Maximizing the Biochemical Resolving Power of Fluorescence Microscopy
Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.
2013-01-01
Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821
NASA Astrophysics Data System (ADS)
Toury, Marion; Chandler, Lin; Allison, Archie; Campbell, David; McLoskey, David; Holmes-Smith, A. Sheila; Hungerford, Graham
2011-03-01
Fluorescence microscopy provides a non-invasive means for visualising dynamic protein interactions. As well as allowing the calculation of kinetic processes via the use of time-resolved fluorescence, localisation of the protein within cells or model systems can be monitored. These fluorescence lifetime images (FLIM) have become the preferred technique for elucidating protein dynamics due to the fact that the fluorescence lifetime is an absolute measure, in the main independent of fluorophore concentration and intensity fluctuations caused by factors such as photobleaching. In this work we demonstrate the use of a time-resolved fluorescence microscopy, employing a high repetition rate laser excitation source applied to study the influence of a metal surface on fluorescence tagged protein and to elucidate viscosity using the fluorescence lifetime probe DASPMI. These were studied in a cellular environment (yeast) and in a model system based on a sol-gel derived material, in which silver nanostructures were formed in situ using irradiation from a semiconductor laser in CW mode incorporated on a compact time-resolved fluorescence microscope (HORIBA Scientific DeltaDiode and DynaMyc).
Oreopoulos, John; Yip, Christopher M.
2009-01-01
Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions. PMID:19254557
Application of spectroscopy and super-resolution microscopy: Excited state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Ujjal
Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10 -9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such asmore » lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.« less
Siegel, Nisan; Brooker, Gary
2014-09-22
FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".
Siegel, Nisan; Brooker, Gary
2014-01-01
FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called “CINCH”. PMID:25321701
Advanced fluorescence microscopy techniques for the life sciences
Aguib, Yasmine; Yacoub, Magdi H.
The development of super-resolved fluorescence microscopy, for which the Nobel Prize was awarded in 2014, has been a topic of interest to physicists and biologists alike. It is inevitable that numerous questions in biomedical research cannot be answered by means other than direct observation. In this review, advances to fluorescence microscopy are covered in a widely accessible fashion to facilitate its use in decisions related to its acquisition and utilization in biomedical research. PMID:29043264
NASA Astrophysics Data System (ADS)
Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian
1995-04-01
We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using fluorescence in situ hybridization image is useful for the diagnosis of many other type of diseases, the system we have developed should find numerous applications for the diagnosis of disease states.
Fluorescence lifetime imaging of skin cancer
NASA Astrophysics Data System (ADS)
Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris
2011-03-01
Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.
Emerging biomedical applications of time-resolved fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.
1994-07-01
Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.
Time-resolved wide-field optically sectioned fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dupuis, Guillaume; Benabdallah, Nadia; Chopinaud, Aurélien; Mayet, Céline; Lévêque-Fort, Sandrine
2013-02-01
We present the implementation of a fast wide-field optical sectioning technique called HiLo microscopy on a fluorescence lifetime imaging microscope. HiLo microscopy is based on the fusion of two images, one with structured illumination and another with uniform illumination. Optically sectioned images are then digitally generated thanks to a fusion algorithm. HiLo images are comparable in quality with confocal images but they can be acquired faster over larger fields of view. We obtain 4D imaging by combining HiLo optical sectioning, time-gated detection, and z-displacement. We characterize the performances of this set-up in terms of 3D spatial resolution and time-resolved capabilities in both fixed- and live-cell imaging modes.
Saturated virtual fluorescence emission difference microscopy based on detector array
NASA Astrophysics Data System (ADS)
Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu
2017-07-01
Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.
2016-08-11
Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.
NASA Astrophysics Data System (ADS)
Connally, Russell; Veal, Duncan; Piper, James A.
2003-07-01
Water is routinely monitored for environmental pathogens such a Cryptosporidium and Giardia using immunofluorescence microscopy (IFM). Autofluorescence can greatly diminish an operators capacity to resolve labeled pathogens from non-specific background. Naturally fluorescing components (autofluorophores) encountered in biological samples typically have fluorescent lifetimes (τ) of less than 100 nanoseconds and their emissions may be excluded through use of time-resolved fluorescence microscopy (TRFM). TRFM relies on the large differences in τ between autofluorescent molecules and long-lived lanthanide chelates. In TRFM, targets labeled with a time-resolvable fluorescent immunoconjugate are excited by an intense (UV) light pulse. A short delay is imposed to permit the decay of autofluorescence before capture of luminescence from the excited chelate using an image intensified CCD camera. In our experience, autofluorescence can be reduced to insignificant levels with a consequent 30-fold increase in target visibility using TRFM techniques. We report conjugation of a novel europium chelate to a monoclonal antibody specific for Giardia lamblia and use of the immunoconjugate for TRFM studies. Initial attempts to conjugate the same chelate to a monoclonal antibody directed against Cryptosporidium parvum led to poorly fluorescent constructs that were prone to denature and precipitate. We successfully conjugated BHHCT to anti-mouse polyvalent immunoglobulin and used this construct to overcome the difficulties in direct labeling of the anti-Cryptosporidium antibody. Both Giardia and Cryptosporidium were labeled using the anti-mouse protocol with a subsequent 20-fold and 6.6-fold suppression of autofluorescence respectively. A rapid protocol for conjugating and purifying the immunoconjugate was found and methods of quantifying the fluorescence to protein ratio determined. Performance of our TRFM was dependent on the quality and brightness of the immunoconjugate and optimization of the conjugation process is necessary to reap the full benefit of time-resolved techniques.
Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin
A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less
NASA Astrophysics Data System (ADS)
Ye, Dong; Anguissola, Sergio; O'Neill, Tiina; Dawson, Kenneth A.
2015-05-01
Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles.Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles. Electronic supplementary information (ESI) available: Nanoparticle characterisation data, preservation of cellular structures, staining controls, optimisation of size amplification via the silver enhancement, and more imaging results from anti-clathrin and anti-caveolin 1 immunolabeling. See DOI: 10.1039/c5nr01539a
Time-resolved multicolor two-photon excitation fluorescence microscopy of cells and tissues
NASA Astrophysics Data System (ADS)
Zheng, Wei
2014-11-01
Multilabeling which maps the distribution of different targets is an indispensable technique in many biochemical and biophysical studies. Two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with conventional fluorescence labeling techniques such as genetically encoded fluorescent protein (FP) and fluorescent dyes staining could be a powerful tool for imaging living cells. However, the challenge is that the excitation and emission wavelength of these endogenous fluorophores and fluorescent labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores, fluorescent proteins and fluorescent dyes were excited in their optimal wavelengths simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and wavelength domains. Cellular organelles such as nucleus, mitochondria, microtubule and endoplasmic reticulum, were clearly revealed in the TPEF images. The simultaneous imaging of multiple fluorophores of cells will greatly aid the study of sub-cellular compartments and protein localization.
Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy.
Buehler, C; Dong, C Y; So, P T; French, T; Gratton, E
2000-01-01
We report the application of pump-probe fluorescence microscopy in time-resolved polarization imaging. We derived the equations governing the pump-probe stimulated emission process and characterized the pump and probe laser power levels for signal saturation. Our emphasis is to use this novel methodology to image polarization properties of fluorophores across entire cells. As a feasibility study, we imaged a 15-microm orange latex sphere and found that there is depolarization that is possibly due to energy transfer among fluorescent molecules inside the sphere. We also imaged a mouse fibroblast labeled with CellTracker Orange CMTMR (5-(and-6)-(((4-chloromethyl)benzoyl)amino)tetramethyl-rhodamine). We observed that Orange CMTMR complexed with gluthathione rotates fast, indicating the relatively low fluid-phase viscosity of the cytoplasmic microenvironment as seen by Orange CMTMR. The measured rotational correlation time ranged from approximately 30 to approximately 150 ps. This work demonstrates the effectiveness of stimulated emission measurements in acquiring high-resolution, time-resolved polarization information across the entire cell. PMID:10866979
Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun
2014-07-09
Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.
Time-resolved fluorescence monitoring of cholesterol in peripheral blood mononuclear cells
NASA Astrophysics Data System (ADS)
Martinakova, Z.; Horilova, J.; Lajdova, I.; Marcek Chorvatova, A.
2014-12-01
Precise evaluation of intracellular cholesterol distribution is crucial for improving diagnostics of diseased states associated with cholesterol alteration. Time-resolved fluorescence techniques are tested for non-invasive investigation of cholesterol in living cells. Fluorescent probe NBD attached to cholesterol was employed to evaluate cholesterol distribution in peripheral blood mononuclear cells (PBMC) isolated from the human blood. Fluorescence Lifetime Imaging Microscopy (FLIM) was successfully applied to simultaneously monitor the spatial distribution and the timeresolved characteristics of the NBD-cholesterol fluorescence in PBMC. Gathered data are the first step in the development of a new perspective non-invasive diagnostic method for evaluation of cholesterol modifications in diseases associated with disorders of lipid metabolism.
Kress, Alla; Wang, Xiao; Ranchon, Hubert; Savatier, Julien; Rigneault, Hervé; Ferrand, Patrick; Brasselet, Sophie
2013-07-02
Fluorescence anisotropy and linear dichroism imaging have been widely used for imaging biomolecular orientational distributions in protein aggregates, fibrillar structures of cells, and cell membranes. However, these techniques do not give access to complete orientational order information in a whole image, because their use is limited to parts of the sample where the average orientation of molecules is known a priori. Fluorescence anisotropy is also highly sensitive to depolarization mechanisms such as those induced by fluorescence energy transfer. A fully excitation-polarization-resolved fluorescence microscopy imaging that relies on the use of a tunable incident polarization and a nonpolarized detection is able to circumvent these limitations. We have developed such a technique in confocal epifluorescence microscopy, giving access to new regions of study in the complex and heterogeneous molecular organization of cell membranes. Using this technique, we demonstrate morphological changes at the subdiffraction scale in labeled COS-7 cell membranes whose cytoskeleton is perturbed. Molecular orientational order is also seen to be affected by cholesterol depletion, reflecting the strong interplay between lipid-packing regions and their nearby cytoskeleton. This noninvasive optical technique can reveal local organization in cell membranes when used as a complement to existing methods such as generalized polarization. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy†
Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-soo; Torelli, Marco D.; Hamers, Robert J.; Murhpy, Catherine J.; Orr, Galya
2015-01-01
A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate eficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells. PMID:24816810
Nano-scale measurement of biomolecules by optical microscopy and semiconductor nanoparticles
Ichimura, Taro; Jin, Takashi; Fujita, Hideaki; Higuchi, Hideo; Watanabe, Tomonobu M.
2014-01-01
Over the past decade, great developments in optical microscopy have made this technology increasingly compatible with biological studies. Fluorescence microscopy has especially contributed to investigating the dynamic behaviors of live specimens and can now resolve objects with nanometer precision and resolution due to super-resolution imaging. Additionally, single particle tracking provides information on the dynamics of individual proteins at the nanometer scale both in vitro and in cells. Complementing advances in microscopy technologies has been the development of fluorescent probes. The quantum dot, a semi-conductor fluorescent nanoparticle, is particularly suitable for single particle tracking and super-resolution imaging. This article overviews the principles of single particle tracking and super resolution along with describing their application to the nanometer measurement/observation of biological systems when combined with quantum dot technologies. PMID:25120488
Szczurek, Aleksander; Birk, Udo; Knecht, Hans; Dobrucki, Jurek; Mai, Sabine; Cremer, Christoph
2018-01-01
Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine.
Knecht, Hans; Dobrucki, Jurek; Mai, Sabine
2018-01-01
ABSTRACT Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine. PMID:29297245
Multimodal hyperspectral optical microscopy
Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu; ...
2017-09-02
We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less
Li, Feng; Palaniswamy, Ganesan; de Jong, Menno R; Aslund, Andreas; Konradsson, Peter; Marcelis, Antonius T M; Sudhölter, Ernst J R; Stuart, Martien A Cohen; Leermakers, Frans A M
2010-06-21
Conjugated organic nanowires have been prepared by co-assembling a carboxylate containing low-molecular weight gelator (LMWG) and an amino acid substituted polythiophene derivative (PTT). Upon introducing the zwitterionic polyelectrolyte PTT to a basic molecular solution of the organogelator, the negative charges on the LMWG are compensated by the positive charges of the PTT. As a result, nanowires form through co-assembly. These nanowires are visualized by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Depending on the concentration and ratio of the components these nanowires can be micrometers long. These measurements further suggest that the aggregates adopt a helical conformation. The morphology of these nanowires are studied with fluorescent confocal laser scanning microscopy (CLSM). The interactions between LMWG and PTT are characterized by steady-state and time-resolved fluorescence spectroscopy studies. The steady-state spectra indicate that the backbone of the PTT adopts a more planar and more aggregated conformation when interacting with LMWG. The time- resolved fluorescence decay studies confirm this interpretation.
Multimodal hyperspectral optical microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu
We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less
Perspectives in Super-resolved Fluorescence Microscopy: What comes next?
NASA Astrophysics Data System (ADS)
Cremer, Christoph; Birk, Udo
2016-04-01
The Nobel Prize in Chemistry 2014 has been awarded to three scientists involved in the development of STED and PALM super-resolution fluorescence microscopy (SRM) methods. They have proven that it is possible to overcome the hundred year old theoretical limit for the resolution potential of light microscopy (of about 200 nm for visible light), which for decades has precluded a direct glimpse of the molecular machinery of life. None of the present-day super-resolution techniques have invalidated the Abbe limit for light optical detection; however, they have found clever ways around it. In this report, we discuss some of the challenges still to be resolved before arising SRM approaches will be fit to bring about the revolution in Biology and Medicine envisaged. Some of the challenges discussed are the applicability to image live and/or large samples, the further enhancement of resolution, future developments of labels, and multi-spectral approaches.
Wang, Yilin; Kanchanawong, Pakorn
2016-12-01
Fluorescence microscopy enables direct visualization of specific biomolecules within cells. However, for conventional fluorescence microscopy, the spatial resolution is restricted by diffraction to ~ 200 nm within the image plane and > 500 nm along the optical axis. As a result, fluorescence microscopy has long been severely limited in the observation of ultrastructural features within cells. The recent development of super resolution microscopy methods has overcome this limitation. In particular, the advent of photoswitchable fluorophores enables localization-based super resolution microscopy, which provides resolving power approaching the molecular-length scale. Here, we describe the application of a three-dimensional super resolution microscopy method based on single-molecule localization microscopy and multiphase interferometry, called interferometric PhotoActivated Localization Microscopy (iPALM). This method provides nearly isotropic resolution on the order of 20 nm in all three dimensions. Protocols for visualizing the filamentous actin cytoskeleton, including specimen preparation and operation of the iPALM instrument, are described here. These protocols are also readily adaptable and instructive for the study of other ultrastructural features in cells.
NASA Astrophysics Data System (ADS)
Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta
2015-05-01
Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.
NASA Astrophysics Data System (ADS)
Peters, Sven; Hammer, Martin; Schweitzer, Dietrich
2011-07-01
Two-photon excited fluorescence (TPEF) imaging of ocular tissue has recently become a promising tool in ophthalmology for diagnostic and research purposes. The feasibility and the advantages of TPEF imaging, namely deeper tissue penetration and improved high-resolution imaging of microstructures, have been demonstrated lately using human ocular samples. The autofluorescence properties of endogenous fluorophores in ocular fundus tissue are well known from spectrophotometric analysis. But fluorophores, especially when it comes to fluorescence lifetime, typically display a dependence of their fluorescence properties on local environmental parameters. Hence, a more detailed investigation of ocular fundus autofluorescence ideally in vivo is of utmost interest. The aim of this study is to determine space-resolved the stationary and time-resolved fluorescence properties of endogenous fluorophores in ex vivo porcine ocular fundus samples by means of two-photon excited fluorescence spectrum and lifetime imaging microscopy (FSIM/FLIM). By our first results, we characterized the autofluorescence of individual anatomical structures of porcine retina samples excited at 760 nm. The fluorescence properties of almost all investigated retinal layers are relatively homogenous. But as previously unknown, ganglion cell bodies show a significantly shorter fluorescence lifetime compared to the adjacent mueller cells. Since all retinal layers exhibit bi-exponential autofluorescence decays, we were able to achieve a more precise characterization of fluorescence properties of endogenous fluorophores compared to a present in vivo FLIM approach by confocal scanning laser ophthalmoscope (cSLO).
NASA Astrophysics Data System (ADS)
Al-Tabich, A.; Inami, W.; Kawata, Y.; Jablonski, R.; Worasawat, S.; Mimura, H.
2017-05-01
We present a method for three-dimensional intrinsic defect imaging in zinc oxide (ZnO) by spectrally resolved two-photon fluorescence microscopy, based on the previously presented method of observing a photoluminescence distribution in wide-gap semiconductor crystals [Noor et al., Appl. Phys. Lett. 92(16), 161106 (2008)]. A tightly focused light beam radiated by a titanium-sapphire laser is used to obtain a two-photon excitation of selected area of the ZnO sample. Photoluminescence intensity of a specific spectral range is then selected by optical band pass filters and measured by a photomultiplier tube. Reconstruction of the specimen image is done by scanning the volume of interest by a piezoelectric positioning stage and measuring the spectrally resolved photoluminescence intensity at each point. The method has been proved to be effective at locating intrinsic defects of the ZnO crystalline structure in the volume of the crystal. The method was compared with other defect imaging and 3D imaging techniques like scanning tunneling microscopy and confocal microscopy. In both cases, our method shows superior penetration abilities and, as the only method, allows location of the defects of the chosen type in 3D. In this paper, we present the results of oxygen vacancies and zinc antisites imaging in ZnO nanorods.
Wang, Lili; Eng, Edward T.; Law, Kenneth; Gordon, Ronald E.; Rice, William J.
2016-01-01
ABSTRACT Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells. IMPORTANCE This study directly correlates individual virus-associated objects observed in light microscopy with ultrastructural features seen by electron microscopy in the HIV-1 virological synapse. This approach elucidates which infection-associated ultrastructural features represent bona fide HIV protein complexes. We define the morphology of some HIV cell-to-cell transfer intermediates as true endocytic compartments and resolve unique synapse-associated viral structures created by transfer across virological synapses. PMID:27847357
Portable, battery-operated, fluorescence field microscope for the developing world
NASA Astrophysics Data System (ADS)
Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca
2010-02-01
In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.
3-D Cellular Ultrastructure Can Be Resolved by X-ray Microscopy | Center for Cancer Research
X-ray microscopy (XRM) is more rapid than cryoelectron tomography or super-resolution fluorescence microscopy and could fill an important gap in current technologies used to investigate in situ three-dimensional structure of cells. New XRM methods developed by first author Gerd Schneider, Ph.D., working with James McNally. Ph.D., and a team of colleagues, is capable of
High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers
NASA Astrophysics Data System (ADS)
Siegel, Nisan; Lupashin, Vladimir; Storrie, Brian; Brooker, Gary
2016-12-01
Fresnel incoherent correlation holography (FINCH) microscopy is a promising approach for high-resolution biological imaging but has so far been limited to use with low-magnification, low-numerical-aperture configurations. We report the use of in-line incoherent interferometers made from uniaxial birefringent α-barium borate (α-BBO) or calcite crystals that overcome the aberrations and distortions present with previous implementations that employed spatial light modulators or gradient refractive index lenses. FINCH microscopy incorporating these birefringent elements and high-numerical-aperture oil immersion objectives could outperform standard wide-field fluorescence microscopy, with, for example, a 149 nm lateral point spread function at a wavelength of 590 nm. Enhanced resolution was confirmed with sub-resolution fluorescent beads. Taking the Golgi apparatus as a biological example, three different proteins labelled with GFP and two other fluorescent dyes in HeLa cells were resolved with an image quality that is comparable to similar samples captured by structured illumination microscopy.
Tiwari, Dhermendra K; Arai, Yoshiyuki; Yamanaka, Masahito; Matsuda, Tomoki; Agetsuma, Masakazu; Nakano, Masahiro; Fujita, Katsumasa; Nagai, Takeharu
2015-06-01
Fluorescence nanoscopy has revolutionized our ability to visualize biological structures not resolvable by conventional microscopy. However, photodamage induced by intense light exposure has limited its use in live specimens. Here we describe Kohinoor, a fast-switching, positively photoswitchable fluorescent protein, and show that it has high photostability over many switching repeats. With Kohinoor, we achieved super-resolution imaging of live HeLa cells using biocompatible, ultralow laser intensity (0.004 J/cm(2)) in reversible saturable optical fluorescence transition (RESOLFT) nanoscopy.
Fluorescence lifetime in cardiovascular diagnostics
NASA Astrophysics Data System (ADS)
Marcu, Laura
2010-01-01
We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.
Fluorescence lifetime in cardiovascular diagnostics.
Marcu, Laura
2010-01-01
We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.
Multimodal quantitative phase and fluorescence imaging of cell apoptosis
NASA Astrophysics Data System (ADS)
Fu, Xinye; Zuo, Chao; Yan, Hao
2017-06-01
Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.
Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging
NASA Astrophysics Data System (ADS)
Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier
2017-07-01
Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.
NASA Astrophysics Data System (ADS)
Rinehart, Matthew T.; LaCroix, Jeffrey; Henderson, Marcus; Katz, David; Wax, Adam
2011-03-01
The effectiveness of microbicidal gels, topical products developed to prevent infection by sexually transmitted diseases including HIV/AIDS, is governed by extent of gel coverage, pharmacokinetics of active pharmaceutical ingredients (APIs), and integrity of vaginal epithelium. While biopsies provide localized information about drug delivery and tissue structure, in vivo measurements are preferable in providing objective data on API and gel coating distribution as well as tissue integrity. We are developing a system combining confocal fluorescence microscopy with optical coherence tomography (OCT) to simultaneously measure local concentrations and diffusion coefficients of APIs during transport from microbicidal gels into tissue, while assessing tissue integrity. The confocal module acquires 2-D images of fluorescent APIs multiple times per second allowing analysis of lateral diffusion kinetics. The custom Fourier domain OCT module has a maximum a-scan rate of 54 kHz and provides depth-resolved tissue integrity information coregistered with the confocal fluorescence measurements. The combined system is validated by imaging phantoms with a surrogate fluorophore. Time-resolved API concentration measured at fixed depths is analyzed for diffusion kinetics. This multimodal system will eventually be implemented in vivo for objective evaluation of microbicide product performance.
Time-resolved delayed luminescence image microscopy using an europium ion chelate complex.
Marriott, G.; Heidecker, M.; Diamandis, E. P.; Yan-Marriott, Y.
1994-01-01
Improvements and extended applications of time-resolved delayed luminescence imaging microscopy (TR-DLIM) in cell biology are described. The emission properties of europium ion complexed to a fluorescent chelating group capable of labeling proteins are exploited to provide high contrast images of biotin labeled ligands through detection of the delayed emission. The streptavidin-based macromolecular complex (SBMC) employs streptavidin cross-linked to thyroglobulin multiply labeled with the europium-fluorescent chelate. The fluorescent chelate is efficiently excited with 340-nm light, after which it sensitizes europium ion emission at 612 nm hundreds of microseconds later. The SBMC complex has a high quantum yield orders of magnitude higher than that of eosin, a commonly used delayed luminescent probe, and can be readily seen by the naked eye, even in specimens double-labeled with prompt fluorescent probes. Unlike triplet-state phosphorescent probes, sensitized europium ion emission is insensitive to photobleaching and quenching by molecular oxygen; these properties have been exploited to obtain delayed luminescence images of living cells in aerated medium thus complementing imaging studies using prompt fluorescent probes. Since TR-DLIM has the unique property of rejecting enormous signals that originate from scattered light, autofluorescence, and prompt fluorescence it has been possible to resolve double emission images of living amoeba cells containing an intensely stained lucifer yellow in pinocytosed vesicles and membrane surface-bound SBMC-labeled biotinylated concanavalin A. Images of fixed cells represented in terms of the time decay of the sensitized emission show the lifetime of the europium ion emission is sensitive to the environment in which it is found. Through the coupling of SBMC to streptavidin,a plethora of biotin-based tracer molecules are available for immunocytochemical studies. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:7811952
Analysis of gene expression levels in individual bacterial cells without image segmentation.
Kwak, In Hae; Son, Minjun; Hagen, Stephen J
2012-05-11
Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly. Copyright © 2012 Elsevier Inc. All rights reserved.
Resolution Limits of Nanoimprinted Patterns by Fluorescence Microscopy
NASA Astrophysics Data System (ADS)
Kubo, Shoichi; Tomioka, Tatsuya; Nakagawa, Masaru
2013-06-01
The authors investigated optical resolution limits to identify minimum distances between convex lines of fluorescent dye-doped nanoimprinted resist patterns by fluorescence microscopy. Fluorescent ultraviolet (UV)-curable resin and thermoplastic resin films were transformed into line-and-space patterns by UV nanoimprinting and thermal nanoimprinting, respectively. Fluorescence immersion observation needed an immersion medium immiscible to the resist films, and an ionic liquid of triisobutyl methylphosphonium tosylate was appropriate for soluble thermoplastic polystyrene patterns. Observation with various numerical aperture (NA) values and two detection wavelength ranges showed that the resolution limits were smaller than the values estimated by the Sparrow criterion. The space width to identify line patterns became narrower as the line width increased. The space width of 100 nm was demonstrated to be sufficient to resolve 300-nm-wide lines in the detection wavelength range of 575-625 nm using an objective lens of NA= 1.40.
Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera
NASA Astrophysics Data System (ADS)
Cruz Perez, Carlos; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor
2015-09-01
Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.
Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera.
Perez, Carlos Cruz; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor
2015-09-01
Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.
Fluorescence lifetime in cardiovascular diagnostics
Marcu, Laura
2010-01-01
We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications. PMID:20210432
Chowdhury, Rajdeep; Amin, Md Asif; Bhattacharyya, Kankan
2015-08-27
Intermittent structural oscillation in the lipid droplets of live lung cells is monitored using time-resolved confocal microscopy. Significant differences are observed between the lung cancer cell (A549) and normal (nonmalignant) lung cell (WI38). For this study, the lipid droplets are covalently labeled with a fluorescent dye, coumarin maleimide (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, CPM). The number of lipid droplets in the cancer cell is found to be ∼20-fold higher than that in the normal (nonmalignant) cell. The fluctuation in the fluorescence intensity of the dye (CPM) is attributed to the red-ox processes and periodic formation/rupture of the S-CPM bond. The amount of reactive oxygen species (ROS) is much higher in a cancer cell. This is manifested in faster oscillations (0.9 ± 0.3 s) in cancer cells compared to that in the normal cells (2.8 ± 0.7 s). Solvation dynamics in the lipid droplets of cancer cells is slower compared to that in the normal cell.
Super-resolution optical microscopy resolves network morphology of smart colloidal microgels.
Bergmann, Stephan; Wrede, Oliver; Huser, Thomas; Hellweg, Thomas
2018-02-14
We present a new method to resolve the network morphology of colloidal particles in an aqueous environment via super-resolution microscopy. By localization of freely diffusing fluorophores inside the particle network we can resolve the three dimensional structure of one species of colloidal particles (thermoresponsive microgels) without altering their chemical composition through copolymerization with fluorescent monomers. Our approach utilizes the interaction of the fluorescent dye rhodamine 6G with the polymer network to achieve an indirect labeling. We calculate the 3D structure from the 2D images and compare the structure to previously published models for the microgel morphology, e.g. the fuzzy sphere model. To describe the differences in the data an extension of this model is suggested. Our method enables the tailor-made fabrication of colloidal particles which are used in various applications, such as paints or cosmetics, and are promising candidates for drug delivery, smart surface coatings, and nanocatalysis. With the precise knowledge of the particle morphology an understanding of the underlying structure-property relationships for various colloidal systems is possible.
NASA Astrophysics Data System (ADS)
Connally, Russell; Veal, Duncan; Piper, James A.
2003-07-01
The abundance of naturally fluorescing components (autofluorophors) encountered in environmentally sourced samples can greatly hinder the detection and identification of fluorescently labeled target using fluorescence microscopy. Time-resolved fluorescence microscopy (TRFM) is a technique that reduces the effects of autofluorescence through precisely controlled time delays. Lanthanide chelates have fluorescence lifetimes many orders of magnitude greater than typical autofluorophors, and persist in their luminescence long after autofluorescence has ceased. An intense short pulse of (UV) light is used to excite fluorescence in the sample and after a short delay period the longer persisting fluorescence from the chelate is captured with an image-intensified CCD camera. The choice of pulsed excitation source for TRFM has a large impact on the price and performance of the instrument. A flashlamp with a short pulse duration was selected for our instrument because of the high spectral energy in the UV region and short pulse length. However, flash output decays with an approximate lifetime of 18μs and the TRFM requires a long-lived chelate to ensure probe fluorescence is still visible after decay of the flash plasma. We synthesized a recently reported fluorescent chelate (BHHCT) and conjugated it to a monoclonal antibody directed against the water-borne parasite Giardia lamblia. Fluorescence lifetime of the construct was determined to be 339μs +/- 14μs and provided a 45-fold enhancement of labeled Giardia over background using a gate delay of 100μs. Despite the sub-optimal decay characteristics of the light pulse, flashlamps have many advantages compared to optical chopper wheels and modulated lasers. Their low cost, lack of vibration, ease of interface and small footprint are important factors to consider in TRFM design.
Common fluorescent proteins for single-molecule localization microscopy
NASA Astrophysics Data System (ADS)
Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.
2015-07-01
Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.
3-D Cellular Ultrastructure Can Be Resolved by X-ray Microscopy | Center for Cancer Research
X-ray microscopy (XRM) is more rapid than cryoelectron tomography or super-resolution fluorescence microscopy and could fill an important gap in current technologies used to investigate in situ three-dimensional structure of cells. New XRM methods developed by first author Gerd Schneider, Ph.D., working with James McNally. Ph.D., and a team of colleagues, is capable of revealing full cellular ultrastructure without requiring fixation, staining, or sectioning.
Spectro-microscopy of living plant cells.
Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank
2012-01-01
Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into molecular and subcellular processes can be obtained in living plants.
Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine.
Alexiev, Ulrike; Volz, Pierre; Boreham, Alexander; Brodwolf, Robert
2017-07-01
The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief, and for monitoring of disease progression. Topical application of drug-loaded nanoparticles for the treatment of skin disorders is a promising strategy to overcome the stratum corneum, the upper layer of the skin, which represents an effective physical and biochemical barrier. The understanding of drug penetration into skin and enhanced penetration into skin facilitated by nanocarriers requires analytical tools that ideally allow to visualize the skin, its morphology, the drug carriers, drugs, their transport across the skin and possible interactions, as well as effects of the nanocarriers within the different skin layers. Here, we review some recent developments in the field of fluorescence microscopy, namely Fluorescence Lifetime Imaging Microscopy (FLIM)), for improved characterization of nanocarriers, their interactions and penetration into skin. In particular, FLIM allows for the discrimination of target molecules, e.g. fluorescently tagged nanocarriers, against the autofluorescent tissue background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle and its interactions with other biomolecules. Thus, FLIM shows the potential to overcome several limits of intensity based microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
Dersch, Simon; Graumann, Peter L
2018-06-01
We are witnessing a breathtaking development in light (fluorescence) microscopy, where structures can be resolved down to the size of a ribosome within cells. This has already yielded surprising insight into the subcellular structure of cells, including the smallest cells, bacteria. Moreover, it has become possible to visualize and track single fluorescent protein fusions in real time, and quantify molecule numbers within individual cells. Combined, super resolution and single molecule tracking are pushing the limits of our understanding of the spatio-temporal organization even of the smallest cells to an unprecedented depth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Scholz, Marek; Biehl, Anna-Louisa; Dědic, Roman; Hála, Jan
2015-04-01
The present work provides a proof-of-concept that the singlet oxygen-sensitized delayed fluorescence (SOSDF) can be detected from individual living mammalian cells in a time-resolved microscopy experiment. To this end, 3T3 mouse fibroblasts incubated with 100 μM TPPS4 or TMPyP were used and the microsecond kinetics of the delayed fluorescence (DF) were recorded. The analysis revealed that SOSDF is the major component of the overall DF signal. The microscopy approach enables precise control of experimental conditions - the DF kinetics are clearly influenced by the presence of the (1)O2 quencher (sodium azide), H2O/D2O exchange, and the oxygen concentration. Analysis of SOSDF kinetics, which was reconstructed as a difference DF kinetics between the unquenched and the NaN3-quenched samples, provides a cellular (1)O2 lifetime of τΔ = 1-2 μs and a TPPS4 triplet lifetime of τT = 22 ± 5 μs in agreement with previously published values. The short SOSDF acquisition times, typically in the range of tens of seconds, enable us to study the dynamic cellular processes. It is shown that SOSDF lifetimes increase during PDT-like treatment, which may provide valuable information about changes of the intracellular microenvironment. SOSDF is proposed and evaluated as an alternative tool for (1)O2 detection in biological systems.
Palczewska, Grazyna; Maeda, Tadao; Imanishi, Yoshikazu; Sun, Wenyu; Chen, Yu; Williams, David R.; Piston, David; Maeda, Akiko; Palczewski, Krzysztof
2010-01-01
Multi–photon excitation fluorescence microscopy (MPM) can image certain molecular processes in vivo. In the eye, fluorescent retinyl esters in sub–cellular structures called retinosomes mediate regeneration of the visual chromophore, 11–cis–retinal, by the visual cycle. But harmful fluorescent condensation products were also identified previously. We report that in wild type mice, excitation with λ ~730 nm identified retinosomes in the retinal pigment epithelium, whereas excitation with λ ~910 nm revealed at least one additional retinal fluorophore. The latter fluorescence was absent in eyes of genetically modified mice lacking a functional visual cycle, but accentuated in eyes of older WT mice and mice with defective clearance of all–trans–retinal, an intermediate in the visual cycle. MPM, a noninvasive imaging modality that facilitates concurrent monitoring of retinosomes along with potentially harmful products in aging eyes, has the potential to detect early molecular changes due to age–related macular degeneration and other defects in retinoid metabolism. PMID:21076393
pH and chloride recordings in living cells using two-photon fluorescence lifetime imaging microscopy
NASA Astrophysics Data System (ADS)
Lahn, Mattes; Hille, Carsten; Koberling, Felix; Kapusta, Peter; Dosche, Carsten
2010-02-01
Today fluorescence lifetime imaging microscopy (FLIM) has become an extremely powerful technique in life sciences. The independency of the fluorescence decay time on fluorescence dye concentration and emission intensity circumvents many artefacts arising from intensity based measurements. To minimize cell damage and improve scan depth, a combination with two-photon (2P) excitation is quite promising. Here, we describe the implementation of a 2P-FLIM setup for biological applications. For that we used a commercial fluorescence lifetime microscope system. 2P-excitation at 780nm was achieved by a non-tuneable, but inexpensive and easily manageable mode-locked fs-fiber laser. Time-resolved fluorescence image acquisition was performed by objective-scanning with the reversed time-correlated single photon counting (TCSPC) technique. We analyzed the suitability of the pH-sensitive dye BCECF and the chloride-sensitive dye MQAE for recordings in an insect tissue. Both parameters are quite important, since they affect a plethora of physiological processes in living tissues. We performed a straight forward in situ calibration method to link the fluorescence decay time with the respective ion concentration and carried out spatially resolved measurements under resting conditions. BCECF still offered only a limited dynamic range regarding fluorescence decay time changes under physiologically pH values. However, MQAE proofed to be well suited to record chloride concentrations in the physiologically relevant range. Subsequently, several chloride transport pathways underlying the intracellular chloride homeostasis were investigated pharmacologically. In conclusion, 2P-FLIM is well suited for ion detection in living tissues due to precise and reproducible decay time measurements in combination with reduced cell and dye damages.
Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.
Gröner, Nadine; Capoulade, Jérémie; Cremer, Christoph; Wachsmuth, Malte
2010-09-27
The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.
Schmid, Volker J; Cremer, Marion; Cremer, Thomas
2017-07-01
Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.
2016-03-01
Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.
Example-Based Super-Resolution Fluorescence Microscopy.
Jia, Shu; Han, Boran; Kutz, J Nathan
2018-04-23
Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.
Braaf, Boy; de Boer, Johannes F
2017-03-20
Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.
Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.
Lee, Jun Ho; Lee, Seunghun; Gho, Yong Song; Song, In Seok; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean
2015-03-01
High-resolution imaging of the cornea is important for studying corneal diseases at cellular levels. Confocal microscopy (CM) has been widely used in the clinic, and two-photon microscopy (TPM) has recently been introduced in various pre-clinical studies. We compared the performance of CM and TPM in normal mouse corneas and neovascularized mouse corneas induced by suturing. Balb/C mice and C57BL/6 mice expressing green fluorescent protein (GFP) were used to compare modalities based on intrinsic contrast and extrinsic fluorescence contrast. CM based on reflection (CMR), CM based on fluorescence (CMF), and TPM based on intrinsic/extrinsic fluorescence and second harmonic generation (SHG) were compared by imaging the same sections of mouse corneas sequentially in vivo. In normal mouse corneas, CMR visualized corneal cell morphologies with some background noise, and CMF visualized GFP expressing corneal cells clearly. TPM visualized corneal cells and collagen in the stroma based on fluorescence and SHG, respectively. However, in neovascularized mouse corneas, CMR could not resolve cells deep inside the cornea due to high background noise from the effects of increased structural irregularity induced by suturing. CMF and TPM visualized cells and induced vasculature better than CMR because both collect signals from fluorescent cells only. Both CMF and TPM had signal decays with depth due to the structural irregularity, with CMF having faster signal decay than TPM. CMR, CMF, and TPM showed different degrees of image degradation in neovascularized mouse corneas. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Birk, Udo; Szczurek, Aleksander; Cremer, Christoph
2017-12-01
Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.
Ghosh, Shirsendu; Nandi, Somen; Ghosh, Catherine; Bhattacharyya, Kankan
2016-09-19
Fluorescence dynamics in the endoplasmic reticulum (ER) of a live non-cancer lung cell (WI38) and a lung cancer cell (A549) are studied by using time-resolved confocal microscopy. To selectively study the organelle, ER, we have used an ER-Tracker dye. From the emission maximum (λmaxem) of the ER-Tracker dye, polarity (i.e. dielectric constant, ϵ) in the ER region of the cells (≈500 nm in WI38 and ≈510 nm in A549) is estimated to be similar to that of chloroform (λmaxem =506 nm, ϵ≈5). The red shift by 10 nm in λmaxem in the cancer cell (A549) suggests a slightly higher polarity compared to the non-cancer cell (WI38). The fluorescence intensity of the ER-Tracker dye exhibits prolonged intermittent oscillations on a timescale of 2-6 seconds for the cancer cell (A549). For the non-cancer cell (WI38), such fluorescence oscillations are much less prominent. The marked fluorescence intensity oscillations in the cancer cell are attributed to enhanced calcium oscillations. The average solvent relaxation time (<τs >) of the ER region in the lung cancer cell (A549, 250±50 ps) is about four times faster than that in the non-cancer cell (WI38, 1000±50 ps). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid Optical-Ultrasonic Technique for Biomedical Diagnostics
Marcu, L.; Sun, Y.; Stephens, D.; Park, J.; Farwell, D. G.; Shung, K. K.
2010-01-01
We report the development of a diagnostic system combining time-resolved fluorescence spectroscopy and ultrasound backscatter microscopy and its application in diagnosis of tumors and atherosclerotic disease. This system allows for concurrent evaluation of distinct compositional, functional, and micro-anatomical features of normal and diseased tissues. PMID:21918737
Raman microscopy of individual living human embryonic stem cells
NASA Astrophysics Data System (ADS)
Novikov, S. M.; Beermann, J.; Bozhevolnyi, S. I.; Harkness, L. M.; Kassem, M.
2010-04-01
We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength.
Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N; Wientjes, Emilie; van Amerongen, Herbert
2016-09-01
Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was achieved by separating the time-resolved fluorescence of PSI and PSII in the leaf. It is found that the PSII antenna size is larger on the abaxial side of A. thaliana leaves, presumably because chloroplasts in the spongy mesophyll are "shaded" by the palisade cells. The number of chlorophylls in PSI on the adaxial side of the A. thaliana leaf is slightly higher. The C4 plant M. x giganteus contains both mesophyll and bundle sheath cells, which have a different PSI/PSII ratio. It is shown that the time-resolved fluorescence of bundle sheath and mesophyll cells can be analysed separately. The relative number of chlorophylls, which belong to PSI (as compared to PSII) in the bundle sheath cells is at least 2.5 times higher than in mesophyll cells. FLIM is thus demonstrated to be a useful technique to study the PSI/PSII ratio and PSII antenna size in well-defined regions of plant leaves without having to isolate pigment-protein complexes. Copyright © 2016 Elsevier B.V. All rights reserved.
Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.
2012-01-01
Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477
Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.
Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke
2015-06-11
The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.
Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination
NASA Astrophysics Data System (ADS)
Delica, Serafin; Mar Blanca, Carlo
2007-10-01
We present a simple and cost-effective wide-field, depth-sectioning, fluorescence microscope utilizing a commercial multimedia projector to generate excitation patterns on the sample. Highly resolved optical sections of fluorescent pollen grains at 1.9 μm axial resolution are constructed using the structured illumination technique. This requires grid excitation patterns to be scanned across the sample, which is straightforwardly implemented by creating slideshows of gratings at different phases, projecting them onto the sample, and synchronizing camera acquisition with slide transition. In addition to rapid dynamic pattern generation, the projector provides high illumination power and spectral excitation selectivity. We exploit these properties by imaging mouse neural cells in cultures multistained with Alexa 488 and Cy3. The spectral and structural neural information is effectively resolved in three dimensions. The flexibility and commercial availability of this light source is envisioned to open multidimensional imaging to a broader user base.
