Science.gov

Sample records for resolved energy dispersive

  1. Time-Resolved Energy-Dispersive XAFS Station for Wide-Energy Range at SPring-8

    SciTech Connect

    Kato, K.; Uruga, T.; Tanida, H.; Yokota, S.; Imai, Y.; Irie, T.

    2007-01-19

    A time-resolved energy-dispersive XAFS (DXAFS) station has been constructed at the bending magnet beamline BL28B2 at SPring-8 to study the local structural changes of materials during chemical reactions and functional processes. The bending magnet source at SPring-8 has a high photon flux above 50 keV. The purpose of this station is to measure DXAFS spectra in a wide energy range from 7 to 50 keV covering K-edges of lanthanides. Its main components are a polychromator with a bent silicon crystal, a mirror to reject higher harmonics, and a position-sensitive detector (PSD). To correspond to a wide energy range, polychromators for Bragg and Laue geometry were developed for the energy range below and above 12 keV, respectively. The PSD used is CCD coupled with a fluorescent screen and lens system. The fluorescent materials and their thickness were optimized for measurement in the x-ray range. Good quality spectra of Ce K-edge (40.5 keV) were obtained with exposures of 360 ms for the standard samples. The present status of the system and some experimental examples are presented in this report.

  2. π-plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Liou, S. C.; Shie, C.-S.; Chen, C. H.; Breitwieser, R.; Pai, W. W.; Guo, G. Y.; Chu, M.-W.

    2015-01-01

    The π-plasmon dispersion in graphene was scrutinized by momentum-resolved electron energy-loss spectroscopy with an improved momentum q resolution and was found to display the square root of the q dispersion characteristic of the collective excitation of two-dimensional electron systems, in contrast to previous experimental and theoretical studies which reported a linear q dispersion. Our theoretical elaborations on the q -dependent spectra affirm this square root of q relation and further unveil an in-plane electronic anisotropy. The physical property of the π plasmon is thoroughly compared to that of the two-dimensional plasmon due to carriers of the Dirac fermions. A clear distinction between the π plasmon and the two-dimensional Dirac plasmon is demonstrated, clarifying the common notion about correlating the linearly dispersed Dirac cones with the linear dispersion of the π plasmon previously reported.

  3. π-Plasmon Dispersion in Free-Standing Monolayer Graphene Investigated by Momentum-Resolved Electron Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liou, S. C.; Breitwieser, R.; Chen, C. H.; Pai, W. W.; Guo, G. Y.; Chu, M. W.

    2014-08-01

    The {\\pi}-plasmon dispersion in graphene was scrutinized by momentum(q)-resolved electron energy-loss spectroscopy with an improved q resolution and found to display the square root of q dispersion characteristic of the collective excitation of two-dimensional electron systems, in contrast with previous experimental and theoretical studies which reported a linear q dispersion. Our theoretical elaborations on the q-dependent spectra affirm this square root of q relation and further unveil an in-plane electronic anisotropy. The physical property of the {\\pi} plasmon is thoroughly compared to that of the two-dimensional plasmon due to carriers of the Dirac fermions. A clear distinction between the {\\pi} plasmon and the two-dimensional Dirac plasmon was demonstrated, clarifying the common notion on correlating the linearly-dispersed Dirac cones to the linear dispersion of the {\\pi} plasmon previously reported.

  4. Intermolecular energy-band dispersion in oriented thin films of bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) by angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shinji; Mori, Takehiko; Imaeda, Kenichi; Tanaka, Shoji; Yamashita, Yoshiro; Inokuchi, Hiroo; Fujimoto, Hitoshi; Seki, Kazuhiko; Ueno, Nobuo

    1994-05-01

    Angle-resolved ultraviolet photoemission spectra using synchrotron radiation were measured for oriented thin films of bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) (BTQBT) on graphite. From the photon energy dependence of normal emission spectra, the energy-band dispersion of π-bands were observed for the highest (HOMO) and next highest (NHOMO) bands. This is the first observation of intermolecular dispersion in a single-component organic molecular crystal. The results demonstrate that the BTQBT molecules have a strong intermolecular interaction, which can be derived from the introduction of a covalent interaction between sulfur atoms in addition to the usual intermolecular interaction by van der Waals forces.

  5. The SAMI Galaxy Survey: energy sources of the turbulent velocity dispersion in spatially resolved local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Zhou, Luwenjia; Federrath, Christoph; Yuan, Tiantian; Bian, Fuyan; Medling, Anne M.; Shi, Yong; Bland-Hawthorn, Joss; Bryant, Julia J.; Brough, Sarah; Catinella, Barbara; Croom, Scott M.; Goodwin, Michael; Goldstein, Gregory; Green, Andrew W.; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Owers, Matt S.; Richards, Samuel N.; Sanchez, Sebastian F.

    2017-10-01

    We investigate the energy sources of random turbulent motions of ionized gas from H α emission in eight local star-forming galaxies from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. These galaxies satisfy strict pure star-forming selection criteria to avoid contamination from active galactic nuclei (AGNs) or strong shocks/outflows. Using the relatively high spatial and spectral resolution of SAMI, we find that - on sub-kpc scales, our galaxies display a flat distribution of ionized gas velocity dispersion as a function of star formation rate (SFR) surface density. A major fraction of our SAMI galaxies shows higher velocity dispersion than predictions by feedback-driven models, especially at the low SFR surface density end. Our results suggest that additional sources beyond star formation feedback contribute to driving random motions of the interstellar medium in star-forming galaxies. We speculate that gravity, galactic shear and/or magnetorotational instability may be additional driving sources of turbulence in these galaxies.

  6. Microsecond time-resolved energy-dispersive EXAFS measurement and its application to film the thermolysis of (NH4)2[PtCl6

    NASA Astrophysics Data System (ADS)

    Kong, Qingyu; Baudelet, Francois; Han, Jun; Chagnot, Sebastien; Barthe, Laurent; Headspith, Jon; Goldsbrough, Roger; Picca, Frederic E.; Spalla, Olivier

    2012-12-01

    Microsecond (μs) time-resolved extended X-ray absorption fine structure spectroscopy (EXAFS) has been developed using an energy-dispersive EXAFS (EDE) setup equipped with a silicon Quantum Detector ULTRA. The feasibility was investigated with a prototypical thermally driven redox reaction, the thermal decomposition of (NH4)2[PtCl6]. EXAFS data were collected with snapshots every 60 μs during the course of the thermolysis reaction, then averaged for 100 times along the reaction to get better signal to noise ratio which reduces the time resolution to 6 millisecond (ms). Our results provide direct structural evidence of cis-PtCl2(NH3)2 as the intermediate, together with continuous electronic and geometric structure dynamics of the reactant, intermediate and final product during the course of the thermolysis of (NH4)2[PtCl6]. The thermal effect on EXAFS signals at high temperatures is considered in the data analysis, which is essential to follow the reaction process correctly. This method could also be applied to other reaction dynamics.

  7. Microsecond time-resolved energy-dispersive EXAFS measurement and its application to film the thermolysis of (NH₄)₂[PtCl₆].

    PubMed

    Kong, Qingyu; Baudelet, Francois; Han, Jun; Chagnot, Sebastien; Barthe, Laurent; Headspith, Jon; Goldsbrough, Roger; Picca, Frederic E; Spalla, Olivier

    2012-01-01

    Microsecond (μs) time-resolved extended X-ray absorption fine structure spectroscopy (EXAFS) has been developed using an energy-dispersive EXAFS (EDE) setup equipped with a silicon Quantum Detector ULTRA. The feasibility was investigated with a prototypical thermally driven redox reaction, the thermal decomposition of (NH₄)₂[PtCl₆]. EXAFS data were collected with snapshots every 60 μs during the course of the thermolysis reaction, then averaged for 100 times along the reaction to get better signal to noise ratio which reduces the time resolution to 6 millisecond (ms). Our results provide direct structural evidence of cis-PtCl₂(NH₃)₂ as the intermediate, together with continuous electronic and geometric structure dynamics of the reactant, intermediate and final product during the course of the thermolysis of ((NH₄)₂[PtCl₆]. The thermal effect on EXAFS signals at high temperatures is considered in the data analysis, which is essential to follow the reaction process correctly. This method could also be applied to other reaction dynamics.

  8. Microsecond time-resolved energy-dispersive EXAFS measurement and its application to film the thermolysis of (NH4)2[PtCl6

    PubMed Central

    Kong, Qingyu; Baudelet, Francois; Han, Jun; Chagnot, Sebastien; Barthe, Laurent; Headspith, Jon; Goldsbrough, Roger; Picca, Frederic E.; Spalla, Olivier

    2012-01-01

    Microsecond (μs) time-resolved extended X-ray absorption fine structure spectroscopy (EXAFS) has been developed using an energy-dispersive EXAFS (EDE) setup equipped with a silicon Quantum Detector ULTRA. The feasibility was investigated with a prototypical thermally driven redox reaction, the thermal decomposition of (NH4)2[PtCl6]. EXAFS data were collected with snapshots every 60 μs during the course of the thermolysis reaction, then averaged for 100 times along the reaction to get better signal to noise ratio which reduces the time resolution to 6 millisecond (ms). Our results provide direct structural evidence of cis-PtCl2(NH3)2 as the intermediate, together with continuous electronic and geometric structure dynamics of the reactant, intermediate and final product during the course of the thermolysis of (NH4)2[PtCl6]. The thermal effect on EXAFS signals at high temperatures is considered in the data analysis, which is essential to follow the reaction process correctly. This method could also be applied to other reaction dynamics. PMID:23264880

  9. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    NASA Astrophysics Data System (ADS)

    Barbes, Damien; Tabary, Joachim; Paulus, Caroline; Hazemann, Jean-Louis; Verger, Loïck

    2017-03-01

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  10. High-throughput and time-resolved energy-dispersive X-ray diffraction (EDXRD) study of the formation of CAU-1-(OH)2: microwave and conventional heating.

    PubMed

    Ahnfeldt, Tim; Moellmer, Jens; Guillerm, Vincent; Staudt, Reiner; Serre, Christian; Stock, Norbert

    2011-05-27

    Aluminium dihydroxyterephthalate [Al(8)(OH)(4)(OCH(3))(8)(BDC(OH)(2))(6)]⋅x H(2)O (denoted CAU-1-(OH)(2)) was synthesized under solvothermal conditions and characterized by X-ray powder diffraction, IR spectroscopy, sorption measurements, as well as thermogravimetric and elemental analysis. CAU-1-(OH)(2) is isoreticular to CAU-1 and its pores are lined with OH groups. It is stable under ambient conditions and in water, and it exhibits permanent porosity and two types of cavities with effective diameters of approximately 1 and 0.45 nm. The crystallization of CAU-1-(OH)(2) was studied by in situ energy-dispersive X-ray diffraction (EDXRD) experiments in the 120-145 °C temperature range. Two heating methods-conventional and microwave-were investigated. The latter leads to shorter induction periods as well as shorter reaction times. Whereas CAU-1-(OH)(2) is formed at all investigated temperatures using conventional heating, it is only observed below 130 °C using microwave heating. The calculation of the activation energy of the crystallization of CAU-1-(OH)(2) exhibits similar values for microwave and conventional synthesis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe

    NASA Astrophysics Data System (ADS)

    Akdoğan, E. K.; Şavklıyıldız, İ.; Biçer, H.; Paxton, W.; Toksoy, F.; Zhong, Z.; Tsakalakos, T.

    2013-06-01

    Nonisothermal densification in 8% yttria doped zirconia (8YSZ) particulate matter of 250 nm median particle size was studied under 215 V/cm dc electric field and 9 °C/min heating rate, using time-resolved in-situ high temperature energy dispersive x-ray diffractometry with a polychromatic 200 keV synchrotron probe. Densification occurred in the 876-905 °C range, which resulted in 97% of the theoretical density. No local melting at particle-particle contacts was observed in scanning electron micrographs, implying densification was due to solid state mass transport processes. The maximum current draw at 905 °C was 3 A, corresponding to instantaneous absorbed power density of 570 W/cm3. Densification of 8YSZ was accompanied by anomalous elastic volume expansions of the unit cell by 0.45% and 2.80% at 847 °C and 905 °C, respectively. The anomalous expansion at 905 °C at which maximum densification was observed is characterized by three stages: (I) linear stage, (II) anomalous stage, and (III) anelastic recovery stage. The densification in stage I (184 s) and II (15 s) was completed in 199 s, while anelastic relaxation in stage III lasted 130 s. The residual strains (ɛ) at room temperature, as computed from tetragonal (112) and (211) reflections, are ɛ(112) = 0.05% and ɛ(211) = 0.13%, respectively. Time dependence of (211) and (112) peak widths (β) show a decrease with both exhibiting a singularity at 905 °C. An anisotropy in (112) and (211) peak widths of {β(112)/β(211)} = (3:1) magnitude was observed. No phase transformation occurred at 905 °C as verified from diffraction spectra on both sides of the singularity, i.e., the unit cell symmetry remains tetragonal. We attribute the reduction in densification temperature and time to ultrafast ambipolar diffusion of species arising from the superposition of mass fluxes due to Fickian diffusion, thermodiffusion (Soret effect), and electromigration, which in turn are a consequence of a superposition of chemical

  12. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe

    SciTech Connect

    Akdogan, E. K.; Savkl Latin-Small-Letter-Dotless-I y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z, I.; Bicer, H.; Paxton, W.; Toksoy, F.; Tsakalakos, T.; Zhong, Z.

    2013-06-21

    Nonisothermal densification in 8% yttria doped zirconia (8YSZ) particulate matter of 250 nm median particle size was studied under 215 V/cm dc electric field and 9 Degree-Sign C/min heating rate, using time-resolved in-situ high temperature energy dispersive x-ray diffractometry with a polychromatic 200 keV synchrotron probe. Densification occurred in the 876-905 Degree-Sign C range, which resulted in 97% of the theoretical density. No local melting at particle-particle contacts was observed in scanning electron micrographs, implying densification was due to solid state mass transport processes. The maximum current draw at 905 Degree-Sign C was 3 A, corresponding to instantaneous absorbed power density of 570 W/cm{sup 3}. Densification of 8YSZ was accompanied by anomalous elastic volume expansions of the unit cell by 0.45% and 2.80% at 847 Degree-Sign C and 905 Degree-Sign C, respectively. The anomalous expansion at 905 Degree-Sign C at which maximum densification was observed is characterized by three stages: (I) linear stage, (II) anomalous stage, and (III) anelastic recovery stage. The densification in stage I (184 s) and II (15 s) was completed in 199 s, while anelastic relaxation in stage III lasted 130 s. The residual strains ({epsilon}) at room temperature, as computed from tetragonal (112) and (211) reflections, are {epsilon}{sub (112)} = 0.05% and {epsilon}{sub (211)} = 0.13%, respectively. Time dependence of (211) and (112) peak widths ({beta}) show a decrease with both exhibiting a singularity at 905 Degree-Sign C. An anisotropy in (112) and (211) peak widths of {l_brace} {beta}{sub (112)}/{beta}{sub (211)}{r_brace} = (3:1) magnitude was observed. No phase transformation occurred at 905 Degree-Sign C as verified from diffraction spectra on both sides of the singularity, i.e., the unit cell symmetry remains tetragonal. We attribute the reduction in densification temperature and time to ultrafast ambipolar diffusion of species arising from the

  13. Evaluation study of building-resolved urban dispersion models

    SciTech Connect

    Flaherty, Julia E.; Allwine, K Jerry; Brown, Mike J.; Coirier, WIlliam J.; Ericson, Shawn C.; Hansen, Olav R.; Huber, Alan H.; Kim, Sura; Leach, Martin J.; Mirocha, Jeff D.; Newsom, Rob K.; Patnaik, Gopal; Senocak, Inanc

    2007-09-10

    For effective emergency response and recovery planning, it is critically important that building-resolved urban dispersion models be evaluated using field data. Several full-physics computational fluid dynamics (CFD) models and semi-empirical building-resolved (SEB) models are being advanced and applied to simulating flow and dispersion in urban areas. To obtain an estimate of the current state-of-readiness of these classes of models, the Department of Homeland Security (DHS) funded a study to compare five CFD models and one SEB model with tracer data from the extensive Midtown Manhattan field study (MID05) conducted during August 2005 as part of the DHS Urban Dispersion Program (UDP; Allwine and Flaherty 2007). Six days of tracer and meteorological experiments were conducted over an approximately 2-km-by-2-km area in Midtown Manhattan just south of Central Park in New York City. A subset of these data was used for model evaluations. The study was conducted such that an evaluation team, independent of the six modeling teams, provided all the input data (e.g., building data, meteorological data and tracer release rates) and run conditions for each of four experimental periods simulated. Tracer concentration data for two of the four experimental periods were provided to the modeling teams for their own evaluation of their respective models to ensure proper setup and operation. Tracer data were not provided for the second two experimental periods to provide for an independent evaluation of the models. The tracer concentrations resulting from the model simulations were provided to the evaluation team in a standard format for consistency in inter-comparing model results. An overview of the model evaluation approach will be given followed by a discussion on the qualitative comparison of the respective models with the field data. Future model developments efforts needed to address modeling gaps identified from this study will also be discussed.

  14. The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24

    PubMed Central

    Pascarelli, S.; Mathon, O.; Mairs, T.; Kantor, I.; Agostini, G.; Strohm, C.; Pasternak, S.; Perrin, F.; Berruyer, G.; Chappelet, P.; Clavel, C.; Dominguez, M. C.

    2016-01-01

    The European Synchrotron Radiation Facility has recently made available to the user community a facility totally dedicated to Time-resolved and Extreme-conditions X-ray Absorption Spectroscopy – TEXAS. Based on an upgrade of the former energy-dispersive XAS beamline ID24, it provides a unique experimental tool combining unprecedented brilliance (up to 1014 photons s−1 on a 4 µm × 4 µm FWHM spot) and detection speed for a full EXAFS spectrum (100 ps per spectrum). The science mission includes studies of processes down to the nanosecond timescale, and investigations of matter at extreme pressure (500 GPa), temperature (10000 K) and magnetic field (30 T). The core activities of the beamline are centered on new experiments dedicated to the investigation of extreme states of matter that can be maintained only for very short periods of time. Here the infrastructure, optical scheme, detection systems and sample environments used to enable the mission-critical performance are described, and examples of first results on the investigation of the electronic and local structure in melts at pressure and temperature conditions relevant to the Earth’s interior and in laser-shocked matter are given. PMID:26698085

  15. Well-resolved observations by ISEE 2 of ion dispersion in the magnetospheric cusp

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.; Bame, S. J.; Elphic, R. C.; Gosling, J. T.; Thomsen, M. F.; Onsager, T. G.

    1993-01-01

    During a prolonged period of southward IMF on October 30, 1978, the ISEE 2 spacecraft observed an unusually prolonged and distinct region of ion energy-time dispersion in the dayside dawn magnetosphere. Observed plasma features included the (1) presence of magnetosheath electrons and initial absence of magnetosheath ions and (2) subsequent arrival and energy-time dispersion of magnetosheath ions as the spacecraft transited outbound from 6.03 to 7.66 Earth radii. We use ISEE 2 ion measurements to illustrate these dispersive time-of-flight effects and to support our interpretation of a location in the north magnetospheric cusp. Ion energy dispersion persists for about 35 min and includes well-resolved sequences of magnetosheath and magnetospheric ion distributions. We focus primarily on observations and time-of-flight analysis of ions from the magnetosheath, which are observed simultaneously entering and exiting the cusp at different energies. We discuss the observational support and shortcomings of various ion injection locations and durations and conclude that quasi-steady merging at the dayside magnetopause, with ion dispersion caused by spacecraft motion away from the last closed field line, is the most likely scenario.

  16. Development of dispersive XAFS system for analysis of time-resolved spatial distribution of electrode reaction.

    PubMed

    Katayama, Misaki; Miyahara, Ryota; Watanabe, Toshiki; Yamagishi, Hirona; Yamashita, Shohei; Kizaki, Terue; Sugawara, Yoshimi; Inada, Yasuhiro

    2015-09-01

    Apparatus for a technique based on the dispersive optics of X-ray absorption fine structure (XAFS) has been developed at beamline BL-5 of the Synchrotron Radiation Center of Ritsumeikan University. The vertical axis of the cross section of the synchrotron light is used to disperse the X-ray energy using a cylindrical polychromator and the horizontal axis is used for the spatially resolved analysis with a pixel array detector. The vertically dispersive XAFS (VDXAFS) instrument was designed to analyze the dynamic changeover of the inhomogeneous electrode reaction of secondary batteries. The line-shaped X-ray beam is transmitted through the electrode sample, and then the dispersed transmitted X-rays are detected by a two-dimensional detector. An array of XAFS spectra in the linear footprint of the transmitted X-ray on the sample is obtained with the time resolution of the repetition frequency of the detector. Sequential measurements of the space-resolved XAFS data are possible with the VDXAFS instrument. The time and spatial resolutions of the VDXAFS instrument depend on the flux density of the available X-ray beam and the size of the light source, and they were estimated as 1 s and 100 µm, respectively. The electrode reaction of the LiFePO4 lithium ion battery was analyzed during the constant current charging process and during the charging process after potential jumping.

  17. Asymptotic dispersion energies from distributed polarizabilities

    NASA Astrophysics Data System (ADS)

    Rob, Fazle; Szalewicz, Krzysztof

    2013-05-01

    A new algorithm is proposed for calculations of distributed molecular polarizabilities. In contrast to published algorithms, it virtually eliminates the charge-flow terms that result in a slower than inverse sixth power decay of dispersion energy whereas the remaining terms have unique and physically reasonable values. Dispersion energies computed from these polarizabilities are very close to unexpanded dispersion energies in the region of small charge overlap. The method is expected to provide reference data for development of dispersion functions used in simulations of biomolecules and in dispersion-supplemented density-functional approaches.

  18. Electromagnetic energy momentum in dispersive media

    SciTech Connect

    Philbin, T. G.

    2011-01-15

    The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields are monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.

  19. Localized overlap algorithm for unexpanded dispersion energies

    NASA Astrophysics Data System (ADS)

    Rob, Fazle; Misquitta, Alston J.; Podeszwa, Rafał; Szalewicz, Krzysztof

    2014-03-01

    First-principles-based, linearly scaling algorithm has been developed for calculations of dispersion energies from frequency-dependent density susceptibility (FDDS) functions with account of charge-overlap effects. The transition densities in FDDSs are fitted by a set of auxiliary atom-centered functions. The terms in the dispersion energy expression involving products of such functions are computed using either the unexpanded (exact) formula or from inexpensive asymptotic expansions, depending on the location of these functions relative to the dimer configuration. This approach leads to significant savings of computational resources. In particular, for a dimer consisting of two elongated monomers with 81 atoms each in a head-to-head configuration, the most favorable case for our algorithm, a 43-fold speedup has been achieved while the approximate dispersion energy differs by less than 1% from that computed using the standard unexpanded approach. In contrast, the dispersion energy computed from the distributed asymptotic expansion differs by dozens of percent in the van der Waals minimum region. A further increase of the size of each monomer would result in only small increased costs since all the additional terms would be computed from the asymptotic expansion.

  20. Resolving dispersion and induction components for polarisable molecular simulations of ionic liquids

    NASA Astrophysics Data System (ADS)

    Pádua, Agílio A. H.

    2017-05-01

    One important development in interaction potential models, or atomistic force fields, for molecular simulation is the inclusion of explicit polarisation, which represents the induction effects of charged or polar molecules on polarisable electron clouds. Polarisation can be included through fluctuating charges, induced multipoles, or Drude dipoles. This work uses Drude dipoles and is focused on room-temperature ionic liquids, for which fixed-charge models predict too slow dynamics. The aim of this study is to devise a strategy to adapt existing non-polarisable force fields upon addition of polarisation, because induction was already contained to an extent, implicitly, due to parametrisation against empirical data. Therefore, a fraction of the van der Waals interaction energy should be subtracted so that the Lennard-Jones terms only account for dispersion and the Drude dipoles for induction. Symmetry-adapted perturbation theory is used to resolve the dispersion and induction terms in dimers and to calculate scaling factors to reduce the Lennard-Jones terms from the non-polarisable model. Simply adding Drude dipoles to an existing fixed-charge model already improves the prediction of transport properties, increasing diffusion coefficients, and lowering the viscosity. Scaling down the Lennard-Jones terms leads to still faster dynamics and densities that match experiment extremely well. The concept developed here improves the overall prediction of density and transport properties and can be adapted to other models and systems. In terms of microscopic structure of the ionic liquids, the inclusion of polarisation and the down-scaling of Lennard-Jones terms affect only slightly the ordering of the first shell of counterions, leading to small decreases in coordination numbers. Remarkably, the effect of polarisation is major beyond first neighbours, significantly weakening spatial correlations, a structural effect that is certainly related to the faster dynamics of

  1. Resolving dispersion and induction components for polarisable molecular simulations of ionic liquids.

    PubMed

    Pádua, Agílio A H

    2017-05-28

    One important development in interaction potential models, or atomistic force fields, for molecular simulation is the inclusion of explicit polarisation, which represents the induction effects of charged or polar molecules on polarisable electron clouds. Polarisation can be included through fluctuating charges, induced multipoles, or Drude dipoles. This work uses Drude dipoles and is focused on room-temperature ionic liquids, for which fixed-charge models predict too slow dynamics. The aim of this study is to devise a strategy to adapt existing non-polarisable force fields upon addition of polarisation, because induction was already contained to an extent, implicitly, due to parametrisation against empirical data. Therefore, a fraction of the van der Waals interaction energy should be subtracted so that the Lennard-Jones terms only account for dispersion and the Drude dipoles for induction. Symmetry-adapted perturbation theory is used to resolve the dispersion and induction terms in dimers and to calculate scaling factors to reduce the Lennard-Jones terms from the non-polarisable model. Simply adding Drude dipoles to an existing fixed-charge model already improves the prediction of transport properties, increasing diffusion coefficients, and lowering the viscosity. Scaling down the Lennard-Jones terms leads to still faster dynamics and densities that match experiment extremely well. The concept developed here improves the overall prediction of density and transport properties and can be adapted to other models and systems. In terms of microscopic structure of the ionic liquids, the inclusion of polarisation and the down-scaling of Lennard-Jones terms affect only slightly the ordering of the first shell of counterions, leading to small decreases in coordination numbers. Remarkably, the effect of polarisation is major beyond first neighbours, significantly weakening spatial correlations, a structural effect that is certainly related to the faster dynamics of

  2. Ecological succession as an energy dispersal process.

    PubMed

    Würtz, Peter; Annila, Arto

    2010-04-01

    Ecological succession is described by the 2nd law of thermodynamics. According to the universal law of the maximal energy dispersal, an ecosystem evolves toward a stationary state in its surroundings by consuming free energy via diverse mechanisms. Species are the mechanisms that conduct energy down along gradients between repositories of energy which consist of populations at various thermodynamic levels. The salient characteristics of succession, growing biomass production, increasing species richness and shifting distributions of species are found as consequences of the universal quest to diminish energy density differences in least time. The analysis reveals that during succession the ecosystem's energy transduction network, i.e., the food web organizes increasingly more effective in the free energy reduction by acquiring new, more effective and abandoning old, less effective species of energy transduction. The number of species does not necessarily peak at the climax state that corresponds to the maximum-entropy partition of species maximizing consumption of free energy. According to the theory of evolution by natural selection founded on statistical physics of open systems, ecological succession is one among many other evolutionary processes.

  3. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    PubMed

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.

  4. Concept of proton radiography using energy resolved dose measurement.

    PubMed

    Bentefour, El H; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-21

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams 'proton imaging field' are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.

  5. Concept of proton radiography using energy resolved dose measurement

    NASA Astrophysics Data System (ADS)

    Bentefour, El H.; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-01

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams ‘proton imaging field’ are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.

  6. Momentum and energy dependence of the anomalous high-energy dispersion in the electronic structure of high temperature superconductors.

    PubMed

    Inosov, D S; Fink, J; Kordyuk, A A; Borisenko, S V; Zabolotnyy, V B; Schuster, R; Knupfer, M; Büchner, B; Follath, R; Dürr, H A; Eberhardt, W; Hinkov, V; Keimer, B; Berger, H

    2007-12-07

    Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-T_{c} superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p-->3d_{x;{2}-y;{2}} edge. We conclude that the high-energy "waterfall" dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.

  7. Momentum and Energy Dependence of the Anomalous High-Energy Dispersion in the Electronic Structure of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Inosov, D. S.; Fink, J.; Kordyuk, A. A.; Borisenko, S. V.; Zabolotnyy, V. B.; Schuster, R.; Knupfer, M.; Büchner, B.; Follath, R.; Dürr, H. A.; Eberhardt, W.; Hinkov, V.; Keimer, B.; Berger, H.

    2007-12-01

    Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-Tc superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p→3dx2-y2 edge. We conclude that the high-energy “waterfall” dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.

  8. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer.

    PubMed

    Bytautas, Laimutis; Ruedenberg, Klaus

    2008-06-07

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.

  9. Single Hit Energy-resolved Laue Diffraction

    NASA Astrophysics Data System (ADS)

    Patel, Shamim; Suggit, Matthew; Stubley, Paul; Hawreliak, James; Ciricosta, Orlando; Comley, Andrew; Collins, Gilbert; Eggert, Jon; Foster, John; Wark, Justin; Higginbotham, Andrew

    2015-06-01

    In-situ white light Laue diffraction is a technique to interrogate the structure of materials undergoing dynamic compression up to megabar pressures. We present an extension to the existing Laue diffraction platform in which CCD cameras are used in single photon mode enabling a measurement of the energy of a subset of diffraction peaks. Careful choice of which diffraction peaks are observed allows for a measurement of the longitudinal and transverse strains. This allows for the measurement of absolute volume of the unit cell in addition to its aspect ratio. We present results for silicon, where only longitudinal elastic strain has been observed. VISAR measurements show the presence of a two wave structure and measurements made from the diffraction patterns on the CCD show that material downstream of the second wave does not contribute to the observed diffraction peaks, suggesting that this material may be highly disordered, or has undergone large scale rotation.

  10. Single Hit Energy-resolved Laue Diffraction

    SciTech Connect

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew; Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H.; Comley, Andrew J.; Foster, John M.

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.

  11. Single Hit Energy-resolved Laue Diffraction.

    PubMed

    Patel, Shamim; Suggit, Matthew J; Stubley, Paul G; Hawreliak, James A; Ciricosta, Orlando; Comley, Andrew J; Collins, Gilbert W; Eggert, Jon H; Foster, John M; Wark, Justin S; Higginbotham, Andrew

    2015-05-01

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.

  12. Valence band dispersion measurements of perovskite single crystals using angle-resolved photoemission spectroscopy.

    PubMed

    Wang, Congcong; Ecker, Benjamin R; Wei, Haotong; Huang, Jinsong; Meng, Jian-Qiao; Gao, Yongli

    2017-02-15

    The electronic structure of a cleaved perovskite (CH3NH3PbBr3) single crystal was studied in an ultra-high vacuum (UHV) system using angle-resolved photoemission spectroscopy (ARPES) and inverse photoelectron spectroscopy (IPES). Highly reproducible dispersive features of the valence bands were observed with symmetry about the Brillouin zone center and boundaries. The largest dispersion width was found to be ∼0.73 eV and ∼0.98 eV along the ΓX and ΓM directions, respectively. The effective mass of the holes was estimated to be ∼0.59m0. The quality of the surface was verified using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The elemental composition was investigated using high resolution X-ray photoelectron spectroscopy (XPS). The experimental electronic structure shows a good agreement with the theoretical calculation.

  13. DISPERSION ANALYSIS OF RADIATION/THERMAL FRONTS WITH FULL RESOLVED SPECTRAL OPACITY VARIATION.

    SciTech Connect

    L. AUER; R. LOWRIE

    2000-12-01

    The radiation transport and linearized thermal energy equations have been analyzed to find the temporal dependence of the component modes in a radiation/thermal front. The fully resolved spectral variation of the opacity as a function of energy, as well as the exact time and angular dependence, is treated in this work. As we are able to study arbitrarily complicated opacity spectra, we stress the importance of the new results as a check on the effect of using opacity averages.

  14. Resolving Rapid Variation in Energy for Particle Transport

    SciTech Connect

    Haut, Terry Scot; Ahrens, Cory Douglas; Jonko, Alexandra; Till, Andrew Thomas; Lowrie, Robert Byron

    2016-08-23

    Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracy and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.

  15. Energy- and time-resolved microscopy using PEEM: recent developments and state-of-the-art

    NASA Astrophysics Data System (ADS)

    Weber, N. B.; Escher, M.; Merkel, M.; Oelsner, A.; Schönhense, G.

    2008-03-01

    Two novel methods of spectroscopic surface imaging are discussed, both based on photoemission electron microscopy PEEM. They are characterised by a simple electron-optical set up retaining a linear column. An imaging high-pass energy filter has been developed on the basis of lithographically-fabricated microgrids. Owing to a mesh size of only 7μm, no image distortions occur. The present energy resolution is 70 meV. The second approach employs time-of-flight energy dispersion and time-resolved detection using a Delayline Detector. In this case, the drift energy and the time resolution of the detector determine the energy resolution. The present time resolution is 180 ps, giving rise to an energy resolution in the 100 meV range.

  16. Computed tomography with energy-resolved detection: a feasibility study.

    PubMed

    Shikhaliev, Polad M

    2008-03-07

    The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20 degrees tilting angle

  17. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    NASA Technical Reports Server (NTRS)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with

  18. Resolving high energy emission of jets using strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna

    2014-11-01

    Chandra observations of M87 in 2004 uncovered an outburst originating in distant knot along the jet hundreds of parsecs from the core. This discovery challenges our understanding of the origin of high energy flares. Current technology is inadequate to resolve jets at distances greater than M87, or observed at higher energies. We propose to use gravitationally lensed jets to investigate the structure of more distant sources. Photons emitted at different sites cross the lens plane at different distances, thus magnification ratios and time delays differ between the mirage images. Monitoring of flares from lensed jets reveals the origin of the emission. With detectors like Chandra, lensed systems are a tool for resolving the structure of the jets and for investigating their cosmic evolution.

  19. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    NASA Astrophysics Data System (ADS)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (<50 femtosecond) laser pulses from a commercial regenerative amplifier, optical parametric amplifier, and a home-built non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  20. GPU-centric resolved-particle disperse two-phase flow simulation using the Physalis method

    NASA Astrophysics Data System (ADS)

    Sierakowski, Adam J.

    2016-10-01

    We present work on a new implementation of the Physalis method for resolved-particle disperse two-phase flow simulations. We discuss specifically our GPU-centric programming model that avoids all device-host data communication during the simulation. Summarizing the details underlying the implementation of the Physalis method, we illustrate the application of two GPU-centric parallelization paradigms and record insights on how to best leverage the GPU's prioritization of bandwidth over latency. We perform a comparison of the computational efficiency between the current GPU-centric implementation and a legacy serial-CPU-optimized code and conclude that the GPU hardware accounts for run time improvements up to a factor of 60 by carefully normalizing the run times of both codes.

  1. In-situ determination of dispersion and resolving power in simultaneous multiple-angle XUV spectroscopy

    NASA Astrophysics Data System (ADS)

    Zastrau, U.; Hilbert, V.; Brown, C.; Döppner, T.; Dziarzhytski, S.; Förster, E.; Glenzer, S. H.; Göde, S.; Gregori, G.; Harmand, M.; Hochhaus, D.; Laarmann, T.; Lee, H. J.; Meiwes-Broer, K.-H.; Neumayer, P.; Przystawik, A.; Radcliffe, P.; Schulz, M.; Skruszewicz, S.; Tavella, F.; Tiggesbäumker, J.; Toleikis, S.; White, T.

    2011-10-01

    We report on the simultaneous determination of non-linear dispersion functions and resolving power of three flat-field XUV grating spectrometers. A moderate-intense short-pulse infrared laser is focused onto technical aluminum which is commonly present as part of the experimental setup. In the XUV wavelength range of 10-19 nm, the spectrometers are calibrated using Al-Mg plasma emission lines. This cross-calibration is performed in-situ in the very same setup as the actual main experiment. The results are in excellent agreement with ray-tracing simulations. We show that our method allows for precise relative and absolute calibration of three different XUV spectrometers.

  2. Time resolved measurements of rigid fiber dispersion in near homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Sabban, Lilach; Cohen, Asaf; van Hout, Rene; Empfl Environmental Multi-Phase Flow Laboratory Team

    2013-11-01

    Time resolved, planar particle image velocimetry (PIV, 3kHz) and two-orthogonal view, digital holographic cinematography (2kHz) was used to measure 3D fiber trajectories/orientation dynamics in near homogeneous isotropic air turbulence (HIT) with dilute suspended fibers. The PIV covered a field of view of 6 × 12 mm2 and the holography a volume of interest of 173 mm3, positioned at the center of the chamber. HIT (Reλ = 144) was generated in the center of a 403 cm3 cube by eight woofers mounted on each of its corners. Three different nylon fibers having a length of 0.5 mm and diameter of 10, 14 and 19 μm were released from the top of the chamber. Fibers had Stokes numbers of order one and are expected to accumulate in regions of low vorticity and settle along a path of local minimal drag. Fiber 3D trajectories/orientations have been obtained from the holography measurements and orientational/translational dispersion coefficients will be presented. In addition the flow field in the vicinity of tracked fibers has been resolved by the PIV, and results on fluid and fiber accelerations and position correlation with in-plane strain rate and out-of-plane vorticity will be presented.

  3. Complete momentum and energy resolved TOF electron spectrometerfor time-resolved photoemission spectroscopy

    SciTech Connect

    Hussain, Zahid; Lebedev, G.; Tremsin, A.; Siegmund, O.; Chen, Y.; Shen, Z.X.; Hussain, Z.

    2007-08-12

    Over the last decade, high-resolution Angle-Resolved Photoemission Spectroscopy (ARPES) has emerged as a tool of choice for studying the electronic structure of solids, in particular, strongly correlated complex materials such as cuprate superconductors. In this paper we present the design of a novel time-of-flight based electron analyzer with capability of 2D in momentum space (kx and ky) and all energies (calculated from time of flight) in the third dimension. This analyzer will utilize an improved version of a 2D delay linedetector capable of imaging with<35 mm (700x700 pixels) spatial resolution and better than 120 ps FWHM timing resolution. Electron optics concepts and optimization procedure are considered for achieving an energy resolution less than 1 meV and an angular resolution better than 0.11.

  4. Visible/Infrared Imaging Spectroscopy and Energy-Resolving Detectors

    NASA Astrophysics Data System (ADS)

    Eisenhauer, Frank; Raab, Walfried

    2015-08-01

    Imaging spectroscopy has seen rapid progress over the past 25 years, leading to breakthroughs in many fields of astronomy that would not have been otherwise possible. This review overviews the visible/infrared imaging spectroscopy techniques as well as energy-resolving detectors. We introduce the working principle of scanning Fabry-Perot and Fourier transform spectrometers and explain the most common integral field concepts based on mirror slicers, lenslet arrays, and fibers. The main advantage of integral field spectrographs is the simultaneous measurement of spatial and spectral information. Although Fabry-Perot and Fourier transform spectrometers can provide a larger field of view, it is ultimately the higher sensitivity of integral field units that make them the technique of choice. This is arguably the case for image slicers, which make the most efficient use of the available detector pixels and have equal or higher transmission than lenslet arrays and fiber integral field units, respectively. We also address the more specific issues of large étendue operation, focal ratio degradation, anamorphic magnification, and diffraction-limited operation. This review also covers the emerging technology of energy-resolving detectors, which promise very simple and efficient instrument designs. These energy-resolving detectors are based on superconducting thin film technology and exploit either the very small superconducting energy to count the number of quasi-particles excited in the absorption of the photon or the extremely steep phase transition between the normal- and superconducting phase to measure a temperature increase. We have put special emphasis on an overview of the underlying physical phenomena as well as on the recent technological progress and astronomical path finder experiments.

  5. Height-resolved energy exchange rates in the ionosphere

    NASA Astrophysics Data System (ADS)

    Cai, L.; Aikio, A.; Nygren, T.; Kuula, R.

    2012-04-01

    The electromagnetic energy exchange between the high-latitude ionosphere and magnetosphere can be described in terms of electromagnetic energy exchange rate qEM, which is a sum of ion-neutral frictional heating rate qJ (sometimes called Joule heating) and work done on neutrals qm. We have examined the height-resolved energy exchange rates in the ionosphere by using a one-month database obtained by EISCAT incoherent scatter radar measurements in Tromso. The CP2 scan mode of the EISCAT radar makes it possible to deduce conductivities, electric fields and neutral winds in the E region and hence estimate the different energy exchange rates. We will show characteristic examples for different situations, like a quiet ionosphere dominated by altitude-dependent neutral wind structures (probably caused by atmospheric gravity waves), or active conditions dominated by strong electric fields and intense electromagnetic energy input into the ionosphere. In general, the ion-neutral frictional heating altitude profiles are affected by vertical structuring in horizontal winds. Also, the ionosphere can be at some altitudes a sink of EM energy and at other altitudes a source of EM energy. On rare occasions, the net effect of the ionosphere is to act as an EM dynamo (source of energy).

  6. Influence of experimental conditions on atom column visibility in energy dispersive X-ray spectroscopy.

    PubMed

    Dycus, J H; Xu, W; Sang, X; D'Alfonso, A J; Chen, Z; Weyland, M; Allen, L J; Findlay, S D; LeBeau, J M

    2016-12-01

    Here we report the influence of key experimental parameters on atomically resolved energy dispersive X-ray spectroscopy (EDX). In particular, we examine the role of the probe forming convergence semi-angle, sample thickness, lattice spacing, and dwell/collection time. We show that an optimum specimen-dependent probe forming convergence angle exists to maximize the signal-to-noise ratio of the atomically resolved signal in EDX mapping. Furthermore, we highlight that it can be important to select an appropriate dwell time to efficiently process the X-ray signal. These practical considerations provide insight for experimental parameters in atomic resolution energy dispersive X-ray analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Energy-resolved computed tomography: first experimental results.

    PubMed

    Shikhaliev, Polad M

    2008-10-21

    First experimental results with energy-resolved computed tomography (CT) are reported. The contrast-to-noise ratio (CNR) in CT has been improved with x-ray energy weighting for the first time. Further, x-ray energy weighting improved the CNR in material decomposition CT when applied to CT projections prior to dual-energy subtraction. The existing CT systems use an energy (charge) integrating x-ray detector that provides a signal proportional to the energy of the x-ray photon. Thus, the x-ray photons with lower energies are scored less than those with higher energies. This underestimates contribution of lower energy photons that would provide higher contrast. The highest CNR can be achieved if the x-ray photons are scored by a factor that would increase as the x-ray energy decreases. This could be performed by detecting each x-ray photon separately and measuring its energy. The energy selective CT data could then be saved, and any weighting factor could be applied digitally to a detected x-ray photon. The CT system includes a photon counting detector with linear arrays of pixels made from cadmium zinc telluride (CZT) semiconductor. A cylindrical phantom with 10.2 cm diameter made from tissue-equivalent material was used for CT imaging. The phantom included contrast elements representing calcifications, iodine, adipose and glandular tissue. The x-ray tube voltage was 120 kVp. The energy selective CT data were acquired, and used to generate energy-weighted and material-selective CT images. The energy-weighted and material decomposition CT images were generated using a single CT scan at a fixed x-ray tube voltage. For material decomposition the x-ray spectrum was digitally spilt into low- and high-energy parts and dual-energy subtraction was applied. The x-ray energy weighting resulted in CNR improvement of calcifications and iodine by a factor of 1.40 and 1.63, respectively, as compared to conventional charge integrating CT. The x-ray energy weighting was also applied

  8. Energy-resolved computed tomography: first experimental results

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2008-10-01

    First experimental results with energy-resolved computed tomography (CT) are reported. The contrast-to-noise ratio (CNR) in CT has been improved with x-ray energy weighting for the first time. Further, x-ray energy weighting improved the CNR in material decomposition CT when applied to CT projections prior to dual-energy subtraction. The existing CT systems use an energy (charge) integrating x-ray detector that provides a signal proportional to the energy of the x-ray photon. Thus, the x-ray photons with lower energies are scored less than those with higher energies. This underestimates contribution of lower energy photons that would provide higher contrast. The highest CNR can be achieved if the x-ray photons are scored by a factor that would increase as the x-ray energy decreases. This could be performed by detecting each x-ray photon separately and measuring its energy. The energy selective CT data could then be saved, and any weighting factor could be applied digitally to a detected x-ray photon. The CT system includes a photon counting detector with linear arrays of pixels made from cadmium zinc telluride (CZT) semiconductor. A cylindrical phantom with 10.2 cm diameter made from tissue-equivalent material was used for CT imaging. The phantom included contrast elements representing calcifications, iodine, adipose and glandular tissue. The x-ray tube voltage was 120 kVp. The energy selective CT data were acquired, and used to generate energy-weighted and material-selective CT images. The energy-weighted and material decomposition CT images were generated using a single CT scan at a fixed x-ray tube voltage. For material decomposition the x-ray spectrum was digitally spilt into low- and high-energy parts and dual-energy subtraction was applied. The x-ray energy weighting resulted in CNR improvement of calcifications and iodine by a factor of 1.40 and 1.63, respectively, as compared to conventional charge integrating CT. The x-ray energy weighting was also applied

  9. The Dark Energy Survey: Prospects for resolved stellar populations

    SciTech Connect

    Rossetto, Bruno M.; Santiago, Basílio X.; Girardi, Léo; Camargo, Julio I. B.; Balbinot, Eduardo; da Costa, Luiz N.; Yanny, Brian; Maia, Marcio A. G.; Makler, Martin; Ogando, Ricardo L. C.; Pellegrini, Paulo S.; Ramos, Beatriz; de Simoni, Fernando; Armstrong, R.; Bertin, E.; Desai, S.; Kuropatkin, N.; Lin, H.; Mohr, J. J.; Tucker, D. L.

    2011-05-06

    Wide angle and deep surveys, regardless of their primary purpose, always sample a large number of stars in the Galaxy and in its satellite system. We here make a forecast of the expected stellar sample resulting from the Dark Energy Survey and the perspectives that it will open for studies of Galactic structure and resolved stellar populations in general. An estimated 1.2 x 108 stars will be sampled in DES grizY filters in the southern equatorial hemisphere. This roughly corresponds to 20% of all DES sources. Most of these stars belong to the stellar thick disk and halo of the Galaxy.

  10. Encapsulated Energy Transfer Cassettes with Extremely Well Resolved Fluorescent Outputs

    PubMed Central

    Ueno, Yuichiro; Jose, Jiney; Loudet, Aurore; Pérez-Bolívar, César; Anzenbacher, Pavel; Burgess, Kevin

    2010-01-01

    This paper concerns the development of water-compatible fluorescent imaging-probes with tunable photonic properties that can be excited at a single wavelength. Bichromophoric cassettes 1a – 1c consisting of a BODIPY donor and a cyanine acceptor were prepared using a simple synthetic route, and their photophysical properties were investigated. Upon excitation of the BODIPY moiety at 488 nm the excitation energy is transferred through an acetylene bridge to the cyanine dye acceptor, which emits light at approximately 600, 700, and 800 nm, ie with remarkable dispersions. This effect is facilitated by efficient energy transfer that gives a ‘quasi-Stokes’ shift of between 86 – 290 nm opening a huge spectral window for imaging. The emissive properties of the cassettes depend on the energy transfer (ET) mechanism: the faster the transfer, the more efficient it is. Measurements of rates of energy transfer indicate that a through-bond energy transfer takes place in the cassettes 1a and 1b that is two orders of magnitude faster than the classical through-space, Förster, energy transfer (in the case of cassette 1c, however, both mechanisms are possible, and the rate measurements do not allow us to discern between them). Thus the cassettes 1a – 1c are well suited for multiplexing experiments in biotechnological methods that involve a single laser-excitation source. However, for widespread application of these probes their solubility in aqueous media must be improved. Consequently, the probes were encapsulated in calcium phosphate/silicate nanoparticles (diameter ca 22 nm) that are freely dispersible in water. This encapsulation process resulted in only minor changes in the photophysical properties of the cassettes. The system based on cassette 1a was chosen to probe how effectively these nanoparticles could be used to deliver the dyes into cells. Encapsulated cassette 1a permeated Clone 9 rat liver cells where it localized in the mitochondria and fluoresced through

  11. Building-Resolved CFD Simulations for Greenhouse Gas Transport and Dispersion over Washington DC / Baltimore

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Lopez-Coto, I.; Ghosh, S.; Mueller, K.; Whetstone, J. R.

    2015-12-01

    The North-East Corridor project aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over urban domains such as Washington DC / Baltimore with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and communities comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing difficult to simulate with a mesoscale atmospheric model. Such capabilities may be important in determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 10-20 m in a domain of 12 x 12 km. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in the North-East Corridor and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions and transport.

  12. Inverse electron energy dispersion from moving auroral forms

    NASA Astrophysics Data System (ADS)

    Cameron, Taylor; Knudsen, David

    2016-12-01

    Numerous published examples of energy-dispersed bursts show electron energies reaching as high as several keV and decaying to lower energies over a fraction of 1 s. This signature has been interpreted by some authors as due to impulsive acceleration to a broad range of energies in a localized region and by others as the result of impulsive, dispersive Alfvén waves, in which case the acceleration takes place over an extended distance along magnetic field lines. A survey by the Suprathermal (0-350 eV) Electron Imager on the Enhanced Polar Outflow Probe (ePOP) in the topside ionosphere has produced examples of high-to-low ("regular") energy dispersion, but also a smaller number of examples exhibiting low-to-high ("inverse") dispersion, which to our knowledge has not been reported before. Motivated by a recent report of regular electron dispersion produced by auroral rays moving faster than the E × B drift speed, we investigate a heuristic model of electron acceleration within a region of uniform electric field parallel to B which extends a distance La along magnetic field lines. We show that in addition to a broad range of energies, this model produces inverse dispersion when the detector is less than La beneath the bottom of the acceleration region and regular dispersion for detector distances larger than La. This simple model is meant to inform future efforts to construct a more physical model of suprathermal electron acceleration within moving auroral forms and suggests that inverse dispersion indicates relative proximity to an altitude-extended acceleration region.

  13. Spatially resolved probing of electrochemical reactions via energy discovery platforms

    SciTech Connect

    Ding, Jilai; Strelcov, Evgheni; Kalinin, Sergei V.; Bassiri-Gharb, Nazanin

    2015-06-01

    The electrochemical reactivity of solid surfaces underpins functionality of a broad spectrum of materials and devices ranging from energy storage and conversion, to sensors and catalytic devices. The surface electrochemistry is, however, a complex process, controlled by the interplay of charge generation, field-controlled and diffusion-controlled transport. Here we explore the fundamental mechanisms of electrochemical reactivity on nanocrystalline ceria, using the synergy of nanofabricated devices and time-resolved Kelvin probe force microscopy (tr-KPFM), an approach we refer to as energy discovery platform. Through tr-KPFM, the surface potential mapping in both the space and time domains and current variation over time are obtained, enabling analysis of local ionic and electronic transport and their dynamic behavior on the 10 ms to 10 s scale. Based on their different responses in the time domain, conduction mechanisms can be separated and identified in a variety of environmental conditions, such as humidity and temperature. The theoretical modeling of ion transport through finite element method allows for creation of a minimal model consistent with observed phenomena, and establishing of the dynamic characteristics of the process, including mobility and diffusivity of charged species. Furthermore, the future potential of the energy discovery platforms is also discussed.

  14. Source Inversion for contaminant plume dispersion in urban environments using building-resolving simulations

    SciTech Connect

    Chow, F K; Kosovic, B; Chan, S T

    2005-11-04

    Flow in urban environments is complicated by the presence of buildings, which divert the flow into often unexpected directions. Contaminants released at ground level are easily lofted above tall ({approx} 100 m) buildings and channeled through urban canyons that are perpendicular to the wind direction (see e.g., IOP 9 in Chan, 2005). The path of wind and scalars in urban environments is difficult to predict even with building-resolving computational fluid dynamics codes, due to the uncertainty in the synoptic wind and boundary conditions and other errors in the models. Given the difficulties due to the complexity of urban flows, solving an inverse problem becomes quite challenging. That is, given measurements of concentration at sensors scattered throughout a city, is it possible to detect the source of the contaminant? The ability to locate a source and determine its characteristics in a complex environment is necessary for emergency response for accidental or intentional releases of contaminants in densely-populated urban areas. The goal of this work is to demonstrate a robust statistical inversion procedure that performs well even under the complex flow conditions and uncertainty present in urban environments. Much work has previously focused on direct inversion procedures, where an inverse solution is obtained using an adjoint advection-diffusion equation. The exact direct inversion approaches are strictly limited to processes governed by linear equations. In addition, they assume the system is steady-state and that the equations are linear (Enting, 2002). In addition to adjoint models, optimization techniques are also employed to obtain solutions to inverse problems. These techniques often give only a single best answer, or assume a Gaussian distribution to account for uncertainties. General dispersion related inverse problems, however, often include non-linear processes (e.g., dispersion of chemically reacting substances) or are characterized by non

  15. High-Energy Anomaly in the Band Dispersion of the Ruthenate Superconductor

    NASA Astrophysics Data System (ADS)

    Iwasawa, H.; Yoshida, Y.; Hase, I.; Shimada, K.; Namatame, H.; Taniguchi, M.; Aiura, Y.

