Science.gov

Sample records for resolved iter divertor

  1. Modeling impurities and tilted plates in the ITER divertor

    SciTech Connect

    Rensink, M.E.; Rognlien, T.D.

    1996-07-29

    The UEDGE 2-D edge transport code is used to model the effect of impurities and tilted divertor plates for the ITER SOL/divertor region. The impurities are modeled as individual charge states using either the FMOMBAL 21-moment description or parallel force balance. Both helium and neon impurities are used together with a majority hydrogenic species. A fluid description of the neutrals is used that includes parallel inertia and neutral-neutral collisions. Effects of geometry are analyzed by using the nonorthogonal mesh capability of UEDGE to obtain solutions with the divertor plate tilted at various angles.

  2. Is Carbon a Realistic Choice for ITER's Divertor?

    SciTech Connect

    C.H. Skinner; G. Federici

    2005-05-13

    Tritium retention by co-deposition with carbon on the divertor target plate is predicted to limit ITER's DT burning plasma operations (e.g. to about 100 pulses for the worst conditions) before the in-vessel tritium inventory limit, currently set at 350 g, is reached. At this point, ITER will only be able to continue its burning plasma program if technology is available that is capable of rapidly removing large quantities of tritium from the vessel with over 90% efficiency. The removal rate required is four orders of magnitude faster than that demonstrated in current tokamaks. Eighteen years after the observation of co-deposition on JET and TFTR, such technology is nowhere in sight. The inexorable conclusion is that either a major initiative in tritium removal should be funded or that research priorities for ITER should focus on metal alternatives.

  3. Prediction of Pressure Drop in the ITER Divertor Cooling Channels

    SciTech Connect

    Yin, S.T.; Chen, J.L.

    2005-04-15

    This study investigated the pressure drop in the divertor cooling channels of the International Thermonuclear Experimental Reactor (ITER). The water in the cooling channels will encounter the following flow and boiling regimes: 1) single-phase convection, 2) highly-subcooled boiling, 3) onset of nucleate boiling (ONB), and 4) fully-developed subcooled boiling. The upper operating boundary is limited by the departure from nucleate boiling (DNB) or burnout conditions. Twisted-tape insert will be used to enhance local heat transfer. Analytical models, validated with relevant databases, were proposed for the above-identified flow regimes. A user-friendly computer code was developed to calculate the overall pressure drop and the exit pressure of a specific local segment throughout the entire flow circuit. Although the operating parameters were based on the CDA phase input the results are found in general agreement when compared with the ITER EDA results.

  4. Tungsten spectroscopy relevant to the diagnostics development of ITER divertor plasmas

    SciTech Connect

    Clementson, J; Beiersdorfer, P; Magee, E W; McLean, H S; Wood, R D

    2009-12-01

    The ITER tokamak will have tungsten divertor tiles and, consequently, the divertor plasmas are expected to contain tungsten ions. The spectral emission from these ions can serve to diagnose the divertor for plasma parameters such as tungsten concentrations, densities, ion and electron temperatures, and flow velocities. The ITER divertor plasmas will likely have densities around 10{sup 14-15} cm{sup -3} and temperatures below 150 eV. These conditions are similar to the plasmas at the Sustained Spheromak Physics Experiment (SSPX) in Livermore. To simulate ITER divertor plasmas, a tungsten impurity was introduced into the SSPX spheromak by prefilling it with tungsten hexacarbonyl prior to the usual hydrogen gas injection and initiation of the plasma discharge. The possibility of using the emission from low charge state tungsten ions to diagnose tokamak divertor plasmas has been investigated using a high-resolution extreme ultraviolet spectrometer.

  5. An exploration of advanced X-divertor scenarios on ITER

    NASA Astrophysics Data System (ADS)

    Covele, B.; Valanju, P.; Kotschenreuther, M.; Mahajan, S.

    2014-07-01

    It is found that the X-divertor (XD) configuration (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA), CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502) can be made with the conventional poloidal field (PF) coil set on ITER (Tomabechi et al and Team 1991 Nucl. Fusion 31 1135), where all PF coils are outside the TF coils. Starting from the standard divertor, a sequence of desirable XD configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. This opens the possibility that the XD could be tested and used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the super-X-divertor (Kotschenreuther et al 2007 Bull. Am. Phys. Soc. 53 11, Valanju et al 2009 Phys. Plasmas 16 5, Kotschenreuther et al 2010 Nucl. Fusion 50 035003, Valanju et al 2010 Fusion Eng. Des. 85 46) is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO (Kim et al 2013 Fusion Eng. Des. 88 123) to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm (2012 Fusion Sci. Technol. 63 43) for the Snowflake (Ryutov 2007 Phys. Plasmas 14 064502, Ryutov et al 2008 Phys. Plasmas 15 092501), where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard divertor SOL (Kotschenreuther 2013 Phys. Plasmas 20 102507) in the recently created

  6. Optimization of tungsten castellated structures for the ITER divertor

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Hellwig, M.; Matveev, D.; Komm, M.; van den Berg, M.; De Temmerman, G.; Rudakov, D.; Ding, F.; Luo, G.-N.; Krieger, K.; Sugiyama, K.; Pitts, R. A.; Petersson, P.

    2015-08-01

    In ITER, the plasma-facing components (PFCs) of the first wall and the divertor armor will be castellated to improve their thermo-mechanical stability and to limit forces due to induced currents. The fuel accumulation in the gaps may significantly contribute to the in-vessel fuel inventory. Castellation shaping may be the most straightforward way to minimize the fuel inventory and to alleviate the thermal loads onto castellations. A new castellation shape was proposed and comparative modeling of conventional (rectangular) and shaped castellation was performed for ITER conditions. Shaped castellation was predicted to be capable to operate under stationary heat load of 20 MW/m2. An 11-fold decrease of beryllium (Be) content in the gaps of the shaped cells alone with a 7-fold decrease of carbon content was predicted. In order to validate the predictive capabilities of modeling tools used for ITER conditions, the dedicated modeling with the same codes was made for existing tokamaks and benchmarked with the results of multi-machine experiments. For the castellations exposed in TEXTOR and DIII-D, the carbon amount in the gaps of shaped cells was 1.9-2.3 times smaller than that of rectangular ones. Modeling for TEXTOR conditions yielded to 1.5-fold decrease of carbon content in the gaps of shaped castellation outlining fair agreement with the experiment. At the same time, a number of processes, like enhanced erosion of molten layer yet need to be implemented in the codes in order to increase the accuracy of predictions for ITER.

  7. Facilities for technology testing of ITER divertor concepts, models, and prototypes in a plasma environment

    SciTech Connect

    Cohen, S.A.

    1991-12-01

    The exhaust of power and fusion-reaction products from ITER plasma are critical physics and technology issues from performance, safety, and reliability perspectives. Because of inadequate pulse length, fluence, flux, scrape-off layer plasma temperature and density, and other parameters, the present generation of tokamaks, linear plasma devices, or energetic beam facilities are unable to perform adequate technology testing of divertor components, though they are essential contributors to many physics issues such as edge-plasma transport and disruption effects and control. This Technical Requirements Documents presents a description of the capabilities and parameters divertor test facilities should have to perform accelerated life testing on predominantly technological divertor issues such as basic divertor concepts, heat load limits, thermal fatigue, tritium inventory and erosion/redeposition. The cost effectiveness of such divertor technology testing is also discussed.

  8. Design of a diagnostic residual gas analyzer for the ITER divertor

    SciTech Connect

    Klepper, C Christopher; Biewer, T. M.; Graves, Van B; Andrew, P.; Marcus, Chris; Shimada, M.; Hughes, S.; Boussier, B.; Johnson, D. W.; Gardner, W. L.; Hillis, D. L.; Vayakis, G.; Vayakis, G.; Walsh, M.

    2015-01-01

    One of the ITER diagnostics having reached an advanced design stage is a diagnostic RGA for the divertor, i.e. residual gas analysis system for the ITER divertor, which is intended to sample the divertor pumping duct region during the plasma pulse and to have a response time compatible with plasma particle and impurity lifetimes in the divertor region. Main emphasis is placed on helium (He) concentration in the ducts, as well as the relative concentration between the hydrogen isotopes (H2, D2, T2). Measurement of the concentration of radiative gases, such as neon (Ne) and nitrogen (N2), is also intended. Numerical modeling of the gas flow from the sampled region to the cluster of analysis sensors, through a long (~8m long, ~110mm diameter) sampling pipe terminating in a pressure reducing orifice, confirm that the desired response time (~1s for He or D2) is achieved with the present design.

  9. Melt damage to the JET ITER-like Wall and divertor

    NASA Astrophysics Data System (ADS)

    Matthews, G. F.; Bazylev, B.; Baron-Wiechec, A.; Coenen, J.; Heinola, K.; Kiptily, V.; Maier, H.; Reux, C.; Riccardo, V.; Rimini, F.; Sergienko, G.; Thompson, V.; Widdowson, A.; Contributors, JET

    2016-02-01

    In October 2014, JET completed a scoping study involving high power scenario development in preparation for DT along with other experiments critical for ITER. These experiments have involved intentional and unintentional melt damage both to bulk beryllium main chamber tiles and to divertor tiles. This paper provides an overview of the findings of concern for machine protection in JET and ITER, illustrating each case with high resolution images taken by remote handling or after removal from the machine. The bulk beryllium upper dump plate tiles and some other protection tiles have been repeatedly flash melted by what we believe to be mainly fast unmitigated disruptions. The flash melting produced in this way is seen at all toroidal locations and the melt layer is driven by j × B forces radially outward and upwards against gravity. In contrast, the melt pools caused while attempting to use MGI to mitigate deliberately generated runaway electron beams are localized to several limiters and the ejected material appears less influenced by j × B forces and shows signs of boiling. In the divertor, transient melting of bulk tungsten by ELMs was studied in support of the ITER divertor material decision using a specially prepared divertor module containing an exposed edge. Removal of the module from the machine in 2015 has provided improved imaging of the melt and this confirms that the melt layers are driven by ELMs. No other melt damage to the other 9215 bulk tungsten lamellas has yet been observed.

  10. Divertor stray light analysis in JET-ILW and implications for the H-α diagnostic in ITER

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Neverov, V. S.; Stamp, M. F.; Alekseev, A. G.; Brezinsek, S.; Gorshkov, A. V.; von Hellermann, M.; Kadomtsev, M. B.; Kotov, V.; Kukushkin, A. S.; Levashova, M. G.; Lisgo, S. W.; Lisitsa, V. S.; Shurygin, V. A.; Veshchev, E.; Vukolov, D. K.; Vukolov, K. Yu.; JET EFDA Contributors

    2014-08-01

    We report on the first results for the spectrum of divertor stray light (DSL) and the signal-to-background ratio for D-α light emitted from the far SOL and divertor in JET in the recent ITER-like wall (ILW) campaign. The results support the expectation of a strong impact of DSL upon the H-alpha (and Visible Light) Spectroscopy Diagnostic in ITER.

  11. Divertor electron temperature and impurity diffusion measurements with a spectrally resolved imaging radiometer

    SciTech Connect

    Clayton, D. J.; Kumar, D.; Stutman, D.; Finkenthal, M.; Tritz, K.; Jaworski, M. A.