NASA Astrophysics Data System (ADS)
Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.
2016-11-01
A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals.
Dahlberg, Peter D; Boughter, Christopher T; Faruk, Nabil F; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E; Hammond, Adam T
2016-11-01
A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH 3 NH 3 PbBr 3 perovskites and measure differences between nanocrystal films and micron scale crystals.
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-01-18
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels.
NASA Astrophysics Data System (ADS)
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-03-01
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels. Dedicated to Professor Kankan Bhattacharyya.
Spagnol, Stephen T.; Dahl, Kris Noel
2016-01-01
The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes. PMID:26765322
Nanoscale cellular imaging with scanning angle interference microscopy.
DuFort, Christopher; Paszek, Matthew
2014-01-01
Fluorescence microscopy is among the most widely utilized tools in cell and molecular biology due to its ability to noninvasively obtain time-resolved images of live cells with molecule-specific contrast. In this chapter, we describe a simple high-resolution technique, scanning angle interference microscopy (SAIM), for the imaging and localization of fluorescent molecules with nanometer precision along the optical axis. In SAIM, samples above a reflective surface are sequentially scanned with an excitation laser at varying angles of incidence. Interference patterns generated between the incident and reflected lights result in an emission intensity that depends on the height of a fluorophore above the silicon surface and the angle of the incident radiation. The measured fluorescence intensities are then fit to an optical model to localize the labeled molecules along the z-axis with 5-10 nm precision and diffraction-limited lateral resolution. SAIM is easily implemented on widely available commercial total internal reflection fluorescence microscopes, offering potential for widespread use in cell biology. Here, we describe the setup of SAIM and its application for imaging cellular structures near (<1 μm) the sample substrate. © 2014 Elsevier Inc. All rights reserved.
What precision-protein-tuning and nano-resolved single molecule sciences can do for each other.
Milles, Sigrid; Lemke, Edward A
2013-01-01
While innovations in modern microscopy, spectroscopy, and nanoscopy techniques have made single molecule observation a standard in many laboratories, the actual design of meaningful fluorescence reporter systems now hinders major scientific breakthroughs. Even though the field of chemical biology is supercharging the fluorescence toolbox, surprisingly few strategies exist that make the transition from model systems to biologically relevant applications. At the same time, the number of microscopy techniques is growing dramatically. We explain our view on how the impact of modern technologies is influenced not only by further hard- and software developments, but also by the availability and suitability of protein-engineering tools. We identify how the largely independent research fields of chemical biology and fluorescence nanoscopy can influence each other to synergistically drive future technology that can visualize the localization, structure, and dynamics of molecular function without constraints. Copyright © 2013 WILEY Periodicals, Inc.
Nanoscale Membrane Curvature detected by Polarized Localization Microscopy
NASA Astrophysics Data System (ADS)
Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin
Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.
Axial tomography in live cell laser microscopy
NASA Astrophysics Data System (ADS)
Richter, Verena; Bruns, Sarah; Bruns, Thomas; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert
2017-09-01
Single cell microscopy in a three-dimensional (3-D) environment is reported. Cells are grown in an agarose culture gel, located within microcapillaries and observed from different sides after adaptation of an innovative device for sample rotation. Thus, z-stacks can be recorded by confocal microscopy in different directions and used for illustration in 3-D. This gives additional information, since cells or organelles that appear superimposed in one direction, may be well resolved in another one. The method is tested and validated with single cells expressing a membrane or a mitochondrially associated green fluorescent protein, or cells accumulating fluorescent quantum dots. In addition, axial tomography supports measurements of cellular uptake and distribution of the anticancer drug doxorubicin in the nucleus (2 to 6 h after incubation) or the cytoplasm (24 h). This paper discusses that upon cell rotation an enhanced optical resolution in lateral direction compared to axial direction can be utilized to obtain an improved effective 3-D resolution, which represents an important step toward super-resolution microscopy of living cells.
Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary
2015-02-07
FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.
Diagnosing the Internal Architecture of Zeolite Ferrierite
Schmidt, Joel E.; Hendriks, Frank C.; Lutz, Martin; Post, L. Christiaan; Fu, Donglong
2017-01-01
Abstract Large crystals of zeolite ferrierite (FER) are important model systems for spatially resolved catalysis and diffusion studies, though there is considerable variation in crystal habit depending on the chemical composition and employed synthesis conditions. A synergistic combination of techniques has been applied, including single crystal X‐ray diffraction, high‐temperature in situ confocal fluorescence microscopy, fluorescent probe molecules, wide‐field microscopy and atomic force microscopy to unravel the internal architecture of three distinct FER zeolites. Pyrolyzed template species can be used as markers for the 8‐membered ring direction as they are trapped in the terraced roof of the FER crystals. This happens as the materials grow in a layer‐by‐layer, defect‐free manner normal to the large crystal surface, and leads to a facile method to diagnose the pore system orientation, which avoids tedious single crystal X‐ray diffraction experiments. PMID:28809081
Developing Photo Activated Localization Microscopy
NASA Astrophysics Data System (ADS)
Hess, Harald
2015-03-01
Photo Activated Localization Microscopy, PALM, acquires super-resolution images by activating a subset of activatable fluorescent labels and estimating the center of the each molecular label to sub-diffractive accuracy. When this process is repeated thousands of times for different subsets of molecules, then an image can be rendered from all the center coordinates of the molecules. I will describe the circuitous story of its development that began with another super-resolution technique, NSOM, developed by my colleague Eric Betzig, who imaged single molecules at room temperature, and later we spectrally resolved individual luminescent centers of quantum wells. These two observations inspired a generalized path to localization microscopy, but that path was abandoned because no really useful fluorescent labels were available. After a decade of nonacademic industrial pursuits and the subsequent freedom of unemployment, we came across a class of genetically expressible fluorescent proteins that were switchable or convertible that enabled the concept to be implemented and be biologically promising. The past ten years have been very active with many groups exploring applications and enhancements of this concept. Demonstrating significant biological relevance will be the metric if its success.
Rautaniemi, Kaisa; Vuorimaa-Laukkanen, Elina; Strachan, Clare J; Laaksonen, Timo
2018-05-07
Pharmaceutical scientists are increasingly interested in amorphous drug formulations especially because of their higher dissolution rates. Consequently, the thorough characterization and analysis of these formulations are becoming more and more important for the pharmaceutical industry. Here, fluorescence-lifetime-imaging microscopy (FLIM) was used to monitor the crystallization of an amorphous pharmaceutical compound, indomethacin. Initially, we identified different solid indomethacin forms, amorphous and γ- and α-crystalline, on the basis of their time-resolved fluorescence. All of the studied indomethacin forms showed biexponential decays with characteristic fluorescence lifetimes and amplitudes. Using this information, the crystallization of amorphous indomethacin upon storage in 60 °C was monitored for 10 days with FLIM. The progress of crystallization was detected as lifetime changes both in the FLIM images and in the fluorescence-decay curves extracted from the images. The fluorescence-lifetime amplitudes were used for quantitative analysis of the crystallization process. We also demonstrated that the fluorescence-lifetime distribution of the sample changed during crystallization, and when the sample was not moved between measuring times, the lifetime distribution could also be used for the analysis of the reaction kinetics. Our results clearly show that FLIM is a sensitive and nondestructive method for monitoring solid-state transformations on the surfaces of fluorescent samples.
Multicolor Super-Resolution Fluorescence Imaging via Multi-Parameter Fluorophore Detection
Bates, Mark; Dempsey, Graham T; Chen, Kok Hao; Zhuang, Xiaowei
2012-01-01
Understanding the complexity of the cellular environment will benefit from the ability to unambiguously resolve multiple cellular components, simultaneously and with nanometer-scale spatial resolution. Multicolor super-resolution fluorescence microscopy techniques have been developed to achieve this goal, yet challenges remain in terms of the number of targets that can be simultaneously imaged and the crosstalk between color channels. Herein, we demonstrate multicolor stochastic optical reconstruction microscopy (STORM) based on a multi-parameter detection strategy, which uses both the fluorescence activation wavelength and the emission color to discriminate between photo-activatable fluorescent probes. First, we obtained two-color super-resolution images using the near-infrared cyanine dye Alexa 750 in conjunction with a red cyanine dye Alexa 647, and quantified color crosstalk levels and image registration accuracy. Combinatorial pairing of these two switchable dyes with fluorophores which enhance photo-activation enabled multi-parameter detection of six different probes. Using this approach, we obtained six-color super-resolution fluorescence images of a model sample. The combination of multiple fluorescence detection parameters for improved fluorophore discrimination promises to substantially enhance our ability to visualize multiple cellular targets with sub-diffraction-limit resolution. PMID:22213647
Advanced 3D Optical Microscopy in ENS Research.
Vanden Berghe, Pieter
2016-01-01
Microscopic techniques are among the few approaches that have survived the test of time. Being invented half way the seventeenth century by Antonie van Leeuwenhoek and Robert Hooke, this technology is still essential in modern biomedical labs. Many microscopy techniques have been used in ENS research to guide researchers in their dissections and later to enable electrode recordings. Apart from this, microscopy has been instrumental in the identification of subpopulations of cells in the ENS, using a variety of staining methods. A significant step forward in the use of microscopy was the introduction of fluorescence approaches. Due to the fact that intense excitation light is now filtered away from the longer wavelength emission light, the contrast can be improved drastically, which helped to identify subpopulations of enteric neurons in a variety of species. Later functionalized fluorescent probes were used to measure and film activity in muscle and neuronal cells. Another important impetus to the use of microscopy was the discovery and isolation of the green fluorescent protein (GFP), as it gave rise to the development of many different color variants and functionalized constructs. Recent advances in microscopy are the result of a continuous search to enhance contrast between the item of interest and its background but also to improve resolving power to tell two small objects apart. In this chapter three different microscopy approaches will be discussed that can aid to improve our understanding of ENS function within the gut wall.
Li, Lei; Yi, Hua; Jia, Menghui; Chang, Mengfang; Zhou, Zhongneng; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Chen, Jinquan; Xu, Jianhua
2016-06-20
In this paper, we report a pyridinium salt "turn-on" fluorescent probe, 4-[2-(4-Dimethylamino-phenyl)-vinyl]-1-methylpyridinium iodide (p-DASPMI), and applied its time-resolved fluorescence (TRF) to monitor the protein conformational changes. Both the fluorescence lifetime and quantum yield (QY) of p-DASPMI were increased about two orders of magnitude after binding to the protein bovine serum albumin (BSA). The free p-DASPMI in solution presents an ultrashort fluorescence lifetime (12.4 ps), thus it does not interfere the detection of bound p-DASPMI which has nanosecond fluorescence lifetime. Decay-associated spectra (DAS) show that p-DASPMI molecules bind to subdomains IIA and IIIA of BSA. The TRF decay profiles of p-DASPMI can be described by multi-exponential decay function ([Formula: see text]), and the obtained parameters, such as lifetimes ([Formula: see text]), fractional amplitudes ([Formula: see text]), and fractional intensities ([Formula: see text]), may be used to deduce the conformational changes of BSA. The pH and Cu 2+ induced conformational changes of BSA were investigated through the TRF of p-DASPMI. The results show that the p-DASPMI is a candidate fluorescent probe in studying the conformational changes of proteins through TRF spectroscopy and microscopy in the visible range. © The Author(s) 2016.
Sun, Yang; Park, Jesung; Stephens, Douglas N; Jo, Javier A; Sun, Lei; Cannata, Jonathan M; Saroufeem, Ramez M G; Shung, K Kirk; Marcu, Laura
2009-06-01
We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 microm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.
Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura
2009-01-01
We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque. PMID:19566223
NASA Astrophysics Data System (ADS)
Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura
2009-06-01
We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.
Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets
Warren, Sean C.; Margineanu, Anca; Alibhai, Dominic; Kelly, Douglas J.; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Katan, Matilda
2013-01-01
Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment. PMID:23940626
Resolution enhancement of 2-photon microscopy using high-refractive index microspheres
NASA Astrophysics Data System (ADS)
Tehrani, Kayvan Forouhesh; Darafsheh, Arash; Phang, Sendy; Mortensen, Luke J.
2018-02-01
Intravital microscopy using multiphoton processes is the standard tool for deep tissue imaging inside of biological specimens. Usually, near-infrared and infrared light is used to excite the sample, which enables imaging several mean free path inside a scattering tissues. Using longer wavelengths, however, increases the width of the effective multiphoton Point Spread Function (PSF). Many features inside of cells and tissues are smaller than the diffraction limit, and therefore not possible to distinguish using a large PSF. Microscopy using high refractive index microspheres has shown promise to increase the numerical aperture of an imaging system and enhance the resolution. It has been shown that microspheres can image features λ/7 using single photon process fluorescence. In this work, we investigate resolution enhancement for Second Harmonic Generation (SHG) and 2-photon fluorescence microscopy. We used Barium Titanate glass microspheres with diameters ˜20-30 μm and refractive index ˜1.9-2.1. We show microsphere-assisted SHG imaging in bone collagen fibers. Since bone is a very dense tissue constructed of bundles of collagen fibers, it is nontrivial to image individual fibers. We placed microspheres on a dense area of the mouse cranial bone, and achieved imaging of individual fibers. We found that microsphere assisted SHG imaging resolves features of the bone fibers that are not readily visible in conventional SHG imaging. We extended this work to 2-photon microscopy of mitochondria in mouse soleus muscle, and with the help of microsphere resolving power, we were able to trace individual mitochondrion from their ensemble.
Identification of detergents for forensic fiber analysis.
Heider, Emily C; Mujumdar, Nirvani; Campiglia, Andres D
2016-11-01
Trace fibers are an important form of trace evidence, and identification of exogenous substances on textile fibers provides valuable information about the origin of the fiber. Laundering textiles can provide a unique fluorescent spectral signature of the whitening agent in the detergent that adsorbs to the fiber. Using fluorescence microscopy, the spectral characteristics of seven detergents adsorbed to single fibers drawn from laundered textiles were investigated, and principal component analysis of clusters was used to characterize the type of detergent on the fiber. On dyed nylon fibers, spectra from eight different detergent pairs could be resolved and washed validation fibers correctly classified. On dyed acrylic fibers, five different detergent pairs could be resolved and identified. Identification of the detergent type may prove useful in matching a trace fiber to its bulk specimen of origin.
Fluorescent speckle microscopy of microtubules: how low can you go?
Waterman-Storer, C M; Salmon, E D
1999-12-01
Fluorescent speckle microscopy (FSM) is a new technique for visualizing the movement, assembly, and turnover of macromolecular assemblies like the cytoskeleton in living cells. In this method, contrast is created by coassembly of a small fraction of fluorescent subunits in a pool of unlabeled subunits. Random variation in association creates a nonuniform "fluorescent speckle" pattern. Fluorescent speckle movements in time-lapse recordings stand out to the eye and can be measured. Because fluorescent speckles represent fiduciary marks on the polymer lattice, FSM provides the opportunity for the first time to see the 2- and 3-dimensional trajectories of lattice movements within large arrays of polymers as well as identifying sites of assembly and disassembly of individual polymers. The technique works with either microinjection of fluorescently labeled subunits or expression of subunits ligated to green fluorescent protein (GFP). We have found for microtubules assembled in vitro that speckles containing one fluorophore can be detected and recorded using a conventional wide-field epi-fluorescence light microscope and digital imaging with a low noise cooled CCD camera. In living cells, optimal speckle contrast occurs at fractions of labeled tubulin of approximately 0.1-0.5% where the fluorescence of each speckle corresponds to one to seven fluorophores per resolvable unit (approximately 0.27 microm) in the microscope. This small fraction of labeled subunits significantly reduces out-of-focus fluorescence and greatly improves visibility of fluorescently labeled structures and their dynamics in thick regions of living cells.
Li, Jianli; Kappler, Andreas; Obst, Martin
2013-01-01
Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe3+, Cu2+, Zn2+, and Hg2+, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems. PMID:23974141
Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M; Koch, Edmund
2012-07-01
Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.
Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy
German, Christopher L.; Gudheti, Manasa V.; Fleckenstein, Annette E.; Jorgensen, Erik M.
2018-01-01
Localization microscopy techniques – such as photoactivation localization microscopy (PALM), fluorescent PALM (FPALM), ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM) – provide the highest precision for single molecule localization currently available. However, localization microscopy has been largely limited to cell cultures due to the difficulties that arise in imaging thicker tissue sections. Sample fixation and antibody staining, background fluorescence, fluorophore photoinstability, light scattering in thick sections, and sample movement create significant challenges for imaging intact tissue. We have developed a sample preparation and image acquisition protocol to address these challenges in rat brain slices. The sample preparation combined multiple fixation steps, saponin permeabilization, and tissue clarification. Together, these preserve intracellular structures, promote antibody penetration, reduce background fluorescence and light scattering, and allow acquisition of images deep in a 30 μm thick slice. Image acquisition challenges were resolved by overlaying samples with a permeable agarose pad and custom-built stainless steel imaging adapter, and sealing the imaging chamber. This approach kept slices flat, immobile, bathed in imaging buffer, and prevented buffer oxidation during imaging. Using this protocol, we consistently obtained single molecule localizations of synaptic vesicle and active zone proteins in three-dimensions within individual synaptic terminals of the striatum in rat brain slices. These techniques may be easily adapted to the preparation and imaging of other tissues, substantially broadening the application of super-resolution imaging. PMID:28924666
Siegel, Nisan; Storrie, Brian; Bruce, Marc
2016-01-01
FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443
Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope
Klauss, André; König, Marcelle; Hille, Carsten
2015-01-01
By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as “easy-STED”, achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating. PMID:26091552
The future of electron microscopy
Zhu, Yimei; Durr, Hermann
2015-04-01
Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifiesmore » to the importance of modern microscopy.« less
Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Sherani, Aiman; Hammond, Adam T.
2016-01-01
A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals. PMID:27910631
Müller, Marcel; Mönkemöller, Viola; Hennig, Simon; Hübner, Wolfgang; Huser, Thomas
2016-01-01
Super-resolved structured illumination microscopy (SR-SIM) is an important tool for fluorescence microscopy. SR-SIM microscopes perform multiple image acquisitions with varying illumination patterns, and reconstruct them to a super-resolved image. In its most frequent, linear implementation, SR-SIM doubles the spatial resolution. The reconstruction is performed numerically on the acquired wide-field image data, and thus relies on a software implementation of specific SR-SIM image reconstruction algorithms. We present fairSIM, an easy-to-use plugin that provides SR-SIM reconstructions for a wide range of SR-SIM platforms directly within ImageJ. For research groups developing their own implementations of super-resolution structured illumination microscopy, fairSIM takes away the hurdle of generating yet another implementation of the reconstruction algorithm. For users of commercial microscopes, it offers an additional, in-depth analysis option for their data independent of specific operating systems. As a modular, open-source solution, fairSIM can easily be adapted, automated and extended as the field of SR-SIM progresses. PMID:26996201
NASA Astrophysics Data System (ADS)
Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun
2018-06-01
This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.
Arroyo-Camejo, Silvia; Adam, Marie-Pierre; Besbes, Mondher; Hugonin, Jean-Paul; Jacques, Vincent; Greffet, Jean-Jacques; Roch, Jean-François; Hell, Stefan W; Treussart, François
2013-12-23
Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-resolution imaging methods, like stimulated emission depletion (STED) microscopy, have been predicted to fail in nanodiamonds. Here we show that, contrary to these predictions, STED can resolve single NV centers in 40-250 nm sized nanodiamonds with a resolution of ≈10 nm. Even multiple adjacent NVs located in single nanodiamonds can be imaged individually down to relative distances of ≈15 nm. Far-field optical super-resolution of NVs inside nanodiamonds is highly relevant for bioimaging applications of these fluorescent nanolabels. The targeted addressing and readout of individual NV(-) spins inside nanodiamonds by STED should also be of high significance for quantum sensing and information applications.
NASA Astrophysics Data System (ADS)
Luchowski, R.; Kapusta, P.; Szabelski, M.; Sarkar, P.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I.
2009-09-01
Förster resonance energy transfer (FRET) can be utilized to achieve ultrashort fluorescence responses in time-domain fluorometry. In a poly(vinyl) alcohol matrix, the presence of 60 mM Rhodamine 800 acceptor shortens the fluorescence lifetime of a pyridine 1 donor to about 20 ps. Such a fast fluorescence response is very similar to the instrument response function (IRF) obtained using scattered excitation light. A solid fluorescent sample (e.g a film) with picosecond lifetime is ideal for IRF measurements and particularly useful for time-resolved microscopy. Avalanche photodiode detectors, commonly used in this field, feature color- dependent-timing responses. We demonstrate that recording the fluorescence decay of the proposed FRET-based reference sample yields a better IRF approximation than the conventional light-scattering method and therefore avoids systematic errors in decay curve analysis.
Super-resolution from single photon emission: toward biological application
NASA Astrophysics Data System (ADS)
Moreva, E.; Traina, P.; Forneris, J.; Ditalia Tchernij, S.; Guarina, L.; Franchino, C.; Picollo, F.; Ruo Berchera, I.; Brida, G.; Degiovanni, I. P.; Carabelli, V.; Olivero, P.; Genovese, M.
2017-08-01
Properties of quantum light represent a tool for overcoming limits of classical optics. Several experiments have demonstrated this advantage ranging from quantum enhanced imaging to quantum illumination. In this work, experimental demonstration of quantum-enhanced resolution in confocal fluorescence microscopy will be presented. This is achieved by exploiting the non-classical photon statistics of fluorescence emission of single nitrogen-vacancy (NV) color centers in diamond. By developing a general model of super-resolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility to resolve, in principle, arbitrarily close emitting centers. Finally, possible applications of NV-based fluorescent nanodiamonds in biosensing and future developments will be presented.
A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy.
Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L
2008-11-21
We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps.
Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector
Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J.E.; Weiss, S.
2017-01-01
We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and high-spatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions. PMID:29449756
Grecco, H E; Lidke, K A; Heintzmann, R; Lidke, D S; Spagnuolo, C; Martinez, O E; Jares-Erijman, E A; Jovin, T M
2004-11-01
In this work, we characterized streptavidin-conjugated quantum dots (QDs) manufactured by Quantum Dot Corporation. We present data on: (1) two-photon excitation; (2) fluorescence lifetimes; (3) ensemble and single QD emission anisotropy; (4) QDs as donors for Forster resonance energy transfer (FRET); and (5) spectral conversion of QDs exposed to high-intensity illumination. We also demonstrate the utility of QDs for (1) imaging the binding and uptake of biotinylated transferrin on living cells, and (2) resolving by fluorescence lifetime imaging microscopy (FLIM) signals originating from QDs from those of spatially and spectrally overlapping visible fluorescent proteins (VFPs). (c) 2005 Wiley-Liss, Inc.
A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy
Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.
2013-01-01
We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789
The quest for four-dimensional imaging in plant cell biology: it's just a matter of time
Domozych, David S.
2012-01-01
Background Analysis of plant cell dynamics over time, or four-dimensional imaging (4-DI), represents a major goal of plant science. The ability to resolve structures in the third dimension within the cell or tissue during developmental events or in response to environmental or experimental stresses (i.e. 4-DI) is critical to our understanding of gene expression, post-expression modulations of macromolecules and sub-cellular system interactions. Scope Microscopy-based technologies have been profoundly integral to this type of investigation, and new and refined microscopy technologies now allow for the visualization of cell dynamics with unprecedented resolution, contrast and experimental versatility. However, certain realities of light and electron microscopy, choice of specimen and specimen preparation techniques limit the scope of readily attaining 4-DI. Today, the plant microscopist must use a combinatorial strategy whereby multiple microscopy-based investigations are used. Modern fluorescence, confocal laser scanning, transmission electron and scanning electron microscopy provide effective conduits for synthesizing data detailing live cell dynamics and highly resolved snapshots of specific cell structures that will ultimately lead to 4-DI. This review provides a synopsis of such technologies available. PMID:22628381
Nahmani, Marc; Lanahan, Conor; DeRosier, David; Turrigiano, Gina G.
2017-01-01
Superresolution microscopy has fundamentally altered our ability to resolve subcellular proteins, but improving on these techniques to study dense structures composed of single-molecule-sized elements has been a challenge. One possible approach to enhance superresolution precision is to use cryogenic fluorescent imaging, reported to reduce fluorescent protein bleaching rates, thereby increasing the precision of superresolution imaging. Here, we describe an approach to cryogenic photoactivated localization microscopy (cPALM) that permits the use of a room-temperature high-numerical-aperture objective lens to image frozen samples in their native state. We find that cPALM increases photon yields and show that this approach can be used to enhance the effective resolution of two photoactivatable/switchable fluorophore-labeled structures in the same frozen sample. This higher resolution, two-color extension of the cPALM technique will expand the accessibility of this approach to a range of laboratories interested in more precise reconstructions of complex subcellular targets. PMID:28348224
Analysis of gene expression levels in individual bacterial cells without image segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, In Hae; Son, Minjun; Hagen, Stephen J., E-mail: sjhagen@ufl.edu
2012-05-11
Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on amore » segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.« less
Single cell systems biology by super-resolution imaging and combinatorial labeling
Lubeck, Eric; Cai, Long
2012-01-01
Fluorescence microscopy is a powerful quantitative tool for exploring regulatory networks in single cells. However, the number of molecular species that can be measured simultaneously is limited by the spectral separability of fluorophores. Here we demonstrate a simple but general strategy to drastically increase the capacity for multiplex detection of molecules in single cells by using optical super-resolution microscopy (SRM) and combinatorial labeling. As a proof of principle, we labeled mRNAs with unique combinations of fluorophores using Fluorescence in situ Hybridization (FISH), and resolved the sequences and combinations of fluorophores with SRM. We measured the mRNA levels of 32 genes simultaneously in single S. cerevisiae cells. These experiments demonstrate that combinatorial labeling and super-resolution imaging of single cells provides a natural approach to bring systems biology into single cells. PMID:22660740
Ilovitsh, Tali; Meiri, Amihai; Ebeling, Carl G.; Menon, Rajesh; Gerton, Jordan M.; Jorgensen, Erik M.; Zalevsky, Zeev
2013-01-01
Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution. PMID:24466491
NASA Astrophysics Data System (ADS)
Clarke, David T.; Botchway, Stanley W.; Coles, Benjamin C.; Needham, Sarah R.; Roberts, Selene K.; Rolfe, Daniel J.; Tynan, Christopher J.; Ward, Andrew D.; Webb, Stephen E. D.; Yadav, Rahul; Zanetti-Domingues, Laura; Martin-Fernandez, Marisa L.
2011-09-01
Optics clustered to output unique solutions (OCTOPUS) is a microscopy platform that combines single molecule and ensemble imaging methodologies. A novel aspect of OCTOPUS is its laser excitation system, which consists of a central core of interlocked continuous wave and pulsed laser sources, launched into optical fibres and linked via laser combiners. Fibres are plugged into wall-mounted patch panels that reach microscopy end-stations in adjacent rooms. This allows multiple tailor-made combinations of laser colours and time characteristics to be shared by different end-stations minimising the need for laser duplications. This setup brings significant benefits in terms of cost effectiveness, ease of operation, and user safety. The modular nature of OCTOPUS also facilitates the addition of new techniques as required, allowing the use of existing lasers in new microscopes while retaining the ability to run the established parts of the facility. To date, techniques interlinked are multi-photon/multicolour confocal fluorescence lifetime imaging for several modalities of fluorescence resonance energy transfer (FRET) and time-resolved anisotropy, total internal reflection fluorescence, single molecule imaging of single pair FRET, single molecule fluorescence polarisation, particle tracking, and optical tweezers. Here, we use a well-studied system, the epidermal growth factor receptor network, to illustrate how OCTOPUS can aid in the investigation of complex biological phenomena.
Spatiotemporal evolution of bacterial biofilm colonies
NASA Astrophysics Data System (ADS)
Wilking, James; Koehler, Stephan; Sinha, Naveen; Seminara, Agnese; Brenner, Michael; Weitz, David
2014-03-01
Many bacteria on earth live in surface-attached communities known as biofilms. Gene expression in a biofilm is typically varied, resulting in a variety of phenotypes within a single film. These phenotypes play a critical role in biofilm physiology and development. We use time-resolved, wide-field fluorescence microscopy to image triple-labeled fluorescent Bacillus Subtilis colonies grown on agar to determine in a non-invasive fashion the evolving phenotypes. We infer their transition rates from the resulting spatiotemporal maps of gene expression. Moreover, we correlate these transition rates with local measurements of nutrient concentration to determine the influence of extracellular signals on gene expression.
von Olshausen, Philipp; Rohrbach, Alexander
2013-10-15
Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.
Light on fluorescent lipids in rafts: a lesson from model membranes.
Kahya, Nicoletta
2010-09-15
Tracking fluorescent lipids in cellular membranes has been applied for decades to shed light on membrane trafficking, sorting, endocytosis and exocytosis, viral entry, and to understand the functional relevance of membrane heterogeneity, phase separation and lipid rafts. However, fluorescent probes may display different organizing behaviour from their corresponding endogenous lipids. A full characterization of these probes is therefore required for proper interpretation of fluorescence microscopy data in complex membrane systems. Model membrane studies provide essential clues that guide us to design and interpret our experiments, help us to avoid pitfalls and resolve artefacts in complex cellular environments. In the present issue of the Biochemical Journal, Juhasz, Davis and Sharom demonstrate the importance of testing lipid probes systematically in heterogeneous model membranes of specific composition and well-defined thermodynamic properties. The phase-partitioning behaviour of fluorescent probes, alone and/or in combination, cannot simply be assumed, but has to be fully characterized.
Plasmonic platforms of self-assembled silver nanostructures in application to fluorescence
Luchowski, Rafal; Calander, Nils; Shtoyko, Tanya; Apicella, Elisa; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy
2011-01-01
Fluorescence intensity changes were investigated theoretically and experimentally using self-assembled colloidal structures on silver semitransparent mirrors. Using a simplified quasi-static model and finite element method, we demonstrate that near-field interactions of metallic nanostructures with a continuous metallic surface create conditions that produce enormously enhanced surface plasmon resonances. The results were used to explain the observed enhancements and determine the optimal conditions for the experiment. The theoretical parts of the studies are supported with reports on detailed emission intensity changes which provided multiple fluorescence hot spots with 2–3 orders of enhancements. We study two kinds of the fluorophores: dye molecules and fluorescent nanospheres characterized with similar spectral emission regions. Using a lifetime-resolved fluorescence/reflection confocal microscopy technique, we find that the largest rate for enhancement (~1000-fold) comes from localized areas of silver nanostructures. PMID:21403765
Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent
Göttfert, Fabian; Pleiner, Tino; Heine, Jörn; Westphal, Volker; Görlich, Dirk; Sahl, Steffen J.; Hell, Stefan W.
2017-01-01
Photobleaching remains a limiting factor in superresolution fluorescence microscopy. This is particularly true for stimulated emission depletion (STED) and reversible saturable/switchable optical fluorescence transitions (RESOLFT) microscopy, where adjacent fluorescent molecules are distinguished by sequentially turning them off (or on) using a pattern of light formed as a doughnut or a standing wave. In sample regions where the pattern intensity reaches or exceeds a certain threshold, the molecules are essentially off (or on), whereas in areas where the intensity is lower, that is, around the intensity minima, the molecules remain in the initial state. Unfortunately, the creation of on/off state differences on subdiffraction scales requires the maxima of the intensity pattern to exceed the threshold intensity by a large factor that scales with the resolution. Hence, when recording an image by scanning the pattern across the sample, each molecule in the sample is repeatedly exposed to the maxima, which exacerbates bleaching. Here, we introduce MINFIELD, a strategy for fundamentally reducing bleaching in STED/RESOLFT nanoscopy through restricting the scanning to subdiffraction-sized regions. By safeguarding the molecules from the intensity of the maxima and exposing them only to the lower intensities (around the minima) needed for the off-switching (on-switching), MINFIELD largely avoids detrimental transitions to higher molecular states. A bleaching reduction by up to 100-fold is demonstrated. Recording nanobody-labeled nuclear pore complexes in Xenopus laevis cells showed that MINFIELD-STED microscopy resolved details separated by <25 nm where conventional scanning failed to acquire sufficient signal. PMID:28193881
Isbaner, Sebastian; Karedla, Narain; Kaminska, Izabela; Ruhlandt, Daja; Raab, Mario; Bohlen, Johann; Chizhik, Alexey; Gregor, Ingo; Tinnefeld, Philip; Enderlein, Jörg; Tsukanov, Roman
2018-04-11
Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups.
Lipid Bilayer Vesicles with Numbers of Membrane-Linking Pores
NASA Astrophysics Data System (ADS)
Ken-ichirou Akashi,; Hidetake Miyata,
2010-06-01
We report that phospholipid membranes spontaneously formed in aqueous medium giant unilamellar vesicles (GUVs) possessing many membranous wormhole-like structures (membrane-linking pores, MLPs). By phase contract microscopy and confocal fluorescence microscopy, the structures of the MLPs, consisting of lipid bilayer, were resolvable, and a variety of vesicular shapes having many MLPs (a high genus topology) were found. These vesicles were stable but easily deformed by micromanipulation with a microneedle. We also observed the size reduction of the MLPs with the increase in membrane tension, which was qualitatively consistent with a prediction from a simple dynamical model.
Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance
Mela, Christopher A.; Patterson, Carrie; Thompson, William K.; Papay, Francis; Liu, Yang
2015-01-01
We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a) the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b) the first wearable system offering both large FOV and microscopic imaging simultaneously, (c) the first wearable system that offers both ultrasound imaging and fluorescence imaging capacities, and (d) the first demonstration of goggle-to-goggle communication to share stereoscopic views for medical guidance. PMID:26529249
Stephan, Milena; Mey, Ingo; Steinem, Claudia; Janshoff, Andreas
2014-02-04
The passage of solutes across a lipid membrane plays a central role in many cellular processes. However, the investigation of transport processes remains a serious challenge in pharmaceutical research, particularly the transport of uncharged cargo. While translocation reactions of ions across cell membranes is commonly measured with the patch-clamp, an equally powerful screening method for the transport of uncharged compounds is still lacking. A combined setup for reflectometric interference spectroscopy (RIfS) and fluorescence microscopy measurements is presented that allows one to investigate the passive exchange of uncharged compounds across a free-standing membrane. Pore-spanning lipid membranes were prepared by spreading giant 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles on porous anodic aluminum oxide (AAO) membranes, creating sealed attoliter-sized compartments. The time-resolved leakage of different dye molecules (pyranine and crystal violet) as well as avidin through melittin induced membrane pores and defects was investigated.
Superresolution microscopy for microbiology
Coltharp, Carla; Xiao, Jie
2014-01-01
Summary This review provides a practical introduction to superresolution microscopy from the perspective of microbiological research. Because of the small sizes of bacterial cells, superresolution methods are particularly powerful and suitable for revealing details of cellular structures that are not resolvable under conventional fluorescence light microscopy. Here we describe the methodological concepts behind three major categories of super-resolution light microscopy: photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) and stimulated emission-depletion (STED) microscopy. We then present recent applications of each of these techniques to microbial systems, which have revealed novel conformations of cellular structures and described new properties of in vivo protein function and interactions. Finally, we discuss the unique issues related to implementing each of these superresolution techniques with bacterial specimens and suggest avenues for future development. The goal of this review is to provide the necessary technical background for interested microbiologists to choose the appropriate super-resolution method for their biological systems, and to introduce the practical considerations required for designing and analysing superresolution imaging experiments. PMID:22947061
Fluorescence lifetime microscopy for monitoring cell adhesion using metal induced energy transfer
NASA Astrophysics Data System (ADS)
Hwang, Wonsang; Seo, JinWon; Song, Jun ho; Kim, DongEun; Won, YoungJae; Choi, In-Hong; Yoo, Kyung-Hwa; Kim, Dug Young
2018-02-01
A precise control and a reliable monitoring tool for the adhesion properties of a cell are very important in atherosclerosis studies. If endothelial cells in contact with the intracellular membrane are not attached securely, low-density lipoprotein (LDL) particles can enter into the inner membrane. It is therefore necessary to measure conditions under which endothelial cell detachment occurs. When a cell is attached to a metal thin film, the lifetime of a fluorescence probe attached to the membrane of the cell is reduced by the metal-induced energy transfer (MIET). Fluorescence lifetime imaging microscopy (FLIM) is used to monitor the attachment condition of a cell to a metal surface using FRET. However, this requires high numerical aperture (NA) objective lens because axial confocal resolution must be smaller than the cell thickness. This requirement limits the field of view of the measurement specimen. In this study we provides a new method which can measure adhesion properties of endothelial cells even with a low NA objective lens by resolving two lifetime components in FLIM.
NASA Astrophysics Data System (ADS)
Eckert, Hann-Jörg; Petrášek, Zdeněk; Kemnitz, Klaus
2006-10-01
Picosecond fluorescence lifetime imaging microscopy (FLIM) provides a most valuable tool to analyze the primary processes of photosynthesis in individual cells and chloroplasts of living cells. In order to obtain correct lifetimes of the excited states, the peak intensity of the exciting laser pulses as well as the average intensity has to be sufficiently low to avoid distortions of the kinetics by processes such as singlet-singlet annihilation, closing of the reaction centers or photoinhibition. In the present study this requirement is achieved by non-scanning wide-field FLIM based on time- and space-correlated single-photon counting (TSCSPC) using a novel microchannel plate photomultiplier with quadrant anode (QA-MCP) that allows parallel acquisition of time-resolved images under minimally invasive low-excitation conditions. The potential of the wide-field TCSPC method is demonstrated by presenting results obtained from measurements of the fluorescence dynamics in individual chloroplasts of moss leaves and living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.
Evanescent field microscopy techniques for studying dynamics at the surface of living cells
NASA Astrophysics Data System (ADS)
Sund, Susan E.
This thesis presents two distinct optical microscopy techniques for applications in cell biophysics: (a)the extension to living cells of an established technique, total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP) for the first time in imaging mode; and (b)the novel development of polarized total internal reflection fluorescence (p- TIRF) to study membrane orientation in living cells. Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about the relevant chemical kinetic rates in vivo. TIR/FRAP, an established technique which can measure reversible biomolecular kinetic rates at surfaces, is extended here to measure kinetic parameters of microinjected rhodamine actin at the cytofacial surface of the plasma membrane of living cultured smooth muscle cells. For the first time, spatial imaging (with a CCD camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging allows production of spatially resolved images of kinetic data, and calculation of correlation distances, cell-wide gradients, and kinetic parameter dependence on initial fluorescence intensity. In living cells, membrane curvature occurs both in easily imaged large scale morphological features, and also in less visualizable submicroscopic regions of activity such as endocytosis, exocytosis, and cell surface ruffling. A fluorescence microscopic method, p-TIRF, is introduced here to visualize such regions. The method is based on fluorescence of the oriented membrane probe diI- C18-(3) (diI) excited by evanescent field light polarized either perpendicular or parallel to the plane of the substrate coverslip. The excitation efficiency from each polarization depends on the membrane orientation, and thus the ratio of the observed fluorescence excited by these two polarizations vividly shows regions of microscopic and submicroscopic curvature of the membrane. A theoretical background of the technique and experimental verifications are presented in samples of protein solutions, model lipid bilayers, and living cells. Sequential digital images of the polarized TIR fluorescence ratios show spatially-resolved time- course maps of membrane orientations on diI labeled macrophages from which low visibility membrane structures can be identified and quantified. The TIR images are sharpened and contrast-enhanced by deconvoluting them with an experimentally-measured point spread function.
Lamb, D C; Müller, B K; Bräuchle, C
2005-10-01
Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) are methods that extract information about a sample from the influence of thermodynamic equilibrium fluctuations on the fluorescence intensity. This method allows dynamic information to be obtained from steady state equilibrium measurements and its popularity has dramatically increased in the last 10 years due to the development of high sensitivity detectors and its combination with confocal microscopy. Using time-correlated single-photon counting (TCSPC) detection and pulsed excitation, information over the duration of the excited state can be extracted and incorporated in the analysis. In this short review, we discuss new methodologies that have recently emerged which incorporated fluorescence lifetime information or TCSPC data in the FCS and FCCS analysis. Time-gated FCS discriminates between which photons are to be incorporated in the analysis dependent upon their arrival time after excitation. This allows for accurate FCS measurements in the presence of fluorescent background, determination of sample homogeneity, and the ability to distinguish between static and dynamic heterogeneities. A similar method, time-resolved FCS can be used to resolve the individual correlation functions from multiple fluorophores through the different fluorescence lifetimes. Pulsed interleaved excitation (PIE) encodes the excitation source into the TCSPC data. PIE can be used to perform dual-channel FCCS with a single detector and allows elimination of spectral cross-talk with dual-channel detection. For samples that undergo fluorescence resonance energy transfer (FRET), quantitative FCCS measurements can be performed in spite of the FRET and the static FRET efficiency can be determined.
Assembly and microscopic characterization of DNA origami structures.
Scheible, Max; Jungmann, Ralf; Simmel, Friedrich C
2012-01-01
DNA origami is a revolutionary method for the assembly of molecular nanostructures from DNA with precisely defined dimensions and with an unprecedented yield. This can be utilized to arrange nanoscale components such as proteins or nanoparticles into pre-defined patterns. For applications it will now be of interest to arrange such components into functional complexes and study their geometry-dependent interactions. While commonly DNA nanostructures are characterized by atomic force microscopy or electron microscopy, these techniques often lack the time-resolution to study dynamic processes. It is therefore of considerable interest to also apply fluorescence microscopic techniques to DNA nanostructures. Of particular importance here is the utilization of novel super-resolved microscopy methods that enable imaging beyond the classical diffraction limit.