    2012-08-01

    We reveal a “high-energy anomaly” (HEA) in the band dispersion of the unconventional ruthenate superconductor Sr2RuO4, by means of high-resolution angle-resolved photoemission spectroscopy (ARPES) with tunable energy and polarization of incident photons. This observation provides another class of correlated materials exhibiting this anomaly beyond high-Tc cuprates. We demonstrate that two distinct types of band renormalization associated with and without the HEA occur as a natural consequence of the energetics in the bandwidth and the energy scale of the HEA. Our results are well reproduced by a simple analytical form of the self-energy based on the Fermi-liquid theory, indicating that the HEA exists at a characteristic energy scale of the multielectron excitations. We propose that the HEA universally emerges if the systems have such a characteristic energy scale inside of the bandwidth.

  16. Integrated assessment of dispersed energy resources deployment

    SciTech Connect

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  17. Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods

    NASA Astrophysics Data System (ADS)

    Moura, R. C.; Sherwin, S. J.; Peiró, J.

    2015-10-01

    We investigate the potential of linear dispersion-diffusion analysis in providing direct guidelines for turbulence simulations through the under-resolved DNS (sometimes called implicit LES) approach via spectral/hp methods. The discontinuous Galerkin (DG) formulation is assessed in particular as a representative of these methods. We revisit the eigensolutions technique as applied to linear advection and suggest a new perspective to the role of multiple numerical modes, peculiar to spectral/hp methods. From this new perspective, "secondary" eigenmodes are seen to replicate the propagation behaviour of a "primary" mode, so that DG's propagation characteristics can be obtained directly from the dispersion-diffusion curves of the primary mode. Numerical dissipation is then appraised from these primary eigencurves and its effect over poorly-resolved scales is quantified. Within this scenario, a simple criterion is proposed to estimate DG's effective resolution in terms of the largest wavenumber it can accurately resolve in a given hp approximation space, also allowing us to present points per wavelength estimates typically used in spectral and finite difference methods. Although strictly valid for linear advection, the devised criterion is tested against (1D) Burgers turbulence and found to predict with good accuracy the beginning of the dissipation range on the energy spectra of under-resolved simulations. The analysis of these test cases through the proposed methodology clarifies why and how the DG formulation can be used for under-resolved turbulence simulations without explicit subgrid-scale modelling. In particular, when dealing with communication limited hardware which forces one to consider the performance for a fixed number of degrees of freedom, the use of higher polynomial orders along with moderately coarser meshes is shown to be the best way to translate available degrees of freedom into resolution power.

  18. Noncommutative geometrical origin of the energy-momentum dispersion relation

    NASA Astrophysics Data System (ADS)

    Watcharangkool, A.; Sakellariadou, M.

    2017-01-01

    We investigate a link between the energy-momentum dispersion relation and the spectral distance in the context of a Lorentzian almost-commutative spectral geometry, defined by the product of Minkowski spacetime and an internal discrete noncommutative space. Using the causal structure, the almost-commutative manifold can be identified with a pair of four-dimensional Minkowski spacetimes embedded in a five-dimensional Minkowski geometry. Considering fermions traveling within the light cone of the ambient five-dimensional spacetime, we then derive the energy-momentum dispersion relation.

  19. Hypothalamic inflammation and energy homeostasis: resolving the paradox.

    PubMed

    Thaler, Joshua P; Choi, Sun Ju; Schwartz, Michael W; Wisse, Brent E

    2010-01-01

    resolving the paradox surrounding the effect of inflammatory signaling on energy homeostasis. 2009 Elsevier Inc. All rights reserved.

  20. Measuring polarization dependent dispersion of non-polarizing beam splitter cubes with spectrally resolved white light interferometry

    NASA Astrophysics Data System (ADS)

    Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.

    2017-06-01

    In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.

  1. Electromagnetic energy within coated spheres containing dispersive metamaterials

    NASA Astrophysics Data System (ADS)

    Arruda, Tiago J.; Pinheiro, Felipe A.; Martinez, Alexandre S.

    2012-06-01

    An exact expression is derived for the time-averaged electromagnetic energy within a magneto-dielectric coated sphere, which is irradiated by a plane and time-harmonic electromagnetic wave. Both the spherical shell and core are considered to be dispersive and lossy, with a realistic dispersion relation of an isotropic split-ring resonator metamaterial. We obtain analytical expressions for the stored electromagnetic energies inside the core and the shell separately and calculate their contributions to the total average energy density. The stored electromagnetic energy is calculated for two situations involving a metamaterial coated sphere: a dielectric shell and dispersive metamaterial core, and vice versa. An explicit relation between the stored energy and the optical absorption efficiency is also obtained. We show that the stored electromagnetic energy is an observable sensitive to field interferences responsible for the Fano effect. This result, together with the fact that the Fano effect is more likely to occur in metamaterials with negative refraction, suggest that our findings may be explored in applications.

  2. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles

    PubMed Central

    Slater, Thomas J. A.; Lewis, Edward A.; Haigh, Sarah J.

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  3. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    PubMed

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Origin of kinks in the energy dispersion of strongly correlated matter

    NASA Astrophysics Data System (ADS)

    Matsuyama, Kazue; Perepelitsky, Edward; Shastry, B. Sriram

    2017-04-01

    We investigate the origin of ubiquitous low-energy kinks found in angle-resolved photoemission experiments in a variety of correlated matter. Such kinks are unexpected from weakly interacting electrons and hence identifying their origin should lead to fundamental insights in strongly correlated matter. We devise a protocol for extracting the kink momentum and energy from the experimental data which relies solely on the two asymptotic tangents of each dispersion curve, away from the feature itself. It is thereby insensitive to the different shapes of the kinks as seen in experiments. The body of available data are then analyzed using this method. We proceed to discuss two alternate theoretical explanations of the origin of the kinks. Some theoretical proposals invoke local bosonic excitations (Einstein phonons or other modes with spin or charge character), located exactly at the energy of observed kinks, leading to a momentum-independent self-energy of the electrons. A recent alternate is the theory of extremely correlated Fermi liquids (ECFL). This theory predicts kinks in the dispersion arising from a momentum-dependent self-energy of correlated electrons. We present the essential results from both classes of theories, and identify experimental features that can help distinguish between the two mechanisms. The ECFL theory is found to be consistent with currently available data on kinks in the nodal direction of cuprate superconductors, but conclusive tests require higher-resolution energy distribution curve data.

  5. Inverse Energy Dispersion of Energetic Ions Observed in the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K.-J.; Wang, Y.; Silveira, M. V. D.; Fok, M.-C.; Mauk, B. H.; Cohen, I. J.; Ruohoniemi, J. M.; Kitamura, N.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Lester, M.

    2016-01-01

    We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000 UT on 8 December 2015. As the magnetopause receded inward, the EPD observed a burst of energetic (approximately 50-1000 keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath, and a burst of reconnection has an extent of about 1.5 R(sub E) using combined Super Dual Auroral Radar Network radar and EPD observations.

  6. Inverse Energy Dispersion of Energetic Ions Observed in the Magnetosheath

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K. J.; Wang, Y.; Silveira, M. D.; Fok, M. C. H.; Mauk, B.; Cohen, I. J.; Ruohoniemi, J. M.; Kitamura, N.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Lester, M.

    2016-12-01

    We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale (MMS) spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000 UT on December 8, 2015. As the magnetopause receded inward, the EPD observed a burst of energetic ( 50-1000 keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath and a burst of reconnection has an extent of about 1.5 RE using combined Super Dual Auroral Radar Network (SuperDARN) radar and EPD observations.

  7. Inverse Energy Dispersion of Energetic Ions Observed in the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K.-J.; Wang, Y.; Silveira, M. V. D.; Fok, M.-C.; Mauk, B. H.; Cohen, I. J.; Ruohoniemi, J. M.; Kitamura, N.; hide

    2016-01-01

    We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000 UT on 8 December 2015. As the magnetopause receded inward, the EPD observed a burst of energetic (approximately 50-1000 keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath, and a burst of reconnection has an extent of about 1.5 R(sub E) using combined Super Dual Auroral Radar Network radar and EPD observations.

  8. Conductance modulation in Weyl semimetals with tilted energy dispersion without a band gap

    NASA Astrophysics Data System (ADS)

    Yesilyurt, Can; Siu, Zhuo Bin; Tan, Seng Ghee; Liang, Gengchiau; Jalil, Mansoor B. A.

    2017-06-01

    We investigate the tunneling conductance of Weyl semimetal with tilted energy dispersion by considering electron transmission through a p-n-p junction with one-dimensional electric and magnetic barriers. In the presence of both electric and magnetic barriers, we found that a large conductance gap can be produced with the aid of tilted energy dispersion without a band gap. The origin of this effect is the shift of the electron wave-vector at barrier boundaries caused by (i) the pseudo-magnetic field induced by electrical potential, i.e., a newly discovered feature that is only possible in the materials possessing tilted energy dispersion, (ii) the real magnetic field induced by a ferromagnetic layer deposited on the top of the system. We use a realistic barrier structure applicable in current nanotechnology and analyze the temperature dependence of the tunneling conductance. The new approach presented here may resolve a major problem of possible transistor applications in topological semimetals, i.e., the absence of normal backscattering and gapless band structure.

  9. Electromagnetic energy dispersion in a 5D universe

    SciTech Connect

    Hartnett, John G.

    2010-06-15

    Electromagnetism is analyzed in a 5D expanding universe. Compared to the usual 4D description of electrodynamics it can be viewed as adding effective charge and current densities to the universe that are static in time. These lead to effective polarization and magnetization of the vacuum, which is most significant at high redshift. Electromagnetic waves propagate but group and phase velocities are dispersive. This introduces a new energy scale to the cosmos. And as a result electromagnetic waves propagate with superluminal speeds but no energy is transmitted faster than the canonical speed of light c.

  10. Site-specific intermolecular valence-band dispersion in α-phase crystalline films of cobalt phthalocyanine studied by angle-resolved photoemission spectroscopy

    SciTech Connect

    Yamane, Hiroyuki; Kosugi, Nobuhiro

    2014-12-14

    The valence band structure of α-phase crystalline films of cobalt phthalocyanine (CoPc) grown on Au(111) is investigated by using angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. The photo-induced change in the ARPES peaks is noticed in shape and energy of the highest occupied molecular orbital (HOMO, C 2p) and HOMO-1 (Co 3d) of CoPc, and is misleading the interpretation of the electronic properties of CoPc films. From the damage-free normal-emission ARPES measurement, the clear valence-band dispersion has been first observed, showing that orbital-specific behaviors are attributable to the interplay of the intermolecular π-π and π-d interactions. The HOMO band dispersion of 0.1 eV gives the lower limit of the hole mobility for α-CoPc of 28.9 cm{sup 2} V{sup −1} s{sup −1} at 15 K. The non-dispersive character of the split HOMO-1 bands indicates that the localization of the spin state is a possible origin of the antiferromagnetism.

  11. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  12. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  13. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  14. Complete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line

    PubMed Central

    Dhalla, Al-Hafeez; Izatt, Joseph A.

    2011-01-01

    Swept-source optical coherence tomography (SSOCT) provides a substantial sensitivity advantage over its time-domain counterpart, but suffers from a reduced imaging depth range due to sensitivity falloff and complex conjugate ambiguity. Heterodyne complex conjugate-resolved SSOCT (HCCR-SSOCT) has been previously demonstrated as a technique to completely resolve the complex conjugate ambiguity, effectively doubling the falloff limited imaging depth, without the reduction in imaging speed associated with other CCR techniques. However, previous implementations of this technique have employed expensive and lossy optical modulators to provide the required differential phase modulation. In this paper, we demonstrate the use of a dispersive optical delay line (D-ODL) as the reference arm of an OCT system to realize HCCR-SSOCT. This technique maintains the existing advantages of HCCR-SSOCT in that it completely resolves the complex conjugate artifact and does not reduce imaging speed, while conferring the additional advantages of being low cost, maintaining system sensitivity and resolution, not requiring any additional signal processing, and working at all wavelengths and imaging speeds. The D-ODL also allows for hardware correction of unbalanced dispersion in the reference and sample arm, adding further flexibility to system design. We demonstrate the technique using an SSOCT system operating at 100kHz with a central wavelength of 1040nm. Falloff measurements performed using a standard OCT configuration and the proposed D-ODL demonstrate a doubling of the effective imaging range with no sensitivity or resolution penalty. Feasibility of the technique for in vivo imaging was demonstrated by imaging the ocular anterior segments of healthy human volunteers. PMID:21559133

  15. Energy-entropy dispersion relation in DNA sequences

    NASA Astrophysics Data System (ADS)

    Nowak, H.; Haeussler, P.

    2013-10-01

    For a number of virus- and bacterium genomes we use the concept of block entropy from information theory and compare it with the corresponding configurational energy, defined via the ionization energies of the nucleotides and a hopping term for their interactions in the sense of a tight-binding model. Additionally to the four-letter alphabet of the nucleotides we discuss a reduction to a two-letter alphabet. We find a well defined relation between block entropy and block energy for a not too large block length which can be interpreted as a generalized dispersion relation for all genome sequences. The relation can be used to look for enhanced interactions between virus and bacterium genomes. Well known examples for virus-virus and virus-bacterium interactions are analyzed along this line.

  16. Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement

    PubMed Central

    Spatzal, Thomas; Schlesier, Julia; Burger, Eva-Maria; Sippel, Daniel; Zhang, Limei; Andrade, Susana L.A.; Rees, Douglas C.; Einsle, Oliver

    2016-01-01

    The [Mo:7Fe:9S:C] iron-molybdenum cofactor (FeMoco) of nitrogenase is the largest known metal cluster and catalyses the 6-electron reduction of dinitrogen to ammonium in biological nitrogen fixation. Only recently its atomic structure was clarified, while its reactivity and electronic structure remain under debate. Here we show that for its resting S=3/2 state the common iron oxidation state assignments must be reconsidered. By a spatially resolved refinement of the anomalous scattering contributions of the 7 Fe atoms of FeMoco, we conclude that three irons (Fe1/3/7) are more reduced than the other four (Fe2/4/5/6). Our data are in agreement with the recently revised oxidation state assignment for the molybdenum ion, providing the first spatially resolved picture of the resting-state electron distribution within FeMoco. This might provide the long-sought experimental basis for a generally accepted theoretical description of the cluster that is in line with available spectroscopic and functional data. PMID:26973151

  17. A universal high energy anomaly in angle resolved photoemissionspectra of high temperature superconductors -- possible evidence ofspinon and holon branches

    SciTech Connect

    Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S.Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi,H.; Lee, D.-H.; Lanzara A.

    2006-12-19

    A universal high energy anomaly in the single particlespectral function is reported in three different families of hightemperature superconductors by using angle-resolved photoemissionspectroscopy. As we follow the dispersing peak of the spectral functionfrom the Fermi energy to the valence band complex, we find dispersionanomalies marked by two distinctive high energy scales, E_1 approx 0.38eV and E_2 approx 0.8 eV. E_1 marks the energy above which the dispersionsplits into two branches. One is a continuation of the near parabolicdispersion, albeit with reduced spectral weight, and reaches the bottomof the band at the Gamma point at approx 0.5 eV. The other is given by apeak in the momentum space, nearly independent of energy between E_1 andE_2. Above E_2, a band-like dispersion re-emerges. We conjecture thatthese two energies mark the disintegration of the low energyquasiparticles into a spinon and holon branch in the high T_c cuprates.

  18. Acoustoelectric effect in graphene with degenerate energy dispersion

    NASA Astrophysics Data System (ADS)

    Dompreh, K. A.; Mensah, N. G.; Mensah, S. Y.

    2017-01-01

    Acoustoelectric current (jac) in Free-Standing Graphene (FSG) having degenerate energy dispersion at low temperatures T ≪TBG (TBG is the Block-Gruneisen temperature) was studied theoretically. We considered electron interaction with in-plain acoustic phonons in the hypersound regime (sound vibration in the range 109 -1012 Hz). The obtained expression for jac was numerically analyzed for various temperatures (T) and frequencies (ωq) and graphically presented. The non-linear dependence of jac on ωq varied with temperature. This qualitatively agreed with an experimentally obtained result which deals with temperature dependent acoustoelectric current in graphene [21].

  19. Bose gas with generalized dispersion relation plus an energy gap

    NASA Astrophysics Data System (ADS)

    Solis, M. A.; Martinez, J. G.; Garcia, J.

    We report the critical temperature, the condensed fraction, the internal energy and the specific heat for a d-dimensional Bose gas with a generalized dispersion relation plus an energy gap, i.e., ɛ =ɛ0 for k = 0 and ɛ =ɛ0 + Δ +csks , for k > 0 , where ℏk is the particle momentum, ɛ0 the lowest particle energy, cs a constant with dimension of energy multiplied by a length to the power s > 0 . When Δ > 0 , a Bose-Einstein critical temperature Tc ≠ 0 exists for any d / s >= 0 at which the internal energy shows a peak and the specific heat shows a jump. The critical temperature and the specific heat jump increase as functions of the gap but they decrease as functions of d / s . Thermodynamic properties are ɛ0 independent since this is just a reference energy. For Δ = 0 we recover the results reported in Ref. [1]. V. C. Aguilera-Navarro, M. de Llano y M. A. Solís, Eur. J. Phys. 20, 177 (1999). We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.

  20. Using high energy angle resolved photoelectron spectroscopy to reveal the charge density in solids.

    PubMed

    Månsson, M; Claesson, T; Finazzi, M; Dallera, C; Brookes, N B; Tjernberg, O

    2008-11-28

    The charge density in solids is a fundamental parameter. Here we demonstrate that the charge density can be determined by the use of angle resolved photoelectron spectroscopy. The method, which involves a Fourier-like transform from momentum space to real space, is demonstrated by utilizing soft x-ray angle resolved photoelectron spectroscopy to sample the complete three-dimensional Brillouin zone of copper. It is also shown that this can be done in an energy resolved way as to extract the charge density contribution from states of a particular energy.

  1. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    PubMed Central

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  2. Improvement in the energy resolving capabilities of photon counting detectors

    NASA Astrophysics Data System (ADS)

    Kang, D.; Lim, K. T.; Park, K.; Cho, G.

    2016-12-01

    Patterned pixel array was proposed to increase the number of energy bins in a single pixel of photon counting detectors without adding more comparators and counters. The pixels were grouped into four different types and each pixel has a common threshold and a specific threshold assigned to each pixel type. The common threshold in every pixel records the total number of incident photons regardless of its pixel type and the specific thresholds classify incident photon energies. The patterned pixel array was evaluated with the pinhole gamma camera system based on the XRI-UNO detector flip-chip bonded with a 1mm thick CdTe sensor. The experimental data was acquired with time-over-threshold mode to avoid the charge sharing problem. The shared total charges created by one photon can be found by summing all pixels within the cluster. To correct the different response to the same energy of photon, the energy calibration of the time-over-threshold value was perfomed independently depending on the cluster size. The time-over-threshold values were separated into two energy bins since we assumed that each pixel has two thresholds. Although each pixel has only two thresholds, five images from different energy windows were obtained by sharing the spectal information from four adjacent pixels. Thus, degradation of the spatial resolution in the image occured in each energy window. The image of the entire energy, however, was not degraded since all four different types of pixels have a common threshold just above the noise level. In addition, the number of steps for the threshold scan method can be drastically reduced with the increased number of effective thresholds in a single pixel.

  3. Universal High Energy Anomaly in the Angle-Resolved Photoemission Spectra of High Temperature Superconductors: Possible Evidence of Spinon and Holon Branches

    NASA Astrophysics Data System (ADS)

    Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S. Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2007-02-01

    A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E1≈0.38eV and E2≈0.8eV. E1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the Γ point at ≈0.5eV. The other is given by a peak in the momentum space, nearly independent of energy between E1 and E2. Above E2, a bandlike dispersion reemerges. We conjecture that these two energies mark the disintegration of the low-energy quasiparticles into a spinon and holon branch in the high Tc cuprates.

  4. Specific Energies for the Collisional Dispersion of Gravitational Aggregates

    NASA Astrophysics Data System (ADS)

    Campo Bagatin, Adriano; Davo, M.; Richardson, D. C.

    2009-09-01

    One of the most interesting problems in planetology is the one concerning the internal structure of asteroids and comets. Despite of the available experimental results about the fragmentation of cohesive bodies the size of a soccer ball, and the theoretical and numerical studies extending these results to larger objects, little is known about the response to collisions by objects that formed by the gravitational re-accumulation following shattering events. We are developing a systematic study of the effects of collisions on rocky and icy gravitational aggregates (GA) between 100 m and 100 km in size, under different conditions (mass and texture of targets and projectiles, impact angle, momentum of collision, rotation of target). The study is based on a numerical model of the N-body problem (PKDGRAV code). We present our results on the dependence of the threshold specific energy for the dispersion of targets (Q*D) as a function of their mass, obtaining the corresponding scaling law. All GA are made up by the same number of particles. We have chosen 7 different targets, scaling a factor of 3 in mass and we performed a number of head-on collisions on each target mass with different projectile masses. In this way, we are able to relate the impact energy with the fraction of mass reaccumulated after impacts (f_R), and derive the threshold specific energy for dispersion, Q*_D, by interpolating the corresponding fitted linear relationship. As the result of every single collision partly depends on impact location, a number of collisions is performed with a same target and projectile, changing the direction of impact (not the impact angle). We take the average and standard deviation of the corresponding mass fraction of each set of collisions. Finally a power law relationship between Q*_D and size is derived. The main results of this study are presented.

  5. All-order dispersion cancellation and energy-time entangled state.

    PubMed

    Ryu, Jinsoo; Cho, Kiyoung; Oh, Cha-Hwan; Kang, Hoonsoo

    2017-01-23

    Dispersion cancellation with an energy-time entangled photon pair in Hong-Ou-Mandel (HOM) interference is one phenomenon that reveals the nonclassical nature of the entangled photon pair. This phenomenon has been observed in materials with very weak dispersions. If the higher-order dispersion coefficient is non-negligible, then the experiment must be modified to realize dispersion cancellation. All-order dispersion cancellation using balanced dispersion was suggested by Steinberg. However, the same phenomenon is expected to occur even if a photon pair is not entangled. This behaviour can be explained by path indistinguishability with identical dispersion. To achieve an all-order dispersion experiment that cannot be explained classically, we modified the experiment and performed another all-order dispersion cancellation experiment that cannot be explained by identical dispersion. This is the first demonstration of nonclassical all-order dispersion cancellation.

  6. High-energy angle resolved reflection spectroscopy on three-dimensional photonic crystals of self-organized polymeric nanospheres.

    PubMed

    Schutzmann, S; Venditti, I; Prosposito, P; Casalboni, M; Russo, M V

    2008-01-21

    We report on the optical characterization of three-dimensional opal-like photonic crystals made by self-organized nanospheres of poly[styrene-(co-2-hydroxyethyl methacrylate)] having a face centred cubic (fcc) structure oriented along the [111] direction. A detailed optical characterization of the samples is presented using angle resolved reflection spectroscopy in specular geometry. The investigated energies are between a/lambda=0.5 and a/lambda=1.5 (where a is the lattice parameter and lambda is the light wavelength), a region in which both first and second-order Bragg diffraction are expected. Some interesting features as branching of the Bragg peak dispersion and high energy reflection peaks are revealed. We compare the experimental data with theoretical calculations using both Bragg diffraction and band structure approach. A comparison with recent results reported in the literature is also presented.

  7. Microcalorimeter-type energy dispersive X-ray spectrometer for a transmission electron microscope.

    PubMed

    Hara, Toru; Tanaka, Keiichi; Maehata, Keisuke; Mitsuda, Kazuhisa; Yamasaki, Noriko Y; Ohsaki, Mitsuaki; Watanabe, Katsuaki; Yu, Xiuzhen; Ito, Takuji; Yamanaka, Yoshihiro

    2010-01-01

    A new energy dispersive X-ray spectrometer (EDS) with a microcalorimeter detector equipped with a transmission electron microscope (TEM) has been developed for high- accuracy compositional analysis in the nanoscale. A superconducting transition-edge-sensor-type microcalorimeter is applied as the detector. A cryogen-free cooling system, which consists of a mechanical and a dilution refrigerator, is selected to achieve long-term temperature stability. In order to mount these detector and refrigerators on a TEM, the cooling system is specially designed such that these two refrigerators are separated. Also, the detector position and arrangement are carefully designed to avoid adverse affects between the superconductor detector and the TEM lens system. Using the developed EDS system, at present, an energy resolution of 21.92 eV full-width-at-half maximum has been achieved at the Cr K alpha line. This value is about seven times better than that of the current typical commercial Si(Li) detector, which is usually around 140 eV. The developed microcalorimeter EDS system can measure a wide energy range, 1-20 keV, at one time with this high energy resolution that can resolve peaks from most of the elements. Although several further developments will be needed to enable practical use, highly accurate compositional analysis with high energy resolution will be realized by this microcalorimeter EDS system.

  8. A cost-effective method for simulating city-wide air flow and pollutant dispersion at building resolving scale

    NASA Astrophysics Data System (ADS)

    Berchet, Antoine; Zink, Katrin; Muller, Clive; Oettl, Dietmar; Brunner, Juerg; Emmenegger, Lukas; Brunner, Dominik

    2017-06-01

    A cost-effective method is presented allowing to simulate the air flow and pollutant dispersion in a whole city over multiple years at the building-resolving scale with hourly time resolution. This combination of high resolution and long time span is critically needed for epidemiological studies and for air pollution control, but still poses a great challenge for current state-of-the-art modelling techniques. The presented method relies on the pre-computation of a discrete set of possible weather situations and corresponding steady-state flow and dispersion patterns. The most suitable situation for any given hour is then selected by matching the simulated wind patterns to meteorological observations in and around the city. The catalogue of pre-computed situations corresponds to different large-scale forcings in terms of wind speed, wind direction and stability. A meteorological model converts these forcings into realistic mesoscale flow patterns accounting for the effects of topography and land-use contrasts in a domain covering the city and its surroundings. These mesoscale patterns serve as boundary conditions for a microscale urban flow model which finally drives a Lagrangian air pollutant dispersion model. The method is demonstrated with the modelling system GRAMM/GRAL v14.8 for two Swiss cities in complex terrain, Zurich and Lausanne. The mesoscale flow patterns in the two regions of interest, dominated by land-lake breezes and driven by the partly steep topography, are well reproduced in the simulations matched to in situ observations. In particular, the combination of wind measurements at different locations around the city appeared to be a robust approach to deduce the stability class for the boundary layer within the city. This information is critical for predicting the temporal variability of pollution concentration within the city, regarding their relationship with the intensity of horizontal and vertical dispersion and of turbulence. In the vicinity of

  9. High Pressure Studies Using Energy Dispersive Diffraction of High Energy X-Rays.

    DTIC Science & Technology

    1987-02-01

    Work 38 8 - Contributions to Conferences and Meetings 39 9- References 40 LIST OF FIGURES Figure 1 - Calculated resolution for the spectrum of silicon ...10 - Energy dispersive spectrum of silicon powder collected at 20 - 8.5" 20 Figure 11 - EDXRD spectrum of TiB obtained using Synchrotron Radiation 23...energy required for creating an electron-hole pair in the semiconductor crystal of the detector (2.96 eV for germanium ). F the Fano factor, reflecting

  10. Time-resolved energy transduction in a quantum capacitor

    PubMed Central

    Jung, Woojin; Cho, Doohee; Kim, Min-Kook; Choi, Hyoung Joon; Lyo, In-Whan

    2011-01-01

    The capability to deposit charge and energy quantum-by-quantum into a specific atomic site could lead to many previously unidentified applications. Here we report on the quantum capacitor formed by a strongly localized field possessing such capability. We investigated the charging dynamics of such a capacitor by using the unique scanning tunneling microscopy that combines nanosecond temporal and subangstrom spatial resolutions, and by using Si(001) as the electrode as well as the detector for excitations produced by the charging transitions. We show that sudden switching of a localized field induces a transiently empty quantum dot at the surface and that the dot acts as a tunable excitation source with subangstrom site selectivity. The timescale in the deexcitation of the dot suggests the formation of long-lived, excited states. Our study illustrates that a quantum capacitor has serious implications not only for the bottom-up nanotechnology but also for future switching devices. PMID:21817067

  11. Dispersal

    USGS Publications Warehouse

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  12. Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.; Parmar, M.

    2016-03-01

    The present paper addresses important fundamental issues of inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows through scaling analysis. In typical point-particle or two-fluid approaches, the fluid motion and convective heat transfer at the particle scale are not resolved and the momentum and energy coupling between fluid and particles are provided by proper closure models. By examining the kinetic energy transfer due to the coupling forces from the macroscale to microscale fluid motion, closure models are obtained for the contributions of the coupling forces to the energy coupling. Due to the inviscid origin of the added-mass force, its contribution to the microscale kinetic energy does not contribute to dissipative transfer to fluid internal energy as was done by the quasi-steady force. Time scale analysis shows that when the particle is larger than a critical diameter, the diffusive-unsteady kernel decays at a time scale that is smaller than the Kolmogorov time scale. As a result, the computationally costly Basset-like integral form of diffusive-unsteady heat transfer can be simplified to a non-integral form. Conventionally, the fluid-to-particle volumetric heat capacity ratio is used to evaluate the relative importance of the unsteady heat transfer to the energy balance of the particles. Therefore, for gas-particle flows, where the fluid-to-particle volumetric heat capacity ratio is small, unsteady heat transfer is usually ignored. However, the present scaling analysis shows that for small fluid-to-particle volumetric heat capacity ratio, the importance of the unsteady heat transfer actually depends on the ratio between the particle size and the Kolmogorov scale. Furthermore, the particle mass loading multiplied by the heat capacity ratio is usually used to estimate the importance of the thermal two-way coupling effect. Through scaling argument, improved estimates are established for the energy coupling parameters of each

  13. Interpretation of the spectra of energy scattered by dispersed anchovies

    NASA Astrophysics Data System (ADS)

    Diachok, Orest

    2001-12-01

    The spectra of backscattered energy by dispersed anchovies, which were reported by Holliday (1972), reveal several peaks at frequencies that correspond to theoretically calculated resonance frequencies of year classes of anchovies. Theoretical calculations are based on concurrent measurements of distributions of swim bladder dimensions and a modified form of Minnaert's (1933) equation. Differences between calculated and measured values of the mean lengths of the second-, third-, and fourth-year classes are within experimental uncertainties (+/-8%). The calculated mean lengths of juvenile anchovies are in good agreement with historical measurements of the bounds on this parameter (Butler, 1989). Matching of theoretical calculations and measurements of backscattered energy level versus frequency yields estimates of the total Q of the spectral line, QT, and the relative number density per year class. The resultant estimate of QT of adult anchovies is approximately 4.4. This value of QT is consistent with laboratory measurements of the Q of individual anchovies, Q0 (~7 at 15 m) and measurements of length distributions of year classes and depth distributions. Resultant estimates of relative number densities of year classes were consistent with historical measurements of the relative number densities of year classes of anchovies in the Southern California Bight.

  14. An online, energy-resolving beam profile detector for laser-driven proton beams

    SciTech Connect

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U.; Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P.; Karsch, L.

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  15. Intermolecular band dispersion of quasi-single crystalline organic semiconductor monolayer measured by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ohtomo, Manabu; Shimada, Toshihiro; Hasegawa, Tetsuya

    2010-03-01

    Band structure of organic semiconductors is important knowledge to improve the molecular design. Angle-Resolved Photoemission Spectroscopy (ARPES) studies using highly conductive single domain samples grown in-situ is the most direct technique. In this study, we developed a novel method to grow quasi-single crystalline monolayer on conductive substrate and electronic structure was investigated. As a template for orientation control, we used a step-bunched Si(111) substrate with dangling bond termination. In case of pentacene, it was confirmed that the crystal is quasi-single crystal with 2.2^o rotated twins. The band dispersion was identical to that of thin-film phase. The effective mass and transfer integrals are evaluated using two-dimensional tight binding fit and compared with band calculations [1]. We also report the growth of 2,7-Dipheny[1]benzothieno[3,2-b]benzothiophene (DPh-BTBT) [2] on Bi-Si substrate and compare discuss its band structure. [4pt] [1] M.Ohtomo et al., APL 95, 123308 (2009).[0pt] [2] K.Takimiya, JACS 128, 3044 (2006).

  16. Time resolved resonant photoemission study of energy level alignment at donor/acceptor interfaces

    NASA Astrophysics Data System (ADS)

    Costantini, R.; Pincelli, T.; Cossaro, A.; Verdini, A.; Goldoni, A.; Cichoň, S.; Caputo, M.; Pedio, M.; Panaccione, G.; Silly, M. G.; Sirotti, F.; Morgante, A.; Dell'Angela, M.

    2017-09-01

    The knowledge of the picosecond dynamics of the energy level alignment between donor and acceptor materials in organic photovoltaic devices under working conditions is a challenge for fundamental material research. We measured by means of time-resolved Resonant X-ray Photoemission Spectroscopy (RPES) the energy level alignment in ZnPc/C60 films. We employed 800 nm femtosecond laser pulses to pump the system simulating sunlight excitation and X-rays from the synchrotron as a probe. We measured changes in the valence bands due to pump induced modifications of the interface dipole. Our measurements prove the feasibility of time-resolved RPES with high repetition rate sources.

  17. Material separation in x-ray CT with energy resolved photon-counting detectors.

    PubMed

    Wang, Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J; Patt, Bradley E; Frey, Eric C

    2011-03-01

    The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon-counting acquisition) or a 2-D

  18. Material separation in x-ray CT with energy resolved photon-counting detectors

    PubMed Central

    Wang, Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J.; Patt, Bradley E.; Frey, Eric C.

    2011-01-01

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon

  19. Material separation in x-ray CT with energy resolved photon-counting detectors

    SciTech Connect

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J.; Patt, Bradley E.; Frey, Eric C.

    2011-03-15

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon

  20. Energy-resolved X-ray imaging method with a counting-type pixel detector

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Kajiwara, K.; Sato, M.; Kawase, M.; Honma, T.; Takagaki, M.

    2011-09-01

    We have developed an energy-resolved X-ray imaging method using the counting-type pixel detector PILATUS-100K. X-ray intensities were recorded as a scan of threshold energies, and the X-ray energy was determined by an s-curve fitting analysis. As a capability study of ultra precise energy-resolved imaging, X-ray beam intensities at 15.75, 15.76, 15.77, 15.78, 15.79, and 15.80 keV were measured and their threshold scan distributions could be clearly separated from each other. Laue diffraction patterns of a silicon steel sample were recorded with white X-ray beams. A grain image of silicon steel was obtained with a sample position scan. The reflected X-ray energy was also measured at three sample positions to analyze the lattice constant of the sample crystal grain.

  1. Material separation in x-ray CT with energy resolved photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Wang, X.; Meier, D.; Taguchi, K.; Wagenaar, D. J.; Patt, B. E.; Frey, E. C.

    2011-03-01

    The objective of the study was to demonstrate that more than two types of materials can be effectively separated with x-ray CT using a recently developed energy resolved photon-counting detector. We performed simulations and physical experiments using an energy resolved photon-counting detector with six energy thresholds. For comparison, dual-kVp CT with an integrating detector was also simulated. Iodine- and gadolinium-based contrast agents, as well as several soft-tissue- and bone-like materials were imaged. We plotted the attenuation coefficients for the various materials in a scatter plot for pairs of energy windows. In both simulations and physical experiments, the contrast agents were easily separable from other non-contrast-agent materials in the scatter plot between two properly chosen energy windows. This separation was due to discontinuities in the attenuation coefficient around their unique K-edges. The availability of more than two energy thresholds in a photon-counting detector allowed the separation with one or more contrast agents present. Compared with dual-kVp methods, CT with an energy resolved photon-counting detector provided a larger separation and the freedom to use different energy window pairs to specify the desired target material. We concluded that an energy resolved photon-counting detector with more than two thresholds allowed the separation of more than two types of materials, e.g., soft-tissue-like, bone-like, and one or more materials with K-edges in the energy range of interest. They provided advantages over dual-kVp CT in terms of the degree of separation and the number of materials that can be separated simultaneously.

  2. The role of x-ray Swank factor in energy-resolving photon-counting imaging

    SciTech Connect

    Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian. A.

    2010-12-15

    Purpose: Energy-resolved x-ray imaging has the potential to improve contrast-to-noise ratio by measuring the energy of each interacting photon and applying optimal weighting factors. The success of energy-resolving photon-counting (EPC) detectors relies on the ability of an x-ray detector to accurately measure the energy of each interacting photon. However, the escape of characteristic emissions and Compton scatter degrades spectral information. This article makes the theoretical connection between accuracy and imprecision in energy measurements with the x-ray Swank factor for a-Se, Si, CdZnTe, and HgI{sub 2}-based detectors. Methods: For a detector that implements adaptive binning to sum all elements in which x-ray energy is deposited for a single interaction, energy imprecision is shown to depend on the Swank factor for a large element with x rays incident at the center. The response function for each converter material is determined using Monte Carlo methods and used to determine energy accuracy, Swank factor, and relative energy imprecision in photon-energy measurements. Results: For each material, at energies below the respective K edges, accuracy is close to unity and imprecision is only a few percent. Above the K-edge energies, characteristic emission results in a drop in accuracy and precision that depends on escape probability. In Si, and to some extent a-Se, Compton-scatter escape also degrades energy precision with increasing energy. The influence of converter thickness on energy accuracy and imprecision is modest for low-Z materials but becomes important when using high-Z materials at energies greater than the K-edge energies. Conclusions: Accuracy and precision in energy measurements by EPC detectors are determined largely by the energy-dependent x-ray Swank factor. Modest decreases in the Swank factor (5%-15%) result in large increases in relative imprecision (30%-40%).

  3. The role of x-ray Swank factor in energy-resolving photon-counting imaging.

    PubMed

    Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian A

    2010-12-01

    Energy-resolved x-ray imaging has the potential to improve contrast-to-noise ratio by measuring the energy of each interacting photon and applying optimal weighting factors. The success of energy-resolving photon-counting (EPC) detectors relies on the ability of an x-ray detector to accurately measure the energy of each interacting photon. However, the escape of characteristic emissions and Compton scatter degrades spectral information. This article makes the theoretical connection between accuracy and imprecision in energy measurements with the x-ray Swank factor for a-Se, Si, CdZnTe, and HgI2-based detectors. For a detector that implements adaptive binning to sum all elements in which x-ray energy is deposited for a single interaction, energy imprecision is shown to depend on the Swank factor for a large element with x rays incident at the center. The response function for each converter material is determined using Monte Carlo methods and used to determine energy accuracy, Swank factor, and relative energy imprecision in photon-energy measurements. For each material, at energies below the respective K edges, accuracy is close to unity and imprecision is only a few percent. Above the K-edge energies, characteristic emission results in a drop in accuracy and precision that depends on escape probability. In Si, and to some extent a-Se, Compton-scatter escape also degrades energy precision with increasing energy. The influence of converter thickness on energy accuracy and imprecision is modest for low-Z materials but becomes important when using high-Z materials at energies greater than the K-edge energies. Accuracy and precision in energy measurements by EPC detectors are determined largely by the energy-dependent x-ray Swank factor. Modest decreases in the Swank factor (5%-15%) result in large increases in relative imprecision (30%-40%).

  4. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-07

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  5. MicroCT with energy-resolved photon-counting detectors

    PubMed Central

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C

    2011-01-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  6. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  7. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  8. Simulating the dispersion of NOx and CO2 in the city of Zurich at building resolving scale

    NASA Astrophysics Data System (ADS)

    Brunner, Dominik; Berchet, Antoine; Emmenegger, Lukas; Henne, Stephan; Müller, Michael

    2017-04-01

    Cities are emission hotspots for both greenhouse gases and air pollutants. They contribute about 70% of global greenhouse gas emissions and are home to a growing number of people potentially suffering from poor air quality in the urban environment. High-resolution atmospheric transport modelling of greenhouse gases and air pollutants at the city scale has, therefore, several important applications such as air pollutant exposure assessment, air quality forecasting, or urban planning and management. When combined with observations, it also has the potential to quantify emissions and monitor their long-term trends, which is the main motivation for the deployment of urban greenhouse gas monitoring networks. We have developed a comprehensive atmospheric modeling model system for the city of Zurich, Switzerland ( 600,000 inhabitants including suburbs), which is composed of the mesoscale model GRAMM simulating the flow in a larger domain around Zurich at 100 m resolution, and the nested high-resolution model GRAL simulating the flow and air pollutant dispersion in the city at building resolving (5-10 m) scale. Based on an extremely detailed emission inventory provided by the municipality of Zurich, we have simulated two years of hourly NOx and CO2 concentration fields across the entire city. Here, we present a detailed evaluation of the simulations against a comprehensive network of continuous monitoring sites and passive samplers for NOx and analyze the sensitivity of the results to the temporal variability of the emissions. Furthermore, we present first simulations of CO2 and investigate the challenges associated with CO2 sources not covered by the inventory such as human respiration and exchange fluxes with urban vegetation.

  9. Impact of mixing time and energy on the dispersion effectiveness and droplets size of oil.

    PubMed

    Pan, Zhong; Zhao, Lin; Boufadel, Michel C; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth

    2017-01-01

    The effects of mixing time and energy on Alaska Northern Slope (ANS) and diluted bitumen Cold Lake Blend (CLB) were investigated using EPA baffled flask test. Dispersion effectiveness and droplet size distribution were measured after 5-120 min. A modeling method to predict the mean droplet size was introduced for the first time to tentatively elucidate the droplet size breakup mechanism. The ANS dispersion effectiveness greatly increased with dispersant and mixing energy. However, little CLB dispersion was noted at small energy input (ε = 0.02 Watt/kg). With dispersant, the ANS droplet size distribution reached quasi-equilibrium within 10 min, but that of CLB seems to reach quasi-equilibrium after 120 min. Dispersants are assumed ineffective on high viscosity oils because dispersants do not penetrate them. We provide an alternative explanation based on the elongation time of the droplets and its residence in high intensity zones. When mixing energy is small, CLB did not disperse after 120 min, long enough to allow the surfactant penetration. Our findings suggest that dispersants may disperse high viscosity oils at a rougher sea state and a longer time. The latter could determine how far offshore one can intervene for effective responses to a high viscosity oil spill offshore.

  10. An electron energy loss spectrometer based streak camera for time resolved TEM measurements.

    PubMed

    Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus

    2017-05-01

    We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An edge-on charge-transfer design for energy-resolved x-ray detection

    NASA Astrophysics Data System (ADS)

    Shi, Zaifeng; Yang, Haoyu; Cong, Wenxiang; Wang, Ge

    2016-06-01

    As an x-ray beam goes through the human body, it will collect important information via interaction with tissues. Since this interaction is energy-sensitive, the state-of-the-art spectral CT technologies provide higher quality images of biological tissues with x-ray energy information (or spectral information). With existing energy-integrating technologies, a large fraction of energy information is ignored in the x-ray detection process. Although the recently proposed photon-counting technology promises to achieve higher image quality at a lower radiation dose, it suffers from limitations in counting rate, performance uniformity, and fabrication cost. In this paper, we focus on an alternative approach to resolve the energy distribution of transmitted x-ray photons. First, we analyze the x-ray attenuation in a silicon substrate and describe a linear approximation model for x-ray detection. Then, we design an edge-on architecture based on the proposed energy-resolving model. In our design, the x-ray-photon-induced charges are transferred sequentially resembling the working process of a CCD camera. Finally, we numerically evaluate the linear approximation of x-ray attenuation and derive the energy distribution of x-ray photons. Our simulation results show that the proposed energy-sensing approach is feasible and has the potential to complement the photon-counting technology.

  12. An edge-on charge-transfer design for energy-resolved x-ray detection.

    PubMed

    Shi, Zaifeng; Yang, Haoyu; Cong, Wenxiang; Wang, Ge

    2016-06-07

    As an x-ray beam goes through the human body, it will collect important information via interaction with tissues. Since this interaction is energy-sensitive, the state-of-the-art spectral CT technologies provide higher quality images of biological tissues with x-ray energy information (or spectral information). With existing energy-integrating technologies, a large fraction of energy information is ignored in the x-ray detection process. Although the recently proposed photon-counting technology promises to achieve higher image quality at a lower radiation dose, it suffers from limitations in counting rate, performance uniformity, and fabrication cost. In this paper, we focus on an alternative approach to resolve the energy distribution of transmitted x-ray photons. First, we analyze the x-ray attenuation in a silicon substrate and describe a linear approximation model for x-ray detection. Then, we design an edge-on architecture based on the proposed energy-resolving model. In our design, the x-ray-photon-induced charges are transferred sequentially resembling the working process of a CCD camera. Finally, we numerically evaluate the linear approximation of x-ray attenuation and derive the energy distribution of x-ray photons. Our simulation results show that the proposed energy-sensing approach is feasible and has the potential to complement the photon-counting technology.

  13. Time-resolved energy spectrum measurement of a linear induction accelerator with the magnetic analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Jiang, Xiao-Guo; Yang, Guo-Jun; Chen, Si-Fu; Zhang, Zhuo; Wei, Tao; Li, Jin

    2015-01-01

    We recently set up a time-resolved optical beam diagnostic system. Using this system, we measured the high current electron beam energy in the accelerator under construction. This paper introduces the principle of the diagnostic system, describes the setup, and shows the results. A bending beam line was designed using an existing magnetic analyzer with a 300 mm-bending radius and a 60° bending angle at hard-edge approximation. Calculations show that the magnitude of the beam energy is about 18 MeV, and the energy spread is within 2%. Our results agree well with the initial estimates deduced from the diode voltage approach.

  14. Time-resolved observation of interatomic excitation-energy transfer in argon dimers.

    PubMed

    Mizuno, Tomoya; Cörlin, Philipp; Miteva, Tsveta; Gokhberg, Kirill; Kuleff, Alexander; Cederbaum, Lorenz S; Pfeifer, Thomas; Fischer, Andreas; Moshammer, Robert

    2017-03-14

    The ultrafast transfer of excitation energy from one atom to its neighbor is observed in singly charged argon dimers in a time-resolved extreme ultraviolet (XUV)-pump IR-probe experiment. In the pump step, bound 3s-hole states in the dimer are populated by single XUV-photon ionization. The excitation-energy transfer at avoided crossings of the potential-energy curves leads to dissociation of the dimer, which is experimentally observed by further ionization with a time-delayed IR-probe pulse. From the measured pump-probe delay-dependent kinetic-energy release of coincident Ar(+) + Ar(+) ions, we conclude that the transfer of energy occurs on a time scale of about 800fs. This mechanism represents a fast relaxation process below the energy threshold for interatomic Coulombic decay.

  15. A new reconstruction algorithm for energy-resolved coherent scatter computed tomography

    NASA Astrophysics Data System (ADS)

    van Stevendaal, Udo; Schlomka, Jens-Peter; Thran, Axel; Delfs, Johannes; Barschdorf, Hans

    2005-04-01

    For the first time, a reconstruction technique based on filtered back-projection (FBP) using curved 3D back-projection lines is applied to energy-resolved coherent-scatter projection data. Coherent-scatter computed tomography (CSCT) yields information about the molecular structure of an object. It has been shown that the relatively poor spectral resolution due to the application of a polychromatic X-ray source can be overcome, when energy-resolved detection is used. So far, the energy-resolved projection data, acquired with a CSCT scanner, are reconstructed with the help of algebraic reconstruction techniques (ART). Due to the computational complexity of iterative reconstruction, these methods lead to relatively long reconstruction times. In this contribution, a reconstruction algorithm based on 3D FBP is introduced and applied to projection data acquired with a demonstrator setup similar to a multi-line CT scanner geometry using an energy-resolving CdTe-detector. Within a fraction of the computation time of algebraic reconstruction methods, an image of comparable quality is generated when using FBP reconstruction. In addition, the FBP approach has the advantage, that sub-field-of-view reconstruction becomes feasible. This allows a selective reconstruction of the scatter function for a region of interest. The method is based on a high-pass filtering of the scatter data in fan-beam direction applied to all energy channels. The 3D back-projection is performed along curved lines through a volume defined by the in-plane spatial coordinates and the wave-vector transfer.

  16. MAVEN Observations of Energy-Time Dispersed Electron Signatures in Martian Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Harada, Y.; Mitchell, D. L.; Halekas, J. S.; McFadden, J. P.; Mazelle, C.; Connerney, J. E. P.; Espley, J.; Brain, D. A.; Larson, D. E.; Lillis, R. J.; Hara, T.; Livi, R.; DiBraccio, G. A.; Ruhunusiri, S.; Jakosky, B. M.

    2016-01-01

    Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields.

  17. MAVEN Observations of Energy-Time Dispersed Electron Signatures in Martian Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Harada, Y.; Mitchell, D. L.; Halekas, J. S.; McFadden, J. P.; Mazelle, C.; Connerney, J. E. P.; Espley, J.; Brain, D. A.; Larson, D. E.; Lillis, R. J.; hide

    2016-01-01

    Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields.

  18. Time, Energy, and Spatially Resolved TEM Investigations of Defectsin InGaN

    SciTech Connect

    Jinschek, J.R.; Kisielowski, C.

    2005-10-01

    A novel sample preparation technique is reported to fabricate electron transparent samples from devices utilizing a FIB process with a successive wet etching step. The high quality of the obtained samples allows for band gap--and chemical composition measurements of In{sub x}Ga{sub 1-x}N quantum wells where electron beam induced damage can be controlled and shown to be negligible. The results reveal indium enrichment in nanoclusters and defects that cause fluctuations of the band gap energy and can be measured by low loss Electron Energy Spectroscopy with nm resolution. Comparing our time, energy, and spatially resolved measurements of band gap energies, chemical composition, and their related fluctuations with literature data, we find quantitative agreement if the band gap energy of InN is 1.5-2 eV.

  19. Bypassing the energy-time uncertainty in time-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Randi, Francesco; Fausti, Daniele; Eckstein, Martin

    2017-03-01

    The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.

  20. Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.

  1. Can we detect Li K X-ray in lithium compounds using energy dispersive spectroscopy?

    PubMed

    Hovington, Pierre; Timoshevskii, Vladimir; Burgess, Simon; Demers, Hendrix; Statham, Peter; Gauvin, Raynald; Zaghib, Karim

    2016-11-01

    Lithium is the key element for the development of battery and new technology and the development of an analytical technique to spatially and quantitatively resolve this element is of key importance. Detection of Li K in pure metallic lithium is now possible in the Scanning Electron Microscope (SEM) with newly designed Energy Dispersive Spectroscopy (EDS). However, this work is clearly showing, for the first time using EDS, the detection of Li K in several binary lithium compounds (LiH, Li3 N, Li2 S, LiF and LiCl). Experimental Li K X-rays intensity is compared with a specially modified Monte Carlo simulation program showing discrepancies between theoretical and experimental Li K measurements. The effect of chemical bounding on the X-rays emission using density functional theory with the all-electron linearized augmented plane wave is showing that the emission of Li K from the binary compounds studied should be, at least, 12 times lower than in metallic Li. SCANNING 38:571-578, 2016. © 2016 Wiley Periodicals, Inc.

  2. Angular-resolved electron energy loss spectroscopy on a split-ring resonator

    NASA Astrophysics Data System (ADS)

    von Cube, F.; Niegemann, J.; Irsen, S.; Bell, D. C.; Linden, S.

    2014-03-01

    We investigate the plasmonic near field of a lithographically defined split-ring resonator with angular-resolved electron energy loss spectroscopy in a scanning transmission electron microscope. By tilting the sample, different electric field components of the plasmonic modes can be probed with the electron beam. The electron energy loss spectra recorded under oblique incidence can feature plasmonic resonances that are not observable under normal incidence. Our experimental findings are supported by full numerical calculations based on the discontinuous Galerkin time-domain method.