    2012-10-15

    A divertor imaging radiometer (DIR) diagnostic is being studied to measure spatially and spectrally resolved radiated power P{sub rad}({lambda}) in the tokamak divertor. A dual transmission grating design, with extreme ultraviolet ({approx}20-200 A) and vacuum ultraviolet ({approx}200-2000 A) gratings placed side-by-side, can produce coarse spectral resolution over a broad wavelength range covering emission from impurities over a wide temperature range. The DIR can thus be used to evaluate the separate P{sub rad} contributions from different ion species and charge states. Additionally, synthetic spectra from divertor simulations can be fit to P{sub rad}({lambda}) measurements, providing a powerful code validation tool that can also be used to estimate electron divertor temperature and impurity transport.

  12. Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor

    SciTech Connect

    Balboa, I.; Arnoux, G.; Kinna, D.; Thomas, P. D.; Morlock, C.; Kruezi, U.; Sergienko, G.; Rack, M.; Collaboration: JET EFDA Contributors

    2012-10-15

    For the new ITER-like wall at JET, two new infrared diagnostics (KL9B, KL3B) have been installed. These diagnostics can operate between 3.5 and 5 {mu}m and up to sampling frequencies of {approx}20 kHz. KL9B and KL3B image the horizontal and vertical tiles of the divertor. The divertor tiles are tungsten coated carbon fiber composite except the central tile which is bulk tungsten and consists of lamella segments. The thermal emission between lamellae affects the surface temperature measurement and therefore KL9A has been upgraded to achieve a higher spatial resolution (by a factor of 2). A technical description of KL9A, KL9B, and KL3B and cross correlation with a near infrared camera and a two-color pyrometer is presented.

  13. Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor.

    PubMed

    Balboa, I; Arnoux, G; Eich, T; Sieglin, B; Devaux, S; Zeidner, W; Morlock, C; Kruezi, U; Sergienko, G; Kinna, D; Thomas, P D; Rack, M

    2012-10-01

    For the new ITER-like wall at JET, two new infrared diagnostics (KL9B, KL3B) have been installed. These diagnostics can operate between 3.5 and 5 μm and up to sampling frequencies of ∼20 kHz. KL9B and KL3B image the horizontal and vertical tiles of the divertor. The divertor tiles are tungsten coated carbon fiber composite except the central tile which is bulk tungsten and consists of lamella segments. The thermal emission between lamellae affects the surface temperature measurement and therefore KL9A has been upgraded to achieve a higher spatial resolution (by a factor of 2). A technical description of KL9A, KL9B, and KL3B and cross correlation with a near infrared camera and a two-color pyrometer is presented.

  14. The development of in-situ calibration method for divertor IR thermography in ITER

    SciTech Connect

    Takeuchi, M.; Sugie, T.; Ogawa, H.; Takeyama, S.; Itami, K.

    2014-08-21

    For the development of the calibration method of the emissivity in IR light on the divertor plate in ITER divertor IR thermography system, the laboratory experiments have been performed by using IR instruments. The calibration of the IR camera was performed by the plane black body in the temperature of 100–600 degC. The radiances of the tungsten heated by 280 degC were measured by the IR camera without filter (2.5–5.1 μm) and with filter (2.95 μm, 4.67 μm). The preliminary data of the scattered light of the laser of 3.34 μm that injected into the tungsten were acquired.

  15. Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor.

    PubMed

    Balboa, I; Arnoux, G; Eich, T; Sieglin, B; Devaux, S; Zeidner, W; Morlock, C; Kruezi, U; Sergienko, G; Kinna, D; Thomas, P D; Rack, M

    2012-10-01

    For the new ITER-like wall at JET, two new infrared diagnostics (KL9B, KL3B) have been installed. These diagnostics can operate between 3.5 and 5 μm and up to sampling frequencies of ∼20 kHz. KL9B and KL3B image the horizontal and vertical tiles of the divertor. The divertor tiles are tungsten coated carbon fiber composite except the central tile which is bulk tungsten and consists of lamella segments. The thermal emission between lamellae affects the surface temperature measurement and therefore KL9A has been upgraded to achieve a higher spatial resolution (by a factor of 2). A technical description of KL9A, KL9B, and KL3B and cross correlation with a near infrared camera and a two-color pyrometer is presented. PMID:23130793

  16. Assessment of erosion and surface tritium inventory issues for the ITER divertor

    SciTech Connect

    Brooks, J.N.; Causey, R.; Federici, G.; Ruzic, D.N.

    1996-08-01

    The authors analyzed sputtering erosion and tritium codeposition for the ITER vertical target divertor design using erosion and plasma codes (WBC/REDEP/DEGAS+) coupled to available materials data. Computations were made for a beryllium, carbon, and tungsten coated divertor plate, and for three edged plasma regimes. New data on tritium codeposition in beryllium was obtained with the TPE facility. This shows codeposited H/Be ratios of the order of 10% for surface temperatures {le} 300 C, beryllium thereby being similar to carbon in this respect. Hydrocarbon transport calculations show significant loss (10--20%) of chemically sputtered carbon for detached conditions (T{sub e} {approx} 1 eV at the divertor), compared to essentially no loss (100% redeposition) for higher temperature plasmas. Calculations also show a high, non-thermal, D-T molecular flux for detached conditions. Tritium codeposition rates for carbon are very high for detached conditions ({approximately} 20g-T/1000 s discharge), due to buildup of chemically sputtered carbon on relatively cold surfaces of the divertor cassette. Codeposition is lower ({approximately} 10X) for higher edge temperatures ({approximately} 8--30 eV) and is primarily due to divertor plate buildup of physically sputtered carbon. Peak net erosion rates for carbon are of order 30 cm/burn-yr. Erosion and codeposition rates for beryllium are much lower than for carbon at detached conditions, but are similar to carbon for the higher temperatures. Both erosion and tritium codeposition are essentially nil for tungsten for the regimes studied.

  17. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  18. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability. PMID:27587120

  19. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  20. Tungsten erosion in the baffle and outboard regions of the ITER-like ASDEX Upgrade divertor

    NASA Astrophysics Data System (ADS)

    Maier, H.; ASDEX Upgrade Team

    2004-12-01

    Similar to the design of the next-step device ITER, ASDEX Upgrade is equipped with vertical divertor targets with adjacent baffles extending towards the main chamber. In ITER, it is intended to employ tungsten as a plasma-facing material in this baffle area. Tungsten-coated graphite tiles were installed in the divertor baffle and the outboard side regions of ASDEX Upgrade for a full experimental campaign. The erosion behavior of tungsten was investigated by scanning electron microscopy and by measuring the thickness of the tungsten coatings before and after exposure. The coatings had an initial thickness of approximately 450 nm. Two distinct erosion mechanisms were observed: in the outer baffle region a reduction of the coatings' thickness up to 100 nm was determined after about 6300 s of plasma discharge. On the roof baffle and on the inner baffle modules, no clear reduction of the film thickness was found. In the tracks of arcs, however, the tungsten coatings were completely removed. This represents an erosion of 5-10% of the tungsten-coated surface area in this region.

  1. Deuterium trapping and release in JET ITER-like wall divertor tiles

    NASA Astrophysics Data System (ADS)

    Likonen, J.; Heinola, K.; De Backer, A.; Koivuranta, S.; Hakola, A.; Ayres, C. F.; Baron-Wiechec, A.; Coad, P.; Matthews, G. F.; Mayer, M.; Widdowson, A.; Contributors, JET

    2016-02-01

    A selected set of samples from JET-ILW divertor tiles exposed in 2011-2012 has been analysed using thermal desorption spectrometry (TDS). The highest amount of deuterium was found on the regions with the thickest deposited layers, i.e. on the horizontal (apron) part and on the top part of Tile 1, which resides deep in the scrape-off layer. Outer divertor Tiles 6, 7 and 8 had nearly an order of magnitude less deuterium. The co-deposited layers on the JET tiles and the W coatings contain C, O and Ni impurities which may change the desorption properties. The D2 signals in the TDS spectra were convoluted and the positions of the peaks were compared with the Be and C amounts but no correlations between them were found. The remaining fractions of D in the analysed samples at ITER baking temperature 350 °C are rather high implying that co-deposited films may be difficult to be de-tritiated.

  2. Quantification of Chemical Erosion in the DIII-D Divertor and Implications for ITER

    SciTech Connect

    McLean, A. G.; Stangeby, P. C.; Bray, B. D.; Brezinsek, S.; Brooks, N. H.; Davis, J. W.; Isler, R. C.; Kirschner, A.; Laengner, R.; Lasnier, C. J.; Mu, Y.; Munoz-Burgos, J. M.; Rudakov, D. L.; Schmitz, O.; Unterberg, Ezekial A; Watkins, J. G.; Whyte, D. G.; Wong, C. P. C.

    2011-01-01

    The Porous Plug Injector (PPI) has proven to be an invaluable diagnostic for in situ characterization and quantification of erosion phenomena in DIII-D. Previous work has led to derivation of three primary figures of merit for chemical erosion (CE) in attached and cold divertor conditions: relative intensity of C+ chemical and physical sources, the CE yield (Y-chem) and effective photon efficiencies for chemically eroded products. Application of these figures for accounting of observed absolutely calibrated CI and CII emission intensities is demonstrated to produce a self-consistent solution at the DIII-D targets. Reinterpretation of the CI (C degrees) spectral lineshape profile supports the relative roles of local chemical versus physical sputtering as previously determined for CII (C+). Comparison of calculated in situ Y-chem to that measured ex situ suggests a tokamak-specific lower energy threshold for CE and has potentially major implications for prediction of tritium co-deposition near the divertor targets in ITER.

  3. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    NASA Astrophysics Data System (ADS)

    Schmitz, O.; Becoulet, M.; Cahyna, P.; Evans, T. E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R. A.; Reiser, D.; Fenstermacher, M. E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-06-01

    Results from three-dimensional modeling of plasma edge transport and plasma-wall interactions during application of resonant magnetic perturbation (RMP) fields for control of edge-localized modes in the ITER standard 15 MA Q  =  10 H-mode are presented. The full 3D plasma fluid and kinetic neutral transport code EMC3-EIRENE is used for the modeling. Four characteristic perturbed magnetic topologies are considered and discussed with reference to the axisymmetric case without RMP fields. Two perturbation field amplitudes at full and half of the ITER ELM control coil current capability using the vacuum approximation are compared to a case including a strongly screening plasma response. In addition, a vacuum field case at high q 95  =  4.2 featuring increased magnetic shear has been modeled. Formation of a three-dimensional plasma boundary is seen for all four perturbed magnetic topologies. The resonant field amplitudes and the effective radial magnetic field at the separatrix define the shape and extension of the 3D plasma boundary. Opening of the magnetic field lines from inside the separatrix establishes scrape-off layer-like channels of direct parallel particle and heat flux towards the divertor yielding a reduction of the main plasma thermal and particle confinement. This impact on confinement is most accentuated at full RMP current and is strongly reduced when screened RMP fields are considered, as well as for the reduced coil current cases. The divertor fluxes are redirected into a three-dimensional pattern of helical magnetic footprints on the divertor target tiles. At maximum perturbation strength, these fingers stretch out as far as 60 cm across the divertor targets, yielding heat flux spreading and the reduction of peak heat fluxes by 30%. However, at the same time substantial and highly localized heat fluxes reach divertor areas well outside of the axisymmetric heat flux decay profile. Reduced RMP amplitudes due to screening or reduced RMP

  4. Divertor detachment

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, Sergei

    2015-11-01

    The heat exhaust is one of the main conceptual issues of magnetic fusion reactor. In a standard operational regime the large heat flux onto divertor target reaches unacceptable level in any foreseeable reactor design. However, about two decades ago so-called ``detached divertor'' regimes were found. They are characterized by reduced power and plasma flux on divertor targets and look as a promising solution for heat exhaust in future reactors. In particular, it is envisioned that ITER will operate in a partly detached divertor regime. However, even though divertor detachment was studied extensively for two decades, still there are some issues requiring a new look. Among them is the compatibility of detached divertor regime with a good core confinement. For example, ELMy H-mode exhibits a very good core confinement, but large ELMs can ``burn through'' detached divertor and release large amounts of energy on the targets. In addition, detached divertor regimes can be subject to thermal instabilities resulting in the MARFE formation, which, potentially, can cause disruption of the discharge. Finally, often inner and outer divertors detach at different plasma conditions, which can lead to core confinement degradation. Here we discuss basic physics of divertor detachment including different mechanisms of power and momentum loss (ionization, impurity and hydrogen radiation loss, ion-neutral collisions, recombination, and their synergistic effects) and evaluate the roles of different plasma processes in the reduction of the plasma flux; detachment stability; and an impact of ELMs on detachment. We also evaluate an impact of different magnetic and divertor geometries on detachment onset, stability, in- out- asymmetry, and tolerance to the ELMs. Supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-DE-FG02-04ER54739 at UCSD.