Dynamic organization of myristoylated Src in the live cell plasma membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Adam W.; Huang, Hector H.; Endres, Nicholas F.
The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell–cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescencemore » cross-correlation spectroscopy (PIE–FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10–80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Altogether, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.« less
Dynamic organization of myristoylated Src in the live cell plasma membrane
Smith, Adam W.; Huang, Hector H.; Endres, Nicholas F.; ...
2016-01-15
The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell–cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescencemore » cross-correlation spectroscopy (PIE–FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10–80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Altogether, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.« less
Applying Superresolution Localization-Based Microscopy to Neurons
ZHONG, HAINING
2016-01-01
Proper brain function requires the precise localization of proteins and signaling molecules on a nanometer scale. The examination of molecular organization at this scale has been difficult in part because it is beyond the reach of conventional, diffraction-limited light microscopy. The recently developed method of superresolution, localization-based fluorescent microscopy (LBM), such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), has demonstrated a resolving power at a 10 nm scale and is poised to become a vital tool in modern neuroscience research. Indeed, LBM has revealed previously unknown cellular architectures and organizational principles in neurons. Here, we discuss the principles of LBM, its current applications in neuroscience, and the challenges that must be met before its full potential is achieved. We also present the unpublished results of our own experiments to establish a sample preparation procedure for applying LBM to study brain tissue. PMID:25648102
Time-Resolved Photoluminescence Microscopy for the Analysis of Semiconductor-Based Paint Layers
Mosca, Sara; Gonzalez, Victor; Eveno, Myriam
2017-01-01
In conservation, science semiconductors occur as the constituent matter of the so-called semiconductor pigments, produced following the Industrial Revolution and extensively used by modern painters. With recent research highlighting the occurrence of various degradation phenomena in semiconductor paints, it is clear that their detection by conventional optical fluorescence imaging and microscopy is limited by the complexity of historical painting materials. Here, we illustrate and prove the capabilities of time-resolved photoluminescence (TRPL) microscopy, equipped with both spectral and lifetime sensitivity at timescales ranging from nanoseconds to hundreds of microseconds, for the analysis of cross-sections of paint layers made of luminescent semiconductor pigments. The method is sensitive to heterogeneities within micro-samples and provides valuable information for the interpretation of the nature of the emissions in samples. A case study is presented on micro samples from a painting by Henri Matisse and serves to demonstrate how TRPL can be used to identify the semiconductor pigments zinc white and cadmium yellow, and to inform future investigations of the degradation of a cadmium yellow paint. PMID:29160862
NASA Astrophysics Data System (ADS)
Chia, Thomas H.
Multiphoton microscopy is a laser-scanning fluorescence imaging method with extraordinary potential. We describe three innovative multiphoton microscopy techniques across various disciplines. Traditional in vivo fluorescence microscopy of the mammalian brain has a limited penetration depth (<400 microm). We present a method of imaging 1 mm deep into mouse neocortex by using a glass microprism to relay the excitation and emission light. This technique enables simultaneous imaging of multiple cortical layers, including layer V, at an angle typical of slice preparations. At high-magnification imaging using an objective with 1-mm of coverglass correction, resolution was sufficient to resolve dendritic spines on layer V GFP neurons. Functional imaging of blood flow at various neocortical depths is also presented, allowing for quantification of red blood cell flux and velocity. Multiphoton fluorescence lifetime imaging (FLIM) of NADH reveals information on neurometabolism. NADH, an intrinsic fluorescent molecule and ubiquitous metabolic coenzyme, has a lifetime dependent on enzymatic binding. A novel NADH FLIM algorithm is presented that produces images showing spatially distinct NADH fluorescence lifetimes in mammalian brain slices. This program provides advantages over traditional FLIM processing of multi-component lifetime data. We applied this technique to a GFP-GFAP pilocarpine mouse model of temporal lobe epilepsy. Results indicated significant changes in the neurometabolism of astrocytes and neuropil in the cell and dendritic layers of the hippocampus when compared to control tissue. Data obtained with NADH FLIM were subsequently interpreted based on the abnormal activity reported in epileptic tissue. Genuine U.S. Federal Reserve Notes have a consistent, two-component intrinsic fluorescence lifetime. This allows for detection of counterfeit paper money because of its significant differences in fluorescence lifetime when compared to genuine paper money. We used scanning multiphoton laser excitation to sample a ˜4 mm2 region from 54 genuine Reserve Notes. Three types of counterfeit samples were tested. Four out of the nine counterfeit samples fit to a one-component decay. Five out of nine counterfeit samples fit to a two-component model, but are identified as counterfeit due to significant deviations in the longer lifetime component compared to genuine bills.
Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation
Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D.C.
2013-01-01
The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments. PMID:23746509
Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W
2018-02-16
Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Yang; Liao, Kuo-Chih; Sun, Yinghua; Park, Jesung; Marcu, Laura
2008-02-01
A unique tissue phantom is reported here that mimics the optical and acoustical properties of biological tissue and enables testing and validation of a dual-modality clinical diagnostic system combining time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasound backscatter microscopy (UBM). The phantom consisted of contrast agents including silicon dioxide particles with a range of diameters from 0.5 to 10 μm acting as optical and acoustical scatterers, and FITC-conjugated dextran mimicking the endogenous fluorophore in tissue. The agents were encapsulated in a polymer bead attached to the end of an optical fiber with a 200 μm diameter using a UV-induced polymerization technique. A set of beads with fibers were then implanted into a gel-based matrix with controlled patterns including a design with lateral distribution and a design with successively changing depth. The configuration presented here allowed the validation of the hybrid fluorescence spectroscopic and ultrasonic system by detecting the lateral and depth distribution of the contrast agents, as well as for coregistration of the ultrasonic image with spectroscopic data. In addition, the depth of the beads in the gel matrix was changed to explore the effect of different concentration ratio of the mixture on the fluorescence signal emitted.
Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex.
Mattheyses, Alexa L; Kampmann, Martin; Atkinson, Claire E; Simon, Sanford M
2010-09-22
We present a new approach for studying individual protein domains within the nuclear pore complex (NPC) using fluorescence polarization microscopy. The NPC is a large macromolecular complex, the size and complexity of which presents experimental challenges. Using fluorescence anisotropy and exploiting the symmetry of the NPC and its organization in the nuclear envelope, we have resolved order and disorder of individual protein domains. Fluorescently tagging specific domains of individual nucleoporins revealed both rigid and flexible domains: the tips of the FG domains are disordered, whereas the NPC-anchored domains are ordered. Our technique allows the collection of structural information in vivo, providing the ability to probe the organization of protein domains within the NPC. This has particular relevance for the FG domain nucleoporins, which are crucial for nucleocytoplasmic transport. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang
2017-02-01
Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.
Imaging of DNA Ultrafine Bridges in Budding Yeast.
Quevedo, Oliver; Lisby, Michael
2018-01-01
DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae.
Confocal Microscopy Imaging with an Optical Transition Edge Sensor
NASA Astrophysics Data System (ADS)
Fukuda, D.; Niwa, K.; Hattori, K.; Inoue, S.; Kobayashi, R.; Numata, T.
2018-05-01
Fluorescence color imaging at an extremely low excitation intensity was performed using an optical transition edge sensor (TES) embedded in a confocal microscope for the first time. Optical TES has the ability to resolve incident single photon energy; therefore, the wavelength of each photon can be measured without spectroscopic elements such as diffraction gratings. As target objects, animal cells labeled with two fluorescent dyes were irradiated with an excitation laser at an intensity below 1 μW. In our confocal system, an optical fiber-coupled TES device is used to detect photons instead of the pinhole and photomultiplier tube used in typical confocal microscopes. Photons emitted from the dyes were collected by the objective lens, and sent to the optical TES via the fiber. The TES measures the wavelength of each photon arriving in an exposure time of 70 ms, and a fluorescent photon spectrum is constructed. This measurement is repeated by scanning the target sample, and finally a two-dimensional RGB-color image is obtained. The obtained image showed that the photons emitted from the dyes of mitochondria and cytoskeletons were clearly resolved at a detection intensity level of tens of photons. TES exhibits ideal performance as a photon detector with a low dark count rate (< 1 Hz) and wavelength resolving power. In the single-mode fiber-coupled system, the confocal microscope can be operated in the super-resolution mode. These features are very promising to realize high-sensitivity and high-resolution photon spectral imaging, and would help avoid cell damage and photobleaching of fluorescence dyes.
NASA Astrophysics Data System (ADS)
Schmitz, Gerd; Goetz, Alexandra; Orso, Evelyn; Rothe, Gregor
1998-04-01
The vesicular transport of lipids from the endoplasmic reticulum via the Golgi apparatus affects the composition of the plasma membrane. The purpose of our study was to develop an in vitro test system for characterization of vesicular lipid transport kinetics by using confocal microscopy and fluorescence recovery after photobleaching (FRAP). Fibroblasts from two patients homozygous for the hypercatabolic HDL deficiency syndrome Tangier disease and 4 control subjects were pulsed with the C6-NBD-ceramide for 30 minutes. Chase incubation at room temperature resulted in the metabolic accumulation of fluorescent C6-NBD-sphingolyelin and C6-NBD-glycosylceramides in the medial- and trans-Golgi region. Cells were analyzed with an inverted Leica TCS microscope. Calibration was performed through the analysis of diffusion of 50 nm microparticles embedded in media of different viscosity. An acousto optical tunable filter (AOTF) was used for the selective bleaching of the medial- and trans- Golgi region followed by analysis of the fluorescence recovery for 4 minutes. Post-bleach fluorescence recovery through the trans-Golgi-oriented transport of NBD-sphingomyelin was calculated from 2-dimensional scans. Tangier fibroblasts displayed a retarded recovery of fluorescence in the trans- Golgi region. This suggests that the vesicular transport of sphingomyelin and cholesterol is disturbed in Tangier disease confirming data from our laboratory generated with radiometabolites on whole cells. Our data suggest that FRAP analysis allows a sensitive kinetic and spatially resolved analysis of disturbances of vesicular lipid transport.
Devauges, Viviane; Matthews, Daniel R.; Aluko, Justin; Nedbal, Jakub; Levitt, James A.; Poland, Simon P.; Coban, Oana; Weitsman, Gregory; Monypenny, James; Ng, Tony; Ameer-Beg, Simon M.
2014-01-01
We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor. PMID:25360776
Hain, Nicole; Wesner, Daniel; Druzhinin, Sergey I; Schönherr, Holger
2016-11-01
The impact of surface treatment and modification on surface nanobubble nucleation in water has been addressed by a new combination of fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM). In this study, rhodamine 6G (Rh6G)-labeled surface nanobubbles nucleated by the ethanol-water exchange were studied on differently cleaned borosilicate glass, silanized glass as well as self-assembled monolayers on transparent gold by combined AFM-FLIM. While the AFM data confirmed earlier reports on surface nanobubble nucleation, size, and apparent contact angles in dependence of the underlying substrate, the colocalization of these elevated features with highly fluorescent features observed in confocal intensity images added new information. By analyzing the characteristic contributions to the excited state lifetime of Rh6G in decay curves obtained from time-correlated single photon counting (TCSPC) experiments, the characteristic short-lived (<600 ps) component of could be associated with an emission at the gas-water interface. Its colocalization with nanobubble-like features in the AFM height images provides evidence for the observation of gas-filled surface nanobubbles. While piranha-cleaned glass supported nanobubbles, milder UV-ozone or oxygen plasma treatment afforded glass-water interfaces, where no nanobubbles were observed by combined AFM-FLIM. Finally, the number density of nanobubbles scaled inversely with increasing surface hydrophobicity.
NASA Astrophysics Data System (ADS)
Niklas, M.; Henrich, M.; Jäkel, O.; Engelhardt, J.; Abdollahi, A.; Greilich, S.
2017-05-01
Fluorescent nuclear track detectors (FNTDs) allow for visualization of single-particle traversal in clinical ion beams. The point spread function of the confocal readout has so far hindered a more detailed characterization of the track spots—the ion’s characteristic signature left in the FNTD. Here we report on the readout of the FNTD by optical nanoscopy, namely stimulated emission depletion microscopy. It was firstly possible to visualize the track spots of carbon ions and protons beyond the diffraction limit of conventional light microscopy with a resolving power of approximately 80 nm (confocal: 320 nm). A clear discrimination of the spatial width, defined by the full width half maximum of track spots from particles (proton and carbon ions), with a linear energy transfer (LET) ranging from approximately 2-1016 keV µm-1 was possible. Results suggest that the width depends on LET but not on particle charge within the uncertainties. A discrimination of particle type by width thus does not seem possible (as well as with confocal microscopy). The increased resolution, however, could allow for refined determination of the cross-sectional area facing substantial energy deposition. This work could pave the way towards development of optical nanoscopy-based analysis of radiation-induced cellular response using cell-fluorescent ion track hybrid detectors.
NASA Astrophysics Data System (ADS)
Chen, Xuanze; Liu, Yujia; Yang, Xusan; Wang, Tingting; Alonas, Eric; Santangelo, Philip J.; Ren, Qiushi; Xi, Peng
2013-02-01
Fluorescent microscopy has become an essential tool to study biological molecules, pathways and events in living cells, tissues and animals. Meanwhile even the most advanced confocal microscopy can only yield optical resolution approaching Abbe diffraction limit of 200 nm. This is still larger than many subcellular structures, which are too small to be resolved in detail. These limitations have driven the development of super-resolution optical imaging methodologies over the past decade. In stimulated emission depletion (STED) microscopy, the excitation focus is overlapped by an intense doughnut-shaped spot to instantly de-excite markers from their fluorescent state to the ground state by stimulated emission. This effectively eliminates the periphery of the Point Spread Function (PSF), resulting in a narrower focal region, or super-resolution. Scanning a sharpened spot through the specimen renders images with sub-diffraction resolution. Multi-color STED imaging can present important structural and functional information for protein-protein interaction. In this work, we presented a two-color, synchronization-free STED microscopy with a Ti:Sapphire oscillator. The excitation wavelengths were 532nm and 635nm, respectively. With pump power of 4.6 W and sample irradiance of 310 mW, we achieved super-resolution as high as 71 nm. Human respiratory syncytial virus (hRSV) proteins were imaged with our two-color CW STED for co-localization analysis.
NASA Astrophysics Data System (ADS)
Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten
2016-03-01
Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.
Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten
2016-03-01
Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.
Time-resolved fluorescence spectroscopy of human brain tumors
NASA Astrophysics Data System (ADS)
Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.
2002-05-01
Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.
Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.
2017-01-01
Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.
2014-12-15
Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each ofmore » which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes« less
Que, Emily L; Bleher, Reiner; Duncan, Francesca E; Kong, Betty Y; Gleber, Sophie C; Vogt, Stefan; Chen, Si; Garwin, Seth A; Bayer, Amanda R; Dravid, Vinayak P; Woodruff, Teresa K; O'Halloran, Thomas V
2015-02-01
Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.
NASA Astrophysics Data System (ADS)
Lien, Chi-Hsiang; Lin, Chun-Yu; Chen, Shean-Jen; Chien, Fan-Ching
2017-02-01
A three-dimensional (3D) single fluorescent particle tracking strategy based on temporal focusing multiphoton excitation microscopy (TFMPEM) combined with astigmatism imaging is proposed for delivering nanoscale-level axial information that reveals 3D trajectories of single fluorospheres in the axially-resolved multiphoton excitation volume without z-axis scanning. It provides the dynamical ability by measuring the diffusion coefficient of fluorospheres in glycerol solutions with a position standard deviation of 14 nm and 21 nm in the lateral and axial direction and a frame rate of 100 Hz. Moreover, the optical trapping force based on the TFMPEM is minimized to avoid the interference in the tracing measurements compared to that in the spatial focusing MPE approaches. Therefore, we presented a three dimensional single particle tracking strategy to overcome the limitation of the time resolution of the multiphoton imaging using fast frame rate of TFMPEM, and provide three dimensional locations of multiple particles using an astigmatism method.
Label-free photoacoustic nanoscopy
Danielli, Amos; Maslov, Konstantin; Garcia-Uribe, Alejandro; Winkler, Amy M.; Li, Chiye; Wang, Lidai; Chen, Yun; Dorn, Gerald W.; Wang, Lihong V.
2014-01-01
Abstract. Super-resolution microscopy techniques—capable of overcoming the diffraction limit of light—have opened new opportunities to explore subcellular structures and dynamics not resolvable in conventional far-field microscopy. However, relying on staining with exogenous fluorescent markers, these techniques can sometimes introduce undesired artifacts to the image, mainly due to large tagging agent sizes and insufficient or variable labeling densities. By contrast, the use of endogenous pigments allows imaging of the intrinsic structures of biological samples with unaltered molecular constituents. Here, we report label-free photoacoustic (PA) nanoscopy, which is exquisitely sensitive to optical absorption, with an 88 nm resolution. At each scanning position, multiple PA signals are successively excited with increasing laser pulse energy. Because of optical saturation or nonlinear thermal expansion, the PA amplitude depends on the nonlinear incident optical fluence. The high-order dependence, quantified by polynomial fitting, provides super-resolution imaging with optical sectioning. PA nanoscopy is capable of super-resolution imaging of either fluorescent or nonfluorescent molecules. PMID:25104412
Domingue, Scott R.; Bartels, Randy A.
2014-12-04
Here, we demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26more » fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.« less
Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak; Woodruff, Teresa K.; O’Halloran, Thomas V.
2015-01-01
Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes. PMID:25615666
Cellular Oxygen and Nutrient Sensing in Microgravity Using Time-Resolved Fluorescence Microscopy
NASA Technical Reports Server (NTRS)
Szmacinski, Henryk
2003-01-01
Oxygen and nutrient sensing is fundamental to the understanding of cell growth and metabolism. This requires identification of optical probes and suitable detection technology without complex calibration procedures. Under this project Microcosm developed an experimental technique that allows for simultaneous imaging of intra- and inter-cellular events. The technique consists of frequency-domain Fluorescence Lifetime Imaging Microscopy (FLIM), a set of identified oxygen and pH probes, and methods for fabrication of microsensors. Specifications for electronic and optical components of FLIM instrumentation are provided. Hardware and software were developed for data acquisition and analysis. Principles, procedures, and representative images are demonstrated. Suitable lifetime sensitive oxygen, pH, and glucose probes for intra- and extra-cellular measurements of analyte concentrations have been identified and tested. Lifetime sensing and imaging have been performed using PBS buffer, culture media, and yeast cells as a model systems. Spectral specifications, calibration curves, and probes availability are also provided in the report.
NASA Astrophysics Data System (ADS)
Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander
2016-07-01
Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.
Jünger, Felix; Olshausen, Philipp v.; Rohrbach, Alexander
2016-01-01
Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes. PMID:27465033
Resolving the Pinning Force of Nanobubbles with Optical Microscopy
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter
2017-02-01
Many of the remarkable properties of surface nanobubbles, such as unusually small contact angles and long lifetimes, are related to the force that pins them onto their substrates. This pinning force is yet to be quantified experimentally. Here, surface-attached nanobubbles are pulled with an atomic force microscope tip while their mechanical responses are observed with total internal reflection fluorescence microscopy. We estimate that a pinning force on the order of 0.1 μ N is required to unpin a nanobubble from its substrate. The maximum force that the tip can exert on the nanobubble is limited by the stability of the neck pulled from the bubble and is enhanced by the hydrophobicity of the tip.
Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser
Perillo, Evan P.; McCracken, Justin E.; Fernée, Daniel C.; Goldak, John R.; Medina, Flor A.; Miller, David R.; Yeh, Hsin-Chih; Dunn, Andrew K.
2016-01-01
Here we demonstrate that a mode-locked ytterbium fiber laser for two-photon fluorescence microscopy can be built for $13,000. The laser emits at a wavelength of 1060 nm with a usable average power of 1 W at a repetition rate of 40 MHz and a compressed pulse width of 81 fs at the sample. The laser is used to obtain deep in vivo two-color images of layer-V pyramidal neurons expressing YFP and vasculature labelled with Texas Red at depths up to 900 µm. The sub-1 µm features of dendritic spines can be resolved at a 200 µm depth. PMID:26977343
Hyperspectral light sheet microscopy
NASA Astrophysics Data System (ADS)
Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan
2015-09-01
To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.
Hyperspectral light sheet microscopy.
Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O; Huisken, Jan
2015-09-02
To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.
Pinhole shifting lifetime imaging microscopy
Ramshesh, Venkat K.; Lemasters, John J.
2009-01-01
Lifetime imaging microscopy is a powerful tool to probe biological phenomena independent of luminescence intensity and fluorophore concentration. We describe time-resolved imaging of long-lifetime luminescence with an unmodified commercial laser scanning confocal/multiphoton microscope. The principle of the measurement is displacement of the detection pinhole to collect delayed luminescence from a position lagging the rasting laser beam. As proof of principle, luminescence from microspheres containing europium (Eu3+), a red emitting probe, was compared to that of short-lifetime green-fluorescing microspheres and/or fluorescein and rhodamine in solution. Using 720-nm two-photon excitation and a pinhole diameter of 1 Airy unit, the short-lifetime fluorescence of fluorescein, rhodamine and green microspheres disappeared much more rapidly than the long-lifetime phosphorescence of Eu3+ microspheres as the pinhole was repositioned in the lagging direction. In contrast, repositioning of the pinhole in the leading and orthogonal directions caused equal loss of short- and long-lifetime luminescence. From measurements at different lag pinhole positions, a lifetime of 270 μs was estimated for the Eu3+ microspheres, consistent with independent measurements. This simple adaptation is the basis for quantitative 3-D lifetime imaging microscopy. PMID:19123648
NASA Astrophysics Data System (ADS)
Bukara, Katarina; Jovanić, Svetlana; Drvenica, Ivana T.; Stančić, Ana; Ilić, Vesna; Rabasović, Mihailo D.; Pantelić, Dejan; Jelenković, Branislav; Bugarski, Branko; Krmpot, Aleksandar J.
2017-02-01
The present study describes utilization of two photon excitation fluorescence (2PE) microscopy for visualization of the hemoglobin in human and porcine erythrocytes and their empty membranes (i.e., ghosts). High-quality, label- and fixation-free visualization of hemoglobin was achieved at excitation wavelength 730 nm by detecting visible autofluorescence. Localization in the suspension and spatial distribution (i.e., mapping) of residual hemoglobin in erythrocyte ghosts has been resolved by 2PE. Prior to the 2PE mapping, the presence of residual hemoglobin in the bulk suspension of erythrocyte ghosts was confirmed by cyanmethemoglobin assay. 2PE analysis revealed that the distribution of hemoglobin in intact erythrocytes follows the cells' shape. Two types of erythrocytes, human and porcine, characterized with discocyte and echinocyte morphology, respectively, showed significant differences in hemoglobin distribution. The 2PE images have revealed that despite an extensive washing out procedure after gradual hypotonic hemolysis, a certain amount of hemoglobin localized on the intracellular side always remains bound to the membrane and cannot be eliminated. The obtained results open the possibility to use 2PE microscopy to examine hemoglobin distribution in erythrocytes and estimate the purity level of erythrocyte ghosts in biotechnological processes.
Spectrally And Temporally Resolved Low-Light Level Video Microscopy
NASA Astrophysics Data System (ADS)
Wampler, John E.; Furukawa, Ruth; Fechheimer, Marcus
1989-12-01
The IDG law-light video microscope system was designed to aid studies of localization of subcellular luminescence sources and stimulus/response coupling in single living cells using luminescent probes. Much of the motivation for design of this instrument system came from the pioneering efforts of Dr. Reynolds (Reynolds, Q. Rev. Biophys. 5, 295-347; Reynolds and Taylor, Bioscience 30, 586-592) who showed the value of intensified video camera systems for detection and localizion of fluorescence and bioluminescence signals from biological tissues. Our instrument system has essentially two roles, 1) localization and quantitation of very weak bioluminescence signals and 2) quantitation of intracellular environmental characteristics such as pH and calcium ion concentrations using fluorescent and bioluminescent probes. The instrument system exhibits over one million fold operating range allowing visualization and enhancement of quantum limited images with quantum limited response, spectral analysis of fluorescence signals, and transmitted light imaging. The computer control of the system implements rapid switching between light regimes, spatially resolved spectral scanning, and digital data processing for spectral shape analysis and for detailed analysis of the statistical distribution of single cell measurements. The system design and software algorithms used by the system are summarized. These design criteria are illustrated with examples taken from studies of bioluminescence, applications of bioluminescence to study developmental processes and gene expression in single living cells, and applications of fluorescent probes to study stimulus/response coupling in living cells.
NASA Astrophysics Data System (ADS)
Koberling, Felix; Krämer, Benedikt; Kapusta, Peter; Patting, Matthias; Wahl, Michael; Erdmann, Rainer
2007-05-01
In recent years time-resolved fluorescence measurement and analysis techniques became a standard in single molecule microscopy. However, considering the equipment and experimental implementation they are typically still an add-on and offer only limited possibilities to study the mutual dependencies with common intensity and spectral information. In contrast, we are using a specially designed instrument with an unrestricted photon data acquisition approach which allows to store spatial, temporal, spectral and intensity information in a generalized format preserving the full experimental information. This format allows us not only to easily study dependencies between various fluorescence parameters but also to use, for example, the photon arrival time for sorting and weighting the detected photons to improve the significance in common FCS and FRET analysis schemes. The power of this approach will be demonstrated for different techniques: In FCS experiments the concentration determination accuracy can be easily improved by a simple time-gated photon analysis to suppress the fast decaying background signal. A more detailed analysis of the arrival times allows even to separate FCS curves for species which differ in their fluorescence lifetime but, for example, cannot be distinguished spectrally. In multichromophoric systems like a photonic wire which undergoes unidirectional multistep FRET the lifetime information complements significantly the intensity based analysis and helps to assign the respective FRET partners. Moreover, together with pulsed excitation the time-correlated analysis enables directly to take advantage of alternating multi-colour laser excitation. This pulsed interleaved excitation (PIE) can be used to identify and rule out inactive FRET molecules which cause interfering artefacts in standard FRET efficiency analysis. We used a piezo scanner based confocal microscope with compact picosecond diode lasers as excitation sources. The timing performance can be significantly increased by using new SPAD detectors which enable, in conjunction with new TCSPC electronics, an overall IRF width of less than 120 ps maintaining single molecule sensitivity.
Super-multiplex vibrational imaging
NASA Astrophysics Data System (ADS)
Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei
2017-04-01
The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the potential of this 24-colour (super-multiplex) optical imaging approach for elucidating intricate interactions in complex biological systems.
Super-multiplex vibrational imaging
Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei
2017-01-01
The ability to directly visualize a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have been used successfully to explore structural-functional relationships in nervous systems, profile RNA in situ, reveal tumor microenvironment heterogeneity or study dynamic macromolecular assembly1–4, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a “color barrier” due to the intrinsically broad (~1500 cm−1) and featureless nature of fluorescence spectra5 that limits the number of resolvable colors to 2 to 5 (or 7-9 if using complicated instrumentation and analysis)6–8. Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width ~10 cm−1) and thus doesn’t suffer this problem, but its feeble signals make many demanding bio-imaging applications impossible. And while surface-enhanced Raman scattering offers remarkable sensitivity and multiplicity, it cannot be readily used to quantitatively image specific molecular targets inside live cells9. Here we show that carrying out stimulated Raman scattering under electronic pre-resonance conditions (epr-SRS) enables imaging with exquisite vibrational selectivity and sensitivity (down to 250 nM with 1-ms) in living cells. We also create a palette of triple-bond-conjugated near-infrared dyes that each display a single epr-SRS peak in the cell-silent spectral window, and that with available fluorescent probes give 24 resolvable colors with potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the potential of this super-multiplex optical imaging approach for untangling intricate interactions in complex biological systems. PMID:28424513
Das, Ruma; Rajender, Gone; Giri, P K
2018-02-07
We explore the mechanism of the fluorescence enhancement and fluorescence quenching effect of single walled carbon nanotubes (SWCNTs) on highly fluorescent graphene quantum dots (GQDs) over a wide range of concentrations of SWCNTs. At very low concentrations of SWCNTs, the fluorescence intensity of the GQDs is enhanced, while at higher concentrations, systematic quenching of fluorescence is observed. The nature of the Stern-Volmer plot for the latter case was found to be non-linear indicating a combined effect of dynamic and static quenching. The contribution of the dynamic quenching component was assessed through the fluorescence lifetime measurements. The contribution of static quenching is confirmed from the red shift of the fluorescence spectra of the GQDs after addition of SWCNTs. The fluorescence intensity is first enhanced at very low concentration due to improved dispersion and higher absorption by GQDs, while at higher concentration, the fluorescence of GQDs is quenched due to the complex formation and associated reduction of the radiative sites of the GQDs, which is confirmed from time-resolved fluorescence measurements. Laser confocal microscopy imaging provides direct evidence of the enhancement and quenching of fluorescence at low and high concentrations of SWCNTs, respectively. This study provides an important insight into tuning the fluorescence of GQDs and understanding the interaction between GQDs and different CNTs, which is important for bio-imaging and drug delivery applications.
Qian, Yunxia; Liu, Hongmei; Tan, Haijian; Yang, Qingmin; Zhang, Shuchen; Han, Lingui; Yi, Xuegang; Huo, Li; Zhao, Hongchi; Wu, Yonggang; Bai, Libin; Ba, Xinwu
2017-05-01
A potential real-time imaging water-soluble fluorescent polymer (P3) is facilely prepared via one-pot method. For P3, tetraphenylethene unit serves as the fluorescent unit, poly(acryloyl ethylene diamine) (a kind of polyelectrolyte) with specific degree of polymerization acts as water-soluble part. 1 H-NMR, gel permeation chromatography (GPC), UV-vis spectroscopy, photoluminescence (PL), and confocal laser scanning microscopy are undertaken to characterize the structure and property of P3. The results of wash-free cellular imaging show that the signal-to-noise ratio is high as the concentration of P3 is 50 μg mL -1 . In addition, the pH-responsive and Cd 2+ -responsive are also investigated in this paper. The results coming from pH-responsive show that P3 solution displays significant fluorescence under near neutral. And the result from the cellular imaging shows that intracellular fluorescence intensity enhances with the augment of concentration of Cd 2+ , which reveals that P3 can give a hint to resolve the dilemma of traditional fluorescent dyes used as living cellular fluorescent probe. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wüstner, Daniel; Brewer, Jonathan R; Bagatolli, Luis; Sage, Daniel
2011-01-01
Dehydroergosterol (DHE) is an intrinsically fluorescent sterol with absorption/emission in the ultraviolet (UV) region and biophysical properties similar to those of cholesterol. We compared the potential of UV-sensitive low-light-level wide-field (UV-WF) imaging with that of multiphoton (MP) excitation microscopy to monitor DHE in living cells. Significantly reduced photobleaching in MP microscopy of DHE enabled us to acquire three-dimensional z-stacks of DHE-stained cells and to obtain high-resolution maps of DHE in surface ruffles, nanotubes, and the apical membrane of epithelial cells. We found that the lateral resolution of MP microscopy is ∼1.5-fold higher than that of UV-WF deconvolution microscopy, allowing for improved spatiotemporal analysis of plasma membrane sterol distribution. Surface intensity patterns of DHE with a diameter of 0.2 μm persisting over several minutes could be resolved by MP time-lapse microscopy. Diffusion coefficients of 0.25-μm-diameter endocytic vesicles containing DHE were determined by MP spatiotemporal image correlation spectroscopy. The requirement of extremely high laser power for visualization of DHE by MP microscopy made this method less potent for multicolor applications with organelle markers like green fluorescent protein-tagged proteins. The signal-to-noise ratio obtainable by UV-WF imaging could be significantly improved by pixelwise bleach rate fitting and calculation of an amplitude image from the decay model and by frame averaging after pixelwise bleaching correction of the image stacks. We conclude that UV-WF imaging and MP microscopy of DHE provide complementary information regarding membrane distribution and intracellular targeting of sterols. © 2010 Wiley-Liss, Inc.
Optimized protocol for combined PALM-dSTORM imaging.
Glushonkov, O; Réal, E; Boutant, E; Mély, Y; Didier, P
2018-06-08
Multi-colour super-resolution localization microscopy is an efficient technique to study a variety of intracellular processes, including protein-protein interactions. This technique requires specific labels that display transition between fluorescent and non-fluorescent states under given conditions. For the most commonly used label types, photoactivatable fluorescent proteins and organic fluorophores, these conditions are different, making experiments that combine both labels difficult. Here, we demonstrate that changing the standard imaging buffer of thiols/oxygen scavenging system, used for organic fluorophores, to the commercial mounting medium Vectashield increased the number of photons emitted by the fluorescent protein mEos2 and enhanced the photoconversion rate between its green and red forms. In addition, the photophysical properties of organic fluorophores remained unaltered with respect to the standard imaging buffer. The use of Vectashield together with our optimized protocol for correction of sample drift and chromatic aberrations enabled us to perform two-colour 3D super-resolution imaging of the nucleolus and resolve its three compartments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Bradley M.; Stuckelberger, Michael; Jeffries, April
The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral formmore » and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se 2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.« less
West, Bradley M.; Stuckelberger, Michael; Jeffries, April; ...
2017-01-01
The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral formmore » and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se 2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.« less
, colloidal quantum dots, and single-walled carbon nanotubes. Laser-based experiments (time-resolved fluorescence spectroscopy; time-resolved resonance Raman spectroscopy; laser-induced fluorescence spectroscopy ; time-resolved evanescent wave-induced fluorescence spectroscopy; picosecond coherent anti-Stokes Raman
Maity, Banibrata; Chatterjee, Aninda; Ahmed, Sayeed Ashique; Seth, Debabrata
2014-11-10
Supramolecular host-guest complexation between the nonsteroidal anti-inflammatory drug indomethacin (IMC) and molecular containers were investigated. The weakly fluorescent drug molecule becomes highly fluorescent on complexation with different molecular containers, and time-resolved fluorescence emission spectroscopy reveals that the lifetime components of IMC significantly increase in the presence of molecular containers, compared with the lifetimes in neat water. The respective solid host-guest complexes were synthesised and characterised by Fourier transform infrared and (1) H nuclear magnetic resonance spectroscopic analysis. Microscopy techniques were used to analyse modifications of the surface morphology, owing to the formation of supramolecular complexes. The effect of the molecular container on the optical properties of IMC has also been investigated to determine the effect of nanochannels of different size and structure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pan, Deng; Hu, Zhe; Qiu, Fengwu; Huang, Zhen-Li; Ma, Yilong; Wang, Yina; Qin, Lingsong; Zhang, Zhihong; Zeng, Shaoqun; Zhang, Yu-Hui
2014-11-20
Single-molecule localization microscopy (SMLM) achieves super-resolution imaging beyond the diffraction limit but critically relies on the use of photo-modulatable fluorescent probes. Here we report a general strategy for constructing cell-permeable photo-modulatable organic fluorescent probes for live-cell SMLM by exploiting the remarkable cytosolic delivery ability of a cell-penetrating peptide (rR)3R2. We develop photo-modulatable organic fluorescent probes consisting of a (rR)3R2 peptide coupled to a cell-impermeable organic fluorophore and a recognition unit. Our results indicate that these organic probes are not only cell permeable but can also specifically and directly label endogenous targeted proteins. Using the probes, we obtain super-resolution images of lysosomes and endogenous F-actin under physiological conditions. We resolve the dynamics of F-actin with 10 s temporal resolution in live cells and discern fine F-actin structures with diameters of ~80 nm. These results open up new avenues in the design of fluorescent probes for live-cell super-resolution imaging.
Using Carbon Nanotubes for Nanometer-Scale Energy Transfer Microscopy
NASA Astrophysics Data System (ADS)
Johnston, Jessica; Shafran, Eyal; Mangum, Ben; Mu, Chun; Gerton, Jordan
2009-10-01
We investigate optical energy transfer between fluorophores and carbon nanotubes (CNTs). CNTs are grown on Si-oxide wafers by chemical vapor deposition (CVD), lifted off substrates by atomic force microscope (AFM) tips via Van der Waals forces, then shortened by electrical pulses. The tip-attached CNTs are scanned over fluorescent CdSe-ZnS quantum dots (QDs) with sub-nm precision while recording the fluorescence rate. A novel photon counting technique enables us to produce 3D maps of the QD-CNT coupling, revealing nanoscale lateral and vertical features. All CNTs tested (>50) strongly quenched the QD fluorescence, apparently independent of chirality. In some data, a delay in the recovery of QD fluorescence following CNT-QD contact was observed, suggesting possible charge transfer in this system. In the future, we will perform time-resolved studies to quantify the rate of energy and charge transfer processes and study the possible differences in fluorescence quenching and nanotube-QD energy transfer when comparing single-walled (SW) versus multi-walled (MW) CNTs, attempting to grow substrates consisting primarily of SW or MWCNTs and characterizing the structure of tip-attached CNTs using optical spectroscopy.
Fuchs, Felix M; Raguse, Marina; Fiebrandt, Marcel; Madela, Kazimierz; Awakowicz, Peter; Laue, Michael; Stapelmann, Katharina; Moeller, Ralf
2017-11-30
Plasma sterilization is a promising alternative to conventional sterilization methods for industrial, clinical, and spaceflight purposes. Low pressure plasma (LPP) discharges contain a broad spectrum of active species, which lead to rapid microbial inactivation. To study the efficiency and mechanisms of sterilization by LPP, we use spores of the test organism Bacillus subtilis because of their extraordinary resistance against conventional sterilization procedures. We describe the production of B. subtilis spore monolayers, the sterilization process by low pressure plasma in a double inductively coupled plasma reactor, the characterization of spore morphology using scanning electron microscopy (SEM), and the analysis of germination and outgrowth of spores by live cell microscopy. A major target of plasma species is genomic material (DNA) and repair of plasma-induced DNA lesions upon spore revival is crucial for survival of the organism. Here, we study the germination capacity of spores and the role of DNA repair during spore germination and outgrowth after treatment with LPP by tracking fluorescently-labelled DNA repair proteins (RecA) with time-resolved confocal fluorescence microscopy. Treated and untreated spore monolayers are activated for germination and visualized with an inverted confocal live cell microscope over time to follow the reaction of individual spores. Our observations reveal that the fraction of germinating and outgrowing spores is dependent on the duration of LPP-treatment reaching a minimum after 120 s. RecA-YFP (yellow fluorescence protein) fluorescence was detected only in few spores and developed in all outgrowing cells with a slight elevation in LPP-treated spores. Moreover, some of the vegetative bacteria derived from LPP-treated spores showed an increase in cytoplasm and tended to lyse. The described methods for analysis of individual spores could be exemplary for the study of other aspects of spore germination and outgrowth.
Detection of SiO2 nanoparticles in lung tissue by ToF-SIMS imaging and fluorescence microscopy.
Veith, Lothar; Vennemann, Antje; Breitenstein, Daniel; Engelhard, Carsten; Wiemann, Martin; Hagenhoff, Birgit
2017-07-10
The direct detection of nanoparticles in tissues at high spatial resolution is a current goal in nanotoxicology. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is widely used for the direct detection of inorganic and organic substances with high spatial resolution but its capability to detect nanoparticles in tissue sections is still insufficiently explored. To estimate the applicability of this technique for nanotoxicological questions, comparative studies with established techniques on the detection of nanoparticles can offer additional insights. Here, we compare ToF-SIMS imaging data with sub-micrometer spatial resolution to fluorescence microscopy imaging data to explore the usefulness of ToF-SIMS for the detection of nanoparticles in tissues. SiO 2 nanoparticles with a mean diameter of 25 nm, core-labelled with fluorescein isothiocyanate, were intratracheally instilled into rat lungs. Subsequently, imaging of lung cryosections was performed with ToF-SIMS and fluorescence microscopy. Nanoparticles were successfully detected with ToF-SIMS in 3D microanalysis mode based on the lateral distribution of SiO 3 - (m/z 75.96), which was co-localized with the distribution pattern that was obtained from nanoparticle fluorescence. In addition, the lateral distribution of protein (CN - , m/z 26.00) and phosphate based signals (PO 3 - , m/z 78.96) originating from the tissue material could be related to the SiO 3 - lateral distribution. In conclusion, ToF-SIMS is suitable to directly detect and laterally resolve SiO 2 nanomaterials in biological tissue at sufficient intensity levels. At the same time, information about the chemical environment of the nanoparticles in the lung tissue sections is obtained.
Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus
2013-09-09
Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.
Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian
2017-05-05
Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of <0.2mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Davis, Caitlin M.; Reddish, Michael J.; Dyer, R. Brian
2017-05-01
Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of < 0.2 mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50 ns to 0.5 ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics.
NASA Astrophysics Data System (ADS)
Yaseen, Mohammad A.; Sakadžić, Sava; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Boas, David A.
2017-02-01
Monitoring cerebral energy metabolism at a cellular level is essential to improve our understanding of healthy brain function and its pathological alterations. In this study, we resolve specific alterations in cerebral metabolism utilizing minimally-invasive 2-Photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence, collected in vivo from anesthetized rats and mice. Time-resolved lifetime measurements enables distinction of different components contributing to NADH autofluorescence. These components reportedly represent different enzyme-bound formulations of NADH. Our observations from this study confirm the hypothesis that NADH FLIM can identify specific alterations in cerebral metabolism. Using time-correlated single photon counting (TCSPC) equipment and a custom-built multimodal imaging system, 2-photon fluorescence lifetime imaging (FLIM) was performed in cerebral tissue with high spatial and temporal resolution. Multi-exponential fits for NADH fluorescence lifetimes indicate 4 distinct components, or 'species.' We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in anaerobic glycolysis and aerobic oxidative metabolism. Classification models developed with experimental data correctly predict the metabolic impairments associated with bicuculline-induced focal seizures in separate experiments. Compared to traditional intensity-based NADH measurements, lifetime imaging of NADH is less susceptible to the adverse effects of overlying blood vessels. Evaluating NADH measurements will ultimately lead to a deeper understanding of cerebral energetics and its pathology-related alterations. Such knowledge will likely aid development of therapeutic strategies for neurodegenerative diseases such as Alzheimer's Disease, Parkinson's disease, and stroke.