  3. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    SciTech Connect

    Ajayi, O. A. E-mail: cww2104@columbia.edu; Wong, C. W. E-mail: cww2104@columbia.edu; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  4. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  5. Non-pairwise additivity of the leading-order dispersion energy.

    PubMed

    Hollett, Joshua W

    2015-02-28

    The leading-order (i.e., dipole-dipole) dispersion energy is calculated for one-dimensional (1D) and two-dimensional (2D) infinite lattices, and an infinite 1D array of infinitely long lines, of doubly occupied locally harmonic wells. The dispersion energy is decomposed into pairwise and non-pairwise additive components. By varying the force constant and separation of the wells, the non-pairwise additive contribution to the dispersion energy is shown to depend on the overlap of density between neighboring wells. As well separation is increased, the non-pairwise additivity of the dispersion energy decays. The different rates of decay for 1D and 2D lattices of wells is explained in terms of a Jacobian effect that influences the number of nearest neighbors. For an array of infinitely long lines of wells spaced 5 bohrs apart, and an inter-well spacing of 3 bohrs within a line, the non-pairwise additive component of the leading-order dispersion energy is -0.11 kJ mol(-1) well(-1), which is 7% of the total. The polarizability of the wells and the density overlap between them are small in comparison to that of the atomic densities that arise from the molecular density partitioning used in post-density-functional theory (DFT) damped dispersion corrections, or DFT-D methods. Therefore, the nonadditivity of the leading-order dispersion observed here is a conservative estimate of that in molecular clusters.

  6. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-01

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  7. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics.

    PubMed

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-14

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  8. Photon energy dependent circular dichroism in angle-resolved photoemission from Au(111) surface states

    NASA Astrophysics Data System (ADS)

    Ryu, Hanyoung; Song, Inkyung; Kim, Beomyoung; Cho, Soohyun; Soltani, Shoresh; Kim, Timur; Hoesch, Moritz; Kim, Choong H.; Kim, Changyoung

    2017-03-01

    We performed angle-resolved photoemission experiments on Au(111) surface with circularly polarized light. Data were taken with photon energies in the range between 20 and 100 eV in order to investigate the photon energy dependent behavior in the circular dichroism (CD). While the magnitude of the normalized CD value varies with a maximum value of about 70%, the sign of CD does not change for the photon energy within the range, inconsistent with the prediction based on the density-functional theory (DFT) calculation. Our calculation of the CD using DFT initial state and free electron final state shows a better consistency with experimental results than an earlier study using the inverse low-energy electron diffraction state as the final state. We briefly discuss the dominating factor that determines the CD from Au(111) states.

  9. Mapping unoccupied electronic states of freestanding graphene by angle-resolved low-energy electron transmission

    NASA Astrophysics Data System (ADS)

    Wicki, Flavio; Longchamp, Jean-Nicolas; Latychevskaia, Tatiana; Escher, Conrad; Fink, Hans-Werner

    2016-08-01

    We report angle-resolved electron transmission measurements through freestanding graphene sheets in the energy range of 18 to 30 eV above the Fermi level. The measurements are carried out in a low-energy electron point source microscope, which allows simultaneously probing the transmission for a large angular range. The characteristics of low-energy electron transmission through graphene depend on its electronic structure above the vacuum level. The experimental technique described here allows mapping of the unoccupied band structure of freestanding two-dimensional materials as a function of the energy and probing angle, respectively, in-plane momentum. Our experimental findings are consistent with theoretical predictions of a resonance in the band structure of graphene above the vacuum level [V. U. Nazarov, E. E. Krasovskii, and V. M. Silkin, Phys. Rev. B 87, 041405 (2013), 10.1103/PhysRevB.87.041405].

  10. Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel

    NASA Astrophysics Data System (ADS)

    Jixiong, Xiao; Zhong, Zeng; Zhijiang, Wang; Donghui, Xia; Changhai, Liu

    2017-02-01

    Taking self-fields into consideration, dispersion properties of two types of electromagnetic modes for a high energy electron beam guided with an ion channel are investigated by using the linear perturbation theory. The dependences of the dispersion frequencies of electromagnetic waves on the electron beam radius, betatron frequency and boundary current are revealed. It is found that the electron beam radius and betatron frequency have different influences on the electromagnetic waves dispersion behavior by compared with the previous works. As the boundary current is taken into account, the TM modes will have two branches and a low-frequency branch emerged as the new branch in strong ion channel case. This new branch has similar dispersion behavior to the betatron modes. For TE modes, there are two branches and they have different dispersion behaviors in strong ion channel case. However, in weak ion channel case, the dispersion behaviors for both of the low frequency and high frequency branches are similar.

  11. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    NASA Astrophysics Data System (ADS)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  12. Validations of Time-Resolved X-Ray Emissions Spectroscopy for Analysis of Mn-Based Natural and Artifical Sunlight-to-Energy Assemblies

    SciTech Connect

    Pushkar, Yulia

    2015-02-07

    The goal of this project was to demonstrate time resolved analysis of the electronic structure dynamic using techniques of miniature X-ray emission spectrometers. The focus was on development of easy/fast to set up, portable, cost efficient, good energy resolution, good sensitivity, dispersive (particularly suitable for time resolved analysis) system. These mile stones were achieved and miniXES spectrometer for the Mn Kβ range was reported. Contrary to pointby- point detection, the miniXES setup allows a complete emission spectrum to be recorded following each laser excitation, Fig. 1. miniXES system compares favorably with other realization of a dispersive XES spectrometer with cylindrically bent analyzers. Setup reported by others has disadvantages of high cost (which limits its re-creation by other researchers) and lower (0.55 eV) energy resolution (at 6490 eV). The energy resolution of our miniXES system is 0.30 eV. Additional advantage of portability allowed us to use miniXES at multiple beamlines at APS (ANL): 20-ID, 14-ID and 7-ID. Moreover, in March 2013 PI transported the Mn Kβ spectrometer (which fits into a small hand luggage bag) to SLS (Switzerland) and set it up there for the TR-XES beamtime. Our spectrometer works with 2D-PSD (Pilatus-100) which is a standard detector available via equipment pool at synchrotron sources.

  13. Energy dispersive X-Ray fluorescence determination of thorium in phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Mirashi, N. N.; Dhara, Sangita; Kumar, S. Sanjay; Chaudhury, Satyajeet; Misra, N. L.; Aggarwal, S. K.

    2010-07-01

    Energy dispersive X-ray fluorescence studies on determination of thorium (in the range of 7 to 137 mg/mL) in phosphoric acid solutions obtained by dissolution of thoria in autoclave were made. Fixed amounts of Y internal standard solutions, after dilution with equal amount of phosphoric acid, were added to the calibration as well as sample solutions. Solution aliquots of approximately 2-5 µL were deposited on thick absorbent sheets to absorb the solutions and the sheets were presented for energy dispersive X-ray fluorescence measurements. A calibration plot was made between intensity ratios (Th Lα/Y Kα) against respective amounts of thorium in the calibration solutions. Thorium amounts in phosphoric acid samples were determined using their energy dispersive X-ray fluorescence spectra and the above calibration plot. The energy dispersive X-ray fluorescence results, thus obtained, were compared with the corresponding gamma ray spectrometry results and were found to be within average deviation of 2.6% from the respective gamma ray spectrometry values. The average precision obtained in energy dispersive X-ray fluorescence determinations was found to be 4% (1 σ). The energy dispersive X-ray fluorescence method has an advantage over gamma ray spectrometry for thorium determination as the amount of sample required and measurement time is far less compared to that required in gamma ray spectrometry.

  14. Dispersion Analysis of Gravity Waves in Fluid Media Discretized by Energy-Orthogonal Finite Elements

    NASA Astrophysics Data System (ADS)

    José Brito Castro, Francisco

    2014-11-01

    This article studies the dispersion of gravity waves in fluid media discretized by the finite element method. The element stiffness matrix is split into basic and higher-order components which are respectively related to the mean and deviatoric components of the gradient of displacement potential. This decomposition is applied to the kinetic energy. The dispersion analysis yields a correlation between the higher-order kinetic energy and the kinetic energy error. The use of this correlation as a reference to apply the higher-order energy as an error indicator for the sloshing modes computed by the finite element method is explored.

  15. Time-resolved study on dynamic chemical state conversion of SiO2-supported Co species by means of dispersive XAFS technique

    NASA Astrophysics Data System (ADS)

    Chotiwan, S.; Tomiga, H.; Yamashita, S.; Katayama, M.; Inada, Y.

    2016-05-01

    The chemical state conversion of the Co species supported on SiO2 was investigated using the in-situ and the time-resolved XAFS techniques. The supported Co3O4 species was finally reduced to metallic Co with the stable intermediate state of CoO for both the temperature-programmed and time-course processes. The oxidation of Co0 traced the reverse route to Co3O4, whereas the relative stability of the Co3O4 species to the CoO intermediate under the oxidative environment diminished the composition of CoO. The time-resolved measurement for the oxidation reaction showed an additional intermediate at the early stage of the CoO intermediate formation suggesting the Co0 particle dispersion.

  16. Comment on 'Casimir energies: Temperature dependence, dispersion, and anomalies'

    SciTech Connect

    Ravndal, Finn

    2009-05-15

    It is pointed out that the Casimir energy in a medium can be obtained most directly from the zero-point energy of the electromagnetic field because of its reduced propagation velocity. This brings to the fore again the old problem related to how the principle of relativity is combined with the Maxwell field equations in a continuous medium.

  17. Extremely broadband single-shot cross-correlation frequency-resolved optical gating using a transient grating as gate and dispersive element

    NASA Astrophysics Data System (ADS)

    Valtna-Lukner, H.; Belli, F.; Ermolov, A.; Köttig, F.; Mak, K. F.; Tani, F.; Travers, J. C.; Russell, P. St. J.

    2017-07-01

    A cross-correlation frequency-resolved optical gating (FROG) concept, potentially suitable for characterizing few or sub-cycle pulses in a single shot, is described in which a counter-propagating transient grating is used as both the gate and the dispersive element in a FROG spectrometer. An all-reflective setup, which can operate over the whole transmission range of the nonlinear medium, within the sensitivity range of the matrix sensor, is also proposed, and proof-of-principle experiments for the ultraviolet and visible-to-near-infrared spectral ranges are reported.

  18. Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem.

    PubMed

    Tkatchenko, Alexandre; Ambrosetti, Alberto; DiStasio, Robert A

    2013-02-21

    Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on ad hoc assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuation-dissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula upon invoking the random-phase approximation (RPA) or the full-potential approximation. Moreover, for a system of quantum harmonic oscillators coupled through a dipole-dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFD-RPA correlation energy. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula, we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy.

  19. An Objective Approach to Resolving Imbalances in Observational Assessments of the Global Energy Budget

    NASA Astrophysics Data System (ADS)

    L'Ecuyer, T. S.; Rodell, M.; Olson, W. S.

    2013-12-01

    Recent efforts to balance the Earth's energy budget on global and regional scales suggest that imbalances exist both within the atmosphere and at the surface. At the root of these imbalances are the relative magnitudes of LW radiative cooling and latent heat release, with the former exceeding the latter by more than 10 Wm-2. Arguments have been made in favor of adjusting either downwelling longwave and shortwave radiation or global precipitation to resolve these imbalances and satisfy constraints imposed by recent ocean heat content measurements. Since all fluxes contributing to the global energy balance have associated uncertainties, it is desirable to seek a more objective approach for achieving balance that optimizes all component fluxes based on their relative uncertainties. A new variational method will be presented that achieves this goal by introducing closure relations as soft constraints. It will be shown that observed global and regional energy and water cycles can be simultaneously balanced with modest adjustments to the component fluxes that fall within rigorous estimates of their uncertainties. The technique has been applied to a ten-year record of satellite datasets developed or collected as part of the NASA Energy Water Cycle Study to establish benchmark estimates of the current atmospheric and surface energy budgets on continental and seasonal scales. Residual surface energy balance after objective addition of energy and water cycle closure constraints.

  20. Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids

    NASA Astrophysics Data System (ADS)

    Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun

    2017-08-01

    We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of

  1. Dispersion energy analysis of Rayleigh and Love waves in non-layered earth models

    NASA Astrophysics Data System (ADS)

    Mi, B.; Xia, J.; Shen, C.

    2016-12-01

    Surface-wave analysis methods have been effectively and widely used to determine shear (S) wave velocity. Dispersive curves extracted according to the dispersion energy are the basis for surface-wave analysis. The traditional surface-wave analysis method is a 1D approach because the inverted S-wave velocity profiles from surface waves are based on the assumption of horizontally layered earth model. In 2D environments, it can cause perturbations on the observed phase velocity of surface waves if the wave path is horizontally heterogeneous. In the real world applications of surface waves for the lateral variation reconstruction, it is very important to assess the errors of phase velocities that could be introduced because of the presence of lateral variations. We analyze the dispersion energy of Rayleigh and Love waves in non-layered earth models with a fault or a slope based on finite-difference modeling. Synthetic multichannel records are simulated with a finite-difference method for the non-layered earth models and dispersion images are generated by the high-resolution linear Radon transformation (LRT). We compare the dispersion energy with theoretical dispersion curves calculated by the Knopoff method. Errors of phase velocities with different receiver spread lengths are analyzed quantitatively. Results demonstrate that the extracted dispersion curve is an average result of the subsurface covered by the receiver spread length. To select the optimal receiver spread length is imperative for the investigation of lateral variation with surface-wave methods.

  2. Electron self-energy of high temperature superconductors as revealed by angle-resolved photoemission.

    SciTech Connect

    Ding, H.; Norman, M. R.; Randeria, M.

    1997-12-05

    In this paper, we review some of the work our group has done in the past few years to obtain the electron self-energy of high temperature superconductors by analysis of angle-resolved photoemission data. We focus on three examples which have revealed: (1) a d-wave superconducting gap, (2) a collective mode in the superconducting state, and (3) pairing correlations in the pseudogap phase. In each case, although a novel result is obtained which captures the essence of the data, the conventional physics used leads to an incomplete picture. This indicates that new physics needs to be developed to obtain a proper understanding of these materials.

  3. Noise suppression for energy-resolved CT using similarity-based non-local filtration

    NASA Astrophysics Data System (ADS)

    Harms, Joe; Wang, Tonghe; Petrongolo, Michael; Zhu, Lei

    2016-03-01

    In energy-resolved CT, images are reconstructed independently at different energy levels, resulting in images with different qualities but the same structures. We propose a similarity-based non-local filtration method to extract structural information from these images for noise suppression. For each pixel, we calculate its similarity to other pixels based on CT number. The calculation is repeated on each image at different energy levels and similarity values are averaged to generate a similarity matrix. Noise suppression is achieved by multiplying the image vector by the similarity matrix. Multiple scans on a tabletop CT system are used to simulate 6-channel energy-resolved CT, with energies ranging from 75 to 125 kVp. Phantom studies show that the proposed method improves average contrast-to-noise ratio (CNR) of seven materials on the 75 kVp image by a factor of 22. Compared with averaging CT images for noise suppression, our method achieves a higher CNR and reduces the CT number error of iodine solutions from 16.5% to 3.5% and the overall image root of mean-square error (RMSE) from 3.58% to 0.93%. On the phantom with line-pair structures, our algorithm reduces noise standard deviation (STD) by a factor of 23 while maintaining 7 lp/cm spatial resolution. Additionally, anthropomorphic head phantom studies show noise STD reduction by a factor or 26 with no loss of spatial resolution. The noise suppression achieved by the similarity-based method is clinically attractive, especially for CNRs of iodine in contrast-enhanced CT.

  4. Development and characterization of a time-, position- and energy-resolved x-ray diagnostic for PBFA II target experiments

    SciTech Connect

    Derzon, M.S.; Filuk, A.B.; Pantuso, J.; Dukart, R.J.; Olsen, R.; Barber, T.; Bernard, M.

    1992-12-31

    A time-, position- and energy-resolved soft x-ray (100--500 eV) diagnostic is being developed for PBFA II target experiments. The diagnostic provides measurements of hydrodynamic motion and thermal gradients in light-ion fusion targets. A slit-image of the source is imprinted onto thin sheets (20{mu}m) of organic scintillator to create a one-dimensional image. The scintillator light is then proximity-coupled to a linear array of fiber-optics that transports the light to a streak camera that is operated without an intensifier. The streak camera output is recorded on a charge-coupled-device (CCD) camera. We are characterizing the spatial and temporal resolutions of the systems. This is done by collecting data from as many as 90 individual fibers and correcting for variations in throughput and the effects of spatial resolution to roughly 5% standard deviation in their relative throughput. Spatial resolution of these systems at the source is approximately 0.4 mm. Timing resolution is nominally 2 ns and it is limited primarily by the scintillator response and dispersion in the 50-m-long fiber array. We describe the measurement techniques and the results of the characterization.

  5. Novel energy resolving x-ray pinhole camera on Alcator C-Mod

    SciTech Connect

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.; Ellis, R.; Hill, K. W.; Brandstetter, S.; Eikenberry, E.; Hofer, P.; Schneebeli, M.

    2012-10-15

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of Almost-Equal-To 1 cm, an energy resolution of Almost-Equal-To 1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009)] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  6. Novel energy resolving x-ray pinhole camera on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.; Brandstetter, S.; Eikenberry, E.; Ellis, R.; Hill, K. W.; Hofer, P.; Schneebeli, M.

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009), 10.1107/S0909049509009911] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  7. Novel energy resolving x-ray pinhole camera on Alcator C-Mod.

    PubMed

    Pablant, N A; Delgado-Aparicio, L; Bitter, M; Brandstetter, S; Eikenberry, E; Ellis, R; Hill, K W; Hofer, P; Schneebeli, M

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009)] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  8. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to

  9. Dispersion and energy conservation relations of surface waves in semi-infinite plasma

    NASA Astrophysics Data System (ADS)

    Atanasov, V.

    1981-04-01

    The hydrodynamic theory of surface wave propagation in semiinfinite homogeneous isotropic plasma is considered. Explicit linear surface wave solutions are given for the electric and magnetic fields, charge and current densities. These solutions are used to obtain the well-known dispersion relations and, together with the general energy conservation equation, to find appropriate definitions for the energy and the energy flow densities of surface waves. These densities are associated with the dispersion relation and the group velocity by formulae similar to those for bulk waves in infinite plasmas. Both cases of high-frequency and low-frequency surface waves are considered.

  10. Investigation of dissimilar metal welds by energy-resolved neutron imaging

    PubMed Central

    Tremsin, Anton S.; Ganguly, Supriyo; Meco, Sonia M.; Pardal, Goncalo R.; Shinohara, Takenao; Feller, W. Bruce

    2016-01-01

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al–steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption. PMID:27504075

  11. Investigation of dissimilar metal welds by energy-resolved neutron imaging.

    PubMed

    Tremsin, Anton S; Ganguly, Supriyo; Meco, Sonia M; Pardal, Goncalo R; Shinohara, Takenao; Feller, W Bruce

    2016-08-01

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al-steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption.

  12. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector.

    PubMed

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-21

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  13. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    NASA Astrophysics Data System (ADS)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  14. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy.

    PubMed

    Carbone, Fabrizio; Kwon, Oh-Hoon; Zewail, Ahmed H

    2009-07-10

    Chemical bonding dynamics are fundamental to the understanding of properties and behavior of materials and molecules. Here, we demonstrate the potential of time-resolved, femtosecond electron energy loss spectroscopy (EELS) for mapping electronic structural changes in the course of nuclear motions. For graphite, it is found that changes of milli-electron volts in the energy range of up to 50 electron volts reveal the compression and expansion of layers on the subpicometer scale (for surface and bulk atoms). These nonequilibrium structural features are correlated with the direction of change from sp2 [two-dimensional (2D) graphene] to sp3 (3D-diamond) electronic hybridization, and the results are compared with theoretical charge-density calculations. The reported femtosecond time resolution of four-dimensional (4D) electron microscopy represents an advance of 10 orders of magnitude over that of conventional EELS methods.

  15. Spectrally resolved white light interferometry to measure material dispersion over a wide spectral band in a single acquisition.

    PubMed

    Arosa, Yago; Lago, Elena López; Varela, Luis Miguel; de la Fuente, Raúl

    2016-07-25

    In this paper we apply spectrally resolved white light interferometry to measure refractive and group index over a wide spectral band from 400 to 1000 nm. The output of a Michelson interferometer is spectrally decomposed by a homemade prism spectrometer with a high resolution camera. The group index is determined directly from the phase extracted from the spectral interferogram while the refractive index is estimated once its value at a given wavelength is known.

  16. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    PubMed

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  17. Toward Femtosecond Time-Resolved Studies of Solvent-Solute Energy Transfer in Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.

    2015-05-01

    Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.

  18. Non-pairwise additivity of the leading-order dispersion energy

    SciTech Connect

    Hollett, Joshua W.

    2015-02-28

    The leading-order (i.e., dipole-dipole) dispersion energy is calculated for one-dimensional (1D) and two-dimensional (2D) infinite lattices, and an infinite 1D array of infinitely long lines, of doubly occupied locally harmonic wells. The dispersion energy is decomposed into pairwise and non-pairwise additive components. By varying the force constant and separation of the wells, the non-pairwise additive contribution to the dispersion energy is shown to depend on the overlap of density between neighboring wells. As well separation is increased, the non-pairwise additivity of the dispersion energy decays. The different rates of decay for 1D and 2D lattices of wells is explained in terms of a Jacobian effect that influences the number of nearest neighbors. For an array of infinitely long lines of wells spaced 5 bohrs apart, and an inter-well spacing of 3 bohrs within a line, the non-pairwise additive component of the leading-order dispersion energy is −0.11 kJ mol{sup −1} well{sup −1}, which is 7% of the total. The polarizability of the wells and the density overlap between them are small in comparison to that of the atomic densities that arise from the molecular density partitioning used in post-density-functional theory (DFT) damped dispersion corrections, or DFT-D methods. Therefore, the nonadditivity of the leading-order dispersion observed here is a conservative estimate of that in molecular clusters.

  19. The effect of dispersion forces on the interaction energies and far infrared spectra of protic ionic liquids.

    PubMed

    Ludwig, Ralf

    2015-06-07

    We could show by means of dispersion-corrected DFT calculations that the interaction energy in protic ionic liquids can be dissected into Coulomb interaction, hydrogen bonding and dispersion interaction. The H-bond energy as well as the dispersion energy can be quantified to be 50 kJ mol(-1) each representing ten percent of the overall interaction energy. The dispersion interaction could be dissected into two portions. One third could be related to the dispersion interaction within an ion-pair enhancing the H-bond strength, two thirds stem from dispersion interaction between the ion-pairs. This distribution of dispersion interaction is reflected in the far infrared (FIR) spectra. The H-bond band is shifted weaker than the low frequency band where the latter indicates diffuse cation-anion interaction and H-bond bending motions. Finally, we can dissect the different types of interaction energies indicating their characteristic influence on vibrational modes in the FIR.

  20. Laser angle-resolved photoemission as a probe of initial state kz dispersion, final-state band gaps, and spin texture of Dirac states in the Bi2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Ä; rrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; Wu, Yun; Jiang, Rui; Riedemann, Trevor; Lograsso, Thomas A.; Barbiellini, Bernardo; Kaminski, Adam; Bansil, Arun; Lindroos, Matti

    2016-10-01

    We have obtained angle-resolved photoemission spectroscopy (ARPES) spectra from single crystals of the topological insulator material Bi2Te3 using a tunable laser spectrometer. The spectra were collected for 11 different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photointensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. A reasonable overall accord between theory and experiment is used to gain insight into how properties of the initial- and final-state band structures as well as those of the topological surface states and their spin textures are reflected in the laser-ARPES spectra. Our analysis reveals that laser-ARPES is sensitive to both the initial-state kz dispersion and the presence of delicate gaps in the final-state electronic spectrum.

  1. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence.

    PubMed

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Some filamentous cyanobacteria (including Anabaena) differentiate into heterocysts under nitrogen-depleted conditions. During differentiation, the phycobiliproteins and photosystem II in the heterocysts are gradually degraded. Nitrogen depletion induces changes in the pigment composition of both vegetative cells and heterocysts, which affect the excitation energy transfer processes. To investigate the changes in excitation energy transfer processes of Anabaena variabilis filaments grown in standard medium (BG11) and a nitrogen-free medium (BG110), we measured their steady-state absorption spectra, steady-state fluorescence spectra, and time-resolved fluorescence spectra (TRFS) at 77 K. TRFS were measured with a picosecond time-correlated single photon counting system. The pigment compositions of the filaments grown in BG110 changed throughout the growth period; the relative phycocyanin levels monotonically decreased, whereas the relative carotenoid (Car) levels decreased and then recovered to their initial value (at day 0), with formation of lower-energy Cars. Nitrogen starvation also altered the fluorescence kinetics of PSI; the fluorescence maximum of TRFS immediately after excitation occurred at 735, 740, and 730 nm after 4, 8, and 15 days growth in BG110, respectively. Based on these results, we discuss the excitation energy transfer dynamics of A. variabilis filaments under the nitrogen-depleted condition throughout the growth period.

  2. Energy resolved two-dimensional soft x-ray radiography with a micropattern gas detector

    SciTech Connect

    Pacella, Danilo; Bellazzini, Ronaldo; Finkenthal, Michael

    2006-04-15

    This article discusses the use of energy resolved two-dimensional soft x-ray imaging (ERXI), in the range of 2-8 keV, to study and investigate composition and depth of different materials. This technique represents a new approach in which imaging is merged with multienergy analysis, performed with spectral scans in 25 energy subintervals. The detector used is a micropattern gas detector with gas electron multiplier as amplifying structure, pixel readout board with 144 pixels (12x12), and electronics for photon counting for each pixel. As the detector works in a proportional regime, images in adjustable energy windows (independently for each pixel) can be acquired. Energy resolution enhances the contrast and the imaging capability providing more information of the transparencies of the materials under investigations. Contact radiographies have been made with samples of four different materials: CaCl, organic fat matter, aluminum, and thin plastic tape. The resulting data transparency curves for these materials have been derived. These curves demonstrate the value of ERXI at high performances (high efficiency, high dynamics, and high contrast), potentially relevant for many future applications.

  3. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    SciTech Connect

    Nádaždy, V. Gmucová, K.; Schauer, F.

    2014-10-06

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  4. Femtosecond time-resolved energy transfer from CdSe nanoparticles to phthalocyanines

    NASA Astrophysics Data System (ADS)

    Dayal, S.; Królicki, R.; Lou, Y.; Qiu, X.; Berlin, J. C.; Kenney, M. E.; Burda, C.

    2006-07-01

    The first real-time observation of the early events during energy transfer from a photoexcited CdSe nanoparticle to an attached phthalocyanine molecule are presented in terms of a femtosecond spectroscopic pump-probe study of the energy transfer in conjugates of CdSe nanoparticles (NPs) and silicon phthalocyanines (Pcs) with 120 fs time resolution. Four different silicon phthalocyanines have been conjugated to CdSe NPs. All of these have proven potential for photodynamic therapy (PDT). In such NP-Pc conjugates efficient energy transfer (ET) from CdSe NPs to Pcs occurs upon selective photoexcitation of the NP moiety. Spectral analysis as well as time-resolved fluorescence up-conversion measurements revealed the structure and dynamics of the investigated conjugates. Femtosecond transient differential absorption (TDA) spectroscopy was used for the investigation of the non-radiative carrier and ET dynamics. The formation of excitons, trapped carriers states, as well as stimulated emission was monitored in the TDA spectra and the corresponding lifetimes of these states were recorded. The time component for energy transfer was found to be between 15 and 35 ps. The ET efficiencies are found to be 20-70% for the four Pc conjugates, according to fluorescence quenching experiments. Moreover, as a result of the conjugation between NP and the Pcs the photoluminescence efficiency of the Pc moieties in the conjugates do not strictly follow the quantum yields of the bare phthalocyanines.

  5. Two and three-body interatomic dispersion energy contributions to binding in molecules and solids.

    SciTech Connect

    von Lilienfeld-Toal, Otto Anatole; Tkatchenko, Alexandre

    2010-03-01

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C{sub 6} and C{sub 9}, are computed 'on the fly' from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C{sub 60} dimer, a peptide (Ala{sub 10}), an intercalated drug-DNA model [ellipticine-d(CG){sub 2}], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.

  6. Versatility of homogeneous time-resolved fluorescence resonance energy transfer assays for biologics drug discovery.

    PubMed

    Rossant, Christine J; Matthews, Carl; Neal, Frances; Colley, Caroline; Gardener, Matthew J; Vaughan, Tristan

    2015-04-01

    Identification of potential lead antibodies in the drug discovery process requires the use of assays that not only measure binding of the antibody to the target molecule but assess a wide range of other characteristics. These include affinity ranking, measurement of their ability to inhibit relevant protein-protein interactions, assessment of their selectivity for the target protein, and determination of their species cross-reactivity profiles to support in vivo studies. Time-resolved fluorescence resonance energy transfer is a technology that offers the flexibility for development of such assays, through the availability of donor and acceptor fluorophore-conjugated reagents for detection of multiple tags or fusion proteins. The time-resolved component of the technology reduces potential assay interference, allowing screening of a range of different crude sample types derived from the bacterial or mammalian cell expression systems often used for antibody discovery projects. Here we describe the successful application of this technology across multiple projects targeting soluble proteins and demonstrate how it has provided key information for the isolation of potential therapeutic antibodies with the desired activity profile.

  7. Concepts for design of an energy management system incorporating dispersed storage and generation

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Koerner, T.; Nightingale, D.

    1981-01-01

    New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed.

  8. Detector response function of an energy-resolved CdTe single photon counting detector.

    PubMed

    Liu, Xin; Lee, Hyoung Koo

    2014-01-01

    While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV energies. The 12 parameters are obtained by non-linear least-square fitting with the measured detector response functions at the six energies. The correlations of the 12 parameters with energy are also investigated with the measured data. The analytical model generally describes the detector response function and is in good agreement with the measured data. The trend lines of the 12 parameters indicate higher energies tend to cause grater spectrum distortion. The spectrum distortion caused by the detector response function on spectral CT reconstruction is analyzed theoretically, and a solution to correct this spectrum distortion is also proposed. In spectral and fluorescence CT, the spectrum distortion caused by detector response function poses a problem and cannot be ignored in any quantitative analysis. The detector response function of a CdTe detector can be obtained by a semi-analytical method.

  9. Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging

    PubMed Central

    Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; Vogel, Sven C.; Bourke, Mark A.M.; Bizarri, Gregory A.; Bourret, Edith D.

    2017-01-01

    Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of “blind” processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes. PMID:28425461

  10. Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging.

    PubMed

    Tremsin, Anton S; Perrodin, Didier; Losko, Adrian S; Vogel, Sven C; Bourke, Mark A M; Bizarri, Gregory A; Bourret, Edith D

    2017-04-20

    Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.

  11. Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains

    NASA Astrophysics Data System (ADS)

    Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2017-06-01

    Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages. [Figure not available: see fulltext.

  12. Development of time resolved fluorescence resonance energy transfer-based assay for FXR antagonist discovery.

    PubMed

    Yu, Donna D; Lin, Wenwei; Chen, Taosheng; Forman, Barry M

    2013-07-15

    FXR (farnesoid X receptor, NRIH4), a nuclear receptor, plays a major role in the control of cholesterol metabolism. FXR ligands have been investigated in preclinical studies for targeted therapy against metabolic diseases, but have shown limitations. Therefore, there is a need for new agonist or antagonist ligands of FXR, both for potential clinical applications, as well as to further elucidate its biological functions. Here we describe the use of the X-ray crystal structure of FXR complexed with the potent small molecule agonist GW4064 to design and synthesize a novel fluorescent, high-affinity probe (DY246) for time resolved fluorescence resonance energy transfer (TR-FRET) assays. We then used the TR-FRET assay for high throughput screening of a library of over 5000 bioactive compounds. From this library, we identified 13 compounds that act as putative FXR transcriptional antagonists.

  13. Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging

    DOE PAGES

    Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; ...

    2017-04-20

    Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production.more » This technique is widely applicable and is not limited to crystal growth processes.« less

  14. Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray

    PubMed Central

    Schwartz, David Eric; Gong, Ping; Shepard, Kenneth L.

    2008-01-01

    We present an active oligonucleotide microarray platform for time-resolved Förster resonance energy transfer (TR-FRET) assays. In these assays, immobilized probe is labeled with a donor fluorophore and analyte target is labeled with a fluorescence quencher. Changes in the fluorescence decay lifetime of the donor are measured to determine the extent of hybridization. In this work, we demonstrate that TR-FRET assays have reduced sensitivity to variances in probe surface density compared with standard fluorescence-based microarray assays. Use of an active array substrate, fabricated in a standard complementary metal-oxide-semiconductor (CMOS) process, provides the additional benefits of reduced system complexity and cost. The array consists of 4096 independent single-photon avalanche diode (SPAD) pixel sites and features on-chip time-to-digital conversion. We demonstrate the functionality of our system by measuring a DNA target concentration series using TR-FRET with semiconductor quantum dot donors. PMID:18515059

  15. Development of Time Resolved Fluorescence Resonance Energy Transfer-based Assay for FXR Antagonist Discovery

    PubMed Central

    Yu, Donna D.; Lin, Wenwei; Chen, Taosheng; Forman, Barry M.

    2013-01-01

    FXR (farnesoid X receptor, NRIH4), a nuclear receptor, plays a major role in the control of cholesterol metabolism. FXR ligands have been investigated in preclinical studies for targeted therapy against metabolic diseases, but have shown limitations. Therefore, there is a need for new agonist or antagonist ligands of FXR, both for potential clinical applications, as well as to further elucidate its biological functions. Here we describe the use of the X-ray crystal structure of FXR complexed with the potent small molecule agonist GW4064 to design and synthesize a novel fluorescent, high-affinity probe (DY246) for time resolved fluorescence resonance energy transfer (TR-FRET) assays. We then used the TR-FRET assay for high throughput screening of a library of over 5,000 bioactive compounds. From this library, we identified 13 compounds that act as putative FXR transcriptional antagonists. PMID:23688559

  16. Investigation of microstructure within metal welds by energy resolved neutron imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Kockelmann, W.; Paradowska, A. M.; Zhang, Shu-Yan; Korsunsky, A. M.; Shinohara, T.; Feller, W. B.; Lehmann, E. H.

    2016-09-01

    The recent development of bright pulsed neutron sources and high resolution neutron counting detectors enables simultaneous acquisition of a neutron transmission spectrum for each pixel of the image. These spectra can be used to reconstruct microstructure parameters within welds, such as strain, texture and phase composition through Bragg edge analysis, and in some cases elemental composition through resonance absorption analysis. In this paper we demonstrate the potential of energy-resolved neutron imaging to study the microstructures of two steel welds, where the spatial distribution of residual strain within the welds, as well as some information on the texture, are obtained with sub-mm spatial resolution. A friction stir weld of two steel plates and a conventional weld of two steel pipes were studied at pulsed neutron facilities, where a Δλ/λ resolution as low as 0.2% can be attained over a wide range of neutron wavelengths ranging from 0.5 Å to 8 Å.

  17. Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains

    NASA Astrophysics Data System (ADS)

    Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2016-12-01

    Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages.

  18. Time-resolved magnetic imaging in an aberration-corrected, energy-filtered photoemission electron microscope.

    PubMed

    Nickel, F; Gottlob, D M; Krug, I P; Doganay, H; Cramm, S; Kaiser, A M; Lin, G; Makarov, D; Schmidt, O G; Schneider, C M

    2013-07-01

    We report on the implementation and usage of a synchrotron-based time-resolving operation mode in an aberration-corrected, energy-filtered photoemission electron microscope. The setup consists of a new type of sample holder, which enables fast magnetization reversal of the sample by sub-ns pulses of up to 10 mT. Within the sample holder current pulses are generated by a fast avalanche photo diode and transformed into magnetic fields by means of a microstrip line. For more efficient use of the synchrotron time structure, we developed an electrostatic deflection gating mechanism capable of beam blanking within a few nanoseconds. This allows us to operate the setup in the hybrid bunch mode of the storage ring facility, selecting one or several bright singular light pulses which are temporally well-separated from the normal high-intensity multibunch pulse pattern.

  19. Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; Vogel, Sven C.; Bourke, Mark A. M.; Bizarri, Gregory A.; Bourret, Edith D.

    2017-04-01

    Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of “blind” processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.

  20. Resolution improvement in x-ray imaging with an energy-resolving detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Danielsson, Mats

    2017-03-01

    In x-ray imaging, improving spatial resolution is an important goal, but developing detectors with smaller pixels is technically challenging. We demonstrate a technique for improving the spatial resolution by utilizing the fact that linear attenuation coefficients of all substances within the human body can be expressed, to a good approximation, as a linear combination of two basis functions, or three if there is iodine contrast present in the image. When the x rays pass an interface parallel to the beam direction, the exponential attenuation law makes the linear attenuation coefficient measured by the detector a nonlinear combination of the linear attenuation coefficients on each side of the interface. This so-called nonlinear partial volume effect causes the spectral response to be dependent on the steepness of interfaces in the imaged volume. In this work, we show how this effect can be used to improve the spatial resolution in spectral projection x-ray imaging and quantify the achievable resolution improvement. We simulate x-ray transmission imaging of sharp and gradual changes in the projected path length of iodine contrast with an ideal energy-resolving photon-counting detector and demonstrate that the slope of the transition can be determined from the registered spectrum. We simulate piecewise-linear transitions and show that the algorithm is able to reproduce the transition profile on a subpixel scale. The FWHM resolution of the method is 5-30 % of the pixel width. The results show that an energy-resolving detector can be used to improve spatial resolution when imaging interfaces of highly attenuating objects.

  1. Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique

    NASA Astrophysics Data System (ADS)

    Rhee, June-Koo; Sosnowski, Thomas S.; Tien, An-Chun; Norris, Theodore B.

    1996-08-01

    We demonstrate a real-time femtosecond-laser-pulse analyzer by using a spectrally and temporally resolved upconversion technique (STRUT) for characterization of the phase and the intensity. The STRUT provides simple but reliable analysis of femtosecond pulses by employing a narrow-bandpass dielectric filter in one arm of a conventional single-shot upconversion autocorrelator and analyzing the spatiotemporal upconversion signal with a monochromator. The resulting spatiotemporal and spatiospectral image presents clear and complete information about femtosecond pulses produced by either oscillators or amplifiers. Characterization of 2-nJ, 60-fs Ti:sapphire oscillator pulses is achieved with 0.5 s data acquisition time and 0.2-s computational time.

  2. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  3. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-03-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray CT scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose, and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes claimed to be unsuitable for use in computed tomography because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that high-quality energy-resolved CT images can nonetheless be acquired with clinically realistic exposure parameters using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. We use basis material decomposition to obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  4. Energy-resolved CT imaging with a photon-counting silicon-strip detector.

    PubMed

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-21

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5×0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  5. ERICA: an energy resolving photon counting readout ASIC for X-ray in-line cameras

    NASA Astrophysics Data System (ADS)

    Macias-Montero, J.-G.; Sarraj, M.; Chmeissani, M.; Moore, T.; Casanova, R.; Martinez, R.; Puigdengoles, C.; Prats, X.; Kolstein, M.

    2016-12-01

    We present ERICA (Energy Resolving Inline X-ray Camera) a photon-counting readout ASIC, with 6 energy bins. The ASIC is composed of a matrix of 8 × 20 pixels controlled by a global digital controller and biased with 7 independent digital to analog converters (DACs) and a band-gap current reference. The pixel analog front-end includes a charge sensitive amplifier with 16 mV/ke- gain and dynamic range of 45 ke-. ERICA has programmable pulse width, an adjustable constant current feedback resistor, a linear test pulse generator, and six discriminators with 6-bit local threshold adjustment. The pixel digital back-end includes the digital controller, 8 counters of 8-bit depth, half-full buffer flag for any of the 8 counters, a 74-bit shadow/shift register, a 74-bit configuration latch, and charge sharing compensation processing to perform the energy classification and counting operations of every detected photon in 1 μ s. The pixel size is 330 μm × 330 μm and its average consumption is 150 μW. Implemented in TSMC 0.25 μm CMOS process, the ASIC pixel's equivalent noise charge (ENC) is 90 e- RMS connected to a 1 mm thickness matching CdTe detector biased at -300 V with a total leakage current of 20 nA.

  6. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications.

    PubMed

    Barber, W C; Wessel, J C; Nygard, E; Iwanczyk, J S

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  7. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    PubMed Central

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2014-01-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  8. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    NASA Astrophysics Data System (ADS)

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  9. Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent.

    PubMed

    Huynh, Tran T; McDougald, Diane; Klebensberger, Janosch; Al Qarni, Budoor; Barraud, Nicolas; Rice, Scott A; Kjelleberg, Staffan; Schleheck, David

    2012-01-01

    Carbon starvation has been shown to induce a massive dispersal event in biofilms of the opportunistic pathogen Pseudomonas aeruginosa; however, the molecular pathways controlling this dispersal response remain unknown. We quantified changes in the proteome of P. aeruginosa PAO1 biofilm and planktonic cells during glucose starvation by differential peptide-fingerprint mass-spectrometry (iTRAQ). In addition, we monitored dispersal photometrically, as a decrease in turbidity/opacity of biofilms pre-grown and starved in continuous flow-cells, in order to evaluate treatments (e.g. inhibitors CCCP, arsenate, chloramphenicol, L-serine hydroxamate) and key mutants altered in biofilm development and dispersal (e.g. nirS, vfr, bdlA, rpoS, lasRrhlR, Pf4-bacteriophage and cyaA). In wild-type biofilms, dispersal started within five minutes of glucose starvation, was maximal after 2 h, and up to 60% of the original biomass had dispersed after 24 h of starvation. The changes in protein synthesis were generally not more than two fold and indicated that more than 100 proteins belonging to various classes, including carbon and energy metabolism, stress adaptation, and motility, were differentially expressed. For the different treatments, only the proton-ionophore CCCP or arsenate, an inhibitor of ATP synthesis, prevented dispersal of the biofilms. For the different mutants tested, only cyaA, the synthase of the intracellular second messenger cAMP, failed to disperse; complementation of the cyaA mutation restored the wild-type phenotype. Hence, the pathway for carbon starvation-induced biofilm dispersal in P. aeruginosa PAO1 involves ATP production via direct ATP synthesis and proton-motive force dependent step(s) and is mediated through cAMP, which is likely to control the activity of proteins involved in remodeling biofilm cells in preparation for planktonic survival.

  10. Time- and space-resolved elliptical crystal spectrometers for high energy density physics research

    SciTech Connect

    Lake, P.W.; Bailey, J.E.; Rochau, G.A.; Moore, T.C.; Petmecky, D.; Gard, P.

    2004-10-01

    X-ray spectrometers used in high energy density plasma experiments must provide high time, space, and spectral resolution while overcoming the difficulties imposed by x-ray background, debris, and mechanical shocks. At the Z facility these problems are addressed using a suite of elliptical crystal spectrometers. The elliptical geometry isolates the detector from the line of sight with a slit placed at the elliptical focus, while the sensitivity enables locating the crystal 2-4 m from the plasma source. Space and time resolution are obtained by using an array of slits to project one dimensional plasma images onto the crystal and recording the spectrally dispersed images with a gated microchannel plate detector.

  11. Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction.

    PubMed

    Tamilarasan, K; Kavitha, S; Rajesh Banu, J; Arulazhagan, P; Yeom, Ick Tae

    2017-03-01

    In this study, an effort has been made to reduce the energy cost of liquefaction by coupling a mechanical disperser with a chemical (sodium tripolyphosphate). In terms of the cost and specific energy demand of liquefaction, the algal biomass disintegrated at 12,000rpm for 30min, and an STPP dosage of about 0.04g/gCOD was chosen as an optimal parameter. Chemo disperser liquefaction (CDL) was found to be energetically and economically sustainable in terms of liquefaction, methane production, and net profit (15%, 0.14gCOD/gCOD, and 4 USD/Ton of algal biomass) and preferable to disperser liquefaction (DL) (10%, 0.11 gCOD/gCOD, and -475 USD/Ton of algal biomass).

  12. Evaluating Chemical Dispersant Efficacy In An Experimental Wave Tank: 1, Dispersant Effectiveness As A Function Of Energy Dissipation Rate

    EPA Science Inventory

    Numerous laboratory test systems have been developed for the comparison of efficacy between various chemical oil dispersant formulations. However, for the assessment of chemical dispersant effectiveness under realistic sea state, test protocols are required to produce hydrodynam...

  13. Evaluating Chemical Dispersant Efficacy In An Experimental Wave Tank: 1, Dispersant Effectiveness As A Function Of Energy Dissipation Rate

    EPA Science Inventory

    Numerous laboratory test systems have been developed for the comparison of efficacy between various chemical oil dispersant formulations. However, for the assessment of chemical dispersant effectiveness under realistic sea state, test protocols are required to produce hydrodynam...

  14. [Time resolved distribution of excitation energy in collisions of vibrationally excited KH with CO2].

    PubMed

    Feng, Li; Liu, Jing; Wang, Shu-Ying; Zhang, Wen-Jun; Li, Jia-Ling; Dai, Kang; Shen, Yi-Fan

    2014-07-01

    The vibrational levels of KH(X1 sigma+ v" = 0-3) were generated in the reaction of K(5P) with H2. The vibrationally excited KH(v" = 17) was populated by an overtone pump-probe configuration Different characteristics of collisional energy transfer in highly and lowly excited vibrational levels of KH and CO2 were investigated through measuring the time-resolved distribution of vibrational energy in KH(v" = 17.3) + CO2 collisions. For KH(v" = 17), there existed three principal regions of vibration temperature (T(v)) in this equilibration process. The initial phase consists of very rapid fall in T(v) within - 5 micros, and the vibrational energy of KH(v" = 17) is mainly transferred to the vibrational levels of CO2 (00 degrees 1) or high rotational levels of CO2 (00 degrees 0). The second phase (5-20 micros) has a slight decline in T(v), and the process of energy transfer to vibrational levels or high rotational levels of CO2 has already finished. The vibration temperature of the third phase has a slightly more rapid decline compared with the last phase. This phase shows that the process of transfer to lowly rotational levels and translation energy of CO2 is accelerated. The equilibration of vibrationally excited KH (v" = 3) in CO2 was also investigated. There are similarities to the behavior of KH (v" = 17) in CO2 plot, but also are significant differences. Once the initial resonant V-R exchange has equalized vibrational temperatures, there is a very slow linear decline in T(v) with equilibrium attained within -80 micros. This same point is reached within 15 micros for KH (v" = 17). The data demonstrate that single rate coefficient measurements are unlikely to capture the complex nature of processes that generally are multistaged with different relaxation rates characterizing each different stage. Examination of the quantum state distributions reveals that these distinct stages reflect the dominance of specific energy transfer mechanisms, some of which are inherently

  15. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    NASA Astrophysics Data System (ADS)

    Godet, Christian; David, Denis

    2017-08-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ (q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged <ɛ (q, ω) > q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) < Im[-1/ɛ (q, ω)] > q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 (L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = (H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  16. Analysis of tincal ore waste by energy dispersive X-ray fluorescence (EDXRF) Technique

    NASA Astrophysics Data System (ADS)

    Kalfa, Orhan Murat; Üstündağ, Zafer; Özkırım, Ilknur; Kagan Kadıoğlu, Yusuf

    2007-01-01

    Etibank Borax Plant is located in Kırka-Eskişehir, Turkey. The borax waste from this plant was analyzed by means of energy dispersive X-ray fluorescence (EDXRF). The standard addition method was used for the determination of the concentration of Al, Fe, Zn, Sn, and Ba. The results are presented and discussed in this paper.

  17. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  18. Rossby wave energy dispersion from tropical cyclone in zonal basic flows

    NASA Astrophysics Data System (ADS)

    Shi, Wenli; Fei, Jianfang; Huang, Xiaogang; Liu, Yudi; Ma, Zhanhong; Yang, Lu

    2016-04-01

    This study investigates tropical cyclone energy dispersion under horizontally sheared flows using a nonlinear barotropic model. In addition to common patterns, unusual features of Rossby wave trains are also found in flows with constant vorticity and vorticity gradients. In terms of the direction of the energy dispersion, the wave train can rotate clockwise and elongate southwestward under anticyclonic circulation (ASH), which contributes to the reenhancement of the tropical cyclone (TC). The wave train even splits into two obvious wavelike trains in flows with a southward vorticity gradient (WSH). Energy dispersed from TCs varies over time, and variations in the intensity of the wave train components typically occur in two stages. Wave-activity flux diagnosis and ray tracing calculations are extended to the frame that moves along with the TC to reveal the concrete progress of wave propagation. The direction of the wave-activity flux is primarily determined by the combination of the basic flow and the TC velocity. Along the flux, the distribution of pseudomomentum effectively illustrates the development of wave trains, particularly the rotation and split of wave propagation. Ray tracing involves the quantitative tracing of wave features along rays, which effectively coincide with the wave train regimes. Flows of a constant shear (parabolic meridional variation) produce linear (nonlinear) wave number variations. For the split wave trains, the real and complex wave number waves move along divergent trajectories and are responsible for different energy dispersion ducts.

  19. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  20. Analysis of titanium and zirconium in red mud with energy dispersive x-ray spectrometry

    SciTech Connect

    Kobya, M.; Ertugrul, M.; Dogan, O.; Simsek, O.

    1996-11-01

    An energy dispersive x-ray fluorescence technique was used for the determination of Titanium (Ti) and Zirconium (Zr) in red mud by using a standard addition method. An annular {sup 241}Am source is employed for excitation of K shells of elements. 13 refs., 2 figs., 1 tab.

  1. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  2. 20-element HgI[sub 2] energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.S.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.); Patt, B.E. )

    1992-10-01

    This paper describes recent progress in the development of HgI[sub 2] energy dispersive x-ray arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20-element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K[sub alpha]) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken form diluted samples simulating proteins with nickel.

  3. 20 element HgI sub 2 energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.A.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.); Patt, B.E. )

    1991-01-01

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K{sub a}) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  4. 20 element HgI{sub 2} energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.A.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J.; Hedman, B.; Hodgson, K.O.; Patt, B.E.

    1991-12-31

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K{sub a}) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  5. Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer

    SciTech Connect

    Kinyanjui, M. K. Kaiser, U.; Benner, G.; Pavia, G.; Boucher, F.; Habermeier, H.-U.; Keimer, B.

    2015-05-18

    We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presented approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.

  6. Fast Time Resolved Techniques as Key to the Understanding of Energy and Particle Transport in HPPMS-Plasmas

    NASA Astrophysics Data System (ADS)

    Maszl, Christian; Breilmann, Wolfgang; Berscheid, Lars; Benedikt, Jan; von Keudell, Achim

    2014-10-01

    High power pulsed magnetron sputtering (HPPMS) plasmas are pulsed discharges where the plasma composition as well as the fluxes and energies of ions are changing during the pulse. The time resolved energy distribution for Ar$^{1+}$ ions was measured and Phase Resolved Optical Emission Spectroscopy (PROES) for the Ar I line at 760 nm was done to get more insight in the transport properties of the plasma forming noble gas. These measurements were performed during HPPMS of titanium with argon at 0.5 Pa. The peak power density during the 50 $\\mu$s pulses was 1.8 kW/cm$^2$. In this contribution we demonstrate how time resolved mass spectrometry and ICCD cameras can be used to shed more light on energy and particle transport in HPPMS-plasmas.

  7. First order variation of the dispersion function with particle energy deviation

    SciTech Connect

    Delahaye, J.P.; Jaeger, J.

    1984-12-01

    The variation of the dispersion function with the particle energy deviation can presently be calculated from second order transfer matrices; its periodic solution is determined numerically. The general differential equations for the dispersion function deduced from the complete equation of motion to second order are solved, using Green's function integral leading to an analytical expression of the periodic solution of the dispersion function D/sub 0/ and of the first order perturbation, D/sub 1/, with respect to energy deviation. The same method can be extended to higher order perturbations of the dispersion function. The determination of the periodic solution as well as the transportation of these two dispersion functions through any element depends only on two particular integrals. These integrals are derived for the general case of a combined function magnet, with up to second order components. The derivation includes the contribution from the edges. Chapter 2 and 3 deal with closed machines, chapter 4 applies these results to beam transport lines. These analytical expressions are then applied to a typical machine in order to illustrate the most important driving terms; the results do agree with those obtained by optics programs like MAD or DIMAT based on second order transfer matrices.