  5. An experimental investigation of the post-CHF enhancement factor for a prototypical ITER divertor plate with water coolant

    SciTech Connect

    Marshall, T.D.; Watson, R.D.; McDonald, J.M.

    1995-09-01

    In an off-normal event, water-cooled copper divertor plates in the International Thermonuclear Experimental Reactor (ITER) may either experience heat loads beyond their design basis, or the normal heat loads may be accompanied by low coolant pressure and velocity. The purpose of this experiment was to illustrate that during one-sided heating, as in ITER, a copper divertor plate with the proper side wall thickness, at low system pressure and velocity can absorb without failing an incident heat flux, q{sub i}, that significantly exceed the value, q{sub i}{sup CHF}, which is associated with local CHF at the wall of the coolant channel. The experiment was performed using a 30 kW electron beam test system for heating of a square cross-section divertor heat sink with a smooth circular channel of 7.63 mm diameter. The heated width, length, and wall thickness were 16, 40, and 3 mm, respectively. Stable surface temperatures were observed at incident heat fluxes greater than the local CHF point, presumably due to circumferential conduction around the thick tube walls when q{sub i}{sup CHF} was exceeded. The Post-CHF enhancement factor, {eta}, is defined as the ratio of the incident burnout heat flux, q{sub i}{sup BO}, to q{sub i}{sup CHF}. For this experiment with water at inlet conditions of 70{degrees}C, 1 m/s, and 1 MPa, q{sub i}{sup CHF} and q{sub i}{sup BO} were 600 and 1100 W/cm{sup 2}, respectively, which gave an {eta} of 1.8.

  6. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited)

    SciTech Connect

    Huber, A.; Brezinsek, S.; Mertens, Ph.; Schweer, B.; Sergienko, G.; Terra, A.; Clever, M.; Lambertz, H. T.; Samm, U.; Arnoux, G.; Balshaw, N.; Edlingdon, T.; Farthing, J.; Matthews, G. F.; Riccardo, V.; Sanders, S.; Stamp, M.; Williams, J.; Zastrow, K. D.; and others

    2012-10-15

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance ({>=}30% in the designed wavelength range) as well as high spatial resolution that is {<=}2 mm at the object plane and {<=}3 mm for the full depth of field ({+-}0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the {lambda} > 0.95 {mu}m range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

  7. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited).

    PubMed

    Huber, A; Brezinsek, S; Mertens, Ph; Schweer, B; Sergienko, G; Terra, A; Arnoux, G; Balshaw, N; Clever, M; Edlingdon, T; Egner, S; Farthing, J; Hartl, M; Horton, L; Kampf, D; Klammer, J; Lambertz, H T; Matthews, G F; Morlock, C; Murari, A; Reindl, M; Riccardo, V; Samm, U; Sanders, S; Stamp, M; Williams, J; Zastrow, K D; Zauner, C

    2012-10-01

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance (≥ 30% in the designed wavelength range) as well as high spatial resolution that is ≤ 2 mm at the object plane and ≤ 3 mm for the full depth of field (± 0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the λ > 0.95 μm range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

  8. Analysis of heat transfer and erosion effects on ITER divertor plasma facing components induced by slow high-power transients

    SciTech Connect

    Federici, G.; Raffray, A.R.; Chiocchio, S.; Esser, B.; Dietz, J.; Igitkhanov, Y.; Janeschitz, G.; Pacher, H.D.; Smid, I.

    1995-12-31

    This paper presents the results of an analysis carried out to investigate the thermal response of ITER divertor plasma facing components (PFC`s) clad with Be, W, and CFC, to high-recycling, high-power thermal transients (i.e. 10--30 MW/m{sup 2}) which are anticipated to last up to a few seconds. The armour erosion and surface melting are estimated for the different plasma facing materials (PFM`s) together with the maximum heat flux to the coolant, and armour/heat-sink interface temperature. The analysis assumes that intense target evaporation will lead to high radiative power losses in the plasma in front of the target which self-protects the target. The cases analyzed clarify the influence of several key parameters such as the plasma heat flux to the target, the loss of the melt layer, the duration of the event, the thickness of the armour, and comparison is made with cases without vapor shielding. Finally, some implications for the performance and lifetime of divertor PFC`s clad with different PFM`s are discussed.

  9. Simulation experiment of interaction of plasma facing materials and transient heat loads in ITER divertor by use of magnetized coaxial plasma gun

    NASA Astrophysics Data System (ADS)

    Nakatsuka, M.; Ando, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    Interaction of plasma facing materials and transient head loads such as type I ELMs is one of the critical issues in ITER divertor. The heat load to the ITER divertor during type I ELMs is estimated to be 0.5-3 MJ/m^2 with a pulse length of 0.1-0.5 ms. We have developed a magnetized coaxial plasma gun (MCPG) for the simulation experiment of transient heat load during type I ELMs in ITER divertor. The MCPG has inner and outer electrodes made of stainless steel 304. In addition, the inner electrode is covered with molybdenum so as to suppress the release of impurities from the electrode during the discharge. The diameters of inner and outer electrodes are 0.06 m and 0.14 m, respectively. The power supply for the MCPG is a capacitor bank (7 kV, 1 mF, 25 kJ). The plasma velocity estimated by the time of flight measurement of the magnetic fields was about 50 km/s, corresponding to the ion energy of 15 eV (H) or 30 eV (D). The absorbed energy density of the plasma stream was measured a calorimeter made of graphite. It was found that the absorbed energy density was 0.9 MJ/m^2 with a pulse width of 0.5 ms at the distance of 100 mm from the inner electrode. In the conference, experimental results of plasma exposure on the plasma facing materials in ITER divertor will be shown.

  10. Large Area Divertor Temperature Measurements Using A High-speed Camera With Near-infrared FiIters in NSTX

    SciTech Connect

    Lyons, B C; Zweben, S J; Gray, T K; Hosea, J; Kaita, R; Kugel, H W; Maqueda, R J; McLean, A G; Roquemore, A L; Soukhanovskii, V A

    2011-04-05

    Fast cameras already installed on the National Spherical Torus Experiment (NSTX) have be equipped with near-infrared (NIR) filters in order to measure the surface temperature in the lower divertor region. Such a system provides a unique combination of high speed (> 50 kHz) and wide fi eld-of-view (> 50% of the divertor). Benchtop calibrations demonstrated the system's ability to measure thermal emission down to 330 oC. There is also, however, signi cant plasma light background in NSTX. Without improvements in background reduction, the current system is incapable of measuring signals below the background equivalent temperature (600 - 700 oC). Thermal signatures have been detected in cases of extreme divertor heating. It is observed that the divertor can reach temperatures around 800 oC when high harmonic fast wave (HHFW) heating is used. These temperature profiles were fi t using a simple heat diffusion code, providing a measurement of the heat flux to the divertor. Comparisons to other infrared thermography systems on NSTX are made.

  11. An Experimental Examination of the Loss-of-Flow Accident Phenomenon for Prototypical ITER Divertor Channels of Y = 0 and Y = 2

    SciTech Connect

    Marshall, Theron D.; McDonald, Jimmie M.; Cadwallader, Lee C.; Steiner, Don

    2000-01-15

    This paper discusses the thermal response of two prototypical International Thermonuclear Experimental Reactor (ITER) divertor channels during simulated loss-of-flow-accident (LOFA) experiments. The thermal response was characterized by the time-to-burnout (TBO), which is a figure of merit on the mockups' survivability. Data from the LOFA experiments illustrate that (a) the pre-LOFA inlet velocity does not significantly influence the TBO, (b) the incident heat flux (IHF) does influence the TBO, and (c) a swirl tape insert significantly improves the TBO and promotes the initiation of natural circulation. This natural circulation enabled the mockup to absorb steady-state IHFs after the coolant circulation pump was disabled. Several methodologies for thermal-hydraulic modeling of the LOFA were attempted.

  12. Scrape-off layer and divertor theory meeting: Proceedings

    NASA Astrophysics Data System (ADS)

    1994-03-01

    This report contains viewgraphs on the following topics: fluid modeling of neutrals in the SOL and divertor; instabilities of gas-fueled divertors -- theory and adaptive simulations; stability of ionization fronts of gaseous divertor plasmas; monte carlo calculation of heat transport; reduced charge model for edge impurity flows; thermally collapsed solutions for gaseous/radiative divertors; adaptive grid methods in transport simulation; advanced numerical solution algorithms applied to the multispecies edge plasma equations; two-dimensional edge plasma simulation using the multigrid method; neutral behavior and the effects of neutral-neutral and neutral-ion elastic scattering in the ITER gaseous divertor; particle throughput in the TPX divertor; marfes in tokamaks; a comparative study of the limiter and divertor edge plasmas in TEXT-U; issues of toroidal tokamak-type divertor simulators; ASDEX upgrade; the ITER divertor; the D3-D divertor program and TPX divertor; DEGAS 2 -- a transmission/escape probabilities model for neutral particle transport: comparison with DEGAS 2; a collisional radiative model of hydrogen for high recycling divertors; comparison of fluid and non- fluid neutral models in B2.5; D3-D radiative divertor simulations; 3-D fluid simulations of turbulence from conducting wall mode; turbulence and drifts in SOL plasmas; recent results for 1 1/2-D ITER gas target divertor modeling; evaluation of pumping and fueling in coupled core, SOL, and divertor chamber calculations; and ITER gas target divertors -- comparison of volume recombination and large radial transport scenarios using DEGAS.