Single molecules, cells, and super-resolution optics (Presentation Video)
NASA Astrophysics Data System (ADS)
Betzig, Eric
2015-03-01
In this plenary presentation, Eric Betzig talks about his scientific journey that led to the Nobel Prize. He made waves early in his career by helping to develop a technique known as near-field microscopy, which brought into focus structures that scientists had long considered too small to see with a light microscope. Eric Betzig is a group leader at Janelia Research Campus of the Howard Hughes Medical Institute (HHMI) in Ashburn, VA. He recieved a BS in physics from California Institute of Technology and a PhD in applied and engineering physics from Cornell University. Betzig received the 2014 Nobel Prize in Chemistry, along with William Moerner and Stefan Hell, for their development of super-resolved fluorescence microscopy.
Lindgren, Mikael; Sörgjerd, Karin; Hammarström, Per
2005-01-01
Transthyretin (TTR) is a protein linked to a number of different amyloid diseases including senile systemic amyloidosis and familial amyloidotic polyneuropathy. The transient nature of oligomeric intermediates of misfolded TTR that later mature into fibrillar aggregates makes them hard to study, and methods to study these species are sparse. In this work we explore a novel pathway for generation of prefibrillar aggregates of TTR, which provides important insight into TTR misfolding. Prefibrillar amyloidogenic oligomers and protofibrils of misfolded TTR were generated in vitro through induction of the molten globule type A-state from acid unfolded TTR through the addition of NaCl. The aggregation process produced fairly monodisperse oligomers (300–500 kD) within 2 h that matured after 20 h into larger spherical clusters (30–50 nm in diameter) and protofibrils as shown by transmission electron microscopy. Further maturation of the aggregates showed shrinkage of the spheres as the fibrils grew in length, suggesting a conformational change of the spheres into more rigid structures. The structural and physicochemical characteristics of the aggregates were investigated using fluorescence, circular dichroism, chemical cross-linking, and transmission electron microscopy. The fluorescent dyes 1-anilinonaphthalene-8-sulfonate (ANS), 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS), 4-(dicyanovinyl)-julolidine (DCVJ), and thioflavin T (ThT) were employed in both static and kinetic assays to characterize these oligomeric and protofibrillar states using both steady-state and time-resolved fluorescence techniques. DCVJ, a molecular rotor, was employed for the first time for studies of an amyloidogenic process and is shown useful for detection of the early steps of the oligomerization process. DCVJ bound to the early prefibrillar oligomers (300–500 kD) with an apparent dissociation constant of 1.6 μM, which was slightly better than for ThT (6.8 μM). Time-resolved fluorescence anisotropy decay of ANS was shown to be a useful tool for giving further structural and kinetic information of the oligomeric aggregates. ThT dramatically increases its fluorescence quantum yield when bound to amyloid fibrils; however, the mechanism behind this property is unknown. Data from this work suggest that unbound ThT is also intrinsically quenched and functions similarly to a molecular rotor, which in combination with its environmental dependence provides a blue shift to the characteristic 482 nm wavelength when bound to amyloid fibrils. PMID:15764666
Understanding Super-Resolution Nanoscopy and Its Biological Applications in Cell Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Dehong; Zhao, Baoming; Xie, Yumei
2013-01-01
Optical microscopy has been an ideal tool to study phenomena in live cells because visible light at reasonable intensity does not perturb much of the normal biological functions. However, optical resolution using visible light is significantly limited by the wavelength. Overcoming this diffraction-limit barrier will reveal biological mechanisms, cellular structures, and physiological processes at nanometer scale, orders of magnitude lower than current optical microscopy. Although this appears to be a daunting task, recently developed photoswitchable probes enable reconstruction of individual images into a super-resolution image, thus the emergence of nanoscopy. Harnessing the resolution power of nanoscopy, we report here nano-resolutionmore » fluorescence imaging of microtubules and their network structures in biological cells. The super-resolution nanoscopy successfully resolved nanostructures of microtubule network—a daunting task that cannot be completed using conventional wide-field microscopy.« less
Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H; Wouters, Fred S; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg
2013-12-24
We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions.
Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy
Schulz, Olaf; Pieper, Christoph; Clever, Michaela; Pfaff, Janine; Ruhlandt, Aike; Kehlenbach, Ralph H.; Wouters, Fred S.; Großhans, Jörg; Bunt, Gertrude; Enderlein, Jörg
2013-01-01
We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions. PMID:24324140
Optical properties of mouse brain tissue after optical clearing with FocusClear™
NASA Astrophysics Data System (ADS)
Moy, Austin J.; Capulong, Bernard V.; Saager, Rolf B.; Wiersma, Matthew P.; Lo, Patrick C.; Durkin, Anthony J.; Choi, Bernard
2015-09-01
Fluorescence microscopy is commonly used to investigate disease progression in biological tissues. Biological tissues, however, are strongly scattering in the visible wavelengths, limiting the application of fluorescence microscopy to superficial (<200 μm) regions. Optical clearing, which involves incubation of the tissue in a chemical bath, reduces the optical scattering in tissue, resulting in increased tissue transparency and optical imaging depth. The goal of this study was to determine the time- and wavelength-resolved dynamics of the optical scattering properties of rodent brain after optical clearing with FocusClear™. Light transmittance and reflectance of 1-mm mouse brain sections were measured using an integrating sphere before and after optical clearing and the inverse adding doubling algorithm used to determine tissue optical scattering. The degree of optical clearing was quantified by calculating the optical clearing potential (OCP), and the effects of differing OCP were demonstrated using the optical histology method, which combines tissue optical clearing with optical imaging to visualize the microvasculature. We observed increased tissue transparency with longer optical clearing time and an analogous increase in OCP. Furthermore, OCP did not vary substantially between 400 and 1000 nm for increasing optical clearing durations, suggesting that optical histology can improve ex vivo visualization of several fluorescent probes.
Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy
Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei
2015-01-01
Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453
NASA Astrophysics Data System (ADS)
Eibl, Matthias; Karpf, Sebastian; Hakert, Hubertus; Weng, Daniel; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert
2017-07-01
Newly developed microscopy methods have the goal to give researches in bio-molecular science a better understanding of processes ongoing on a cellular level. Especially two-photon excited fluorescence (TPEF) microscopy is a readily applied and widespread modality. Compared to one photon fluorescence imaging, it is possible to image not only the surface but also deeper lying structures. Together with fluorescence lifetime imaging (FLIM), which provides information on the chemical composition of a specimen, deeper insights on a molecular level can be gained. However, the need for elaborate light sources for TPEF and speed limitations for FLIM hinder an even wider application. In this contribution, we present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is perfectly suited for fiber delivery as typically limiting non-linear effects like self-phase or cross-phase modulation (SPM, XPM) are negligible. Furthermore, compared to the typically applied femtosecond pulses, our longer pulses produce much more fluorescence photons per single shot. In this paper, we show that this higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate our system, we acquired FLIM images of a dye solution with single exponential behavior to assess the accuracy of our lifetime determination and also FLIM images of a plant stem at a pixel rate of 1 MHz to show the speed performance of our single pulse two-photon FLIM (SP-FLIM) system.
Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.
Johnson, Sam A
2015-01-01
Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches. © 2014 Wiley Periodicals, Inc.
Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; ...
2014-12-15
Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. Here we show that the zinc spark arises from a system of thousands ofmore » zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. We conclude that the discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.« less
Carotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Aaron M.; Jones, Howland D. T.; Han, Danxiang
Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance–enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin wasmore » identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Finally, our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells.« less
NASA Astrophysics Data System (ADS)
Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.
2018-02-01
Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.
NASA Astrophysics Data System (ADS)
Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.
2014-08-01
Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles. Cladosporium spp., which are among the most abundant fungal spores in many terrestrial environments, were not correlated with any of the real-time fluorescence channels, suggesting that the real-time fluorescence instruments are relatively insensitive to PBAP classes with dark, highly absorptive cell walls. Fluorescence microscopy images of cascade impactor plates showed large numbers of coarse-mode particles consistent with the morphology and weak fluorescence expected of sea salt. Some of these particles were attached to biological cells, suggesting that a marine source influenced the PBAPs observed at the site and that the ocean may be an important contributor to PBAP loadings in coastal environments.
NASA Astrophysics Data System (ADS)
Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.
2014-02-01
Primary biological aerosol particles (PBAP) can contribute significantly to the coarse particle burden in many environments, may thus influence climate and precipitation systems as cloud nuclei, and can spread disease to humans, animals, and plants. Measurements of PBAP in natural environments taken at high time- and size- resolution are, however, sparse and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in south western Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of the waveband integrated bioaerosol sensor (WIBS-4) with the ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behaviour, with increased fluorescent bioparticle concentrations at night when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each were correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multi-modal distributions turning into a broad featureless single mode after averaging and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles. Cladosporium spp., which are among the most abundant fungal spores in many terrestrial environments, were not correlated with any of the real-time fluorescence channels, suggesting that the real-time fluorescence instruments are insensitive to PBAP classes with dark, highly absorptive cell walls. Fluorescence microscopy images of cascade impactor plates showed large numbers of coarse mode particles consistent with the morphology and weak fluorescence expected of sea salt. Some of these particles were attached to biological cells, suggesting that a marine source influenced the PBAP observed at the site and that the ocean may be an important contributor to PBAP loadings in coastal environments.
Recent applications of hyperspectral imaging in microbiology.
Gowen, Aoife A; Feng, Yaoze; Gaston, Edurne; Valdramidis, Vasilis
2015-05-01
Hyperspectral chemical imaging (HSI) is a broad term encompassing spatially resolved spectral data obtained through a variety of modalities (e.g. Raman scattering, Fourier transform infrared microscopy, fluorescence and near-infrared chemical imaging). It goes beyond the capabilities of conventional imaging and spectroscopy by obtaining spatially resolved spectra from objects at spatial resolutions varying from the level of single cells up to macroscopic objects (e.g. foods). In tandem with recent developments in instrumentation and sampling protocols, applications of HSI in microbiology have increased rapidly. This article gives a brief overview of the fundamentals of HSI and a comprehensive review of applications of HSI in microbiology over the past 10 years. Technical challenges and future perspectives for these techniques are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Cook, Kevin M; Nissley, Daniel A; Ferguson, Gregory S
2013-06-11
A protection-deprotection strategy, using gold oxide as a passivating layer, was used to direct the self-assembly of monolayers (SAMs) selectively at individual gold microelectrodes in an array. This approach allowed the formation of hydroxyl-terminated monolayers, without side reactions, in addition to hydrocarbon and fluorocarbon SAMs. Fluorescence microscopy was used to visualize selective dewetting of hydrophobic monolayers by an aqueous dye solution, and spatially resolved X-ray photoelectron spectroscopy was used to demonstrate a lack of cross-contamination on neighboring microelectrodes in the array.
Detection of experimental brain tumors using time-resolved laser-induced fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Thompson, Reid C.; Black, Keith L.; Kateb, Babak; Marcu, Laura
2002-05-01
Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) has the potential to provide a non- invasive characterization and detection of tumors. We utilized TR-LIFS to detect gliomas in-vivo in the rat C6 glioma model. Time-resolved emission spectra of both normal brain and tumor were analyzed to determine if unique fluorescence signatures could be used to distinguish the two. Fluorescence parameters derived from both spectral and time domain were used for tissue characterization. Our results show that in the rat C6 glioma model, TR-LIFS can be used to differentiate brain tumors from normal tissue (gray and white mater) based upon time- resolved fluorescence signatures seen in brain tumors.
Depth-resolved fluorescence of biological tissue
NASA Astrophysics Data System (ADS)
Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.
2005-06-01
The depth-resolved autofluorescence ofrabbit oral tissue, normal and dysplastic human ectocervical tissue within l20μm depth were investigated utilizing a confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of oral and ectocervical tissue, strong keratin fluorescence with the spectral characteristics similar to collagen was observed. The fluorescence signal from epithelial tissue between the keratinizing layer and stroma can be well resolved. Furthermore, NADH and FADfluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2013-03-01
We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.
Probing the conformational dynamics of photosystem I in unconfined and confined spaces.
Das, Gaurav; Chattoraj, Shyamtanu; Nandi, Somen; Mondal, Prasenjit; Saha, Abhijit; Bhattacharyya, Kankan; Ghosh, Surajit
2017-12-20
The fluorescence dynamics of Photosystem I (PSI) in bulk water and inside a confined environment like a liposome have been investigated using time resolved confocal microscopy. In bulk water, PSI exhibits a major emission peak at ∼680 nm, while in the liposome it exhibits a markedly blue shifted emission maximum at ∼485 nm. This is indicative of conformational changes due to entrapment and emergence of a stressed conformation of PSI inside the liposome. The observed time constants for the fluorescence lifetime of PSI inside the liposome are significantly high as opposed to PSI in bulk water. More interestingly, the fluorescence intensity of PSI in bulk water exhibits strong fluctuations with many high intensity jumps and these are anti-correlated with the fluorescence lifetime of PSI. In contrast, inside the liposome, no such anti-correlated behaviour is observed. We further demonstrated that PSI exhibits at least two conformational states in bulk water, whereas a single conformation is observed inside the liposome, indicating the conformational rigidity and locking of the PSI complex inside a liposome.
McLean, Alan M.; Socher, Elke; Varnavski, Oleg; Clark, Travis B.
2014-01-01
We report detailed photophysical studies on the two-photon fluorescence processes of the solvatochromic fluorophore 4-DMN as a conjugate of the important calmodulin (CaM) and the associated CaM-binding peptide M13. Strong two-photon fluorescence enhancement has been observed which is associated with calcium binding. It is found that the two-photon absorption cross-section is strongly dependent on the local environment surrounding the 4-DMN fluorophore in the CaM conjugates, providing sensitivity between sites of fluorophore attachment. Utilizing time-resolved measurements, the emission dynamics of 4-DMN under various environmental (solvent) conditions are analyzed. In addition, anisotropy measurements reveal that the 4-DMN-S38C-CaM system has restricted rotation in the calcium-bound calmodulin. To establish the utility for cellular imaging, two-photon fluorescence microscopy studies were also carried out with the 4-DMN-modified M13 peptide in cells. Together, these studies provide strong evidence that 4-DMN is a useful probe in two-photon imaging, with advantageous properties for cellular experiments. PMID:24245815
Genetically encoded sensors and fluorescence microscopy for anticancer research
NASA Astrophysics Data System (ADS)
Zagaynova, Elena V.; Shirmanova, Marina V.; Sergeeva, Tatiana F.; Klementieva, Natalia V.; Mishin, Alexander S.; Gavrina, Alena I.; Zlobovskay, Olga A.; Furman, Olga E.; Dudenkova, Varvara V.; Perelman, Gregory S.; Lukina, Maria M.; Lukyanov, Konstantin A.
2017-02-01
Early response of cancer cells to chemical compounds and chemotherapeutic drugs were studied using novel fluorescence tools and microscopy techniques. We applied confocal microscopy, two-photon fluorescence lifetime imaging microscopy and super-resolution localization-based microscopy to assess structural and functional changes in cancer cells in vitro. The dynamics of energy metabolism, intracellular pH, caspase-3 activation during staurosporine-induced apoptosis as well as actin cytoskeleton rearrangements under chemotherapy were evaluated. We have showed that new genetically encoded sensors and advanced fluorescence microscopy methods provide an efficient way for multiparameter analysis of cell activities
Holographic techniques for cellular fluorescence microscopy
NASA Astrophysics Data System (ADS)
Kim, Myung K.
2017-04-01
We have constructed a prototype instrument for holographic fluorescence microscopy (HFM) based on self-interference incoherent digital holography (SIDH) and demonstrate novel imaging capabilities such as differential 3D fluorescence microscopy and optical sectioning by compressive sensing.
Open-source do-it-yourself multi-color fluorescence smartphone microscopy
Sung, Yulung; Campa, Fernando; Shih, Wei-Chuan
2017-01-01
Fluorescence microscopy is an important technique for cellular and microbiological investigations. Translating this technique onto a smartphone can enable particularly powerful applications such as on-site analysis, on-demand monitoring, and point-of-care diagnostics. Current fluorescence smartphone microscope setups require precise illumination and imaging alignment which altogether limit its broad adoption. We report a multi-color fluorescence smartphone microscope with a single contact lens-like add-on lens and slide-launched total-internal-reflection guided illumination for three common tasks in investigative fluorescence microscopy: autofluorescence, fluorescent stains, and immunofluorescence. The open-source, simple and cost-effective design has the potential for do-it-yourself fluorescence smartphone microscopy. PMID:29188104
Chip-based wide field-of-view nanoscopy
NASA Astrophysics Data System (ADS)
Diekmann, Robin; Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Huser, Thomas R.; Schüttpelz, Mark; Ahluwalia, Balpreet S.
2017-04-01
Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.
Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.
2017-01-01
We have recently developed a wide-field photon-counting detector having high-temporal and high-spatial resolutions and capable of high-throughput (the H33D detector). Its design is based on a 25 mm diameter multi-alkali photocathode producing one photo electron per detected photon, which are then multiplied up to 107 times by a 3-microchannel plate stack. The resulting electron cloud is proximity focused on a cross delay line anode, which allows determining the incident photon position with high accuracy. The imaging and fluorescence lifetime measurement performances of the H33D detector installed on a standard epifluorescence microscope will be presented. We compare them to those of standard single-molecule detectors such as single-photon avalanche photodiode (SPAD) or electron-multiplying camera using model samples (fluorescent beads, quantum dots and live cells). Finally, we discuss the design and applications of future generation of H33D detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:29479130
Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles.
Nanjo, Daisuke; Hosoi, Haruko; Fujino, Tatsuya; Tahara, Tahei; Korenaga, Takashi
2007-03-22
Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.
Dukes, Madeline J; Peckys, Diana B; de Jonge, Niels
2010-07-27
Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7x12 nm were visible in a 5 microm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs.
Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels
2010-01-01
Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7 × 12 nm were visible in a 5 μm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. PMID:20550177
In vivo imaging of microscopic structures in the rat retina
Geng, Ying; Greenberg, Kenneth P.; Wolfe, Robert; Gray, Daniel C.; Hunter, Jennifer J.; Dubra, Alfredo; Flannery, John G.; Williams, David R.; Porter, Jason
2010-01-01
Purpose The ability to resolve single retinal cells in rodents in vivo has applications in rodent models of the visual system and retinal disease. We have characterized the performance of a fluorescence adaptive optics scanning laser ophthalmoscope (fAOSLO) that provides cellular and subcellular imaging of rat retina in vivo. Methods Green fluorescent protein (eGFP) was expressed in retinal ganglion cells of normal Sprague Dawley rats via intravitreal injections of adeno-associated viral vectors. Simultaneous reflectance and fluorescence retinal images were acquired using the fAOSLO. fAOSLO resolution was characterized by comparing in vivo images with subsequent imaging of retinal sections from the same eyes using confocal microscopy. Results Retinal capillaries and eGFP-labeled ganglion cell bodies, dendrites, and axons were clearly resolved in vivo with adaptive optics (AO). AO correction reduced the total root mean square wavefront error, on average, from 0.30 μm to 0.05 μm (1.7-mm pupil). The full width at half maximum (FWHM) of the average in vivo line-spread function (LSF) was ∼1.84 μm, approximately 82% greater than the FWHM of the diffraction-limited LSF. Conclusions With perfect aberration compensation, the in vivo resolution in the rat eye could be ∼2× greater than that in the human eye due to its large numerical aperture (∼0.43). While the fAOSLO corrects a substantial fraction of the rat eye's aberrations, direct measurements of retinal image quality reveal some blur beyond that expected from diffraction. Nonetheless, subcellular features can be resolved, offering promise for using AO to investigate the rodent eye in vivo with high resolution. PMID:19578019
Handschuh-Wang, Stephan; Wang, Tao; Druzhinin, Sergey I; Wesner, Daniel; Jiang, Xin; Schönherr, Holger
2017-01-24
The adsorption of bovine serum albumin (BSA) on micro- and nanocrystalline diamond/β-SiC composite films synthesized using the hot filament chemical vapor deposition (HFCVD) technique has been investigated by confocal fluorescence lifetime imaging microscopy. BSA labeled with fluorescein isothiocyanate (FITC) was employed as a probe. The BSA FITC conjugate was found to preferentially adsorb on both O-/OH-terminated microcrystalline and nanocrystalline diamond compared to the OH-terminated β-SiC, resulting in an increasing amount of BSA adsorbed to the gradient surfaces with an increasing diamond/β-SiC ratio. The different strength of adsorption (>30 times for diamond with a grain size of 570 nm) coincides with different surface energy parameters and differing conformational changes upon adsorption. Fluorescence data of the adsorbed BSA FITC on the gradient film with different diamond coverage show a four-exponential decay with decay times of 3.71, 2.54, 0.66, and 0.13 ns for a grain size of 570 nm. The different decay times are attributed to the fluorescence of thiourea fluorescein residuals of linked FITC distributed in BSA with different dye-dye and dye-surface distances. The longest decay time was found to correlate linearly with the diamond grain size. The fluorescence of BSA FITC undergoes external dynamic fluorescence quenching on the diamond surface by H- and/or sp 2 -defects and/or by amorphous carbon or graphite phases. An acceleration of the internal fluorescence concentration quenching in BSA FITC because of structural changes of albumin due to adsorption, is concluded to be a secondary contributor. These results suggest that the micro- and nanocrystalline diamond/β-SiC composite gradient films can be utilized to spatially control protein adsorption and diamond crystallite size, which facilitates systematic studies at these interesting (bio)interfaces.
A polarized view on DNA under tension
NASA Astrophysics Data System (ADS)
van Mameren, Joost; Vermeulen, Karen; Wuite, Gijs J. L.; Peterman, Erwin J. G.
2018-03-01
In the past decades, sensitive fluorescence microscopy techniques have contributed significantly to our understanding of the dynamics of DNA. The specific labeling of DNA using intercalating dyes has allowed for quantitative measurement of the thermal fluctuations the polymers undergo. On the other hand, recent advances in single-molecule manipulation techniques have unraveled the mechanical and elastic properties of this intricate polymer. Here, we have combined these two approaches to study the conformational dynamics of DNA under a wide range of tensions. Using polarized fluorescence microscopy in conjunction with optical-tweezers-based manipulation of YOYO-intercalated DNA, we controllably align the YOYO dyes using DNA tension, enabling us to disentangle the rapid dynamics of the dyes from that of the DNA itself. With unprecedented control of the DNA alignment, we resolve an inconsistency in reports about the tilted orientation of intercalated dyes. We find that intercalated dyes are on average oriented perpendicular to the long axis of the DNA, yet undergo fast dynamics on the time scale of absorption and fluorescence emission. In the overstretching transition of double-stranded DNA, we do not observe changes in orientation or orientational dynamics of the dyes. Only beyond the overstretching transition, a considerable depolarization is observed, presumably caused by an average tilting of the DNA base pairs. Our combined approach thus contributes to the elucidation of unique features of the molecular dynamics of DNA.
Single-molecule fluorescence microscopy review: shedding new light on old problems
Shashkova, Sviatlana
2017-01-01
Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called ‘green revolution’, has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called ‘super-resolution’ fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. PMID:28694303
Interferometric temporal focusing microscopy using three-photon excitation fluorescence.
Toda, Keisuke; Isobe, Keisuke; Namiki, Kana; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi
2018-04-01
Super-resolution microscopy has become a powerful tool for biological research. However, its spatial resolution and imaging depth are limited, largely due to background light. Interferometric temporal focusing (ITF) microscopy, which combines structured illumination microscopy and three-photon excitation fluorescence microscopy, can overcome these limitations. Here, we demonstrate ITF microscopy using three-photon excitation fluorescence, which has a spatial resolution of 106 nm at an imaging depth of 100 µm with an excitation wavelength of 1060 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Hyeonggon; Attota, Ravikiran, E-mail: ravikiran.attota@nist.gov; Tondare, Vipin
We present a method that uses conventional optical microscopes to determine the number of nanoparticles in a cluster, which is typically not possible using traditional image-based optical methods due to the diffraction limit. The method, called through-focus scanning optical microscopy (TSOM), uses a series of optical images taken at varying focus levels to achieve this. The optical images cannot directly resolve the individual nanoparticles, but contain information related to the number of particles. The TSOM method makes use of this information to determine the number of nanoparticles in a cluster. Initial good agreement between the simulations and the measurements ismore » also presented. The TSOM method can be applied to fluorescent and non-fluorescent as well as metallic and non-metallic nano-scale materials, including soft materials, making it attractive for tag-less, high-speed, optical analysis of nanoparticles down to 45 nm diameter.« less
Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers.
Pan, Jing; Cha, Tae-Gon; Li, Feiran; Chen, Haorong; Bragg, Nina A; Choi, Jong Hyun
2017-01-01
DNA walkers are designed with the structural specificity and functional diversity of oligonucleotides to actively convert chemical energy into mechanical translocation. Compared to natural protein motors, DNA walkers' small translocation distance (mostly <100 nm) and slow reaction rate (<0.1 nm s -1 ) make single-molecule characterization of their kinetics elusive. An important indication of single-walker kinetics is the rate-limiting reactions that a particular walker design bears. We introduce an integrated super-resolved fluorescence microscopy approach that is capable of long-term imaging to investigate the stochastic behavior of DNA walkers. Subdiffraction tracking and imaging in the visible and second near-infrared spectra resolve walker structure and reaction rates. The distributions of walker kinetics are analyzed using a stochastic model to reveal reaction randomness and the rate-limiting biochemical reaction steps.
Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers
Pan, Jing; Cha, Tae-Gon; Li, Feiran; Chen, Haorong; Bragg, Nina A.; Choi, Jong Hyun
2017-01-01
DNA walkers are designed with the structural specificity and functional diversity of oligonucleotides to actively convert chemical energy into mechanical translocation. Compared to natural protein motors, DNA walkers’ small translocation distance (mostly <100 nm) and slow reaction rate (<0.1 nm s−1) make single-molecule characterization of their kinetics elusive. An important indication of single-walker kinetics is the rate-limiting reactions that a particular walker design bears. We introduce an integrated super-resolved fluorescence microscopy approach that is capable of long-term imaging to investigate the stochastic behavior of DNA walkers. Subdiffraction tracking and imaging in the visible and second near-infrared spectra resolve walker structure and reaction rates. The distributions of walker kinetics are analyzed using a stochastic model to reveal reaction randomness and the rate-limiting biochemical reaction steps. PMID:28116353
ERIC Educational Resources Information Center
Gutow, Jonathan H.
2005-01-01
The time-resolved fluorescence experiment investigating the halide quenching of fluorescence from quinine sulfate in water is described. The objectives of the experiment include reinforcing student understanding of the kinetics of competing pathways, making connections with microscopic theories of kinetics through comparison of experimental and…
Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G
2017-02-01
Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.
Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki
2013-07-29
We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.
Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D
2014-10-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.
Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.
2016-01-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114
Confocal Imaging of Confined Quiescent and Flowing Colloid-polymer Mixtures
Conrad, Jacinta C.
2014-01-01
The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9. Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37. In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow. PMID:24894062
Klemm, Matthias; Schweitzer, Dietrich; Peters, Sven; Sauer, Lydia; Hammer, Martin; Haueisen, Jens
2015-01-01
Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay) to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX's applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation.
eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration
Butzlaff, Malte; Weigel, Arwed; Ponimaskin, Evgeni; Zeug, Andre
2015-01-01
Fluorescence confocal microscopy represents one of the central tools in modern sciences. Correspondingly, a growing amount of research relies on the development of novel microscopic methods. During the last decade numerous microscopic approaches were developed for the investigation of various scientific questions. Thereby, the former qualitative imaging methods became replaced by advanced quantitative methods to gain more and more information from a given sample. However, modern microscope systems being as complex as they are, require very precise and appropriate calibration routines, in particular when quantitative measurements should be compared over longer time scales or between different setups. Multispectral beads with sub-resolution size are often used to describe the point spread function and thus the optical properties of the microscope. More recently, a fluorescent layer was utilized to describe the axial profile for each pixel, which allows a spatially resolved characterization. However, fabrication of a thin fluorescent layer with matching refractive index is technically not solved yet. Therefore, we propose a novel type of calibration concept for sectioned image property (SIP) measurements which is based on fluorescent solution and makes the calibration concept available for a broader number of users. Compared to the previous approach, additional information can be obtained by application of this extended SIP chart approach, including penetration depth, detected number of photons, and illumination profile shape. Furthermore, due to the fit of the complete profile, our method is less susceptible to noise. Generally, the extended SIP approach represents a simple and highly reproducible method, allowing setup independent calibration and alignment procedures, which is mandatory for advanced quantitative microscopy. PMID:26244982
Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M
2012-12-03
Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.
NASA Astrophysics Data System (ADS)
Dana, Aykutlu; Ozgur, Erol; Torunoglu, Gamze
2016-09-01
We present a dynamic approach to scanning near field optical microscopy that extends the measurement technique to the third dimension, by strobing the illumination in sync with the cantilever oscillation. Nitrogen vacancy (NV) centers in nanodiamonds placed on cantilever tips are used as stable emitters for emission enhancement. Local field enhancement and modulation of optical density states are mapped in three dimensions based on fluorescence intensity and spectrum changes as the tip is scanned over plasmonic nanostructures. The excitation of NV centers is done using a total internal reflection setup. Using a digital phase locked loop to pulse the excitation in various tip sample separations, 2D slices of fluorescence enhancement can be recorded. Alternatively, a conventional SNOM tip can be used to selectively couple wideband excitation to the collection path, with subdiffraction resolution of 60 nm in x and y and 10 nm in z directions. The approach solves the problem of tip-sample separation stabilization over extended periods of measurement time, required to collect data resolved in emission wavelength and three spatial dimensions. The method can provide a unique way of accessing the three dimensional field and mode profiles of nanophotonics structures.
Rosenbloom, Alyssa B; Lee, Sang-Hyuk; To, Milton; Lee, Antony; Shin, Jae Yen; Bustamante, Carlos
2014-09-09
We studied the single-molecule photo-switching properties of Dronpa, a green photo-switchable fluorescent protein and a popular marker for photoactivated localization microscopy. We found the excitation light photoactivates as well as deactivates Dronpa single molecules, hindering temporal separation and limiting super resolution. To resolve this limitation, we have developed a slow-switching Dronpa variant, rsKame, featuring a V157L amino acid substitution proximal to the chromophore. The increased steric hindrance generated by the substitution reduced the excitation light-induced photoactivation from the dark to fluorescent state. To demonstrate applicability, we paired rsKame with PAmCherry1 in a two-color photoactivated localization microscopy imaging method to observe the inner and outer mitochondrial membrane structures and selectively labeled dynamin related protein 1 (Drp1), responsible for membrane scission during mitochondrial fission. We determined the diameter and length of Drp1 helical rings encircling mitochondria during fission and showed that, whereas their lengths along mitochondria were not significantly changed, their diameters decreased significantly. These results suggest support for the twistase model of Drp1 constriction, with potential loss of subunits at the helical ends.
Spatial Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite.
Chen, Sheng; Wen, Xiaoming; Yun, Jae S; Huang, Shujuan; Green, Martin; Jeon, Nam Joong; Yang, Woon Seok; Noh, Jun Hong; Seo, Jangwon; Seok, Sang Il; Ho-Baillie, Anita
2017-02-22
We identify nanoscale spatial distribution of PbI 2 on the (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 perovskite thin film and investigate the local passivation effect using confocal based optical microscopy of steady state and time-resolved photoluminescence (PL). Different from a typical scanning electron microscope (SEM) morphology study, confocal based PL spectroscopy and microscopy allow researchers to map the morphologies of both perovskite and PbI 2 grains simultaneously, by selectively detecting their characteristic fluorescent bands using band-pass filters. In this work, we compare the perovskite samples without and with excess PbI 2 incorporation and unambiguously reveal PbI 2 distribution for the PbI 2 -rich sample. In addition, using the nanoscale time-resolved PL technique we show that the PbI 2 -rich regions exhibit longer lifetime due to suppressed defect trapping, compared to the PbI 2 -poor regions. The measurement on the PbI 2 -rich sample indicates that the passivation effect of PbI 2 in perovskite film is effective, especially in localized regions. Hence, this finding is important for further improvement of the solar cells by considering the strategy of excess PbI 2 incorporation.
Molecular specificity in photoacoustic microscopy by time-resolved transient absorption.
Shelton, Ryan L; Mattison, Scott P; Applegate, Brian E
2014-06-01
We have recently harnessed transient absorption, a resonant two-photon process, for ultrahigh resolution photoacoustic microscopy, achieving nearly an order of magnitude improvement in axial resolution. The axial resolution is optically constrained due to the two-photon process unlike traditional photoacoustic microscopy where the axial resolution is inversely proportional to the frequency bandwidth of the detector. As a resonant process, the arrival time of the two photons need not be instantaneous. Systematically recording the signal as a function of the delay between two pulses will result in the measurement of an exponential decay whose time constant is related to the molecular dynamics. This time constant, analogous to the fluorescence lifetime, but encompassing nonradiative decay as well, can be used to differentiate between molecular systems with overlapping absorption spectra. This is frequently the situation for closely related yet distinct molecules such as redox pairs. In order to enable the measure of the exponential decay, we have reconfigured our transient absorption ultrasonic microscopy (TAUM) system to incorporate two laser sources with precisely controlled pulse trains. The system was tested by measuring Rhodamine 6G, an efficient laser dye where the molecular dynamics are dominated by the fluorescence pathway. As expected, the measured exponential time constant or ground state recovery time, 3.3±0.7 ns, was similar to the well-known fluorescence lifetime, 4.11±0.05 ns. Oxy- and deoxy-hemoglobin are the quintessential pair whose relative concentration is related to the local blood oxygen saturation. We have measured the ground state recovery times of these two species in fully oxygenated and deoxygenated bovine whole blood to be 3.7±0.8 ns and 7.9±1.0 ns, respectively. Hence, even very closely related pairs of molecules may be differentiated with this technique.
Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E
2016-01-01
Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.
Fluorescence (Multiwave) Confocal Microscopy.
Welzel, J; Kästle, Raphaela; Sattler, Elke C
2016-10-01
In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.
Experimental assessment of fluorescence microscopy signal enhancement by stimulated emission
NASA Astrophysics Data System (ADS)
Dake, Fumihiro; Yazawa, Hiroki
2017-10-01
The quantity of photons generated during fluorescence microscopy is principally determined by the quantum yield of the fluorescence dyes and the optical power of the excitation beam. However, even though low quantum yields can produce poor images, it is challenging to tune this parameter, while increasing the power of the excitation beam often results in photodamage. Here, we propose the use of stimulated emission (SE) as a means of enhancing both the signal intensity and signal-to-noise ratio during confocal fluorescence microscopy. This work experimentally confirmed that both these factors can be enhanced by SE radiation, through generating a greater number of photons than are associated with the standard fluorescence signal. We also propose the concept of stimulated emission enhancing fluorescence (SEEF) microscopy, which employs both the SE and fluorescence signals, and demonstrate that the intensity of an SEEF signal is greater than those of the individual SE and fluorescence signals.
Depth-resolved fluorescence of human ectocervical tissue
NASA Astrophysics Data System (ADS)
Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.
2005-04-01
The depth-resolved autofluorescence of normal and dysplastic human ectocervical tissue within 120um depth were investigated utilizing a portable confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of all ectocervical tissue samples, strong keratin fluorescence with the spectral characteristics similar to collagen was observed, which created serious interference in seeking the correlation between tissue fluorescence and tissue pathology. While from the underlying non-keratinizing epithelial layer, the measured NADH fluorescence induced by 355nm excitation and FAD fluorescence induced by 457nm excitation were strongly correlated to the tissue pathology. The ratios between NADH over FAD fluorescence increased statistically in the CIN epithelial relative to the normal and HPV epithelia, which indicated increased metabolic activity in precancerous tissue. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.
Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations
NASA Astrophysics Data System (ADS)
Hofer, Matthias; Soeller, Christian; Brasselet, Sophie; Bertolotti, Jacopo
2018-04-01
Fluorescence microscopy is widely used in biological imaging, however scattering from tissues strongly limits its applicability to a shallow depth. In this work we adapt a methodology inspired from stellar speckle interferometry, and exploit the optical memory effect to enable fluorescence microscopy through a turbid layer. We demonstrate efficient reconstruction of micrometer-size fluorescent objects behind a scattering medium in epi-microscopy, and study the specificities of this imaging modality (magnification, field of view, resolution) as compared to traditional microscopy. Using a modified phase retrieval algorithm to reconstruct fluorescent objects from speckle images, we demonstrate robust reconstructions even in relatively low signal to noise conditions. This modality is particularly appropriate for imaging in biological media, which are known to exhibit relatively large optical memory ranges compatible with tens of micrometers size field of views, and large spectral bandwidths compatible with emission fluorescence spectra of tens of nanometers widths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertz, P.R.
Fluorescence spectroscopy is a highly sensitive and selective tool for the analysis of complex systems. In order to investigate the efficacy of several steady state and dynamic techniques for the analysis of complex systems, this work focuses on two types of complex, multicomponent samples: petrolatums and coal liquids. It is shown in these studies dynamic, fluorescence lifetime-based measurements provide enhanced discrimination between complex petrolatum samples. Additionally, improved quantitative analysis of multicomponent systems is demonstrated via incorporation of organized media in coal liquid samples. This research provides the first systematic studies of (1) multifrequency phase-resolved fluorescence spectroscopy for dynamic fluorescence spectralmore » fingerprinting of complex samples, and (2) the incorporation of bile salt micellar media to improve accuracy and sensitivity for characterization of complex systems. In the petroleum studies, phase-resolved fluorescence spectroscopy is used to combine spectral and lifetime information through the measurement of phase-resolved fluorescence intensity. The intensity is collected as a function of excitation and emission wavelengths, angular modulation frequency, and detector phase angle. This multidimensional information enhances the ability to distinguish between complex samples with similar spectral characteristics. Examination of the eigenvalues and eigenvectors from factor analysis of phase-resolved and steady state excitation-emission matrices, using chemometric methods of data analysis, confirms that phase-resolved fluorescence techniques offer improved discrimination between complex samples as compared with conventional steady state methods.« less
Live-cell super-resolution imaging of intrinsically fast moving flagellates
NASA Astrophysics Data System (ADS)
Glogger, M.; Stichler, S.; Subota, I.; Bertlein, S.; Spindler, M.-C.; Teßmar, J.; Groll, J.; Engstler, M.; Fenz, S. F.
2017-02-01
Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μs. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. , which features invited work from the best early-career researchers working within the scope of J Phys D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Susanne Fenz was selected by the Editorial Board of J Phys D as an Emerging Talent/Leader.
Nonlinear vibrational microscopy
Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas
2000-01-01
The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.
Fluorescence Live Cell Imaging
Ettinger, Andreas
2014-01-01
Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023
Hendriks, Frank C; Schmidt, Joel E; Rombouts, Jeroen A; Lammertsma, Koop; Bruijnincx, Pieter C A; Weckhuysen, Bert M
2017-05-05
A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization-dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture-dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X-ray diffraction. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Sanai, Nader; Snyder, Laura A; Honea, Norissa J; Coons, Stephen W; Eschbacher, Jennifer M; Smith, Kris A; Spetzler, Robert F
2011-10-01
Greater extent of resection (EOR) for patients with low-grade glioma (LGG) corresponds with improved clinical outcome, yet remains a central challenge to the neurosurgical oncologist. Although 5-aminolevulinic acid (5-ALA)-induced tumor fluorescence is a strategy that can improve EOR in gliomas, only glioblastomas routinely fluoresce following 5-ALA administration. Intraoperative confocal microscopy adapts conventional confocal technology to a handheld probe that provides real-time fluorescent imaging at up to 1000× magnification. The authors report a combined approach in which intraoperative confocal microscopy is used to visualize 5-ALA tumor fluorescence in LGGs during the course of microsurgical resection. Following 5-ALA administration, patients with newly diagnosed LGG underwent microsurgical resection. Intraoperative confocal microscopy was conducted at the following points: 1) initial encounter with the tumor; 2) the midpoint of tumor resection; and 3) the presumed brain-tumor interface. Histopathological analysis of these sites correlated tumor infiltration with intraoperative cellular tumor fluorescence. Ten consecutive patients with WHO Grades I and II gliomas underwent microsurgical resection with 5-ALA and intraoperative confocal microscopy. Macroscopic tumor fluorescence was not evident in any patient. However, in each case, intraoperative confocal microscopy identified tumor fluorescence at a cellular level, a finding that corresponded to tumor infiltration on matched histological analyses. Intraoperative confocal microscopy can visualize cellular 5-ALA-induced tumor fluorescence within LGGs and at the brain-tumor interface. To assess the clinical value of 5-ALA for high-grade gliomas in conjunction with neuronavigation, and for LGGs in combination with intraoperative confocal microscopy and neuronavigation, a Phase IIIa randomized placebo-controlled trial (BALANCE) is underway at the authors' institution.