  8. The relative effect of behaviour in larval dispersal in a low energy embayment

    NASA Astrophysics Data System (ADS)

    Daigle, Rémi M.; Chassé, Joël; Metaxas, Anna

    2016-05-01

    This study examined the relative importance of tidal phase, larval behaviour, release site, depth layer, and vertical swimming velocity on mean in-sea dispersal distance, retention, distance from shore, and population connectivity. Using a biophysical model, we simulated larval dispersal of marine benthic invertebrates for 6 taxonomic groups representing different combinations of swimming speed, and depth preference in St. George's Bay, NS, Canada, a shallow bay with low energy (e.g. lack of estuarine circulation). The biophysical model was run over a period of 3 months, from Jul to Sep, representing the period when larvae of the targeted species were present, and at each of 3 years. Overall, release site had the strongest effect of all factors on the dispersal metrics. Although less important than release site in our system, vertical distribution and swim speed had a significant effect which would likely be more pronounced in high (i.e. with features such as estuarine circulation or internal waves) than low energy environments. Retention and distance from shore were more responsive to our manipulations than dispersal distance, both in terms of the number of ecologically significant effects and the magnitudes of their effect size. These findings allow for the prioritization of biophysical model parameters and improved simulations of larval dispersal.

  9. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    PubMed

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  10. Spatially resolving the very high energy emission from MGRO J2019+37 with VERITAS

    SciTech Connect

    Aliu, E.; Errando, M.; Aune, T.; Behera, B.; Chen, X.; Federici, S.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Bird, R.; Bouvier, A.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Dwarkadas, V. V.; Falcone, A. E-mail: nahee@uchicago.edu; and others

    2014-06-10

    We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (∼2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (∼1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2–104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.

  11. Feasibility of using energy-resolving detectors in differential phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Baturin, Pavlo

    2016-03-01

    In a common clinical setting, conventional absorption-based imaging provides relatively good contrast between bonelike and soft-tissue materials. The reliability of material differentiation, however, is hampered when materials with similar absorption properties are scanned. This problem can be addressed by utilizing a spectral imaging technique whereby multiple X-ray measurements are taken at different beam conditions. In this work, we discuss the possibility of using a spectral imaging approach in a grating-based, differential-phase contrast-imaging (DPCI) modality. Two approaches, dual exposure with a conventional flat-panel detector (FPD) and a single exposure with a photon-counting energy-resolving detector (PCD), were reviewed. The feasibility of a single-exposure DPCI and a two-bin PCD setup was assessed quantitatively by a least-squares minimization algorithm applied to an X-ray diffraction pattern. It was shown that a two-peak-shaped X-ray spectrum can allow PCDs to be placed unambiguously at single Talbot distances making it possible to simultaneously detect photons in each energy bin with comparable efficiencies. The results of this work can help build a bridge between two rapidly developing imaging modalities, X-ray spectral imaging and X-ray DPCI.

  12. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector

    PubMed Central

    Meng, L.-J.; Tan, J.W.; Spartiotis, K.; Schulman, T.

    2016-01-01

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12–200 keV and a good energy resolution of 3–4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented. PMID:28260825

  13. Spatially Resolving the Very High Energy Emission from MGRO J2019+37 with VERITAS

    NASA Astrophysics Data System (ADS)

    Aliu, E.; Aune, T.; Behera, B.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Dwarkadas, V. V.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Gotthelf, E. V.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kargaltsev, O.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krennrich, F.; Lang, M. J.; Madhavan, A. S.; Maier, G.; McArthur, S.; McCann, A.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Pandel, D.; Park, N.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Ragan, K.; Rajotte, J.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Roberts, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Vincent, S.; Wakely, S. P.; Weinstein, A.; Welsing, R.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2014-06-01

    We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (~2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (~1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2-104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.

  14. Energy release in the solar corona from spatially resolved magnetic braids.

    PubMed

    Cirtain, J W; Golub, L; Winebarger, A R; De Pontieu, B; Kobayashi, K; Moore, R L; Walsh, R W; Korreck, K E; Weber, M; McCauley, P; Title, A; Kuzin, S; DeForest, C E

    2013-01-24

    It is now apparent that there are at least two heating mechanisms in the Sun's outer atmosphere, or corona. Wave heating may be the prevalent mechanism in quiet solar periods and may contribute to heating the corona to 1,500,000 K (refs 1-3). The active corona needs additional heating to reach 2,000,000-4,000,000 K; this heat has been theoretically proposed to come from the reconnection and unravelling of magnetic 'braids'. Evidence favouring that process has been inferred, but has not been generally accepted because observations are sparse and, in general, the braided magnetic strands that are thought to have an angular width of about 0.2 arc seconds have not been resolved. Fine-scale braiding has been seen in the chromosphere but not, until now, in the corona. Here we report observations, at a resolution of 0.2 arc seconds, of magnetic braids in a coronal active region that are reconnecting, relaxing and dissipating sufficient energy to heat the structures to about 4,000,000 K. Although our 5-minute observations cannot unambiguously identify the field reconnection and subsequent relaxation as the dominant heating mechanism throughout active regions, the energy available from the observed field relaxation in our example is ample for the observed heating.

  15. Cloud-resolving large eddy simulations of the silver iodide dispersion from ground and its impact on orographic clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Chu, Xia

    Efficiency of cloud seeding has been investigated in the last 60 years, but no explicit results have been proved yet due to various reasons including an inability to distinguish the seeding effect from that of natural variability. Cloud-resolving large eddy simulations (LES) have been used to simulate ground-based silver iodide (AgI) dispersion and its impact on orographic clouds and precipitation. Simulations of ground-based AgI dispersion on a clear day over the Medicine Bow range in southeast Wyoming have been conducted using the Weather Research and Forecasting model (WRF) in both non-LES and LES mode with different spacing resolutions to compare with airborne ice nuclei counter measurements. The LES simulations with 100-m grid spacing slightly underestimated AgI concentrations aloft and overestimated them close to the ground due to a more stable simulated atmosphere than observed. Non-LES simulations using planetary boundary layer (PBL) schemes had difficulty in capturing the shear-dominant turbulent PBL structure over complex terrain in the wintertime and thus were unable to reproduce the vertical dispersion of AgI. Profiling airborne radar data is used to validate numerical simulations of the impact of ground-based glaciogenic cloud seeding in a shallow orographic winter storm over the Medicine Bow range on 18 February, 2009. Observed radar reflectivity indicates a positive seeding effect near the surface while the 100-m grid spacing resolution LES simulation implies a negative seeding effect. Positive seeding effect in a sensitivity test confirms the decrease in storm intensity can easily overwhelm the actual positive seeding effect.

  16. Valence electron energy loss study of Fe-doped SrTiO3 and a sigma13 boundary: electronic structure and dispersion forces.

    PubMed

    van Benthem, K; French, R H; Sigle, W; Elsässer, C; Rühle, M

    2001-02-01

    Valence electron energy loss spectroscopy in a dedicated scanning transmission electron microscope has been used to obtain the interband transition strength of a sigma13 tilt grain boundary in SrTiO3. In a first step the electronic structure of bulk SrTiO3 has been analysed quantitatively by comparing VEELS spectra with vacuum ultraviolet spectra and with ab initio density of states calculations. The electronic structure of a near sigma13 grain boundary and the corresponding dispersion forces were then determined by spatially resolved VEELS. Also the effects of delocalization of the inelastic scattering processes were estimated and compared with results from the literature.

  17. A new approach to synchrotron energy-dispersive X-ray diffraction computed tomography.

    PubMed

    Lazzari, Olivier; Egan, Christopher K; Jacques, Simon D M; Sochi, Taha; Di Michiel, Marco; Cernik, Robert J; Barnes, Paul

    2012-07-01

    A new data collection strategy for performing synchrotron energy-dispersive X-ray diffraction computed tomography has been devised. This method is analogous to angle-dispersive X-ray diffraction whose diffraction signal originates from a line formed by intersection of the incident X-ray beam and the sample. Energy resolution is preserved by using a collimator which defines a small sampling voxel. This voxel is translated in a series of parallel straight lines covering the whole sample and the operation is repeated at different rotation angles, thus generating one diffraction pattern per translation and rotation step. The method has been tested by imaging a specially designed phantom object, devised to be a demanding validator for X-ray diffraction imaging. The relative strengths and weaknesses of the method have been analysed with respect to the classic angle-dispersive technique. The reconstruction accuracy of the method is good, although an absorption correction is required for lower energy diffraction because of the large path lengths involved. The spatial resolution is only limited to the width of the scanning beam owing to the novel collection strategy. The current temporal resolution is poor, with a scan taking several hours. The method is best suited to studying large objects (e.g. for engineering and materials science applications) because it does not suffer from diffraction peak broadening effects irrespective of the sample size, in contrast to the angle-dispersive case.

  18. Time-resolved X-ray measurements of energy relaxation in ultrafast laser excited semiconductors

    NASA Astrophysics Data System (ADS)

    Lee, Soo Heyong

    In semiconductors, the properties and dynamics of photoexcited carriers and subsequent energy relaxation through lattice vibrations are quite complex and occur on a variety of time scales. Typically the transient dynamics involving transitions of electrons from lower energy states to higher ones upon photoexcitation take place almost instantaneously. The electrons eventually recombine with holes while losing most of their kinetic energy to the lattice through various routes at different time scales. The lattice relaxation processes, especially at high photoexcitation levels, have been subjected to numerous experimental and theoretical investigations during past decades. Time-resolved X-ray diffraction (TRXD) method provides a novel tool for studying these dynamics because X-rays have short wavelength, long material penetration depth and relatively strong interaction with core electrons. In my work, femtosecond laser pulses excite electrons in opaque materials, and subsequent carrier relaxation process and coherent/incoherent lattice dynamics are investigated using TRXD. My thesis covers quantitative detail of the generation and propagation of ultrafast laser induces acoustic strain waves in bulk semiconductor materials as well as at the heterostructure interface. In particular propagation of strain waves, which are comprised of broadband low wave vector phonons, is studied in an AlGaAs/GaAs multilayer structure. The spatial and temporal profiles of the acoustic waves at varying photoexcitation density are characterized. We are able to distinguish thermal from carrier-induced strain and measure the free-carrier absorption cross-section. The approximation that impulsively generated acoustic waves are uniaxial is found to break down. The research also demonstrates a novel approach to explore laser induced acoustic phonon dynamics at high wavevector, near the Brillouin zone-boundary, the details of which are inaccessible to optical pump-probe methods. Throughout this

  19. An energy dispersive bent Laue monochromator for K-edge subtraction imaging

    SciTech Connect

    Samadi, Nazanin; Martinson, Mercedes; Bassey, Bassey; Gomez, Ariel; Belev, George; Chapman, Dean

    2016-07-27

    K-Edge Subtraction (KES) is a powerful synchrotron imaging method that allows the quantifiable determination of a contrast element (e.g. iodine) and matrix material (usually represented as water) in both projection imaging and computed tomography. A bent Laue monochromator has been developed that has very good focal and energy dispersive properties for KES. Approximately 5% of the vertical beam profile is involved in “edge crossing” energies, thus no splitter is employed as has been done with previous implementations where approximately 33% of the beam size was blocked. The beam can be narrowed vertically allowing a smaller crossover angle than a splitter based system which minimizes artifacts. The combination of good spatial resolution, energy dispersive properties, flux and a unique approach to data analysis make this system nearly ideal for KES.

  20. Dipole oscillator strength properties and dispersion energies for SiH 4

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Mukesh; Meath, William J.

    2003-01-01

    A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silane (SiH 4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for the molecule. A pseudo-DOSD for SiH 4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C 6, for the interaction of silane with itself and with forty-four other species, and the triple-dipole dispersion energy coefficient C 9 for (SiH 4) 3.

  1. Dipole oscillator strengths, dipole properties and dispersion energies for SiF4

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Mukesh; Meath, William J.

    2003-01-01

    A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.

  2. A Monte Carlo simulation study of the effect of energy windows in computed tomography images based on an energy-resolved photon counting detector

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2012-08-01

    The energy-resolved photon counting detector provides the spectral information that can be used to generate images. The novel imaging methods, including the K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging, are based on the energy-resolved photon counting detector and can be realized by using various energy windows or energy bins. The location and width of the energy windows or energy bins are important because these techniques generate an image using the spectral information defined by the energy windows or energy bins. In this study, the reconstructed images acquired with K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging were simulated using the Monte Carlo simulation. The effect of energy windows or energy bins was investigated with respect to the contrast, coefficient-of-variation (COV) and contrast-to-noise ratio (CNR). The three images were compared with respect to the CNR. We modeled the x-ray computed tomography system based on the CdTe energy-resolved photon counting detector and polymethylmethacrylate phantom, which have iodine, gadolinium and blood. To acquire K-edge images, the lower energy thresholds were fixed at K-edge absorption energy of iodine and gadolinium and the energy window widths were increased from 1 to 25 bins. The energy weighting factors optimized for iodine, gadolinium and blood were calculated from 5, 10, 15, 19 and 33 energy bins. We assigned the calculated energy weighting factors to the images acquired at each energy bin. In K-edge images, the contrast and COV decreased, when the energy window width was increased. The CNR increased as a function of the energy window width and decreased above the specific energy window width. When the number of energy bins was increased from 5 to 15, the contrast increased in the projection-based energy weighting images. There is a little difference in the contrast, when the number of energy bin is

  3. A Monte Carlo simulation study of the effect of energy windows in computed tomography images based on an energy-resolved photon counting detector.

    PubMed

    Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2012-08-07

    The energy-resolved photon counting detector provides the spectral information that can be used to generate images. The novel imaging methods, including the K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging, are based on the energy-resolved photon counting detector and can be realized by using various energy windows or energy bins. The location and width of the energy windows or energy bins are important because these techniques generate an image using the spectral information defined by the energy windows or energy bins. In this study, the reconstructed images acquired with K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging were simulated using the Monte Carlo simulation. The effect of energy windows or energy bins was investigated with respect to the contrast, coefficient-of-variation (COV) and contrast-to-noise ratio (CNR). The three images were compared with respect to the CNR. We modeled the x-ray computed tomography system based on the CdTe energy-resolved photon counting detector and polymethylmethacrylate phantom, which have iodine, gadolinium and blood. To acquire K-edge images, the lower energy thresholds were fixed at K-edge absorption energy of iodine and gadolinium and the energy window widths were increased from 1 to 25 bins. The energy weighting factors optimized for iodine, gadolinium and blood were calculated from 5, 10, 15, 19 and 33 energy bins. We assigned the calculated energy weighting factors to the images acquired at each energy bin. In K-edge images, the contrast and COV decreased, when the energy window width was increased. The CNR increased as a function of the energy window width and decreased above the specific energy window width. When the number of energy bins was increased from 5 to 15, the contrast increased in the projection-based energy weighting images. There is a little difference in the contrast, when the number of energy bin is

  4. Time-domain electromagnetic energy in a frequency-dispersive left-handed medium

    NASA Astrophysics Data System (ADS)

    Cui, Tie Jun; Kong, Jin Au

    2004-11-01

    From Maxwell’s equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [

    R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)
    ], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain.

  5. Low-energy phonon dispersion in LaFe4Sb12

    NASA Astrophysics Data System (ADS)

    Leithe-Jasper, Andreas; Boehm, Martin; Mutka, Hannu; Koza, Michael M.

    We studied the vibrational dynamics of a single crystal of LaFe4Sb12 by three-axis inelastic neutron spectroscopy. The dispersion of phonons with wave vectors q along [ xx 0 ] and [ xxx ] directions in the energy range of eigenmodes with high amplitudes of lanthanum vibrations, i.e., at ℏω < 12 meV is identified. Symmetry-avoided anticrossing dispersion of phonons is established in both monitored directions and distinct eigenstates at high-symmetry points and at the Brillouin-zone center are discriminated. The experimentally derived phonon dispersion and intensities are compared with and backed up by ab initio lattice dynamics calculations. results of the computer model match well with the experimental data.

  6. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    PubMed

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  7. High-energy anomaly in Nd2-xCexCuO4 investigated by angle-resolved photoemission spectroscopy and quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Schmitt, F.; Moritz, B.; Johnston, S.; Mo, S.-K.; Hashimoto, M.; Moore, R. G.; Lu, D.-H.; Motoyama, E.; Greven, M.; Devereaux, T. P.; Shen, Z.-X.

    2011-05-01

    Recent high-binding-energy angle-resolved photoemission spectroscopy (ARPES) experiments reveal a change in band dispersion in the high-temperature superconducting cuprates (HTSCs) known as the high-energy anomaly (HEA). Despite considerable experimental and theoretical attention, the origin of the HEA remains a topic of some controversy. In this paper we present systematic and comprehensive experimental evidence on the origin of the HEA from ARPES measurements on the electron-doped HTSC material Nd2-xCexCuO4 at a number of dopings across the phase diagram and over the entire Brillouin zone (BZ). Comparing these new experimental findings to quantum Monte Carlo simulations of the single-band Hubbard model across the BZ and for various dopings demonstrates that this simple model qualitatively reproduces the key experimental features of the HEA and points to significant self-energy and band renormalization effects accompanying strong electron correlations as its origin rather than coupling to any one emergent bosonic mode, e.g., antiferromagnetic spin fluctuations. We conclude from comparison to this simple model that the HEA in these systems should be regarded as a crossover from a coherent quasiparticle band at low binding energies, emergent from the upper Hubbard band in electron-doped HTSCs due to doping and modified by subsequent strong band renormalization effects, to oxygen valence bands at higher binding energy that would be revealed in simulations explicitly incorporating these important orbital degrees of freedom.

  8. Controlling the subtle energy balance in protic ionic liquids: dispersion forces compete with hydrogen bonds.

    PubMed

    Fumino, Koichi; Fossog, Verlaine; Stange, Peter; Paschek, Dietmar; Hempelmann, Rolf; Ludwig, Ralf

    2015-02-23

    The properties of ionic liquids are determined by the energy-balance between Coulomb-interaction, hydrogen-bonding, and dispersion forces. Out of a set of protic ionic liquids (PILs), including trialkylammonium cations and methylsulfonate and triflate anions we could detect the transfer from hydrogen-bonding to dispersion-dominated interaction between cation and anion in the PIL [(C6 H13 )3 NH][CF3 SO3 ]. The characteristic vibrational features for both ion-pair species can be detected and assigned in the far-infrared spectra. Our approach gives direct access to the relative strength of hydrogen-bonding and dispersion forces in a Coulomb-dominated system. Dispersion-corrected density functional theory (DFT) calculations support the experimental findings. The dispersion forces could be quantified to contribute about 2.3 kJ mol(-1) per additional methylene group in the alkyl chains of the ammonium cation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Clausius-Clapeyron Scaling of Convective Available Potential Energy (CAPE) in Cloud-Resolving Simulations

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Romps, D. M.

    2015-12-01

    Recent work by Singh and O'Gorman has produced a theory for convective available potential energy (CAPE) in radiative-convective equilibrium. In this model, the atmosphere deviates from a moist adiabat—and, therefore, has positive CAPE—because entrainment causes evaporative cooling in cloud updrafts, thereby steepening their lapse rate. This has led to the proposal that CAPE increases with global warming because the strength of evaporative cooling scales according to the Clausius-Clapeyron (CC) relation. However, CAPE could also change due to changes in cloud buoyancy and changes in the entrainment rate, both of which could vary with global warming. To test the relative importance of changes in CAPE due to CC scaling of evaporative cooling, changes in cloud buoyancy, and changes in the entrainment rate, we subject a cloud-resolving model to a suite of natural (and unnatural) forcings. We find that CAPE changes are primarily driven by changes in the strength of evaporative cooling; the effect of changes in the entrainment rate and cloud buoyancy are comparatively small. This builds support for CC scaling of CAPE.

  10. Investigation of Prolactin Receptor Activation and Blockade Using Time-Resolved Fluorescence Resonance Energy Transfer

    PubMed Central

    Tallet, Estelle; Fernandez, Isabelle; Zhang, Chi; Salsac, Marion; Gregor, Nathalie; Ayoub, Mohammed Akli; Pin, Jean Philippe; Trinquet, Eric; Goffin, Vincent

    2011-01-01

    The prolactin receptor (PRLR) is emerging as a therapeutic target in oncology. Knowledge-based drug design led to the development of a pure PRLR antagonist (Del1-9-G129R-hPRL) that was recently shown to prevent PRL-induced mouse prostate tumorogenesis. In humans, the first gain-of-function mutation of the PRLR (PRLRI146L) was recently identified in breast tumor patients. At the molecular level, the actual mechanism of action of these two novel players in the PRL system remains elusive. In this study, we addressed whether constitutive PRLR activation (PRLRI146L) or PRLR blockade (antagonist) involved alteration of receptor oligomerization and/or of inter-chain distances compared to unstimulated and PRL-stimulated PRLR. Using a combination of various biochemical and spectroscopic approaches (co-IP, blue native electrophoresis, BRET1), we demonstrated that preformed PRLR homodimers are altered neither by PRL- or I146L-induced receptor triggering, nor by antagonist-mediated blockade. These findings were confirmed using a novel time-resolved fluorescence resonance energy transfer (TR-FRET) technology that allows monitoring distance changes between cell surface tagged receptors. This technology revealed that PRLR blockade or activation did not involve detectable distance changes between extracellular domains of receptor chains within the dimer. This study merges with our previous structural investigations suggesting that the mechanism of PRLR activation solely involves intermolecular contact adaptations leading to subtle intramolecular rearrangements. PMID:22649370

  11. Six-color time-resolved Förster resonance energy transfer for ultrasensitive multiplexed biosensing.

    PubMed

    Geißler, Daniel; Stufler, Stefan; Löhmannsröben, Hans-Gerd; Hildebrandt, Niko

    2013-01-23

    Simultaneous monitoring of multiple molecular interactions and multiplexed detection of several diagnostic biomarkers at very low concentrations have become important issues in advanced biological and chemical sensing. Here we present an optically multiplexed six-color Förster resonance energy transfer (FRET) biosensor for simultaneous monitoring of five different individual binding events. We combined simultaneous FRET from one Tb complex to five different organic dyes measured in a filter-based time-resolved detection format with a sophisticated spectral crosstalk correction, which results in very efficient background suppression. The advantages and robustness of the multiplexed FRET sensor were exemplified by analyzing a 15-component lung cancer immunoassay involving 10 different antibodies and five different tumor markers in a single 50 μL human serum sample. The multiplexed biosensor offers clinically relevant detection limits in the low picomolar (ng/mL) concentration range for all five markers, thus providing an effective early screening tool for lung cancer with the possibility of distinguishing small-cell from non-small-cell lung carcinoma. This novel technology will open new doors for multiple biomarker diagnostics as well as multiplexed real-time imaging and spectroscopy.

  12. Production and destruction of eddy kinetic energy in forced submesoscale eddy-resolving simulations

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sonaljit; Ramachandran, Sanjiv; Tandon, Amit; Mahadevan, Amala

    2016-09-01

    We study the production and dissipation of the eddy kinetic energy (EKE) in a submesoscale eddy field forced with downfront winds using the Process Study Ocean Model (PSOM) with a horizontal grid resolution of 0.5 km. We simulate an idealized 100 m deep mixed-layer front initially in geostrophic balance with a jet in a domain that permits eddies within a range of O(1 km-100 km). The vertical eddy viscosities and the dissipation are parameterized using four different subgrid vertical mixing parameterizations: the k - ɛ , the KPP, and two different constant eddy viscosity and diffusivity profiles with a magnitude of O(10-2m2s-1) in the mixed layer. Our study shows that strong vertical eddy viscosities near the surface reduce the parameterized dissipation, whereas strong vertical eddy diffusivities reduce the lateral buoyancy gradients and consequently the rate of restratification by mixed-layer instabilities (MLI). Our simulations show that near the surface, the spatial variability of the dissipation along the periphery of the eddies depends on the relative alignment of the ageostrophic and geostrophic shear. Analysis of the resolved EKE budgets in the frontal region from the simulations show important similarities between the vertical structure of the EKE budget produced by the k - ɛ and KPP parameterizations, and earlier LES studies. Such an agreement is absent in the simulations using constant eddy-viscosity parameterizations.

  13. Sparse view Compton scatter tomography with energy resolved data: experimental and simulation results

    NASA Astrophysics Data System (ADS)

    Desmal, Abdulla; Tracey, Brian H.; Rezaee, Hamideh; Miller, Eric L.; Schubert, Jeffrey R.; Denker, Jeff; Couture, Aaron

    2017-05-01

    X-ray inspection systems play a critical role in many non-destructive testing and security applications, with systems typically measuring attenuation during transmission along straight-line paths connecting sources and detectors. Computed tomography (CT) systems can provide higher-quality images than single- or dual-view systems, but the need to measure many projections through the scene increases system complexity and cost. We seek to maximize the image quality of sparse-view (few-view) systems by combining attenuation data with measurements of Compton-scattered photons, that deflect after scattering and arrive at detectors via broken ray paths that provide additional sampling of the scene. The work below presents experimental validation of a singlescatter forward model for Compton-scatter data measured with energy-resolving detectors, and demonstrates a reconstruction algorithm that combines both attenuation and scatter measurements. The results suggest that including Compton-scattered data in the reconstruction process can improve image quality for few-view systems.

  14. The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis

    NASA Astrophysics Data System (ADS)

    Genzel, Ch.; Denks, I. A.; Gibmeier, J.; Klaus, M.; Wagener, G.

    2007-07-01

    In April 2005 the materials science beamline EDDI ( Energy Dispersive DIffraction) at the Berlin synchrotron storage ring BESSY started operation. The beamline is operated in the energy-dispersive mode of diffraction using the high energy white photon beam provided by a superconducting 7 T multipole wiggler. Starting from basic information on the beamline set-up, its measuring facilities and data processing concept, the wide range of applications for energy-dispersive diffraction is demonstrated by a series of examples coming from different fields in materials sciences. It will be shown, that the EDDI beamline is especially suitable for the investigation of structural properties and gradients in the near surface region of polycrystalline materials. In particular, this concerns the analysis of multiaxial residual stress fields in the highly stressed surface zone of technical parts. The high photon flux further facilitates fast in situ experiments at room as well as high temperature to monitor for example the growth kinetics and reaction in thin film growth.

  15. Computing dispersive, polarizable, and electrostatic shifts of excitation energy in supramolecular systems: PTCDI crystal.

    PubMed

    Megow, Jörg

    2016-09-07

    The gas-to-crystal-shift denotes the shift of electronic excitation energies, i.e., the difference between ground and excited state energies, for a molecule transferred from the gas to the bulk phase. The contributions to the gas-to-crystal-shift comprise electrostatic as well as inductive polarization and dispersive energy shifts of the molecular excitation energies due to interaction with environmental molecules. For the example of 3,4,9,10-perylene-tetracarboxylic-diimide (PTCDI) bulk, the contributions to the gas-to-crystal shift are investigated. In the present work, electrostatic interaction is calculated via Coulomb interaction of partial charges while inductive and dispersive interactions are obtained using respective sum over states expressions. The coupling of higher transition densities for the first 4500 excited states of PTCDI was computed using transition partial charges based on an atomistic model of PTCDI bulk obtained from molecular dynamics simulations. As a result it is concluded that for the investigated model system of a PTCDI crystal, the gas to crystal shift is dominated by dispersive interaction.

  16. Intermolecular dissociation energies of dispersively bound 1-naphtholṡcycloalkane complexes

    NASA Astrophysics Data System (ADS)

    Maity, Surajit; Ottiger, Philipp; Balmer, Franziska A.; Knochenmuss, Richard; Leutwyler, Samuel

    2016-12-01

    Intermolecular dissociation energies D0(S0) of the supersonic jet-cooled complexes of 1-naphthol (1NpOH) with cyclopentane, cyclohexane, and cycloheptane were determined to within <0.5 % using the stimulated-emission pumping resonant two-photon ionization method. The ground state D0(S0) values are bracketed as 20.23 ±0.07 kJ/mol for 1NpOHṡcyclopentane, 20.34 ±0.04 kJ/mol for 1NpOHṡcyclohexane, and 22.07 ±0.10 kJ/mol for two isomers of 1NpOHṡcycloheptane. Upon S0→S1 excitation of the 1-naphthol chromophore, the dissociation energies of the 1NpOHṡcycloalkane complexes increase from 0.1% to 3%. Three dispersion-corrected density functional theory (DFT) methods predict that the cycloalkane moieties are dispersively bound to the naphthol face via London-type interactions, similar to the "face" isomer of the 1-naphtholṡcyclopropane complex [S. Maity et al., J. Chem. Phys. 145, 164304 (2016)]. The experimental and calculated D0(S0) values of the cyclohexane and cyclopentane complexes are practically identical, although the polarizability of cyclohexane is ˜20 % larger than that of cyclopentane. Investigation of the calculated pairwise atomic contributions to the D2 dispersion energy reveals that this is due to subtle details of the binding geometries of the cycloalkanes relative to the 1-naphthol ring. The B97-D3 DFT method predicts dissociation energies within about ±1 % of experiment, including the cyclopropane face complex. The B3LYP-D3 and ωB97X-D calculated dissociation energies are 7-9 and 13-20% higher than the experimental D0(S0) values. Without dispersion correction, all the complexes are calculated to be unbound.

  17. Resolving Key Uncertainties in Subsurface Energy Recovery: One Role of In Situ Experimentation and URLs (Invited)

    NASA Astrophysics Data System (ADS)

    Elsworth, D.

    2013-12-01

    Significant uncertainties remain and influence the recovery of energy from the subsurface. These uncertainties include the fate and transport of long-lived radioactive wastes that result from the generation of nuclear power and have been the focus of an active network of international underground research laboratories dating back at least 35 years. However, other nascent carbon-free energy technologies including conventional and EGS geothermal methods, carbon-neutral methods such as carbon capture and sequestration and the utilization of reduced-carbon resources such as unconventional gas reservoirs offer significant challenges in their effective deployment. We illustrate the important role that in situ experiments may play in resolving behaviors at extended length- and time-scales for issues related to chemical-mechanical interactions. Significantly, these include the evolution of transport and mechanical characteristics of stress-sensitive fractured media and their influence of the long-term behavior of the system. Importantly, these interests typically relate to either creating reservoirs (hydroshearing in EGS reservoirs, artificial fractures in shales and coals) or maintaining seals at depth where the permeating fluids may include mixed brines, CO2, methane and other hydrocarbons. Critical questions relate to the interaction of these various fluid mixtures and compositions with the fractured substrate. Important needs are in understanding the roles of key processes (transmission, dissolution, precipitation, sorption and dynamic stressing) on the modification of effective stresses and their influence on the evolution of permeability, strength and induced seismicity on the resulting development of either wanted or unwanted fluid pathways. In situ experimentation has already contributed to addressing some crucial issues of these complex interactions at field scale. Important contributions are noted in understanding the fate and transport of long-lived wastes

  18. Velocity dispersion of correlated energy spread electron beams in the free electron laser

    NASA Astrophysics Data System (ADS)

    Campbell, L. T.; Maier, A. R.

    2017-03-01

    The effects of a correlated linear energy/velocity chirp in the electron beam in the free electron laser (FEL), and how to compensate for its effects by using an appropriate taper (or reverse-taper) of the undulator magnetic field, is well known. The theory, as described thus far, ignores velocity dispersion from the chirp in the undulator, taking the limit of a ‘small’ chirp. In the following, the physics of compensating for chirp in the beam is revisited, including the effects of velocity dispersion, or beam compression or decompression, in the undulator. It is found that the limit of negligible velocity dispersion in the undulator is different from that previously identified as the small chirp limit, and is more significant than previously considered. The velocity dispersion requires a taper which is nonlinear to properly compensate for the effects of the detuning, and also results in a varying peak current (end thus a varying gain length) over the length of the undulator. The results may be especially significant for plasma driven FELs and low energy linac driven FEL test facilities.

  19. Application of high-resolution linear Radon transform for Rayleigh-wave dispersive energy imaging and mode separating

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.

  20. Energy-Resolved Ion Mobility-Mass Spectrometry—A Concept to Improve the Separation of Isomeric Carbohydrates

    NASA Astrophysics Data System (ADS)

    Hoffmann, Waldemar; Hofmann, Johanna; Pagel, Kevin

    2014-03-01

    Recent works using ion mobility-mass spectrometry (IM-MS) have highlighted the power of this instrumental configuration to tackle one of the greatest challenges in glycomics and glycoproteomics: the existence of isobaric isomers. For a successful separation of species with identical mass but different structure via IM-MS, it is crucial to have sufficient IM resolution. In commercially available IM-MS instruments, however, this resolution is limited by the design of the instrument and usually cannot be increased at-will without extensive modifications. Here, we present a systematic approach to improve the resolving capability of IM-MS instruments using so-called energy-resolved ion mobility-mass spectrometry. The technique utilizes the fact that individual components in an isobaric mixture fragment at considerably different energies when activated in the gas phase via collision-induced dissociation (CID). As a result, certain components can be suppressed selectively at increased CID activation energy. Using a mixture of four isobaric carbohydrates, we show that each of the individual sugars can be resolved and unambiguously identified even when their drift times differ by as little as 3 %. However, the presented results also indicate that a certain difference in the gas-phase stability of the individual components is crucial for a successful separation via energy-resolved IM-MS.

  1. Energy-resolved ion mobility-mass spectrometry--a concept to improve the separation of isomeric carbohydrates.

    PubMed

    Hoffmann, Waldemar; Hofmann, Johanna; Pagel, Kevin

    2014-03-01

    Recent works using ion mobility-mass spectrometry (IM-MS) have highlighted the power of this instrumental configuration to tackle one of the greatest challenges in glycomics and glycoproteomics: the existence of isobaric isomers. For a successful separation of species with identical mass but different structure via IM-MS, it is crucial to have sufficient IM resolution. In commercially available IM-MS instruments, however, this resolution is limited by the design of the instrument and usually cannot be increased at-will without extensive modifications. Here, we present a systematic approach to improve the resolving capability of IM-MS instruments using so-called energy-resolved ion mobility-mass spectrometry. The technique utilizes the fact that individual components in an isobaric mixture fragment at considerably different energies when activated in the gas phase via collision-induced dissociation (CID). As a result, certain components can be suppressed selectively at increased CID activation energy. Using a mixture of four isobaric carbohydrates, we show that each of the individual sugars can be resolved and unambiguously identified even when their drift times differ by as little as 3%. However, the presented results also indicate that a certain difference in the gas-phase stability of the individual components is crucial for a successful separation via energy-resolved IM-MS.

  2. High performance charge-state resolving ion energy analyzer optimized for intense laser studies on low-density cluster targets.

    PubMed

    Komar, D; Meiwes-Broer, K-H; Tiggesbäumker, J

    2016-10-01

    We report on a versatile ion analyzer which is capable to resolve ion charge states and energies with a resolution of E/ΔE = 100 at 75 keV/nucleon. Charge states are identified by their characteristic deflection in a magnetic field, whereas the ion energies are independently determined by a time-of-flight measurement. To monitor the signals a delay-line detector is used which records ion impact positions and times in each laser shot. Compared to conventional Thomson parabola spectrometers our instrument provides a low background measurement, hence a superior dynamic range. Further features are an improved energy resolution and a significantly increased transmission. We demonstrate the performance by showing charge-state resolved ion energy spectra from the Coulomb explosion of a low-density target, i.e., silver clusters exposed to intense femtosecond laser pulses.

  3. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 1. Monomers

    SciTech Connect

    Debreczeny, M.P.; Sauer, K.; Zhou, J.; Bryant, D.A.

    1995-05-18

    Rate constants for excitation energy transfer in light-harvesting protein, C-phycocyanin (PC), in the monomeric aggregation state, isolated from the cyanobacterium cynechococcus sp. PCC 7002, are calculated, using Foerster theory and compared with the results of time-resolved fluorescence measurements. The assignments of the energy-transfer rate constants in PC monomers are confirmed here by time-resolved fluorescence anisotropy measurements of the PC monomers isolated from both the wild-type and a mutant strain (cpcB/C155S) whose PC is missing the {beta}{sub 155} chromophore. It is concluded that the Foerster model of resonant energy transfer in the weak coupling limit successfully describes the dominant energy-transfer processes in this protein in the monomeric state. 31 refs., 3 figs., 4 tabs.

  4. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  5. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  6. Relating work, change in internal energy, and heat radiated for dispersion force situations

    NASA Astrophysics Data System (ADS)

    Cole, Daniel C.

    2000-01-01

    This article describes how Casimir-like forces can be calculated for quasistatic situations of macroscopic bodies composed of different materials. The framework of stochastic electrodynamics (SED) is used for much of this discussion in an attempt to provide a very clear physical picture when considering quantities like forces, work done, changes in internal energy, and heat flow. By relating these quantities, one can readily understand why the different methods of calculating dispersion forces agree, such as when obtaining forces via changes in electromagnetic zero-point energy versus computing the average of the Maxwell stress tensor. In addition, a number of physical subtleties involving dispersion forces are discussed, that were certainly not recognized in early work on blackbody radiation, and that still may not be fully appreciated. .

  7. Compact energy dispersive X-ray microdiffractometer for diagnosis of neoplastic tissues

    NASA Astrophysics Data System (ADS)

    Sosa, C.; Malezan, A.; Poletti, M. E.; Perez, R. D.

    2017-08-01

    An energy dispersive X-ray microdiffractometer with capillary optics has been developed for characterizing breast cancer. The employment of low divergence capillary optics helps to reduce the setup size to a few centimeters, while providing a lateral spatial resolution of 100 μm. The system angular calibration and momentum transfer resolution were assessed by a detailed study of a polycrystalline reference material. The performance of the system was tested by means of the analysis of tissue-equivalent samples previously characterized by conventional X-ray diffraction. In addition, a simplified correction model for an appropriate comparison of the diffraction spectra was developed and validated. Finally, the system was employed to evaluate normal and neoplastic human breast samples, in order to determine their X-ray scatter signatures. The initial results indicate that the use of this compact energy dispersive X-ray microdiffractometer combined with a simplified correction procedure is able to provide additional information to breast cancer diagnosis.

  8. Leading-order nonlocal kinetic energy in peridynamics for consistent energetics and wave dispersion

    NASA Astrophysics Data System (ADS)

    Dayal, Kaushik

    2017-08-01

    This work considers the approximation of peridynamics by strain-gradient models in the linear, one-dimensional setting. Strain-gradient expansions that approximate the peridynamic dispersion relation using Taylor series are compared to strain-gradient models that approximate the peridynamic elastic energy. The dynamic and energetic expansions differ from each other, and neither captures an important feature of peridynamics that mimics atomic-scale dynamics, namely that the frequency of short waves is bounded and non-zero. The paper next examines peridynamics as the limit model along a sequence of strain-gradient models that consistently approximate both the energetics and the dispersion properties of peridynamics. Formally examining the limit suggests that the inertial term in the dynamical equation of peridynamics - or equivalently, the peridynamic kinetic energy - is necessarily nonlocal in space to balance the spatial nonlocality in the elastic energy. The nonlocality in the kinetic energy is of leading-order in the following sense: classical elasticity is the zeroth-order theory in both the kinetically nonlocal peridynamics and the classical peridynamics, but once nonlocality in the elastic energy is introduced, it must be balanced by nonlocality in the kinetic energy at the same order. In that sense, the kinetic nonlocality is not a higher-order correction; rather, the kinetic nonlocality is essential for consistent energetics and dynamics even in the simplest setting. The paper then examines the implications of kinetically nonlocal peridynamics in the context of stationary and propagating discontinuities of the kinematic fields.

  9. Numerical Modeling of Fluorescence Emission Energy Dispersion in Luminescent Solar Concentrator

    NASA Astrophysics Data System (ADS)

    Li, Lanfang; Sheng, Xing; Rogers, John; Nuzzo, Ralph

    2013-03-01

    We present a numerical modeling method and the corresponding experimental results, to address fluorescence emission dispersion for applications such as luminescent solar concentrator and light emitting diode color correction. Previously established modeling methods utilized a statistic-thermodynamic theory (Kenard-Stepnov etc.) that required a thorough understanding of the free energy landscape of the fluorophores. Some more recent work used an empirical approximation of the measured emission energy dispersion profile without considering anti-Stokes shifting during absorption and emission. In this work we present a technique for modeling fluorescence absorption and emission that utilizes the experimentally measured spectrum and approximates the observable Frank-Condon vibronic states as a continuum and takes into account thermodynamic energy relaxation by allowing thermal fluctuations. This new approximation method relaxes the requirement for knowledge of the fluorophore system and reduces demand on computing resources while still capturing the essence of physical process. We present simulation results of the energy distribution of emitted photons and compare them with experimental results with good agreement in terms of peak red-shift and intensity attenuation in a luminescent solar concentrator. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293.

  10. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  11. Use of MCNP code in energy dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Trojek, T.; Čechák, T.

    2007-10-01

    Monte Carlo simulations enable us to improve the applicability of analytical techniques based on emission of characteristic radiation. In particular, the MCNP4C2 code was tested for interpretation of measured data obtained with the use of energy dispersive X-ray fluorescence analysis. This paper describes MCNP outputs and compares them with the results of analytical calculations or experiments. Then the application of Monte Carlo simulations to the prediction of measurement results is shown, and the MCNP results are verified.

  12. Analysis of some Nigerian solid mineral ores by energy-dispersive X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Obiajunwa, E. I.

    2001-11-01

    Determination of major, minor and trace elements in some Nigerian solid mineral ores by energy-dispersive X-ray fluorescence (EDXRF) spectroscopy is described. Concentration values of major, minor and trace elements for Z>18 are reported. The mineral ores studied include (i) tantalite-coloumbite minerals, (ii) bismuth minerals and (iii) lead minerals. The accuracy and precision of the technique for chemical analysis was assured by analysing the geological standards mica-Fe (biotite) and NBS 278 (obsidian).

  13. Conceptual understanding of climate change with a globally resolved energy balance model

    NASA Astrophysics Data System (ADS)

    Dommenget, Dietmar; Flöter, Janine

    2011-12-01

    The future climate change projections are essentially based on coupled general circulation model (CGCM) simulations, which give a distinct global warming pattern with arctic winter amplification, an equilibrium land-sea warming contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the Intergovernmental Panel on Climate Change (IPCC) predictions, the conceptual understanding of these predicted structures of climate change and the causes of their uncertainties is very difficult to reach if only based on these highly complex CGCM simulations. In the study presented here we will introduce a very simple, globally resolved energy balance (GREB) model, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the strongly simplified energy balance models and the fully coupled 4-dimensional complex CGCMs. It provides a fast tool for the conceptual understanding and development of hypotheses for climate change studies, which shall build a basis or starting point for more detailed studies of observations and CGCM simulations. It is based on the surface energy balance by very simple representations of solar and thermal radiation, the atmospheric hydrological cycle, sensible turbulent heat flux, transport by the mean atmospheric circulation and heat exchange with the deeper ocean. Despite some limitations in the representations of the basic processes, the models climate sensitivity and the spatial structure of the warming pattern are within the uncertainties of the IPCC models simulations. It is capable of simulating aspects of the arctic winter amplification, the equilibrium land-sea warming contrast and the inter-hemispheric warming gradient with good agreement to the IPCC models in amplitude and structure. The results give some insight into the understanding of the land-sea contrast and the polar amplification. The GREB model suggests that the regional inhomogeneous

  14. Low-energy dispersion of dynamic charge stripes in La1.75Sr0.25NiO4 observed with inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Zhong, Ruidan; Tranquada, John; Gu, Genda; Reznik, Dmitry; Winn, Barry

    The dynamic stripe correlations have been the subject of intense research, owing to the possible links with high-Tc superconductivity. In light of a recently published, direct observation of charge-stripe fluctuations in La2-xSrxNiO4 using inelastic neutron scattering, we did a follow-up neutron experiment on a x=0.25 sample to characterize the low-energy dispersion of these dynamic charge stripes using the HYSPEC instrument at the Spallation Neutron Source. The scattering signals are collected in the vicinity of a charge-order peak with a large wave vector (4.4, 3, 0), where dynamic spin-stripe correlations are negligible. Mapping the low-energy charge-stripe fluctuations in a wide temperature range, we observe a finite dispersion along the stripe-modulation direction at T >=160K where the charge stripes become disordered, while the steep dispersion in the orthogonal direction is not resolved. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-SC00112704.

  15. Generating an image of dispersive energy by frequency decomposition and slant stacking

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.

    2007-01-01

    We present a new algorithm for calculating an image of dispersive energy in the frequency-velocity (f-v) domain. The frequency decomposition is first applied to a shot gather in the offset-time domain to stretch impulsive data into pseudo-vibroseis data or frequency-swept data. Because there is a deterministic relationship between frequency and time in a sweep used in the frequency decomposition, the first step theoretically completes the transform from time to frequency. The slant stacking is then performed on the frequency-swept data to complete the transform from offset to velocity. This simple two-step algorithm generates an image of dispersive energy in the f-v domain. The straightforward transform only uses offset information of data so that this algorithm can be applied to data acquired with arbitrary geophone-acquisition geometry. Examples of synthetic and real-world data demonstrate that this algorithm generates accurate images of dispersive energy of the fundamental as well as higher modes. ?? Birkha??user Verlag, Basel, 2007.

  16. Anomalous doping variation of the nodal low-energy feature of superconducting (Bi,Pb)2(Sr,La)2CuO(6+δ) crystals revealed by laser-based angle-resolved photoemission spectroscopy.

    PubMed

    Kondo, Takeshi; Nakashima, Y; Malaeb, W; Ishida, Y; Hamaya, Y; Takeuchi, Tsunehiro; Shin, S

    2013-05-24

    The nodal band dispersion in (Bi,Pb)(2)(Sr,La)(2)CuO(6+δ) (Bi2201) is investigated over a wide range of doping by using 7-eV laser-based angle-resolved photoemission spectroscopy. We find that the low-energy band renormalization ("kink"), recently discovered in Bi(2)Sr(2)CaCu(2)O(8+δ) (Bi2212), also occurs in Bi2201, but at a binding energy around half that in Bi2212. Surprisingly, the coupling energy dramatically increases with a decrease of carrier concentration, showing a sharp enhancement across the optimal doping. These properties (material and doping dependence of the coupling energy) demonstrate the significant correlation among the mode coupling, the energy gap close to the node, and the strong electron correlation. Our results suggest forward scattering arising from the interplay between the electrons and in-plane polarized acoustic phonon branch as the origin of the low-energy renormalization.

  17. Material specific X-ray imaging using an energy-dispersive pixel detector

    NASA Astrophysics Data System (ADS)

    Egan, Christopher K.; Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul; Jacques, Simon D. M.; Cernik, Robert J.

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  18. Place of HgI/sub 2/ energy-dispersive x-ray detectors

    SciTech Connect

    Dabrowski, A.J.; Huth, G.C.; Iwanczyk, J.S.; Kusmiss, J.H.; Barton, J.S.; Szymczyk, J.M.; Schnepple, W.F.; Lynn, R.

    1982-01-01

    After a review of solid-state conduction counters, in general, and of the history of mercuric iodide, in particular, the theory of operation of solid-state energy-dispersive HgI/sub 2/ detectors is dicusssed. The main factors which limit energy resolution in solid-state compound detectors are considered, including statistical fluctuations in charge generation, the window effect, trapping, inhomogeneities in the detector material, and electronic noise. Potential applications of room-temperature HgI/sub 2/ x-ray detectors are listed, and general considerations are discussed for x-ray fluorescence analysis with HgI/sub 2/. Directions of current investigations are given. (LEW)

  19. High-Energy Kink Observed in the Electron Dispersion of High-Temperature Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Valla, T.; Kidd, T. E.; Yin, W.-G.; Gu, G. D.; Johnson, P. D.; Pan, Z.-H.; Fedorov, A. V.

    2007-04-01

    Photoemission studies show the presence of a high-energy anomaly in the observed band dispersion for two families of cuprate superconductors, Bi2Sr2CaCu2O8+δ and La2-xBaxCuO4. The anomaly, which occurs at a binding energy of approximately 340 meV, is found to be anisotropic and relatively weakly doping dependent. Scattering from short range or nearest neighbor spin excitations is found to supply an adequate description of the observed phenomena.

  20. High-energy magnon dispersion and multimagnon continuum in the two-dimensional Heisenberg antiferromagnet.

    PubMed

    Sandvik, A W; Singh, R R

    2001-01-15

    We use quantum Monte Carlo simulations and numerical analytic continuation to study high-energy spin excitations in the two-dimensional S = 1/2 Heisenberg antiferromagnet at low temperature. We present results for both the transverse (x) and longitudinal (z) dynamic spin structure factors Sx,z(q,omega) at q = (pi,0) and (pi/2, pi/2). Linear spin-wave theory predicts no dispersion on the line connecting these momenta. Our calculations show that in fact the magnon energy at (pi,0) is 10% lower than at (pi/2, pi/2). We also discuss the transverse and longitudinal multimagnon continua and their relevance to neutron scattering experiments.

  1. Resolving issues at the Department of Energy/Oak Ridge Operations Facilities

    SciTech Connect

    Row, T.H.; Adams, W.D.

    1988-01-01

    Waste management, like many other issues, has experienced major milestones. In 1971, the Calvert Cliff's decision resulted in an entirely different approach to the consideration of environmental impact analysis in reactor siting. The accidents at Three Mile Island and Chernobyl have had profound effects on nuclear power plant design. The high-level waste repository program has had many similar experiences that have modified the course of events. The management of radioactive, hazardous chemical and mixed waste in all of the facilities of the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) took on an entirely different meaning in 1984. On April 13, 1984, Federal Judge Robert Taylor said that DOE should proceed 'with all deliberate speed' to bring the Y-12 plant into compliance with the Resource Conservation and Recovery Act and the Clean Water Act. This decision resulted from a suit brought by the Legal Environmental Assistance Foundation (LEAF) and grew out of a continuing revelation of mercury spills and other problems related to the Oak Ridge plants of DOE. In this same time frame, other events occurred in Oak Ridge that would set the stage for major changes, to provide the supporting environment that allowed a very different and successful approach to resolving waste management issues at the DOE/ORO Facilities. This is the origin of the Oak Ridge Model which was recently adopted as the DOE Model. The concept is to assure that all stakeholders in waste management decisions have the opportunity to be participants from the first step. A discussion of many of the elements that have contributed to the success of the Model follows.

  2. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  3. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  4. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    PubMed

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  5. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    SciTech Connect

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting model with a single solvent-independent parameter: the electron density threshold (n{sub c}), and a single solvent-dependent parameter: the dispersion scale factor (s{sub 6}), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s{sub 6} parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.

  6. Application of decision tree algorithm for identification of rock forming minerals using energy dispersive spectrometry

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Çubukçu, H. Evren; Artuner, Harun

    2014-05-01

    Rapid and automated mineral identification is compulsory in certain applications concerning natural rocks. Among all microscopic and spectrometric methods, energy dispersive X-ray spectrometers (EDS) integrated with scanning electron microscopes produce rapid information with reliable chemical data. Although obtaining elemental data with EDS analyses is fast and easy by the help of improving technology, it is rather challenging to perform accurate and rapid identification considering the large quantity of minerals in a rock sample with varying dimensions ranging between nanometer to centimeter. Furthermore, the physical properties of the specimen (roughness, thickness, electrical conductivity, position in the instrument etc.) and the incident electron beam (accelerating voltage, beam current, spot size etc.) control the produced characteristic X-ray, which in turn affect the elemental analyses. In order to minimize the effects of these physical constraints and develop an automated mineral identification system, a rule induction paradigm has been applied to energy dispersive spectral data. Decision tree classifiers divide training data sets into subclasses using generated rules or decisions and thereby it produces classification or recognition associated with these data sets. A number of thinsections prepared from rock samples with suitable mineralogy have been investigated and a preliminary 12 distinct mineral groups (olivine, orthopyroxene, clinopyroxene, apatite, amphibole, plagioclase, K- feldspar, zircon, magnetite, titanomagnetite, biotite, quartz), comprised mostly of silicates and oxides, have been selected. Energy dispersive spectral data for each group, consisting of 240 reference and 200 test analyses, have been acquired under various, non-standard, physical and electrical conditions. The reference X-Ray data have been used to assign the spectral distribution of elements to the specified mineral groups. Consequently, the test data have been analyzed using

  7. Technical Report for Calculations of Atmospheric Dispersion at Onsite Locations for Department of Energy Nuclear Facilities

    SciTech Connect

    Levin, Alan; Chaves, Chris

    2015-04-04

    The Department of Energy (DOE) has performed an evaluation of the technical bases for the default value for the atmospheric dispersion parameter χ/Q. This parameter appears in the calculation of radiological dose at the onsite receptor location (co-located worker at 100 meters) in safety analysis of DOE nuclear facilities. The results of the calculation are then used to determine whether safety significant engineered controls should be established to prevent and/or mitigate the event causing the release of hazardous material. An evaluation of methods for calculation of the dispersion of potential chemical releases for the purpose of estimating the chemical exposure at the co-located worker location was also performed. DOE’s evaluation consisted of: (a) a review of the regulatory basis for the default χ/Q dispersion parameter; (b) an analysis of this parameter’s sensitivity to various factors that affect the dispersion of radioactive material; and (c) performance of additional independent calculations to assess the appropriate use of the default χ/Q value.