  13. Resolving the iterated prisoner's dilemma: theory and reality.

    PubMed

    Raihani, N J; Bshary, R

    2011-08-01

    Pairs of unrelated individuals face a prisoner's dilemma if cooperation is the best mutual outcome, but each player does best to defect regardless of his partner's behaviour. Although mutual defection is the only evolutionarily stable strategy in one-shot games, cooperative solutions based on reciprocity can emerge in iterated games. Among the most prominent theoretical solutions are the so-called bookkeeping strategies, such as tit-for-tat, where individuals copy their partner's behaviour in the previous round. However, the lack of empirical data conforming to predicted strategies has prompted the suggestion that the iterated prisoner's dilemma (IPD) is neither a useful nor realistic basis for investigating cooperation. Here, we discuss several recent studies where authors have used the IPD framework to interpret their data. We evaluate the validity of their approach and highlight the diversity of proposed solutions. Strategies based on precise accounting are relatively uncommon, perhaps because the full set of assumptions of the IPD model are rarely satisfied. Instead, animals use a diverse array of strategies that apparently promote cooperation, despite the temptation to cheat. These include both positive and negative reciprocity, as well as long-term mutual investments based on 'friendships'. Although there are various gaps in these studies that remain to be filled, we argue that in most cases, individuals could theoretically benefit from cheating and that cooperation cannot therefore be explained with the concept of positive pseudo-reciprocity. We suggest that by incorporating empirical data into the theoretical framework, we may gain fundamental new insights into the evolution of mutual reciprocal investment in nature. PMID:21599777

  14. Resolving the iterated prisoner's dilemma: theory and reality.

    PubMed

    Raihani, N J; Bshary, R

    2011-08-01

    Pairs of unrelated individuals face a prisoner's dilemma if cooperation is the best mutual outcome, but each player does best to defect regardless of his partner's behaviour. Although mutual defection is the only evolutionarily stable strategy in one-shot games, cooperative solutions based on reciprocity can emerge in iterated games. Among the most prominent theoretical solutions are the so-called bookkeeping strategies, such as tit-for-tat, where individuals copy their partner's behaviour in the previous round. However, the lack of empirical data conforming to predicted strategies has prompted the suggestion that the iterated prisoner's dilemma (IPD) is neither a useful nor realistic basis for investigating cooperation. Here, we discuss several recent studies where authors have used the IPD framework to interpret their data. We evaluate the validity of their approach and highlight the diversity of proposed solutions. Strategies based on precise accounting are relatively uncommon, perhaps because the full set of assumptions of the IPD model are rarely satisfied. Instead, animals use a diverse array of strategies that apparently promote cooperation, despite the temptation to cheat. These include both positive and negative reciprocity, as well as long-term mutual investments based on 'friendships'. Although there are various gaps in these studies that remain to be filled, we argue that in most cases, individuals could theoretically benefit from cheating and that cooperation cannot therefore be explained with the concept of positive pseudo-reciprocity. We suggest that by incorporating empirical data into the theoretical framework, we may gain fundamental new insights into the evolution of mutual reciprocal investment in nature.

  15. In situ spectral calibration method for the impurity influx monitor (divertor) for ITER using angled physical contact fibers.

    PubMed

    Iwamae, A; Ogawa, H; Sugie, T; Kusama, Y

    2011-03-01

    The in situ calibration method for the impurity influx monitor (divertor) is experimentally examined. The total reflectance of the optical path from the focal point of the Cassegrain telescope to the first mirror is derived using a micro retroreflector array. An optical fiber with angled physical contact (APC) connectors reduces the return edge reflection. APC fibers and a multimode coupler increase the signal-to-noise ratio by about one order compared to that of triple-branched fibers and enable measurement of the wavelength dependence of the total reflectance of the optical system even after potential deterioration of mirror surfaces reduces reflectance.

  16. Material deposition on inner divertor quartz-micro balances during ITER-like wall operation in JET

    NASA Astrophysics Data System (ADS)

    Esser, H. G.; Philipps, V.; Freisinger, M.; Widdowson, A.; Heinola, K.; Kirschner, A.; Möller, S.; Petersson, P.; Brezinsek, S.; Huber, A.; Matthews, G. F.; Rubel, M.; Sergienko, G.

    2015-08-01

    The migration of beryllium, tungsten and carbon to remote areas of the inner JET-ILW divertor and the accompanying co-deposition of deuterium has been investigated using post-mortem analysis of the housings of quartz-micro balances (QMBs) and their quartz crystals. The analysis of the deposition provides that the rate of beryllium atoms is significantly reduced compared to the analogue deposition rate of carbon during the carbon wall conditions (JET-C) at the same locations of the QMBs. A reduction factor of 50 was found at the entrance gap to the cryo-pumps while it was 14 under tile 5, the semi-horizontal target plate. The deposits consist of C/Be atomic ratios of typically 0.1-0.5 showing an enrichment of carbon in remote areas compared to directly exposed areas with less carbon. The deuterium retention fraction D/Be is between 0.3 and 1 at these unheated locations in the divertor.

  17. Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall

    NASA Astrophysics Data System (ADS)

    Beal, J.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Gibson, K. J.; Coad, J. P.; Alves, E.; Lipschultz, B.; Kirschner, A.; Esser, H. G.; Matthews, G. F.; Brezinsek, S.; Contributors, JET

    2016-02-01

    Rotating collectors and quartz microbalances (QMBs) are used in JET to provide time-dependent measurements of erosion and deposition. Rotation of collector discs behind apertures allows recording of the long term evolution of deposition. QMBs measure mass change via the frequency deviations of vibrating quartz crystals. These diagnostics are used to investigate erosion/deposition during JET-C carbon operation and JET-ILW (ITER-like wall) beryllium/tungsten operation. A simple geometrical model utilising experimental data is used to model the time-dependent collector deposition profiles, demonstrating good qualitative agreement with experimental results. Overall, the JET-ILW collector deposition is reduced by an order of magnitude relative to JET-C, with beryllium replacing carbon as the dominant deposit. However, contrary to JET-C, in JET-ILW there is more deposition on the outer collector than the inner. This reversal of deposition asymmetry is investigated using an analysis of QMB data and is attributed to the different chemical properties of carbon and beryllium.

  18. FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT

    SciTech Connect

    O'NEIL, RC; STAMBAUGH, RD

    2002-06-01

    OAK A271 FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT. The Radiative Divertor Project originated in 1993 when the DIII-D Five Year Plan for the period 1994--1998 was prepared. The Project Information Sheet described the objective of the project as ''to demonstrate dispersal of divertor power by a factor of then with sufficient diagnostics and modeling to extend the results to ITER and TPX''. Key divertor components identified were: (1) Carbon-carbon and graphite armor tiles; (2) The divertor structure providing a gas baffle and cooling; and (3) The divertor cryopumps to pump fuel and impurities.

  19. Modelling of the material transport and layer formation in the divertor of JET: Comparison of ITER-like wall with full carbon wall conditions

    NASA Astrophysics Data System (ADS)

    Kirschner, A.; Matveev, D.; Borodin, D.; Airila, M.; Brezinsek, S.; Groth, M.; Wiesen, S.; Widdowson, A.; Beal, J.; Esser, H. G.; Likonen, J.; Bekris, N.; Ding, R.

    2015-08-01

    Impurity transport within the inner JET divertor has been modelled with ERO to estimate the transport to and the resulting deposition at remote areas. Various parametric studies involving divertor plasma conditions and strike point position have been performed. In JET-ILW (beryllium main chamber and tungsten divertor) beryllium, flowing from the main chamber into the divertor and then effectively reflected at the tungsten divertor tiles, is transported to remote areas. The tungsten flux to remote areas in L-Mode is in comparison to the beryllium flux negligible due to small sputtering. However, tungsten is sputtered during ELMs in H-Mode conditions. Nevertheless, depending on the plasma conditions, strike point position and the location of the remote area, the maximum resulting tungsten flux to remote areas is at least ∼3 times lower than the corresponding beryllium flux. Modelled beryllium and tungsten deposition on a rotating collector probe located below tile 5 is in good agreement with measurements if the beryllium influx into the inner divertor is assumed to be in the range of 0.1% relative to the deuterium ion flux and erosion due to fast charge exchange neutrals is considered. Comparison between JET-ILW and JET-C is presented.

  20. Iter

    NASA Astrophysics Data System (ADS)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  1. Neutral recirculation—the key to control of divertor operation

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. S.; Pacher, H. D.

    2016-12-01

    Interaction of the plasma with neutral gas in the divertor affects virtually all aspects of divertor functionality (power loading of the targets, pumping and fuelling, sustaining the operational conditions of the core plasma). In the course of ITER design development, this interaction has been the subject of intense modelling analysis, supported by experiments on various tokamaks. Neutral gas puffing is found to be the most effective means of divertor control. The results of those studies are summarized and assessed in the paper.

  2. Investigation on the erosion/deposition processes in the ITER-like wall divertor at JET using glow discharge optical emission spectrometry technique

    NASA Astrophysics Data System (ADS)

    Ruset, C.; Grigore, E.; Luculescu, C.; Tiseanu, I.; Likonen, J.; Mayer, M.; Rubel, M.; Matthews, G. F.; contributors, JET

    2016-02-01

    As a complementary method to Rutherford back scattering (RBS), glow discharge optical emission spectrometry (GDOES) was used to investigate the depth profiles of W, Mo, Be, O and C concentrations into marker coatings (CFC/Mo/W/Mo/W) and the substrate of divertor tiles up to a depth of about 100 μm. A number of 10 samples cored from particular areas of the divertor tiles were analyzed. The results presented in this paper are valid only for those areas and they cannot be extrapolated to the entire tile. Significant deposition of Be was measured on Tile 3 (near to the top), Tile 6 (at about 40 mm from the innermost edge) and especially on Tile 0 (HFGC). Preliminary experiments seem to indicate a penetration of Be through the pores and imperfections of CFC material up to a depth of 100 μm in some cases. No erosion and a thin layer of Be (<1 μm) was detected on Tiles 4, 7 and 8. On Tile 1 no erosion was found at about 1/3 from bottom.

  3. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  4. DIII-D research towards resolving key issues for ITER and steady-state tokamaks

    NASA Astrophysics Data System (ADS)

    Hill, D. N.; the DIII-D Team

    2013-10-01

    The DIII-D research program is addressing key ITER research needs and developing the physics basis for future steady-state tokamaks. Pellet pacing edge-localized mode (ELM) control in the ITER configuration reduces ELM energy loss in proportion to 1/fpellet by inducing ELMs at up to 12× the natural ELM rate. Complete suppression of ELMs with resonant magnetic perturbations has been extended to the q95 expected for ITER baseline scenario discharges, and long-duration ELM-free QH-mode discharges have been produced with ITER-relevant co-current neutral-beam injection (NBI) using external n = 3 coils to generate sufficient counter-Ip torque. ITER baseline discharges at βN ˜ 2 and scaled NBI torque have been maintained in stationary conditions for more than four resistive times using electron cyclotron current drive (ECCD) for tearing mode suppression and disruption avoidance; active tracking with steerable launchers and feedback control catch these modes at small amplitude, reducing the ECCD power required to suppress them. Massive high-Z gas injection into disruption-induced 300-600 kA 20 MeV runaway electron (RE) beams yield dissipation rates ˜10× faster than expected from e-e collisions and demonstrate the possibility of benign dissipation of such REs should they occur in ITER. Other ITER-related experiments show measured intrinsic plasma torque in good agreement with a physics-based model over a wide range of conditions, while first-time main-ion rotation measurements show it to be lower than expected from neoclassical theory. Core turbulence measurements show increased temperature fluctuations correlated with sharply enhanced electron transport when \

  5. Divertor parameters and divertor operation in ASDEX

    NASA Astrophysics Data System (ADS)

    Fussmann, G.; Ditte, U.; Eckstein, W.; Grave, T.; Keilhacker, M.; McCormick, K.; Murmann, H.; Röhr, H.; Elshaer, M.; Steuer, K.-H.; Szymanski, Z.; Wagner, F.; Becker, G.; Bernhardi, K.; Eberhagen, A.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Glock, E.; Gruber, O.; Haas, G.; Hesse, M.; Janeschitz, G.; Karger, F.; Kissel, S.; Klüber, O.; Kornherr, M.; Lisitano, G.; Mayer, H. M.; Meisel, D.; Müller, E. R.; Poschenrieder, W.; Ryter, F.; Rapp, H.; Schneider, F.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Stäbler, A.; Vollmer, O.