Smith, Ryan P; Lowe, Greg J; Kavoussi, Parviz K; Steers, William D; Costabile, Raymond A; Herr, John C; Shetty, Jagathpala; Lysiak, Jeffrey J
2012-05-01
Microdissection testicular sperm extraction markedly improves the sperm retrieval rates in men with nonobstructive azoospermia. However, localizing sperm foci can be time-consuming and it is not always successful. Fiberoptic confocal fluorescent microscopy offers the advantage of rapid in vivo detection of fluorescently labeled sperm in the seminiferous tubules. After establishing the feasibility of fiberoptic confocal fluorescent microscopy to identify antibody labeled sperm in vivo C57/B6 mice underwent intraperitoneal injection of busulfan to induce azoospermia. During spermatogenesis reestablishment at approximately 16 weeks the mice were anesthetized and the testes were delivered through a low midline incision. Fluorescein isothiocyanate labeled antibody to intra-acrosomal protein Hs-14 was injected retrograde into a single murine rete testis. The testes were imaged in vivo with fiberoptic confocal fluorescent microscopy and sperm foci were detected. The respective seminiferous tubules were excised and squash prepared for immunofluorescence microscopy. Sperm foci were identified in the testis injected with fluorescently tagged antibody by in vivo fiberoptic confocal fluorescence microscopy. The contralateral control testis of each mouse showed no specific signal. Immunofluorescence microscopy of the excised tubules provided morphological confirmation of the presence of labeled sperm with an absence in controls. Findings were consistent in the feasibility portion of the study and in the busulfan model of nonobstructive azoospermia. Fiberoptic confocal fluorescent microscopy was feasible during microdissection testicular sperm extraction in an azoospermic mouse model to identify fluorescently labeled sperm in vivo. Translation to the clinical setting could decrease operative time and improve the sperm harvest rate. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Sizing of single fluorescently stained DNA fragments by scanning microscopy
Laib, Stephan; Rankl, Michael; Ruckstuhl, Thomas; Seeger, Stefan
2003-01-01
We describe an approach to determine DNA fragment sizes based on the fluorescence detection of single adsorbed fragments on specifically coated glass cover slips. The brightness of single fragments stained with the DNA bisintercalation dye TOTO-1 is determined by scanning the surface with a confocal microscope. The brightness of adsorbed fragments is found to be proportional to the fragment length. The method needs only minute amount of DNA, beyond inexpensive and easily available surface coatings, like poly-l-lysine, 3-aminoproyltriethoxysilane and polyornithine, are utilizable. We performed DNA-sizing of fragment lengths between 2 and 14 kb. Further, we resolved the size distribution before and after an enzymatic restriction digest. At this a separation of buffers or enzymes was unnecessary. DNA sizes were determined within an uncertainty of 7–14%. The proposed method is straightforward and can be applied to standardized microtiter plates. PMID:14602931
Balasuriya, Dilshan; D'Sa, Lauren; Talker, Ronel; Dupuis, Elodie; Maurin, Fabrice; Martin, Patrick; Borgese, Franck; Soriani, Olivier; Edwardson, J. Michael
2014-01-01
The sigma-1 receptor is an endoplasmic reticulum chaperone protein, widely expressed in central and peripheral tissues, which can translocate to the plasma membrane and modulate the function of various ion channels. The human ether-à-go-go-related gene encodes hERG, a cardiac voltage-gated K+ channel that is abnormally expressed in many human cancers and is known to interact functionally with the sigma-1 receptor. Our aim was to investigate the nature of the interaction between the sigma-1 receptor and hERG. We show that the two proteins can be co-isolated from a detergent extract of stably transfected HEK-293 cells, consistent with a direct interaction between them. Atomic force microscopy imaging of the isolated protein confirmed the direct binding of the sigma-1 receptor to hERG monomers, dimers, and tetramers. hERG dimers and tetramers became both singly and doubly decorated by sigma-1 receptors; however, hERG monomers were only singly decorated. The distribution of angles between pairs of sigma-1 receptors bound to hERG tetramers had two peaks, at ∼90 and ∼180° in a ratio of ∼2:1, indicating that the sigma-1 receptor interacts with hERG with 4-fold symmetry. Homogeneous time-resolved fluorescence (HTRF®) allowed the detection of the interaction between the sigma-1 receptor and hERG within the plane of the plasma membrane. This interaction was resistant to sigma ligands, but was decreased in response to cholesterol depletion of the membrane. We suggest that the sigma-1 receptor may bind to hERG in the endoplasmic reticulum, aiding its assembly and trafficking to the plasma membrane. PMID:25266722
Fluorescence Microscopy of Single Molecules
ERIC Educational Resources Information Center
Zimmermann, Jan; van Dorp, Arthur; Renn, Alois
2004-01-01
The investigation of photochemistry and photophysics of individual quantum systems is described with the help of a wide-field fluorescence microscopy approach. The fluorescence single molecules are observed in real time.
Wang, Ya-Qiong; Liang, Zhi-Tao; Li, Qin; Yang, Hua; Chen, Hu-Biao; Zhao, Zhong-Zhen; Li, Ping
2011-03-01
The light microscope has been successfully used in identification of Chinese herbal medicines (CHMs) for more than a century. However, positive identification is not always possible. Given the popularity of fluorescence microscopy in bioanalysis, researchers dedicated to finding new ways to identify CHMs more effectively are now turning to fluorescence microscopy for authentication purposes. Some studies on distinguishing confused species from the same genus and on exploring distributions of chemicals in tissues of CHMs by fluorescence microscopy have been reported; however, no systematic investigations on fluorescent characteristics of powdered CHMs have been reported. Here, 46 samples of 16 CHMs were investigated. Specifically, the mechanical tissues including stone cells and fibers, the conducting tissues including three types of vessels, and ergastic substances including crystals of calcium oxalate and secretions, in various powdered CHMs were investigated by both light microscope and fluorescence microscope. The results showed many microscopic features emit fluorescence that makes them easily observed, even against complex backgrounds. Under the fluorescence microscope, different microscopic features from the same powdered CHM or some same features from different powdered CHMs emitted the different fluorescence, making this information very helpful for the authentication of CHMs in powder form. Moreover, secretions with unique chemical profiles from different powdered CHMs showed different fluorescent characteristics. Hence, fluorescence microscopy could be a useful additional method for the authentication of powdered CHMs if the fluorescent characteristics of specific CHMs are known. Copyright © 2010 Wiley-Liss, Inc.
Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.
Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki
2014-01-01
Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen
2016-07-14
Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.
Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection
Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E.
2018-01-01
Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here. PMID:29541425
Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection.
Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E
2018-01-01
Titanium dioxide (TiO 2 ) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.
Fluorescence microscopy for the characterization of structural integrity
NASA Technical Reports Server (NTRS)
Street, Kenneth W.; Leonhardt, Todd A.
1991-01-01
The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.
Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang
2015-12-01
Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10(-5)M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Pengcheng; Wang, Zhuan; Dang, Wei
Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300–1/100more » when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10{sup −5}M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.« less
Fluorescence confocal microscopy for pathologists.
Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni
2014-03-01
Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on surgical specimens other than the skin and to evaluate the diagnostic capability of this technology from pathologists' viewpoint.
Single-Shot Optical Sectioning Using Two-Color Probes in HiLo Fluorescence Microscopy
Muro, Eleonora; Vermeulen, Pierre; Ioannou, Andriani; Skourides, Paris; Dubertret, Benoit; Fragola, Alexandra; Loriette, Vincent
2011-01-01
We describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique. We present optically sectioned full-field images of Xenopus laevis embryos acquired at 25 images/s frame rate. PMID:21641327
Improving axial resolution in confocal microscopy with new high refractive index mounting media.
Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne
2015-01-01
Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.
Handheld Fluorescence Microscopy based Flow Analyzer.
Saxena, Manish; Jayakumar, Nitin; Gorthi, Sai Siva
2016-03-01
Fluorescence microscopy has the intrinsic advantages of favourable contrast characteristics and high degree of specificity. Consequently, it has been a mainstay in modern biological inquiry and clinical diagnostics. Despite its reliable nature, fluorescence based clinical microscopy and diagnostics is a manual, labour intensive and time consuming procedure. The article outlines a cost-effective, high throughput alternative to conventional fluorescence imaging techniques. With system level integration of custom-designed microfluidics and optics, we demonstrate fluorescence microscopy based imaging flow analyzer. Using this system we have imaged more than 2900 FITC labeled fluorescent beads per minute. This demonstrates high-throughput characteristics of our flow analyzer in comparison to conventional fluorescence microscopy. The issue of motion blur at high flow rates limits the achievable throughput in image based flow analyzers. Here we address the issue by computationally deblurring the images and show that this restores the morphological features otherwise affected by motion blur. By further optimizing concentration of the sample solution and flow speeds, along with imaging multiple channels simultaneously, the system is capable of providing throughput of about 480 beads per second.
Li, Yinghong; Yang, Yang; Guan, Xiangming
2012-01-01
Thiol groups play a significant role in various cellular functions. Cellular thiol concentrations can be affected by various physiological or pathological factors. A fluorescence imaging agent that can effectively and specifically image thiols in live cells through fluorescence microscopy is desirable for live cell thiol monitoring. Benzofurazan sulfides 1a–e were synthesized and found to be thiol specific fluorogenic agents except 1d. They are not fluorescent but form strong fluorescent thiol adducts after reacting with thiols through a sulfide-thiol exchange reaction. On the other hand, they exhibit no reaction with other biologically relevant nucleophilic functional groups such as -NH2, -OH, or -COOH revealing the specificity for the detection of thiols. Sulfide 1a was selected to confirm its ability to image cellular thiols through fluorescence microscopy. The compound was demonstrated to effectively image and quantify thiol changes in live cells through fluorescence microscopy using 430 nm and 520 nm as the excitation and emission wavelengths respectively. The quantification results of total thiol in live cells obtained from fluorescence microscopy were validated by an HPLC/UV total thiol assay method. The reagents and method will be of a great value to thiol redox-related research. PMID:22794193
Fluorescent BODIPY Rotor: Viscometer for Cellular Organelles and Membrane-Mimicking Vesicles
NASA Astrophysics Data System (ADS)
Kimball, J.; Raut, S.; Fudala, R.; Doan, H.; Maliwal, B.; Sabnis, N.; Lacko, A.; Gryczynski, I.; Dzyuba, S.; Gryczynski, Z.
2015-03-01
Many cellular processes, such as mass and signal transport, metabolism and protein-protein interactions are governed in part by diffusion, and thus affected by their local microviscosity. Changes in this microviscosity has also been linked to various diseases, including atherosclerosis, Alzheimer's disease and diabetes. Therefore, directly measuring the heterogeneous viscosity of cellular constitutes can lead to greater understanding of these processes. To this effect, a novel homodiemeric BODIPY dye was evaluated as a fluorescent rotor probe for this application. A linear dependence on viscosity in the range of typical cellular microviscosity was established for steady-state and time-resolved properties of the dye. It was then embedded in vitro to membrane-mimicking lipid vesicles (DPPC, POPC, and POPC plus cholesterol) and results indicated it to be a viable sensor for lifetime-based determination of microviscosity. The BODIPY dye was lastly endocytosed by SKOV3 cells and Fluorescence Lifetime Imaging Microscopy (FLIM) was performed, successfully mapping the viscosity of internal cell components. This work was supported by the NIH Grant R01EB12003, the NSF Grant CBET-1264608, and the INFOR Grant from TCU.
Wang, Sheng; Ding, Miao; Chen, Xuanze; Chang, Lei; Sun, Yujie
2017-01-01
Direct visualization of protein-protein interactions (PPIs) at high spatial and temporal resolution in live cells is crucial for understanding the intricate and dynamic behaviors of signaling protein complexes. Recently, bimolecular fluorescence complementation (BiFC) assays have been combined with super-resolution imaging techniques including PALM and SOFI to visualize PPIs at the nanometer spatial resolution. RESOLFT nanoscopy has been proven as a powerful live-cell super-resolution imaging technique. With regard to the detection and visualization of PPIs in live cells with high temporal and spatial resolution, here we developed a BiFC assay using split rsEGFP2, a highly photostable and reversibly photoswitchable fluorescent protein previously developed for RESOLFT nanoscopy. Combined with parallelized RESOLFT microscopy, we demonstrated the high spatiotemporal resolving capability of a rsEGFP2-based BiFC assay by detecting and visualizing specifically the heterodimerization interactions between Bcl-xL and Bak as well as the dynamics of the complex on mitochondria membrane in live cells. PMID:28663931
Live Cell Imaging of Viscosity in 3D Tumour Cell Models.
Shirmanova, Marina V; Shimolina, Lubov' E; Lukina, Maria M; Zagaynova, Elena V; Kuimova, Marina K
2017-01-01
Abnormal levels of viscosity in tissues and cells are known to be associated with disease and malfunction. While methods to measure bulk macroscopic viscosity of bio-tissues are well developed, imaging viscosity at the microscopic scale remains a challenge, especially in vivo. Molecular rotors are small synthetic viscosity-sensitive fluorophores in which fluorescence parameters are strongly correlated to the microviscosity of their immediate environment. Hence, molecular rotors represent a promising instrument for mapping of viscosity in living cells and tissues at the microscopic level. Quantitative measurements of viscosity can be achieved by recording time-resolved fluorescence decays of molecular rotor using fluorescence lifetime imaging microscopy (FLIM), which is also suitable for dynamic viscosity mapping, both in cellulo and in vivo. Among tools of experimental oncology, 3D tumour cultures, or spheroids, are considered a more adequate in vitro model compared to a cellular monolayer, and represent a less labour-intensive and more unified approach compared to animal tumour models. This chapter describes a methodology for microviscosity imaging in tumour spheroids using BODIPY-based molecular rotors and two photon-excited FLIM.
NASA Astrophysics Data System (ADS)
Voicescu, Mariana; Ionescu, Sorana; Calderon-Moreno, Jose M.; Nistor, Cristina L.
2017-02-01
Studies based on silver nanoparticles (SNPs) and polyethylene glycols (PEGs) are mainly in the pharmaceutical field, with PEG as good "vehicle" to transport protein-based drugs. In this work, physicochemical characteristics of 3,6-diHydroxyflavone (3,6-diHF) binding bovine serum albumin (BSA) on PEG (Tween20, L64, and Myrj52)-coated SNPs have been investigated by steady-state and time-resolved fluorescence spectroscopy. These interactions give rise to the formation of intermolecular and intramolecular H bonds. As a subject of interest, the effect of temperature (30-60 °C) on the H bonds was studied by steady-state fluorescence. The size distribution and zeta potential of SNPs were determined by dynamic light scattering (DLS). Scanning electron microscopy (SEM) analysis revealed the spherical nature of particles with average diameter 40-80 nm. The structure, stability, dynamics, and conformational changes in adsorbed BSA protein on the PEG-coated SNPs surface have been also investigated by steady-state/lifetime fluorescence and circular dichroism spectroscopy. The results have relevance in the oxidative stress and drug delivery processes.
Towards early detection of age-related macular degeneration with tetracyclines and FLIM
NASA Astrophysics Data System (ADS)
Szmacinski, Henryk; Hegde, Kavita; Zeng, Hui-Hui; Eslami, Katayoun; Puche, Adam; Lakowicz, Joseph R.; Lengyel, Imre; Thompson, Richard B.
2018-02-01
Recently, we discovered microscopic spherules of hydroxyapatite (HAP) in aged human sub-retinal pigment epithelial (sub-RPE) deposits in the retinas of aged humans (PMID: 25605911), and developed evidence that the spherules may act to nucleate the growth of sub-RPE deposits such as drusen. Drusen are clinical hallmarks of age-related macular degeneration (AMD). We found that tetracycline-family antibiotics, long known to stain HAP in teeth and bones, also stained the HAP spherules, but in general the HAP-bound fluorescence excitation and emission spectra overlapped with the well-known autofluorescence of the RPE overlying drusen, making them difficult to resolve. However, we also found that certain tetracyclines exhibited substantial increases in fluorescence lifetime upon binding to HAP, and moreover these lifetimes were substantially greater than those previously observed (Dysli, et al., 2014) for autofluorescence in the human retina in vivo. Thus we were able to image the HAP spherules by fluorescence lifetime imaging microscopy (FLIM) in cadaveric retinas of aged humans. These findings suggest that FLIM imaging of tetracycline binding to HAP could become a diagnostic tool for the development and progression of AMD.
Imaging genes, chromosomes, and nuclear structures using laser-scanning confocal microscopy
NASA Astrophysics Data System (ADS)
Ballard, Stephen G.
1990-08-01
For 350 years, the optical microscope has had a powerful symbiotic relationship with biology. Until this century, optical microscopy was the only means of examining cellular structure; in return, biologists have contributed greatly to the evolution of microscope design and technique. Recent advances in the detection and processing of optical images, together with methods for labelling specific biological molecules, have brought about a resurgence in the application of optical microscopy to the biological sciences. One of the areas in which optical microscopy is breaking new ground is in elucidating the large scale organization of chromatin in chromosomes and cell nuclei. Nevertheless, imaging the contents of the cell nucleus is a difficult challenge for light microscopy, for two principal reasons. First, the dimensions of all but the largest nuclear structures (nucleoli, vacuoles) are close to or below the resolving power of far field optics. Second, the native optical contrast properties of many important chromatin structures (eg. chromosome domains, centromere regions) are very weak, or essentially zero. As an extreme example, individual genes probably have nothing to distinguish them other than their sequence of DNA bases, which cannot be directly visualized with any current form of microscopy. Similarly, the interphase nucleus shows no direct visible evidence of focal chromatin domains. Thus, imaging of such entities depends heavily on contrast enhancement methods. The most promising of these is labelling DNA in situ using sequence-specific probes that may be visualized using fluorescent dyes. We have applied this method to detecting individual genes in metaphase chromosomes and interphase nuclei, and to imaging a number of DNA-containing structures including chromosome domains, metaphase chromosomes and centromere regions. We have also demonstrated the applicability of in situ fluorescent labelling to detecting numerical and structural abnormalities both in condensed metaphase chromosomes and in interphase nuclei. The ability to image the loci of fluorescent-labelled gene probes hybridized to chromosomes and to interphase nuclei will play a major role in the mapping of the human genome. This presentation is an overview of our laboratory's efforts to use confocal imaging to address fundamental questions about the structure and organization of genes, chromosomes and cell nuclei, and to develop applications useful in clinical diagnosis of inherited diseases.
Out-of-focal plane imaging by leakage radiation microscopy
NASA Astrophysics Data System (ADS)
Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wen, Xiaolei; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.
2017-09-01
Leakage radiation microscopy (LRM) is used to investigate the optical properties of surfaces. The front-focal plane (FFP) image with LRM reveals the structural features on the surfaces. A back-focal plane (BFP) image with LRM reveals the angular distribution of the radiation. Herein, we experimentally demonstrate that the out-of-focal plane (OFP) images present a link between the FFP and BFP images and provide optical information that cannot be resolved by either FFP or BFP images. The OFP image provides a link between the spatial location of the emission and the angular distribution from the same location, and thus information about the film’s discontinuity, nonuniformity or variable thickness can be uncovered. The use of OFP imaging will extend the scope and applications of the LRM and coupled emission imaging, which are powerful tools in nanophotonics and high throughput fluorescence screening.
Andrade, Carolina D.; Yanez, Ciceron O.; Rodriguez, Luis; Belfield, Kevin D.
2010-01-01
The synthesis, structural, and photophysical characterization of a series of new fluorescent donor–acceptor and acceptor-acceptor molecules, based on the fluorenyl ring system, with two-photon absorbing properties is described. These new compounds exhibited large Stokes shifts, high fluorescent quantum yields, and, significantly, high two-photon absorption cross sections, making them well suited for two-photon fluorescence microscopy (2PFM) imaging. Confocal and two-photon fluorescence microscopy imaging of COS-7 and HCT 116 cells incubated with probe I showed endosomal selectivity, demonstrating the potential of this class of fluorescent probes in multiphoton fluorescence microscopy. PMID:20481596
NASA Astrophysics Data System (ADS)
Xie, Yijing; Thom, Maria; Miserocchi, Anna; McEvoy, Andrew W.; Desjardins, Adrien; Ourselin, Sebastien; Vercauteren, Tom
2017-02-01
In glioma resection surgery, the detection of tumour is often guided by using intraoperative fluorescence imaging notably with 5-ALA-PpIX, providing fluorescent contrast between normal brain tissue and the gliomas tissue to achieve improved tumour delineation and prolonged patient survival compared with the conventional white-light guided resection. However, the commercially available fluorescence imaging system relies on surgeon's eyes to visualise and distinguish the fluorescence signals, which unfortunately makes the resection subjective. In this study, we developed a novel multi-scale spectrally-resolved fluorescence imaging system and a computational model for quantification of PpIX concentration. The system consisted of a wide-field spectrally-resolved quantitative imaging device and a fluorescence endomicroscopic imaging system enabling optical biopsy. Ex vivo animal tissue experiments as well as human tumour sample studies demonstrated that the system was capable of specifically detecting the PpIX fluorescent signal and estimate the true concentration of PpIX in brain specimen.
Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).
Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P
2009-08-01
Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.
Fluorescence microscopy: A tool to study autophagy
NASA Astrophysics Data System (ADS)
Rai, Shashank; Manjithaya, Ravi
2015-08-01
Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.
NASA Astrophysics Data System (ADS)
Elgass, K.; Caesar, K.; Schleifenbaum, F.; Meixner, A. J.; Harter, K.
2010-02-01
As the excited state lifetime of a fluorescent molecule depends on its environment, it is possible to use it as a probe for physico-chemical parameters of the surrounding medium. Whereas this is well known for many solid guest/host systems, only few reports of quantitative, temporal resolved in vivo studies to monitor the nano-environment for a protein-coupled chromophore such as GFP are known from literature. Here we present a novel approach to determine the membrane potential of living (plant) cells based on the fluorescence lifetime (FLT) analysis of membrane-located GFP. By using confocal sample scanning microscopy (CSSM) combined with fluorescence lifetime imaging microscopy, we recently showed that the phytohormone brassinolide (BL) induces cell wall expansion and a decrease in the FLT of the BRI1-GFP in living cells of Arabidopsis thaliana seedlings. BRI1 is the dominant functional receptor for BL in Arabidopsis and locates to the plasma membrane. Although the dependence of the FLT of GFP on its physico-chemical environment such as pH-value, refractive index and pressure has been reported, the observed FLT decrease of BRI1-GFP in response to BL application could not be explained by these parameters. However, our in vivo FLT and CSSM analyses indicate that the BLinduced change in the FLT of BRI1-GFP is caused by hyperpolarisation of the plasma membrane (Em). Thus, our results indicate that BRI1-GFP serves as sensitive and non-invasive probe for recording the Em of the plasma membrane in living plant cells with high spatio-temporal resolution.
Klemm, Matthias; Schweitzer, Dietrich; Peters, Sven; Sauer, Lydia; Hammer, Martin; Haueisen, Jens
2015-01-01
Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay) to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX’s applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation. PMID:26192624
Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array
Luthman, Anna Siri; Dumitru, Sebastian; Quiros‐Gonzalez, Isabel; Joseph, James
2017-01-01
Abstract The ability to resolve multiple fluorescent emissions from different biological targets in video rate applications, such as endoscopy and intraoperative imaging, has traditionally been limited by the use of filter‐based imaging systems. Hyperspectral imaging (HSI) facilitates the detection of both spatial and spectral information in a single data acquisition, however, instrumentation for HSI is typically complex, bulky and expensive. We sought to overcome these limitations using a novel robust and low cost HSI camera based on a spectrally resolved detector array (SRDA). We integrated this HSI camera into a wide‐field reflectance‐based imaging system operating in the near‐infrared range to assess the suitability for in vivo imaging of exogenous fluorescent contrast agents. Using this fluorescence HSI (fHSI) system, we were able to accurately resolve the presence and concentration of at least 7 fluorescent dyes in solution. We also demonstrate high spectral unmixing precision, signal linearity with dye concentration and at depth in tissue mimicking phantoms, and delineate 4 fluorescent dyes in vivo. Our approach, including statistical background removal, could be directly generalised to broader spectral ranges, for example, to resolve tissue reflectance or autofluorescence and in future be tailored to video rate applications requiring snapshot HSI data acquisition. PMID:28485130
NASA Astrophysics Data System (ADS)
Butte, Pramod V.; Vishwanath, Karthik; Pikul, Brian K.; Mycek, Mary-Ann; Marcu, Laura
2003-07-01
Time-Resolved Laser-Induced Fluorescence Spectroscopy (tr-LIFS) offers the potential for intra-operative diagnosis of primary brain tumors. However, both the intrinsic properties of endogenous fluorophores and the optical properties of brain tissue could affect the fluorescence measurements from brain. Scattering has been demonstrated to increase, for instance, detected lifetimes by 10-20% in media less scattering than the brain. The overall goal of this study is to investigate experimentally and computationally how optical properties of distinct types of brain tissue (normal porcine white and gray matter) affect the propagation of the excitation pulse and fluorescent transients and the detected fluorescence lifetime. A time-domain tr-LIFS apparatus (fast digitizer and gated detection) was employed to measure the propagation of ultra-short pulsed light through brain specimens (1-2.5-mm source-detector separation; 0.100-mm increment). A Monte Carlo model for semi-infinite turbid media was used to simulate time-resolved light propagation for arbitrary source-detector fiber geometries and optical fiber specifications; and to record spatially- and temporally resolved information. We determined a good correlation between experimental and computational results. Our findings provide means for quantification of time-resolved fluorescence spectra from healthy and diseased brain tissue.
Time-Resolved Measurements in Optoelectronic Microbioanalysis
NASA Technical Reports Server (NTRS)
Bearman, Gregory; Kossakovski, Dmitri
2003-01-01
A report presents discussion of time-resolved measurements in optoelectronic microbioanalysis. Proposed microbioanalytical laboratory-on-a-chip devices for detection of microbes and toxic chemicals would include optoelectronic sensors and associated electronic circuits that would look for fluorescence or phosphorescence signatures of multiple hazardous biomolecules in order to detect which ones were present in a given situation. The emphasis in the instant report is on gating an active-pixel sensor in the time domain, instead of filtering light in the wavelength domain, to prevent the sensor from responding to a laser pulse used to excite fluorescence or phosphorescence while enabling the sensor to respond to the decaying fluorescence or phosphorescence signal that follows the laser pulse. The active-pixel sensor would be turned on after the laser pulse and would be used to either integrate the fluorescence or phosphorescence signal over several lifetimes and many excitation pulses or else take time-resolved measurements of the fluorescence or phosphorescence. The report also discusses issues of multiplexing and of using time-resolved measurements of fluorophores with known different fluorescence lifetimes to distinguish among them.
Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis.
Varga, Viktor Sebestyén; Bocsi, József; Sipos, Ferenc; Csendes, Gábor; Tulassay, Zsolt; Molnár, Béla
2004-07-01
Fluorescent measurements on cells are performed today with FCM and laser scanning cytometry. The scientific community dealing with quantitative cell analysis would benefit from the development of a new digital multichannel and virtual microscopy based scanning fluorescent microscopy technology and from its evaluation on routine standardized fluorescent beads and clinical specimens. We applied a commercial motorized fluorescent microscope system. The scanning was done at 20 x (0.5 NA) magnification, on three channels (Rhodamine, FITC, Hoechst). The SFM (scanning fluorescent microscopy) software included the following features: scanning area, exposure time, and channel definition, autofocused scanning, densitometric and morphometric cellular feature determination, gating on scatterplots and frequency histograms, and preparation of galleries of the gated cells. For the calibration and standardization Immuno-Brite beads were used. With application of shading compensation, the CV of fluorescence of the beads decreased from 24.3% to 3.9%. Standard JPEG image compression until 1:150 resulted in no significant change. The change of focus influenced the CV significantly only after +/-5 microm error. SFM is a valuable method for the evaluation of fluorescently labeled cells. Copyright 2004 Wiley-Liss, Inc.
In vivo flow cytometry and time-resolved near-IR angiography and lymphography
NASA Astrophysics Data System (ADS)
Galanzha, Ekaterina I.; Tuchin, Valery V.; Brock, Robert W.; Zharov, Vladimir P.
2007-05-01
Integration of photoacoustic and photothermal techniques with high-speed, high-resolution transmission and fluorescence microscopy shows great potential for in vivo flow cytometry and indocyanine green (ICG) near-infrared (IR) angiography of blood and lymph microvessels. In particular, the capabilities of in vivo flow cytometry using rat mesentery and nude mouse ear models are demonstrated for real-time quantitative detection of circulating and migrating individual blood and cancer cells in skin, mesentery, lymph nodes, liver, kidney; studying vascular dynamics with a focus on lymphatics; monitoring cell traffic between blood and lymph systems; high-speed imaging of cell deformability in flow; and label-free real-time monitoring of single cell extravasation from blood vessel lumen into tissue. As presented, the advantages of ICG IR-angiography include estimation of time resolved dye dynamics (appearance and clearance) in blood and lymph microvessels using fluorescent and photoacoustic modules of the integrated technique. These new approaches are important for monitoring and quantifying metastatic and apoptotic cells; comparative measurements of plasma and cell velocities; analysis of immune responses; monitoring of circulating macromolecules, chylomicrons, bacteria, viruses and nanoparticles; molecular imaging. In the future, we believe that the integrated technique presented will have great potential for translation to early disease diagnoses (e.g. cancer) or assessment of innovative therapeutic interventions in humans.
How to measure separations and angles between intra-molecular fluorescent markers
NASA Astrophysics Data System (ADS)
Flyvbjerg, Henrik; Mortensen, Kim I.; Sung, Jongmin; Spudich, James A.
We demonstrate a novel, yet simple tool for the study of structure and function of biomolecules by extending two-colour co-localization microscopy to fluorescent molecules with fixed orientations and in intra-molecular proximity. From each color-separated microscope image in a time-lapse movie and using only simple means, we simultaneously determine both the relative (x,y)-separation of the fluorophores and their individual orientations in space with accuracy and precision. The positions and orientations of two domains of the same molecule are thus time-resolved. Using short double-stranded DNA molecules internally labelled with two fixed fluorophores, we demonstrate the accuracy and precision of our method using the known structure of double-stranded DNA as a benchmark, resolve 10-base-pair differences in fluorophore separations, and determine the unique 3D orientation of each DNA molecule, thereby establishing short, double-labelled DNA molecules as probes of 3D orientation of anything to which one can attach them firmly. This work was supported by a Lundbeck fellowship to K.I.M; a Stanford Bio-X fellowship to J.S. and Grants from the NIH (GM33289) to J.A.S. and the Human Frontier Science Program (GP0054/2009-C) to J.A.S. and H.F.
In vivo three-photon microscopy of subcortical structures within an intact mouse brain
NASA Astrophysics Data System (ADS)
Horton, Nicholas G.; Wang, Ke; Kobat, Demirhan; Clark, Catharine G.; Wise, Frank W.; Schaffer, Chris B.; Xu, Chris
2013-03-01
Two-photon fluorescence microscopy enables scientists in various fields including neuroscience, embryology and oncology to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue.
Dardikman, Gili; Nygate, Yoav N; Barnea, Itay; Turko, Nir A; Singh, Gyanendra; Javidi, Barham; Shaked, Natan T
2018-03-01
We suggest a new multimodal imaging technique for quantitatively measuring the integral (thickness-average) refractive index of the nuclei of live biological cells in suspension. For this aim, we combined quantitative phase microscopy with simultaneous 2-D fluorescence microscopy. We used 2-D fluorescence microscopy to localize the nucleus inside the quantitative phase map of the cell, as well as for measuring the nucleus radii. As verified offline by both 3-D confocal fluorescence microscopy and 2-D fluorescence microscopy while rotating the cells during flow, the nucleus of cells in suspension that are not during division can be assumed to be an ellipsoid. The entire shape of a cell in suspension can be assumed to be a sphere. Then, the cell and nucleus 3-D shapes can be evaluated based on their in-plain radii available from the 2-D phase and fluorescent measurements, respectively. Finally, the nucleus integral refractive index profile is calculated. We demonstrate the new technique on cancer cells, obtaining nucleus refractive index values that are lower than those of the cytoplasm, coinciding with recent findings. We believe that the proposed technique has the potential to be used for flow cytometry, where full 3-D refractive index tomography is too slow to be implemented during flow.
Zhang, Shaojuan
2016-01-01
Fluorescent probes are widely utilized for noninvasive fluorescence imaging. Continuing efforts have been made in developing novel fluorescent probes with improved fluorescence quantum yield, enhanced target-specificity, and lower cytotoxicity. Before such probes are administrated into a living system, it is essential to evaluate the subcellular uptake, targeting specificity, and cytotoxicity in vitro. In this chapter, we briefly outline common methods used to evaluate fluorescent probes using fluorescence microscopy, multiplate reader, and cytotoxicity assay.
Dynamic and Kinetic Assembly Studies of an Icosahedral Virus Capsid
NASA Astrophysics Data System (ADS)
Lee, Kelly
2011-03-01
Hepatitis B virus has an icosahedrally symmetrical core particle (capsid), composed of either 90 or 120 copies of a dimeric protein building block. We are using time-resolved, solution small-angle X-ray scattering and single-molecule fluorescence microscopy to probe the core particle assembly reaction at the ensemble and individual assembly levels. Our experiments to date reveal the assembly process to be highly cooperative with minimal population of stable intermediate species. Solution conditions, particularly salt concentration, appears to influence the partitioning of assembly products into the two sizes of shells. Funding from NIH R00-GM080352 and University of Washington.
Emerging optical nanoscopy techniques
Montgomery, Paul C; Leong-Hoi, Audrey
2015-01-01
To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270
Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Koshonna; Thurn, Ted; Xin, Lun
Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less
Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection
Brown, Koshonna; Thurn, Ted; Xin, Lun; ...
2017-07-19
Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less
Peckys, Diana B; Dukes, Madeline J; de Jonge, Niels
2014-01-01
Correlative fluorescence microscopy and scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot (QD) nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, the microchip with the labeled cells and one with a spacer are assembled in a special microfluidic device and imaged with STEM.
Quantitative, spectrally-resolved intraoperative fluorescence imaging
Valdés, Pablo A.; Leblond, Frederic; Jacobs, Valerie L.; Wilson, Brian C.; Paulsen, Keith D.; Roberts, David W.
2012-01-01
Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the first time. Moreover, we present images from human surgery which detect residual tumor not evident with state-of-the-art vFI. The wide-field qFI technique has broad implications for intraoperative surgical guidance because it provides near real-time quantitative assessment of multiple fluorescent biomarkers across the operative field. PMID:23152935
Wei, Liping; Yan, Wenrong; Ho, Derek
2017-12-04
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.
Yan, Wenrong; Ho, Derek
2017-01-01
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568
Microlensed dual-fiber probe for depth-resolved fluorescence measurements
NASA Astrophysics Data System (ADS)
Choi, Hae Young; Ryu, Seon Young; Kim, Jae Young; Kim, Geon Hee; Park, Seong Jun; Lee, Byeong Ha; Chang, Ki Soo
2011-07-01
We propose and demonstrate a compact microlensed dual-fiber probe that has a good collection efficiency and a high depth-resolution ability for fluorescence measurements. The probe is formed with a conventional fusion splicer creating a common focusing lens on two fibers placed side by side. The collection efficiency of the fabricated probe was evaluated by measuring the fluorescence signal of a fresh ginkgo leaf. It was shown experimentally that the proposed probe could effectively collect the fluorescence signal with a six-fold increase compared to that of a general flat-tipped probe. The beam propagation method was used to design a probe with an optimized working distance and an improved resolving depth. It was found that the working distance depends mainly on the radius of curvature of the lens, whereas the resolving depth is determined by the core diameters of the illumination and collection fibers. The depth-resolved ability of probes with working distances of ~100 μm and 300 μm was validated by using a two-layer tissue phantom. The experimental results demonstrate that the microlensed dual-fiber probe has the potential to facilitate depth-resolved fluorescence detection of epithelial tissue.
Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy
ERIC Educational Resources Information Center
Ito, Takashi
2008-01-01
This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…
Minion, Jessica; Pai, Madhukar; Ramsay, Andrew; Menzies, Dick; Greenaway, Christina
2011-01-01
Introduction Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. Methods In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS). Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. Results There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. Conclusions Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used. PMID:21811622
Temporal focusing microscopy combined with three-dimensional structured illumination
NASA Astrophysics Data System (ADS)
Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi
2017-05-01
Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.
Longitudinal in vivo two-photon fluorescence imaging
Crowe, Sarah E.; Ellis-Davies, Graham C.R.
2014-01-01
Fluorescence microscopy is an essential technique for the basic sciences, especially biomedical research. Since the invention of laser scanning confocal microscopy in 1980s, that enabled imaging both fixed and living biological tissue with three-dimensional precision, high-resolution fluorescence imaging has revolutionized biological research. Confocal microscopy, by its very nature, has one fundamental limitation. Due to the confocal pinhole, deep tissue fluorescence imaging is not practical. In contrast (no pun intended), two-photon fluorescence microscopy allows, in principle, the collection of all emitted photons from fluorophores in the imaged voxel, dramatically extending our ability to see deep into living tissue. Since the development of transgenic mice with genetically encoded fluorescent protein in neocortical cells in 2000, two-photon imaging has enabled the dynamics of individual synapses to be followed for up to two years. Since the initial landmark contributions to this field in 2002, the technique has been used to understand how neuronal structure are changed by experience, learning and memory and various diseases. Here we provide a basic summary of the crucial elements that are required for such studies, and discuss many applications of longitudinal two-photon fluorescence microscopy that have appeared since 2002. PMID:24214350
High-performance time-resolved fluorescence by direct waveform recording.
Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D
2010-10-01
We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.
Houlne, Michael P; Sjostrom, Christopher M; Uibel, Rory H; Kleimeyer, James A; Harris, Joel M
2002-09-01
Optical trapping of small structures is a powerful tool for the manipulation and investigation of colloidal and particulate materials. The tight focus excitation requirements of optical trapping are well suited to confocal Raman microscopy. In this work, an inverted confocal Raman microscope is developed for studies of chemical reactions on single, optically trapped particles and applied to reactions used in solid-phase peptide synthesis. Optical trapping and levitation allow a particle to be moved away from the coverslip and into solution, avoiding fluorescence interference from the coverslip. More importantly, diffusion of reagents into the particle is not inhibited by a surface, so that reaction conditions mimic those of particles dispersed in solution. Optical trapping and levitation also maintain optical alignment, since the particle is centered laterally along the optical axis and within the focal plane of the objective, where both optical forces and light collection are maximized. Hour-long observations of chemical reactions on individual, trapped silica particles are reported. Using two-dimensional least-squares analysis methods, the Raman spectra collected during the course of a reaction can be resolved into component contributions. The resolved spectra of the time-varying species can be observed, as they bind to or cleave from the particle surface.
Swatland, H J
1988-09-01
The fluorescence of bovine tissues was measured post mortem by microscopy of frozen sections and by using optical fibres to excite fluorescence and to measure fluorescence emission spectra. Mechanical disruption of the tissue (by comminution or sectioning) did not appreciably change tissue fluorescence spectra. Ligamentum nuchae had the strongest fluorescence and lung tissue had the weakest. In samples measured with a minimum prior exposure to ultraviolet light, the peak fluorescence emission was at 410 or 420 nm (with excitation at 365 nm). Exposure to ultraviolet light for about 1 minute shifted the fluorescence peak to 450 to 470 nm. Further exposure (about 30 minutes) caused a loss of the 450 to 470 nm fluorescence peak, while emissions above 530 nm were maintained or strengthened. Microscopy showed that the fluorescence that was measured by fibre optics from intact connective tissues originated mostly from collagen and elastin fibres.
Santra, Kalyan; Zhan, Jinchun; Song, Xueyu; ...
2016-02-10
The need for measuring fluorescence lifetimes of species in subdiffraction-limited volumes in, for example, stimulated emission depletion (STED) microscopy, entails the dual challenge of probing a small number of fluorophores and fitting the concomitant sparse data set to the appropriate excited-state decay function. This need has stimulated a further investigation into the relative merits of two fitting techniques commonly referred to as “residual minimization” (RM) and “maximum likelihood” (ML). Fluorescence decays of the well-characterized standard, rose bengal in methanol at room temperature (530 ± 10 ps), were acquired in a set of five experiments in which the total number ofmore » “photon counts” was approximately 20, 200, 1000, 3000, and 6000 and there were about 2–200 counts at the maxima of the respective decays. Each set of experiments was repeated 50 times to generate the appropriate statistics. Each of the 250 data sets was analyzed by ML and two different RM methods (differing in the weighting of residuals) using in-house routines and compared with a frequently used commercial RM routine. Convolution with a real instrument response function was always included in the fitting. While RM using Pearson’s weighting of residuals can recover the correct mean result with a total number of counts of 1000 or more, ML distinguishes itself by yielding, in all cases, the same mean lifetime within 2% of the accepted value. For 200 total counts and greater, ML always provides a standard deviation of <10% of the mean lifetime, and even at 20 total counts there is only 20% error in the mean lifetime. Here, the robustness of ML advocates its use for sparse data sets such as those acquired in some subdiffraction-limited microscopies, such as STED, and, more importantly, provides greater motivation for exploiting the time-resolved capacities of this technique to acquire and analyze fluorescence lifetime data.« less
Motor Oil Classification Based on Time-Resolved Fluorescence
Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong
2014-01-01
A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils. PMID:24988439
NASA Astrophysics Data System (ADS)
Jahn, Martin T.; Markert, Sebastian M.; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas
2016-10-01
Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.
Super-resolution fluorescence microscopy by stepwise optical saturation
Zhang, Yide; Nallathamby, Prakash D.; Vigil, Genevieve D.; Khan, Aamir A.; Mason, Devon E.; Boerckel, Joel D.; Roeder, Ryan K.; Howard, Scott S.