  8. Systematic study of rapidity dispersion parameter in high energy nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena

    2014-03-01

    A systematic study of rapidity dispersion parameter as a quantitative measure of clustering of particles has been carried out in the interactions of 16O, 28Si and 32S projectiles at 4.5 A GeV/c with heavy (AgBr) and light (CNO) groups of targets present in the nuclear emulsion. For all the interactions, the total ensemble of events has been divided into four overlapping multiplicity classes depending on the number of shower particles. For all the interactions and for each multiplicity class, the rapidity dispersion parameter values indicate the occurrence of clusterization during the multiparticle production at Dubna energy. The measured rapidity dispersion parameter values are found to decrease with the increase of average multiplicity for all the interactions. The dependence of rapidity dispersion parameter on the average multiplicity can be successfully described by a relation D(η) = a + b + c2. The experimental results have been compared with the results obtained from the analysis of Monte Carlo simulated (MC-RAND) events. MC-RAND events show weaker clusterization among the pions in comparison to the experimental data.

  9. SU-E-I-77: A Noise Reduction Technique for Energy-Resolved Photon-Counting Detectors

    SciTech Connect

    Lam Ng, A; Ding, H; Cho, H; Molloi, S

    2014-06-01

    Purpose: Finding the optimal energy threshold setting for an energy-resolved photon-counting detector has an important impact on the maximization of contrast-to-noise-ratio (CNR). We introduce a noise reduction method to enhance CNR by reducing the noise in each energy bin without altering the average gray levels in the projection and image domains. Methods: We simulated a four bin energy-resolved photon-counting detector based on Si with a 10 mm depth of interaction. TASMIP algorithm was used to simulate a spectrum of 65 kVp with 2.7 mm Al filter. A 13 mm PMMA phantom with hydroxyapatite and iodine at different concentrations (100, 200 and 300 mg/ml for HA, and 2, 4, and 8 mg/ml for Iodine) was used. Projection-based and Image-based energy weighting methods were used to generate weighted images. A reference low noise image was used for noise reduction purposes. A Gaussian-like weighting function which computes the similarity between pixels of interest was calculated from the reference image and implemented on a pixel by pixel basis for the noisy images. Results: CNR improvement compared to different methods (Charge-Integrated, Photon-Counting and Energy-Weighting) and after noise reduction was highly task-dependent. The CNR improvement with respect to the Charge-Integrated CNR for hydroxyapatite and iodine were 1.8 and 1.5, respectively. In each of the energy bins, the noise was reduced by approximately factor of two without altering their respective average gray levels. Conclusion: The proposed noise reduction technique for energy-resolved photon-counting detectors can significantly reduce image noise. This technique can be used as a compliment to the current energy-weighting methods in CNR optimization.

  10. Method to compensate the dispersion of kinetic energy resolution in a velocity map imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lan, Pengfei; Feng, Zhengpeng; Zhang, Qingbin; Lu, Peixiang

    2014-10-01

    Here we present a novel method to improve the kinetic energy resolution of a velocity map imaging(VMI) spectrometer. The main modifications, compared to the original design of Eppink and Parker (1997 Rev. Sci. Instrum. 68 3477), are two additional grid electrodes. One of the electrodes is a grounded grid and the other is an arc-shaped grid with negative voltages (or positive voltages for an ions spectrometer). The arc-shaped electrode is axially symmetrical around the spectrometer axis. The field constructed by the two electrodes is to compensate the dispersion of the ‘v’-shaped energy resolution. Simulations by SIMION and reconstructions by the basis set expansion Abel transform method show that the kinetic energy resolution can be improved drastically by our new method. Furthermore, the accuracy in the determination of the kinetic energy of ion/electrons remains unchanged with respect to the original design.

  11. The elastic modulus correction term in creep activation energies Applied to oxide dispersion strengthened superalloy

    NASA Technical Reports Server (NTRS)

    Malu, M.; Tien, J. K.

    1975-01-01

    The effect of elastic modulus and the temperature dependence of elastic modulus on creep activation energies for an oxide dispersion strengthened nickel-base superalloy are investigated. This superalloy is commercially known as Inconel Alloy MA 753, strengthened both by gamma-prime precipitates and by yttria particles. It is shown that at intermediate temperatures, say below 1500 F, where elastic modulus is weakly dependent on temperature, the modulus correction term to creep activation energy is small. Accordingly, modulus corrections are insignificant for the superalloy considered, which shows high apparent creep activation energies at this temperature. On the contrary, at very high temperatures, the elastic modulus correction term can be significant, thus reducing the creep activation energy to that of vacancy self-diffusion. In order to obtain high-temperature creep resistance, a high-value elastic modulus with a weak dependence on temperature is required.

  12. Electric field distribution and energy absorption in anisotropic and dispersive red blood cells.

    PubMed

    Sebastián, J L; Muñoz, S; Sancho, M; Alvarez, G; Miranda, J M

    2007-12-07

    We have studied the influence of the anisotropic and dispersive nature of the red blood cell structure on the energy absorption and electric field distribution within the cell exposed to electromagnetic fields of frequencies in the range from 50 kHz to 10 GHz. For this purpose we have generated a realistic model of a multilayered erythrocyte cell from a set of parametric equations in terms of Jacobi elliptic functions. The effect of dipole relaxations and anisotropic conductivities is taken into account in the dispersion equations for the conductivity and permittivity of each layer (cytoplasmic and extra-cellular bound waters, membrane, cytoplasm and external medium). Using a finite element numerical technique, we have found that the electric field distribution and the energy absorbed in the membrane show well-defined maxima for both normal and parallel orientations of the external field with respect to the symmetry axis of the cell. The normal and tangential conductivities and permittivities of the membrane are shown to be responsible for the different peak amplitudes and frequency shifts of the maxima. A previously unnoticed effect is that the cell shape combined with the dispersion of the membrane permittivity and the influence of bound water layers leads to a very high amplification factor (greater than 300) of the electric field in the membrane at frequencies in the megahertz range.

  13. Investigation of the polynomial approach for material decomposition in spectral X-ray tomography using an energy-resolved detector

    NASA Astrophysics Data System (ADS)

    Potop, A.; Rebuffel, V.; Rinkel, J.; Brambilla, A.; Peyrin, F.; Verger, L.

    2014-03-01

    Recent advances in the domain of energy-resolved semiconductor detectors stimulate research in X-ray computed tomography (CT). However, the imperfections of these detectors induce errors that should be considered for further applications. Charge sharing and pile-up effects due to high photon fluxes can degrade image quality or yield wrong material identification. Basis component decomposition provides separate images of principal components, based on the energy related information acquired in each energy bin. The object is typically either decomposed in photoelectric and Compton physical effects or in basis materials functions. This work presents a simulation study taking into account the properties of an energy-resolved CdTe detector with flexible energy thresholds in the context of materials decomposition CT. We consider the effects of a first order pile-up model with triangular pulses of a non-paralyzable detector and a realistic response matrix. We address the problem of quantifying mineral content in bone based on a polynomial approach for material decomposition in the case of two and three energy bins. The basis component line integrals are parameterized directly in the projection domain and a conventional filtered back-projection reconstruction is performed to obtain the material component images. We use figures of merit such as noise and bias to select the optimal thresholds and quantify the mineral content in bone. The results obtained with an energy resolved detector for two and three energy bins are compared with the ones obtained for the dual-kVp technique using an integrating-mode detector with filters and voltages optimized for bone densitometry.

  14. Molecular potential energies in dodecahedron cell of methane hydrate and dispersion correction for DFT.

    PubMed

    Du, Qi-Shi; Li, Da-Peng; Liu, Peng-Jun; Huang, Ri-Bo

    2008-09-01

    The interaction potential energies of water-water and water-methane in structure-I unit cell of methane hydrate are calculated from 2.1 to 8.0A using density functional theory (DFT) B3LYP/TZVP. The curves of potential energies are corrected for basis set superposition error (BSSE) and dispersion interaction using a 4-term L-J (4,6-8,12) correction equation, which is derived from CCSD(T)/cc-pVTZ calculations of water-water and water-methane molecular pairs, using least squares curve-fitting. The methane hydrate unit cell is a regular water dodecahedron cell consisting of 20 water molecules with a methane molecule in the center. The geometries of water and methane are optimized at CCSD(T)/cc-pVTZ level. The BSSE-corrections are calculated for water-water and water-methane interaction energies as functions of the side length, l, of the dodecahedron cell at B3LYP/TZVP level in the range from 2.1 to 8.0A. The BSSE CP-corrected and dispersion-corrected potential energy surfaces (PES) of water-water and water-methane are useful for molecular dynamics simulation of gas clathrate-hydrates.

  15. [Application of the racial algorithm in energy dispersive X-ray fluorescence overlapped spectrum analysis].

    PubMed

    Zeng, Guo-Qiang; Luo, Yao-Yao; Ge, Liang-Quan; Zhang, Qing-Xian; Gu, Yi; Cheng, Feng

    2014-02-01

    In the energy dispersive X-ray fluorescence spectrum analysis, scintillation detector such as NaI (Tl) detector usually has a low energy resolution at around 8%. The low energy resolution causes problems in spectral data analysis especially in the high background and low counts condition, it is very limited to strip the overlapped spectrum, and the more overlapping the peaks are, the more difficult to peel the peaks, and the qualitative and quantitative analysis can't be carried out because we can't recognize the peak address and peak area. Based on genetic algorithm and immune algorithm, we build a new racial algorithm which uses the Euclidean distance as the judgment of evolution, the maximum relative error as the iterative criterion to be put into overlapped spectrum analysis, then we use the Gaussian function to simulate different overlapping degrees of the spectrum, and the racial algorithm is used in overlapped peak separation and full spectrum simulation, the peak address deviation is in +/- 3 channels, the peak area deviation is no more than 5%, and it is proven that this method has a good effect in energy dispersive X-ray fluorescence overlapped spectrum analysis.

  16. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer.

    PubMed

    Li, Xiaoli; Yu, Zhaoshui

    2016-05-01

    Selenium is both a nutrient and a toxin. Selenium-especially organic selenium-is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1μgg(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1μg/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities.

  17. Energy Efficienct Processes for Making Tackifier Dispersions used to make Pressure Sensitive Adhesives

    SciTech Connect

    Rakesh Gupta

    2006-07-26

    The primary objective of this project was to develop an energy efficient, environmentally friendly and low cost process (compared to the current process) for making tackifier dispersions that are used to make pressure-sensitive adhesives. These adhesives are employed in applications such as self-adhesive postage stamps and disposable diapers and are made by combining the tackifier dispersion with a natural or synthetic rubber latex. The current process for tackifier dispersion manufacture begins by melting a (plastic) resin and adding water to it in order to form a water-in-oil emulsion. This is then converted to an oil-in-water emulsion by phase inversion in the presence of continuous stirring. The resulting emulsion is the tackifier dispersion, but it is not concentrated and the remaining excess water has to be transported and removed. The main barrier that has to be overcome in the development of commercial quality tackifier dispersions is the inability to directly emulsify resin in water due to the very low viscosity of water as compared to the viscosity of the molten resin. In the present research, a number of solutions were proposed to overcome this barrier, and these included use of different mixer types to directly form the emulsion from the molten resin but without going through a phase inversion, the idea of forming a solid resin-in-water suspension having the correct size and size distribution but without melting of the resin, and the development of techniques of making a colloidal powder of the resin that could be dispersed in water just prior to use. Progress was made on each of these approaches, and each was found to be feasible. The most appealing solution, though, is the last one, since it does not require melting of the resin. Also, the powder can be shipped in dry form and then mixed with water in any proportion depending on the needs of the process. This research was conducted at Argonne National Laboratory, and it was determined the new process

  18. Decoupling the contribution of dispersive and acid-base components of surface energy on the cohesion of pharmaceutical powders.

    PubMed

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2014-11-20

    This study reports an experimental approach to determine the contribution from two different components of surface energy on cohesion. A method to tailor the surface chemistry of mefenamic acid via silanization is established and the role of surface energy on cohesion is investigated. Silanization was used as a method to functionalize mefenamic acid surfaces with four different functional end groups resulting in an ascending order of the dispersive component of surface energy. Furthermore, four haloalkane functional end groups were grafted on to the surface of mefenamic acid, resulting in varying levels of acid-base component of surface energy, while maintaining constant dispersive component of surface energy. A proportional increase in cohesion was observed with increases in both dispersive as well as acid-base components of surface energy. Contributions from dispersive and acid-base surface energy on cohesion were determined using an iterative approach. Due to the contribution from acid-base surface energy, cohesion was found to increase ∼11.7× compared to the contribution from dispersive surface energy. Here, we provide an approach to deconvolute the contribution from two different components of surface energy on cohesion, which has the potential of predicting powder flow behavior and ultimately controlling powder cohesion.

  19. Internal conversion in energy dispersive X-ray analysis of actinide-containing materials.

    PubMed

    Wiss, Thierry; Thiele, Hartmut; Cremer, Bert; Ray, Ian

    2007-06-01

    The use of X-ray elemental analysis tools like energy dispersive X-ray (EDS) is described in the context of the investigation of nuclear materials. These materials contain radioactive elements, particularly alpha-decaying actinides that affect the quantitative EDS measurement by producing interferences in the X-ray spectra. These interferences originating from X-ray emission are the result of internal conversion by the daughter atoms from the alpha-decaying actinides. The strong interferences affect primarily the L X-ray lines from the actinides (in the typical energy range used for EDS analysis) and would require the use of the M lines. However, it is typically at the energy of the actinide's M lines that the interferences are dominant. The artifacts produced in the X-ray analysis are described and illustrated by some typical examples of analysis of actinide-bearing material.

  20. Dispersion theory and the low-energy constants for neutral-pion photoproduction

    NASA Astrophysics Data System (ADS)

    Pasquini, B.; Drechsel, D.; Tiator, L.

    2006-02-01

    The relativistic amplitudes of pion photoproduction are evaluated by dispersion relations at t = const. The imaginary parts of the amplitudes are taken from the MAID model covering the absorption spectrum up to center-of-mass energies W = 2.2GeV. For sub-threshold kinematics the amplitudes are expanded in powers of the two independent variables ν and t related to energy and momentum transfer. Subtracting the loop corrections from this power series allows one to determine the counter terms of covariant baryon chiral perturbation theory. The proposed continuation of the amplitudes into the unphysical region provides a unique framework to derive the low-energy constants to any given order as well as an estimate of the higher-order terms by global properties of the absorption spectrum.

  1. Energy Dispersive X-Ray and Electrochemical Impedance Spectroscopies for Performance and Corrosion Analysis of PEMWEs

    NASA Astrophysics Data System (ADS)

    Steen, S. M., Iii; Zhang, F.-Y.

    2014-11-01

    Proton exchange membrane water electrolyzers (PEMWEs) are a promising energy storage technology due to their high efficiency, compact design, and ability to be used in a renewable energy system. Before they are able to make a large commercial impact, there are several hurdles facing the technology today. Two powerful techniques for both in-situ and ex- situ characterizations to improve upon their performance and better understand their corrosion are electrochemical impedance spectroscopy and energy dispersive x-ray spectroscopy, respectively. In this paper, the authors use both methods in order to characterize the anode gas diffusion layer (GDL) in a PEMWE cell and better understand the corrosion that occurs in the oxygen electrode during electrolysis.

  2. High-energy femtosecond Yb-doped dispersion compensation free fiber laser.

    PubMed

    Ortaç, B; Schmidt, O; Schreiber, T; Limpert, J; Tünnermann, A; Hideur, A

    2007-08-20

    We report on a mode-locked high energy fiber laser operating in the dispersion compensation free regime. The sigma cavity is constructed with a saturable absorber mirror and short-length large-mode-area photonic crystal fiber. The laser generates positively-chirped pulses with an energy of 265 nJ at a repetition rate of 10.18 MHz in a stable and self-starting operation. The pulses are compressible down to 400 fs leading to a peak power of 500 kW. Numerical simulations accurately reflect the experimental results and reveal the mechanisms for self consistent intracavity pulse evolution. With this performance mode-locked fiber lasers can compete with state-of-the-art bulk femtosecond oscillators for the first time and pulse energy scaling beyond the muJ-level appears to be feasible.

  3. Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation

    NASA Astrophysics Data System (ADS)

    Qian, Z.; Schoenly, J. E.; Covarrubias, A.; Lilge, L.; Marjoribanks, R. S.

    2014-03-01

    We describe an energy-partition diagnostic based on integrating sphere principle for measuring absorption and scattering in plasma-mediated ablation by a high repetition-rate (133 MHz), pulsetrain-burst ultrafast-pulse laser. The system time-resolves the partition of elastically scattered laser light into specular reflection, diffuse reflection, and transmission, giving access to per-pulse absorption dynamics. Physical events such as optical breakdown and incubation effects in glass and aluminum are illustrated.

  4. Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation.

    PubMed

    Qian, Z; Schoenly, J E; Covarrubias, A; Lilge, L; Marjoribanks, R S

    2014-03-01

    We describe an energy-partition diagnostic based on integrating sphere principle for measuring absorption and scattering in plasma-mediated ablation by a high repetition-rate (133 MHz), pulsetrain-burst ultrafast-pulse laser. The system time-resolves the partition of elastically scattered laser light into specular reflection, diffuse reflection, and transmission, giving access to per-pulse absorption dynamics. Physical events such as optical breakdown and incubation effects in glass and aluminum are illustrated.

  5. Energetics and Dynamics of Fragmentation of Protonated Leucine Enkephalin from Time- and Energy-Resolved Surface-Induced Dissociation Studies

    SciTech Connect

    Laskin, Julia

    2006-07-01

    Dissociation of singly protonated leucine enkephalin (YGGFL) was studied using surface-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer specially configured for studying ion activation by collisions with surfaces. The energetics and dynamics of seven primary dissociation channels were deduced from modeling the time- and energy-resolved fragmentation efficiency curves for different fragment ions using an RRKM-based approach developed at the Environmental Molecular Sciences Laboratory (EMSL).

  6. Final design of the Energy-Resolved Neutron Imaging System “RADEN” at J-PARC

    NASA Astrophysics Data System (ADS)

    Shinohara, T.; Kai, T.; Oikawa, K.; Segawa, M.; Harada, M.; Nakatani, T.; Ooi, M.; Aizawa, K.; Sato, H.; Kamiyama, T.; Yokota, H.; Sera, T.; Mochiki, K.; Kiyanagi, Y.

    2016-09-01

    A new pulsed-neutron instrument, named the Energy-Resolved Neutron Imaging System “RADEN”, has been constructed at the beam line of BL22 in the Materials and Life Science Experimental Facility (MLF) of J-PARC. The primary purpose of this instrument is to perform energy-resolved neutron imaging experiments through the effective utilization of the pulsed nature of the neutron beam, making this the world's first instrument dedicated to pulsed neutron imaging experiments. RADEN was designed to cover a broad energy range: from cold neutrons with energy down to 1.05 meV (or wavelength up to 8.8 Å) with a good wavelength resolution of 0.20% to high-energy neutrons with energy of several tens keV (or wavelength of 10-3 Å). In addition, this instrument is intended to perform state-of-the-art neutron radiography and tomography experiments in Japan. Hence, a maximum beam size of 300 mm square and a high L/D value of up to 7500 are provided.

  7. Laser angle-resolved photoemission as a probe of initial state kz dispersion, final-state band gaps, and spin texture of Dirac states in the Bi2Te3 topological insulator

    DOE PAGES

    Ärrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; ...

    2016-10-27

    Here, we have obtained angle-resolved photoemission (ARPES) spectra from single crystals of the topological insulator material Bi2Te3 using tunable laser spectrometer. The spectra were collected for eleven different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photo-intensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. Good overall accord between theory and experiment is used to gain insight into how properties of the initial and final state band structures as well as those of the topological surfacemore » states and their spin-textures are reflected in the laser-ARPES spectra. In conclusion, our analysis reveals that laser-ARPES is sensitive to both the initial state kz dispersion and the presence of delicate gaps in the final state electronic spectrum.« less

  8. Breast tissue contrast-simulating materials using energy-dispersive X-ray diffraction.

    PubMed

    Alkhateeb, Shyma M; Abdelkader, Mohamed H; Bradley, David A; Pani, Silvia

    2012-07-01

    Breast lesions and normal tissues have different molecular arrangements that affect their diffraction patterns. Different mouldable and non-mouldable materials were analysed using an energy dispersive X-ray diffraction system based on a conventional X-ray source (operated at 70 kVp) and a CdTe detector (Amptek XT-100), including a conventional spectroscopic chain. Combinations of materials were identified to have a contrast comparable to that achieved in diffraction imaging for different breast tissues at the momentum transfer values carrying the greatest amount of information (1.1 nm(-1) and 1.6 nm(-1)).

  9. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  10. Silica granuloma: scanning electron microscopy and energy dispersive X-ray microanalysis.

    PubMed

    Chun, S I; Cho, S W

    1991-02-01

    A 46-year-old woman had 1-month-old erythematous papules on the left elbow and both knees where acupuncture with gold needles had been performed twenty years earlier. She also had a 2-month-old pruritic scar lesion on the nape. Histopathologic findings showed sarcoidal granulomas. The presence of silica components in the granulomas was confirmed by scanning electron microscopy (SEM) of the lesion on the nape and energy dispersive X-ray microanalysis (EDXA) of the lesions on the nape and the left elbow. We suggest that acupuncture with gold needles may be one cause of silica granuloma.

  11. The Casimir energy in a dispersive and absorptive medium in the Fano diagonalization approach

    NASA Astrophysics Data System (ADS)

    Braun, M. A.

    2017-02-01

    We calculate the Casimir energy of the electromagnetic field in the one-dimensional space between two metallic plates filled with a dispersive and absorptive dielectric in the framework of a microscopic approach in which the medium is modeled by a set of oscillators with continuously distributed frequencies. We analyze the treatment of singular expressions used in other papers and show that with appropriate regularization and omission of certain infinite terms, the results coincide with those obtained in an approach without such singularities. We study the asymptotic behavior at large distances and conclude that it always corresponds to attraction, but the influence of the dielectric can lead to repulsion at finite distances.

  12. Scanning electron microscopy and energy dispersive analysis: applications in the field of cultural heritage.

    PubMed

    Schreiner, Manfred; Melcher, Michael; Uhlir, Katharina

    2007-02-01

    Scanning electron microscopy has been extensively used for the material characterization of objects of artistic and archaeological importance, especially in combination with energy dispersive X-ray microanalysis (SEM/EDX). The advantages and limitations of SEM/EDX are presented in a few case studies: analysis of pigments in cross-sections of paint layers, quantitative analysis of archaeological glass from the Roman period excavated in Ephesos/Turkey, and investigations on glasses with medieval composition concerning their weathering stability and degradation phenomena.

  13. Application of energy dispersive X-ray fluorescence spectrometry (EDX) in a case of methomyl ingestion.

    PubMed

    Kinoshita, Hiroshi; Tanaka, Naoko; Jamal, Mostofa; Kumihashi, Mitsuru; Okuzono, Ryota; Tsutsui, Kunihiko; Ameno, Kiyoshi

    2013-04-10

    We applied energy dispersive X-ray fluorescence spectrometry (EDX) in a case of poisoning by methomyl, a carbamate pesticide. Quantitative GC/MS analysis showed that the concentration of methomyl-oxime in the femoral blood was 4.0 μg/ml. The elemental analysis by EDX identified the high peak of silicon and sulfur in the stomach contents. We concluded that the cause of his death was methomyl poisoning. This indicates that screening of stomach contents by EDX provides useful information for the forensic diagnosis.

  14. Scanning electron microscopy and energy dispersive analysis of machined denture base surfaces.

    PubMed

    Radford, D R; Walter, J D; Challacombe, S J

    1997-01-01

    To relate the characteristics of rotary instruments to the surfaces they produce, acrylic resin, Molloplast B, and Novus were investigated with energy dispersive analysis and scanning electron microscopy (secondary and backscatter images) before and after machining. The chemical composition of cutting instruments, material surfaces, and residues was identified. Machined debris embedded in Molloplast B after machining with the Molloplast stone was found to contain a mean lead content of 45%. High concentrations of barium sulphate were discovered on the arbor band-machined surface of Novus. These differences were related to clinically appropriate instrumentation, and, therefore, biocompatibility studies that intimately relate to the in vivo situation should be considered for new materials.

  15. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    SciTech Connect

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C.; Hilsabeck, T. J.; Wu, W.; Moy, K.; Stoeffl, W.

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  17. A Comparison of Energy-Resolved Vibrational Activation/Dissociation Characteristics of Protonated and Sodiated High Mannose N-Glycopeptides

    NASA Astrophysics Data System (ADS)

    Aboufazeli, Forouzan; Kolli, Venkata; Dodds, Eric D.

    2015-04-01

    Fragmentation of glycopeptides in tandem mass spectrometry (MS/MS) plays a pivotal role in site-specific protein glycosylation profiling by allowing specific oligosaccharide compositions and connectivities to be associated with specific loci on the corresponding protein. Although MS/MS analysis of glycopeptides has been successfully performed using a number of distinct ion dissociation methods, relatively little is known regarding the fragmentation characteristics of glycopeptide ions with various charge carriers. In this study, energy-resolved vibrational activation/dissociation was examined via collision-induced dissociation for a group of related high mannose tryptic glycopeptides as their doubly protonated, doubly sodiated, and hybrid protonated sodium adduct ions. The doubly protonated glycopeptide ions with various compositions were found to undergo fragmentation over a relatively low but wide range of collision energies compared with the doubly sodiated and hybrid charged ions, and were found to yield both glycan and peptide fragmentation depending on the applied collision energy. By contrast, the various doubly sodiated glycopeptides were found to dissociate over a significantly higher but narrow range of collision energies, and exhibited only glycan cleavages. Interestingly, the hybrid protonated sodium adduct ions were consistently the most stable of the precursor ions studied, and provided fragmentation information spanning both the glycan and the peptide moieties. Taken together, these findings illustrate the influence of charge carrier over the energy-resolved vibrational activation/dissociation characteristics of glycopeptides, and serve to suggest potential strategies that exploit the analytically useful features uniquely afforded by specific charge carriers or combinations thereof.

  18. A comparison of energy-resolved vibrational activation/dissociation characteristics of protonated and sodiated high mannose N-glycopeptides.

    PubMed

    Aboufazeli, Forouzan; Kolli, Venkata; Dodds, Eric D

    2015-04-01

    Fragmentation of glycopeptides in tandem mass spectrometry (MS/MS) plays a pivotal role in site-specific protein glycosylation profiling by allowing specific oligosaccharide compositions and connectivities to be associated with specific loci on the corresponding protein. Although MS/MS analysis of glycopeptides has been successfully performed using a number of distinct ion dissociation methods, relatively little is known regarding the fragmentation characteristics of glycopeptide ions with various charge carriers. In this study, energy-resolved vibrational activation/dissociation was examined via collision-induced dissociation for a group of related high mannose tryptic glycopeptides as their doubly protonated, doubly sodiated, and hybrid protonated sodium adduct ions. The doubly protonated glycopeptide ions with various compositions were found to undergo fragmentation over a relatively low but wide range of collision energies compared with the doubly sodiated and hybrid charged ions, and were found to yield both glycan and peptide fragmentation depending on the applied collision energy. By contrast, the various doubly sodiated glycopeptides were found to dissociate over a significantly higher but narrow range of collision energies, and exhibited only glycan cleavages. Interestingly, the hybrid protonated sodium adduct ions were consistently the most stable of the precursor ions studied, and provided fragmentation information spanning both the glycan and the peptide moieties. Taken together, these findings illustrate the influence of charge carrier over the energy-resolved vibrational activation/dissociation characteristics of glycopeptides, and serve to suggest potential strategies that exploit the analytically useful features uniquely afforded by specific charge carriers or combinations thereof.

  19. Gamma-to-electron magnetic spectrometer (GEMS): an energy-resolved γ-ray diagnostic for the National Ignition Facility.

    PubMed

    Kim, Y; Herrmann, H W; Hilsabeck, T J; Moy, K; Stoeffl, W; Mack, J M; Young, C S; Wu, W; Barlow, D B; Schillig, J B; Sims, J R; Lopez, F E; Mares, D; Oertel, J A; Hayes-Sterbenz, A C

    2012-10-01

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve γ-rays in the range of E(o) ± 20% in single shot, where E(o) is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E(o) over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 × 10(14) minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV (12)C γ-rays assuming 200 mg/cm(2) plastic ablator areal density and 3 × 10(15) minimum DT neutrons to measure the 16.75 MeV DT γ-ray line.

  20. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved γ-ray diagnostic for the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; Hilsabeck, T. J.; Moy, K.; Stoeffl, W.; Mack, J. M.; Young, C. S.; Wu, W.; Barlow, D. B.; Schillig, J. B.; Sims, J. R.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C.

    2012-10-01

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve γ-rays in the range of Eo ± 20% in single shot, where Eo is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable Eo over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 × 1014 minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV 12C γ-rays assuming 200 mg/cm2 plastic ablator areal density and 3 × 1015 minimum DT neutrons to measure the 16.75 MeV DT γ-ray line.

  1. Electron cyclotron resonance ion source plasma characterization by energy dispersive x-ray imaging

    NASA Astrophysics Data System (ADS)

    Rácz, R.; Mascali, D.; Biri, S.; Caliri, C.; Castro, G.; Galatà, A.; Gammino, S.; Neri, L.; Pálinkás, J.; Romano, F. P.; Torrisi, G.

    2017-07-01

    Pinhole and CCD based quasi-optical x-ray imaging technique was applied to investigate the plasma of an electron cyclotron resonance ion source (ECRIS). Spectrally integrated and energy resolved images were taken from an axial perspective. The comparison of integrated images taken of argon plasma highlights the structural changes affected by some ECRIS setting parameters, like strength of the axial magnetic confinement, RF frequency and microwave power. Photon counting analysis gives precise intensity distribution of the x-ray emitted by the argon plasma and by the plasma chamber walls. This advanced technique points out that the spatial positions of the electron losses are strongly determined by the kinetic energy of the electrons themselves to be lost and also shows evidences how strongly the plasma distribution is affected by slight changes in the RF frequency.

  2. Time resolved ion energy distribution functions of non-reactive and reactive high power impulse magnetron sputtering of titanium

    NASA Astrophysics Data System (ADS)

    Grosse, Katharina; Breilmann, Wolfgang; Maszl, Christian; Benedikt, Jan; von Keudell, Achim

    2016-09-01

    High power impulse magnetron sputtering (HiPIMS) is a technique for thin film deposition and can be operated in reactive and non-reactive mode. The growth rate of HiPIMS in non-reactive mode reduces to 30% compared to direct current magnetron sputtering (dcMS) at same average power. However, the quality of the coatings produced with HiPIMS is excellent which makes these plasmas highly appealing. In reactive mode target poisoning is occurring which changes the plasma dynamics. An advantage of reactive HiPIMS is that it can be operated hysteresis-free which can result in a higher growth rate compared to dcMS. In this work thin films are deposited by a HiPIMS plasma which is generated by short pulses of 100 μs with high power densities in the range of 1 kW/cm2. Ar and Ar/N2 admixtures are used as a working gas to sputter a 2'' titanium target. The particle transport is analysed with time resolved ion energy distribution functions which are measured by a mass spectrometer with a temporal resolution of 2 μs. Phase resolved optical emission spectroscopy is executed to investigate the particle dynamics of different species. The time and energy resolved particle fluxes in non-reactive and reactive mode are compared and implications on the sputter process are discussed.

  3. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  4. High-resolution microcalorimeter energy-dispersive spectrometer for x-ray microanalysis and particle analysis

    SciTech Connect

    Wollman, D. A.; Hilton, G. C.; Irwin, K. D.; Dulcie, L. L.; Bergren, N. F.; Martinis, John M.; Newbury, Dale E.; Woo, Keung-Shan; Liu, Benjamin Y. H.; Diebold, Alain C.

    1998-11-24

    We have developed a high-resolution microcalorimeter energy-dispersive spectrometer (EDS) at NIST that provides improved x-ray microanalysis of contaminant particles and defects important to the semiconductor industry. Using our microcalorimeter EDS mounted on a scanning electron microscope (SEM), we have analyzed a variety of specific sized particles on Si wafers, including 0.3 {mu}m diameter W particles and 0.1 {mu}m diameter Al{sub 2}O{sub 3} particles. To compare the particle analysis capabilities of microcalorimeter EDS to that of semiconductor EDS and Auger electron spectroscopy (AES), we report measurements of the Al-K{alpha}/Si-K{alpha} x-ray peak intensity ratio for 0.3 {mu}m diameter Al{sub 2}O{sub 3} particles on Si as a function of electron beam energy. We also demonstrate the capability of microcalorimeter EDS for chemical shift measurements.

  5. Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions.

    PubMed

    Isobe, Hiroki; Nagaosa, Naoto

    2016-03-18

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)_{2}I_{3} and three-dimensional WTe_{2}. The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the speed of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  6. Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroki; Nagaosa, Naoto

    2016-03-01

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α -(BEDT -TTF )2I3 and three-dimensional WTe2 . The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the speed of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  7. High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime.

    PubMed

    Ortaç, Bülend; Limpert, Jens; Tünnermann, Andreas

    2007-08-01

    We report on high-energy ultrashort pulse generation from a passively mode-locked ytterbium-doped large-mode-area photonic crystal fiber oscillator operating in the anomalous dispersion regime. In the single-pulse regime, the laser directly generates 880 mW of average power of sub-500 fs pulses at a repetition rate of 53.33 MHz, corresponding to a pulse energy of 16.5 nJ. Stable and self-starting operation is obtained by adapting the spot size at the saturable absorber mirror to the pulse evolution in the low-nonlinearity fiber. The approach presented demonstrates the scaling potential of fiber based short pulse oscillators towards the microJ-level.

  8. ChromAIX: a high-rate energy-resolving photon-counting ASIC for spectal computed tomography

    NASA Astrophysics Data System (ADS)

    Steadman, Roger; Herrmann, Christoph; Mülhens, Oliver; Maeding, Dale G.; Colley, James; Firlit, Ted; Luhta, Randy; Chappo, Marc; Harwood, Brian; Kosty, Doug

    2010-04-01

    In Computed Tomography applications a major opportunity has been identified in the exploitation of the spectral information inherently available due to the polychromatic emission of the X-ray tube. Current CT technology based on indirect-conversion and integrating-mode detection can be used to some extent to distinguish the two predominant physical causes of energy-dependent attenuation (photo-electric effect and Compton effect) by using dual-energy techniques, e.g. kVp switching, dual-source or detector stacking. Further improvements can be achieved by transitioning to direct-conversion technologies and counting-mode detection, which inherently exhibits a better signal-to-noise ratio. Further including energy discrimination, enables new applications, which are not feasible with dual-energy techniques, e.g. the possibility to discriminate K-edge features (contrast agents, e.g. Gadolinium) from the other contributions to the x-ray attenuation of a human body. The capability of providing energy-resolved information with more than two different measurements is referred to as Spectral CT. To study the feasibility of Spectral CT, an energy-resolving proprietary photon counting ASIC (ChromAIX) has been designed to provide high count-rate capabilities while offering energy discrimination. The ChromAIX ASIC consists of an arrangement of 4 by 16 pixels with an isotropic pitch of 300 μm. Each pixel contains a number of independent energy discriminators with their corresponding 12-bit counters with continuous read-out capability. Observed Poissonian count-rates exceeding 10 Mcps (corresponding to approximately 27 Mcps incident mean Poisson rate) have been experimentally validated through electrical characterization. The measured noise of 2.6 mVRMS (4 keV FWHM) adheres to specifications. The ChromAIX ASIC has been specifically designed to support direct-converting materials CdZnTe and CdTe.

  9. Quantitative energy-dispersive x-ray diffraction for identification of counterfeit medicines: a preliminary study

    NASA Astrophysics Data System (ADS)

    Crews, Chiaki C. E.; O'Flynn, Daniel; Sidebottom, Aiden; Speller, Robert D.

    2015-06-01

    The prevalence of counterfeit and substandard medicines has been growing rapidly over the past decade, and fast, nondestructive techniques for their detection are urgently needed to counter this trend. In this study, energy-dispersive X-ray diffraction (EDXRD) combined with chemometrics was assessed for its effectiveness in quantitative analysis of compressed powder mixtures. Although EDXRD produces lower-resolution diffraction patterns than angular-dispersive X-ray diffraction (ADXRD), it is of interest for this application as it carries the advantage of allowing the analysis of tablets within their packaging, due to the higher energy X-rays used. A series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared with compositions between 0 - 100 weight% in 20 weight% steps (22 samples in total, including a centroid mixture), and were pressed into tablets. EDXRD spectra were collected in triplicate, and a principal component analysis (PCA) separated these into their correct positions in the ternary mixture design. A partial least-squares (PLS) regression model calibrated using this training set was validated using both segmented cross-validation, and with a test set of six samples (mixtures in 8:1:1 and 5⅓:2⅓:2⅓ ratios) - the latter giving a root-mean square error of prediction (RMSEP) of 1.30, 2.25 and 2.03 weight% for caffeine, paracetamol and cellulose respectively. These initial results are promising, with RMSEP values on a par with those reported in the ADXRD literature.

  10. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry

    PubMed Central

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-01-01

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red–green–blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications. PMID:28374801

  11. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry.

    PubMed

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-04-04

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red-green-blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications.

  12. Accurate Evaluation of the Dispersion Energy in the Simulation of Gas Adsorption into Porous Zeolites.

    PubMed

    Fraccarollo, Alberto; Canti, Lorenzo; Marchese, Leonardo; Cossi, Maurizio

    2017-03-07

    The force fields used to simulate the gas adsorption in porous materials are strongly dominated by the van der Waals (vdW) terms. Here we discuss the delicate problem to estimate these terms accurately, analyzing the effect of different models. To this end, we simulated the physisorption of CH4, CO2, and Ar into various Al-free microporous zeolites (ITQ-29, SSZ-13, and silicalite-1), comparing the theoretical results with accurate experimental isotherms. The vdW terms in the force fields were parametrized against the free gas densities and high-level quantum mechanical (QM) calculations, comparing different methods to evaluate the dispersion energies. In particular, MP2 and DFT with semiempirical corrections, with suitable basis sets, were chosen to approximate the best QM calculations; either Lennard-Jones or Morse expressions were used to include the vdW terms in the force fields. The comparison of the simulated and experimental isotherms revealed that a strong interplay exists between the definition of the dispersion energies and the functional form used in the force field; these results are fairly general and reproducible, at least for the systems considered here. On this basis, the reliability of different models can be discussed, and a recipe can be provided to obtain accurate simulated adsorption isotherms.

  13. Practical applications of energy dispersive X-ray microanalysis in diagnostic oral pathology

    SciTech Connect

    Daley, T.D.; Gibson, D. )

    1990-03-01

    Energy dispersive X-ray microanalysis is a powerful tool that can reveal the presence and relative quantities of elements in minute particles in biologic materials. Although this technique has been used in some aspects of dental research, it has rarely been applied to diagnostic oral pathology. The purpose of this paper is to inform practicing dentists and oral specialists about the diagnostic potential of this procedure by presenting three case reports. The first case involved the identification of flakes of a metallic material claimed by a 14-year-old girl to appear periodically between her mandibular molars. In the second case, a periodontist was spared a lawsuit when a freely mobile mass in the antrum of his patient was found to be a calcium-phosphorus compound not related to the periodontal packing that had been used. The third case involved the differential diagnosis of amalgam tattoo and graphite tattoo in a pigmented lesion of the hard palate mucosa. The results of the analyses were significant and indicate a role for this technique in the assessment of selected cases. Potential for wider use of energy dispersive X-ray microanalysis in diagnostic oral pathology exists as research progresses.

  14. X-ray coherent scattering form factors of tissues, water and plastics using energy dispersion

    NASA Astrophysics Data System (ADS)

    King, B. W.; Landheer, K. A.; Johns, P. C.

    2011-07-01

    A key requirement for the development of the field of medical x-ray scatter imaging is accurate characterization of the differential scattering cross sections of tissues and phantom materials. The coherent x-ray scattering form factors of five tissues (fat, muscle, liver, kidney, and bone) obtained from butcher shops, four plastics (polyethylene, polystyrene, lexan (polycarbonate), nylon), and water have been measured using an energy-dispersive technique. The energy-dispersive technique has several improvements over traditional diffractometer measurements. Most notably, the form factor is measured on an absolute scale with no need for scaling factors. Form factors are reported in terms of the quantity x = λ-1sin (θ/2) over the range 0.363-9.25 nm-1. The coherent form factors of muscle, liver, and kidney resemble those of water, while fat has a narrower peak at lower x, and bone is more structured. The linear attenuation coefficients of the ten materials have also been measured over the range 30-110 keV and parameterized using the dual-material approach with the basis functions being the linear attenuation coefficients of polymethylmethacrylate and aluminum.

  15. Effect of polymer type on the surface energy of acetaminophen solid dispersions prepared by melt method.

    PubMed

    Školáková, Tereza; Patera, Jan; Zámostný, Petr

    2017-09-15

    Many newly developed active pharmaceutical ingredients (APIs) have very low solubility in aqueous media. The preparation of solid dispersions (SDs) is one way of avoiding this problem. However, compound wettability and thus solubility are influenced by surface energy. In this study, we used inverse gas chromatography (IGC) to evaluate the surface energies of prepared SDs, and compared them with those obtained for physical mixtures (PMs). SDs containing different weight ratios of crystalline acetaminophen and one of three polymers (Kollidon(®) 12 PF, Kollidon(®) VA 64 or Soluplus(®)) were prepared by the melt-quenching of corresponding PMs. In all cases, as the polymer content increased, the surface energy decreased significantly. For the SDs and PMs containing Soluplus(®), this decrease in surface energy showed the same non-linear trend. In the cases of Kollidon(®) 12 PF and Kollidon(®) VA 64, the trend was linear, with the SDs showing a steeper decrease in surface energy than the corresponding PMs. Typically, such decreases are ascribed to the dissolution of the crystalline structure of an API. Our results suggest that in the case of the Kollidons, the steeper decrease is caused by another mechanism, namely, strong API-Kollidon interaction leading to the less wettable surface of SDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  17. The H + OCS hot atom reaction - CO state distributions and translational energy from time-resolved infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Cartland, Harry E.

    1993-01-01

    Time-resolved infrared diode laser spectroscopy has been used to probe CO internal and translational excitation from the reaction of hot H atoms with OCS. Product distributions should be strongly biased toward the maximum 1.4 eV collision energy obtained from 278 nm pulsed photolysis of HI. Rotations and vibrations are both colder than predicted by statistical density of states theory, as evidenced by large positive surprisal parameters. The bias against rotation is stronger than that against vibration, with measurable population as high as v = 4. The average CO internal excitation is 1920/cm, accounting for only 13 percent of the available energy. Of the energy balance, time-resolved sub-Doppler line shape measurements show that more than 38 percent appears as relative translation of the separating CO and SH fragments. Studies of the relaxation kinetics indicate that some rotational energy transfer occurs on the time scale of our measurements, but the distributions do not relax sufficiently to alter our conclusions. Vibrational distributions are nascent, though vibrational relaxation of excited CO is unusually fast in the OCS bath, with rates approaching 3 percent of gas kinetic for v = 1.

  18. The H + OCS hot atom reaction - CO state distributions and translational energy from time-resolved infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Cartland, Harry E.

    1993-01-01

    Time-resolved infrared diode laser spectroscopy has been used to probe CO internal and translational excitation from the reaction of hot H atoms with OCS. Product distributions should be strongly biased toward the maximum 1.4 eV collision energy obtained from 278 nm pulsed photolysis of HI. Rotations and vibrations are both colder than predicted by statistical density of states theory, as evidenced by large positive surprisal parameters. The bias against rotation is stronger than that against vibration, with measurable population as high as v = 4. The average CO internal excitation is 1920/cm, accounting for only 13 percent of the available energy. Of the energy balance, time-resolved sub-Doppler line shape measurements show that more than 38 percent appears as relative translation of the separating CO and SH fragments. Studies of the relaxation kinetics indicate that some rotational energy transfer occurs on the time scale of our measurements, but the distributions do not relax sufficiently to alter our conclusions. Vibrational distributions are nascent, though vibrational relaxation of excited CO is unusually fast in the OCS bath, with rates approaching 3 percent of gas kinetic for v = 1.

  19. Energy transfer in photosystem I. Time resolved fluorescence of the native photosystem I complex and its core complex

    NASA Astrophysics Data System (ADS)

    Pålsson, Lars-Olof; Tjus, Staffan E.; Andersson, Bertil; Gillbro, Tomas

    1995-05-01

    Energy transfer within isolated spinach photosystem I (PS I) complexes with different antenna size were studied using time-resolved picosecond and steady-state fluorescence spectroscopy. In both the native PS I complexes and the PS I core complexes lacking the outer chlorophyll a/ b antenna we observed a fast dominating emission component ≈ 35 ps at room temperature which is associated with the trapping process by the reaction centre. In the native PS I complex there also appears a 120 ps component which was not observed in the PS I core complex. This component most likely represents an energy transfer from low energy pigments in the light-harvesting complex I antenna and into the core. Due to a very fast energy equilibration (< 10 ps) it was not possible to resolve the energy transfer at room temperature. At 77 K, however, it was possible to follow the energy transfer from F690 to F720 with a transfer time of ≈ 35 ps within the native PS I complex and slightly longer, 78 ps, in the PS I core complex. The native PS I complex also exhibited in the region 700-740 nm a 102 ps component which originates from F720 and represents energy transfer from F720 to P700 at 77 K. At low temperatures the PS I core complex exhibited a component of 161 ps which is associated with F720 and has the same function as the 102 ps component of the native PS I complex. We conclude that the F720 emission originates from pigments in the core antenna system. This emission also increases at low temperature. In the native PS I complex there is an initial increase in the F720 emission as the temperature is lowered but at 77 K the F735 emission originating from LHC I dominates.

  20. Construction and operation of parallel electric and magnetic field spectrometers for mass/energy resolved multi-ion charge exchange diagnostics on the Tokamak Fusion Test Reactor

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Roquemore, A. L.

    1998-07-01

    A novel charge exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory for neutral particle diagnostics on the Tokamak Fusion Test Reactor (TFTR). The E∥B spectrometer has an energy range of 0.5⩽A (amu)E (keV)⩽600 and provides mass-resolved energy spectra of H+, D+, and T+ (or 3He+) ion species simultaneously during a single discharge. The detector plane exhibits parallel rows of analyzed ions, each row containing the energy dispersed ions of a given mass-to-charge ratio. The detector consists of a large area microchannel plate (MCP) which is provided with three rectangular, semicontinuous active area strips, one coinciding with each of the mass rows for detection of H+, D+, and T+ (or 3He+) and each mass row has 75 energy channels. To suppress spurious signals attending operation of the plate in the magnetic fringe field of the spectrometer, the MCP was housed in a double-walled iron shield with a wire mesh ion entrance window. Using an accelerator neutron generator, the MCP neutron detection efficiency was measured to be 1.7×10-3 and 6.4×10-3 counts/neutron/cm2 for 2.5 MeV-DD and 14 MeV-DT neutrons, respectively. The design and calibration of the spectrometer are described in detail, including the effect of MCP exposure to tritium, and results obtained during high performance D-D operation on TFTR are presented to illustrate the performance of the E∥B spectrometer. The spectrometers were not used during D-T plasma operation due to the cost of providing the required radiation shielding.

  1. Dispersion-corrected energy decomposition analysis for intermolecular interactions based on the BLW and dDXDM methods.

    PubMed

    Steinmann, Stephan N; Corminboeuf, Clemence; Wu, Wei; Mo, Yirong

    2011-06-02

    As the simplest variant of the valence bond (VB) theory, the block-localized wave function (BLW) method defines the intermediate electron-localized state self-consistently at the DFT level and can be used to explore the nature of intermolecular interactions in terms of several physically intuitive energy components. Yet, it is unclear how the dispersion interaction affects such a kind of energy decomposition analysis (EDA) as standard density functional approximations neglect the long-range dispersion attractive interactions. Three electron densities corresponding to the initial electron-localized state, optimal electron-localized state, and final electron-delocalized state are involved in the BLW-ED approach; a density-dependent dispersion correction, such as the recently proposed dDXDM approach, can thus uniquely probe the impact of the long-range dispersion effect on EDA results computed at the DFT level. In this paper, we incorporate the dDXDM dispersion corrections into the BLW-ED approach and investigate a range of representative systems such as hydrogen-bonding systems, acid-base pairs, and van der Waals complexes. Results show that both the polarization and charge-transfer energies are little affected by the inclusion of the long-range dispersion effect, which thus can be regarded as an independent energy component in EDA. © 2011 American Chemical Society

  2. The Role of Energy Dispersion in the Genesis and Life Cycle of African Easterly Waves

    NASA Astrophysics Data System (ADS)

    Diaz, Michael

    This dissertation uses energy dispersion and wave packet concepts to provide a better conceptual model of the genesis and life cycle of African Easterly Waves and to better understand the instability of the African Easterly Jet (AEJ). The existence of an upstream (eastward) group velocity for AEWs is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the direction of ageostrophic geopotential flux vectors. A local eddy kinetic energy (EKE) budget reveals that, early in the life cycle of AEWs, growth rate due to geopotential flux convergence exceeds baroclinic and barotropic growth rates. Later in the life cycle, EKE decay due to geopotential flux divergence cancels or exceeds baroclinic and barotropic growth. A potential vorticity (PV) budget is used to diagnose tendencies related to group propagation. Although both upstream and downstream group speeds are possible because of the reversal in the mean meridional PV gradient, upstream propagation associated with the positive poleward PV gradient dominates wave packet evolution. Analogous to the concept of downstream development of midlatitude baroclinic waves, new AEWs develop preferentially upstream of the older ones, thus providing a mechanism for seeding new waves. The usefulness of upstream development as a genesis mechanism for AEWs is demonstrated by performing a case study of the AEW which ultimately produced hurricane Alberto (2000). The case study uses the ERA-interim reanalysis combined with surface observations and TRMM data. Using a local EKE budget, we attribute its genesis to energy dispersion from a preceding AEW. After genesis, baroclinic and barotropic conversion dominated the energetics of this AEW. Some strengths and weaknesses of upstream development as a paradigm for AEW genesis are discussed with respect to other potential mechanisms. The stability of the AEJ is examined applying the concept of absolute

  3. The MASSIVE Survey - V. Spatially resolved stellar angular momentum, velocity dispersion, and higher moments of the 41 most massive local early-type galaxies

    NASA Astrophysics Data System (ADS)

    Veale, Melanie; Ma, Chung-Pei; Thomas, Jens; Greene, Jenny E.; McConnell, Nicholas J.; Walsh, Jonelle; Ito, Jennifer; Blakeslee, John P.; Janish, Ryan

    2017-01-01

    We present spatially resolved two-dimensional stellar kinematics for the 41 most massive early-type galaxies (ETGs; MK ≲ -25.7 mag, stellar mass M* ≳ 1011.8 M⊙) of the volume-limited (D < 108 Mpc) MASSIVE survey. For each galaxy, we obtain high-quality spectra in the wavelength range of 3650-5850 Å from the 246-fibre Mitchell integral-field spectrograph at McDonald Observatory, covering a 107 arcsec × 107 arcsec field of view (often reaching 2 to 3 effective radii). We measure the 2D spatial distribution of each galaxy's angular momentum (λ and fast or slow rotator status), velocity dispersion (σ), and higher order non-Gaussian velocity features (Gauss-Hermite moments h3 to h6). Our sample contains a high fraction (˜80 per cent) of slow and non-rotators with λ ≲ 0.2. When combined with the lower mass ETGs in the ATLAS3D survey, we find the fraction of slow rotators to increase dramatically with galaxy mass, reaching ˜50 per cent at MK ˜ -25.5 mag and ˜90 per cent at MK ≲ -26 mag. All of our fast rotators show a clear anticorrelation between h3 and V/σ, and the slope of the anticorrelation is steeper in more round galaxies. The radial profiles of σ show a clear luminosity and environmental dependence: the 12 most luminous galaxies in our sample (MK ≲ -26 mag) are all brightest cluster/group galaxies (except NGC 4874) and all have rising or nearly flat σ profiles, whereas five of the seven `isolated' galaxies are all fainter than MK = -25.8 mag and have falling σ. All of our galaxies have positive average h4; the most luminous galaxies have average h4 ˜ 0.05, while less luminous galaxies have a range of values between 0 and 0.05. Most of our galaxies show positive radial gradients in h4, and those galaxies also tend to have rising σ profiles. We discuss the implications for the relationship among dynamical mass, σ, h4, and velocity anisotropy for these massive galaxies.