    1984-12-01

    Recent measurements of plasma boundary and divertor scrape-off parameters for ohmically and neutral injection heated plasmas are presented. For these data the power flow onto the divertor plates and the sputtering rates at the plates are calculated and compared with separate measurements. The impurity behaviour in front of the plates is also discussed.

  6. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  7. Alternative divertor target concepts for next step fusion devices

    NASA Astrophysics Data System (ADS)

    Mazul, I. V.

    2016-12-01

    The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.

  8. Impurity-induced divertor plasma oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  9. Impurity-induced divertor plasma oscillations

    DOE PAGESBeta

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  10. Divertor efficiency in ASDEX

    NASA Astrophysics Data System (ADS)

    Engelhardt, W.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Fussmann, G.; Gehre, O.; Gierke, G. V.; Glock, E.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; KlÜber, O.; Kornherr, M.; Lisitano, G.; Mayer, H.-M.; Meisel, D.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Schneider, F.; Siller, G.; Steuer, K.-H.; Venus, G.; Vernickel, H.; Wagner, F.

    1982-12-01

    The divertor efficiency in ASDEX is discussed for ohmically heated plasmas. The parameters of the boundary layer both in the torus midplane and the divertor chamber have been measured. The results are reasonably well understood in terms of parallel and perpendicular transport. A high pressure of neutral hydrogen builds up in the divertor chamber and Franck-Condon particles recycle back through the divertor throat. Due to dissociation processes the boundary plasma is effectively cooled before it reaches the neutralizer plates. The shielding property of the boundary layer against impurity influx is comparable to that of a limiter plasma. The transport of iron is numerically simulated for an iron influx produced by sputtering of charge exchange neutrals at the wall. The results are consistent with the measured iron concentration. First results from a comparison of the poloidal divertor with toroidally closed limiters (stainless steel, carbon) are given. Diverted discharges are considerably cleaner and easier to create.

  11. Neutral gas compression in the Alcator C-Mod divertor, experimental observations

    SciTech Connect

    Niemczewski, A.; LaBombard, B.; Lipschultz, B.; McCracken, G.

    1994-11-01

    One of the high heat flux solutions envisioned for ITER is the gas target divertor. This scheme requires high neutral pressure to be sustained in the divertor chamber with a minimal effect on the pressure in the main tokamak chamber (i.e. high gas compression). The neutral gas compression has been studied in the Alcator C-Mod closed divertor under various central and edge plasma conditions. The neutral pressure measured by a fast, in-situ, ionization gauge, installed behind the divertor target plate was compared with the midplane pressure, measured by a shielded Bayard-Alpert gauge. Divertor pressures up to 30 mTorr with compression factors p{sub div}/p{sub mid} {le} 70 have been observed. It has been found that the neutral pressure in the divertor does not depend strongly on the fueling location but rather on the core plasma density and the resulting divertor plasma regime. Divertor detachment leads to a considerable drop in the compression ratio, suggesting a partial {open_quotes}unplugging{close_quotes} of the divertor volume. An examination of the local particle flux balance in the divertor indicates that the single most important factor determining divertor pressure and compression is the private-flux plasma channel opacity to neutrals.

  12. NSTX Tangential Divertor Camera

    SciTech Connect

    A.L. Roquemore; Ted Biewer; D. Johnson; S.J. Zweben; Nobuhiro Nishino; V.A. Soukhanovskii

    2004-07-16

    Strong magnetic field shear around the divertor x-point is numerically predicted to lead to strong spatial asymmetries in turbulence driven particle fluxes. To visualize the turbulence and associated impurity line emission near the lower x-point region, a new tangential observation port has been recently installed on NSTX. A reentrant sapphire window with a moveable in-vessel mirror images the divertor region from the center stack out to R 80 cm and views the x-point for most plasma configurations. A coherent fiber optic bundle transmits the image through a remotely selected filter to a fast camera, for example a 40500 frames/sec Photron CCD camera. A gas puffer located in the lower inboard divertor will localize the turbulence in the region near the x-point. Edge fluid and turbulent codes UEDGE and BOUT will be used to interpret impurity and deuterium emission fluctuation measurements in the divertor.

  13. Spectroscopy of divertor plasmas

    SciTech Connect

    Isler, R.C.

    1995-12-31

    The requirements for divertor spectroscopy are treated with respect to instrumentation and observations on present machines. Emphasis is placed on quantitative measurements.of impurity concentrations from the interpretation of spectral line intensities. The possible influence of non-Maxwellian electron distributions on spectral line excitation in the divertor is discussed. Finally the use of spectroscopy for determining plasma temperature, density, and flows is examined.

  14. Divertor design for the Tokamak Physics Experiment

    SciTech Connect

    Hill, D.N.; Braams, B.; Brooks, J.N.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4{times} L-mode), high beta ({beta}{sub N} {ge} 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74{degrees} from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m{sup 2} with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  15. Divertor IR thermography on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  16. Diagnostic options for radiative divertor feedback control on NSTX-Ua)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Gerhardt, S. P.; Kaita, R.; McLean, A. G.; Raman, R.

    2012-10-01

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (qpeak ⩽ 15 MW/m2), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D2 or CD4 gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m2, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic "security" monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  17. The snowflake divertor

    DOE PAGESBeta

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-17

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation tomore » the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.« less

  18. The snowflake divertor

    SciTech Connect

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-17

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.

  19. Divertor bias experiments

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.

    1994-06-01

    Electrical biasing of the divertor target plates has recently been implemented on several tokamaks. The results of these experiments to date will be reviewed in this paper. The bias electrode configuration is unique in each experiment. The effects of biasing on the scrape-off layer (SOL) plasma also differ. By comparing results between machines, and using theoretical models, an understanding of the basic physics of biasing begins to emerge. Divertor biasing has been demonstrated to have a strong influence on the particle and energy transport within the SOL. The ability to externally control the SOL plasma with biasing has promising applications to future tokamak reactors.

  20. Development of a radiative divertor for DIII-D

    SciTech Connect

    Allen, S.L.; Brooks, N.H.; Campbell, R.B.

    1994-07-01

    We have used experiments and modeling to develop a new radiative divertor configuration for DIII-D. Gas puffing experiments with the existing open divertor have shown the creation of a localized ({approximately}10 cm diameter) radiation zone which results in substantial reduction (3--10) in the divertor heat flux while {delta}{sub E} remains {approximately}2 times ITER-89P scaling. However, ne increases with D{sub 2} puffing, and Z{sub eff} increases with neon puffing. Divertor structures are required to minimize the effects on the core plasma. The UEDGE fluid code, benchmarked with DIII-D data, and the DEGAS neutrals transport code are used to estimate the effectiveness of divertor configurations; slots reduce the core ionization more than baffles. The overall divertor shape is set by confinement studies which indicate that high triangularity ({delta} {approximately}0.8) is important for high {tau}{sub E} VH-modes. Results from engineering feasibility studies, including diagnostic access, will be presented.

  1. Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou

    2015-11-01

    China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.

  2. Tokamak divertor maps

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Verma, Arun; Boozer, Allen

    1994-08-01

    A mapping method is developed to investigate the problem of determination and control of heat-deposition patterns on the plates of a tokamak divertor. The deposition pattern is largely determined by the magnetic field lines, which are mathematically equivalent to the trajectories of a single-degree-of-freedom time-dependent Hamiltonian system. Maps are natural tools to study the generic features of such systems. The general theory of maps is presented, and methods for incorporating various features of the magnetic field and particle motion in divertor tokamaks are given. Features of the magnetic field include the profile of the rotational transform, single- versus double-null divertor, reverse map, the effects of naturally occurring low M and N, and externally imposed high-M, high-N perturbations. Particle motion includes radial diffusion, pitch angle and energy scattering, and the electric sheath at the plate. The method is illustrated by calculating the stochastic broadening in a single- null divertor tokamak. Maps provide an efficient, economic and elegant method to study the problem of motion of plasma particles in the stochastic scrape-off layer.

  3. Development of a spatially resolving x-ray crystal spectrometer for measurement of ion-temperature (T(i)) and rotation-velocity (v) profiles in ITER.

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparicio, L; Johnson, D; Feder, R; Beiersdorfer, P; Dunn, J; Morris, K; Wang, E; Reinke, M; Podpaly, Y; Rice, J E; Barnsley, R; O'Mullane, M; Lee, S G

    2010-10-01

    Imaging x-ray crystal spectrometer (XCS) arrays are being developed as a US-ITER activity for Doppler measurement of T(i) and v profiles of impurities (W, Kr, and Fe) with ∼7 cm (a/30) and 10-100 ms resolution in ITER. The imaging XCS, modeled after a prototype instrument on Alcator C-Mod, uses a spherically bent crystal and 2D x-ray detectors to achieve high spectral resolving power (E/dE>6000) horizontally and spatial imaging vertically. Two arrays will measure T(i) and both poloidal and toroidal rotation velocity profiles. The measurement of many spatial chords permits tomographic inversion for the inference of local parameters. The instrument design, predictions of performance, and results from C-Mod are presented.

  4. Chemical chain termination resolves the timing of ketoreduction in a partially reducing iterative type I polyketide synthase.

    PubMed

    Kage, Hirokazu; Riva, Elena; Parascandolo, James S; Kreutzer, Martin F; Tosin, Manuela; Nett, Markus

    2015-12-21

    Synthetic chain terminators were used to capture the biosynthetic intermediates from a partially reducing iterative type I polyketide synthase, which is integrated into a multimodular biosynthesis enzyme. The off-loaded metabolites clarified the timing of ketoreduction and aromatization in the assembly of the antibiotic micacocidin. PMID:26507693

  5. Divertor plasma detachment

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Kukushkin, A. S.; Pshenov, A. A.

    2016-05-01

    Regime with the plasma detached from the divertor targets (detached divertor regime) is a natural continuation of the high recycling conditions to higher density and stronger impurity radiation loss. Both the theoretical considerations and experimental data show clearly that the increase of the impurity radiation loss and volumetric plasma recombination causes the rollover of the plasma flux to the target when the density increases, which is the manifestation of detachment. Plasma-neutral friction (neutral viscosity effects), although important for the sustainment of high density/pressure plasma upstream and providing the conditions for efficient recombination and power loss, is not directly involved in the reduction of the plasma flux to the targets. The stability of detachment is also discussed.

  6. The snowflake divertor

    SciTech Connect

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-15

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. Among potential beneficial effects of this geometry are: increased volume of a low poloidal field around the null, increased connection length, and the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described.

  7. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    NASA Astrophysics Data System (ADS)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  8. Design, R&D and commissioning of EAST tungsten divertor

    NASA Astrophysics Data System (ADS)

    Yao, D. M.; Luo, G. N.; Zhou, Z. B.; Cao, L.; Li, Q.; Wang, W. J.; Li, L.; Qin, S. G.; Shi, Y. L.; Liu, G. H.; Li, J. G.