2018-01-01
Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a M-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples. PMID:29675306
Strobl, Frederic; Schmitz, Alexander; Stelzer, Ernst H K
2017-06-01
Light-sheet-based fluorescence microscopy features optical sectioning in the excitation process. This reduces phototoxicity and photobleaching by up to four orders of magnitude compared with that caused by confocal fluorescence microscopy, simplifies segmentation and quantification for three-dimensional cell biology, and supports the transition from on-demand to systematic data acquisition in developmental biology applications.
Fluorescence Lifetime Techniques in Medical Applications
Marcu, Laura
2012-01-01
This article presents an overview of time-resolved (lifetime) fluorescence techniques used in biomedical diagnostics. In particular, we review the development of time-resolved fluorescence spectroscopy (TRFS) and fluorescence lifetime imaging (FLIM) instrumentation and associated methodologies which allows for in vivo characterization and diagnosis of biological tissues. Emphasis is placed on the translational research potential of these techniques and on evaluating whether intrinsic fluorescence signals provide useful contrast for the diagnosis of human diseases including cancer (gastrointestinal tract, lung, head and neck, and brain), skin and eye diseases, and atherosclerotic cardiovascular disease. PMID:22273730
Time-resolved fluorescence decay measurements for flowing particles
Deka, C.; Steinkamp, J.A.
1999-06-01
Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.
Time-resolved fluorescence decay measurements for flowing particles
Deka, Chiranjit; Steinkamp, John A.
1999-01-01
Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.
Fluorescence of fungi in superficial and deep fungal infections
Elston, Dirk M
2001-01-01
Background Fluorescence of many fungi is noted when H&E stained sections are examined under a fluorescent microscope. In theory, this phenomenon could aid in the diagnosis of cutaneous and disseminated fungal infections without the delay associated with special stains. Seventy-six cases of superficial and deep fungal infections and 3 cases of protothecosis were studied to determine the clinical usefulness of this technique. Results In most cases, fluorescence was noted, but was not intense. Fluorescence of fungi did not correlate with the age of the specimen. In most cases, organisms in H&E stained sections were more easily identified with routine light microscopy than with fluorescent microscopy. Conclusion This report suggests that in H&E stained skin specimens, fluorescent microscopy is of little benefit in the identification of fungal organisms. PMID:11602016
Validation of a time-resolved fluorescence spectroscopy apparatus in a rabbit atherosclerosis model
NASA Astrophysics Data System (ADS)
Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura
2004-07-01
Time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) has been studied as a potential tool for in vivo diagnosis of atherosclerotic lesions. This study is to evaluate the potential of a compact fiber-optics based tr-LIFS instrument developed in our laboratory for in vivo analysis of atherosclerotic plaque composition. Time-resolved fluorescence spectroscopy studies were performed in vivo on fifteen New Zealand White rabbits (atherosclerotic: N=8, control: N=7). Time-resolved fluorescence spectra were acquired (range: 360-600 nm, increment: 5 nm, total acquisition time: 65 s) from normal aorta wall and lesions in the abdominal aorta. Data were analyzed in terms of fluorescence emission spectra and wavelength specific lifetimes. Following trichrome staining, tissue specimens were analyzed histopathologically in terms of intima/media thickness and biochemical composition (collagen, elastin, foam cells, and etc). Based on intimal thickness, the lesions were divided into thin and thick lesions. Each group was further separated into two categories: collagen rich lesions and foam cell rich lesions based on their biochemical composition. The obtained spectral and time domain fluorescence signatures were subsequently correlated to the histopathological findings. The results have shown that time-domain fluorescence spectral features can be used in vivo to separate atherosclerotic lesions from normal aorta wall as well discrimination within certain types of lesions.
Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs
Lemos, M. Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham
2015-01-01
The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136
Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter
2014-01-01
Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922
Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy.
Muro, Eleonora; Vermeulen, Pierre; Ioannou, Andriani; Skourides, Paris; Dubertret, Benoit; Fragola, Alexandra; Loriette, Vincent
2011-06-08
We describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique. We present optically sectioned full-field images of Xenopus laevis embryos acquired at 25 images/s frame rate. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Janovská, Marika; Kubala, Martin; Simánek, Vilím; Ulrichová, Jitka
2009-09-01
The quaternary isoquinoline alkaloid, sanguinarine (SG) plays an important role in both traditional and modern medicine, exhibiting a wide range of biological activities. Under physiological conditions, there is an equilibrium between the quaternary cation (SG+) and a pseudobase (SGOH) forms of SG. In the gastrointestinal tract, SG is converted to dihydrosanguinarine (DHSG). All forms exhibit bright fluorescence. However, their spectra overlap, which limited the use of powerful techniques based on fluorescence spectroscopy/microscopy. Our experiments using a combination of steady-state and time-resolved techniques enabled the separation of individual components. The results revealed that (a) the equilibrium constant between SG+ and SGOH is pKa = 8.06, while fluorescence of DHSG exhibited no changes in the pH range 5-12, (b) the SGOH has excitation/emission spectra with maxima at 327/418 nm and excited-state lifetime 3.2 ns, the spectra of the SG+ have maxima at 475/590 nm and excited-state lifetime 2.4 ns. The DHSG spectra have maxima at 327/446 nm and 2-exponential decay with components 4.2 and 2.0 ns, (c) NADH is able to convert SG to DHSG, while there is no apparent interaction between NADH and DHSG. These techniques are applicable for monitoring the SG to DHSG conversion in hepatocytes.
Adaptive optical fluorescence microscopy.
Ji, Na
2017-03-31
The past quarter century has witnessed rapid developments of fluorescence microscopy techniques that enable structural and functional imaging of biological specimens at unprecedented depth and resolution. The performance of these methods in multicellular organisms, however, is degraded by sample-induced optical aberrations. Here I review recent work on incorporating adaptive optics, a technology originally applied in astronomical telescopes to combat atmospheric aberrations, to improve image quality of fluorescence microscopy for biological imaging.
Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.
Li, Dong; Zheng, Wei; Qu, Jianan Y
2008-10-15
A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism.
Submicrometer fiber-optic chemical sensors: Measuring pH inside single cells
NASA Astrophysics Data System (ADS)
Kopelman, R.
Starting from scratch, we went in two and a half years to 0.04 micron optical microscopy resolution. We have demonstrated the application of near-field scanning optical microscopy to DNA samples and opened the new fields of near-field scanning spectroscopy and submicron opto-chemical sensors. All of these developments have been important steps towards in-situ DNA imaging and characterization on the nanoscale. Our first goal was to make NSOM (near-field scanning optical microscopy) a working enterprise, capable of 'zooming-in' towards a sample and imaging with a resolution exceeding that of traditional microscopy by a factor of ten. This has been achieved. Not only do we have a resolution of about 40 nm but we can image a 1 x 1 micron object in less than 10 seconds. Furthermore, the NSOM is a practical instrument. The tips survive for days or weeks of scanning and new methods of force feedback will soon protect the most fragile samples. Reproducible images of metal gratings, gold particles, dye balls (for calibration) and of several DNA samples have been made, proving the practicality of our approach. We also give highly resolved Force/NSOM images of human blood cells. Our second goal has been to form molecular optics (e.g., exciton donor) tips with a resolution of 2-10 nm for molecular excitation microscopy (MEM). We have produced such tips, and scanned with them, but only with a resolution comparable to that of our standard NSOM tips. However, we have demonstrated their potential for high resolution imaging capabilities: (1) An energy transfer (tip to sample) based feedback capability. (2) A Kasha (external heavy atom) effect based feedback. In addition, a novel and practical opto-chemical sensor that is a billion times smaller than the best ones available has been developed as well. Finally, we have also performed spatially resolved fluorescence spectroscopy.
Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media
Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne
2015-01-01
Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required. PMID:25822785
High resolution 3D imaging of synchrotron generated microbeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au; Cornelius, Iwan; Blencowe, Anton
2015-12-15
Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200more » or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.« less
FluoroSim: A Visual Problem-Solving Environment for Fluorescence Microscopy
Quammen, Cory W.; Richardson, Alvin C.; Haase, Julian; Harrison, Benjamin D.; Taylor, Russell M.; Bloom, Kerry S.
2010-01-01
Fluorescence microscopy provides a powerful method for localization of structures in biological specimens. However, aspects of the image formation process such as noise and blur from the microscope's point-spread function combine to produce an unintuitive image transformation on the true structure of the fluorescing molecules in the specimen, hindering qualitative and quantitative analysis of even simple structures in unprocessed images. We introduce FluoroSim, an interactive fluorescence microscope simulator that can be used to train scientists who use fluorescence microscopy to understand the artifacts that arise from the image formation process, to determine the appropriateness of fluorescence microscopy as an imaging modality in an experiment, and to test and refine hypotheses of model specimens by comparing the output of the simulator to experimental data. FluoroSim renders synthetic fluorescence images from arbitrary geometric models represented as triangle meshes. We describe three rendering algorithms on graphics processing units for computing the convolution of the specimen model with a microscope's point-spread function and report on their performance. We also discuss several cases where the microscope simulator has been used to solve real problems in biology. PMID:20431698
Todorova, Biliana; Salabert, Nina; Tricot, Sabine; Boisgard, Raphaël; Rathaux, Mélanie; Le Grand, Roger; Chapon, Catherine
2017-01-01
We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.
Advanced Methods in Fluorescence Microscopy
Fritzky, Luke; Lagunoff, David
2013-01-01
It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres. PMID:23271142
Advanced methods in fluorescence microscopy.
Fritzky, Luke; Lagunoff, David
2013-01-01
It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbe limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.
Advanced methods in fluorescence microscopy.
Fritzky, Luke; Lagunoff, David
2013-01-01
It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.
Nanodiamonds as multi-purpose labels for microscopy.
Hemelaar, S R; de Boer, P; Chipaux, M; Zuidema, W; Hamoh, T; Martinez, F Perona; Nagl, A; Hoogenboom, J P; Giepmans, B N G; Schirhagl, R
2017-04-07
Nanodiamonds containing fluorescent nitrogen-vacancy centers are increasingly attracting interest for use as a probe in biological microscopy. This interest stems from (i) strong resistance to photobleaching allowing prolonged fluorescence observation times; (ii) the possibility to excite fluorescence using a focused electron beam (cathodoluminescence; CL) for high-resolution localization; and (iii) the potential use for nanoscale sensing. For all these schemes, the development of versatile molecular labeling using relatively small diamonds is essential. Here, we show the direct targeting of a biological molecule with nanodiamonds as small as 70 nm using a streptavidin conjugation and standard antibody labelling approach. We also show internalization of 40 nm sized nanodiamonds. The fluorescence from the nanodiamonds survives osmium-fixation and plastic embedding making them suited for correlative light and electron microscopy. We show that CL can be observed from epon-embedded nanodiamonds, while surface-exposed nanoparticles also stand out in secondary electron (SE) signal due to the exceptionally high diamond SE yield. Finally, we demonstrate the magnetic read-out using fluorescence from diamonds prior to embedding. Thus, our results firmly establish nanodiamonds containing nitrogen-vacancy centers as unique, versatile probes for combining and correlating different types of microscopy, from fluorescence imaging and magnetometry to ultrastructural investigation using electron microscopy.
Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L
2016-12-13
In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.
Enumerating viruses by using fluorescence and the nature of the nonviral background fraction.
Pollard, Peter C
2012-09-01
Bulk fluorescence measurements could be a faster and cheaper way of enumerating viruses than epifluorescence microscopy, flow cytometry, or transmission electron microscopy (TEM). However, since viruses are not imaged, the background fluorescence compromises the signal, and we know little about its nature. In this paper the size ranges of nucleotides that fluoresce in the presence of SYBR gold were determined for wastewater and a range of freshwater samples using a differential filtration method. Fluorescence excitation-emission matrices (FEEMs) showed that >70% of the SYBR fluorescence was in the <10-nm size fraction (background) and was not associated with intact viruses. This was confirmed using TEM. The use of FEEMs to develop a fluorescence-based method for counting viruses is an approach that is fundamentally different from the epifluorescence microscopy technique used for enumerating viruses. This high fluorescence background is currently overlooked, yet it has had a most pervasive influence on the development of a simple fluorescence-based method for quantifying viral abundance in water.
Boundary segmentation for fluorescence microscopy using steerable filters
NASA Astrophysics Data System (ADS)
Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2017-02-01
Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.
Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy
Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.
2013-01-01
Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024
Widefield fluorescence sectioning with HiLo microscopy.
Mertz, Jerome; Lim, Daryl; Chu, Kengyeh K; Bozinovic, Nenad; Ford, Timothy
2009-01-01
HiLo microscopy is a widefield fluorescence imaging technique that provides depth discrimination by combining two images, one with non-uniform illumination and one with uniform illumination. We discuss the theory of this technique and a variety of practical implementations in brain-tissue imaging and fluorescence endomicroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco
Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less
Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics.
Padilla, Nicolas A; Rea, Morgan T; Foy, Michael; Upadhyay, Sunil P; Desrochers, Kyle A; Derus, Tyler; Knapper, Kassandra A; Hunter, Nathanael H; Wood, Sharla; Hinton, Daniel A; Cavell, Andrew C; Masias, Alvaro G; Goldsmith, Randall H
2017-07-28
Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.
Peckys, Diana B; Bandmann, Vera; de Jonge, Niels
2014-01-01
Correlative fluorescence microscopy combined with scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, STEM can be accomplished in two ways. The microchip with the labeled cells and one microchip with a spacer are assembled into a special microfluidic device and imaged with dedicated high-voltage STEM. Alternatively, thin edges of cells can be studied with environmental scanning electron microscopy with a STEM detector, by placing a microchip with cells in a cooled wet environment. © 2014 Elsevier Inc. All rights reserved.
Neumann, M; Herten, D P; Dietrich, A; Wolfrum, J; Sauer, M
2000-02-25
The first capillary array scanner for time-resolved fluorescence detection in parallel capillary electrophoresis based on semiconductor technology is described. The system consists essentially of a confocal fluorescence microscope and a x,y-microscope scanning stage. Fluorescence of the labelled probe molecules was excited using a short-pulse diode laser emitting at 640 nm with a repetition rate of 50 MHz. Using a single filter system the fluorescence decays of different labels were detected by an avalanche photodiode in combination with a PC plug-in card for time-correlated single-photon counting (TCSPC). The time-resolved fluorescence signals were analyzed and identified by a maximum likelihood estimator (MLE). The x,y-microscope scanning stage allows for discontinuous, bidirectional scanning of up to 16 capillaries in an array, resulting in longer fluorescence collection times per capillary compared to scanners working in a continuous mode. Synchronization of the alignment and measurement process were developed to allow for data acquisition without overhead. Detection limits in the subzeptomol range for different dye molecules separated in parallel capillaries have been achieved. In addition, we report on parallel time-resolved detection and separation of more than 400 bases of single base extension DNA fragments in capillary array electrophoresis. Using only semiconductor technology the presented technique represents a low-cost alternative for high throughput DNA sequencing in parallel capillaries.
PREFACE: Ultrafast biophotonics Ultrafast biophotonics
NASA Astrophysics Data System (ADS)
Gu, Min; Reid, Derryck; Ben-Yakar, Adela
2010-08-01
The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and reduced chromatic aberration effects. These extensive advantages have led to further exploration of nonlinear processes including second-harmonic generation (SHG) microscopy and third-harmonic generation (THG) microscopy. Second-harmonic generation has provided biologists with an extremely powerful tool for generating contrast in biological imaging, with the additional benefit of non-invasive three-dimensional imaging. The recent popularity of THG microscopy is largely due to the fact that three-dimensional imaging is achievable without the need for any labels, but rather relying on the intrinsic properties of the biological specimen itself. This optical nonlinear technique has attracted much attention recently from the biological community due to its non-invasive capabilities. Users of ultrafast lasers in the biological and medical fields are becoming a fast-growing community, employing pulse-shaping microscopy, resolution-enhancing microscopy techniques, linear and nonlinear micro-spectroscopy, functional deep-tissue imaging, optical coherence tomography, nonlinear fluorescence microscopy, molecular imaging and control, harmonic microscopy and femtosecond lifetime imaging, for cutting-edge research concerning the interaction of light with biological dynamics. The adaptability of ultrafast lasers to interact with a large array of materials through nonlinear excitation has enabled precise control of laser fluence allowing for highly localized material interactions, permitting micro-structured fabricated surfaces. The resultant multi-dimensional fabricated micro-structures are capable of replicating and/or manipulating microenvironments for controlled cell biology. In this special issue of Journal of Optics readers have a chance to view a collection of new contributions to the growing research field of ultrafast biophotonics. They are presented with recent advances in ultrafast technology applied to biological and medical investigations, where topics include advances in the visualization and identification of photo-reaction dynamics of biological functions under relevant physiological conditions, theoretically proposed imaging designs for obtaining super-resolved optical sectioned images in single exposures and fabricated micro-structured surfaces for biological micro-environments. We hope the collection will stimulate innovative new research in this growing field by showcasing new techniques for the visualization and manipulation of complex biological systems using linear and and nonlinear optical processes. Professor Min Gu would like to acknowledge Dr Betty Kouskousis for her contribution and support towards this editorial.
Schweitzer, Dietrich; Gaillard, Elizabeth R; Dillon, James; Mullins, Robert F; Russell, Stephen; Hoffmann, Birgit; Peters, Sven; Hammer, Martin; Biskup, Christoph
2012-06-08
Time and spectrally resolved measurements of autofluorescence have the potential to monitor metabolism at the cellular level. Fluorophores that emit with the same fluorescence intensity can be discriminated from each other by decay time of fluorescence intensity after pulsed excitation. We performed time-resolved autofluorescence measurements on fundus samples from a donor with significant extramacular drusen. Tissue sections from two human donors were prepared and imaged with a laser scanning microscope. The sample was excited with a titanium-sapphire laser, which was tuned to 860 nm, and frequency doubled by a BBO crystal to 430 nm. The repetition rate was 76 MHz and the pulse width was 170 femtoseconds (fs). The time-resolved autofluorescence was recorded simultaneously in 16 spectral channels (445-605 nm) and bi-exponentially fitted. RPE can be discriminated clearly from Bruch's membrane, drusen, and choroidal connective tissue by fluorescence lifetime. In RPE, bright fluorescence of lipofuscin could be detected with a maximum at 510 nm and extending beyond 600 nm. The lifetime was 385 ps. Different types of drusen were found. Most of them did not contain lipofuscin and exhibited a weak fluorescence, with a maximum at 470 nm. The lifetime was 1785 picoseconds (ps). Also, brightly emitting lesions, presumably representing basal laminar deposits, with fluorescence lifetimes longer than those recorded in RPE could be detected. The demonstrated differentiation of fluorescent structures by their fluorescence decay time is important for interpretation of in vivo measurements by the new fluorescence lifetime imaging (FLIM) ophthalmoscopy on healthy subjects as well as on patients.
Time Resolved Raman and Fluorescence Spectrometer for Planetary Mineralogy
NASA Astrophysics Data System (ADS)
Blacksberg, Jordana; Rossman, George
2010-05-01
Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis which is structure and composition. It does not require sample preparation and provides unique mineral fingerprints, even for mixed phase samples. However, large fluorescence return from many mineral samples under visible light excitation can seriously compromise the quality of the spectra or even render Raman spectra unattainable. Fluorescence interference is likely to be a problem on Mars and is evident in Raman spectra of Martian Meteorites[1]. Our approach uses time resolution for elimination of fluorescence from Raman spectra, allowing for traditional visible laser excitation (532 nm). Since Raman occurs instantaneously with the laser pulse and fluorescence lifetimes vary from nsec to msec depending on the mineral, it is possible to separate them out in time. Complementary information can also be obtained simultaneously using the time resolved fluorescence data. The Simultaneous Spectral Temporal Adaptive Raman Spectrometer (SSTARS) is a planetary instrument under development at the Jet Propulsion Laboratory, capable of time-resolved in situ Raman and fluorescence spectroscopy. A streak camera and pulsed miniature microchip laser provide psec scale time resolution. Our ability to observe the complete time evolution of Raman and fluorescence in minerals provides a foundation for design of pulsed Raman and fluorescence spectrometers in diverse planetary environments. We will discuss the SSTARS instrument design and performance capability. We will also present time-resolved pulsed Raman spectra collected from a relevant set of minerals selected using available data on Mars mineralogy[2]. Of particular interest are minerals resulting from aqueous alteration on Mars. For comparison, we will present Raman spectra obtained using a commercial continuous wave (CW) green (514 nm) Raman system. In many cases using a CW laser the strong mineral fluorescence saturates the detector and Raman spectra are unattainable. This problem is overcome by using time resolved Raman where fluorescence is eliminated. [1]Frosch et al., Anal. Chem. 2007, 79, 1101-1108 [2]Bell, J.,ed, The Martian Surface: Composition, Mineralogy, and physical Properties, Cambridge University Press, 2008
Development of High-Pressure Structural and Cellular Biophysics at Miami University
NASA Astrophysics Data System (ADS)
Urayama, Paul
2004-04-01
Pressures found in the biosphere (up to 1200 atm) have large effects on enzyme specificity and activity, molecular associations, protein folding, viral infectivity, and cellular morphology. The importance of pressure in pharmaceuticals, medical, and biomaterials sciences is beginning to be appreciated. Enzyme reactions under high pressure or in supercritical fluids may be promising in the synthesis of pharmaceuticals. High pressure processing of biopolymer networks may be important in producing matrices for biomaterials applications. In medicine, herpes, immunodeficiency viruses, and certain prion proteins are inactivated by pressure, which may be useful in the ex vivo treatment of blood. Even physiologically generated pressures, such as during colon peristalsis, have biological effects, for example, on the adhesion properties of epithelial cells in colon cancer. This presentation describes a new high-pressure structural and cellular biophysics laboratory under development at Miami University. Applications of specific methods, including high-pressure time-resolved fluorescence spectroscopy; high-pressure fluorescence microscopy; and high-pressure x-ray macromolecular crystallography will be discussed.
NASA Astrophysics Data System (ADS)
Block, Stephan; Fast, Björn Johansson; Lundgren, Anders; Zhdanov, Vladimir P.; Höök, Fredrik
2016-09-01
Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging. Optical microscopy allows precise determination of fluorescence/scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. Here, we show that by attaching BNPs to a supported lipid bilayer, subjecting them to hydrodynamic flows and tracking their motion via surface-sensitive optical imaging enable determination of their diffusion coefficients and flow-induced drifts, from which accurate quantification of both BNP size and emission intensity can be made. For vesicles, the accuracy of this approach is demonstrated by resolving the expected radius-squared dependence of their fluorescence intensity for radii down to 15 nm.
Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection
Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo
2016-01-01
We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944
NASA Astrophysics Data System (ADS)
McConnell, Gail; Riis, Erling
2004-10-01
We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM.
Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jian, E-mail: jian@cfs.bioment.umaryland.edu; Fu, Yi; Li, Ge
2012-08-31
Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent,more » but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Zubir, Osama; Xia, Sijing; Ducker, Robert E.
We show that sequential protein deposition is possible by photodeprotection of films formed from a tetraethylene-glycol functionalized nitrophenylethoxycarbonyl-protected aminopropyltriethoxysilane (NPEOC-APTES). Exposure to near-UV irradiation removes the protein-resistant protecting group, and allows protein adsorption onto the resulting aminated surface. The protein resistance was tested using proteins with fluorescent labels and microspectroscopy of two-component structures formed by micro- and nanopatterning and deposition of yellow and green fluorescent proteins (YFP/GFP). Nonspecific adsorption onto regions where the protecting group remained intact was negligible. Multiple component patterns were also formed by near-field methods. Because reading and writing can be decoupled in a near-field microscope, itmore » is possible to carry out sequential patterning steps at a single location involving different proteins. Up to four different proteins were formed into geometric patterns using near-field lithography. Interferometric lithography facilitates the organization of proteins over square cm areas. Two-component patterns consisting of 150 nm streptavidin dots formed within an orthogonal grid of bars of GFP at a period of ca. 500 nm could just be resolved by fluorescence microscopy.« less
Single molecule fluorescence microscopy for ultra-sensitive RNA expression profiling
NASA Astrophysics Data System (ADS)
Hesse, Jan; Jacak, Jaroslaw; Regl, Gerhard; Eichberger, Thomas; Aberger, Fritz; Schlapak, Robert; Howorka, Stefan; Muresan, Leila; Frischauf, Anna-Maria; Schütz, Gerhard J.
2007-02-01
We developed a microarray analysis platform for ultra-sensitive RNA expression profiling of minute samples. It utilizes a novel scanning system for single molecule fluorescence detection on cm2 size samples in combination with specialized biochips, optimized for low autofluorescence and weak unspecific adsorption. 20 μg total RNA was extracted from 10 6 cells of a human keratinocyte cell line (HaCaT) and reversely transcribed in the presence of Alexa647-aha-dUTP. 1% of the resulting labeled cDNA was used for complex hybridization to a custom-made oligonucleotide microarray representing a set of 125 different genes. For low abundant genes, individual cDNA molecules hybridized to the microarray spots could be resolved. Single cDNA molecules hybridized to the chip surface appeared as diffraction limited features in the fluorescence images. The à trous wavelet method was utilized for localization and counting of the separated cDNA signals. Subsequently, the degree of labeling of the localized cDNA molecules was determined by brightness analysis for the different genes. Variations by factors up to 6 were found, which in conventional microarray analysis would result in a misrepresentation of the relative abundance of mRNAs.
El Zubir, Osama; Xia, Sijing; Ducker, Robert E.; ...
2017-05-27
We show that sequential protein deposition is possible by photodeprotection of films formed from a tetraethylene-glycol functionalized nitrophenylethoxycarbonyl-protected aminopropyltriethoxysilane (NPEOC-APTES). Exposure to near-UV irradiation removes the protein-resistant protecting group, and allows protein adsorption onto the resulting aminated surface. The protein resistance was tested using proteins with fluorescent labels and microspectroscopy of two-component structures formed by micro- and nanopatterning and deposition of yellow and green fluorescent proteins (YFP/GFP). Nonspecific adsorption onto regions where the protecting group remained intact was negligible. Multiple component patterns were also formed by near-field methods. Because reading and writing can be decoupled in a near-field microscope, itmore » is possible to carry out sequential patterning steps at a single location involving different proteins. Up to four different proteins were formed into geometric patterns using near-field lithography. Interferometric lithography facilitates the organization of proteins over square cm areas. Two-component patterns consisting of 150 nm streptavidin dots formed within an orthogonal grid of bars of GFP at a period of ca. 500 nm could just be resolved by fluorescence microscopy.« less
NASA Astrophysics Data System (ADS)
Kar, Prasenjit; Sardar, Samim; Liu, Bo; Sreemany, Monjoy; Lemmens, Peter; Ghosh, Srabanti; Pal, Samir Kumar
2016-01-01
Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.
DNA origami-based standards for quantitative fluorescence microscopy.
Schmied, Jürgen J; Raab, Mario; Forthmann, Carsten; Pibiri, Enrico; Wünsch, Bettina; Dammeyer, Thorben; Tinnefeld, Philip
2014-01-01
Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.
Szczurek, Aleksander; Klewes, Ludger; Xing, Jun; Gourram, Amine; Birk, Udo; Knecht, Hans; Dobrucki, Jurek W.; Mai, Sabine
2017-01-01
Abstract Advanced light microscopy is an important tool for nanostructure analysis of chromatin. In this report we present a general concept for Single Molecule localization Microscopy (SMLM) super-resolved imaging of DNA-binding dyes based on modifying the properties of DNA and the dye. By careful adjustment of the chemical environment leading to local, reversible DNA melting and hybridization control over the fluorescence signal of the DNA-binding dye molecules can be introduced. We postulate a transient binding as the basis for our variation of binding-activated localization microscopy (BALM). We demonstrate that several intercalating and minor-groove binding DNA dyes can be used to register (optically isolate) only a few DNA-binding dye signals at a time. To highlight this DNA structure fluctuation-assisted BALM (fBALM), we applied it to measure, for the first time, nanoscale differences in nuclear architecture in model ischemia with an anticipated structural resolution of approximately 50 nm. Our data suggest that this approach may open an avenue for the enhanced microscopic analysis of chromatin nano-architecture and hence the microscopic analysis of nuclear structure aberrations occurring in various pathological conditions. It may also become possible to analyse nuclear nanostructure differences in different cell types, stages of development or environmental stress conditions. PMID:28082388
The development of optical microscopy techniques for the advancement of single-particle studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchuk, Kyle
2013-05-15
Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-fieldmore » imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.« less
The development of optical microscopy techniques for the advancement of single-particle studies
NASA Astrophysics Data System (ADS)
Marchuk, Kyle
Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.
Wedding, Jason L.; Harris, Hugh H.; Bader, Christie A.; ...
2016-11-23
Optical fluorescence microscopy was used in conjunction with X-ray fluorescence microscopy to monitor the stability and intracellular distribution of the luminescent rhenium(I) complex fac-[Re(CO) 3(phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex, in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence techniques. Furthermore, X-ray fluorescence also showed that the Re-I complex disrupted the homeostasis of some biologically relevant elements,more » such as chlorine, potassium and zinc.« less
Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain
NASA Astrophysics Data System (ADS)
De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.
1991-06-01
PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.
Microscopy and Image Analysis.
McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R
2017-07-11
This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T
2018-06-01
We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.
NASA Astrophysics Data System (ADS)
DeArmond, Fredrick Michael
As optical microscopy techniques continue to improve, most notably the development of super-resolution optical microscopy which garnered the Nobel Prize in Chemistry in 2014, renewed emphasis has been placed on the development and use of fluorescence microscopy techniques. Of particular note is a renewed interest in multiphoton excitation due to a number of inherent properties of the technique including simplified optical filtering, increased sample penetration, and inherently confocal operation. With this renewed interest in multiphoton fluorescence microscopy, comes an increased demand for robust non-linear fluorescent markers, and characterization of the associated tool set. These factors have led to an experimental setup to allow a systematized approach for identifying and characterizing properties of fluorescent probes in the hopes that the tool set will provide researchers with additional information to guide their efforts in developing novel fluorophores suitable for use in advanced optical microscopy techniques as well as identifying trends for their synthesis. Hardware was setup around a software control system previously developed. Three experimental tool sets were set up, characterized, and applied over the course of this work. These tools include scanning multiphoton fluorescence microscope with single molecule sensitivity, an interferometric autocorrelator for precise determination of the bandwidth and pulse width of the ultrafast Titanium Sapphire excitation source, and a simplified fluorescence microscope for the measurement of two-photon absorption cross sections. Resulting values for two-photon absorption cross sections and two-photon absorption action cross sections for two standardized fluorophores, four commercially available fluorophores, and ten novel fluorophores are presented as well as absorption and emission spectra.
Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy
Liv, Nalan; van Oosten Slingeland, Daan S. B.; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W.; Hoogenboom, Jacob P.
2016-01-01
We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization. PMID:26580231
NASA Astrophysics Data System (ADS)
Gerega, Anna; Milej, Daniel; Weigl, Wojciech; Botwicz, Marcin; Zolek, Norbert; Kacprzak, Michal; Wierzejski, Wojciech; Toczylowska, Beata; Mayzner-Zawadzka, Ewa; Maniewski, Roman; Liebert, Adam
2012-08-01
Optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for clinical assessment of brain perfusion in adults at the bedside. Methodology of multiwavelength and time-resolved detection of fluorescence light excited in the ICG is presented and advantages of measurements at multiple wavelengths are discussed. Measurements were carried out: 1. on a physical homogeneous phantom to study the concentration dependence of the fluorescence signal, 2. on the phantom to simulate the dynamic inflow of ICG at different depths, and 3. in vivo on surface of the human head. Pattern of inflow and washout of ICG in the head of healthy volunteers after intravenous injection of the dye was observed for the first time with time-resolved instrumentation at multiple emission wavelengths. The multiwavelength detection of fluorescence signal confirms that at longer emission wavelengths, probability of reabsorption of the fluorescence light by the dye itself is reduced. Considering different light penetration depths at different wavelengths, and the pronounced reabsorption at longer wavelengths, the time-resolved multiwavelength technique may be useful in signal decomposition, leading to evaluation of extra- and intracerebral components of the measured signals.
Projected Uses of Cellular Models and Fluorescence Microscopy for Identification of Antivesicants
1993-05-13
AD-P008 761 PROJECTED USES OF CELLULAR MODELS AND FLUORESCENCE MICROSCOPY FOR IDENTIFICATION OF ANTIVESICANTS Millard M. Mershon, Stacey M...epidermal keratinocytes (NHEK), fluorescent dye marker probes and spectrofluorometry led to a preliminary feasibility study’ This showed that the...acetoxymethyl ester that is taken into cells and cleaved by intracellular esterases’. It remains as a fluorescent marker until it leaks out through damaged
Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging
NASA Astrophysics Data System (ADS)
Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei
2014-02-01
Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.
Burnette, Dylan T; Sengupta, Prabuddha; Dai, Yuhai; Lippincott-Schwartz, Jennifer; Kachar, Bechara
2011-12-27
Superresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on photoactivated proteins or photoswitching dyes, respectively, which makes them technically challenging. We present a simple and practical way of producing point localization-based superresolution images that does not require photoactivatable or photoswitching probes. Called bleaching/blinking assisted localization microscopy (BaLM), the technique relies on the intrinsic bleaching and blinking behaviors characteristic of all commonly used fluorescent probes. To detect single fluorophores, we simply acquire a stream of fluorescence images. Fluorophore bleach or blink-off events are detected by subtracting from each image of the series the subsequent image. Similarly, blink-on events are detected by subtracting from each frame the previous one. After image subtractions, fluorescence emission signals from single fluorophores are identified and the localizations are determined by fitting the fluorescence intensity distribution with a theoretical Gaussian. We also show that BaLM works with a spectrum of fluorescent molecules in the same sample. Thus, BaLM extends single molecule-based superresolution localization to samples labeled with multiple conventional fluorescent probes.
The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, D.; Jonge, M. D. de; Howard, D. L.
2011-09-09
A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.
Jia, Zhiyan; Hu, Wentao; Xiang, Jianyong; Wen, Fusheng; Nie, Anmin; Mu, Congpu; Zhao, Zhisheng; Xu, Bo; Tian, Yongjun; Liu, Zhongyuan
2018-06-22
Centimeter-scale continuous monolayer WS 2 film with large tensile strain has been successfully grown on oxidized silicon substrate by chemical vapor deposition, in which monolayer grains can be more than 200 μm in size. Monolayer WS 2 grains are observed to merge together via not only traditional grain boundaries but also non-traditional ones, which are named as grain walls (GWs) due to their nanometer-scale widths. The GWs are revealed to consist of two or three layers. Though not a monolayer, the GWs exhibit significantly enhanced fluorescence and photoluminescence. This enhancement may be attributed to abundant structural defects such as stacking faults and partial dislocations in the GWs, which are clearly observable in atomically resolved high resolution transmission electron microscopy and scanning transmission electron microscopy images. Moreover, GW-based phototransistor is found to deliver higher photocurrent than that based on monolayer film. These features of GWs provide a clue to microstructure engineering of monolayer WS 2 for specific applications in (opto)electronics.
High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.
Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi
2017-06-21
Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, Zhiyan; Hu, Wentao; Xiang, Jianyong; Wen, Fusheng; Nie, Anmin; Mu, Congpu; Zhao, Zhisheng; Xu, Bo; Tian, Yongjun; Liu, Zhongyuan
2018-06-01
Centimeter-scale continuous monolayer WS2 film with large tensile strain has been successfully grown on oxidized silicon substrate by chemical vapor deposition, in which monolayer grains can be more than 200 μm in size. Monolayer WS2 grains are observed to merge together via not only traditional grain boundaries but also non-traditional ones, which are named as grain walls (GWs) due to their nanometer-scale widths. The GWs are revealed to consist of two or three layers. Though not a monolayer, the GWs exhibit significantly enhanced fluorescence and photoluminescence. This enhancement may be attributed to abundant structural defects such as stacking faults and partial dislocations in the GWs, which are clearly observable in atomically resolved high resolution transmission electron microscopy and scanning transmission electron microscopy images. Moreover, GW-based phototransistor is found to deliver higher photocurrent than that based on monolayer film. These features of GWs provide a clue to microstructure engineering of monolayer WS2 for specific applications in (opto)electronics.
Heiner, Zsuzsanna; Zeise, Ingrid; Elbaum, Rivka; Kneipp, Janina
2018-04-01
Spontaneous Raman scattering microspectroscopy, second harmonic generation (SHG) and 2-photon excited fluorescence (2PF) were used in combination to characterize the morphology together with the chemical composition of the cell wall in native plant tissues. As the data obtained with unstained sections of Sorghum bicolor root and leaf tissues illustrate, nonresonant as well as pre-resonant Raman microscopy in combination with hyperspectral analysis reveals details about the distribution and composition of the major cell wall constituents. Multivariate analysis of the Raman data allows separation of different tissue regions, specifically the endodermis, xylem and lumen. The orientation of cellulose microfibrils is obtained from polarization-resolved SHG signals. Furthermore, 2-photon autofluorescence images can be used to image lignification. The combined compositional, morphological and orientational information in the proposed coupling of SHG, Raman imaging and 2PF presents an extension of existing vibrational microspectroscopic imaging and multiphoton microscopic approaches not only for plant tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.
Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian
2015-12-16
Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.
Harnessing cell-to-cell variations to probe bacterial structure and biophysics
NASA Astrophysics Data System (ADS)
Cass, Julie A.
Advances in microscopy and biotechnology have given us novel insights into cellular biology and physics. While bacteria were long considered to be relatively unstructured, the development of fluorescence microscopy techniques, and spatially and temporally resolved high-throughput quantitative studies, have uncovered that the bacterial cell is highly organized, and its structure rigorously maintained. In this thesis I will describe our gateTool software, designed to harness cell-to-cell variations to probe bacterial structure, and discuss two exciting aspects of structure that we have employed gateTool to investigate: (i) chromosome organization and the cellular mechanisms for controlling DNA dynamics, and (ii) the study of cell wall synthesis, and how the genes in the synthesis pathway impact cellular shape. In the first project, we develop a spatial and temporal mapping of cell-cycle-dependent chromosomal organization, and use this quantitative map to discover that chromosomal loci segregate from midcell with universal dynamics. In the second project, I describe preliminary time- lapse and snapshot imaging analysis suggesting phentoypical coherence across peptidoglycan synthesis pathways.
Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope
Otsuka, Shotaro; Bui, Khanh Huy; Schorb, Martin; Hossain, M Julius; Politi, Antonio Z; Koch, Birgit; Eltsov, Mikhail; Beck, Martin; Ellenberg, Jan
2016-01-01
The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence microscopy revealed the molecular maturation of the intermediates, which initially contained the nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament component Nup358. EM particle averaging showed that the evagination base was surrounded by an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-shaped density was continuously associated with the deforming membrane. Quantitative structural analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of the INM. DOI: http://dx.doi.org/10.7554/eLife.19071.001 PMID:27630123
X-ray micro-modulated luminescence tomography (XMLT)
Cong, Wenxiang; Liu, Fenglin; Wang, Chao; Wang, Ge
2014-01-01
Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach. PMID:24663898
Identification and super-resolution imaging of ligand-activated receptor dimers in live cells
NASA Astrophysics Data System (ADS)
Winckler, Pascale; Lartigue, Lydia; Giannone, Gregory; de Giorgi, Francesca; Ichas, François; Sibarita, Jean-Baptiste; Lounis, Brahim; Cognet, Laurent
2013-08-01
Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule Förster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-localization. This methodology which is specifically devoted to the study of molecules in interaction, may find other applications in biological systems where understanding of molecular organization is crucial.
Nitride microlens arrays for blue and ultraviolet wavelength applications
NASA Astrophysics Data System (ADS)
Oder, T. N.; Shakya, J.; Lin, J. Y.; Jiang, H. X.
2003-05-01
Nitride microlens arrays with sizes as small as 10 μm in diameter have been fabricated on GaN and AlN epilayers using the method of photoresist reflow and inductively coupled plasma dry etching. The focal lengths of the microlenses varied from 7-30 μm as determined by theoretical fitting as well as by the near-field scanning optical microscopy measurement. Scanning electron and atomic force microscopies were used to obtain the surface profile of the microlenses which were found to match very well with hemispherical fitting and a surface roughness value around 1 nm was obtained. Nitride microlens arrays would be naturally chosen for green/blue to deep ultraviolet wavelength applications. In addition, nitride microlenses offer the possibility of integrating nitride-based microsize photonic devices as well as of coupling light into, out of, and between arrays of III-nitride emitters for other applications, such as spatially resolved fluorescence spectroscopy studies of biological and medical systems and optical links, thereby further expanding the applications of III nitrides.
Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...