  4. Development of mercuric iodide energy dispersive x-ray array detectors

    SciTech Connect

    Iwanczyk, J.S.; Warburton, W.K.; Dabrowski, A.J.; Hedman, B.; Hodgson, K.O.; Patt, B.E.

    1988-02-01

    There are various areas of synchrotron radiation research particularly Extended X-Ray Absorption Fine Structure (EXAFS) on dilute solutions and anomalous scattering, which would strongly benefit from the availability of energy dispersive detector arrays with high energy resolution and good spatial resolution. The goal of this development project is to produce high energy resolution mercuric iodide (HgI/sub 2/) detector sub-modules, consisting of several elements. These sub-modules can later be grouped into larger arrays of 100-400 elements. A prototype 5 element HgI/sub 2/ array detector was constructed and tested. Dimensions of each element were 7.3 mm x 0.7 mm. An energy resolution of 335 eV (FWHM) for Mn0K..cap alpha.. at 5.9 keV has been measured. The novel fiber-optic pulsed light feedback has been introduced into the charge preamplifiers in order to minimize electronic crosstalk between channels.

  5. Food stress prompts dispersal behavior in apterous pea aphids: do activated aphids incur energy loss?

    PubMed

    Tabadkani, Seyed Mohammad; Ahsaei, Seyed Mohammad; Hosseininaveh, Vahid; Nozari, Jamasb

    2013-02-17

    The pea aphid, Acyrthosiphon pisum (Hem: Aphididae), has been repeatedly used as a model species in a wide range of biological studies including genetics, ecology, physiology, and behavior. When red pea aphids feed on low quality plants in crowded conditions, some individuals lose their color shade and become pale yellowish, while other individuals on the same host plants remain changeless. The pale aphids have been shown to walk significantly faster and migrate more frequently to neighboring plants compared to the original red ones. We hypothesized that the color change and higher activity of pale aphids are directly associated with their suboptimal nutritional status. We showed that the pale aphids have significantly lower wet and dry weights than red ones. Analyses of energy reserves in individual aphids revealed that the pale aphids suffer a significant loss in their lipid and soluble carbohydrate contents. Our results provide a strong link between host quality, body color, dispersal rate, and energy reserves of pea aphids. Apparently, utilization of energy reserves resulted from an imbalance in food sources received by the aphids stimulates them to walk more actively to find new hosts and restore their lost energy. This reversible shift enables aphids to quickly respond to deprived host plants much earlier than the appearance of winged morph and restore their original status when they find appropriate host.

  6. An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline

    2010-01-01

    High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.

  7. An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline

    2010-01-01

    High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.

  8. Energy-momentum tensor of the electromagnetic field in dispersive media

    NASA Astrophysics Data System (ADS)

    Toptygin, I. N.; Levina, K.

    2016-02-01

    We study the relation between the energy-momentum tensor of the electromagnetic field and the group velocity of quasi-monochromatic waves in a nonabsorptive, isotropic, spatially and temporally dispersive dielectric. It is shown that the Abraham force acting on a dielectric is not needed for the momentum conservation law to hold if the dielectric is free of external charges and currents and if the Abraham momentum density is used. The energy-momentum tensor turns out to be symmetric, and the Maxwell stress tensor is expressed either in terms of the momentum density vector and the group velocity or in terms of the energy density and the group velocity. The stress tensor and the energy density are essentially dependent on the frequency and wave vector derivatives of the functions that describe the electromagnetic properties of the medium (i.e., the dielectric permittivity and the magnetic permeability). The obtained results are applicable to both ordinary and left-handed media. The results are compared with those of other authors. The pressure a wave exerts on the interface between two media is calculated. For both ordinary and left-handed media, either 'radiation pressure' or 'radiation attraction' can occur at the interface, depending on the material parameters of the two media. For liquid dielectrics, the striction effect is considered.

  9. Surface energy changes and their relationship with the dispersibility of salmeterol xinafoate powders for inhalation after storage at high RH.

    PubMed

    Das, Shyamal; Larson, Ian; Young, Paul; Stewart, Peter

    2009-11-05

    This study investigated the relationship between surface energy of micronized lactose, coarse lactose and salmeterol xinafoate and dispersibility from a mixture after storage at 75% RH. Surface energies, dispersibility, morphology, and the presence of amorphous domains were determined by inverse gas chromatography, twin stage impinger, scanning electron microscope and dynamic vapour sorption, respectively. The fine particle fraction of mixture decreased significantly in 4 weeks (P<0.05), reaching a static level in 3 months. Amorphous content was not detected in the micronized lactose, coarse lactose and salmeterol xinafoate. After conditioning stored samples at 75% RH for 2h, dispersive surface energy of both micronized and coarse lactose significantly decreased (P<0.05), while the polar surface energy of all significantly increased (P<0.05) resulting in significant increase in total surface energy after storage. After conditioning stored samples at 0% RH for 2h, no significant difference was observed in any surface energy parameter. This study concluded that the total surface energy increased during storage at high RH due to the adhered surface moisture. The mechanism of decreased dispersibility was related to increased capillary/solid bridging interactions and to possible increased interaction of contiguous particles due to increased polar surface energy.

  10. Comparison of tropical cyclogenesis processes in climate model and cloud-resolving model simulations using moist static energy budget analysis

    NASA Astrophysics Data System (ADS)

    Wing, Allison; Camargo, Suzana; Sobel, Adam; Kim, Daehyun; Murakami, Hiroyuki; Reed, Kevin; Vecchi, Gabriel; Wehner, Michael; Zarzycki, Colin; Zhao, Ming

    2017-04-01

    In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore the tropical cyclogenesis processes in five high-resolution climate models, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter was originally developed to study the mechanisms of tropical convective organization in idealized cloud-resolving models, and allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis both along the individual tracks and composited over many tropical cyclones. We then compare the genesis processes; in particular, the role of cloud-radiation interactions, to those of spontaneous tropical cyclogenesis in idealized cloud-resolving model simulations.

  11. Time-resolved photoemission apparatus achieving sub-20-meV energy resolution and high stability

    SciTech Connect

    Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Kiss, T.; Otsu, T.; Kobayashi, Y.; Shin, S.

    2014-12-15

    The paper describes a time- and angle-resolved photoemission apparatus consisting of a hemispherical analyzer and a pulsed laser source. We demonstrate 1.48-eV pump and 5.92-eV probe measurements at the ⩾10.5-meV and ⩾240-fs resolutions by use of fairly monochromatic 170-fs pulses delivered from a regeneratively amplified Ti:sapphire laser system operating typically at 250 kHz. The apparatus is capable to resolve the optically filled superconducting peak in the unoccupied states of a cuprate superconductor, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. A dataset recorded on Bi(111) surface is also presented. Technical descriptions include the followings: A simple procedure to fine-tune the spatio-temporal overlap of the pump-and-probe beams and their diameters; achieving a long-term stability of the system that enables a normalization-free dataset acquisition; changing the repetition rate by utilizing acoustic optical modulator and frequency-division circuit.

  12. Size-resolved global emission inventory of primary particulate matter from energy-related combustion sources

    SciTech Connect

    Winijkul, E.; Yan, F.; Lu, Z.; Streets, D.G.; Bond, T. C.; Zhao, Y.

    2015-04-01

    Current emission inventories provide information about the mass emissions of different chemical species from different emitting sources without information concerning the size distribution of primary particulate matter (PM). The size distribution information, however, is an important input into chemical transport models that determine the fate of PM and its impacts on climate and public health. At present, models usually make rather rudimentary assumptions about the size distribution of primary PM emissions in their model inputs. In this study, we develop a global and regional, size-resolved, mass emission inventory of primary PM emissions from source-specific combustion components of the residential, industrial, power, and transportation sectors for the year 2010. Uncertainties in the emission profiles are also provided. The global size-resolved PM emissions show a distribution with a single peak and the majority of the mass of particles in size ranges smaller than 1 mu m. The PM size distributions for different sectors and world regions vary considerably, due to the different combustion characteristics. Typically, the sizes of particles decrease in the order: power sector > industrial sector > residential sector > transportation sector. Three emission scenarios are applied to the baseline distributions to study the likely changes in size distribution of emissions as clean technologies are implemented.

  13. Measurement Error in Atomic-Scale Scanning Transmission Electron Microscopy-Energy-Dispersive X-Ray Spectroscopy (STEM-EDS) Mapping of a Model Oxide Interface.

    PubMed

    Spurgeon, Steven R; Du, Yingge; Chambers, Scott A

    2017-06-01

    With the development of affordable aberration correctors, analytical scanning transmission electron microscopy (STEM) studies of complex interfaces can now be conducted at high spatial resolution at laboratories worldwide. Energy-dispersive X-ray spectroscopy (EDS) in particular has grown in popularity, as it enables elemental mapping over a wide range of ionization energies. However, the interpretation of atomically resolved data is greatly complicated by beam-sample interactions that are often overlooked by novice users. Here we describe the practical factors-namely, sample thickness and the choice of ionization edge-that affect the quantification of a model perovskite oxide interface. Our measurements of the same sample, in regions of different thickness, indicate that interface profiles can vary by as much as 2-5 unit cells, depending on the spectral feature. This finding is supported by multislice simulations, which reveal that on-axis maps of even perfectly abrupt interfaces exhibit significant delocalization. Quantification of thicker samples is further complicated by channeling to heavier sites across the interface, as well as an increased signal background. We show that extreme care must be taken to prepare samples to minimize channeling effects and argue that it may not be possible to extract atomically resolved information from many chemical maps.

  14. Measurement Error in Atomic-Scale Scanning Transmission Electron Microscopy—Energy-Dispersive X-Ray Spectroscopy (STEM-EDS) Mapping of a Model Oxide Interface

    DOE PAGES

    Spurgeon, Steven R.; Du, Yingge; Chambers, Scott A.

    2017-04-05

    With the development of affordable aberration correctors, analytical scanning transmission electron microscopy (STEM) studies of complex interfaces can now be conducted at high spatial resolution at laboratories worldwide. Energy-dispersive X-ray spectroscopy (EDS) in particular has grown in popularity, as it enables elemental mapping over a wide range of ionization energies. However, the interpretation of atomically resolved data is greatly complicated by beam–sample interactions that are often overlooked by novice users. Here we describe the practical factors—namely, sample thickness and the choice of ionization edge—that affect the quantification of a model perovskite oxide interface. Our measurements of the same sample,more » in regions of different thickness, indicate that interface profiles can vary by as much as 2–5 unit cells, depending on the spectral feature. This finding is supported by multislice simulations, which reveal that on-axis maps of even perfectly abrupt interfaces exhibit significant delocalization. Quantification of thicker samples is further complicated by channeling to heavier sites across the interface, as well as an increased signal background. We show that extreme care must be taken to prepare samples to minimize channeling effects and argue that it may not be possible to extract atomically resolved information from many chemical maps.« less

  15. Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium.

    PubMed

    Choi, Youngwoon; Hillman, Timothy R; Choi, Wonjun; Lue, Niyom; Dasari, Ramachandra R; So, Peter T C; Choi, Wonshik; Yaqoob, Zahid

    2013-12-13

    Multiple scatterings occurring in a turbid medium attenuate the intensity of propagating waves. Here, we propose a method to efficiently deliver light energy to the desired target depth in a scattering medium. We measure the time-resolved reflection matrix of a scattering medium using coherent time-gated detection. From this matrix, we derive and experimentally implement an incident wave pattern that optimizes the detected signal corresponding to a specific arrival time. This leads to enhanced light delivery at the target depth. The proposed method will lay a foundation for efficient phototherapy and deep-tissue in vivo imaging in the near future.

  16. Monitoring non-adiabatic dynamics in CS2 with time- and energy-resolved photoelectron spectra of wavepackets

    NASA Astrophysics Data System (ADS)

    Wang, Kwanghsi; McKoy, Vincent; Hockett, Paul; Stolow, Albert; Schuurman, Michael S.

    2017-09-01

    We report results from a novel fully ab initio method for simulating the time-resolved photoelectron angular distributions around conical intersections in CS2. The technique employs wavepacket densities obtained with the multiple spawning method in conjunction with geometry- and energy-dependent photoionization matrix elements. The robust agreement of the calculated molecular-frame photoelectron angular distributions with measured values for CS2 demonstrates that this approach can successfully illuminate, and disentangle, the underlying coupled nuclear and electronic dynamics around conical intersections in polyatomic molecules.

  17. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments.

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Efthimion, P; Pablant, N A; Lu, J; Beiersdorfer, P; Chen, H; Magee, E

    2014-11-01

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10,000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  18. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  19. A deconvolution approach for the enhancement of spatial resolution in energy dispersive x-ray diffraction and related imaging methods

    NASA Astrophysics Data System (ADS)

    Schlesinger, S.; Bomsdorf, H.

    2013-07-01

    A reconstruction approach is presented, allowing the improvement of spatial resolution of images obtained by sequential pixel scanning techniques. Based on a series of measurements taken under different object positions, the signal contributions from individual voxels of significantly reduced size are calculated. Mathematically, the type of reconstruction used can be regarded as a deconvolution or solving an inverse problem. Due to the specific shape of the convolution kernel in the x-ray diffraction example treated here the problem turns out to be ill-posed, and thus its solution using measured (noisy) data requires the application of a suitable regularization method. Detailed studies on this issue led to the development of a novel iterative algorithm, combining several deconvolution runs with preceding and intermediate image processing steps. The Tikhonov method was used for regularization. Depending on the object under investigation, the original Euclidean norm (least-squares fit) was advantageously replaced by the 1-norm (least absolute deviation, LAD problem). The method presented here was developed to overcome resolution limitations in spatially resolved x-ray diffraction measurements on extended objects as used, e.g., for material analysis or the detection of illicit substances in baggage inspection applications. Nevertheless, the technique may easily be utilized for resolution enhancement within other imaging modalities, provided the task can be written as a deconvolution problem and the corresponding convolution kernel is known. According to the features of our experimental setup the developed reconstruction algorithm is explained for energy dispersive x-ray diffraction with pencil beam irradiation as an example application. The spatial resolution enhancement is demonstrated, using simulated and measured data sets corresponding to objects of different material composition.

  20. Identifying and Resolving Issues in EnergyPlus and DOE-2 Window Heat Transfer Calculations

    SciTech Connect

    Booten, C.; Kruis, N.; Christensen, C.

    2012-08-01

    Issues in building energy software accuracy are often identified by comparative, analytical, and empirical testing as delineated in the BESTEST methodology. As described in this report, window-related discrepancies in heating energy predictions were identified through comparative testing of EnergyPlus and DOE-2. Multiple causes for discrepancies were identified, and software fixes are recommended to better align the models with the intended algorithms and underlying test data.

  1. Energy-resolved neutron SEU measurements from 22 to 160 MeV

    SciTech Connect

    Johansson, K.; Dyreklev, P.; Granbom, B.; Olsson, N.; Blomgren, J.; Renberg, P.U.

    1998-12-01

    The energy dependence of the neutron- induced single-event upset (NSEU) cross section for Static RAMs have been measured, using quasi-monoenergetic neutrons of five different energies from 22 to 160 MeV. The measured SEU cross sections were corrected for the low-energy neutron tail by an iterative folding procedure. A clear energy dependence has been found. The SEU rate has been compared both with results from testing with a neutron spallation spectrum up to 800 MeV and the measured SEU rate from In-Flight experiments at 10 km.

  2. Atomic-scale chemical quantification of oxide interfaces using energy-dispersive X-ray spectroscopy

    SciTech Connect

    Lu, Ping; Van Benthem, Mark; Xiong, Jie; Jia, Quanxi

    2013-04-29

    Atomic-scale quantification of chemical composition across oxide interfaces is important for understanding physical properties of epitaxial oxide nanostructures. Energy-dispersive X-ray spectroscopy (EDS) in an aberration-corrected scanning transmission electron microscope was used to quantify chemical composition across the interface of ferromagnetic La{sub 0.7}Sr{sub 0.3}MnO{sub 3} and antiferromagnetic BiFeO{sub 3} quantum structure. This research demonstrates that chemical composition at atomic columns can be quantified by Gaussian peak-fitting of EDS compositional profiles across the interface. Cation diffusion was observed at both A- and B-sublattice sites; and asymmetric chemical profiles exist across the interface, consistent with the previous studies.

  3. Evaluation on determination of iodine in coal by energy dispersive X-ray fluorescence

    USGS Publications Warehouse

    Wang, B.; Jackson, J.C.; Palmer, C.; Zheng, B.; Finkelman, R.B.

    2005-01-01

    A quick and inexpensive method of relative high iodine determination from coal samples was evaluated. Energy dispersive X-ray fluorescence (EDXRF) provided a detection limit of about 14 ppm (3 times of standard deviations of the blank sample), without any complex sample preparation. An analytical relative standard deviation of 16% was readily attainable for coal samples. Under optimum conditions, coal samples with iodine concentrations higher than 5 ppm can be determined using this EDXRF method. For the time being, due to the general iodine concentrations of coal samples lower than 5 ppm, except for some high iodine content coal, this method can not effectively been used for iodine determination. More work needed to meet the requirement of determination of iodine from coal samples for this method. Copyright ?? 2005 by The Geochemical Society of Japan.

  4. Sodium Chloride Diffusion during Muscle Salting Evidenced by Energy-Dispersive X-ray Spectroscopy Imaging.

    PubMed

    Filgueras, Rénata; Peyrin, Frédéric; Vénien, Annie; Hénot, Jean Marc; Astruc, Thierry

    2016-01-27

    To better understand the relationship between the muscle structure and NaCl transfers in meat, we used energy-dispersive X-ray spectroscopy (EDS) coupled with scanning electron microscopy (SEM) to analyze brined and dry-salted rat muscles. The muscles were freeze-dried to avoid the delocalization of soluble ions that happens in regular dehydration through a graded series of ethanol. Na and Cl maps were superimposed on SEM images to combine the muscle structure and NaCl diffusion. Brining causes rapid diffusion of NaCl through the tissue. Most brine diffuses in a linear front from the muscle surface, but a small proportion enters through the perimysium network. The muscle area penetrated by brine shows heterogeneous patterns of NaCl retention, with some connective tissue islets containing more NaCl than other parts of perimysium. NaCl penetration is considerably slower after dry salting than after brining.

  5. Compositional analysis of Ceramic Glaze by Laser Induced Breakdown Spectroscopy and Energy Dispersive X-Ray

    NASA Astrophysics Data System (ADS)

    Khedr, A.; Abdel-kareem, O.; Elnabi, S. H.; Harith, M. A.

    2011-09-01

    Laser induced breakdown spectroscopy (LIBS) has been applied for the analysis of Egyptian Islamic glaze ceramic sample. The sample dating back to Fatimid period (969-1169AD), and collected from Al-Fustat excavation store in Cairo. The analysis of contaminated pottery sample has been performed to draw mapping for the elemental compositions by LIBS technique. LIBS measurements have been done by the fundamental wavelength (1064 nm) of Nd: YAG laser for the elemental analysis and performing the cleaning processes of the pottery sample. In addition, complementary analyses were carried out by scanning electron microscopy linked with energy dispersive X-ray microanalysis (SEM/EDX) to obtain verification of chemical results. The morphological surfaces before and after cleaning has been done by Optical Microscopy (OM).

  6. Energy dispersive-EXAFS of Pd nucleation at a liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Chang, S.-Y.; Booth, S. G.; Uehara, A.; Mosselmans, J. F. W.; Cibin, G.; Pham, V.-T.; Nataf, L.; Dryfe, R. A. W.; Schroeder, S. L. M.

    2016-05-01

    Energy dispersive extended X-ray absorption fine structure (EDE) has been applied to Pd nanoparticle nucleation at a liquid/liquid interface under control over the interfacial potential and thereby the driving force for nucleation. Preliminary analysis focusing on Pd K edge-step height determination shows that under supersaturated conditions the concentration of Pd near the interface fluctuate over a period of several hours, likely due to the continuous formation and dissolution of sub-critical nuclei. Open circuit potential measurements conducted ex-situ in a liquid/liquid electrochemical cell support this view, showing that the fluctuations in Pd concentration are also visible as variations in potential across the liquid/liquid interface. By decreasing the interfacial potential through inclusion of a common ion (tetraethylammonium, TEA+) the Pd nanoparticle growth rate could be slowed down, resulting in a smooth nucleation process. Eventually, when the TEA+ ions reached an equilibrium potential, Pd nucleation and particle growth were inhibited.

  7. Welders' pneumoconiosis: tissue elemental microanalysis by energy dispersive x ray analysis.

    PubMed Central

    Funahashi, A; Schlueter, D P; Pintar, K; Bemis, E L; Siegesmund, K A

    1988-01-01

    Histological examination on lung tissue obtained from 10 symptomatic welders was performed by two certified pathologists without the knowledge of the patients' clinical condition. In all cases, there was some degree of interstitial fibrosis; in five the degree of fibrosis was considered to be moderate to pronounced. The tissue was also analysed by energy dispersive x ray analysis and elemental contents were compared with age matched controls. There was a large amount of iron in the lungs of welders but the silicon content did not differ from the control subjects. No specific foreign element was detected. It is concluded that (1) interstitial pulmonary fibrosis is seen in some welders and (2) the cause of fibrosis does not appear to be coexisting silicosis. Images PMID:3342182

  8. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    NASA Astrophysics Data System (ADS)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  9. Energy dispersive x-ray diffraction of charge density waves via chemical filtering

    SciTech Connect

    Feng Yejun; Somayazulu, M. S.; Jaramillo, R.; Rosenbaum, T.F.; Isaacs, E.D.; Hu Jingzhu; Mao Hokwang

    2005-06-15

    Pressure tuning of phase transitions is a powerful tool in condensed matter physics, permitting high-resolution studies while preserving fundamental symmetries. At the highest pressures, energy dispersive x-ray diffraction (EDXD) has been a critical method for geometrically confined diamond anvil cell experiments. We develop a chemical filter technique complementary to EDXD that permits the study of satellite peaks as weak as 10{sup -4} of the crystal Bragg diffraction. In particular, we map out the temperature dependence of the incommensurate charge density wave diffraction from single-crystal, elemental chromium. This technique provides the potential for future GPa pressure studies of many-body effects in a broad range of solid state systems.

  10. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    SciTech Connect

    Artem’ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-15

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  11. The fluorescence resonance energy transfer (FRET) gate: A time-resolved study

    PubMed Central

    Xu, Qing-Hua; Wang, Shu; Korystov, Dmitry; Mikhailovsky, Alexander; Bazan, Guillermo C.; Moses, Daniel; Heeger, Alan J.

    2005-01-01

    The two-step energy-transfer process in a self-assembled complex comprising a cationic conjugated polymer (CCP) and a dsDNA is investigated by using pump-dump-emission spectroscopy and time-correlated single-photon counting; energy is transferred from the CCP to an ethidium bromide (EB) molecule intercalated into the dsDNA through a fluorescein molecule linked to one terminus of the DNA. Time-dependent anisotropy measurements indicate that the inefficient direct energy transfer from the CCP to the intercalated EB results from the near orthogonality of their transition moments. These measurements also show that the transition moment of the fluorescein spans a range of angular distributions and lies between that of the CCP and EB. Consequently, the fluorescein acts as a fluorescence resonance energy-transfer gate to relay the excitation energy from the CCP to the EB. PMID:15642946

  12. The fluorescence resonance energy transfer (FRET) gate: a time-resolved study.

    PubMed

    Xu, Qing-Hua; Wang, Shu; Korystov, Dmitry; Mikhailovsky, Alexander; Bazan, Guillermo C; Moses, Daniel; Heeger, Alan J

    2005-01-18

    The two-step energy-transfer process in a self-assembled complex comprising a cationic conjugated polymer (CCP) and a dsDNA is investigated by using pump-dump-emission spectroscopy and time-correlated single-photon counting; energy is transferred from the CCP to an ethidium bromide (EB) molecule intercalated into the dsDNA through a fluorescein molecule linked to one terminus of the DNA. Time-dependent anisotropy measurements indicate that the inefficient direct energy transfer from the CCP to the intercalated EB results from the near orthogonality of their transition moments. These measurements also show that the transition moment of the fluorescein spans a range of angular distributions and lies between that of the CCP and EB. Consequently, the fluorescein acts as a fluorescence resonance energy-transfer gate to relay the excitation energy from the CCP to the EB.

  13. Electron excited multiply charged argon ions studied by means of an energy resolved electron-ion coincidence technique

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Prajapati, Suman; Singh, Bhupendra; Singh, Bhartendu Kumar; Shanker, Rama

    2017-03-01

    Multiply charged argon ions produced from decay of L-shell hole states by impact of a continuous beam of 3.5 keV electrons are studied for the first time using an energy resolved electron-ion coincidence technique. The TOF spectra of argon ions are measured in coincidence with 18-energy selected electrons emitted in a wide energy range (126-242 eV). The coincidence measurement between the energy selected electrons and the correlated ions specifies the individual decay channel for various multiply charged ions. New experimental data are obtained and reported on the correlation probability for production of argon ions with charge states 1+ to 4+ as a function of ejected electrons in the considered energy range. The relative correlation probability of producing different charge state ions and corresponding physical processes involved in their production are presented and discussed. It has been found that the maximum probability for production of Ar2+ ions correlated to ejected Auger electrons in the energy range of 205-209 eV is 100%. No theoretical predictions are available to compare with these results. The present study shows further that not only the auto-ionization and normal Auger transitions but also several other decay processes including Coster-Kronig transitions followed by Auger cascades with a fraction of shake process play important role in producing ions with charge states 1+ to 4+.

  14. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    SciTech Connect

    Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei

    2015-06-17

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.

  15. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    DOE PAGES

    Meng, Qingping; Wu, Lijun; Welch, David O.; ...

    2015-06-17

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of themore » FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less

  16. MMS Observation of Inverse Energy Dispersion in Shock Drift Acceleration Ions

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K. J.; Wang, Y.; Silveira, M. D.; Mauk, B.; Cohen, I. J.; Chu, C. S.; Mason, G. M.; Gold, R. E.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Wei, H.

    2016-12-01

    The Energetic Particle Detector (EPD) on the Magnetospheric Multiscale (MMS) spacecraft observed bursts of energetic ions (50 keV-1000 keV) both in the foreshock and in the magnetosheath near the bow shock on December 6, 2015. Three species (protons, helium, and oxygen) exhibit inverse energy dispersions. Angular distributions for all three species indicate acceleration at the perpendicular bow shock. Acceleration that energizes the seed solar population by a factor of 2 and 4 is required for the protons and helium ions, respectively. The energy of the ions increases with θBn (the angle between the IMF and the local shock normal) since the induced electric field that energizes the charged particles increases as θBn increases towards 90°. We compare events upstream and downstream from the bow shock. We compare the MMS observations with those of the solar wind seed populations by the Ultra Low Energy Isotope Spectrometer (ULEIS) instrument on the Advanced Composition Explorer (ACE) mission and by the WIND 3-D Plamsa and Energetic Particle Experiment.

  17. UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion.

    PubMed

    Hwang, Hyeon-Deuk; Kim, Hyun-Joong

    2011-10-15

    UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersions were synthesized by incorporating a hydroxy-terminated perfluoropolyether (PFPE) into the soft segment of polyurethane. The effects of the PFPE content on the UV-curing behavior, physical, surface, thermal properties and refractive index were investigated. The UV-curing behavior was analyzed by photo-differential scanning calorimetry. The surface free energy of the UV-cured film, which is related to the water or oil repellency, was calculated from contact angle measurements using the Lewis acid-base three liquids method. The surface free energy decreased significantly with increasing fluorine concentration because PFPE in the soft segment was tailored to the surface and produced a UV-cured film with a hydrophobic fluorine enriched surface, as confirmed by X-ray photoelectron spectroscopy. With increasing the fluorine content, the refractive indices of UV-cured films decreased. However, the UV-curing rate and final conversion was decreased with increasing contents of PFPE, which resulted in the decrease of the glass transition temperature (T(g)), crosslink density, tensile strength and surface hardness. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  19. The dynamics of He + ion neutralization at a xenon film: Energy- and spin-resolved studies

    NASA Astrophysics Data System (ADS)

    Kontur, F. J.; Lancaster, J. C.; Dunning, F. B.

    2006-06-01

    The neutralization of He + ions with energies in the range 10-500 eV at an adsorbed xenon layer is examined both by analyzing the energy distribution of electrons ejected from the surface and by use of spin-labeling techniques, specifically the use of electron-spin-polarized He + ions coupled with measurement of the ejected electron polarization. The data indicate that neutralization proceeds via an Auger process similar to that which occurs at a clean high-work-function metal surface. At the higher ion energies, however, kinetic ejection becomes important and provides an increasing contribution to the total electron yield.

  20. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    NASA Astrophysics Data System (ADS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an "area" detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  1. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    SciTech Connect

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-15

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  2. Study of turbulent energy dissipation rate of fluid flow in the vicinity of dispersed phase boundary using spatiotemporal tree model.

    PubMed

    Sikiö, Päivi; Jalali, Payman

    2014-12-01

    The hierarchical shell models of turbulence including a spatial dimension, namely, spatiotemporal tree models, reproduce the intermittent behavior of Navier-Stokes equations in both space and time dimensions corresponding to high Reynolds number turbulent flows. This model is used, for the first time in this paper, in a one-dimensional flow zone containing a dispersed-phase particle that can be used in the study of dispersed-phase flows. In this paper, a straightforward method has been used to introduce discrete phase into the spatiotemporal tree model that leads to an increased amount of turbulent energy dissipation rate in the vicinity of the discrete phase. The effects of particle insertion and particle size on the turbulent energy dissipation rate are demonstrated. Moreover, the space-scale behavior of the time-averaged turbulent energy dissipation rate in the presence of dispersed phase is demonstrated by means of continuous wavelet transform.

  3. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive

  4. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science

    PubMed Central

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Huthwelker, T.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2016-01-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e− electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a ‘software mask’ or a ‘cluster finding’ algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive

  5. A homogeneous europium cryptate-based assay for the diagnosis of mutations by time-resolved fluorescence resonance energy transfer

    PubMed Central

    Lopez-Crapez, E.; Bazin, H.; Andre, E.; Noletti, J.; Grenier, J.; Mathis, G.

    2001-01-01

    Oligonucleotide ligation assay (OLA) is considered to be a very useful methodology for the detection and characterization of mutations, particularly for clinical purposes. The fluorescence resonance energy transfer between a fluorescent donor and a suitable fluorophore as acceptor has been applied in the past to several scientific fields. This technique is well adapted to nucleic acid analysis such as DNA sequencing, DNA hybridization and polymerase chain reaction. We describe here a homogeneous format based on the use of a rare earth cryptate label as donor: tris-bipyridine-Eu3+. The long-lived fluorescence of this label makes it possible to reach a high sensitivity by using a time-resolved detection mode. A non-radiative energy transfer technology, known as time-resolved amplification of cryptate emission (TRACE®) characterized by a temporal and spectral selectivity has been developed. The TRACE® detection of characterized single nucleotide polymorphism using the OLA for allelic discrimination is proposed. We demonstrate the potentialities of this OLA–TRACE® methodology through the analysis of K-ras oncogene point mutations. PMID:11452039

  6. Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction

    SciTech Connect

    Yun, Di; Miao, Yinbin; Xu, Ruqing; Mei, Zhigang; Mo, Kun; Mohamed, Walid; Ye, Bei; Pellin, Michael J.; Yacout, Abdellatif M.

    2016-04-01

    Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 mu m, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performed to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations. (c) 2015 Elsevier B.V. All rights reserved.

  7. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    NASA Astrophysics Data System (ADS)

    Gimenez, E. N.; Astromskas, V.; Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N.

    2016-07-01

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e- collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system.

  8. Binding of Transcription Factors Adapts to Resolve Information-Energy Tradeoff

    NASA Astrophysics Data System (ADS)

    Savir, Yonatan; Kagan, Jacob; Tlusty, Tsvi

    2016-03-01

    We examine the binding of transcription factors to DNA in terms of an information transfer problem. The input of the noisy channel is the biophysical signal of a factor bound to a DNA site, and the output is a distribution of probable DNA sequences at this site. This task involves an inherent tradeoff between the information gain and the energetics of the binding interaction—high binding energies provide higher information gain but hinder the dynamics of the system as factors are bound too tightly. We show that adaptation of the binding interaction towards increasing information transfer under a general energy constraint implies that the information gain per specific binding energy at each base-pair is maximized. We analyze hundreds of prokaryote and eukaryote transcription factors from various organisms to evaluate the discrimination energies. We find that, in accordance with our theoretical argument, binding energies nearly maximize the information gain per energy. This work suggests the adaptation of information gain as a generic design principle of molecular recognition systems.

  9. Energy allocation during the maturation of adults in a long-lived insect: implications for dispersal and reproduction.

    PubMed

    David, G; Giffard, B; van Halder, I; Piou, D; Jactel, H

    2015-10-01

    Energy allocation strategies have been widely documented in insects and were formalized in the context of the reproduction process by the terms 'capital breeder' and 'income breeder'. We propose here the extension of this framework to dispersal ability, with the concepts of 'capital disperser' and 'income disperser', and explore the trade-off in resource allocation between dispersal and reproduction. We hypothesized that flight capacity was sex-dependent, due to a trade-off in energy allocation between dispersal and egg production in females. We used Monochamus galloprovincialis as model organism, a long-lived beetle which is the European vector of the pine wood nematode. We estimated the flight capacity with a flight mill and used the number of mature eggs as a proxy for the investment in reproduction. We used the ratio between dry weights of the thorax and the abdomen to investigate the trade-off. The probability of flying increased with the adult weight at emergence, but was not dependent on insect age or sex. Flight distance increased with age in individuals but did not differ between sexes. It was also positively associated with energy allocation to thorax reserves, which increased with age. In females, the abdomen weight and the number of eggs also increase with age with no negative effect on flight capacity, indicating a lack of trade-off. This long-lived beetle has a complex strategy of energy allocation, being a 'capital disperser' in terms of flight ability, an 'income disperser' in terms of flight performance and an 'income breeder' in terms of egg production.

  10. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    SciTech Connect

    Stradling, G.L.

    1982-04-19

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.

  11. High harmonic generation based time resolved ARPES at 30 eV with 50 meV energy resolution

    NASA Astrophysics Data System (ADS)

    Rohwer, Timm; Sie, Edbert J.; Mahmood, Fahad; Gedik, Nuh

    Angle-resolved photoelectron spectroscopy (ARPES) has emerged as a leading technique in identifying equilibrium properties of complex electronic systems as well as their correlated dynamics. By using femtosecond high harmonic generation (HHG) pulses, this technique can be extended to monitor ultrafast changes in the electronic structure in response to an optical excitation. However, the broad bandwidth of the HHG pulses has been a major experimental limitation. In this contribution, we combine the HHG source with an off-axis Czerny-Turner XUV monochromator and a three-dimensional ``ARTOF'' photoelectron detector to achieve an unrivaled overall energy resolution of 50 meV in multiple harmonic energies. Moreover, the use of a stack of different gratings enables us to fine control both the photon energy and time vs. energy resolution to its particular needs. The performance of our setup is demonstrated by studies on the transition metal dichalcogenide IrTe2 which undergoes a first-order structural transition and accompanied reconstruction of the band structure upon cooling without the characteristic opening of an energy gap.

  12. Energetics and dynamics of fragmentation of protonated leucine enkephalin from time- and energy-resolved surface-induced dissociation studies.

    PubMed

    Laskin, Julia

    2006-07-13

    Dissociation of singly protonated leucine enkephalin (YGGFL) was studied using surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially configured for studying ion activation by collisions with surfaces. The energetics and dynamics of seven primary dissociation channels were deduced from modeling the time- and energy-resolved fragmentation efficiency curves for different fragment ions using an RRKM-based approach developed in our laboratory. The following threshold energies and activation entropies were determined in this study: E(0) = 1.20 eV and DeltaS++ = -20 eu(1) (MH(+)-->b(5)); E(0) = 1.14 eV and DeltaS++ = -14.7 eu (MH(+)-->b(4)); E(0) = 1.42 eV and DeltaS++ = -2.5 eu (MH(+)-->b(3)); E(0) = 1.30 eV and DeltaS++ = -4.1 eu (MH(+)-->a(4)); E(0) = 1.37 eV and DeltaS++ = -5.2 eu (MH(+)-->y ions); E(0) = 1.50 eV and DeltaS++ = 1.6 eu (MH(+)-->internal fragments); E(0) = 1.62 eV and DeltaS++ = 5.2 eu (MH(+)-->F). Comparison with Arrhenius activation energies reported in the literature demonstrated for the first time the reversal of the order of activation energies as compared to threshold energies for dissociation.

  13. Characterization of energy dispersive semiconductor detectors for x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Hopman, Theodore Lambert

    Since the development of the electron microprobe in the 1950s by Castaing, characteristic x-ray emission lines have been used to determine chemical compositions of samples. Energy-dispersive detectors allow simultaneous multi-element analysis; continued improvements in detector technology have lowered limits of detection and allowed the effects of physical processes in the detector to become apparent. A well-characterized detector, in terms of its geometry and its response to x-rays, is essential for accurate and precise chemical analysis. In this work, scans with a collimated 55Fe radionuclide source allowed the geometry of Si(Li) detectors to be determined. Across the surface of the detector the response function was uniform, indicating it is due primarily to detector physics and/or processing electronics. Monochromatized x-rays over an energy range of 1--10 keV were used to generate simple spectra in Si(Li) and silicon drift detectors with analog and digital pulse processing systems. Monte Carlo simulations of detector response allowed approximate contributions from physical processes to be seen individually. Transport of energetic electrons, electron diffusion at metal-semiconductor junctions, and differences in detector structure together determine variation with energy of spectral features. The Si K photoelectron escape step at ˜1.8 keV, previously attributed to electron transport only, is found to be affected by diffusion. The diffusion tail to the low-energy side of the primary peak is found to have a component due to escape of Si L Auger electrons. Escape peak intensities in SDD and Si(Li) detectors agree only when contact photoelectron contributions are taken into account.

  14. Time resolved soft x-ray studies of energy transport in layered and planar laser-driven targets

    SciTech Connect

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used for the first time to provide 15-psec time-resolution measurements of sub keV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. X-ray spectral resolution, in the region below 1 keV which includes the spectral peak, is obtained through this initial use of the high-energy cutoff properties of x-ray reflectors with x-ray streak cameras. In this application absorption-edge filters provide spectral channel definition. Enhanced spectral resolution in five sub keV spectral bands, 10-eV wide, are made possible through the use of state-of-the-art metal-multilayer x-ray interference mirrors. These large d-spacing Bragg reflectors, which are synthesized elsewhere, provide great flexibility in sub keV photon energy-band selection and detector geometry. High peak reflectivity (10%) and intermediate bandwidths (10 eV) were obtained in this first low-energy application of these structures. The first use of high-sensitivity, low secondary-electron energy-spread, Csl photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. The coherent, complementary advances in sub keV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas.

  15. Angle-resolved electron energy loss spectroscopy in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Fossard, Frédéric; Sponza, Lorenzo; Schué, Léonard; Attaccalite, Claudio; Ducastelle, François; Barjon, Julien; Loiseau, Annick

    2017-09-01

    Electron energy loss spectra were measured on hexagonal boron nitride single crystals employing an electron energy loss spectroscopic setup composed of an electron microscope equipped with a monochromator and an in-column filter. This setup provides high-quality energy-loss spectra and allows also for the imaging of energy-filtered diffraction patterns. These two acquisition modes provide complementary pieces of information, offering a global view of excitations in reciprocal space. As an example of the capabilities of the method we show how easily the core loss spectra at the K edges of boron and nitrogen can be measured and imaged. Low losses associated with interband and/or plasmon excitations are also measured. This energy range allows us to illustrate that our method provides results whose quality is comparable to that obtained from nonresonant x-ray inelastic scattering but with advantageous specificities such as an enhanced sensitivity at low q and a much greater simplicity and versatility that make it well adapted to the study of two-dimensional materials and related heterostructures. Finally, by comparing theoretical calculations to our measures, we are able to relate the range of applicability of ab initio calculations to the anisotropy of the sample and assess the level of approximation required for a proper simulation of our acquisition method.

  16. CMOS-sensors for energy-resolved X-ray imaging

    NASA Astrophysics Data System (ADS)

    Doering, D.; Amar-Youcef, S.; Baudot, J.; Deveaux, M.; Dulinski, W.; Kachel, M.; Linnik, B.; Müntz, C.; Stroth, Joachim

    2016-01-01

    Due to their low noise, CMOS Monolithic Active Pixel Sensors are suited to sense X-rays with a few keV quantum energy, which is of interest for high resolution X-ray imaging. Moreover, the good energy resolution of the silicon sensors might be used to measure this quantum energy. Combining both features with the good spatial resolution of CMOS sensors opens the potential to build ``color sensitive" X-ray cameras. Taking such colored images is hampered by the need to operate the CMOS sensors in a single photon counting mode, which restricts the photon flux capability of the sensors. More importantly, the charge sharing between the pixels smears the potentially good energy resolution of the sensors. Based on our experience with CMOS sensors for charged particle tracking, we studied techniques to overcome the latter by means of an offline processing of the data obtained from a CMOS sensor prototype. We found that the energy resolution of the pixels can be recovered at the expense of reduced quantum efficiency. We will introduce the results of our study and discuss the feasibility of taking colored X-ray pictures with CMOS sensors.

  17. Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices

    PubMed Central

    Majumder, Sagardip; Dhar, Jayabrata; Chakraborty, Suman

    2015-01-01

    We devise a new approach for capturing complex interfacial interactions over reduced length scales, towards predicting electrokinetic energy conversion efficiencies of nanofluidic devices. By embedding several aspects of intermolecular interactions in continuum based formalism, we show that our simple theory becomes capable of representing complex interconnections between electro-mechanics and hydrodynamics over reduced length scales. The predictions from our model are supported by reported experimental data, and are in excellent quantitative agreement with molecular dynamics simulations. The present model, thus, may be employed to rationalize the discrepancies between low energy conversion efficiencies of nanofluidic channels that have been realized from experiments, and the impractically high energy conversion efficiencies that have been routinely predicted by the existing theories. PMID:26437925

  18. Time-resolved in-situ measurement of mitochondrial malfunction by energy transfer spectroscopy

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Gschwend, Michael H.; Strauss, Wolfgang S. L.; Sailer, Reinhard; Schoch, Lars; Schuh, Alexander; Stock, Karl; Steiner, Rudolf W.; Zipfl, Peter

    1999-07-01

    To establish optical in situ detection of mitochondrial malfunction, non-radiative energy transfer from the coenzyme NADH to the mitochondrial marker rhodamine 123 (R123) was examined. Dual excitation of R123 via energy transfer from excited NADH molecules as well as by direct absorption of light results in two fluorescence signals whose ratio is a measure of mitochondrial NADH. An experimental setup was developed, where these signals are detected simultaneously using a time-gated technique for energy transfer measurements and a frequency selective technique for direct excitation and fluorescence monitoring of R123. Optical and electronic components of the apparatus are described, and preliminary result of cultivated endothelial cells are reported. Results are compared with those obtained from a previously established microscopic system and discussed in view of potential applications.

  19. Energy and Angle Resolved Uptake of Organic Gases in Concentrated Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Fiehrer, Kathleen; Nathanson, Gilbert

    1996-03-01

    We have measured the uptake of reactive gases in concentrated (98.8 wtsulfuric acid at 298 K. Our goal is to determine the fraction of gas molecules that dissolve in and react with concentrated sulfuric acid as a function of impact angle, collision energy, and gas molecule basicity (pKBH+). These gases include olefins, alcohols, ethers, aldehydes, and carboxylic acids. We have investigated how scattering and solvation compete at high and low impact energies and at grazing and perpendicular approach directions. We find that the sticking probability decreases slowly with increasing impact energy and with more grazing angle of incidence. However, the sticking probabilities change dramatically with gas functionality and scale monotonically with the molecule's solution phase basicity. Thus, the sticking probability decreases in the order ethanol, dimethyl ether, formic acid, acetaldehyde, and propene.

  20. Fast GPU-based absolute intensity determination for energy-dispersive X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Alghabi, F.; Send, S.; Schipper, U.; Abboud, A.; Pietsch, U.; Kolb, A.

    2016-01-01

    This paper presents a novel method for fast determination of absolute intensities in the sites of Laue spots generated by a tetragonal hen egg-white lysozyme crystal after exposure to white synchrotron radiation during an energy-dispersive X-ray Laue diffraction experiment. The Laue spots are taken by means of an energy-dispersive X-ray 2D pnCCD detector. Current pnCCD detectors have a spatial resolution of 384 × 384 pixels of size 75 × 75 μm2 each and operate at a maximum of 400 Hz. Future devices are going to have higher spatial resolution and frame rates. The proposed method runs on a computer equipped with multiple Graphics Processing Units (GPUs) which provide fast and parallel processing capabilities. Accordingly, our GPU-based algorithm exploits these capabilities to further analyse the Laue spots of the sample. The main contribution of the paper is therefore an alternative algorithm for determining absolute intensities of Laue spots which are themselves computed from a sequence of pnCCD frames. Moreover, a new method for integrating spectral peak intensities and improved background correction, a different way of calculating mean count rate of the background signal and also a new method for n-dimensional Poisson fitting are presented.We present a comparison of the quality of results from the GPU-based algorithm with the quality of results from a prior (base) algorithm running on CPU. This comparison shows that our algorithm is able to produce results with at least the same quality as the base algorithm. Furthermore, the GPU-based algorithm is able to speed up one of the most time-consuming parts of the base algorithm, which is n-dimensional Poisson fitting, by a factor of more than 3. Also, the entire procedure of extracting Laue spots' positions, energies and absolute intensities from a raw dataset of pnCCD frames is accelerated by a factor of more than 3.

  1. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  2. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy-dispersive

  3. Time-resolved energy transfer spectroscopy for measuring mitochondrial metabolism in living cells

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Gschwend, Michael H.; Strauss, Wolfgang S. L.; Sailer, Reinhard; Bauer, Manfred; Steiner, Rudolf W.

    1997-12-01

    Energy transfer from NADH to the mitochondrial marker rhodamine 123 (R123) was used to probe mitochondrial malfunction of cultivated endothelial cells incubated with various inhibitors of specific enzyme complexes of the respiratory chain. Pronounced differences of 'energy transfer efficacy' of incubated cells as compared to controls were deduced from the ratio of fluorescence intensity and intracellular amount of the acceptor. A combination of cw and time-gated (nanosecond) fluorescence spectroscopy appeared to be an appropriate tool for probing mitochondrial malfunction in various kinds of diseases.

  4. Resolving solvophobic interactions inferred from experimental solvation free energies and evaluated from molecular simulations

    NASA Astrophysics Data System (ADS)

    Barnett, J. Wesley; Bhutta, Amna; Bierbrier, Sarah C.; da Silva Moura, Natalia; Ashbaugh, Henry S.

    2017-01-01

    Ben-Naim estimated the solvent-mediated interaction between methanes based on experimental solvation free energy differences between chemically similar hydrocarbons. Interactions were predicted to be strongest in water, dominated by characteristic entropic gains. We use molecular simulations in combination with an empirical interpolation procedure that bridges interactions from outside methane's excluded volume down to overlap to test Ben-Naim's estimates. While Ben-Naim's approach captures many distinctive trends, the alchemical differences between methane and a methyl unit play a non-trivial role on the predicted association strength and the sign of enthalpic and entropic components of the interaction free energy in water and ethanol.

  5. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    NASA Astrophysics Data System (ADS)

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-01

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900°C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W2C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  6. MMS observation of inverse energy dispersion in shock drift accelerated ions

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K.-J.; Wang, Y.; Silveira, M. V. D.; Chu, C.; Mauk, B. H.; Cohen, I. J.; Ho, G. C.; Mason, G. M.; Gold, R. E.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Wei, H.

    2017-03-01

    The four Magnetospheric Multiscale (MMS) spacecraft observed a ˜1 min burst of energetic ions (50-1000 keV) in the region upstream from the subsolar quasi-perpendicular bow shock on 6 December 2015. The composition, flux levels, and spectral indices of these energetic protons, helium, and oxygen ions greatly resemble those seen in the outer magnetosphere earlier while MMS crossed the magnetopause and differ significantly from those simultaneously observed far upstream by Advanced Composition Explorer (ACE). However, the event cannot be explained solely in terms of leakage from the magnetosphere. The strongly southward orientation of the interplanetary magnetic field (IMF) lines at the time of the event precludes any connection to the magnetosphere. This point is confirmed by the presence of energetic electrons, known to occur on magnetic field lines that graze the bow shock rather than connect to the magnetosphere. We suggest that the ions gradient drifted out of the nearby quasi-parallel foreshock and into the quasi-perpendicular bow shock. Each of the ion species exhibited an inverse energy dispersion. As predicted by models for shock drift acceleration, the energies of the ions increased as θBn, the angle between the IMF and the shock normal, increased. Finally, we note that a similar event was observed a few minutes later in the subsolar magnetosheath, indicating that such events can be swept downstream of the bow shock.

  7. Geopolymerisation Kinetics. 1. In situ Energy-Dispersive X-ray Diffractometry

    SciTech Connect

    Provis,J.; van Deventer, J.

    2007-01-01

    In situ energy-dispersive X-ray diffractometry, using a polychromatic synchrotron beam and a 'laboratory-sized' sample, is used to provide a direct measurement of the kinetics of geopolymerisation. The effects of sample SiO{sub 2}/Al{sub 2}O{sub 3} ratio, Na/(Na+K) ratio and reaction temperature are investigated. The results obtained support recent propositions that the initial gel phase formed during geopolymerisation is later transformed to a second, probably more-ordered gel phase, and provide detailed information regarding the rate of formation of the first gel phase during the first 3 h of reaction. Increasing the SiO{sub 2}/Al{sub 2}O{sub 3} ratio generally decreases the initial rate of reaction, with the highest SiO{sub 2}/Al{sub 2}O{sub 3} ratio samples showing what appears to be a pause in the reaction corresponding roughly to the solidification of the geopolymeric binder. Mixed (Na,K)-aluminosilicate geopolymers with moderate SiO{sub 2}/Al{sub 2}O{sub 3} ratios behave similarly to pure Na- or K-aluminosilicate compositions of higher SiO{sub 2}/Al{sub 2}O{sub 3} ratio. Fitting a simplified first-order rate expression to the overall reaction process at different temperatures allows the calculation of an effective overall activation energy, which may be useful in comparing geopolymerisation of slurries with different compositions.

  8. Oscillator strength and dispersive energy of dipoles in ferrite thin film

    NASA Astrophysics Data System (ADS)

    Abdellatif, M. H.; El-Komy, G. M.; Azab, A. A.; Moustafa, A. M.

    2017-07-01

    A thin film of Gd3+ doped Mn-Cr ferrite of the chemical formula MnCr0.5Gd0.02Fe1.48O4 was prepared by pulsed laser deposition from the bulk sample at room temperature. The optical absorption, transmission and reflection spectra were measured and discussed in the wavelength range from 300 to 2500 nm. The optical parameters were calculated following the single oscillator model. The optical band gap was found to be 2.75 eV, the dispersive energy of the electric dipoles was estimated using Wemple-Di Domenico relation to be 6.395 eV, while the oscillating energy of the dipole is found to be 4.997 eV. The optical dielectric constant was determined to be 3.886. The reported values could be taken as an indication to the crystal field deformation due to the large size Gd3+ ion in compensation to the physical deformation of the spinel structure.

  9. Mercuric iodide detector systems for identifying substances by x-ray energy dispersive diffraction

    SciTech Connect

    Iwanczyk, J.S.; Patt, B.E.; Wang, Y.J.; Croft, M.; Kalman, Z.; Mayo, W.