    2016-02-01

    After commissioning in 2005, the EAST superconducting tokamak had been operated with its water cooled divertors for eight campaigns up to 2012, employing graphite as plasma facing material. With increase in heating power over 20 MW in recent years, the heat flux going to the divertors rises rapidly over 10 MW m-2 for steady state operation. To accommodate the rapid increasing heat load in EAST, the bolting graphite tile divertor must be upgraded. An ITER-like tungsten (W) divertor has been designed and developed; and firstly used for the upper divertor of EAST. The EAST upper W divertor is modular structure with 80 modules in total. Eighty sets of W/Cu plasma-facing components (PFC) with each set consisting of an outer vertical target (OVT), an inner vertical target (IVT) and a DOME, are attached to 80 stainless steel cassette bodies (CB) by pins. The monoblock W/Cu-PFCs have been developed for the strike points of both OVT and IVT, and the flat type W/Cu-PFCs for the DOME and the baffle parts of both OVT and IVT, employing so-called hot isostatic pressing (HIP) technology for tungsten to CuCrZr heat sink bonding, and electron beam welding for CuCrZr to CuCrZr and CuCrZr to other material bonding. Both monoblock and flat type PFC mockups passed high heat flux (HHF) testing by means of electron beam facilities. The 80 divertor modules were installed in EAST in 2014 and results of the first commissioning are presented in this paper.

  9. Divertor and midplane materials evaluation system in DIII-D

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Rudakov, D. L.; Allain, J. P.; Bastasz, R. J.; Brooks, N. H.; Brooks, J. N.; Doerner, R. P.; Evans, T. E.; Hassanein, A.; Jacob, W.; Krieger, K.; Litnovsky, A.; McLean, A. G.; Philipps, V.; Pigarov, A. Yu.; Wampler, W. R.; Watkins, J. G.; West, W. P.; Whaley, J.; Wienhold, P.

    2007-06-01

    The Divertor Materials Evaluation System (DiMES) at General Atomics has successfully advanced the understanding of plasma surface interaction phenomena involving ITER-relevant materials and has been utilized for advanced diagnostic designs in the lower divertor of DIII-D. This paper describes a series of recent successful experiments. These include the study of carbon deposition in gaps and metallic mirrors as a function of temperature, study of dust migration from the divertor, study of methane injection in order to benchmark chemical sputtering diagnostics, and the measurement of charge exchange neutrals with a hydrogen sensor. In concert with the modification of the lower divertor of DIII-D, the DiMES sample vertical location was modified to match the raised divertor floor. The new Mid-plane Material Exposure Sample (MiMES) design will also be presented. MiMES will allow the study and measurement of erosion and redeposition of material at the outboard mid-plane of DIII-D, including effects from convective transport. We will continue to expose relevant materials and advanced diagnostics to different plasma configurations under various operational regimes, including material erosion and redeposition experiments, and gaps and mirror exposures at elevated temperature.

  10. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  11. Taming the plasma-material interface with the snowflake divertor.

    SciTech Connect

    Soukhanovskii, V A

    2015-04-24

    Experiments in several tokamaks have provided increasing support for the snowflake configuration as a viable tokamak heat exhaust concept. This white paper summarizes the snowflake properties predicted theoretically and studied experimentally, and identifies outstanding issues to be resolved in existing and future facilities before the snowflake divertor can qualify for the reactor interface.

  12. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    SciTech Connect

    Sizyuk, V. Hassanein, A.

    2015-01-15

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.

  13. Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Eich, T.; Faitsch, M.; Herrmann, A.; Scarabosio, A.; the ASDEX Upgrade Team

    2016-05-01

    Power exhaust is one of the major challenges for the development of a fusion power plant. Predictions based upon a multimachine database give a scrape-off layer power fall-off length {λq}≤slant 1 mm for large fusion devices such as ITER. The power deposition profile on the target is broadened in the divertor by heat transport perpendicular to the magnetic field lines. This profile broadening is described by the power spreading S. Hence both {λq} and S need to be understood in order to estimate the expected divertor heat load for future fusion devices. For the investigation of S and {λq} L-Mode discharges with stable divertor conditions in hydrogen and deuterium were conducted in ASDEX Upgrade. A strong dependence of S on the divertor electron temperature and density is found which is the result of the competition between parallel electron heat conductivity and perpendicular diffusion in the divertor region. For high divertor temperatures it is found that the ion gyro radius at the divertor target needs to be considered. The dependence of the in/out asymmetry of the divertor power load on the electron density is investigated. The influence of the main ion species on the asymmetric behaviour is shown for hydrogen, deuterium and helium. A possible explanation for the observed asymmetry behaviour based on vertical drifts is proposed.

  14. Transport and divertor properties of the dynamic ergodic divertor

    NASA Astrophysics Data System (ADS)

    Lehnen, M.; Abdullaev, S.; Biel, W.; de Bock, M. F. M.; Brezinsek, S.; Busch, C.; Classen, I.; Finken, K. H.; von Hellermann, M.; Jachmich, S.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Krämer-Flecken, A.; Kikuchi, Y.; Liang, Y.; Nicolai, A.; Pospieszczyk, A.; Van Rompuy, T.; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Wolf, R.; Zimmermann, O.; TEXTOR Team

    2005-12-01

    The concept of the dynamic ergodic divertor (DED) is based on plasma edge ergodization by a resonant perturbation. Such a divertor concept is closely related to helical or island divertors in stellerators. The base mode of the DED perturbation field can be m/n = 12/4, 6/2 or 3/1. The 3/1 base mode with its deep penetration of the perturbation field provides the excitation of tearing modes. This topic was presented elsewhere. In this contribution we concentrate on the divertor properties of the DED. We report on the characterization of the topology, transport properties in ergodic fields, impurity transport and density limit behaviour. The 12/4 base where the perturbation is restricted to the plasma edge is suitable for divertor operation. With increasing perturbation field island chains are built up at the resonance layers. Overlapping islands lead to ergodization. The plasma is guided in the laminar region via open field lines of short connection length to the divertor target. The magnetic topology is not only controlled by the coil current but especially by the edge safety factor. For appropriate edge safety factor we observe a strong temperature drop in the plasma edge, indicating an expansion of the laminar region, which is necessary to decouple the divertor plasma from the core plasma. The modifications of the magnetic topology can be directly seen, for example, from carbon emission lines. The magnetic structure is calculated by the ATLAS code and shows good agreement with the experimental findings.

  15. Resolving co-eluting chromatographic patterns by means of dissimilarity analysis in iterative target transformation factor analysis.

    PubMed

    Zhang, Liangxiao; Zhang, Wan; Cao, Dongsheng; Zeng, Maomao; Liang, Yizeng; Kvalheim, Olav M

    2011-10-01

    The initialization of concentration vector for iterative target transformation factor analysis (ITTFA) and identification of pure or key variables are the important issue in MCR. In this study, dissimilarity analysis and evolving factor analysis (EFA) are combined to find the selective or key variables and subsequently obtain initial estimates of the concentration vectors for resolution of gas chromatography/mass spectrometry (GC/MS) data by ITTFA. For systems containing components with highly similar mass spectra, a new constraint setting the elements out of elution window to 0 is used to improve convergence rate and accuracy of results. Tested by standard mixture of two wax esters and real GC/MS data of gasoline 97#, dissimilarity based ITTFA could obtain accurate results (average Dot product of concentration vectors, average deviation of peak area ratio and average similarity of mass spectra are 0.9929, 0.0228 and 981.0, respectively). PMID:21880321

  16. Status of poloidal divertor experiments

    SciTech Connect

    Mahdavi, M.A.

    1986-01-01

    The poloidal divertor was originally proposed as a means of impurity control and helium ash removal. Some variations of the concept were also proposed to achieve radiative cooling of the boundary plasma. The discovery of a regime of improved confinement in beam-heated diverted plasmas has further increased the potential value of this concept for tokamak reactors. This paper reviews the poloidal divertor experiments in ASDEX, Doublet III, and PDX and reviews the status of divertor theory and some aspects of the next-generation experiments.

  17. Defining the infrared systems for ITER.

    PubMed

    Reichle, R; Andrew, P; Counsell, G; Drevon, J-M; Encheva, A; Janeschitz, G; Johnson, D; Kusama, Y; Levesy, B; Martin, A; Pitcher, C S; Pitts, R; Thomas, D; Vayakis, G; Walsh, M

    2010-10-01

    The International Thermonuclear Experimental Reactor will have wide angle viewing systems and a divertor thermography diagnostic, which shall provide infrared coverage of the divertor and large parts of the first wall surfaces with spatial and temporal resolution adequate for operational purposes and higher resolved details of the divertor and other areas for physics investigations. We propose specifications for each system such that they jointly respond to the requirements. Risk analysis driven priorities for future work concern mirror degradation, interfaces with other diagnostics, radiation damage to refractive optics, reflections, and the development of calibration and measurement methods for varying optical and thermal target properties.

  18. Critical Assessment of Pressure Gauges for ITER

    SciTech Connect

    Tabares, Francisco L.; Tafalla, David; Garcia-Cortes, Isabel

    2008-03-12

    The density and flux of molecular species in ITER, largely dominated by the molecular form of the main plasma components and the He ash, is a valuable parameter of relevance not only for operation purposes but also for validating existing neutral particle models of direct implications in divertor performance. An accurate and spatially resolved monitoring of this parameter implies the proper selection of pressure gauges able to cope with the very unique and aggressive environment to be expected in a fusion reactor. To date, there is no standard gauge fulfilling all the requirements, which encompass high neutron and gamma fluxes, together with strong magnetic field and temperature excursions and dusty environment. In the present work, a review of the challenges to face in the measurement of neutral pressure in ITER, together with existing technologies and developments to be made in some of them for their application to the task is presented. Particular attention is paid to R and D needs of existing concepts with potential use in future designs.

  19. Survivability of dust in tokamaks: Dust transport in the divertor sheath

    SciTech Connect

    Delzanno, Gian Luca; Tang, Xianzhu

    2014-02-15

    The survivability of dust being transported in the magnetized sheath near the divertor plate of a tokamak and its impact on the desired balance of erosion and redeposition for a steady-state reactor are investigated. Two different divertor scenarios are considered. The first is characterized by an energy flux perpendicular to the plate q{sub 0}≃1 MW/m{sup 2} typical of current short-pulse tokamaks. The second has q{sub 0}≃10 MW/m{sup 2} and is relevant to long-pulse machines like ITER or Demonstration Power Plant. It is shown that micrometer dust particles can survive rather easily near the plates of a divertor plasma with q{sub 0}≃1 MW/m{sup 2} because thermal radiation provides adequate cooling for the dust particle. On the other hand, the survivability of micrometer dust particles near the divertor plates is drastically reduced when q{sub 0}≃10 MW/m{sup 2}. Micrometer dust particles redeposit their material non-locally, leading to a net poloidal mass migration across the divertor. Smaller particles (with radius ∼0.1 μm) cannot survive near the divertor and redeposit their material locally. Bigger particle (with radius ∼10 μm) can instead survive partially and move outside the divertor strike points, thus causing a net loss of divertor material to dust accumulation inside the chamber and some non-local redeposition. The implications of these results for ITER are discussed.