2016-04-22
Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less
Berclaz, Corinne; Pache, Christophe; Bouwens, Arno; Szlag, Daniel; Lopez, Antonio; Joosten, Lieke; Ekim, Selen; Brom, Maarten; Gotthardt, Martin; Grapin-Botton, Anne; Lasser, Theo
2015-01-01
The identification of a beta-cell tracer is a major quest in diabetes research. However, since MRI, PET and SPECT cannot resolve individual islets, optical techniques are required to assess the specificity of these tracers. We propose to combine Optical Coherence Microscopy (OCM) with fluorescence detection in a single optical platform to facilitate these initial screening steps from cell culture up to living rodents. OCM can image islets and vascularization without any labeling. Thereby, it alleviates the need of both genetically modified mice to detect islets and injection of external dye to reveal vascularization. We characterized Cy5.5-exendin-3, an agonist of glucagon-like peptide 1 receptor (GLP1R), for which other imaging modalities have been used and can serve as a reference. Cultured cells transfected with GLP1R and incubated with Cy5.5-exendin-3 show full tracer internalization. We determined that a dose of 1 μg of Cy5.5-exendin-3 is sufficient to optically detect in vivo the tracer in islets with a high specificity. In a next step, time-lapse OCM imaging was used to monitor the rapid and specific tracer accumulation in murine islets and its persistence over hours. This optical platform represents a versatile toolbox for selecting beta-cell specific markers for diabetes research and future clinical diagnosis. PMID:25988507
Walsh, James; Böcking, Till; Gaus, Katharina
2017-01-01
Modern fluorescence microscopy requires software-controlled illumination sources with high power across a wide range of wavelengths. Diode lasers meet the power requirements and combining multiple units into a single fiber launch expands their capability across the required spectral range. We present the NicoLase, an open-source diode laser combiner, fiber launch, and software sequence controller for fluorescence microscopy and super-resolution microscopy applications. Two configurations are described, giving four or six output wavelengths and one or two single-mode fiber outputs, with all CAD files, machinist drawings, and controller source code openly available. PMID:28301563
BHHST: An improved lanthanide chelate for time-resolved fluorescence applications
NASA Astrophysics Data System (ADS)
Connally, Russell; Jin, Dayong; Piper, James
2005-04-01
The detection of the waterborne pathogens Giardia lamblia and Cryptosporidium parvum in environmental water bodies requires concentration of large volumes of water due to the low dose required for infection. The highly concentrated (10,000-fold) water sample is often rich in strongly autofluorescent algae, organic debris and mineral particles that can obscure immunofluorescently labeled (oo)cysts during analysis. Time-resolved fluorescence techniques exploit the long fluorescence lifetimes of lanthanide chelates (ms) to differentiate target fluorescence from background autofluorescence (ns). Relatively simple instrumentation can be used to enhance the signal-to-noise ratio (S/N) of labelled target. Time-resolved fluorescence techniques exploit the large difference in lifetime by briefly exciting fluorescence from the sample using a pulsed excitation source. Capture of the resulting fluorescence emission is delayed until the more rapidly decaying autofluorescence has faded beyond detection, whereon the much stronger and slower fading emission from labelled target is collected. BHHCT is a tetradentate beta-diketone chelate that is activated to bind with protein (antibody) as the chlorosulfonate. The high activity of this residue makes conjugations difficult to control and can lead to the formation of unstable immunoconjugates. To overcome these limitations a 5-atom hydrophylic molecular tether was attached to BHHCT via the chlorosulfonate and the BHHCT derivative was then activated to bind to proteins as the succinimide. The new compound (BHHST) could be prepared in high purity and was far more stable than the chlorosulfonate on storage. A high activity immunocojugate was prepared against Cryptosporidium that yielded an 8-fold increase in SNR using a lab-built time-resolved fluorescence microscope.
Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C
2015-08-01
In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
HÖHN, K.; FUCHS, J.; FRÖBER, A.; KIRMSE, R.; GLASS, B.; ANDERS‐ÖSSWEIN, M.; WALTHER, P.; KRÄUSSLICH, H.‐G.
2015-01-01
Summary In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells. PMID:25786567
Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico
2015-10-01
Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.
Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo.
Krasieva, Tatiana B; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L; Gratton, Enrico; Tromberg, Bruce J
2013-03-01
Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λ(ex)=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6 ± 0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5 ± 0.05 and 0.17 ± 0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.
Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo
NASA Astrophysics Data System (ADS)
Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico; Tromberg, Bruce J.
2013-03-01
Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.
Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo
Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico
2012-01-01
Abstract. Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo. PMID:23235925
Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng
2017-10-30
Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.
Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements
NASA Astrophysics Data System (ADS)
Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans
2001-05-01
Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.
NASA Astrophysics Data System (ADS)
Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen
2017-04-01
Imaging of the pharmacokinetic parameters in dynamic fluorescence molecular tomography (DFMT) can provide three-dimensional metabolic information for biological studies and drug development. However, owing to the ill-posed nature of the FMT inverse problem, the relatively low quality of the parametric images makes it difficult to investigate the different metabolic processes of the fluorescent targets with small distances. An excitation-resolved multispectral DFMT method is proposed; it is based on the fact that the fluorescent targets with different concentrations show different variations in the excitation spectral domain and can be considered independent signal sources. With an independent component analysis method, the spatial locations of different fluorescent targets can be decomposed, and the fluorescent yields of the targets at different time points can be recovered. Therefore, the metabolic process of each component can be independently investigated. Simulations and phantom experiments are carried out to evaluate the performance of the proposed method. The results demonstrated that the proposed excitation-resolved multispectral method can effectively improve the reconstruction accuracy of the parametric images in DFMT.
Colello, Raymond J; Tozer, Jordan; Henderson, Scott C
2012-01-01
Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.
Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe
2016-06-01
We recently proposed a straightforward fluorescence microscopy technique to study adhesion of Giant Unilamellar Vesicles. This technique is based on dual observations which combine epi-fluorescence microscopy and total internal reflection fluorescence (TIRF) microscopy: TIRF images are normalized by epi-fluorescence ones. By this way, it is possible to map the membrane/substrate separation distance with a nanometric resolution, typically ~20 nm, with a maximal working range of 300-400 nm. The purpose of this paper is to demonstrate that this technique is useful to quantify vesicle adhesion from ultra-weak to strong membrane-surface interactions. Thus, we have examined unspecific and specific adhesion conditions. Concerning unspecific adhesion, we have controlled the strength of electrostatic forces between negatively charged vesicles and various functionalized surfaces which exhibit a positive or a negative effective charge. Specific adhesion was highlighted with lock-and-key forces mediated by the well defined biotin/streptavidin recognition. Copyright © 2016 Elsevier B.V. All rights reserved.
Applications of two-photon fluorescence microscopy in deep-tissue imaging
NASA Astrophysics Data System (ADS)
Dong, Chen-Yuan; Yu, Betty; Hsu, Lily L.; Kaplan, Peter D.; Blankschstein, D.; Langer, Robert; So, Peter T. C.
2000-07-01
Based on the non-linear excitation of fluorescence molecules, two-photon fluorescence microscopy has become a significant new tool for biological imaging. The point-like excitation characteristic of this technique enhances image quality by the virtual elimination of off-focal fluorescence. Furthermore, sample photodamage is greatly reduced because fluorescence excitation is limited to the focal region. For deep tissue imaging, two-photon microscopy has the additional benefit in the greatly improved imaging depth penetration. Since the near- infrared laser sources used in two-photon microscopy scatter less than their UV/glue-green counterparts, in-depth imaging of highly scattering specimen can be greatly improved. In this work, we will present data characterizing both the imaging characteristics (point-spread-functions) and tissue samples (skin) images using this novel technology. In particular, we will demonstrate how blind deconvolution can be used further improve two-photon image quality and how this technique can be used to study mechanisms of chemically-enhanced, transdermal drug delivery.
Wu, Jianglai; Tang, Anson H. L.; Mok, Aaron T. Y.; Yan, Wenwei; Chan, Godfrey C. F.; Wong, Kenneth K. Y.; Tsia, Kevin K.
2017-01-01
Apart from the spatial resolution enhancement, scaling of temporal resolution, equivalently the imaging throughput, of fluorescence microscopy is of equal importance in advancing cell biology and clinical diagnostics. Yet, this attribute has mostly been overlooked because of the inherent speed limitation of existing imaging strategies. To address the challenge, we employ an all-optical laser-scanning mechanism, enabled by an array of reconfigurable spatiotemporally-encoded virtual sources, to demonstrate ultrafast fluorescence microscopy at line-scan rate as high as 8 MHz. We show that this technique enables high-throughput single-cell microfluidic fluorescence imaging at 75,000 cells/second and high-speed cellular 2D dynamical imaging at 3,000 frames per second, outperforming the state-of-the-art high-speed cameras and the gold-standard laser scanning strategies. Together with its wide compatibility to the existing imaging modalities, this technology could empower new forms of high-throughput and high-speed biological fluorescence microscopy that was once challenged. PMID:28966855
Photocontrollable Fluorescent Proteins for Superresolution Imaging
Shcherbakova, Daria M.; Sengupta, Prabuddha; Lippincott-Schwartz, Jennifer; Verkhusha, Vladislav V.
2014-01-01
Superresolution fluorescence microscopy permits the study of biological processes at scales small enough to visualize fine subcellular structures that are unresolvable by traditional diffraction-limited light microscopy. Many superresolution techniques, including those applicable to live cell imaging, utilize genetically encoded photocontrollable fluorescent proteins. The fluorescence of these proteins can be controlled by light of specific wavelengths. In this review, we discuss the biochemical and photophysical properties of photocontrollable fluorescent proteins that are relevant to their use in superresolution microscopy. We then describe the recently developed photoactivatable, photoswitchable, and reversibly photoswitchable fluorescent proteins, and we detail their particular usefulness in single-molecule localization–based and nonlinear ensemble–based superresolution techniques. Finally, we discuss recent applications of photocontrollable proteins in superresolution imaging, as well as how these applications help to clarify properties of intracellular structures and processes that are relevant to cell and developmental biology, neuroscience, cancer biology and biomedicine. PMID:24895855
Single-molecule imaging of cytoplasmic dynein in vivo.
Ananthanarayanan, Vaishnavi; Tolić, Iva M
2015-01-01
While early fluorescence microscopy experiments employing fluorescent probes afforded snapshots of the cell, the power of live-cell microscopy is required to understand complex dynamics in biological processes. The first successful cloning of green fluorescent protein in the 1990s paved the way for development of approaches that we now utilize for visualization in a living cell. In this chapter, we discuss a technique to observe fluorescently tagged single molecules in fission yeast. With a few simple modifications to the established total internal reflection fluorescence microscopy, cytoplasmic dynein molecules in the cytoplasm and on the microtubules can be visualized and their intracellular dynamics can be studied. We illustrate a technique to study motor behavior, which is not apparent in conventional ensemble studies of motors. In general, this technique can be employed to study single-molecule dynamics of fluorescently tagged proteins in the cell interior. Copyright © 2015 Elsevier Inc. All rights reserved.
Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy.
Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro
2017-05-01
A technique of three-dimensional (3D) intensity retrieval from defocused, two-dimensional (2D) fluorescent images in the multimodal digital holographic microscopy (DHM) is proposed. In the multimodal DHM, 3D phase and 2D fluorescence distributions are obtained simultaneously by an integrated system of an off-axis DHM and a conventional epifluorescence microscopy, respectively. This gives us more information of the target; however, defocused fluorescent images are observed due to the short depth of field. In this Letter, we propose a method to recover the defocused images based on the phase compensation and backpropagation from the defocused plane to the focused plane using the distance information that is obtained from a 3D phase distribution. By applying Zernike polynomial phase correction, we brought back the fluorescence intensity to the focused imaging planes. The experimental demonstration using fluorescent beads is presented, and the expected applications are suggested.
Cheng, Ying; Ren, Mingming; Niu, Yanyan; Qiao, Jianhua; Aneba, S; Chorvat, D; Chorvatova, A
2009-12-01
The primary function of cardiac mitochondria is the production of ATP to support heart contraction. Examination of the mitochondrial redox state is therefore crucially important to sensitively detect early signs of mitochondrial function in pathophysiological conditions, such as ischemia, diabetes and heart failure. We study fingerprinting of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H, the principal electron donor in mitochondrial respiration responsible for vital ATP supply. Here NAD(P)H is studied as a marker for non-invasive fluorescent probing of the mitochondrial function. NAD(P) H fluorescence is recorded in cardiac cells following excitation with 375nm UV-light and detection by spectrally-resolved time-correlated single photon counting (TCSPC), based on the simultaneous measurement of the fluorescence spectra and fluorescence lifetimes. Modulation of NADH production and/or mitochondrial respiration is tested to study dynamic characteristics of NAD(P) H fluorescence decay. Our results show that at least a 3-exponential decay model, with 0.4-0.7ns, 1.2-1.9ns and 8.0-13. Ons lifetime pools is necessary to describe cardiomyocyte autofluorescence (AF) within 420-560nm spectral range. Increased mitochondrial NADH production by ketone bodies enhanced the fluorescence intensity, without significant change in fluorescent lifetimes. Rotenone, the inhibitor of Complex I of the mitochondrial respiratory chain, increased AF intensity and shortened the average fluorescence lifetime. Dinitrophenol (DNP), an uncoupling agent of the mitochondrial oxidative phosphorylation, lowered AF intensity, broadened the spectral shoulder at 520 nm and increased the average fluorescence lifetime. These effects are comparable to the study of NADH fluorescence decay in vitro. In the present contribution we demonstrated that spectrally-resolved fluorescence lifetime technique provides promising new tool for analysis of mitochondrial NAD(P) H fluorescence with good reproducibility in living cardiomyocytes. This approach will enhance our knowledge about cardiomyocyte oxidative metabolism and/or its dysfunction at a cellular level. In the future, this approach can prove helpful in the clinical diagnosis and treatment of mitochondrial disorder.
Occhipinti, Andrea; Maffei, Massimo E
2013-10-01
Chlorophyll and chlorophyll degradation products were observed in the two-spotted spider mite (Tetranychus urticae) using epifluorescence microscopy (EFM) and confocal laser scanning microscopy (CLSM). A clear red fluorescence (EFM) and a fluorescence induced by a laser wavelength of 650 nm (CLSM) were observed. In the lateral caeca, in the ventriculus and in the excretory organ, a bright light blue fluorescence was observed in close association with chlorophyll by using EFM. The same material can be localized with CLSM by using a laser with a wavelength of 488 nm. By comparison with synthetic guanine, this bright fluorescence is supposed to be guanine. The presence of guanine fluorescence in the mite pellets confirms this hypothesis. A possible mechanism for guanine formation is discussed.
Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells.
Day, Richard N; Davidson, Michael W
2012-05-01
The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs. Copyright © 2012 WILEY Periodicals, Inc.
Lidke, Diane S; Lidke, Keith A
2012-06-01
A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.
NASA Astrophysics Data System (ADS)
Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Pfeffer, Karoline; Wohlfarth, Sven; Hannesschläger, Günther; Klar, Thomas A.; Berer, Thomas
2018-02-01
In this paper, multimodal optical-resolution frequency-domain photoacoustic and fluorescence scanning microscopy is presented on labeled and unlabeled cells. In many molecules, excited electrons relax radiatively and non-radiatively, leading to fluorescence and photoacoustic signals, respectively. Both signals can then be detected simultaneously. There also exist molecules, e.g. hemoglobin, which do not exhibit fluorescence, but provide photoacoustic signals solely. Other molecules, especially fluorescent dyes, preferentially exhibit fluorescence. The fluorescence quantum yield of a molecule and with it the strength of photoacoustic and fluorescence signals depends on the local environment, e.g. on the pH. Therefore, the local distribution of the simultaneously recorded photoacoustic and fluorescence signals may be used in order to obtain information about the local chemistry.
A flash-lamp based device for fluorescence detection and identification of individual pollen grains.
Kiselev, Denis; Bonacina, Luigi; Wolf, Jean-Pierre
2013-03-01
We present a novel optical aerosol particle detector based on Xe flash lamp excitation and spectrally resolved fluorescence acquisition. We demonstrate its performances on three natural pollens acquiring in real-time scattering intensity at two wavelengths, sub-microsecond time-resolved scattering traces of the particles' passage in the focus, and UV-excited fluorescence spectra. We show that the device gives access to a rather specific detection of the bioaerosol particles.
NASA Astrophysics Data System (ADS)
Mandal, Gopa; Bhattacharya, Sudeshna; Ganguly, Tapan
2011-07-01
The interactions between two heme proteins myoglobin (HMb) and horseradish peroxidase (HRP) with zinc oxide (ZnO) nanoparticles are investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, time-resolved fluorescence, FT-IR, atomic force microscopy (AFM) and circular dichroism (CD) techniques under physiological condition of pH˜7.4. The presence of mainly static mode in fluorescence quenching mechanism of HMb and HRP by ZnO nanoparticle indicates the possibility of formation of ground state complex. The processes of bindings of ZnO nanoparticles with the two proteins are spontaneous molecular interaction procedures. In both cases hydrogen bonding plays a major role. The circular dichroism (CD) spectra reveal that a helicity of the proteins is reduced by increasing ZnO nanoparticle concentration although the α-helical structures of HMb and HRP retain their identity. On binding to the ZnO nanoparticles the secondary structure of HRP molecules (or HMb molecules) remains unchanged while there is a substantial change in the environment of the tyrosin active site in case of HRP molecules and tryptophan active site in case of HMb molecules. Tapping mode atomic force microscopy (AFM) was applied for the investigation the structure of HRP adsorbed in the environment of nanoparticles on the silicon and on the bare silicon. HRP molecules adsorb and aggregate on the mica with ZnO nanoparticle. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed on the bare silicon wafer. The adsorption of HRP in the environment of ZnO nanoparticle changes drastically the domains due to a strong interaction between HRP and ZnO nanoparticles. Similar situation is observed in case of HMb molecules. These findings demonstrate the efficacy of biomedical applications of ZnO nanoparticles as well as in elucidating their mechanisms of action as drugs in both human and plant systems.
Kumar, Sunil; Lockwood, Nicola; Ramel, Marie-Christine; Correia, Teresa; Ellis, Matthew; Alexandrov, Yuriy; Andrews, Natalie; Patel, Rachel; Bugeon, Laurence; Dallman, Margaret J.; Brandner, Sebastian; Arridge, Simon; Katan, Matilda; McGinty, James; Frankel, Paul; French, Paul M.W.
2016-01-01
We describe a novel approach to study tumour progression and vasculature development in vivo via global 3-D fluorescence imaging of live non-pigmented adult zebrafish utilising angularly multiplexed optical projection tomography with compressive sensing (CS-OPT). This “mesoscopic” imaging method bridges a gap between established ~μm resolution 3-D fluorescence microscopy techniques and ~mm-resolved whole body planar imaging and diffuse tomography. Implementing angular multiplexing with CS-OPT, we demonstrate the in vivo global imaging of an inducible fluorescently labelled genetic model of liver cancer in adult non-pigmented zebrafish that also present fluorescently labelled vasculature. In this disease model, addition of a chemical inducer (doxycycline) drives expression of eGFP tagged oncogenic K-RASV12 in the liver of immune competent animals. We show that our novel in vivo global imaging methodology enables non-invasive quantitative imaging of the development of tumour and vasculature throughout the progression of the disease, which we have validated against established methods of pathology including immunohistochemistry. We have also demonstrated its potential for longitudinal imaging through a study of vascular development in the same zebrafish from early embryo to adulthood. We believe that this instrument, together with its associated analysis and data management tools, constitute a new platform for in vivo cancer studies and drug discovery in zebrafish disease models. PMID:27259259
CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics
Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek
2014-01-01
Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460
NASA Astrophysics Data System (ADS)
Duman, M.; Pfleger, M.; Zhu, R.; Rankl, C.; Chtcheglova, L. A.; Neundlinger, I.; Bozna, B. L.; Mayer, B.; Salio, M.; Shepherd, D.; Polzella, P.; Moertelmaier, M.; Kada, G.; Ebner, A.; Dieudonne, M.; Schütz, G. J.; Cerundolo, V.; Kienberger, F.; Hinterdorfer, P.
2010-03-01
The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on α-galactosylceramide (αGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from ~ 25 to ~ 160 nm, with the smaller domains corresponding to a single CD1d molecule.
Duman, M; Pfleger, M; Zhu, R; Rankl, C; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Mayer, B; Salio, M; Shepherd, D; Polzella, P; Moertelmaier, M; Kada, G; Ebner, A; Dieudonne, M; Schütz, G J; Cerundolo, V; Kienberger, F; Hinterdorfer, P
2010-03-19
The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on alpha-galactosylceramide (alphaGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from approximately 25 to approximately 160 nm, with the smaller domains corresponding to a single CD1d molecule.
Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Schilmann, Anna-Maria; Bauer, Heiko; Panthöfer, Martin; Fischer, Karl; Strand, Dennis; Laquai, Frédéric; Tremel, Wolfgang
2014-02-12
Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanoparticles into multifunctional efficient vehicles for theranostics. The Au@MnO@SiO2 Janus particles were characterized using high-resolution transmission electron microscopy (HR-)TEM, powder X-ray diffraction (PXRD), optical (UV-vis) spectroscopy, confocal laser fluorescence scanning microscopy (CLSM), and dynamic light scattering (DLS). The functionalized nanoparticles were stable in buffer solution or serum, showing no indication of aggregation. Biocompatibility and potential biomedical applications of the Au@MnO@SiO2 Janus particles were assayed by a cell viability analysis by coincubating the Au@MnO@SiO2 Janus particles with Caki 1 and HeLa cells. Time-resolved fluorescence spectroscopy in combination with CLSM revealed the silica-coated Au@MnO@SiO2 Janus particles to be highly two-photon active; no indication for an electronic interaction between the dye molecules incorporated in the silica shell surrounding the MnO domains and the attached Au domains was found; fluorescence quenching was observed when dye molecules were bound directly to the Au domains.
Faster and less phototoxic 3D fluorescence microscopy using a versatile compressed sensing scheme
Woringer, Maxime; Darzacq, Xavier; Zimmer, Christophe
2017-01-01
Three-dimensional fluorescence microscopy based on Nyquist sampling of focal planes faces harsh trade-offs between acquisition time, light exposure, and signal-to-noise. We propose a 3D compressed sensing approach that uses temporal modulation of the excitation intensity during axial stage sweeping and can be adapted to fluorescence microscopes without hardware modification. We describe implementations on a lattice light sheet microscope and an epifluorescence microscope, and show that images of beads and biological samples can be reconstructed with a 5-10 fold reduction of light exposure and acquisition time. Our scheme opens a new door towards faster and less damaging 3D fluorescence microscopy. PMID:28788909
USDA-ARS?s Scientific Manuscript database
Aldehyde dehydrogenase 1 (ALDH1) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence ALDH1 activity in part by increasing NADH binding affinity to the enzyme thus reducing activity. By using time-resolved fluorescence spectroscopy, we have resolved t...
NASA Astrophysics Data System (ADS)
Bruns, Thomas; Schickinger, Sarah; Wittig, Rainer; Schneckenburger, Herbert
2012-10-01
A device for selective plane illumination microscopy (SPIM) of three-dimensional multicellular spheroids, in culture medium under stationary or microfluidic conditions, is described. Cell spheroids are located in a micro-capillary and a light sheet, for illumination, is generated in an optical setup adapted to a conventional inverse microscope. Layers of the sample, of about 10 μm or less in diameter, are, thus, illuminated selectively and imaged by high resolution fluorescence microscopy. SPIM is operated at low light exposure even if a larger number of layers is imaged and is easily combined with laser scanning microscopy. Chinese hamster ovary cells expressing a membrane-associated green fluorescent protein are used for preliminary tests, and the uptake of the fluorescent marker, acridine orange via a microfluidic system, is visualized to demonstrate its potential in cancer research such as for the detection of cellular responses to anticancer drugs.
Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J; Yliperttula, Marjo
2016-01-01
In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the pharmaceutical setting, process analytical technology (PAT), and the life sciences.
Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S
2014-05-01
The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.
Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie
2009-01-01
Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530
Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.
Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph
2015-09-01
The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.
Easter, Quinn T; Blum, Suzanne A
2017-10-23
Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
PhotoGate microscopy: tracking single molecules in a cytoplasm (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yildiz, Ahmet
2016-02-01
Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signaling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density in the cellular environment. We developed a photobleaching gate assay, which controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. Using this method, we tracked single particles at surface densities two orders of magnitude higher than the single-molecule detection limit. We observed ligand-induced dimerization of epidermal growth factor receptors (EGFR) on a live cell membrane. In addition, we tracked individual intraflagellar transport (IFT) trains along the length of a cilium and observed their remodeling at the ciliary tip.
Bartke, Rebecca M; Cameron, Elizabeth L; Cristie-David, Ajitha S; Custer, Thomas C; Denies, Maxwell S; Daher, May; Dhakal, Soma; Ghosh, Soumi; Heinicke, Laurie A; Hoff, J Damon; Hou, Qian; Kahlscheuer, Matthew L; Karslake, Joshua; Krieger, Adam G; Li, Jieming; Li, Xiang; Lund, Paul E; Vo, Nguyen N; Park, Jun; Pitchiaya, Sethuramasundaram; Rai, Victoria; Smith, David J; Suddala, Krishna C; Wang, Jiarui; Widom, Julia R; Walter, Nils G
2015-05-01
Four days after the announcement of the 2014 Nobel Prize in Chemistry for "the development of super-resolved fluorescence microscopy" based on single molecule detection, the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan hosted a "Principles of Single Molecule Techniques 2014" course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines. © 2014 Wiley Periodicals, Inc.
Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H
2017-09-05
Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.
Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.
Killingsworth, Murray C; Bobryshev, Yuri V
2016-08-07
A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.
NASA Astrophysics Data System (ADS)
Shkolyar, S.; Farmer, J.; Alerstam, E.; Maruyama, Y.; Blacksberg, J.
2013-12-01
Mars sample return has been identified as a top priority in the planetary science decadal survey. A Mars sample selection and caching mission would be the likely first step in this endeavor. Such a mission would aim to select and prioritize for return to Earth aqueously formed geological samples present at a selected site on Mars, based upon their potential for biosignature capture and preservation. If evidence of past life exists and is found, it is likely to come via the identification of fossilized carbonaceous matter of biological origin (kerogen) found in the selected samples analyzed in laboratories after return to Earth. Raman spectroscopy is considered one of the primary techniques for analyzing materials in situ and selecting the most promising samples for Earth return. We have previously performed a pilot study to better understand the complexities of identifying kerogen using Raman spectroscopy. For the study, we examined a variety of Mars analog materials representing a broad range of mineral compositions and kerogen maturities. The study revealed that kerogen identification in many of the most promising lithologies is often impeded by background fluorescence that originates from long (>10 ns to ms) and short (<1 ns) lifetime fluorophores in both the mineral matrixes and preserved organic matter in the samples. This work explores the potential for time-gated Raman spectroscopy to enable clear kerogen and mineral identifications in such samples. The JPL time-resolved Raman system uses time gating to reduce background fluorescence. It uses a custom-built SPAD (single photon avalanche diode) detector, featuring a 1-ns time-gate, and electronically variable gate delay. Results for a range of fluorescent samples show that the JPL system reduces fluorescence, allowing the identification of both kerogen and mineral components more successfully than with conventional Raman systems. In some of the most challenging samples, the detection of organic matter is hindered by a combination of short lifetime fluorescence and weak Raman scattering coming from preserved kerogen grains. Fluorescence Lifetime Imaging Microscopy (FLIM) measurements were also performed to characterize the lifetimes of both components in the samples and to inform future system improvements such as shorter time gating. Here, we will discuss the results, along with identified challenges to the consistent and reliable in situ identification of kerogen in samples on Mars.
NASA Astrophysics Data System (ADS)
Oh, Juyeong; Kim, Yu Jeong; Kim, Chul-Ki; Lee, Taik Jin; Seo, Mina; Lee, Seok; Woo, Deok Ha; Jun, Seong Chan; Park, Ki-Ho; Kim, Seok Hwan; Kim, Jae Hun
2017-02-01
Glaucoma is a progressive optic neuropathy, characterized by the selective loss of retinal ganglion cells (RGCs). Therefore, monitoring the change of number or morphology of RGC is essential for the early detection as well as investigation of pathophysiology of glaucoma. Since RGC layer is transparent and hyporeflective, the direct optical visualization of RGCs has not been successful so far. Therefore, glaucoma evaluation mostly depends on indirect diagnostic methods such as the evaluation of optic disc morphology or retinal nerve fiber layer thickness measurement by optical coherence tomography. We have previously demonstrated single photoreceptor cell imaging with differential interference contrast (DIC) microscopy. Herein, we successfully visualized single RGC using DIC microscopy. Since RGC layer is much less reflective than photoreceptor layer, various techniques including the control of light wavelength and bandwidth using a tunable band pass filter were adopted to reduce the chromatic aberration in z-axis for higher and clearer resolution. To verify that the imaged cells were the RGCs, the flat-mounted retina of Sprague-Dawley rat, in which the RGCs were retrogradely labeled with fluorescence, was observed by both fluorescence and DIC microscopies for direct comparison. We have confirmed that the cell images obtained by fluorescence microscopy were perfectly matched with cell images by DIC microscopy. As conclusion, we have visualized single RGC with DIC microscopy, and confirmed with fluorescence microscopy.
Image scanning fluorescence emission difference microscopy based on a detector array.
Li, Y; Liu, S; Liu, D; Sun, S; Kuang, C; Ding, Z; Liu, X
2017-06-01
We propose a novel imaging method that enables the enhancement of three-dimensional resolution of confocal microscopy significantly and achieve experimentally a new fluorescence emission difference method for the first time, based on the parallel detection with a detector array. Following the principles of photon reassignment in image scanning microscopy, images captured by the detector array were arranged. And by selecting appropriate reassign patterns, the imaging result with enhanced resolution can be achieved with the method of fluorescence emission difference. Two specific methods are proposed in this paper, showing that the difference between an image scanning microscopy image and a confocal image will achieve an improvement of transverse resolution by approximately 43% compared with that in confocal microscopy, and the axial resolution can also be enhanced by at least 22% experimentally and 35% theoretically. Moreover, the methods presented in this paper can improve the lateral resolution by around 10% than fluorescence emission difference and 15% than Airyscan. The mechanism of our methods is verified by numerical simulations and experimental results, and it has significant potential in biomedical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Wide-field Fluorescent Microscopy and Fluorescent Imaging Flow Cytometry on a Cell-phone
Zhu, Hongying; Ozcan, Aydogan
2013-01-01
Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. ~ 10 μm over a very large field-of-view of ~ 81 mm2. This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water. PMID:23603893
Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.
Zhu, Hongying; Ozcan, Aydogan
2013-04-11
Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.
Saturation-resolved-fluorescence spectroscopy of Cr3+:mullite glass ceramic
NASA Astrophysics Data System (ADS)
Liu, Huimin; Knutson, Robert; Yen, W. M.
1990-01-01
We present a saturation-based technique designed to isolate and uncouple individual components of inhomogeneously broadened spectra that are simultaneously coupled to each other through spectral overlap and energy-transfer interactions. We have termed the technique saturation-resolved-fluorescence spectroscopy; we demonstrate its usefulness in deconvoluting the complex spectra of Cr3+:mullite glass ceramic.
NASA Technical Reports Server (NTRS)
Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Wentworth, S. J.; Robinson, G. A.; McKay, D. S.
2002-01-01
Some Interplanetary Dust Particles (IDPs) have large isotope anomalies in H and N. To address the nature of the carrier phase, we are developing a procedure to spatially resolve the distribution of organic species on IDP thin sections utilizing fluorescent molecular probes. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Cho, Jaedu
The aim of this work is to develop novel breast-specific molecular imaging techniques for management of breast cancer. In this dissertation, we describe two novel molecular imaging approaches for breast cancer management. In Part I, we introduce our multimodal molecular imaging approach for breast cancer therapy monitoring using magnetic resonance imaging and positron emission mammography (MR/PEM). We have focused on the therapy monitoring technique for aggressive cancer molecular subtypes, which is challenging due to time constraint. Breast cancer therapy planning relies on a fast and accurate monitoring of functional and anatomical change. We demonstrate a proof-of-concept of sequential dual-modal magnetic resonance and positron emission mammography (MR/PEM) for the cancer therapy monitoring. We have developed dedicated breast coils with breast compression mechanism equipped with MR-compatible PEM detector heads. We have designed a fiducial marker that allows straightforward image registration of data obtained from MRI and PEM. We propose an optimal multimodal imaging procedure for MR/PEM. In Part II, we have focused on the development of a novel intraoperative near-infrared fluorescence imaging system (NIRF) for image-guided breast cancer surgery. Conventional spectrally-resolved NIRF systems are unable to resolve various NIR fluorescence dyes for the following reasons. First, the fluorescence spectra of viable NIR fluorescence dyes are heavily overlapping. Second, conventional emission-resolved NIRF suffers from a trade-off between the fluence rate and the spectral resolution. Third, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We develop a wavelength-swept laser-based NIRF system that can resolve the excitation shift of various NIR fluorescence dyes without substantial loss of the fluence rate. A linear ratiometric model is employed to measure the relative shift of the excitation spectrum of a fluorescence dye.
NASA Astrophysics Data System (ADS)
Funane, Tsukasa; Hou, Steven S.; Zoltowska, Katarzyna Marta; van Veluw, Susanne J.; Berezovska, Oksana; Kumar, Anand T. N.; Bacskai, Brian J.
2018-05-01
We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.
Remus, Timothy P; Zima, Aleksey V; Bossuyt, Julie; Bare, Dan J; Martin, Jody L; Blatter, Lothar A; Bers, Donald M; Mignery, Gregory A
2006-01-06
Phosphoinositides participate in many signaling cascades via phospholipase C stimulation, which hydrolyzes phosphatidylinositol 4,5-bisphosphate, producing second messengers diacylglycerol and inositol 1,4,5-trisphosphate (InsP3). Destructive chemical approaches required to measure [InsP3] limit spatiotemporal understanding of subcellular InsP3 signaling. We constructed novel fluorescence resonance energy transfer-based InsP3 biosensors called FIRE (fluorescent InsP3-responsive element) by fusing plasmids encoding the InsP3-binding domain of InsP3 receptors (types 1-3) between cyan fluorescent protein and yellow fluorescent protein sequences. FIRE was expressed and characterized in COS-1 cells, cultured neonatal cardiac myocytes, and incorporated into an adenoviral vector for expression in adult cardiac ventricular myocytes. FIRE-1 exhibits an approximately 11% increase in the fluorescence ratio (F530/F480) at saturating [InsP3] (apparent K(d) = 31.3 +/- 6.7 nm InsP3). In COS-1 cells, neonatal rat cardiac myocytes and adult cat ventricular myocytes FIRE-1 exhibited comparable dynamic range and a 10% increase in donor (cyan fluorescent protein) fluorescence upon bleach of yellow fluorescent protein, indicative of fluorescence resonance energy transfer. In FIRE-1 expressing ventricular myocytes endothelin-1, phenylephrine, and angiotensin II all produced rapid and spatially resolved increases in [InsP3] using confocal microscopy (with free [InsP3] rising to approximately 30 nm). Local entry of intracellular InsP3 via membrane rupture by a patch pipette (containing InsP3)in myocytes expressing FIRE-1 allowed detailed spatiotemporal monitoring of intracellular InsP3 diffusion. Both endothelin-1-induced and direct InsP3 application (via pipette rupture) revealed that InsP3 diffusion into the nucleus occurs with a delay and blunted rise of [InsP3] versus cytosolic [InsP3]. These new biosensors allow studying InsP3 dynamics at high temporal and spatial resolution that will be powerful in under-standing InsP3 signaling in intact cells.
Nakashima, Kenichi; Yuda, Kazuki; Ozaki, Yukihiro; Noda, Isao
2003-11-01
Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve fluorescence of two tryptophan (Trp) residues in horse heart myoglobin. Fluorescence quenching is employed as a perturbation mode for causing intensity changes in the fluorescence (quenching perturbation). Two kinds of quenchers, iodide ion and acrylamide, are used for inducing fluorescence intensity change. This technique works because the Trp residue located at the 7th position (W7) is known to be easily accessible to the quencher, whereas that located at the 14th position (W14) is not. By this technique, the fluorescence spectra of the two Trp residues were clearly resolved. From asynchronous maps, it was also shown that the quenching of W7 fluorescence is brought about prior to the quenching of W14 fluorescence. This result is consistent with the structure of horse heart myoglobin that was proposed earlier. Furthermore, it was elucidated that the present 2D analysis is not interfered with by Raman bands of the solvents, which sometimes brings difficulty into conventional fluorescence analysis.
NASA Astrophysics Data System (ADS)
De Silvestri, S.; Laporta, P.
1984-01-01
Time-resolved and steady-state fluorescence studies of proflavine in aqueous solution are presented. The observation of a monoexponential fluorescence decay with a time constant decreasing with increasing pH and the presence of an anomalous red-shift in the fluorescence spectrum as a function of pH indicate the existence of a complex proton-transfer mechanism in the excited state. A reaction scheme is proposed and the corresponding proton-transfer rates are evaluated. An excited-state pK value of 12.85 is obtained for the equilibrium between the cationic form of proflavine and the same form dissociated at an amino group.
Lifetime fluorescence spectroscopy for in situ investigation of osteogenic differentiation
NASA Astrophysics Data System (ADS)
Marcu, Laura; Elbarbary, Amir; Zuk, Patricia; De Ugarte, Daniel A.; Benhaim, Prosper; Kurt, Hamza; Hedrick, Marc H.; Ashjian, Peter
2003-07-01
Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) represents a potential tool for the in-situ characterization of bioengineered tissues. In this study, we evaluate the application of TR-LIFS to non-intrusive monitoring of matrix composition during osteogenetic differentiation. Human adipose-derived stem cells, harvested from 3 patients, were induced in osteogenic media for 3, 5, and 7 weeks. Samples were subsequently collected and probed for time-resolved fluorescence emission with a pulsed nitrogen laser. Fluorescence parameters, derived from both spectral- and time-domain, were used for sample characterization. The samples were further analyzed using Western blot analysis and computer-based densitometry. A significant change in the fluorescence parameters was detected for samples beyond 3 weeks of osteogenic differentiation. The spectroscopic observations: 1) show increase of collagen I when contrasted against the time-resolved fluorescence spectra of commercially available collagens; and 2) are in agreement with Western blot analysis that demonstrated significant increase in collagen I content between 3- vs. 5-weeks and 3- vs. 7-weeks and no changes for collagens III, IV, and V. Our results suggest that TR-LIFS can be used as a non-invasive means for the detection of specific collagens in maturing connective tissues.
NASA Astrophysics Data System (ADS)
Silva, Norberto D., Jr.; Haydock, Christopher; Prendergast, Franklyn G.
1994-08-01
The time-resolved fluorescence decay of single tryptophan (Trp) proteins is typically described using either a distribution of lifetimes or a sum of two or more exponential terms. A possible interpretation for this fluorescence decay heterogeneity is the existence of different isomeric conformations of Trp about its (chi) +1) and (chi) +2) dihedral angles. Are multiple Trp conformations compatible with the remainder of the protein in its crystallographic configuration or do they require repacking of neighbor side chains? It is conceivable that isomers of the neighbor side chains interconvert slowly on the fluorescence timescale and contribute additional lifetime components to the fluorescence intensity. We have explored this possibility by performing minimum perturbation mapping simulations of Trp 28 and Trp 31 in thioredoxin (TRX) using CHARMm 22. Mappings of Trp 29 and Trp 31 give the TRX Trp residue energy landscape as a function of (chi) +1) and (chi) +2) dihedral angles. Time-resolved fluorescence intensity and anisotropy decay of mutant TRX (W28F and W31F) are measured and interpreted in light of the above simulations. Relevant observables, like order parameters and isomerization rates, can be derived from the minimum perturbation maps and compared with experiment.
Time resolved fluorescence of cow and goat milk powder
NASA Astrophysics Data System (ADS)
Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.
2017-01-01
Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.
Localization-based super-resolution imaging of cellular structures.
Kanchanawong, Pakorn; Waterman, Clare M
2013-01-01
Fluorescence microscopy allows direct visualization of fluorescently tagged proteins within cells. However, the spatial resolution of conventional fluorescence microscopes is limited by diffraction to ~250 nm, prompting the development of super-resolution microscopy which offers resolution approaching the scale of single proteins, i.e., ~20 nm. Here, we describe protocols for single molecule localization-based super-resolution imaging, using focal adhesion proteins as an example and employing either photoswitchable fluorophores or photoactivatable fluorescent proteins. These protocols should also be easily adaptable to imaging a broad array of macromolecular assemblies in cells whose components can be fluorescently tagged and assemble into high density structures.
NASA Astrophysics Data System (ADS)
Brandl, Maria T.
2009-05-01
In the past decade, the development of new tools to better visualize microbes at the cellular scale has spurred a renaissance in the application of microscopy to the study of bacteria in their natural environment. This renewed interest in microscopy may be largely attributable to the advent of the confocal laser scanning microscope (CLSM) and to the discovery of the green fluorescent protein. This article provides information about the use of fluorescence microscopy combined with fluorescent labels such as GFP, DsRed, and DNA stains, with immunofluorescence, and with digital image analysis, to examine the behavior of bacteria and other microbes on plant surfaces. Some of the advantages and pitfalls of these methods will be described using practical examples derived from studies of the ecology of foodborne pathogens, namely Salmonella enterica and E. coli O157:H7, on fresh fruit and vegetables. Confocal microscopy has been a powerful approach to uncover some of the factors involved in the association of produce with epidemics caused by these human pathogens and their interaction with other microbes in their nonhost environment.
NASA Astrophysics Data System (ADS)
Baria, E.; Cicchi, R.; Nesi, G.; Massi, D.; Pavone, F. S.
2017-07-01
We combined Second Harmonic Generation, Two-Photon Fluorescence and Fluorescence Lifetime Imaging Microscopy for studying human carotid ex vivo tissue sections affected by atherosclerosis, resulting in the discrimination of different arterial regions within the plaques.
Pump-probe optical microscopy for imaging nonfluorescent chromophores.