    1995-08-01

    The use of mercuric iodide arrays for energy-dispersive x-ray diffraction (EDXRD) spectroscopy is now being investigated by the authors for inspection of specific crystalline powders in substances ranging from explosives to illicit drugs. Mercuric iodide has been identified as the leading candidate for replacing the Ge detectors previously employed in the development of this technique because HgI{sub 2} detectors: operate at or near room temperature; without the bulky apparatus associated with cryogenic cooling; and offer excellent spectroscopy performance with extremely high efficiency. Furthermore, they provide the practicality of constructing optimal array geometries necessary for these measurements. Proof of principle experiments have been performed using a single-HgI{sub 2} detector spectrometer. An energy resolution of 655 eV (FWHM) has been obtained for 60 keV gamma line from an {sup 241}Am source. The EDXRD signatures of various crystalline powdered compounds have been measured and the spectra obtained show the excellent potential of mercuric iodide for this application.

  10. A novel portable energy dispersive X-ray fluorescence spectrometer with triaxial geometry

    NASA Astrophysics Data System (ADS)

    Pessanha, S.; Alves, M.; Sampaio, J. M.; Santos, J. P.; Carvalho, M. L.; Guerra, M.

    2017-01-01

    The X-ray fluorescence technique is a powerful analytical tool with a broad range of applications such as quality control, environmental contamination by heavy metals, cultural heritage, among others. For the first time, a portable energy dispersive X-ray fluorescence spectrometer was assembled, with orthogonal triaxial geometry between the X-ray tube, the secondary target, the sample and the detector. This geometry reduces the background of the measured spectra by reducing significantly the Bremsstrahlung produced in the tube through polarization in the secondary target and in the sample. Consequently, a practically monochromatic excitation energy is obtained. In this way, a better peak-background ratio is obtained compared to similar devices, improving the detection limits and leading to superior sensitivity. The performance of this setup is compared with the one of a benchtop setup with triaxial geometry and a portable setup with planar geometry. Two case studies are presented concerning the analysis of a 18th century paper document, and the bone remains of an individual buried in the early 19th century.

  11. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    SciTech Connect

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-06

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900 Degree-Sign C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W{sub 2}C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  12. Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Kociak, M.; Henrard, L.; Stéphan, O.; Suenaga, K.; Colliex, C.

    2000-05-01

    We present an extensive electron energy loss spectroscopy study of the low-loss energy region, recorded on multishell carbon and boron-nitride nanotubes and carbon hyperfullerenes. Collections of spectra were recorded in a scanning transmission electron microscope by scanning a subnanometer probe from vacuum into the center of the nano-objects. This experimental technique provides the unique ability of disentangling and identifying the different excitation modes of a nanoparticle. We concentrate on the study of surface modes excited in a near-field geometry where the coupling distance between the electron beam and the surface of the nano-objects is accurately monitored. Similarities between surface collective excitations in the different layered nanostructures (cylindrical or spherical, boron nitride, or carbon constituted) are pointed out. Two surface modes at 12-13 eV and 17-18 eV are experimentally clearly evidenced. We show that these modes are accurately described by a classical continuum dielectric model taking fully into account the anisotropic character and the hollow geometry of the nanoparticles. These two modes are shown to be directly related to the in-plane and out-of-plane components of the dielectric tensor. The higher-energy mode (in-plane mode) is shown to shift to higher energy with decreasing impact parameter, as a result of an increase in the weights of the high-order multipolar modes while reaching the surface of the nano-objects.

  13. Determining the Thickness of Pb Film Similar to Bulk with Energy Dispersion Derived from Quantum Well States

    NASA Astrophysics Data System (ADS)

    Chan, Wen-Yuan; Huang, Hsu-Sheng; Su, Wei-Bin; Hoffmann, Germar; Lu, Shin-Ming; Chang, Chia-Seng; Wu, Maw-Kuen; Tsong, Tien-Tzou

    2013-03-01

    It is known that the energy spacing between adjacent empty quantum well (QW) states in Pb islands on Cu(111) would reveal the shrinking characteristic originating from the effect of the image potential. Using the phase accumulation model, including a phase factor contributed from the image potential, the shrinking energy spacing can be quantitatively explained with the assumption of the parabolic energy versus wave vector (E-k) dispersion. However, an experimental dispersion acquired from analyzing the energies of the QW state reveals a linear E-k relationship corresponding to the Pb bulk band structure, implying the assumed parabolic dispersion is not appropriate. By combining the linear dispersion with the image potential effect in the calculation, it is found that the calculated values of energy spacing of island thickness below eight atomic layers are not in agreement with the experimental measurements. This implies that the electronic structure of Pb islands would be similar to that of the bulk when their thicknesses reach eight-atomic layers.

  14. A new cross-detection method for improved energy-resolving photon counting under pulse pile-up

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Lim, Kyung Taek; Park, Kyungjin; Lee, Changyeop; Cho, Gyuseong

    2017-09-01

    In recent, photon counting detectors (PCDs) have been replacing the energy-integrating detectors in many medical imaging applications due to the formers' high resolution, low noise, and high efficiency. Under a high flux X-ray exposure, however, a superimposition of pulses, i.e., pulse pile-up, frequently occurs due to the finite output pulse width, causing distortions in the energy spectrum as a consequence. Therefore, pulse pile-up is considered as a major constraint in using PCDs for high flux X-ray applications. In this study, a new photon counting method is proposed to minimize degradations in PCD performance due to pulse pile-up. The proposed circuit was incorporated into a pixel with a size of 200 × 200 μm2. It was fabricated by using a 1-poly 6-metal 0 . 18 μm complementary metal-oxide-semiconductor (CMOS) process and had a power consumption of 7 . 8 μW / pixel. From the result, it was shown that the maximum count rate of the proposed circuit was increased by a factor of 4.7 when compared to that of the conventional circuit at the same pulse width of 700 ns. This implies that the energy spectrum obtained by the proposed circuit is 4.7 times more resistant to distortions than the conventional energy-resolving circuit does under higher X-ray fluxes.

  15. Ocular dispersion

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.

    1999-06-01

    Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

  16. In medium dispersion relation effects in nuclear inclusive reactions at intermediate and low energies

    NASA Astrophysics Data System (ADS)

    Nieves, Juan; Sobczyk, Joanna E.

    2017-08-01

    In a well-established many-body framework, successful in modeling a great variety of nuclear processes, we analyze the role of the spectral functions (SFs) accounting for the modifications of the dispersion relation of nucleons embedded in a nuclear medium. We concentrate in processes mostly governed by one-body mechanisms, and study possible approximations to evaluate the particle-hole propagator using SFs. We also investigate how to include together SFs and long-range RPA-correlation corrections in the evaluation of nuclear response functions, discussing the existing interplay between both type of nuclear effects. At low energy transfers (≤ 50 MeV), we compare our predictions for inclusive muon and radiative pion captures in nuclei, and charge-current (CC) neutrino-nucleus cross sections with experimental results. We also present an analysis of intermediate energy quasi-elastic neutrino scattering for various targets and both neutrino and antineutrino CC driven processes. In all cases, we pay special attention to estimate the uncertainties affecting the theoretical predictions. In particular, we show that errors on the σμ /σe ratio are much smaller than 5%, and also much smaller than the size of the SF+RPA nuclear corrections, which produce significant effects, not only in the individual cross sections, but also in their ratio for neutrino energies below 400 MeV. These latter nuclear corrections, beyond Pauli blocking, turn out to be thus essential to achieve a correct theoretical understanding of this ratio of cross sections of interest for appearance neutrino oscillation experiments. We also briefly compare our SF and RPA results to predictions obtained within other representative approaches.

  17. Subpicosecond time-resolved intramolecular electronic energy transfer in flexible bichromophoric Coumarin molecules

    SciTech Connect

    Kaschke, M.; Ernsting, N.P. ); Valeur, B.; Bourson, J. )

    1990-07-26

    By excite-and-probe spectroscopy with subpicosecond time resolution, the authors have measured the intramolecular electronic energy transfer in bichromophoric coumarins linked by a flexible polymethylene chain. The transfer proceeds on a time scale between 1 and 20 ps depending on the polymethylene chain length. The results can be well described by a dipole-dipole interaction model that takes into account the statistical distribution of intramolecular distances between the two chromophores.

  18. Shear Stress, Energy Losses, and Costs: A Resolved Dilemma of Pulsatile Cardiac Assist Devices

    PubMed Central

    Liu, Jia; Dai, Gang; Carbognani, Daniel; Yang, Daya; Wu, Guifu; Wang, Qinmei; Chachques, Juan Carlos

    2014-01-01

    Cardiac assist devices (CAD) cause endothelial dysfunction with considerable morbidity. Employment of pulsatile CAD remains controversial due to inadequate perfusion curves and costs. Alternatively, we are proposing a new concept of pulsatile CAD based on a fundamental revision of the entire circulatory system in correspondence with the physiopathology and law of physics. It concerns a double lumen disposable tube device that could be adapted to conventional cardiopulmonary bypass (CPB) and/or CAD, for inducing a homogenous, downstream pulsatile perfusion mode with lower energy losses. In this study, the device's prototypes were tested in a simulated conventional pediatric CPB circuit for energy losses and as a left ventricular assist device (LVAD) in ischemic piglets model for endothelial shear stress (ESS) evaluations. In conclusion and according to the study results the pulsatile tube was successfully capable of transforming a conventional CPB and/or CAD steady flow into a pulsatile perfusion mode, with nearly physiologic pulse pressure and lower energy losses. This represents a cost-effective promising method with low mortality and morbidity, especially in fragile cardiac patients. PMID:24511541

  19. Time-resolved in situ measurement of mitochondrial malfunction by energy transfer spectroscopy

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Sailer, Reinhard; Strauss, Wolfgang S.; Lyttek, Marco; Stock, Karl; Zipfl, Peter

    2000-10-01

    To establish optical in situ detection of mitochondrial malfunction, nonradiative energy transfer from the coenzyme NADH to the mitochondrial marker rhodamine 123 (R123) was examined. Dual excitation of R123 via energy transfer from excited NADH molecules as well as by direct absorption of light results in two fluorescence signals whose ratio is a measure of mitochondrial NADH. A screening system was developed in which these signals are detected simultaneously using a time-gated (nanosecond) technique for energy transfer measurements and a frequency selective technique for direct excitation and fluorescence monitoring of R123. Optical and electronic components of the apparatus are described, and results obtained from cultivated endothelial cells are reported. The ratio of fluorescence intensities excited in the near ultraviolet and blue-green spectral ranges increased by a factor 1.5 or 1.35 after inhibition of the mitochondrial respiratory chain by rotenone at cytotoxic or noncytotoxic concentrations, respectively. Concomitantly the amount of mitochondrial NADH increased. Excellent linearity between the number of cells incubated with R123 and fluorescence intensity was found in suspension.

  20. Time-resolved in situ measurement of mitochondrial malfunction by energy transfer spectroscopy.

    PubMed

    Schneckenburger, H; Gschwend, M H; Sailer, R; Strauss, W S; Lyttek, M; Stock, K; Zipfl, P

    2000-10-01

    To establish optical in situ detection of mitochondrial malfunction, nonradiative energy transfer from the coenzyme NADH to the mitochondrial marker rhodamine 123 (R123) was examined. Dual excitation of R123 via energy transfer from excited NADH molecules as well as by direct absorption of light results in two fluorescence signals whose ratio is a measure of mitochondrial NADH. A screening system was developed in which these signals are detected simultaneously using a time-gated (nanosecond) technique for energy transfer measurements and a frequency selective technique for direct excitation and fluorescence monitoring of R123. Optical and electronic components of the apparatus are described, and results obtained from cultivated endothelial cells are reported. The ratio of fluorescence intensities excited in the near ultraviolet and blue-green spectral ranges increased by a factor 1.5 or 1.35 after inhibition of the mitochondrial respiratory chain by rotenone at cytotoxic or noncytotoxic concentrations, respectively. Concomitantly the amount of mitochondrial NADH increased. Excellent linearity between the number of cells incubated with R123 and fluorescence intensity was found in suspension.

  1. Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer.

    PubMed

    Zhang, Lei; Lei, Jianping; Liu, Jintong; Ma, Fengjiao; Ju, Huangxian

    2015-10-01

    Time-resolved fluorescence technique can reduce the short-lived background luminescence and auto-fluorescence interference from cells and tissues by exerting the delay time between pulsed excitation light and signal acquisition. Here, we prepared persistent luminescence nanoparticles (PLNPs) to design a universal time-resolved fluorescence resonance energy transfer (TR-FRET) platform for biosensing, lifetime imaging of cell apoptosis and in situ lifetime quantification of intracellular caspase-3. Three kinds of PLNPs-based nanoprobes are assembled by covalently binding dye-labeled peptides or DNA to carboxyl-functionalized PLNPs for the efficient detection of caspase-3, microRNA and protein. The peptides-functionalized nanoprobe is also employed for fluorescence lifetime imaging to monitor cell apoptosis, which shows a dependence of cellular fluorescence lifetime on caspase-3 activity and thus leads to an in situ quantification method. This work provides a proof-of-concept for PLNPs-based TR-FRET analysis and demonstrates its potential in exploring dynamical information of life process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. State-resolved rotational energy transfer in open shell collisions: Cl(2P3/2)+HCl

    NASA Astrophysics Data System (ADS)

    Zhao, Zhong-Quan; Chapman, William B.; Nesbitt, David J.

    1995-05-01

    Time- and frequency-resolved infrared (IR) laser absorption methods are used to probe hot atom energy transfer in open shell interactions of Cl(2P3/2)+HCl(J) in the single collision regime. The Cl(2P3/2) atoms are prepared by 308 nm laser photolysis of Cl2, and suffer collisions at Erel¯˜3500 cm-1 with a room temperature HCl distribution in a fast flow cell. Selective collisional excitation of final HCl(Jf) states is monitored by transient IR absorption on R(J≥4) branch lines in the HCl(v=1←0) band, while depletion of the initial HCl(Ji) states is monitored by transient bleaching of the room temperature Doppler profiles. Analysis of the J dependent Doppler profiles permits extraction of rotational loss [σloss(Ji)=∑fP(Ji)ṡσf←i] and gain [σgain(Jf)=∑iP(Ji)ṡσf←i] cross sections, as a function of initial and final J states, respectively. Absolute transient concentrations of the HCl(Ji) and HCl(Jf) are measured directly from absorbances via Beer's Law, and used to extract absolute collisional cross sections. The results are compared with quasiclassical trajectory (QCT) calculations on a hybrid ab initio/LEPS surface of Schatz and Gordon, which prove remarkably successful in reproducing both the J dependent trends and absolute values of the state-resolved gain and loss collision cross sections.

  3. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    Treesearch

    Kevin T. Smith; Jean Christophe Balouet; Walter C. Shortle; Michel Chalot; François Beaujard; Hakan Grudd; Don A. Vroblesky; Joel G. Burken

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to...

  4. A Review of Energy Dispersive X-Ray Fluorescence (EDXRF) as an Analytical Tool in Numismatic Studies.

    PubMed

    Navas, María José; Asuero, Agustín García; Jiménez, Ana María

    2016-01-01

    Energy dispersive X-ray fluorescence spectrometry (EDXRF) as an analytical technique in studies of ancient coins is summarized and reviewed. Specific EDXRF applications in historical studies, in studies of the corrosion of coins, and in studies of the optimal working conditions of some laser-based treatment for the cleaning of coins are described.

  5. Comparison of species-resolved energy spectra from ACE EPAM and Van Allen Probes RBSPICE

    NASA Astrophysics Data System (ADS)

    Patterson, J.; Manweiler, J. W.; Armstrong, T. P.; Lanzerotti, L. J.; Gerrard, A. J.; Gkioulidou, M.

    2013-12-01

    We present a comparison between energy spectra measured by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument and the Van Allen Probe Ion Composition Experiment (RBSPICE) for two significant and distinct events in early 2013. The first is an impulsive solar particle event on March 17th. While intense, this event presented no significant surprises in terms of its composition or anisotropy characteristics, thus providing a good baseline for response of the trapped radiation belts as observed by the Van Allen Probes. The second solar event occurred late May 22nd and early May 23rd. This event has a much greater concentration of medium and heavy ions than the St. Patrick's Day event, as well as having very peculiar energy spectra with evidence of two distinct populations. During the St. Patrick's Day Event, the energy spectra for helium, carbon, oxygen, neon, silicon, and iron all show the same spectral power law slope -3.1. The event shows strong anisotropy with intensities differing by a factor of four for both protons and Z>1 ions. The late May event also has strong anisotropy, and in the same directions as the St. Patrick's Day Event, but with very different composition and energy spectra. The spectra are much harder with power law spectral slopes of -0.5. Additionally, there is a significant spectral bump at 3 MeV/nuc for helium that is not present in the spectra of the heavier ions. The intensities of the heavier ions, however, show an increase that is an order of magnitude greater than the increase seen for helium. The March 17 RBSPICE observations show multiple injection events lasting for less than an hour each during the Van Allen Probes B apogees. These injections are seen in protons as well as Helium and only somewhat observed in Oxygen. Spectral slopes for the observations range from approximately -5 during quiet times to double peaked events with a spectral slope of approximately -2 at the beginning of the injection

  6. Energy-resolving superconducting x-ray detectors with charge amplification due to multiple quasiparticle tunneling

    SciTech Connect

    Mears, C.A.; Labov, S.E. ); Barfknecht, A.T. )

    1993-11-22

    Superconducting tunnel junctions coupled to superconducting absorbers may be used as high-resolution, high-efficiency x-ray spectrometers. We have tested devices with niobium x-ray absorbing layers coupled to aluminum layers that serve as quasiparticle traps. The energy resolution at 6 keV was 49 eV full width at half-maximum. We estimate that each quasiparticle tunnels an average of 19 times before recombining, increasing the total charge transferred and therefore decreasing the effects of electronic noise.

  7. State-resolved rotational energy transfer in open shell collisions: Cl((2)P3/2) + HCl

    SciTech Connect

    Zhao, Z.Q.; Chapman, W.B.; Nesbitt, D.J.

    1995-05-06

    A detailed understanding of the state-to-state quantum dynamics of both reactive and inelastic collision phenomena has long been a focus of the chemical physics community. With recent advances in experimental methods for state preparation and interrogation, there is now a wealth of studies which permit the monitoring of `full collision` dynamics at a completely state-resolved level of detail. High resolution supersonic jet spectroscopies have been successfully exploited to extend these energy transfer studies into the `half-collision` regime by probing weakly bound complexes trapped in potential wells due to van der Waals and/or hydrogen bond interactions. Reactive H-atom transfer events from this half-collision perspective have been studied in detail by Neumark and co-workers via photodetachment of corresponding anionic complexes.

  8. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    NASA Astrophysics Data System (ADS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-09-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  9. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 2. Trimers

    SciTech Connect

    Debreczeny, M.F.; Sauer, K.; Zhou, J.; Bryant, D.A.

    1995-05-18

    Resolution of the absorption spectrum of the {beta}{sub 155} chromophore in C-phycocyanin (PC) trimers is achieved by comparison of the steady state absorption spectra of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3}. Comparison of the anisotropy decays of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3} also greatly aids in the assignment of the dominant kinetic processes in PC trimers. A comparison is made of calculated Foerster rate constants for energy transfer with those rate constants resolved experimentally in the PC trimers. 35 refs.., 10 figs., 2 tabs.

  10. Si(111)(\\sqrt{3}× \\sqrt{3})-Al Surface Studied by Angle-Resolved Electron-Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Sung-Te; Hasegawa, Shigehiko; Nakamura, Shogo; Nakashima, Hisao

    1991-09-01

    The surface electronic structures of Si(111)(\\sqrt{3}× \\sqrt{3})-Al are investigated with the use of angle-resolved electron-energy-loss spectroscopy. Three new surface one-electron transitions (in specular reflection) are found at 1.8, 7.2, and 13.1 eV. Compared with the surface state band structures calculated by Northrup and STM results by Hamers and Demuth, the loss peak at 1.8 eV is ascribed to the one-electron transition between the occupied and unoccupied surface state bands which originate from the Al adatoms. The other two peaks are considered to be due to the Si-Si strained back bonds.

  11. Ultrafast energy- and momentum-resolved surface Dirac photocurrents in the topological insulator Sb2Te3

    NASA Astrophysics Data System (ADS)

    Kuroda, Kenta; Reimann, J.; Kokh, K. A.; Tereshchenko, O. E.; Kimura, A.; Güdde, J.; Höfer, U.

    2017-02-01

    We present energy-momentum mapping of the surface Dirac photocurrent in the topological insulator Sb2Te3 by means of time- and angle-resolved two-photon photoemission spectroscopy combined with polarization-variable midinfrared pulsed laser excitation. It is demonstrated that a direct optical transition from the occupied to the unoccupied part of the surface Dirac cone permits the linear and circular photogalvanic effect, which thereby enables us to coherently control the electric surface photocurrent by laser polarization. Moreover, the photocurrent mapping directly visualizes ultrafast current dynamics in the Dirac cone as a function of time. We unravel the ultrafast intraband relaxation dynamics of the inelastic scattering and momentum scattering separately. Our observations pave the way for coherent optical control over surface Dirac electrons in topological insulators.

  12. Time-resolved fluorescence resonance energy transfer as a versatile tool in the development of homogeneous cellular kinase assays.

    PubMed

    Saville, Lisa; Spais, Chrysanthe; Mason, Jennifer L; Albom, Mark S; Murthy, Seetha; Meyer, Sheryl L; Ator, Mark A; Angeles, Thelma S; Husten, Jean

    2012-12-01

    Homogeneous cellular assays can streamline product detection in the drug discovery process. One commercially available assay employing time-resolved fluorescence resonance energy transfer (TR-FRET) that detects phosphorylated products was used to evaluate inhibitors of the receptor tyrosine kinase AXL in a cell line expressing an AXL-green fluorescent protein fusion protein. This TR-FRET assay was modified to evaluate the phosphorylation state of the AXL family member MER in a cell line expressing MER with a V5 tag by adding a fluorescein-labeled anti-V5 antibody. This homogeneous cellular assay was further modified to evaluate the nonreceptor tyrosine kinase focal adhesion kinase (FAK) in cell lines that expressed an untagged kinase by the inclusion of a commercially available anti-FAK antibody conjugated with an acceptor dye. The methods described here can be further adapted for TR-FRET detection of other cellular kinase activities.

  13. Time-resolved phosphorescence of proteins: structural studies using energy transfer in the rapid diffusion limit

    NASA Astrophysics Data System (ADS)

    Gafni, Ari; Mersol, Joseph V.; Steel, Duncan G.

    1990-05-01

    Room temperature phosphorescence emitted by tryptophan residues in deoxygenated aqueous solutions of proteins is extremely sensitive to the environment of these residues and can be utilized for the detailed study of protein structure and dynamics. The long decay time of their triplet state makes the phosphorescent tryptophans suitable donors for resonance energy transfer in the rapid diffusion limit. As shown by Stryer et al. (Ann. Rev. Biophys. Bioeng. 11, 203 (1982)) proper data analysis can then yield the distance of closest approach between the donor-acceptor pair. This method can thus allow one to map the distances of phosphorescent tryptophans from the surface of the protein. In the present study a laser-based photon counting system was used to follow the room-temperature phosphorescence decays of alkaline phosphatase and horse liver alcohol dehydrogenase and to study the quenching of their triplet states by several molecules whose absorption spectra overlap the long-lived emission of these proteins. The results demonstrate the potential applicability of these measurements for the mapping of phosphorescent tryptophan residues and confirm the phosphorescence of alkaline phosphatase to originate in Trp-109. Limitations to the applicability of the energy-transfer approach arise from quenching mechanisms which compete with resonance transfer. Two such processes - electron transfer and exchange interactions - are discussed.

  14. Photosystem II Does Not Possess a Simple Excitation Energy Funnel: Time-Resolved Fluorescence Spectroscopy Meets Theory

    PubMed Central

    2013-01-01

    The experimentally obtained time-resolved fluorescence spectra of photosystem II (PS II) core complexes, purified from a thermophilic cyanobacterium Thermosynechococcus vulcanus, at 5–180 K are compared with simulations. Dynamic localization effects of excitons are treated implicitly by introducing exciton domains of strongly coupled pigments. Exciton relaxations within a domain and exciton transfers between domains are treated on the basis of Redfield theory and generalized Förster theory, respectively. The excitonic couplings between the pigments are calculated by a quantum chemical/electrostatic method (Poisson-TrEsp). Starting with previously published values, a refined set of site energies of the pigments is obtained through optimization cycles of the fits of stationary optical spectra of PS II. Satisfactorily agreement between the experimental and simulated spectra is obtained for the absorption spectrum including its temperature dependence and the linear dichroism spectrum of PS II core complexes (PS II-CC). Furthermore, the refined site energies well reproduce the temperature dependence of the time-resolved fluorescence spectrum of PS II-CC, which is characterized by the emergence of a 695 nm fluorescence peak upon cooling down to 77 K and the decrease of its relative intensity upon further cooling below 77 K. The blue shift of the fluorescence band upon cooling below 77 K is explained by the existence of two red-shifted chlorophyll pools emitting at around 685 and 695 nm. The former pool is assigned to Chl45 or Chl43 in CP43 (Chl numbering according to the nomenclature of Loll et al. Nature2005, 438, 1040) while the latter is assigned to Chl29 in CP47. The 695 nm emitting chlorophyll is suggested to attract excitations from the peripheral light-harvesting complexes and might also be involved in photoprotection. PMID:23537277

  15. Time-resolved spectroscopy of energy and electron transfer processes in the photosynthetic bacterium Heliobacillus mobilis.

    PubMed

    Lin, S; Chiou, H C; Kleinherenbrink, F A; Blankenship, R E

    1994-02-01

    The kinetics of excitation energy transfer and electron transfer processes within the membrane of Heliobacillus mobilis were investigated using femtosecond transient absorption difference spectroscopy at room temperature. The kinetics in the 725- to 865-nm region, upon excitation at 590 and 670 nm, were fit using global analysis. The fits returned three kinetic components with lifetimes of 1-2 ps and 27-30 ps, and a component that does not decay within several nanoseconds. The 1- to 2-ps component is attributed to excitation equilibration to form a thermally relaxed excited state. The 27- to 30-ps phase corresponds to the decay of the relaxed excited state to form a charge-separated state. The intrinsic energy and electron transfer rates were estimated using the experimental results and theoretical models for excitation migration and trapping dynamics. Taking into account the number of antenna pigments and their spectral distribution, an upper limit of 1.2 ps for the intrinsic time constant for charge separation in the reaction center is calculated. This upper limit corresponds with the trapping-limited case for excitation migration and trapping. Reduction of the primary electron acceptor A0 was observed in the 640 to 700 nm region using excitation at 780 nm. An instantaneous absorbance increase followed by a decay of about 30 ps was observed over a broad wavelength region due to the excited state absorption and decay of BChl g molecules in the antenna. In addition, a narrow bleaching band centered at 670 nm grows in with an apparent time constant of about 1.0 ps, superimposed on the 30-ps absorbance increase due to excited state absorption. Measurements on a longer time scale showed that besides the 670 nm pigment a BChl g molecule absorbing near 785 nm may be involved in the primary charge separation, and that this pigment may be in equilibrium with the 670 nm pigment. The bleaching bands at 670 nm and 785nm recovered with a time constant of about 600 ps, due to

  16. Misidentification of Major Constituents by Automatic Qualitative Energy Dispersive X-ray Microanalysis: A Problem that Threatens the Credibility of the Analytical Community

    NASA Astrophysics Data System (ADS)

    Newbury*, Dale E.

    2005-12-01

    Automatic qualitative analysis for peak identification is a standard feature of virtually all modern computer-aided analysis software for energy dispersive X-ray spectrometry with electron excitation. Testing of recently installed systems from four different manufacturers has revealed the occasional occurrence of misidentification of peaks of major constituents whose concentrations exceeded 0.1 mass fraction (10 wt%). Test materials where peak identification failures were observed included ZnS, KBr, FeS2, tantalum-niobium alloy, NIST Standard Reference Material 482 (copper gold alloy), Bi2Te3, uranium rhodium alloys, platinum chromium alloy, GaAs, and GaP. These misidentifications of major constituents were exacerbated when the incident beam energy was 10 keV or lower, which restricted or excluded the excitation of the high photon energy K- and L-shell X-rays where multiple peaks, for example, K[alpha] (K-L2,3) K[beta] (K-M2,3); L[alpha] (L3-M4,5) L[beta] (L2-M4) L[gamma] (L2-N4), are well resolved and amenable to identification with high confidence. These misidentifications are so severe as to properly qualify as blunders that present a serious challenge to the credibility of this critical analytical technique. Systematic testing of a peak identification system with a suite of diverse materials can reveal the specific elements and X-ray peaks where failures are likely to occur.

  17. Development of a prototype pipework scanning system based upon energy dispersive X-ray diffraction (EDXRD)

    NASA Astrophysics Data System (ADS)

    Garrity, D. J.; De Rosa, A. J.; Bradley, D. A.; Jarman, S. E.; Jenneson, P. M.; Vincent, S. M.

    2010-07-01

    A prototype pipework scanning system based upon energy dispersive X-ray diffraction (EDXRD) has been produced, for which system development and preliminary results are presented here. This apparatus has been developed from experience with 2D and 3D bench-top EDXRD systems and comprises a conventional industrial X-ray tube coupled to a bespoke design of tungsten collimators and compact CdTe detector. It is designed as a robust system, rather than delicate lab-based system, to investigate sections of stainless steel pipework for structural changes induced through quenching the steel in liquid nitrogen, and damaging effects such as chloride-induced stress corrosion cracking (SCC). Given the properties of tungsten, namely its brittle nature, a complex programme of electro-discharge machining (EDM) has been devised to precisely manufacture the collimators from a series of sintered tungsten blocks. Preliminary measurements have focused on calibrating the system using the extreme ferrite and austenite phases, meeting a pre-requisite benchmark for attempting more challenging measurements such as the austenite to martensite transformation and investigations of SCC in these sections of pipework.

  18. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-04-01

    In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (ICo/IRa) and effective atomic numbers (Zeff) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between ICo/IRa and Zeff was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Zeff differing from each other by only 0.01. The linear relationship between the variation of Zeff and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔCC, ΔCSi, and ΔCO were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  19. Two time-dependent, focus-dependent experiments using the energy-dispersive spectrometer at LURE

    SciTech Connect

    Fontaine, A.; Baudelet, F.; Dartyge, E.; Guay, D. , Bat. 209d, F91405 Orsay Cedex ); Itie, J.P. , Bat. 209d, F91405 Orsay Cedex Laboratoire des Milieux Condenses Tour 14 Universite Paris VI-CNRS, F-75232 Paris ); Polian, A. ); Tolentino, H. , Bat. 209d, F91405 Orsay Cedex ); Tourillon, G. , Bat. 209d, F91405 Orsay Cedex )

    1992-01-01

    Rather than a brief review of what has been achieved at LURE (A. Fontaine, E. Dartyge, J. P. Itie, A. Polian, H. Tolentino, and G. Tourillon, {ital Topics} {ital in} {ital Current} {ital Chemistry} {bold 151}, (Springer, Berlin, 1989), Vol. 151) since 1985 with the fully dedicated, energy dispersive x-ray absorption fine structure beam line, we will present two classes of experiments plus a discussion on the present ultimate source of noise of our mechanical movement-free spectrometer. Moreover, the readers interested in this field, can find two other studies with the new born ports at Hamburg (M. Hagelstein, S. Cunis, R. Frahm, W. Niemann, and P. Rabe, Phys. B {bold 158}, 324 (1989)) and Daresbury (G. Baker, C. Richard, A. Catlow, J. Couves, A. J. Dent, G. Derbyshire, G. N. Greaves, and J. M. Thomas, XAFS VI York 1990). Related to this field are the quick extended x-ray absorption fine structure spectrometers developed initially at Hamburg under R. Frahm (R. Frahm, Nucl. Instrum. Methods A {bold 270}, 578 (1988)) and at LURE under P. Lagarde and C. Prietto (P. Lagarde, M. Lemonnier, and H. Dexpert, Physica B {bold 158}, 337 (1989)), which have been able in these two years to open new routes in a wide variety of science.

  20. Two time-dependent, focus-dependent experiments using the energy-dispersive spectrometer at LURE

    NASA Astrophysics Data System (ADS)

    Fontaine, A.; Baudelet, F.; Dartyge, E.; Guay, D.; Itié, J. P.; Polian, A.; Tolentino, H.; Tourillon, G.

    1992-01-01

    Rather than a brief review of what has been achieved at LURE [A. Fontaine, E. Dartyge, J. P. Itié, A. Polian, H. Tolentino, and G. Tourillon, Topics in Current Chemistry 151, (Springer, Berlin, 1989), Vol. 151] since 1985 with the fully dedicated, energy dispersive x-ray absorption fine structure beam line, we will present two classes of experiments plus a discussion on the present ultimate source of noise of our mechanical movement-free spectrometer. Moreover, the readers interested in this field, can find two other studies with the new born ports at Hamburg [M. Hagelstein, S. Cunis, R. Frahm, W. Niemann, and P. Rabe, Phys. B 158, 324 (1989)] and Daresbury [G. Baker, C. Richard, A. Catlow, J. Couves, A. J. Dent, G. Derbyshire, G. N. Greaves, and J. M. Thomas, XAFS VI York 1990]. Related to this field are the quick extended x-ray absorption fine structure spectrometers developed initially at Hamburg under R. Frahm [R. Frahm, Nucl. Instrum. Methods A 270, 578 (1988)] and at LURE under P. Lagarde and C. Prietto [P. Lagarde, M. Lemonnier, and H. Dexpert, Physica B 158, 337 (1989)], which have been able in these two years to open new routes in a wide variety of science.

  1. [Application of in situ micro energy dispersive X-ray fluorescence analysis in mineralogy].

    PubMed

    Yang, Hai; Ge, Liang-Quan; Gu, Yi; Zhang, Qing-Xian; Xiong, Sheng-Qing

    2013-11-01

    Thirteen rock samples were collected for studying the variation of element content in the mineral during the alteration process from Xinjiang, China. The IED-6000 in situ micro energy dispersive X-ray fluorescence developed by CDUT was applied to get chemical and physical data from minerals. The non-destructive spectrometer is based on a low-power Mo-anode X-ray tube and a Si-PIN peltier cooled X-ray detector. The unique design of the tube's probe allows very close coupling of polycapillary and makes the use of micro-area measurement feasible and efficient. The spectrometer can be integrated into any microscope for analysis. The long axis diameter of beam spot is about 110 microm. According to micro-EDXRF measurement, the tetrahedrite was corrected to pyrite, improving the efficiency and accuracy of the mineral identification. The feldspar of mineralized rock sample is rich in Cu and Zn which can be used as prospecting indicator elements. Element content of Cr, Mn and Co shows negative correlation with the degree of mineralization.

  2. Identification of inorganic dust particles in bronchoalveolar lavage macrophages by energy dispersive x-ray microanalysis.

    PubMed

    Johnson, N F; Haslam, P L; Dewar, A; Newman-Taylor, A J; Turner-Warwick, M

    1986-01-01

    This study shows that energy dispersive x-ray microprobe analysis to identify and quantify intracellular particles in macrophages obtained by the minimally invasive method of bronchoalveolar lavage (BAL) can detect inorganic dust exposures of many different kinds. Bronchoalveolar lavage macrophages from 22 patients have been examined. Twelve patients had occupational exposure to asbestos, talc, silica, hard metal or printing ink, while 10 had no known history of dust exposure. X-ray microprobe analysis identified particles which related to the known exposures, superimposed on a background of other particles related to smoking (kaolinite and mica) or to the general environment (silicon, titanium, and iron). The particle identification provided useful objective confirmation of the known exposures, except for silica, which could not be distinguished from the general background levels. X-ray microanalysis using BAL macrophages can be helpful for clarification of mixed dust exposures, to identify particles when light microscopy indicates retained dust in patients with no known history of exposure, and to monitor retained particles after removal from exposure.

  3. Micro energy-dispersive x-ray fluorescence spectrometry study of dentin coating with nanobiomaterials

    NASA Astrophysics Data System (ADS)

    Soares, Luís. Eduardo Silva; Nahorny, Sídnei; Marciano, Fernanda Roberta; Zanin, Hudson; Lobo, Anderson de Oliveira

    2015-06-01

    New biomaterials such as multi-walled carbon nanotubes oxide/graphene oxide (MWCNTO/GO), nanohydroxyapatite (nHAp) and combination of them together or not to acidulated phosphate fluoride gel (F) have been tested as protective coating before root dentin erosion. Fourteen bovine teeth were cleaned, polished, divided into two parts (n=28) and assigned to seven groups: (Control) - without previous surface treatment; F treatment; nHAp; MWCNTO/GO; F+nHAp; F+MWCNTO/GO and F+MWCNTO/GO/nHAp composites. Each sample had two sites of pre-treatments: acid etched area and an area without treatment. After the biomaterials application, the samples were submitted to six cycles (demineralization: orange juice, 10 min; remineralization: artificial saliva, 1 h). Micro energy-dispersive X-ray fluorescence spectrometry (μ-EDXRF) mapping area analyses were performed after erosive cycling on both sites (n=84). μ-EDXRF mappings showed that artificial saliva and MWCNTO/GO/nHAp/F composite treatments produced lower dentin demineralization than in the other groups. Exposed dentin tubules allowed better interaction of nanobiomaterials than in smear layer covered dentin. Association of fluoride with other biomaterials had a positive influence on acid etched dentin. MWCNTO/GO/nHAp/F composite treatment resulted in levels of demineralization similar to the control group.

  4. An energy dispersive x-ray scattering and molecular dynamics study of liquid dimethyl carbonate

    NASA Astrophysics Data System (ADS)

    Gontrani, Lorenzo; Russina, Olga; Marincola, Flaminia Cesare; Caminiti, Ruggero

    2009-12-01

    In this work, we report on the first x-ray diffraction study on liquid dimethyl carbonate. Diffraction spectra were collected with an energy-dispersive instrument, whose wide Q-range allows the structure determination of weakly ordered systems (such as liquids). The structural correlation in this liquid ranges up to about 20 Å. The observed patterns are interpreted with a structural model derived from classical molecular dynamics simulations. The simulations were run using OPLS force field, only slightly modified to restrain bond distances to the experimental values. The model structure function and radial distribution functions, averaged among the productive trajectory frames, are in very good agreement with the corresponding experimental ones. Molecular dynamics results show that the deviations from C2v cis-cis structure, predicted by ab initio calculations and observed by electron diffraction in the gas phase, are small. By analyzing the intra- and intermolecular pair distribution functions, it was possible to assign the peaks of the experimental radial distribution function to specific structural correlations, and to compute the different average intermolecular coordination numbers. The intermolecular methyl-carbonyl oxygen distance is thoroughly discussed to assess the presence of weak C-H⋯ṡO hydrogen bonds.

  5. Biomedical and agricultural applications of energy dispersive X-ray spectroscopy in electron microscopy.

    PubMed

    Wyroba, Elżbieta; Suski, Szymon; Miller, Karolina; Bartosiewicz, Rafał

    2015-09-01

    Energy dispersive X-ray spectroscopy (EDS) in electron microscopy has been widely used in many research areas since it provides precise information on the chemical composition of subcellular structures that may be correlated with their high resolution images. In EDS the characteristic X-rays typical of each element are analyzed and the new detectors - an example of which we describe - allow for setting precisely the area of measurements and acquiring signals as a point analysis, as a linescan or in the image format of the desired area. Mapping of the elements requires stringent methods of sample preparation to prevent redistribution/loss of the elements as well as elimination of the risk of overlapping spectra. Both qualitative and quantitative analyses may be performed at a low probe current suitable for thin biological samples. Descriptions of preparation techniques, drawbacks and precautions necessary to obtain reliable results are provided, including data on standards, effects of specimen roughness and quantification. Data on EPMA application in different fields of biomedical and agricultural studies are reviewed. In this review we refer to recent EDS/EPMA applications in medical diagnostics, studies on air pollution and agrochemicals as well as on plant models used to monitor the environment.

  6. Elemental analysis of mining wastes by energy dispersive X-ray fluorescence (EDXRF)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, O.; Queralt, I.; Carvalho, M. L.; Garcia, G.

    2007-08-01

    An energy dispersive X-ray fluorescence (EDXRF) tri-axial geometry experimental spectrometer has been employed to determine the concentrations of 13 different elements (K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr and Pb) in mine wastes from different depths of two mine tailings from the Cartagena-La Union (Spain) mining district. The elements were determined and quantified using the fundamental parameters method. The concentrations of Cr, Ni, Cu, Zn and Pb were compared to the values from the European and Spanish legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control land-filled. The results obtained demonstrate that these wastes can be considered as inert for the considered elements, apart from the concentration levels of Zn and Pb. Whilst Zn slightly overpasses the regulatory levels, Pb mean value exceeds three to six times the value to be considered as Class I potential land-filling material.

  7. Current-Temperature Scaling for a Schottky Interface with Nonparabolic Energy Dispersion

    NASA Astrophysics Data System (ADS)

    Ang, Y. S.; Ang, L. K.

    2016-09-01

    In this paper, we study the Schottky transport in a narrow-gap semiconductor and few-layer graphene in which the energy dispersions are highly nonparabolic. We propose that the contrasting current-temperature scaling relation of J ∝T2 in the conventional Schottky interface and J ∝T3 in graphene-based Schottky interface can be reconciled under Kane's k .p nonparabolic band model for narrow-gap semiconductors. Our model suggests a more general form of J ∝(T2+γ kBT3) , where the nonparabolicty parameter γ provides a smooth transition from T2 to T3 scaling. For few-layer graphene, we find that N -layer graphene with A B C stacking follows J ∝T2 /N +1 , while A B A stacking follows a universal form of J ∝T3 regardless of the number of layers. Intriguingly, the Richardson constant extracted from the Arrhenius plot using an incorrect scaling relation disagrees with the actual value by 2 orders of magnitude, suggesting that correct models must be used in order to extract important properties for many Schottky devices.

  8. Statistical rate theory and kinetic energy-resolved ion chemistry: theory and applications.

    PubMed

    Armentrout, P B; Ervin, Kent M; Rodgers, M T

    2008-10-16

    Ion chemistry, first discovered 100 years ago, has profitably been coupled with statistical rate theories, developed about 80 years ago and refined since. In this overview, the application of statistical rate theory to the analysis of kinetic-energy-dependent collision-induced dissociation (CID) reactions is reviewed. This procedure accounts for and quantifies the kinetic shifts that are observed as systems increase in size. The statistical approach developed allows straightforward extension to systems undergoing competitive or sequential dissociations. Such methods can also be applied to the reverse of the CID process, association reactions, as well as to quantitative analysis of ligand exchange processes. Examples of each of these types of reactions are provided and the literature surveyed for successful applications of this statistical approach to provide quantitative thermochemical information. Such applications include metal-ligand complexes, metal clusters, proton-bound complexes, organic intermediates, biological systems, saturated organometallic complexes, and hydrated and solvated species.

  9. Resolving the antibaryon-production puzzle in high-energy heavy-ion collisions.

    PubMed

    Rapp, R; Shuryak, E V

    2001-04-02

    We argue that the observed antiproton production in heavy-ion collisions at CERN-SPS energies can be understood if (contrary to most sequential scattering approaches) the backward direction in the process pP<-->n(pi) (with n = 5-6) is consistently accounted for within a thermal framework. Employing the standard picture of subsequent chemical and thermal freezeout, which induces an oversaturation of pion number with associated chemical potentials of mu(pi) approximately 60-80 MeV, enhances the backward reaction substantially. The resulting rates turn out to be large enough to maintain an antiproton abundance at thermal freezeout in accordance with the measured p/p ratio in Pb(158A GeV)+Pb collisions.

  10. Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources.

    PubMed

    Hipp, A; Willner, M; Herzen, J; Auweter, S; Chabior, M; Meiser, J; Achterhold, K; Mohr, J; Pfeiffer, F

    2014-12-15

    Grating interferometry has been successfully adapted at standard X-ray tubes and is a promising candidate for a broad use of phase-contrast imaging in medical diagnostics or industrial testing. The achievable image quality using this technique is mainly dependent on the interferometer performance with the interferometric visibility as crucial parameter. The presented study deals with experimental investigations of the spectral dependence of the visibility in order to understand the interaction between the single contributing energies. Especially for the choice which type of setup has to be preferred using a polychromatic source, this knowledge is highly relevant. Our results affirm previous findings from theoretical investigations but also show that measurements of the spectral contributions to the visibility are necessary to fully characterize and optimize a grating interferometer and cannot be replaced by only relying on simulated data up to now.

  11. Electron microscopy methods for space-, energy-, and time-resolved plasmonics

    NASA Astrophysics Data System (ADS)

    Losquin, Arthur; Lummen, Tom T. A.

    2017-02-01

    Nanoscale plasmonic systems combine the advantages of optical frequencies with those of small spatial scales, circumventing the limitations of conventional photonic systems by exploiting the strong field confinement of surface plasmons. As a result of this miniaturization to the nanoscale, electron microscopy techniques are the natural investigative methods of choice. Recent years have seen the development of a number of electron microscopy techniques that combine the use of electrons and photons to enable unprecedented views of surface plasmons in terms of combined spatial, energy, and time resolution. This review aims to provide a comparative survey of these different approaches from an experimental viewpoint by outlining their respective experimental domains of suitability and highlighting their complementary strengths and limitations as applied to plasmonics in particular.

  12. Energy-Resolved Ultrashort Delays of Photoelectron Emission Clocked by Orthogonal Two-Color Laser Fields.

    PubMed

    Gong, Xiaochun; Lin, Cheng; He, Feng; Song, Qiying; Lin, Kang; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Lu, Peifen; Liu, Yunquan; Zeng, Heping; Yang, Weifeng; Wu, Jian

    2017-04-07

    A phase-controlled orthogonal two-color (OTC) femtosecond laser pulse is employed to probe the time delay of photoelectron emission in the strong-field ionization of atoms. The OTC field spatiotemporally steers the emission dynamics of the photoelectrons and meanwhile allows us to unambiguously distinguish the main and sideband peaks of the above-threshold ionization spectrum. The relative phase shift between the main and sideband peaks, retrieved from the phase-of-phase of the photoelectron spectrum as a function of the laser phase, gradually decreases with increasing electron energy, and becomes zero for the fast electron which is mainly produced by the rescattering process. Furthermore, a Freeman resonance delay of 140±40 attoseconds between photoelectrons emitted via the 4f and 5p Rydberg states of argon is observed.

  13. Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping

    NASA Astrophysics Data System (ADS)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2016-11-01

    Energy dispersive X-ray fluorescence mapping (μ-EDXRF) is a fast and non-destructive method for chemical quantification and therefore used in many scientific fields. The combination of spatial and chemical information is highly valuable for understanding geological processes. Problems occur with crystalline samples due to diffraction, which appears according to Bragg's law, depending on the energy of the X-ray beam, the incident angle and the crystal parameters. In the spectra these peaks can overlap with element peaks suggesting higher element concentrations. The aim of this study is to investigate the effect of diffraction, the possibility of diffraction removal and potential geoscientific applications for X-ray mapping. In this work the μ-EDXRF M4 Tornado from Bruker was operated with a Rh-tube and polychromatic beam with two SDD detectors mounted each at ± 90° to the tube. Due to the polychromatic beam the Bragg condition fits for several mineral lattice planes. Since diffraction depends on the angle, it is shown that a novel correction approach can be applied by measuring from two different angles and calculating the minimum spectrum of both detectors gaining a better limit of quantification for this method. Furthermore, it is possible to use the diffraction information for separation of differently oriented crystallites within a monomineralic aggregate and obtain parameters like particle size distribution for the sample, as it is done by thin section image analysis in cross-polarized light. Only with μ-EDXRF this can be made on larger samples without preparation of thin sections.

  14. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    SciTech Connect

    Wilson, Matthew D. Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  15. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    SciTech Connect

    Worley, Christopher G

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  16. EVALUATION OF MIXING ENERGY IN FLASKS USED FOR DISPERSANT EFFECTIVENESS TESTING

    EPA Science Inventory

    A U.S. Environmental Protection Agency (EPA) laboratory screening protocol for dispersant effectiveness consists of placing water, oil, and a dispersant in a flask and mixing the contents on an orbital shaker. Two flasks are being investigated, a simple Erlenmeyer (used in EPA's...

  17. EVALUATION OF MIXING ENERGY IN FLASKS USED FOR DISPERSANT EFFECTIVENESS TESTING

    EPA Science Inventory

    A U.S. Environmental Protection Agency (EPA) laboratory screening protocol for dispersant effectiveness consists of placing water, oil, and a dispersant in a flask and mixing the contents on an orbital shaker. Two flasks are being investigated, a simple Erlenmeyer (used in EPA's...

  18. Adipocytokine orosomucoid integrates inflammatory and metabolic signals to preserve energy homeostasis by resolving immoderate inflammation.

    PubMed

    Lee, Yun Sok; Choi, Jin Woo; Hwang, Injae; Lee, Joo Won; Lee, Jae Ho; Kim, A Young; Huh, Jin Young; Koh, Young Jun; Koh, Gou Young; Son, Hee Jung; Masuzaki, Hiroaki; Hotta, Kikuko; Alfadda, Assim A; Kim, Jae Bum

    2010-07-16

    Orosomucoid (ORM), also called alpha-1 acid glycoprotein, is an abundant plasma protein that is an immunomodulator induced by stressful conditions such as infections. In this study, we reveal that Orm is induced selectively in the adipose tissue of obese mice to suppress excess inflammation that otherwise disturbs energy homeostasis. Adipose Orm levels were elevated by metabolic signals, including insulin, high glucose, and free fatty acid, as well as by the proinflammatory cytokine tumor necrosis factor-alpha, which is found in increased levels in the adipose tissue of morbid obese subjects. In both adipocytes and macrophages, ORM suppressed proinflammatory gene expression and pathways such as NF-kappaB and mitogen-activated protein kinase signalings and reactive oxygen species generation. Concomitantly, ORM relieved hyperglycemia-induced insulin resistance as well as tumor necrosis factor-alpha-mediated lipolysis in adipocytes. Accordingly, ORM improved glucose and insulin tolerance in obese and diabetic db/db mice. Taken together, our results suggest that ORM integrates inflammatory and metabolic signals to modulate immune responses to protect adipose tissue from excessive inflammation and thereby from metabolic dysfunction.

  19. On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece

    NASA Astrophysics Data System (ADS)

    Caralis, George; Perivolaris, Yiannis; Rados, Konstantinos; Zervos, Arthouros

    2008-01-01

    Wind energy is now a mature technology and can be considered as a significant contributor in reducing CO2 emissions and protecting the environment. To meet the wind energy national targets, effective implementation of massive wind power installed capacity in the power supply system is required. Additionally, capacity credit is an important issue for an unstable power supply system as in Greece. To achieve high and reliable wind energy penetration levels into the system, the effect of spatial dispersion of wind energy installations within a very wide area (e.g. national level) on the power capacity credit should be accounted for. In the present paper, a methodology for estimating the effect of spatial dispersion of wind farm installations on the capacity credit is presented and applied for the power supply system of Greece. The method is based on probability theory and makes use of wind forecasting models to represent the wind energy potential over any candidate area for future wind farm installations in the country. Representative wind power development scenarios are studied and evaluated. Results show that the spatial dispersion of wind power plants contributes beneficially to the wind capacity credit.

  20. CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Gorlé, C.; van Beeck, J.; Rambaud, P.; Van Tendeloo, G.

    When considering the modelling of small particle dispersion in the lower part of the Atmospheric Boundary Layer (ABL) using Reynolds Averaged Navier Stokes simulations, the particle paths depend on the velocity profile and on the turbulence kinetic energy, from which the fluctuating velocity components are derived to predict turbulent dispersion. It is therefore important to correctly reproduce the ABL, both for the velocity profile and the turbulence kinetic energy profile. For RANS simulations with the standard k- ɛ model, Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46-47, 145-153.) proposed a set of boundary conditions which result in horizontally homogeneous profiles. The drawback of this method is that it assumes a constant profile of turbulence kinetic energy, which is not always consistent with field or wind tunnel measurements. Therefore, a method was developed which allows the modelling of a horizontally homogeneous turbulence kinetic energy profile that is varying with height. By comparing simulations performed with the proposed method to simulations performed with the boundary conditions described by Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46-47, 145-153.), the influence of the turbulence kinetic energy on the dispersion of small particles over flat terrain is quantified.

  1. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended

  2. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended

  3. Investigation of the radially resolved oxygen dissociation degree and local mean electron energy in oxygen plasmas in contact with different surface materials

    NASA Astrophysics Data System (ADS)

    Tsutsumi, T.; Greb, A.; Gibson, A. R.; Hori, M.; O'Connell, D.; Gans, T.