  20. Development of divertor plate with CFCs bonded onto DSCu cooling tube for fusion reactor application

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Suzuki, T.; Araki, M.; Nakamura, K.; Akiba, M.

    1998-10-01

    This paper presents the high heat flux experiment of divertor mock-ups with CFC-Cu duplex structure. A plasma-facing component (PFC), which is served as a protection wall against heat and particle loads from fusion plasma, is one of the critical components of next fusion devices such as ITER. A divertor plate which is one of the PFCs must be capable of withstanding cyclic heat load of 5-20 MW/m 2 in ITER. To investigate the thermal fatigue behavior, a thermal cycling experiment was conducted in Particle Beam Engineering Facility. As a result, the divertor mock-up with a dispersion strengthened copper cooling tube could withstand a heat flux of 20 MW/m 2 for 1000 cycles. On the other hand, the mock-up with an oxygen-free-high conductivity copper cooling tube showed a water leakage at about 400 cycles due to thermal fatigue cracking.

  1. Boundary plasma modelling for ITER

    SciTech Connect

    Braams, B.J.

    1993-01-01

    Computer programs were developed to model the effect of nonaxisymmetric magnetic perturbations upon divertor heat load, and have explored what kind of externally applied perturbations are the most effective for heat load reduction without destroying core plasma confinement. We find that a carefully tuned set of coils located about 0.3 m outside the separatrix can be used to spread the heat load over about 0.1 m perpendicular to flux surfaces at the ITER divertor plate, even at a very low level of anomalous cross-field heat transport. As such a spreading would significantly extend the permissible regime of operation for ITER, we recommend that this study be pursued at the level of detail required for engineering design. In other work under this grant we are in the process of modifying the B2 code to handle correctly a non-orthogonal geometry.

  2. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  3. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  4. The investigation of opacity in the JET tokomak divertor region

    NASA Astrophysics Data System (ADS)

    Lachin, Tracey

    The purpose of this thesis is to investigate Lyman line absorption by deuterium atoms in the divertor region of the JET tokamak for four high density, low temperature, detached plasma pulses. A collisional radiative model of deuterium level populations has been used to estimate the extent of Lybeta radiative absorption in the divertor along the same line of sight as a VUV spectrometer. This uses a first order escape probability method to evaluate the line escape probabilities and gives a self consistent model of the level populations and radiation field. These results are compared with experimental measurements of the branching ratio of Lybeta to Dalpha from the VUV spectrometer and various visible diagnostics. Both the theoretical and experimental results agree that opacity reduces the level of Lybeta emission from the divertor plasma. The effects of opacity on the ionisation and power balance of the plasma are examined for various conditions. The results of this investigation are compared with other theoretical work in the field. It is shown that the levels of opacity are not great enough to significantly alter the ionisation and power balance of the plasma for the conditions presently being created within the JET tokamak. The population code requires information about the background plasma. This can be provided by either a fluid code or an 'onion-skin' plasma simulation. Both models are used in this investigation and their levels of accuracy are compared. Finally, a brief investigation into the level of opacity in a future tokamak, ITER, is carried out using predicted plasma profiles. It is shown that opacity levels in the divertor region of the ITER tokamak could match those of JET and by creating highly detached plasmas could easily exceed these levels.

  5. Divertor plasma conditions and neutral dynamics in horizontal and vertical divertor configurations in JET-ILW low confinement mode plasmas

    NASA Astrophysics Data System (ADS)

    Groth, M.; Brezinsek, S.; Belo, P.; Brix, M.; Calabro, G.; Chankin, A.; Clever, M.; Coenen, J. W.; Corrigan, G.; Drewelow, P.; Guillemaut, C.; Harting, D.; Huber, A.; Jachmich, S.; Järvinen, A.; Kruezi, U.; Lawson, K. D.; Lehnen, M.; Maggi, C. F.; Marchetto, C.; Marsen, S.; Maviglia, F.; Meigs, A. G.; Moulton, D.; Silva, C.; Stamp, M. F.; Wiesen, S.

    2015-08-01

    Measurements of the plasma conditions at the low field side target plate in JET ITER-like wall ohmic and low confinement mode plasmas show minor differences in divertor plasma configurations with horizontally and vertically inclined targets. Both the reduction of the electron temperature in the vicinity of the strike points and the rollover of the ion current to the plates follow the same functional dependence on the density at the low field side midplane. Configurations with vertically inclined target plates, however, produce twice as high sub-divertor pressures for the same upstream density. Simulations with the EDGE2D-EIRENE code package predict significantly lower plasma temperatures at the low field side target in vertical than in horizontal target configurations. Including cross-field drifts and imposing a pumping by-pass leak at the low-field side plate can still not recover the experimental observations.

  6. Favorable effects of turbulent plasma mixing on the performance of innovative tokamak divertors

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.

    2013-10-01

    The problem of reducing the heat load on plasma-facing components is one of the most demanding issues for MFE devices. The general approach to the solution of this problem is the use of a specially configured poloidal magnetic field, so called magnetic divertors. In recent years, novel divertors possessing the 2-nd and 3-rd order nulls of the poloidal field (PF) have been proposed. They are called a ``snowflake'' (SF) and a ``cloverleaf'' (CL) divertor, respectively, due to characteristic shape of the magnetic separatrix. Among several beneficial features of such divertors is an effect of strong turbulent plasma mixing that is intrinsic to the zone of weak PF near the null-point. The turbulence spreads the heat flux between multiple divertor exhaust channels and increases the heat flux width within each channel. Among physical processes affecting the onset of convection the curvature-driven mode of axisymmetric rolls is most prominent. The effect is quite significant for the SF and is even stronger for the CL divertor. Projections to future ITER-scale facilities are discussed. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.

  7. Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U

    NASA Astrophysics Data System (ADS)

    Frerichs, H.; Schmitz, O.; Waters, I.; Canal, G. P.; Evans, T. E.; Feng, Y.; Soukhanovskii, V. A.

    2016-06-01

    The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (Edge Localized Modes) (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads is so called "advanced divertors" which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which are related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.

  8. Advanced divertor configurations with large flux expansion

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B. P.; McLean, A.; Menard, J. E.; Paul, S. F.; Podesta, M.; Raman, R.; Ryutov, D. D.; Scotti, F.; Kaita, R.; Maingi, R.; Mueller, D. M.; Roquemore, A. L.; Reimerdes, H.; Canal, G. P.; Labit, B.; Vijvers, W.; Coda, S.; Duval, B. P.; Morgan, T.; Zielinski, J.; De Temmerman, G.; Tal, B.

    2013-07-01

    Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as re-appearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3-7 MW/m2 to 0.5-1 MW/m2 was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L-H power threshold, enhanced stability of the peeling-ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (×2-3) Type I ELM frequency and slightly increased (20-30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX and TCV experiments are

  9. JET divertor diagnostic upgrade for neutral gas analysis.

    PubMed

    Kruezi, Uron; Sergienko, G; Morgan, P D; Matthews, G F; Brezinsek, S; Vartanian, S

    2012-10-01

    With installation of the ITER-like wall in JET a major diagnostic upgrade to measure the neutral gas pressure and composition in the sub-divertor region has been completed, to characterise retention and outgassing of the new metallic first wall. The upgrade includes two new magnetically shielded systems consisting of sensitive capacitance manometers and residual gas analysers, both capable of providing data during plasma operation. These enable absolute pressure and gas composition measurements (pressure range: 10(-5)-10(-1) mbar, mass range: 1-200 amu, respectively) and have been used to characterise the neutral gas behaviour under various plasma conditions.

  10. The ITER project construction status

    NASA Astrophysics Data System (ADS)

    Motojima, O.

    2015-10-01

    The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.

  11. The Two-Dimensional Structure of Partially Detached Divertor Plasmas in the DIII--D Tokamak

    NASA Astrophysics Data System (ADS)

    Fenstermacher, M. E.

    1996-11-01

    In this paper we present recent measurements of the 2-D spatial profiles of divertor plasma density, temperature, and emissivity in the DIII--D tokamak under highly radiating conditions in which there is a strong reduction in plasma pressure and energy conduction along the open field lines of the scrape-off layer (Partially Detached Divertor). This regime is desirable because the energy flux to the divertor targets can be reduced by up to a factor of 10 by the increased radiation, thus allowing for reliable divertor designs in high power tokamaks such as ITER. The data presented here are obtained using a newly installed Divertor Thomson Scattering (DTS) system specifically optimized for measuring the high electron densities and low temperatures expected in these detached divertor plasmas (ne <= 10^21 m-3, 0.5 eV <= T_e). These data are correlated with simultaneous measurements from fixed and fast-plunging Langmuir probes, VUV spectrometers, bolometers, and visible-light TV cameras. The DTS data confirm that electron pressure is nearly constant along field lines in attached plasmas, consistent with upstream and target plate diagnostics. D2 gas puffing in the divertor increases the plasma radiation and lowers Te to <2 eV in most of the divertor volume. Modeling shows that this temperature is low enough to allow ion-neutral collisions, charge exchange, and volume recombination to play significant roles in reducing the electron pressure along the magnetic separatrix by 3--5×, consistent with the measurements. At these temperatures, molecules may also be present in significant numbers and can further increase the recombination rates (Krasheninnikov, et al., J. Nucl. Mater. 1996). Farther out in the SOL, the electron density and pressure rise to values higher than those on the same flux surface at the midplane, so only part of the divertor plasma is detached. Absolutely-calibrated VUV spectroscopy and 2-D images of impurity emission show that the reduction in Te results

  12. Current convective instability in detached divertor plasma

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Smolyakov, A. I.

    2016-09-01

    The asymmetry of inner and outer divertors, which cause the inner divertor to detach first, while the outer one is still attached, results in the large temperature difference between the vicinities of inner and outer targets and the onset of large electric potential drop through detached plasma of the inner divertor. A large potential drop along with the inhomogeneity of the resistivity of detached plasma across the divertor leg drives the current convective instability in the inner divertor and subsequent fluctuations of radiation loss similar to that observed in experiments. The estimates of the frequency of plasma parameter fluctuations due to the current convective instability are in a reasonable agreement with experimental data. Once the outer divertor also detaches, the temperature difference between the vicinities of inner and outer targets disappears, and the driving force for the current convective instability, and resulting oscillations of radiation loss, vanishes. This feature is indeed observed in experiments.

  13. Modelling the transport of deuterium and tritium neutral particles in a divertor plasma

    NASA Astrophysics Data System (ADS)

    Tokar, M. Z.; Kotov, V.

    2012-10-01

    A fluid model for transport of deuterium and tritium atoms in two-dimensional geometry of a poloidal divertor is elaborated by taking into account the coupling of both isotopes through the processes of cross-charge-exchange. Calculations are performed for the plasma parameters predicted with the code package B2-EIRENE (SOLPS4.3) for the divertor region in ITER. The results demonstrate that the transparency of the scrape-off layer for neutral particles generated by recycling on target plates and recombination of electrons and ions in the plasma volume can be significantly different for deuterium and tritium atoms. This difference has to be taken into account by considering the global particle balances in a reactor. The numerical approach applied for calculations is verified by comparing with an analytical model elaborated for the case of plasma parameters homogeneous in the divertor domain.