Wei, Lu; Min, Wei
2012-06-01
Many chromophores absorb light intensely but have undetectable fluorescence. Hence microscopy techniques other than fluorescence are highly desirable for imaging these chromophores inside live cells, tissues, and organisms. The recently developed pump-probe optical microscopy techniques provide fluorescence-free contrast mechanisms by employing several fundamental light-molecule interactions including excited state absorption, stimulated emission, ground state depletion, and the photothermal effect. By using the pump pulse to excite molecules and the subsequent probe pulse to interrogate the created transient states on a laser scanning microscope, pump-probe microscopy offers imaging capability with high sensitivity and specificity toward nonfluorescent chromophores. Single-molecule sensitivity has even been demonstrated. Here we review and summarize the underlying principles of this emerging class of molecular imaging techniques.
Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles.
Fercher, Andreas; Borisov, Sergey M; Zhdanov, Alexander V; Klimant, Ingo; Papkovsky, Dmitri B
2011-07-26
A new intracellular O(2) (icO(2)) sensing probe is presented, which comprises a nanoparticle (NP) formulation of a cationic polymer Eudragit RL-100 and a hydrophobic phosphorescent dye Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP). Using the time-resolved fluorescence (TR-F) plate reader set-up, cell loading was investigated in detail, particularly the effects of probe concentration, loading time, serum content in the medium, cell type, density, etc. The use of a fluorescent analogue of the probe in conjunction with confocal microscopy and flow cytometry analysis, revealed that cellular uptake of the NPs is driven by nonspecific energy-dependent endocytosis and that the probe localizes inside the cell close to the nucleus. Probe calibration in biological environment was performed, which allowed conversion of measured phosphorescence lifetime signals into icO(2) concentration (μM). Its analytical performance in icO(2) sensing experiments was demonstrated by monitoring metabolic responses of mouse embryonic fibroblast cells under ambient and hypoxic macroenvironment. The NP probe was seen to generate stable and reproducible signals in different types of mammalian cells and robust responses to their metabolic stimulation, thus allowing accurate quantitative analysis. High brightness and photostability allow its use in screening experiments with cell populations on a commercial TR-F reader, and for single cell analysis on a fluorescent microscope.
Plasma Membrane Sterol Distribution Resembles the Surface Topography of Living Cells
2007-01-01
Cholesterol is an important constituent of cellular membranes. It has been suggested that cholesterol segregates into sterol-rich and -poor domains in the plasma membrane, although clear evidence for this is lacking. By fluorescence imaging of the natural sterol dehydroergosterol (DHE), the lateral sterol distribution has been visualized in living cells. The spatial labeling pattern of DHE coincided with surface structures such as ruffles, microvilli, and filopodia with correlation lengths in the range of 0.8–2.5 μm. DHE staining of branched tubules and of nanotubes connecting two cells was detected. Dynamics of DHE in folded and plane membrane regions was comparable as determined by fluorescence recovery after photobleaching. DHE colocalized with fluid membrane-preferring phospholipids in surface structures and at sites of cell attachment as well as in the cleavage furrow of dividing cells, but it was not particularly enriched in those regions. Fluorescent sterol showed homogeneous staining in membrane blebs induced by F-actin disruption. Cross-linking the ganglioside GM1—a putative raft marker—did not affect the cell surface distribution of DHE. The results suggest that spatial heterogeneities of plasma membrane staining of DHE resolvable by light microscopy reflect the cell surface topography but not phase-separated sterol domains in the bilayer plane. PMID:17065557
Analysis of cholesterol trafficking with fluorescent probes
Maxfield, Frederick R.; Wüstner, Daniel
2013-01-01
Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport processes are not well understood. Fluorescence microscopy is a valuable tool for studying intracellular transport processes, but this method can be challenging for lipid molecules because addition of a fluorophore may alter the properties of the molecule greatly. We discuss the use of fluorescent molecules that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly. PMID:22325611
3D fluorescence anisotropy imaging using selective plane illumination microscopy.
Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico
2015-08-24
Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein.
NASA Astrophysics Data System (ADS)
Vetrova, Elena; Kudryasheva, N.; Cheng, K.
2006-10-01
Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.
Site-Resolved Imaging with the Fermi Gas Microscope
NASA Astrophysics Data System (ADS)
Huber, Florian Gerhard
The recent development of quantum gas microscopy for bosonic rubidium atoms trapped in optical lattices has made it possible to study local structure and correlations in quantum many-body systems. Quantum gas microscopes are a perfect platform to perform quantum simulation of condensed matter systems, offering unprecedented control over both internal and external degrees of freedom at a single-site level. In this thesis, this technique is extended to fermionic particles, paving the way to fermionic quantum simulation, which emulate electrons in real solids. Our implementation uses lithium, the lightest atom amenable to laser cooling. The absolute timescales of dynamics in optical lattices are inversely proportional to the mass. Therefore, experiments are more than six times faster than for the only other fermionic alkali atom, potassium, and more then fourteen times faster than an equivalent rubidium experiment. Scattering and collecting a sufficient number of photons with our high-resolution imaging system requires continuous cooling of the atoms during the fluorescence imaging. The lack of a resolved excited hyperfine structure on the D2 line of lithium prevents efficient conventional sub-Doppler cooling. To address this challenge we have applied a Raman sideband cooling scheme and achieved the first site-resolved imaging of ultracold fermions in an optical lattice.
Microscopy basics and the study of actin-actin-binding protein interactions.
Thomasson, Maggie S; Macnaughtan, Megan A
2013-12-15
Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs. Copyright © 2013 Elsevier Inc. All rights reserved.
Thurn, Kenneth T; Paunesku, Tatjana; Wu, Aiguo; Brown, Eric M B; Lai, Barry; Vogt, Stefan; Maser, Jörg; Aslam, Mohammed; Dravid, Vinayak; Bergan, Raymond; Woloschak, Gayle E
2009-06-01
Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.
Malkani, Naila; Schmid, Johannes A.
2011-01-01
Background The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins. Methodology/Principal Findings When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor. Conclusions/Significance Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions. PMID:21490932
Malkani, Naila; Schmid, Johannes A
2011-04-07
The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins. When we applied a commonly used FRET microscopy technique--the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10-15% after illumination at the YFP-excitation wavelength--a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor. Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions.
Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar
2016-03-15
Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar
2016-03-01
Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe.
Development of LEDs-based microplate reader for bioanalytical assay measurements
NASA Astrophysics Data System (ADS)
Alaruri, Sami D.; Katzlinger, Michael; Schinwald, Bernhard; Kronberger, Georg; Atzler, Joseph
2013-10-01
The optical design for an LEDs-based microplate reader that can perform fluorescence intensity (top and bottom), absorbance, luminescence and time-resolved fluorescence measurements is described. The microplate reader is the first microplate reader in the marketplace that incorporates LEDs as excitation light sources. Absorbance measurements over the 0-3.5 optical density range for caffeine solution are presented. Additionally, fluorescence intensity readings collected at 535 and 625 nm from a green and a red RediPlateTM are reported. Furthermore, fluorescence decay lifetime measurements obtained for Eu (europium) and Sm (samarium) standard solutions using 370 nm excitation are presented. The microplate reader detection limits for the fluorescence intensity top, fluorescence intensity bottom, fluorescence polarization and time-resolved fluorescence modes are 1.5 fmol 100 µL-1 fluorescein (384-well plate), 25 fmol 100 µL-1 fluorescein (384-well plate), 5 mP at 10 nM fluorescein (black 384-well plate) and 30 amol 100 µL-1 europium solution (white 384-well plate), respectively.
Kandoth, Noufal; Kirejev, Vladimir; Monti, Sandra; Gref, Ruxandra; Ericson, Marica B; Sortino, Salvatore
2014-05-12
We have developed herein an engineered polymer-based nanoplatform showing the convergence of two-photon fluorescence imaging and bimodal phototherapeutic activity in a single nanostructure. It was achieved through the appropriate choice of three different components: a β-cyclodextrin-based polymer acting as a suitable carrier, a zinc phthalocyanine emitting red fluorescence simultaneously as being a singlet oxygen ((1)O2) photosensitizer, and a tailored nitroaniline derivative, functioning as a nitric oxide (NO) photodonor. The self-assembly of these components results in photoactivable nanoparticles, approximately 35 nm in diameter, coencapsulating a multifunctional cargo, which can be delivered to carcinoma cells. The combination of steady-state and time-resolved spectroscopic and photochemical techniques shows that the two photoresponsive guests do not interfere with each other while being enclosed in their supramolecular container and can thus be operated in parallel under control of light stimuli. Specifically, two-photon fluorescence microscopy allows mapping of the nanoassembly, here applied to epidermal cancer cells. By detecting the red emission from the phthalocyanine fluorophore it was also possible to investigate the tissue distribution after topical delivery onto human skin ex vivo. Irradiation of the nanoassembly with visible light triggers the simultaneous delivery of cytotoxic (1)O2 and NO, resulting in an amplified cell photomortality due to a combinatory effect of the two cytotoxic agents. The potential of dual therapeutic photodynamic action and two-photon fluorescence imaging capability in a single nanostructure make this system an appealing candidate for further studies in biomedical research.
Marcu, Laura; Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Baker, J. Dennis; Freischlag, Julie A.; Fishbein, Michael C.
2007-01-01
Accumulation of numerous macrophages in the fibrous cap is a key identifying feature of plaque inflammation and vulnerability. This study investigates the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a potential tool for detection of macrophage foam cells in the intima of atherosclerotic plaques. Experiments were conducted in vivo on 14 New Zealand rabbits (6 control, 8 hypercholesterolemic) following aortotomy to expose the intimal luminal surface of the aorta. Tissue autofluorescence was induced with a nitrogen pulse laser (337 nm, 1 ns). Lesions were histologically classified by the percent of collagen or macrophage foam cells as well as thickness of the intima. Using parameters derived from the time-resolved fluorescence emission of plaques, we determined that intima rich in macrophage foam cells can be distinguished from intima rich in collagen with high sensitivity (>85%) and specificity (>95%). This study demonstrates, for the first time, that a time-resolved fluorescence-based technique can differentiate and demark macrophage content versus collagen content in vivo. Our results suggest that TR-LIFS technique can be used in clinical applications for identification of inflammatory cells important in plaque formation and rupture. PMID:16039283
Marcu, Laura; Fang, Qiyin; Jo, Javier A; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Baker, J Dennis; Freischlag, Julie A; Fishbein, Michael C
2005-08-01
Accumulation of numerous macrophages in the fibrous cap is a key identifying feature of plaque inflammation and vulnerability. This study investigates the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a potential tool for detection of macrophage foam cells in the intima of atherosclerotic plaques. Experiments were conducted in vivo on 14 New Zealand rabbits (6 control, 8 hypercholesterolemic) following aortotomy to expose the intimal luminal surface of the aorta. Tissue autofluorescence was induced with a nitrogen pulse laser (337 nm, 1 ns). Lesions were histologically classified by the percent of collagen or macrophage foam cells as well as thickness of the intima. Using parameters derived from the time-resolved fluorescence emission of plaques, we determined that intima rich in macrophage foam cells can be distinguished from intima rich in collagen with high sensitivity (>85%) and specificity (>95%). This study demonstrates, for the first time, that a time-resolved fluorescence-based technique can differentiate and demark macrophage content versus collagen content in vivo. Our results suggest that TR-LIFS technique can be used in clinical applications for identification of inflammatory cells important in plaque formation and rupture.
A new single-photon avalanche diode in 90nm standard CMOS technology.
Karami, Mohammad Azim; Gersbach, Marek; Yoon, Hyung-June; Charbon, Edoardo
2010-10-11
We report on the first implementation of a single-photon avalanche diode (SPAD) in 90nm complementary metal oxide semiconductor (CMOS) technology. The detector features an octagonal multiplication region and a guard ring to prevent premature edge breakdown using a standard mask set exclusively. The proposed structure emerged from a systematic study aimed at miniaturization, while optimizing overall performance. The guard ring design is the result of an extensive modeling effort aimed at constraining the multiplication region within a well-defined area where the electric field exceeds the critical value for impact ionization. The device exhibits a dark count rate of 8.1 kHz, a maximum photon detection probability of 9% and the jitter of 398ps at a wavelength of 637nm, all of them measured at room temperature and 0.13V of excess bias voltage. An afterpulsing probability of 32% is achieved at the nominal dead time. Applications include time-of-flight 3D vision, fluorescence lifetime imaging microscopy, fluorescence correlation spectroscopy, and time-resolved gamma/X-ray imaging. Standard characterization of the SPAD was performed in different bias voltages and temperatures.
ELECTRON MICROSCOPE STUDY OF SURFACE IMMUNOGLOBULIN-BEARING HUMAN TONSIL CELLS
Zucker-Franklin, Dorothea; Berney, Steven
1972-01-01
Surface immunoglobulin-bearing cells were selected from suspensions of human tonsil cells by the reverse immune cytoadherence technique. The method employed a hybrid antibody directed against Ig on lymphoid cells and against ferritin bound to sheep red blood cells (SRBC). Only 6% of the cells formed rosettes. When subjected to electron microscopy they were shown to consist of a morphologically heterogeneous population of cells. However, most cells in the center of rosettes showed ribosome-associated endoplasmic reticulum (RER) and polyribosomes. Usually these organelles were located in close proximity to membrane sites where a 400–600 A bridge was resolved between the lymphocyte and the ferritin particle on the SRBC. The bridge is postulated to consist at least in part of Ig. Only 50% of the plasma cells formed rosettes and bridges could not be resolved. The surface of the plasma cells within rosettes differed from that of plasma cells which had not reacted with ferritin-coated sheep erythrocytes. The incidence of plasma cells and γ-globulin-bearing lymphoid cells was corroborated with the help of fluorescent antibody techniques. PMID:5061976
Low-cost fluorescence microscopy for point-of-care cell imaging
NASA Astrophysics Data System (ADS)
Lochhead, Michael J.; Ives, Jeff; Givens, Monique; Delaney, Marie; Moll, Kevin; Myatt, Christopher J.
2010-02-01
Fluorescence microscopy has long been a standard tool in laboratory medicine. Implementation of fluorescence microscopy for near-patient diagnostics, however, has been limited due to cost and complexity associated with traditional fluorescence microscopy techniques. There is a particular need for robust, low-cost imaging in high disease burden areas in the developing world, where access to central laboratory facilities and trained staff is limited. Here we describe a point-of-care assay that combines a disposable plastic cartridge with an extremely low cost fluorescence imaging instrument. Based on a novel, multi-mode planar waveguide configuration, the system capitalizes on advances in volume-manufactured consumer electronic components to deliver an imaging system with minimal moving parts and low power requirements. A two-color cell imager is presented, with magnification optimized for enumeration of immunostained human T cells. To demonstrate the system, peripheral blood mononuclear cells were stained with fluorescently labeled anti-human-CD4 and anti-human-CD3 antibodies. Registered images were used to generate fractional CD4+ and CD3+ staining and enumeration results that show excellent correlation with flow cytometry. The cell imager is under development as a very low cost CD4+ T cell counter for HIV disease management in limited resource settings.
Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph
2016-01-01
The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. PMID:27565170
Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging
Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan
2008-01-01
We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858
Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.
Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J
2014-01-01
Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.
Bioorthogonal Chemical Imaging for Biomedicine
NASA Astrophysics Data System (ADS)
Min, Wei
2017-06-01
Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because relatively bulky fluorescent labels could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, we have developed a bioorthogonal chemical imaging platform. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes, nitriles and stable isotopes including 2H and 13C), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, multiplicity and biocompatibility for imaging small biomolecules in live systems including tissues and organisms. Exciting biomedical applications such as imaging fatty acid metabolism related to lipotoxicity, glucose uptake and metabolism, drug trafficking, protein synthesis, DNA replication, protein degradation, RNA synthesis and tumor metabolism will be presented. This bioorthogonal chemical imaging platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, further chemical and spectroscopic strategies allow for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". We envision that the coupling of SRS microscopy with vibrational probes would do for small biomolecules what fluorescence microscopy of fluorophores has done for larger molecular species, bringing small molecules under the illumination of modern light microscopy.
Baroux, Célia; Schubert, Veit
2018-01-01
In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.
Yoshitake, Tadayuki; Giacomelli, Michael G; Cahill, Lucas C; Schmolze, Daniel B; Vardeh, Hilde; Faulkner-Jones, Beverly E; Connolly, James L; Fujimoto, James G
2016-12-01
Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.
Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.
2016-01-01
Abstract. Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue. PMID:28032121
NASA Astrophysics Data System (ADS)
Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.
2016-12-01
Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.
Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer
2013-12-01
The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase-sensitive flow cytometer
Steinkamp, John A.
1993-01-01
A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.
Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.
2014-01-01
A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367
Techniques for super-resolution microscopy using NV-diamond
NASA Astrophysics Data System (ADS)
Trifonov, Alexei; Glenn, David; Bar-Gill, Nir; Le Sage, David; Walsworth, Ronald
2011-05-01
We discuss the development and application of techniques for super-resolution microscopy using NV centers in diamond: stimulated emission depletion (STED), metastable ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM). NV centers do not bleach under optical excitation, are not biotoxic, and have long-lived electronic spin coherence and spin-state-dependent fluorescence. Thus NV-diamond has great potential as a fluorescent biomarker and as a magnetic biosensor.
Optical spectroscopy for quantitative sensing in human pancreatic tissues
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Chandra, Malavika; Lloyd, William; Chen, Leng-Chun; Scheiman, James; Simeone, Diane; McKenna, Barbara; Mycek, Mary-Ann
2011-07-01
Pancreatic adenocarcinoma has a five-year survival rate of only 6%, largely because current diagnostic methods cannot reliably detect the disease in its early stages. Reflectance and fluorescence spectroscopies have the potential to provide quantitative, minimally-invasive means of distinguishing pancreatic adenocarcinoma from normal pancreatic tissue and chronic pancreatitis. The first collection of wavelength-resolved reflectance and fluorescence spectra and time-resolved fluorescence decay curves from human pancreatic tissues was acquired with clinically-compatible instrumentation. Mathematical models of reflectance and fluorescence extracted parameters related to tissue morphology and biochemistry that were statistically significant for distinguishing between pancreatic tissue types. These results suggest that optical spectroscopy has the potential to detect pancreatic disease in a clinical setting.
Baumann, Tobias; Schmitt, Franz-Josef; Pelzer, Almut; Spiering, Vivian Jeanette; Freiherr von Sass, Georg Johannes; Friedrich, Thomas; Budisa, Nediljko
2018-04-27
Fluorescent proteins are fundamental tools for the life sciences, in particular for fluorescence microscopy of living cells. While wild-type and engineered variants of the green fluorescent protein from Aequorea victoria (avGFP) as well as homologs from other species already cover large parts of the optical spectrum, a spectral gap remains in the near-infrared region, for which avGFP-based fluorophores are not available. Red-shifted fluorescent protein (FP) variants would substantially expand the toolkit for spectral unmixing of multiple molecular species, but the naturally occurring red-shifted FPs derived from corals or sea anemones have lower fluorescence quantum yield and inferior photo-stability compared to the avGFP variants. Further manipulation and possible expansion of the chromophore's conjugated system towards the far-red spectral region is also limited by the repertoire of 20 canonical amino acids prescribed by the genetic code. To overcome these limitations, synthetic biology can achieve further spectral red-shifting via insertion of non-canonical amino acids into the chromophore triad. We describe the application of SPI to engineer avGFP variants with novel spectral properties. Protein expression is performed in a tryptophan-auxotrophic E. coli strain and by supplementing growth media with suitable indole precursors. Inside the cells, these precursors are converted to the corresponding tryptophan analogs and incorporated into proteins by the ribosomal machinery in response to UGG codons. The replacement of Trp-66 in the enhanced "cyan" variant of avGFP (ECFP) by an electron-donating 4-aminotryptophan results in GdFP featuring a 108 nm Stokes shift and a strongly red-shifted emission maximum (574 nm), while being thermodynamically more stable than its predecessor ECFP. Residue-specific incorporation of the non-canonical amino acid is analyzed by mass spectrometry. The spectroscopic properties of GdFP are characterized by time-resolved fluorescence spectroscopy as one of the valuable applications of genetically encoded FPs in life sciences.
Sun, Yinghua; Sun, Yang; Stephens, Douglas; Xie, Hongtao; Phipps, Jennifer; Saroufeem, Ramez; Southard, Jeffrey; Elson, Daniel S.; Marcu, Laura
2011-01-01
Simultaneous time- and wavelength-resolved fluorescence spectroscopy (STWRFS) was developed and tested for the dynamic characterization of atherosclerotic tissue ex vivo and arterial vessels in vivo. Autofluorescence, induced by a 337 nm, 700 ps pulsed laser, was split to three wavelength sub-bands using dichroic filters, with each sub-band coupled into a different length of optical fiber for temporal separation. STWRFS allows for fast recording/analysis (few microseconds) of time-resolved fluorescence emission in these sub-bands and rapid scanning. Distinct compositions of excised human atherosclerotic aorta were clearly discriminated over scanning lengths of several centimeters based on fluorescence lifetime and the intensity ratio between 390 and 452 nm. Operation of STWRFS blood flow was further validated in pig femoral arteries in vivo using a single-fiber probe integrated with an ultrasound imaging catheter. Current results demonstrate the potential of STWRFS as a tool for real-time optical characterization of arterial tissue composition and for atherosclerosis research and diagnosis. PMID:21369214
Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF
NASA Astrophysics Data System (ADS)
MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.
2017-10-01
Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.
A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium
NASA Astrophysics Data System (ADS)
Chernomordik, Victor; Gandjbakhche, Amir H.; Hassan, Moinuddin; Pajevic, Sinisa; Weiss, George H.
2010-12-01
We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the objective being to estimate the position and lifetime of the fluorophore. This can provide information related to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located too close to the planar boundary, a common problem in many diffusive systems.
Pan, Yong-Le; Hill, Steven C; Santarpia, Joshua L; Brinkley, Kelly; Sickler, Todd; Coleman, Mark; Williamson, Chatt; Gurton, Kris; Felton, Melvin; Pinnick, Ronald G; Baker, Neal; Eshbaugh, Jonathan; Hahn, Jerry; Smith, Emily; Alvarez, Ben; Prugh, Amber; Gardner, Warren
2014-04-07
A system for measuring spectrally-resolved fluorescence cross sections of single bioaerosol particles has been developed and employed in a biological safety level 3 (BSL-3) facility at Edgewood Chemical and Biological Center (ECBC). It is used to aerosolize the slurry or solution of live agents and surrogates into dried micron-size particles, and to measure the fluorescence spectra and sizes of the particles one at a time. Spectrally-resolved fluorescence cross sections were measured for (1) bacterial spores: Bacillus anthracis Ames (BaA), B. atrophaeus var. globigii (BG) (formerly known as Bacillus globigii), B. thuringiensis israelensis (Bti), B. thuringiensis kurstaki (Btk), B. anthracis Sterne (BaS); (2) vegetative bacteria: Escherichia coli (E. coli), Pantoea agglomerans (Eh) (formerly known as Erwinia herbicola), Yersinia rohdei (Yr), Yersinia pestis CO92 (Yp); and (3) virus preparations: Venezuelan equine encephalitis TC83 (VEE) and the bacteriophage MS2. The excitation wavelengths were 266 nm, 273 nm, 280 nm, 365 nm and 405 nm.
Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...
2015-06-15
Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less
Segmentation and Morphometric Analysis of Cells from Fluorescence Microscopy Images of Cytoskeletons
Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo
2013-01-01
We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures. PMID:23762186
Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo
2013-01-01
We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures.
Safranine fluorescent staining of wood cell walls.
Bond, J; Donaldson, L; Hill, S; Hitchcock, K
2008-06-01
Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy.
Three-dimensional image formation in fiber-optical second-harmonic-generation microscopy.
Gu, Min; Fu, Ling
2006-02-06
Three-dimensional (3-D) image formation in fiber-optical second-harmonic-generation microscopy is revealed to be purely coherent and therefore can be described by a 3-D coherent transfer function (CTF) that exhibits the same spatial frequency passband as that of fiber-optical reflection-mode non-fluorescence microscopy. When the numerical aperture of the fiber is much larger than the angle of convergence of the illumination on the fiber aperture, the performance of fiber-optical second-harmonic-generation microscopy behaves as confocal second-harmonic-generation microscopy. The dependence of axial resolution on fiber coupling parameters shows an improvement of approximately 7%, compared with that in fiber-optical two-photon fluorescence microscopy.
Understanding Microbial Sensing in Inflammatory Bowel Disease Using Click Chemistry
2016-10-01
lipopolysaccharide, capsular polysaccharide , and peptidoglycan simultaneously in live anaerobic commensal bacteria. This technology enabled us to track the...endotoxin, capsular polysaccharide , inflammatory bowel disease,microbiome microbiota, carbohydrate chemistry, fluorescent microscopy, 2-photon...lipopolysaccharide, endotoxin, capsular polysaccharide , inflammatory bowel disease, microbiome, microbiota, carbohydrate chemistry, fluorescent microscopy
Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy
Mazo-Vargas, Anyimilehidi; Park, Heungwon; Aydin, Mert; Buchler, Nicolas E.
2014-01-01
Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15–20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression. PMID:25232010
Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R
2017-04-01
Green technologies, such as phytoremediation, are effective for removing organic pollutants derived from oil and oil products, including polycyclic aromatic hydrocarbons (PAHs). Given the increasing popularity of these sustainable remediation techniques, methods based on fluorescence microscopy and multiphoton microscopy for the environmental monitoring of such pollutants have emerged in recent decades as effective tools for phytoremediation studies aimed at understanding the fate of these contaminants in plants. However, little is known about the cellular and molecular mechanisms involved in PAH uptake, responses and degradation by plants. Thus, the present study aimed to detect the location of pyrene, anthracene and phenanthrene using fluorescence microscopy techniques in shoots and roots of Medicago sativa L. (alfalfa) plants grown in artificially contaminated soil (150ppm PAHs) for 40days. Leaflet and root samples were then collected and observed under a fluorescence microscope to detect the presence of PAHs in various tissues. One important finding of the present study was intense fluorescence in the glandular secreting trichomes (GSTs) of plants grown in contaminated soil. These trichomes, with a previously unknown function, may be sites of PAH conjugation and degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pécot, Thierry; Bouthemy, Patrick; Boulanger, Jérôme; Chessel, Anatole; Bardin, Sabine; Salamero, Jean; Kervrann, Charles
2015-02-01
Image analysis applied to fluorescence live cell microscopy has become a key tool in molecular biology since it enables to characterize biological processes in space and time at the subcellular level. In fluorescence microscopy imaging, the moving tagged structures of interest, such as vesicles, appear as bright spots over a static or nonstatic background. In this paper, we consider the problem of vesicle segmentation and time-varying background estimation at the cellular scale. The main idea is to formulate the joint segmentation-estimation problem in the general conditional random field framework. Furthermore, segmentation of vesicles and background estimation are alternatively performed by energy minimization using a min cut-max flow algorithm. The proposed approach relies on a detection measure computed from intensity contrasts between neighboring blocks in fluorescence microscopy images. This approach permits analysis of either 2D + time or 3D + time data. We demonstrate the performance of the so-called C-CRAFT through an experimental comparison with the state-of-the-art methods in fluorescence video-microscopy. We also use this method to characterize the spatial and temporal distribution of Rab6 transport carriers at the cell periphery for two different specific adhesion geometries.
A Patch-Based Method for Repetitive and Transient Event Detection in Fluorescence Imaging
Boulanger, Jérôme; Gidon, Alexandre; Kervran, Charles; Salamero, Jean
2010-01-01
Automatic detection and characterization of molecular behavior in large data sets obtained by fast imaging in advanced light microscopy become key issues to decipher the dynamic architectures and their coordination in the living cell. Automatic quantification of the number of sudden and transient events observed in fluorescence microscopy is discussed in this paper. We propose a calibrated method based on the comparison of image patches expected to distinguish sudden appearing/vanishing fluorescent spots from other motion behaviors such as lateral movements. We analyze the performances of two statistical control procedures and compare the proposed approach to a frame difference approach using the same controls on a benchmark of synthetic image sequences. We have then selected a molecular model related to membrane trafficking and considered real image sequences obtained in cells stably expressing an endocytic-recycling trans-membrane protein, the Langerin-YFP, for validation. With this model, we targeted the efficient detection of fast and transient local fluorescence concentration arising in image sequences from a data base provided by two different microscopy modalities, wide field (WF) video microscopy using maximum intensity projection along the axial direction and total internal reflection fluorescence microscopy. Finally, the proposed detection method is briefly used to statistically explore the effect of several perturbations on the rate of transient events detected on the pilot biological model. PMID:20976222
Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko
2008-04-03
The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.
Morales, Fermín; Cartelat, Aurélie; Alvarez-Fernández, Ana; Moya, Ismael; Cerovic, Zoran G
2005-12-14
Synchrotron radiation and the time-correlated single-photon counting technique were used to investigate the spectral and time-resolved characteristics of blue-green fluorescence (BGF) of artichoke leaves. Leaves emitted BGF under ultraviolet (UV) excitation; the abaxial side was much more fluorescent than the adaxial side, and in both cases, the youngest leaves were much more fluorescent than the oldest ones. The BGF of artichoke leaves was dominated by the presence of hydroxycinnamic acids. A decrease in the percentage of BGF attributable to the very short kinetic component (from 42 to 20%), in the shape of the BGF excitation spectra, and chlorogenic acid concentrations indicate that there is a loss of hydroxycinnamic acid with leaf age. Studies on excitation, emission, and synchronized fluorescence spectra of leaves and trichomes and chlorogenic acid contents indicate that chlorogenic acid is one of the main blue-green fluorophores in artichoke leaves. Results of the present study indicate that 20-42% (i.e., the very short kinetic component) of the overall BGF is emitted by chlorogenic acid. Time-resolved BGF measurements could be a means to extract information on chlorogenic acid fluorescence from the overall leaf BGF.
NASA Astrophysics Data System (ADS)
Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana
2014-09-01
Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.
High-throughput isotropic mapping of whole mouse brain using multi-view light-sheet microscopy
NASA Astrophysics Data System (ADS)
Nie, Jun; Li, Yusha; Zhao, Fang; Ping, Junyu; Liu, Sa; Yu, Tingting; Zhu, Dan; Fei, Peng
2018-02-01
Light-sheet fluorescence microscopy (LSFM) uses an additional laser-sheet to illuminate selective planes of the sample, thereby enabling three-dimensional imaging at high spatial-temporal resolution. These advantages make LSFM a promising tool for high-quality brain visualization. However, even by the use of LSFM, the spatial resolution remains insufficient to resolve the neural structures across a mesoscale whole mouse brain in three dimensions. At the same time, the thick-tissue scattering prevents a clear observation from the deep of brain. Here we use multi-view LSFM strategy to solve this challenge, surpassing the resolution limit of standard light-sheet microscope under a large field-of-view (FOV). As demonstrated by the imaging of optically-cleared mouse brain labelled with thy1-GFP, we achieve a brain-wide, isotropic cellular resolution of 3μm. Besides the resolution enhancement, multi-view braining imaging can also recover complete signals from deep tissue scattering and attenuation. The identification of long distance neural projections across encephalic regions can be identified and annotated as a result.
Watson, Brianna R.; Yang, Bin; Xiao, Kai; ...
2015-07-29
The emergence of efficient hybrid organic-inorganic perovskite photovoltaic materials has caused the rapid development of a variety of preparation and processing techniques designed to maximize their performance. As processing methods continue to emerge, it is important to understand how the optical properties of these materials are affected on a microscopic scale. Here polarization resolved two-photon total internal reflectance microscopy (TIRFM) was used to probe changes in transition dipole moment orientation as a function of thermal annealing time in hybrid organic-inorganic lead iodide based perovskite (CH 3NH 3PbI 3) thin films on glass. These results show that as thermal annealing timemore » is increased the distribution of transition moments pointing out-of-plane decreases in favor of forming areas with increased in-plane orientations. As a result, it was also shown through the axial sensitivity of TIRFM that the surface topography is manifested in the signal intensity and can be used to survey aspects of morphology in coincidence with the optical properties of these films.« less
Namiki, Kana; Miyawaki, Atsushi; Ishikawa, Takuji
2017-01-01
Whole slide imaging (WSI) is a useful tool for multi-modal imaging, and in our work, we have often combined WSI with darkfield microscopy. However, traditional darkfield microscopy cannot use a single condenser to support high- and low-numerical-aperture objectives, which limits the modality of WSI. To overcome this limitation, we previously developed a darkfield internal reflection illumination (DIRI) microscope using white light-emitting diodes (LEDs). Although the developed DIRI is useful for biological applications, substantial problems remain to be resolved. In this study, we propose a novel illumination technique called color DIRI. The use of three-color LEDs dramatically improves the capability of the system, such that color DIRI (1) enables optimization of the illumination color; (2) can be combined with an oil objective lens; (3) can produce fluorescence excitation illumination; (4) can adjust the wavelength of light to avoid cell damage or reactions; and (5) can be used as a photostimulator. These results clearly illustrate that the proposed color DIRI can significantly extend WSI modalities for biological applications. PMID:28085892
Eibinger, Manuel; Ganner, Thomas; Bubner, Patricia; Rošker, Stephanie; Kracher, Daniel; Haltrich, Dietmar; Ludwig, Roland; Plank, Harald; Nidetzky, Bernd
2014-01-01
Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization. PMID:25361767
Combination of structured illumination and single molecule localization microscopy in one setup
NASA Astrophysics Data System (ADS)
Rossberger, Sabrina; Best, Gerrit; Baddeley, David; Heintzmann, Rainer; Birk, Udo; Dithmar, Stefan; Cremer, Christoph
2013-09-01
Understanding the positional and structural aspects of biological nanostructures simultaneously is as much a challenge as a desideratum. In recent years, highly accurate (20 nm) positional information of optically isolated targets down to the nanometer range has been obtained using single molecule localization microscopy (SMLM), while highly resolved (100 nm) spatial information has been achieved using structured illumination microscopy (SIM). In this paper, we present a high-resolution fluorescence microscope setup which combines the advantages of SMLM with SIM in order to provide high-precision localization and structural information in a single setup. Furthermore, the combination of the wide-field SIM image with the SMLM data allows us to identify artifacts produced during the visualization process of SMLM data, and potentially also during the reconstruction process of SIM images. We describe the SMLM-SIM combo and software, and apply the instrument in a first proof-of-principle to the same region of H3K293 cells to achieve SIM images with high structural resolution (in the 100 nm range) in overlay with the highly accurate position information of localized single fluorophores. Thus, with its robust control software, efficient switching between the SMLM and SIM mode, fully automated and user-friendly acquisition and evaluation software, the SMLM-SIM combo is superior over existing solutions.
Kopek, Benjamin G.; Shtengel, Gleb; Xu, C. Shan; Clayton, David A.; Hess, Harald F.
2012-01-01
Microscopic images of specific proteins in their cellular context yield important insights into biological processes and cellular architecture. The advent of superresolution optical microscopy techniques provides the possibility to augment EM with nanometer-resolution fluorescence microscopy to access the precise location of proteins in the context of cellular ultrastructure. Unfortunately, efforts to combine superresolution fluorescence and EM have been stymied by the divergent and incompatible sample preparation protocols of the two methods. Here, we describe a protocol that preserves both the delicate photoactivatable fluorescent protein labels essential for superresolution microscopy and the fine ultrastructural context of EM. This preparation enables direct 3D imaging in 500- to 750-nm sections with interferometric photoactivatable localization microscopy followed by scanning EM images generated by focused ion beam ablation. We use this process to “colorize” detailed EM images of the mitochondrion with the position of labeled proteins. The approach presented here has provided a new level of definition of the in vivo nature of organization of mitochondrial nucleoids, and we expect this straightforward method to be applicable to many other biological questions that can be answered by direct imaging. PMID:22474357
Pratx, Guillem; Chen, Kai; Sun, Conroy; Martin, Lynn; Carpenter, Colin M.; Olcott, Peter D.; Xing, Lei
2012-01-01
Radiotracers play an important role in interrogating molecular processes both in vitro and in vivo. However, current methods are limited to measuring average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. Here we apply a new technique, termed radioluminescence microscopy, to visualize radiotracer uptake in single living cells, in a standard fluorescence microscopy environment. In this technique, live cells are cultured sparsely on a thin scintillator plate and incubated with a radiotracer. Light produced following beta decay is measured using a highly sensitive microscope. Radioluminescence microscopy revealed strong heterogeneity in the uptake of [18F]fluoro-deoxyglucose (FDG) in single cells, which was found consistent with fluorescence imaging of a glucose analog. We also verified that dynamic uptake of FDG in single cells followed the standard two-tissue compartmental model. Last, we transfected cells with a fusion PET/fluorescence reporter gene and found that uptake of FHBG (a PET radiotracer for transgene expression) coincided with expression of the fluorescent protein. Together, these results indicate that radioluminescence microscopy can visualize radiotracer uptake with single-cell resolution, which may find a use in the precise characterization of radiotracers. PMID:23056276
Hezel, Marcus; Ebrahimi, Fahim; Koch, Marco; Dehghani, Faramarz
2012-10-01
Immunohistochemical visualization of antigens in specimen has evolved to an indispensable technique in biomedical research for investigations of cell morphology and pathology both in bright field and fluorescence microscopy. While there are couple of staining methods that reveal entire cytoarchitecture in bright field microscopy such as Nissl or hemalaun-eosin, there are still limitations in visualizations of cytoarchitecture in fluorescence microscopy. The present study reports a simple staining method that provides the required illustration of cell allocations and cellular composition in fluorescence microscopy in adult and in developing rodent central nervous system using the fluorophore propidium iodide (PI, 5μg/mL). PI is a well-accepted marker for degenerating cells when applied prior to fixation (pre-fixation PI staining). Here, PI was added to the sections after the fixation (post-fixation PI staining). This revised labeling procedure led to similar cytoarchitectural staining patterns in fluorescence microscopy as observed with hemalaun in bright field microscopy. This finding was proven in organotypic hippocampal slice cultures (OHSC) and brain sections obtained from different postnatal developmental stages. Excitotoxically lesioned OHSC subjected to pre-fixation PI staining merely showed brightly labeled condensed nuclei of degenerating neurons. In contrast, post-fixation PI staining additionally revealed extensive labeling of neuronal cell bodies and glial cells within the OHSC, thus allowing visualization of stratification of neuronal layers and cell morphology. Furthermore, post-fixation PI staining was combined with NeuN, calbindin, calretinin, glial fibrillary acidic protein or Griffonia simplicifolia isolectin B4 (IB(4)) in post natal (p1 and p9) and adult rats. In early post-natal brain sections almost all mentioned cellular markers led to an incomplete staining of the native cell organization and resulted in an inaccurate estimation of cell morphology when compared to adult brains. In contrast, post-fixation PI staining allowed investigation of the whole cytoarchitecture independent of the developmental stage. Taken together, post-fixation PI staining provides a detailed insight in the morphology of both developing and adult brain tissues in fluorescence microscopy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone
Wei, Qingshan; Qi, Hangfei; Luo, Wei; Tseng, Derek; Ki, So Jung; Wan, Zhe; Göröcs, Zoltán; Bentolila, Laurent A.; Wu, Ting-Ting; Sun, Ren; Ozcan, Aydogan
2014-01-01
Optical imaging of nanoscale objects, whether it is based on scattering or fluorescence, is a challenging task due to reduced detection signal-to-noise ratio and contrast at subwavelength dimensions. Here, we report a field-portable fluorescence microscopy platform installed on a smart phone for imaging of individual nanoparticles as well as viruses using a lightweight and compact opto-mechanical attachment to the existing camera module of the cell phone. This hand-held fluorescent imaging device utilizes (i) a compact 450 nm laser diode that creates oblique excitation on the sample plane with an incidence angle of ~75°, (ii) a long-pass thin-film interference filter to reject the scattered excitation light, (iii) an external lens creating 2× optical magnification, and (iv) a translation stage for focus adjustment. We tested the imaging performance of this smart-phone-enabled microscopy platform by detecting isolated 100 nm fluorescent particles as well as individual human cytomegaloviruses that are fluorescently labeled. The size of each detected nano-object on the cell phone platform was validated using scanning electron microscopy images of the same samples. This field-portable fluorescence microscopy attachment to the cell phone, weighing only ~186 g, could be used for specific and sensitive imaging of subwavelength objects including various bacteria and viruses and, therefore, could provide a valuable platform for the practice of nanotechnology in field settings and for conducting viral load measurements and other biomedical tests even in remote and resource-limited environments. PMID:24016065
NASA Astrophysics Data System (ADS)
Pal, Rahul; Yang, Jinping; Qiu, Suimin; McCammon, Susan; Resto, Vicente; Vargas, Gracie
2016-03-01
Volumetric Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia representing the complex microstructural organization of mucosa, potentially providing high specificity for detection of neoplasia, but is limited by small imaging area. Large area fluorescence methods on the other hand show high sensitivity appropriate for screening but are hampered by low specificity. In this study, we apply MPAM-SHGM following guidance from large area fluorescence, by either autofluorescence or a targeted metabolic fluorophore, as a potentially clinically viable approach for detection of oral neoplasia. Sites of high neoplastic potentially were identified by large area red/green autofluorescence or by a fluorescently labelled deoxy-glucose analog, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) to highlight areas of high glucose uptake across the buccal pouch of a hamster model for OSCC. Follow-up MPAM-SHGM was conducted on regions of interests (ROIs) to assess whether microscopy would reveal microscopic features associated with neoplasia to confirm or exclude large area fluorescence findings. Parameters for analysis included cytologic metrics, 3D epithelial connective tissue interface metrics (MPAM-SHGM) and intensity of fluorescence (widefield). Imaged sites were biopsied and processed for histology and graded by a pathologist. A small sample of human ex vivo tissues were also imaged. A generalized linear model combining image metrics from large area fluorescence and volumetric MPAM-SHGM indicated the ability to delineate normal and inflammation from neoplasia.