    2017-04-01

    Energy Resolved Actinometry is applied to simultaneously measure the radially resolved oxygen dissociation degree and local mean electron energy in a low-pressure capacitively coupled radio-frequency oxygen plasma with an argon tracer gas admixture. For this purpose, the excitation dynamics of three excited states, namely, Ar(2p1), O(3p3P), and O(3p5P), were determined from their optical emission at 750.46 nm, 777.4 nm, and 844.6 nm using Phase Resolved Optical Emission Spectroscopy (PROES). Both copper and silicon dioxide surfaces are studied with respect to their influence on the oxygen dissociation degree, local mean electron energy, and the radial distributions of both quantities and the variation of the two quantities with discharge pressure and driving voltage are detailed. The differences in the measured dissociation degree between different materials are related back to atomic oxygen surface recombination probabilities.

  4. Observation of diffusive and dispersive profiles of the nonequilibrium polariton-condensate dispersion relation in a CuBr microcavity

    NASA Astrophysics Data System (ADS)

    Nakayama, Masaaki; Ueda, Masafumi

    2017-03-01

    We have investigated the dispersion relation of polariton condensates in a CuBr microcavity with the use of angle-resolved photoluminescence (PL) spectroscopy at 77 K. The polariton condensation was clearly confirmed by the thresholdlike changes in the PL intensity, energy, and bandwidth of the lower polariton at a zero in-plane wave-vector k∥= 0 as a function of excitation power density. A blueshifted flat dispersion of the PL energy suddenly appeared at the condensation threshold in a small k∥ region accompanied by the dispersion of the noncondensate PL as a background. With increasing excitation power density from the threshold, the intensity of the noncondensate PL became negligible. As a result, we found a dispersive profile of the dispersion relation of the condensate in a large k∥ region in addition to the flat dispersion corresponding to the diffusive profile. The total dispersion relation of the condensate was explained quantitatively by a theoretical model for nonequilibrium condensation.

  5. Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    NASA Astrophysics Data System (ADS)

    Diemoz, P. C.; Endrizzi, M.; Vittoria, F. A.; Hagen, C. K.; Kallon, G.; Basta, D.; Marenzana, M.; Delogu, P.; Vincenzi, A.; De Ruvo, L.; Spandre, G.; Brez, A.; Bellazzini, R.; Olivo, A.

    2015-03-01

    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI's achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI.

  6. Time-resolved spectroscopic studies of photosynthetic reaction centers and tetrapyrrole chromophores for biomedical and solar-energy applications

    NASA Astrophysics Data System (ADS)

    Kee, Hooi Ling

    2008-10-01

    The photophysical properties of diverse tetrapyrrole chromophores as well as energy and electron transfer processes in tetrapyrrole dyads are investigated using static and time-resolved (femtoseconds to seconds) absorption and fluorescence spectroscopy. The goal of these studies is to elucidate the molecular design principals necessary to construct chromophores with the specific and tunable properties that will enhance applications in optical molecular imaging, photodynamic therapy, and solar-energy conversion. The kinetic properties of the transient intermediate P+H B- involving the bacteriopheophytin molecule HB on the normally inactive (B) cofactor branch of the bacterial photosynthetic reaction center are examined in Rhodobacter capsulatus mutants. Using nanosecond flash photolysis and F(L181)Y/Y(M208)F/L(M212)H mutant, the decay pathways and yields of P+HB- were measured, giving an overall yield of 13% for B-side charge separation P* → P+HB- → P+ QB- in this mutant. The goal of these studies is to understand the fundamental differences in the rates, yields, and mechanisms of charge separation and charge recombination along the two parallel electron-transport chains in the bacterial reaction center.

  7. Energy transfer distance distributions recovered from a zinc finger peptide using time-resolved frequency-domain fluorometry

    NASA Astrophysics Data System (ADS)

    Eis, Peggy S.; Lakowicz, Joseph R.

    1992-04-01

    The `zinc finger' motif, found in nucleic acid-binding proteins, consists of a peptide domain which tetrahedrally coordinates a zinc ion via cysteine (sulfhydryl) and histidine (imidazole nitrogen) sidechain atoms. The CCHH class, in which zinc binds to a pair of cysteines and a pair of histidines, is commonly found in eukaryotic transcription factors. These transcription factors cannot bind DNA in the absence of metal ion, and physical studies (CD, NMR) indicate that a more defined structure is induced upon metal binding. Fluorescence energy transfer measurements were performed on a zinc finger peptide which contains a single CCHH metal-binding domain. An intrinsic conserved tryptophan, located at the midpoint of the peptide chain, serves as the energy donor to one of two dansyl acceptors (one acceptor is attached to the (alpha) -amino group and the other to the (epsilon) -amino group of a carboxy-terminal lysine). Distance distributions between the donor and acceptor were determined for zinc-bound and metal-free peptide using time-resolved frequency-domain fluorometry. The distance distributions were shorter and narrower for the zinc-bound peptide than those recovered for the zinc-free peptide. These results confirm previous experimental evidence which indicates that metal ion is required to form a well-defined solution conformation.

  8. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light

    NASA Astrophysics Data System (ADS)

    Wu, Z. W.; Volotka, A. V.; Surzhykov, A.; Dong, C. Z.; Fritzsche, S.

    2016-06-01

    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of photon energy of incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed, especially for the 1 s22 s22 p63 s ,Ji=1 /2 +γ1→(1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 →1 s22 s22 p63 s ,Jf=1 /2 +γ2 photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the γ2 fluorescence emission is found upon the level sequence and splitting of the intermediate (1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely spaced energy levels, even if they cannot be spectroscopically resolved.

  9. The HgI sub 2 energy dispersive x-ray array detectors and minaturized processing electronics project

    SciTech Connect

    Iwanczyk, J.S.; Dorri, N.; Wang, M.; Szawlowski . Inst. of Physics); Patt, W.K. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.)

    1990-04-01

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays for synchrotron radiation research and their associated miniaturized processing electronics. Deploying a 5 element HgI{sub 2} array detector under realistic operating conditions at SSRL, an energy resolution of 252 eV FWHM at 5.9 keV (Mn-K{alpha}) was obtained. The authors also report energy resolution and throughput measurements versus input count rate. The results from the HgI{sub 2} system are then compared to those obtained under identical conditions from a commercial 13 element Ge detector array.

  10. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  11. Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry

    DOE PAGES

    Veytskin, Yuriy B.; Tammina, Vamsi K.; Bobko, Christopher P.; ...

    2017-03-01

    Shales are heterogeneous sedimentary rocks which typically comprise a variable mineralogy (including compacted clay particles sub-micrometer in size), silt grains, and nanometer sized pores collectively arranged with transversely isotropic symmetry. Moreover, a detailed understanding of the micro- and sub-microscale geomechanics of these minerals is required to improve models of shale strength and stiffness properties. In this paper, we propose a linked experimental–computational approach and validate a combination of grid nanoindentation and Scanning Electron Microscopy (SEM) with Energy and Wavelength Dispersive X-ray Spectrometry (EDS/WDS) at the same spatial locations to identify both the nano-mechanical morphology and local mineralogy of these nanocomposites.more » The experimental parameters of each method are chosen to assess a similar volume of material. By considering three different shales of varying mineralogy and mechanical diversity, we show through the EMMIX statistical iterative technique that the constituent phases, including highly compacted plate- or sheet-like clay particles, carbonates, silicates, and sulfides, have distinct nano-mechanical morphologies and associated indentation moduli and hardness. Nanoindentation-based strength homogenization analysis determines an average clay packing density, friction coefficient, and solid cohesion for each tested shale sample. Comparison of bulk to microscale geomechanical properties, through bulk porosimetry measurements, reveals a close correspondence between bulk and microscale clay packing densities. Determining the mechanical microstructure and material properties is useful for predictive microporomechanical models of the stiffness and strength properties of shale. Furthermore, the experimental and computational approaches presented here also apply to other chemically and mechanically complex materials exhibiting nanogranular, composite behavior.« less

  12. THE SAP3 COMPUTER PROGRAM FOR QUANTITATIVE MULTIELEMENT ANALYSIS BY ENERGY DISPERSIVE X-RAY FLUORESCENCE

    SciTech Connect

    Nielson, K. K.; Sanders, R. W.

    1982-04-01

    SAP3 is a dual-function FORTRAN computer program which performs peak analysis of energy-dispersive x-ray fluorescence spectra and then quantitatively interprets the results of the multielement analysis. It was written for mono- or bi-chromatic excitation as from an isotopic or secondary excitation source, and uses the separate incoherent and coherent backscatter intensities to define the bulk sample matrix composition. This composition is used in performing fundamental-parameter matrix corrections for self-absorption, enhancement, and particle-size effects, obviating the need for specific calibrations for a given sample matrix. The generalized calibration is based on a set of thin-film sensitivities, which are stored in a library disk file and used for all sample matrices and thicknesses. Peak overlap factors are also determined from the thin-film standards, and are stored in the library for calculating peak overlap corrections. A detailed description is given of the algorithms and program logic, and the program listing and flow charts are also provided. An auxiliary program, SPCAL, is also given for use in calibrating the backscatter intensities. SAP3 provides numerous analysis options via seventeen control switches which give flexibility in performing the calculations best suited to the sample and the user needs. User input may be limited to the name of the library, the analysis livetime, and the spectrum filename and location. Output includes all peak analysis information, matrix correction factors, and element concentrations, uncertainties and detection limits. Twenty-four elements are typically determined from a 1024-channel spectrum in one-to-two minutes using a PDP-11/34 computer operating under RSX-11M.

  13. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  14. Micro energy dispersive X-ray fluorescence analysis of polychrome lead-glazed Portuguese faiences

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Pessanha, S.; Carvalho, M. L.; dos Santos, J. M. F.; Coroado, J.

    2010-04-01

    Several glazed ceramic pieces, originally produced in Coimbra (Portugal), were submitted to elemental analysis, having as premise the pigment manufacture production recognition. Although having been produced in Coimbra, their location changed as time passed due to historical reasons. A recent exhibition in Coimbra brought together a great number of these pieces and in situ micro Energy Dispersive X-ray Fluorescence (µ-EDXRF) analyses were performed in order to achieve some chemical and physical data on the manufacture of faiences in Coimbra. A non-commercial µ-EDXRF equipment for in situ analysis was employed in this work, carrying some important improvements when compared to the conventional ones, namely, analyzing spot sizes of about 100 µm diameter. The combination of a capillary X-ray lens with a new generation of low power microfocus X-ray tube and a drift chamber detector enabled a portable unit for micro-XRF with a few tens of µm lateral resolution. The advantages in using a portable system emphasized with polycapillary optics enabled to distinguish proximal different pigmented areas, as well as the glaze itself. These first scientific results on the pigment analysis of the collection of faiences seem to point to a unique production center with own techniques and raw materials. This conclusion arose with identification of the blue pigments having in its constitution Mn, Fe Co and As and the yellows as a result of the combination between Pb and Sb. A statistical treatment was used to reveal groups of similarities on the pigments elemental profile.

  15. One-loop omega-potential of quantum fields with ellipsoid constant-energy surface dispersion law

    SciTech Connect

    Kazinski, P.O.; Shipulya, M.A.

    2011-10-15

    Rapidly convergent expansions of a one-loop contribution to the partition function of quantum fields with ellipsoid constant-energy surface dispersion law are derived. The omega-potential is naturally decomposed into three parts: the quasiclassical contribution, the contribution from the branch cut of the dispersion law, and the oscillating part. The low- and high-temperature expansions of the quasiclassical part are obtained. An explicit expression and a relation of the contribution from the cut with the Casimir term and vacuum energy are established. The oscillating part is represented in the form of the Chowla-Selberg expansion of the Epstein zeta function. Various resummations of this expansion are considered. The general procedure developed is then applied to two models: massless particles in a box both at zero and nonzero chemical potential, and electrons in a thin metal film. Rapidly convergent expansions of the partition function and average particle number are obtained for these models. In particular, the oscillations of the chemical potential of conduction electrons in graphene and a thin metal film due to a variation of size of the crystal are described. - Highlights: > We study quantum fields with ellipsoid constant-energy surface dispersion law. > Rapidly convergent expansions of the omega-potential are derived. > Various resummations of the Chowla-Selberg expansion are obtained. > We establish a relation of the Casimir term with the vacuum energy. > Oscillations of the chemical potential of electrons in graphene are described.

  16. Loss of dispersion energy changes the stability and folding/unfolding equilibrium of the Trp-cage protein.

    PubMed

    Cerný, Jirí; Vondrásek, Jirí; Hobza, Pavel

    2009-04-23

    The structure of proteins as well as their folding/unfolding equilibrium are commonly attributed to H-bonding and hydrophobic interactions. We have used the molecular dynamic simulations in an explicit water environment based on the standard empirical potential as well as more accurately (and thus also more reliably) on the QM/MM potential. The simulations where the dispersion term was suppressed have led to a substantial change of the tryptophan-cage protein structure (unfolded structure). This structure cannot fold without the dispersion energy term, whereas, if it is covered fully, the system finds its native structure relatively quickly. This implies that after such physical factors as temperature and pH, the dispersion energy is an important factor in protein structure determination as well as in the protein folding/unfolding equilibrium. The loss of dispersion also affected the R-helical structure. On the other hand, weakening the electrostatic interactions (and thus H-bonding) affected the R-helical structure only to a minor extent.

  17. Dispersal and reformation of acetylcholine receptor clusters of cultured rat myotubes treated with inhibitors of energy metabolism.

    PubMed

    Bloch, R J

    1979-09-01

    The effects of energy metabolism inhibitors on the distribution of acetylcholine receptors (AChRs) in the surface membranes of non-innervated, cultured rat myotubes were studied by visualizing the AChRs with monotetramethylrhodamine-alpha-bungarotoxin. Incubation of myotubes with inhibitors of energy metabolism causes a large decrease in the fraction of myotubes displaying clusters of AChR. This decrease is reversible, and is dependent on temperature, the concentration of inhibitor, and the duration of treatment. Cluster dispersal is probably not the result of secondary effects on Ca++ or cyclic nucleotide metabolism, membrane potential, cytoskeletal elements, or protein synthesis. Sequential observations of identified cells treated with sodium azide showed that clusters appear to disperse by movements of receptors within the sarcolemma without accompanying changes in cell shape. AChR clusters dispersed by pretreating cells with sodium azide rapidly reform upon removal of the inhibitor. Reclustering involves the formation of small aggregates of AChR, which act as foci for further aggregation and which appear to be precursors of large AChR clusters. Small AChR aggregates also appear to be precursors of clusters which form on myotubes never exposed to azide. Reclustering after azide treatment does not necessarily occur at the same sites occupied by clusters before dispersal, nor does it employ only receptors which had previously been in clusters. Cluster reformation can be blocked by cycloheximide, colchicine, and drugs which alter the intracellular cation composition.

  18. DETERMINING NEUTRON STAR MASSES AND RADII USING ENERGY-RESOLVED WAVEFORMS OF X-RAY BURST OSCILLATIONS

    SciTech Connect

    Lo, Ka Ho; Lamb, Frederick K.; Miller, M. Coleman; Bhattacharyya, Sudip

    2013-10-10

    Simultaneous, precise measurements of the mass M and radius R of neutron stars can yield uniquely valuable information about the still uncertain properties of cold matter at several times the density of nuclear matter. One method that could be used to measure M and R is to analyze the energy-dependent waveforms of the X-ray flux oscillations seen during some thermonuclear bursts from some neutron stars. These oscillations are thought to be produced by X-ray emission from hotter regions on the surface of the star that are rotating at or near the spin frequency of the star. Here we explore how well M and R could be determined by generating and analyzing, using Bayesian techniques, synthetic energy-resolved X-ray data that we produce assuming a future space mission having 2-30 keV energy coverage and an effective area of 10 m{sup 2}, such as the proposed Large Observatory for X-Ray Timing or Advanced X-Ray Timing Array missions. We find that waveforms from hot spots within 10° of the rotation equator usually constrain both M and R with an uncertainty of about 10%, if there are 10{sup 6} total counts from the spot, whereas waveforms from spots within 20° of the rotation pole provide no useful constraints. The constraints we report can usually be achieved even if the burst oscillations vary with time and data from multiple bursts must be used to obtain 10{sup 6} counts from the hot spot. This is therefore a promising method to constrain M and R tightly enough to discriminate strongly between competing models of cold, high-density matter.

  19. Historical biogeography resolves the origins of endemic Arabian toad lineages (Anura: Bufonidae): Evidence for ancient vicariance and dispersal events with the Horn of Africa and South Asia.

    PubMed

    Portik, Daniel M; Papenfuss, Theodore J

    2015-08-06

    The Arabian Peninsula is home to a unique fauna that has assembled and evolved throughout the course of major geophysical events, including the separation of the Arabian Plate from Africa and subsequent collision with Eurasia. Opportunities for faunal exchanges with particular continents occurred in temporally distinct periods, and the presence of African, Western Eurasian, and South Asian derived taxa on the Arabian Peninsula signifies the complexity of these historical biogeographic events. The six true toad species (family Bufonidae) endemic to Arabian Peninsula present a considerable taxonomic and biogeographic challenge because they are part of a global bufonid radiation, including several genera surrounding the Arabian Peninsula, and difficult to discriminate morphologically. As they could be derived from African, Western Eurasian, or South Asian toad groups, elucidating their evolutionary relationships has important implications for historical biogeography. Here, we analyze a global molecular data set of 243 bufonid lineages, with an emphasis on new sampling from the Horn of Africa, Western Eurasia, South Asia, and the Arabian Peninsula, to reconstruct the evolutionary relationships of the Arabian species. We produce a robust time-calibrated phylogeny to infer the biogeographic history of this group on and around the Arabian Peninsula. Our phylogenetic analyses indicate two of the endemic Arabian toad species, "Bufo" tihamicus and "Bufo" arabicus, evolved independently within the African genus Amietophrynus. We confirm the Arabian species Duttaphrynus dhufarensis is of South Asian origin, but do not find evidence for the Asian genus Duttaphrynus being present in the Horn of Africa, discrediting a previously proposed Asian bufonid dispersal event to Africa. We also do not find evidence of the African genus Amietophrynus occurring in South Asia, suggesting that unlike many other vertebrate taxa, toads have not used the Arabian Peninsula as a stepping-stone for

  20. Phase development in the hardening process of two calcium phosphate bone cements: an energy dispersive X-ray diffraction study

    SciTech Connect

    Generosi, A.; Smirnov, V.V.; Rau, J.V.; Albertini, V. Rossi; Ferro, D.; Barinov, S.M.

    2008-03-04

    This work was aimed at the application of an energy dispersive X-ray diffraction technique to study the kinetics of phase development during the setting and hardening reactions in two calcium phosphate bone cements. The cements under study are based on either tricalcium phosphate or tetracalcium phosphate initial solid phase, and a magnesium carbonate-phosphoric acid liquid phase as the hardening liquid. The application of the energy dispersive X-ray diffraction method allowed to collect the diffraction patterns from the cement pastes in situ starting from 1 min of the setting and hardening process. The only crystallized phase in both cements was apatite-like phase, the primary crystallization process proceeds during a few seconds of the setting reaction. Both the compressive strength and the pH value changes during the hardening period can be attributed to the transformations occurring in the intergranular X-ray amorphous phase.

  1. Determination of calcium and iodine in gall bladder stone using energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Ekinci, Neslihan; Şahin, Yusuf

    2002-01-01

    Energy dispersive X-ray fluorescence techniques were used to analyze gall bladder stones. Enrichment of Ca and I was observed in the gall bladder stone taken from a patient. The concentration of Ca has been determined with an annular 55Fe radioactive source and the concentration of I with an annular 241Am radioactive source using the standard addition method in 2π geometry. A Si(Li)-detector was used to measure Ca and I concentrations in the gall bladder stones.

  2. A study on the longitudinal momentum modulation of low energy heavy ion beam bunches with time-resolved beam profile measurement

    NASA Astrophysics Data System (ADS)

    Liu, Xingguang; Yoshimoto, Takashi

    2017-10-01

    The longitudinal momentum modulation can be studied with time-resolved beam profiles measured at a region where an appropriate value of the dispersion function exists. In this paper, momentum modulation of two different beam lengths and their mechanisms are discussed. The modulation for a four-millisecond beam comes from beam loading effects at the extraction region of an Electron Cyclotron Resonance Ion Source (ECRIS) and the post-acceleration column after the ECRIS. In the case of a four-microsecond beam bunch, it comes from the transitional chopping process of the Einzel Lens Chopper. These results obtained confirmed the usefulness and effectiveness of the time-resolved profile measurement in studying the longitudinal momentum modulation.

  3. Formation of multiple energy dispersion of H+, He+, and O+ ions in the inner magnetosphere in response to interplanetary shock

    NASA Astrophysics Data System (ADS)

    Tsuji, H.; Ebihara, Y.; Tanaka, T.

    2017-04-01

    An interplanetary (IP) shock has a large impact on magnetospheric ions. Satellite observations have shown that soon after arrival of the IP shock, overall intensity of the ions rapidly increases and multiple energy dispersion appears in an energy-time spectrogram of the ions. In order to understand the response of the magnetospheric ions to IP shock, we have performed test particle simulation under the electric and magnetic fields provided by the global magnetohydrodynamic simulation. We reconstructed the differential flux of H+, He+, and O+ ions at (7, 0, 0) Re in GSM coordinates by means of the semi-Lagrangian (phase space mapping) method. Simulation results show that the ions respond to the IP shock in two different ways. First, overall intensity of the flux gradually increases at all pitch angles. As the compressional wave propagates tailward, the magnetic field increases, which accelerates the ions due to the gyrobetatron. Second, multiple energy-time dispersion appears in the reconstructed spectrograms of the ion flux. The energy-time dispersion is caused by the ion moving toward mirror point together with tailward propagating compressional wave at off-equator. The ions are primarily accelerated by the drift betatron under the strong electric field looking dawnward. The dispersion is absent in the spectrogram of equatorially mirroring ions. The dispersion appears at higher energy for heavier ions. These features are consistent with the satellite observations. Because the acceleration depends on bounce phase, the bounce-averaged approximation is probably invalid for the ions during the interval of geomagnetic sudden commencement.Plain Language SummarySolar storm can cause a significant compression of the magnetosphere on the dayside. The compression starts at the subsolar point and propagates toward the nightside in the magnetosphere. Some ions bouncing between the Northern Hemisphere and the Southern Hemisphere are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/21255445','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/21255445"><span>R-matrix analysis of the {sup 236}U(n,{gamma}) reaction in the <span class="hlt">resolved</span> resonance <span class="hlt">energy</span> region</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Mezentseva, Zh.; Berthoumieux, E.; Gunsing, F.; Cennini, P.; Furman, W.; Goverdovski, A.; Mengoni, A.</p> <p>2009-01-28</p> <p>The neutron capture cross section of {sup 236}U was measured in the neutron <span class="hlt">energy</span> range from 1 eV to 10 keV by the neutron time-of-flight method at the GELINA white pulsed neutron source of the Institute for Reference Materials and Measurements (IRMM) in Geel (Belgium). The gamma rays originating from neutron capture events were detected by two C{sub 6}D{sub 6}-based liquid scintillators using the pulse height weighting technique. The weighting function has been derived from Monte-Carlo simulations of the detector response to monoenergetic gamma rays.The sample under investigation with a total amount of 338 mg of {sup 236}U was located in the neutron beam at a distance of 28.6 m from the source. The shape of the neutron flux was determined by a {sup 10}B neutron counter, placed approximately 60 cm upstream in the neutron beam line.The neutron capture yield in the <span class="hlt">resolved</span> resonance region up to 1 keV has been derived from time-of-flight spectra.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004CP....307..227K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004CP....307..227K"><span>Time-<span class="hlt">resolved</span> FTIR studies provide activation free <span class="hlt">energy</span>, activation enthalpy and activation entropy for GTPase reactions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kötting, Carsten; Gerwert, Klaus</p> <p>2004-12-01</p> <p>GTPases, which catalyze the hydrolysis of GTP to GDP and P i, play a key role in the regulation of many biological processes. In this work, we quantify the activation parameters ΔG0∗,ΔH0∗andΔS0∗ for the hydrolysis reaction of GTP in water, in water with Mg 2+ ions and in Ras. Ras belongs to the superfamily of small GTPases (guanine nucleotide-binding proteins; GNBPs). Surprisingly, we find that in all cases, the activation <span class="hlt">energy</span> consists mainly of enthalpic contributions. Additionally, the small entropic contributions in water and in Ras are similar, so that ΔΔ S* is close to 0. Thus the entropic contributions are only minor in GTPase catalysis and the enthalpic contributions from electrostatic interactions are key to the catalysis. The protein induced change in charge distribution of GTP can be monitored by time-<span class="hlt">resolved</span> difference FTIR spectroscopy. For Ras the main effect due to protein binding is a charge shift towards the β-phosphate of GTP. This seems to have the main contribution to the catalytic mechanism. Because the G-domain of Ras is highly conserved in GNBPs, we propose that the finding here holds for all GNBPs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16390139','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16390139"><span>Computer simulation of the distribution of hexane in a lipid bilayer: spatially <span class="hlt">resolved</span> free <span class="hlt">energy</span>, entropy, and enthalpy profiles.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>MacCallum, Justin L; Tieleman, D Peter</p> <p>2006-01-11</p> <p>The partitioning behavior of small molecules in lipid bilayers is important in a variety of areas including membrane protein folding and pharmacology. However, the inhomogeneous nature of lipid bilayers on a nanometer length scale complicates experimental studies of membrane partitioning. To gain more insight in the partitioning of a small molecule into the lipid bilayer, we have carried out atomistic computer simulations of hexane in a dioleoyl phosphatidylcholine model membrane. We have been able to obtain spatially <span class="hlt">resolved</span> free <span class="hlt">energy</span>, entropy, enthalpy, and heat capacity profiles based on umbrella sampling calculations at three different temperatures. In agreement with experiment, hexane partitions preferentially to the center of the bilayer. This process is driven almost entirely by a favorable entropy change, consistent with the hydrophobic effect. In contrast, partitioning to the densest region of the acyl chains is dominated by a favorable enthalpy change with a small entropy change, which is consistent with the "nonclassical" hydrophobic effect or "bilayer" effect. We explain the features of the entropy and enthalpy profiles in terms of density and free volume in the system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12804292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12804292"><span>Time-<span class="hlt">resolved</span> diffraction and interference: Young's interference with photons of different <span class="hlt">energy</span> as revealed by time resolution.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Garcia, N; Saveliev, I G; Sharonov, M</p> <p>2002-05-15</p> <p>We present time-<span class="hlt">resolved</span> diffraction and two-slit interference experiments using a streak camera as a detector for femtosecond pulses of photons. These experiments show how the diffraction pattern is built by adding frames of a few photons to each frame. It is estimated that after 300 photons the diffraction pattern emerges. With time resolution we can check the speed of light and put an upper limit of 2 ps at our resolution to the time for wave function collapse in the quantum measurement process. We then produce interference experiments with photons of different <span class="hlt">energies</span> impinging on the slits, i.e. we know which photon impinges on each slit. We show that for poor time resolution, no interference is observed, but for high time resolution, we have interference that is revealed as beats of 100 GHz frequency. The condition for interference is that the two pulses should overlap spatially at the detector, even if the pulses have different <span class="hlt">energies</span> but are generated from the same pulse of the laser. The interference seems to be in agreement with classical theory at first sight. However, closer study and analysis of the data show deviations in the visibility of the interference fringes and of their phase. These experiments are discussed in connection with quantum mechanics and it may be concluded that the time resolution provides new data for understanding the longstanding and continuing arguments on wave-particle duality initiated by Newton, Young, Fresnel, Planck and others. A thought experiment is presented in the appendix to try to distinguish the photons at the detector by making it sensitive to colour.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApJ...809..100B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApJ...809..100B"><span><span class="hlt">Resolving</span> the High-<span class="hlt">energy</span> Universe with Strong Gravitational Lensing: The Case of PKS 1830-211</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan</p> <p>2015-08-01</p> <p>Gravitational lensing is a potentially powerful tool for elucidating the origin of gamma-ray emission from distant sources. Cosmic lenses magnify the emission from distant sources and produce time delays between mirage images. Gravitationally induced time delays depend on the position of the emitting regions in the source plane. The Fermi/LAT telescope continuously monitors the entire sky and detects gamma-ray flares, including those from gravitationally lensed blazars. Therefore, temporal resolution at gamma-ray <span class="hlt">energies</span> can be used to measure these time delays, which, in turn, can be used to <span class="hlt">resolve</span> the origin of the gamma-ray flares spatially. We provide a guide to the application and Monte Carlo simulation of three techniques for analyzing these unresolved light curves: the autocorrelation function, the double power spectrum, and the maximum peak method. We apply these methods to derive time delays from the gamma-ray light curve of the gravitationally lensed blazar PKS 1830-211. The result of temporal analysis combined with the properties of the lens from radio observations yield an improvement in spatial resolution at gamma-ray <span class="hlt">energies</span> by a factor of 10,000. We analyze four active periods. For two of these periods the emission is consistent with origination from the core, and for the other two the data suggest that the emission region is displaced from the core by more than ˜1.5 kpc. For the core emission, the gamma-ray time delays, 23+/- 0.5 {days} and 19.7+/- 1.2 days, are consistent with the radio time delay of {26}-5+4 days.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED222378.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED222378.pdf"><span>The <span class="hlt">Energy</span> Consumer Guide. A What-to-Do, Where-to-Go Manual for Information on Conserving <span class="hlt">Energy</span> and <span class="hlt">Resolving</span> <span class="hlt">Energy</span>-Related Consumer Problems.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Office of Consumer Affairs, Washington, DC.</p> <p></p> <p>This guide was prepared to help individuals become more informed and more efficient consumers of <span class="hlt">energy</span>. The guide lists agencies and organizations which provide useful information on everything from household <span class="hlt">energy</span>-saving tips to <span class="hlt">energy</span> conservation projects sponsored by local community groups. Section 1 highlights many of the agencies and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5244400','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5244400"><span>Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by <span class="hlt">Energy-Resolved</span> Neutron Imaging</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.</p> <p>2017-01-01</p> <p><span class="hlt">Energy-resolved</span> neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be <span class="hlt">resolved</span> with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold <span class="hlt">energy</span> regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially <span class="hlt">resolved</span> analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold <span class="hlt">energy</span> ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution <span class="hlt">energy-resolved</span> neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity. PMID:28102285</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...740759T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...740759T"><span>Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by <span class="hlt">Energy-Resolved</span> Neutron Imaging</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.</p> <p>2017-01-01</p> <p><span class="hlt">Energy-resolved</span> neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be <span class="hlt">resolved</span> with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold <span class="hlt">energy</span> regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially <span class="hlt">resolved</span> analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold <span class="hlt">energy</span> ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution <span class="hlt">energy-resolved</span> neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28102285','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28102285"><span>Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by <span class="hlt">Energy-Resolved</span> Neutron Imaging.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tremsin, Anton S; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S; Vogel, Sven C</p> <p>2017-01-19</p> <p><span class="hlt">Energy-resolved</span> neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be <span class="hlt">resolved</span> with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5-10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold <span class="hlt">energy</span> regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially <span class="hlt">resolved</span> analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold <span class="hlt">energy</span> ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution <span class="hlt">energy-resolved</span> neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016FrCh....4...22T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016FrCh....4...22T"><span>Better <span class="hlt">resolved</span> low frequency <span class="hlt">dispersions</span> by the apt use of Kramers-Kronig relations, differential operators and all-in-1 modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turnhout, Jan</p> <p>2016-05-01</p> <p>The dielectric spectra of colloidal systems often contain a typical low frequency <span class="hlt">dispersion</span>, which usually remains unnoticed, because of the presence of strong conduction losses. The KK relations offer a means for converting ɛ' into ɛ'' data. This allows us to calculate conduction free ɛ'' spectra in which the l.f. <span class="hlt">dispersion</span> will show up undisturbed. This interconversion can be done on line with a moving frame of logarithmically spaced ɛ' data. The coefficients of the conversion frames were obtained by kernel matching and by using symbolic differential operators. Logarithmic derivatives and differences of ɛ' and ɛ'' provide another option for conduction free data analysis. These difference-based functions actually derived from approximations to the distribution function, have the additional advantage of improving the resolution power of dielectric studies. A high resolution is important because of the rich relaxation structure of colloidal suspensions. The development of all-in-1 modelling facilitates the conduction free and high resolution data analysis. This mathematical tool allows the apart-together fitting of multiple data and multiple model functions. It proved also useful to go around the KK conversion altogether. This was achieved by the combined approximating ɛ' and ɛ'' data with a complex rational fractional power function. The all-in-1 minimization turned out to be also highly useful for the dielectric modelling of a suspension with the complex dipolar coefficient. It guarantees a secure correction for the electrode polarization, so that the modelling with the help of the differences ɛ' and ɛ'' can zoom in on the genuine colloidal relaxations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4862991','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4862991"><span>Better <span class="hlt">Resolved</span> Low Frequency <span class="hlt">Dispersions</span> by the Apt Use of Kramers-Kronig Relations, Differential Operators, and All-In-1 Modeling</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>van Turnhout, J.</p> <p>2016-01-01</p> <p>The dielectric spectra of colloidal systems often contain a typical low frequency <span class="hlt">dispersion</span>, which usually remains unnoticed, because of the presence of strong conduction losses. The KK relations offer a means for converting ε′ into ε″ data. This allows us to calculate conduction free ε″ spectra in which the l.f. <span class="hlt">dispersion</span> will show up undisturbed. This interconversion can be done on line with a moving frame of logarithmically spaced ε′ data. The coefficients of the conversion frames were obtained by kernel matching and by using symbolic differential operators. Logarithmic derivatives and differences of ε′ and ε″ provide another option for conduction free data analysis. These difference-based functions actually derived from approximations to the distribution function, have the additional advantage of improving the resolution power of dielectric studies. A high resolution is important because of the rich relaxation structure of colloidal suspensions. The development of all-in-1 modeling facilitates the conduction free and high resolution data analysis. This mathematical tool allows the apart-together fitting of multiple data and multiple model functions. It proved also useful to go around the KK conversion altogether. This was achieved by the combined approximating ε′ and ε″ data with a complex rational fractional power function. The all-in-1 minimization turned out to be also highly useful for the dielectric modeling of a suspension with the complex dipolar coefficient. It guarantees a secure correction for the electrode polarization, so that the modeling with the help of the differences ε′ and ε″ can zoom in on the genuine colloidal relaxations. PMID:27242997</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASMS..26..774B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASMS..26..774B"><span>Formation of a1 Ions Directly from Oxazolone b2 Ions: an <span class="hlt">Energy-Resolved</span> and Computational Study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bythell, Benjamin J.; Harrison, Alex G.</p> <p>2015-05-01</p> <p>It is well-known that oxazolone b2 ions fragment extensively by elimination of CO to form a2 ions, which often fragment further to form a1 ions. Less well-known is that some oxazolone b2 ions may fragment directly to form a1 ions. The present study uses <span class="hlt">energy-resolved</span> collision-induced dissociation experiments to explore the occurrence of the direct b2→a1 fragmentation reaction. The experimental results show that the direct b2→a1 reaction is generally observed when Gly is the C-terminal residue of the oxazolone. When the C-terminal residue is more complex, it is able to provide increased stability of the a2 product in the b2→a2 fragmentation pathway. Our computational studies of the relative critical reaction <span class="hlt">energies</span> for the b2→a2 reaction compared with those for the b2→a1 reaction provide support that the critical reaction <span class="hlt">energies</span> are similar for the two pathways when the C-terminal residue of the oxazolone is Gly. By contrast, when the nitrogen of the oxazolone ring in the b2 ion does not bear a hydrogen, as in the Ala-Sar and Tyr-Sar (Sar = N-methylglycine) oxazolone b2 ions, a1 ions are not formed but rather neutral imine elimination from the N-terminus of the b2 ion becomes a dominant fragmentation reaction. The M06-2X/6-31+G(d,p) density functional theory calculations are in general agreement with the experimental data for both types of reaction. In contrast, the B3LYP/6-31+G(d,p) model systematically underestimates the barriers of these SN2-like b2→a1 reaction. The difference between the two methods of barrier calculation are highly significant ( P < 0.001) for the b2→a1 reaction, but only marginally significant ( P = 0.05) for the b2→a2 reaction. The computations provide further evidence of the limitations of the B3LYP functional when describing SN2-like reactions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21595487','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21595487"><span>Activation <span class="hlt">energy</span> distributions predicted by <span class="hlt">dispersive</span> kinetic models for nucleation and denucleation: anomalous diffusion resulting from quantization.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Skrdla, Peter J</p> <p>2011-06-23</p> <p>The activation <span class="hlt">energy</span> distributions underpinning the two complementary <span class="hlt">dispersive</span> kinetic models described by the author in a recent work (Skrdla, P. J. J. Phys. Chem. A 2009, 113, 9329) are derived and investigated. In the case of nucleation rate-limited conversions, which exhibit "acceleratory" sigmoidal transients (a kind of S-shaped stretched exponential conversion profile), an activation <span class="hlt">energy</span> distribution visually similar to the Maxwell-Boltzmann (M-B) distribution is recovered, consistent with the original derivation of that model. In the case of predominantly "deceleratory" conversions, the activation <span class="hlt">energy</span> distribution is skewed from normal in the opposite direction. While the "M-B-like" activation <span class="hlt">energy</span> distribution supports the empirical observation of a rate enhancement as a function of the conversion time in nucleation rate-limited processes, the complementary distribution, with its pronounced low-<span class="hlt">energy</span> tail, reflects a slow-down in the specific rate as the conversion progresses, consistent with experimentally observed denucleation rate-limited conversions. Activation <span class="hlt">energy</span> distributions were also plotted for real-world data (Qu, H.; Louhi-Kultanen, M.; Kallas, J. Cryst. Growth Des. 2007, 7, 724), depicting the impact of various additives on the nucleation rate-limited kinetics of the solvent-mediated phase transformation of the crystalline drug carbamazepine. Last, by coupling the author's <span class="hlt">dispersive</span> kinetic description of the time-dependent activation <span class="hlt">energy</span> for nucleation to the classical description of the critical nucleus <span class="hlt">energy</span> provided by the Kelvin equation, an accelerated hopping mechanism for the diffusion of monomers to the growing embryo surface was observed. That hopping mechanism was rationalized by modifying the Einstein-Smoluchowski (E-S) equation to allow it to describe the "supra-brownian" molecular motion thought to lie at the heart of nucleation kinetics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=104745&keyword=Oil+AND+spills&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=78835521&CFTOKEN=99304510','EPA-EIMS'); return false;" href="http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=104745&keyword=Oil+AND+spills&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=78835521&CFTOKEN=99304510"><span>EVALUATION OF MIXING <span class="hlt">ENERGY</span> IN LABORATORY FLASKS USED FOR <span class="hlt">DISPERSANT</span> EFFECTIVENESS TESTING</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The evaluation of <span class="hlt">dispersant</span> effectiveness used for oil spills is commonly done using tests conducted in laboratory flasks. The success of a test relies on replication of the conditions at sea. We used a hot wire anemometer to characterize the turbulence characteristics in the s...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=104745&keyword=Oil+AND+spills&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=104745&keyword=Oil+AND+spills&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>EVALUATION OF MIXING <span class="hlt">ENERGY</span> IN LABORATORY FLASKS USED FOR <span class="hlt">DISPERSANT</span> EFFECTIVENESS TESTING</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The evaluation of <span class="hlt">dispersant</span> effectiveness used for oil spills is commonly done using tests conducted in laboratory flasks. The success of a test relies on replication of the conditions at sea. We used a hot wire anemometer to characterize the turbulence characteristics in the s...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22581591','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22581591"><span>Thickness-dependent <span class="hlt">dispersion</span> parameters, <span class="hlt">energy</span> gap and nonlinear refractive index of ZnSe thin films</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Prakash, Deo; Shaaban, E.R.; Shapaan, M.; Mohamed, S.H.; Othman, A.A.; Verma, K.D.</p> <p>2016-08-15</p> <p>Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the <span class="hlt">energy</span> gap were calculated. • <span class="hlt">Dispersion</span> parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the <span class="hlt">energy</span> gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy <span class="hlt">dispersion</span> relationship over the whole spectra range. Additionally, the <span class="hlt">dispersion</span> of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18999536','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18999536"><span>Influence of the <span class="hlt">dispersive</span> and dissipative scales alpha and beta on the <span class="hlt">energy</span> spectrum of the Navier-Stokes alphabeta equations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Xuemei; Fried, Eliot</p> <p>2008-10-01</p> <p>Lundgren's vortex model for the intermittent fine structure of high-Reynolds-number turbulence is applied to the Navier-Stokes alphabeta equations and specialized to the Navier-Stokes alpha equations. The Navier-Stokes alphabeta equations involve <span class="hlt">dispersive</span> and dissipative length scales alpha and beta, respectively. Setting beta equal to alpha reduces the Navier-Stokes alphabeta equations to the Navier-Stokes alpha equations. For the Navier-Stokes alpha equations, the <span class="hlt">energy</span> spectrum is found to obey Kolmogorov's -5/3 law in a range of wave numbers identical to that determined by Lundgren for the Navier-Stokes equations. For the Navier-Stokes alphabeta equations, Kolmogorov's -5/3 law is also recovered. However, granted that beta < alpha, the range of wave numbers for which this law holds is extended by a factor of alphabeta . This suggests that simulations based on the Navier-Stokes alphabeta equations may have the potential to <span class="hlt">resolve</span> features smaller than those obtainable using the Navier-Stokes alpha equations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24527942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24527942"><span>In situ <span class="hlt">energy-dispersive</span> X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ragon, Florence; Horcajada, Patricia; Chevreau, Hubert; Hwang, Young Kyu; Lee, U-Hwang; Miller, Stuart R; Devic, Thomas; Chang, Jong-San; Serre, Christian</p> <p>2014-03-03</p> <p>The synthesis optimization and scale-up of the benchmarked microporous zirconium terephthalate UiO-66(Zr) were investigated by evaluating the impact of several parameters (zirconium precursors, acidic conditions, addition of water, and temperature) over the kinetics of crystallization by time-<span class="hlt">resolved</span> in situ <span class="hlt">energy-dispersive</span> X-ray diffraction. Both the addition of hydrochloric acid and water were found to speed up the reaction. The use of the less acidic ZrOCl2·8H2O as the precursor seemed to be a suitable alternative to ZrCl4·xH2O, avoiding possible reproducibility issues as a consequence of the high hygroscopic character of ZrCl4. ZrOCl2·8H2O allowed the formation of smaller good quality UiO-66(Zr) submicronic particles, paving the way for their use within the nanotechnology domain, in addition to higher reaction yields, which makes this synthesis route suitable for the preparation of UiO-66(Zr) at a larger scale. In a final step, UiO-66(Zr) was prepared using conventional reflux conditions at the 0.5 kg scale, leading to a rather high space-time yield of 490 kg m(-3) day(-1), while keeping physicochemical properties similar to those obtained from smaller scale solvothermally prepared batches.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998CP....232..201N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998CP....232..201N"><span>A frequency-<span class="hlt">resolved</span> cavity model (FRCM) for treating equilibrium and non-equilibrium solvation <span class="hlt">energies</span>. 2: Evaluation of solvent reorganization <span class="hlt">energies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newton, M. D.; Basilevsky, M. V.; Rostov, I. V.</p> <p>1998-06-01</p> <p>The frequency-<span class="hlt">resolved</span> cavity model (FRCM), a generalized continuum reaction field model, which allows for distinct effective solute cavities pertaining to optical (op) and inertial (in) solvent response, has been implemented and applied to the evaluation of solvent reorganization <span class="hlt">energy</span> ( Es) for a number of intramolecular electron transfer (ET) processes in polar media. Specifically, effective radii are defined for the solute atoms: r∞= κ· rvdW (where κ is taken as a universal scale factor) and rin= r∞+ δ (where δ is specific to a particular solvent). Optimal values of κ and δ are determined through the use of solvation free <span class="hlt">energy</span> data for small atomic and molecular ions, together with the experimental estimates of solvation reorganization <span class="hlt">energy</span> ( Es) for intramolecular ET in the steroid-based radical ions studied by Closs, Miller and co-workers [G.L. Closs, L.T. Calcaterra, N.J. Green, K.W. Penfield, J.R. Miller, J. Phys. Chem. 90 (1986) 3673; M.D. Johnson, J.R. Miller, N.S. Green, G.L. Closs, J. Phys. Chem. 93 (1989) 1173; J.R. Miller, B.P. Paulson, R. Bal, G.L. Closs, J. Phys. Chem. 99 (1995) 6923]. With these optimal parameters, Es is then evaluated for a number of other intramolecular ET processes, yielding results which are in generally good agreement with experimentally based estimates, and which give support for some of the assumptions employed in the analysis of the experimental data. Calculations with conventional solute atom radii ( r∞= rin, with κ=1.2 and δ=0) fitted to equilibrium solvation data yield Es values exceeding the FRCM results by factors of ≥2.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9783E..1SZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9783E..1SZ"><span>Comparison of quantitative k-edge empirical estimators using an <span class="hlt">energy-resolved</span> photon-counting detector</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zimmerman, Kevin C.; Gilat Schmidt, Taly</p> <p>2016-03-01</p> <p>Using an <span class="hlt">energy-resolving</span> photon counting detector, the amount of k-edge material in the x-ray path can be estimated using a process known as material decomposition. However, non-ideal effects within the detector make it difficult to accurately perform this decomposition. This work evaluated the k-edge material decomposition accuracy of two empirical estimators. A neural network estimator and a linearized maximum likelihood estimator with error look-up tables (A-table method) were evaluated through simulations and experiments. Each estimator was trained on system-specific calibration data rather than specific modeling of non-ideal detector effects or the x-ray source spectrum. Projections through a step-wedge calibration phantom consisting of different path lengths through PMMA, aluminum, and a k-edge material was used to train the estimators. The estimators were tested by decomposing data acquired through different path lengths of the basis materials. The estimators had similar performance in the chest phantom simulations with gadolinium. They estimated four of the five densities of gadolinium with less than 2mg/mL bias. The neural networks estimates demonstrated lower bias but higher variance than the A-table estimates in the iodine contrast agent simulations. The neural networks had an experimental variance lower than the CRLB indicating it is a biased estimator. In the experimental study, the k-edge material contribution was estimated with less than 14% bias for the neural network estimator and less than 41% bias for the A-table method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7a5315T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7a5315T"><span>Non-contact measurement of partial gas pressure and distribution of elemental composition using <span class="hlt">energy-resolved</span> neutron imaging</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; Byler, D. D.; McClellan, K. J.; Bourke, M. A. M.; Vallerga, J. V.</p> <p>2017-01-01</p> <p>Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for <span class="hlt">energy-resolved</span> imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (˜739 ± 98 kPa and ˜751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ˜758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ˜ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19505231','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19505231"><span>Identification of pregnane X receptor ligands using time-<span class="hlt">resolved</span> fluorescence resonance <span class="hlt">energy</span> transfer and quantitative high-throughput screening.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shukla, Sunita J; Nguyen, Dac-Trung; Macarthur, Ryan; Simeonov, Anton; Frazee, William J; Hallis, Tina M; Marks, Bryan D; Singh, Upinder; Eliason, Hildegard C; Printen, John; Austin, Christopher P; Inglese, James; Auld, Douglas S</p> <p>2009-04-01</p> <p>The human pregnane X nuclear receptor (PXR) is a xenobiotic-regulated receptor that is activated by a range of diverse chemicals, including antibiotics, antifungals, glucocorticoids, and herbal extracts. PXR has been characterized as an important receptor in the metabolism of xenobiotics due to induction of cytochrome P450 isozymes and activation by a large number of prescribed medications. Developing methodologies that can efficiently detect PXR ligands will be clinically beneficial to avoid potential drug-drug interactions. To facilitate the identification of PXR ligands, a time-<span class="hlt">resolved</span> fluorescence resonance <span class="hlt">energy</span> transfer (TR-FRET) assay was miniaturized to a 1,536-well microtiter plate format to employ quantitative high-throughput screening (qHTS). The optimized 1,536-well TR-FRET assay showed Z'-factors of >or=0.5. Seven- to 15-point concentration-response curves (CRCs) were generated for 8,280 compounds using both terbium and fluorescein emission data, resulting in the generation of 241,664 data points. The qHTS method allowed us to retrospectively examine single concentration screening datasets to assess the sensitivity and selectivity of the PXR assay at different compound screening concentrations. Furthermore, nonspecific assay artifacts such as concentration-based quenching of the terbium signal and compound fluorescence were identified through the examination of CRCs for specific emission channels. The CRC information was also used to define chemotypes associated with PXR ligands. This study demonstrates the feasibility of profiling thousands of compounds against PXR using the TR-FRET assay in a high-throughput format.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1362037-non-contact-measurement-partial-gas-pressure-distribution-elemental-composition-using-energy-resolved-neutron-imaging','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1362037-non-contact-measurement-partial-gas-pressure-distribution-elemental-composition-using-energy-resolved-neutron-imaging"><span>Non-contact measurement of partial gas pressure and distribution of elemental composition using <span class="hlt">energy-resolved</span> neutron imaging</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; ...</p> <p>2017-01-31</p> <p>Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for <span class="hlt">energy-resolved</span> imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22436593','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22436593"><span>Communication: A combined periodic density functional and incremental wave-function-based approach for the <span class="hlt">dispersion</span>-accounting time-<span class="hlt">resolved</span> dynamics of {sup 4}He nanodroplets on surfaces: {sup 4}He/graphene</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Lara-Castells, María Pilar de; Stoll, Hermann; Civalleri, Bartolomeo; Causà, Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O.; Pi, Martí</p> <p>2014-10-21</p> <p>In this work we propose a general strategy to calculate accurate He–surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the <span class="hlt">dispersion</span> interaction by calculating two- and three-body <span class="hlt">dispersion</span> terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on {sup 4}He/graphene by determining the <span class="hlt">energies</span> of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract <span class="hlt">dispersion</span> effects in time-dependent density functional simulations on the collision of {sup 4}He droplets with a single graphene sheet. It is found that <span class="hlt">dispersion</span> effects play a key role in the fast spreading of the {sup 4}He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JChPh.141o1102D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JChPh.141o1102D"><span>Communication: A combined periodic density functional and incremental wave-function-based approach for the <span class="hlt">dispersion</span>-accounting time-<span class="hlt">resolved</span> dynamics of 4He nanodroplets on surfaces: 4He/graphene</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Lara-Castells, María Pilar; Stoll, Hermann; Civalleri, Bartolomeo; Causà, Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O.; Pi, Martí</p> <p>2014-10-01</p> <p>In this work we propose a general strategy to calculate accurate He-surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the <span class="hlt">dispersion</span> interaction by calculating two- and three-body <span class="hlt">dispersion</span> terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on 4He/graphene by determining the <span class="hlt">energies</span> of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract <span class="hlt">dispersion</span> effects in time-dependent density functional simulations on the collision of 4He droplets with a single graphene sheet. It is found that <span class="hlt">dispersion</span> effects play a key role in the fast spreading of the 4He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25338874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25338874"><span>Communication: A combined periodic density functional and incremental wave-function-based approach for the <span class="hlt">dispersion</span>-accounting time-<span class="hlt">resolved</span> dynamics of ⁴He nanodroplets on surfaces: ⁴He/graphene.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Lara-Castells, María Pilar; Stoll, Hermann; Civalleri, Bartolomeo; Causà, Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O; Pi, Martí</p> <p>2014-10-21</p> <p>In this work we propose a general strategy to calculate accurate He-surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the <span class="hlt">dispersion</span> interaction by calculating two- and three-body <span class="hlt">dispersion</span> terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on (4)He/graphene by determining the <span class="hlt">energies</span> of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract <span class="hlt">dispersion</span> effects in time-dependent density functional simulations on the collision of (4)He droplets with a single graphene sheet. It is found that <span class="hlt">dispersion</span> effects play a key role in the fast spreading of the (4)He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B41E0368K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B41E0368K"><span>Influence of ultrasonic <span class="hlt">energy</span> on <span class="hlt">dispersion</span> of aggregates and released amounts of organic matter and polyvalent cations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaiser, M.; Kleber, M.; Berhe, A. A.</p> <p>2010-12-01</p> <p>Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic <span class="hlt">energy</span> is a common tool to <span class="hlt">disperse</span> soil aggregates. In this study, we used ultra sonic <span class="hlt">energy</span> (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processe