy curves, and corresponding vibronic eigenenergies and eigenfunctions, a frame transformation is enacted on the fixed-nuclei scattering and dipole matrices, allowing for the calculation of vibrationally-resolved photoionization cross sections. The resultant photoionization cross sections are compared to high-resolution experimental data near threshold, a region complicated by multiple vibrationally-resolved, interacting Rydberg series.

  8. Quantification of Proton Dose Calculation Accuracy in the Lung

    SciTech Connect

    Grassberger, Clemens; Daartz, Juliane; Dowdell, Stephen; Ruggieri, Thomas; Sharp, Greg; Paganetti, Harald

    2014-06-01

    Purpose: To quantify the accuracy of a clinical proton treatment planning system (TPS) as well as Monte Carlo (MC)–based dose calculation through measurements and to assess the clinical impact in a cohort of patients with tumors located in the lung. Methods and Materials: A lung phantom and ion chamber array were used to measure the dose to a plane through a tumor embedded in the lung, and to determine the distal fall-off of the proton beam. Results were compared with TPS and MC calculations. Dose distributions in 19 patients (54 fields total) were simulated using MC and compared to the TPS algorithm. Results: MC increased dose calculation accuracy in lung tissue compared with the TPS and reproduced dose measurements in the target to within ±2%. The average difference between measured and predicted dose in a plane through the center of the target was 5.6% for the TPS and 1.6% for MC. MC recalculations in patients showed a mean dose to the clinical target volume on average 3.4% lower than the TPS, exceeding 5% for small fields. For large tumors, MC also predicted consistently higher V5 and V10 to the normal lung, because of a wider lateral penumbra, which was also observed experimentally. Critical structures located distal to the target could show large deviations, although this effect was highly patient specific. Range measurements showed that MC can reduce range uncertainty by a factor of ∼2: the average (maximum) difference to the measured range was 3.9 mm (7.5 mm) for MC and 7 mm (17 mm) for the TPS in lung tissue. Conclusion: Integration of Monte Carlo dose calculation techniques into the clinic would improve treatment quality in proton therapy for lung cancer by avoiding systematic overestimation of target dose and underestimation of dose to normal lung. In addition, the ability to confidently reduce range margins would benefit all patients by potentially lowering toxicity.

  9. Potential targets for lung squamous cell carcinoma

    Cancer.gov

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  10. Treatment Option Overview (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  11. What To Expect Before a Lung Transplant

    MedlinePlus

    ... NHLBI on Twitter. What To Expect Before a Lung Transplant If you get into a medical center's ... friends also can offer support. When a Donor Lung Becomes Available OPTN matches donor lungs to recipients ...

  12. Stages of Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  13. What to Expect During a Lung Transplant

    MedlinePlus

    ... NHLBI on Twitter. What To Expect During a Lung Transplant Just before lung transplant surgery, you will ... airway and its blood vessels to your heart. Lung Transplant The illustration shows the process of a ...

  14. What Are Asbestos-Related Lung Diseases?

    MedlinePlus

    ... the NHLBI on Twitter. What Are Asbestos-Related Lung Diseases? Asbestos-related lung diseases are diseases caused ... peritoneum (PER-ih-to-NE-um). Asbestos-Related Lung Diseases Figure A shows the location of the ...

  15. Modeling of the Nitric Oxide Transport in the Human Lungs

    PubMed Central

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  16. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry

    SciTech Connect

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-11-13

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO{sup +} ions also yield signal spikes, but these MO{sup +} spikes generally occur at different times from their atomic ion counterparts.

  17. Investigation of depth-resolved nanoscale structural changes in regulated cell proliferation and chromatin decondensation

    PubMed Central

    Uttam, Shikhar; Bista, Rajan K.; Staton, Kevin; Alexandrov, Sergey; Choi, Serah; Bakkenist, Christopher J.; Hartman, Douglas J.; Brand, Randall E.; Liu, Yang

    2013-01-01

    We present depth-resolved spatial-domain low-coherence quantitative phase microscopy, a simple approach that utilizes coherence gating to construct a depth-resolved structural feature vector quantifying sub-resolution axial structural changes at different optical depths within the sample. We show that this feature vector is independent of sample thickness variation, and identifies nanoscale structural changes in clinically prepared samples. We present numerical simulations and experimental validation to demonstrate the feasibility of the approach. We also perform experiments using unstained cells to investigate the nanoscale structural changes in regulated cell proliferation through cell cycle and chromatin decondensation induced by histone acetylation. PMID:23577294

  18. Pose estimation using time-resolved inversion of diffuse light.

    PubMed

    Raviv, Dan; Barsi, Christopher; Naik, Nikhil; Feigin, Micha; Raskar, Ramesh

    2014-08-25

    We present a novel approach for evaluation of position and orientation of geometric shapes from scattered time-resolved data. Traditionally, imaging systems treat scattering as unwanted and are designed to mitigate the effects. Instead, we show here that scattering can be exploited by implementing a system based on a femtosecond laser and a streak camera. The result is accurate estimation of object pose, which is a fundamental tool in analysis of complex scenarios and plays an important role in our understanding of physical phenomena. Here, we experimentally show that for a given geometry, a single incident illumination point yields enough information for pose estimation and tracking after multiple scattering events. Our technique can be used for single-shot imaging behind walls or through turbid media.

  19. Time-resolved molecular transport across living cell membranes.

    PubMed

    Zeng, Jia; Eckenrode, Heather M; Dounce, Susan M; Dai, Hai-Lung

    2013-01-01

    It is shown that the nonlinear optical phenomenon known as second-harmonic generation can be used for label-free, time-resolved study of the transport of molecules through living cell membranes. The adsorption and transport of a 300-Da molecular-mass hydrophobic ion at the Escherichia coli membrane is observed. Remarkably, at low ion concentrations, the second-harmonic generation technique clearly exposes a multistep molecular transport process: Transport of the molecular ion across the outer and cytoplasmic membranes of the Gram-negative bacteria is recorded, in sequence, in time. Fitting of the data to a multiprocess kinematic model reveals that the transport of this hydrophobic ion through the outer membrane is much faster than through the cytoplasmic membrane, likely reflecting the effectiveness of ion transport porins. The observations illustrate an experimental means for studying the interactions of small molecules with cell membranes.

  20. FXR LIA Optimization - Time-resolved OTR Emittance Measurement

    SciTech Connect

    Jacob, J; Ong, M; Wargo, P; LeSage, G

    2005-07-21

    The Flash X-Ray Radiography (FXR) facility at Lawrence Livermore National Laboratory utilizes a high current, long pulse linear induction accelerator to produce high doses of x-ray radiation. Accurate characterization of the transverse beam emittance is required in order to facilitate accelerator modeling and tuning efforts and, ultimately, to optimize the final focus spot size, yielding higher resolution radiographs. In addition to conventional magnet scan, pepper-pot, and multiple screen techniques, optical transition radiation (OTR) has been proven as a useful emittance measurement diagnostic and is particularly well suited to the FXR accelerator. We shall discuss the time-resolved emittance characterization of an induction linac electron beam using OTR, and we will present our experimental apparatus and analysis software. We shall also develop the theoretical background of beam emittance and transition radiation.