  14. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  15. Divertor scenario development for NSTX Upgrade

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; McLean, A. G.; Meier, E. T.; Rognlien, T. D.; Ryutov, D. D.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; Kaita, R.; Kolemen, E.; Leblanc, B. P.; Menard, J. E.; Podesta, M.; Scotti, F.

    2012-10-01

    In the NSTX-U tokamak, initial plans for divertor plasma-facing components (PFCs) include lithium and boron coated graphite, with a staged transition to molybdenum. Steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m^2 in 2 MA, 12 MW NBI-heated discharges of up to 5 s duration, thus challenging PFC thermal limits. Based on the recent NSTX divertor experiments and modeling with edge transport code UEDGE, a favorable basis for divertor power handling in NSTX-U is developed. The snowflake divertor geometry and feedback-controlled divertor impurity seeding applied to the lower and upper divertors are presently envisioned. In the NSTX snowflake experiments with lithium-coated graphite PFCs, the peak divertor heat fluxes from Type I ELMs and between ELMs were significantly reduced due to geometry effects, increased volumetric losses and null-point convective redistribution between strike points. H-mode core confinement was maintained at H98(y,2)<=1 albeit the radiative detachment. Additional CD4 seeding demonstrated potential for a further increase of divertor radiation.

  16. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

    DOE PAGESBeta

    Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; et al

    2016-09-14

    A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, whichmore » we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.« less

  17. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.

    2016-12-01

    A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.

  18. US--ITER activation analysis

    SciTech Connect

    Attaya, H.; Gohar, Y.; Smith, D.

    1990-09-01

    Activation analysis has been made for the US ITER design. The radioactivity and the decay heat have been calculated, during operation and after shutdown for the two ITER phases, the Physics Phase and the Technology Phase. The Physics Phase operates about 24 full power days (FPDs) at fusion power level of 1100 MW and the Technology Phase has 860 MW fusion power and operates for about 1360 FPDs. The point-wise gamma sources have been calculated everywhere in the reactor at several times after shutdown of the two phases and are then used to calculate the biological dose everywhere in the reactor. Activation calculations have been made also for ITER divertor. The results are presented for different continuous operation times and for only one pulse. The effect of the pulsed operation on the radioactivity is analyzed. 6 refs., 12 figs., 1 tab.

  19. Conceptual design of divertor and first wall for DEMO-FNS

    NASA Astrophysics Data System (ADS)

    Sergeev, V. Yu.; Kuteev, B. V.; Bykov, A. S.; Gervash, A. A.; Glazunov, D. A.; Goncharov, P. R.; Dnestrovskij, A. Yu.; Khayrutdinov, R. R.; Klishchenko, A. V.; Lukash, V. E.; Mazul, I. V.; Molchanov, P. A.; Petrov, V. S.; Rozhansky, V. A.; Shpanskiy, Yu. S.; Sivak, A. B.; Skokov, V. G.; Spitsyn, A. V.

    2015-11-01

    Key issues of design of the divertor and the first wall of DEMO-FNS are presented. A double null closed magnetic configuration was chosen with long external legs and V-shaped corners. The divertor employs a cassette design similar to that of ITER. Water-cooled first wall of the tokamak is made of Be tiles and CuCrZr-stainless steel shells. Lithium injection and circulation technologies are foreseen for protection of plasma facing components. Simulations of thermal loads onto the first wall and divertor plates suggest a possibility to distribute heat loads making them less than 10 MW m-2. Evaluations of sputtering and evaporation of plasma-facing materials suggest that lithium may protect the first wall. To prevent Be erosion at the outer divertor plates either the full detached divertor operation or arrangement of the renewal lithium flow on targets should be implemented. Test bed experiments on the Tsefey-M facility with the first wall mockup coated by Ве tiles and cooled by water are presented. The temperature of the surface of tiles reached 280-300 °С at 5 MW m-2 and 600-650 °С at 10.5 MW m-2. The mockup successfully withstood 1000 cycles with the lower thermal loading and 100 cycles with higher thermal loading.

  20. Effect of Divertor Shaping on Divertor Plasma Behavior on DIII-D

    NASA Astrophysics Data System (ADS)

    Petrie, T. W.; Leonard, A. W.; Luce, T. C.; Mahdavi, M. A.; Holcomb, C. T.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Watkins, J. G.; Moyer, R. A.; Stangeby, P. C.

    2012-10-01

    Recent experiments examined the dependence of divertor density (nTAR), temperature (TTAR), and heat flux at the outer divertor separatrix target on changes in the divertor separatrix geometry. The responses of nTAR and TTAR to changes in the parallel connection length in the scrape-off layer (SOL) (L||) are consistent with the predictions of the Two Point Model (TPM). However, nTAR and TTAR display a more complex response to changes in the radial location of the outer divertor strike point (RTAR) than expected based on the TPM. SOLPS transport analysis indicates that small differences in divertor geometry can change neutral trapping sufficient to explain differences between experiment and TPM predictions. The response of the core and divertor plasmas to changes in L|| and RTAR, under both radiating and non-radiating divertor conditions, will be shown.

  1. Moving Divertor Plates in a Tokamak

    SciTech Connect

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  2. Optimization of a bundle divertor for FED

    SciTech Connect

    Hively, L.M.; Rothe, K.E.; Minkoff, M.

    1982-01-01

    Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations.

  3. ITER diagnostic systems in development in Ioffe Institute

    SciTech Connect

    Petrov, M.; Afanasyev, V.; Petrov, S.; Mironov, M.; Mukhin, E.; Tolstyakov, S.; Chugunov, I.; Shevelev, A.

    2014-08-21

    Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.

  4. Evaluating Stellarator Divertor Designs with EMC3

    NASA Astrophysics Data System (ADS)

    Bader, Aaron; Anderson, D. T.; Feng, Y.; Hegna, C. C.; Talmadge, J. N.

    2013-10-01

    In this paper various improvements of stellarator divertor design are explored. Next step stellarator devices require innovative divertor solutions to handle heat flux loads and impurity control. One avenue is to enhance magnetic flux expansion near strike points, somewhat akin to the X-Divertor concept in Tokamaks. The effect of judiciously placed external coils on flux deposition is calculated for configurations based on the HSX stellarator. In addition, we attempt to optimize divertor plate location to facilitate the external coil placement. Alternate areas of focus involve altering edge island size to elucidate the driving physics in the edge. The 3-D nature of stellarators complicates design and necessitates analysis of new divertor structures with appropriate simulation tools. We evaluate the various configurations with the coupled codes EMC3-EIRENE, allowing us to benchmark configurations based on target heat flux, impurity behavior, radiated power, and transitions to high recycling and detached regimes. Work supported by DOE-SC0006103.

  5. Rapidly Moving Divertor Plates In A Tokamak

    SciTech Connect

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  6. Nonlinear Impact of Edge Localized Modes on Carbon Erosion in the Divertor of the JET Tokamak

    SciTech Connect

    Kreter, A.; Esser, H. G.; Brezinsek, S.; Kirschner, A.; Philipps, V.; Coad, J. P.; Fundamenski, W.; Widdowson, A.; Pitts, R. A.

    2009-01-30

    The impact of edge localized modes (ELMs) carrying energies of up to 450 kJ on carbon erosion in the JET inner divertor is assessed by means of time resolved measurements using an in situ quartz microbalance diagnostic. The inner target erosion is strongly nonlinearly dependent on the ELM energy: a single 400 kJ ELM produces the same carbon erosion as ten 150 kJ events. The ELM-induced enhanced erosion is attributed to the presence of codeposited carbon-deuterium layers on the inner divertor target, which are thermally decomposed under the impact of ELMs.

  7. Extending helium partial pressure measurement technology to JET DTE2 and ITER

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Biewer, T. M.; Kruezi, U.; Vartanian, S.; Douai, D.; Hillis, D. L.; Marcus, C.

    2016-11-01

    The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE2) and for ITER.

  8. Gamma-irradiation tests of IR optical fibres for ITER thermography--a case study

    SciTech Connect

    Reichle, R.; Pocheau, C.; Jouve, M.

    2008-03-12

    In the course of the development of a concept for a spectrally resolving infrared thermography diagnostic for the ITER divertor we have tested 3 types of infrared (IR) fibres in Co{sup 60} irradiation facilities under {gamma} irradiation. The fibres were ZrF{sub 4} (and HfF{sub 4}) fibres from different manufacturers, hollow fibres (silica capillaries with internal Ag/AgJ coating) and a sapphire fibre. For the IR range, only the latter fibre type encourages to go further for neutron tests in a reactor. If one restricted the interest onto the near infrared range, high purity core silica fibres could be used. This study might be seen as a typical example of the relation between diagnostic development for a nuclear environment and irradiation experiments.

  9. Extending Helium Partial Pressure Measurement Technology to JET DTE2 and ITER

    SciTech Connect

    Klepper, C Christopher; Biewer, Theodore M; Douai, D.; Hillis, Donald Lee; Marcus, Chris; Kruezi, Uron

    2016-01-01

    The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE-2) and for ITER.

  10. Co-deposited layers in the divertor region of JET-ILW

    NASA Astrophysics Data System (ADS)

    Petersson, P.; Rubel, M.; Esser, H. G.; Likonen, J.; Koivuranta, S.; Widdowson, A.

    2015-08-01

    Tungsten-coated carbon tiles from a poloidal cross-section of the divertor and several types of erosion-deposition probes from the shadowed areas in the divertor were studied using heavy ion elastic recoil detection to obtain quantitative and depth-resolved deposition patterns. Deuterium, beryllium, carbon, nitrogen and oxygen along with tungsten and Inconel components are the main species detected in the studied surface region. The top of Tile 1 in the inner divertor is the main deposition area where the greatest amounts of deposited species are measured. Beryllium and tungsten-containing deposits on the probes (test mirrors and quartz microbalance) indicate that both low-Z and high-Z metals are transported to remote areas. Deposition of nitrogen-15 tracer used for edge cooling only at the end of experimental campaigns in 2012 was also detected giving evidence that nitrogen is effectively retained in wall components.

  11. Impact of Resonant Magnetic Perturbation Fields on NSTX-U Advanced Divertor Topologies

    NASA Astrophysics Data System (ADS)

    Waters, Ian; Frerichs, Heinke; Schmitz, Oliver; Ahn, Joon-Wook; Canal, Gustavo; Evans, Todd; Soukhanovskii, Vlad

    2015-11-01

    Explorations are under way to optimize the magnetic topology in the plasma edge of NSTX-U with the goal of improving neutral and impurity fueling and exhaust. The use of magnetic perturbation fields is being considered to spread heat and particle fluxes in the divertor, adjust plasma refueling, control impurity transport, and improve coupling to the exhaust systems. Also, advanced divertor configurations are being considered to improve peak heat loads on divertors. An assessment is made of the topologies of a number of representative NSTX-U advanced divertor configurations: lower single null, exact snowflake, and snowflake minus. Wall to wall magnetic connection lengths for each configuration are assessed in both their perturbed and axisymmetric configurations with perturbation coil currents of 1kA and 3kA. The magnetic perturbations yield complex strike patterns on divertor elements that are expected to be resolvable experimentally. The EMC3-EIRENE fluid plasma and kinetic neutral transport code will be used to study neutral and impurity transport and exhaust in these topologies. This work was funded in part by the Department of Energy under grant DE-SC0012315 and by startup funds of the Department of Engineering Physics at the University of Wisconsin-Madison.

  12. Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Liu, Xiang; Lian, Youyun; Cai, Laizhong

    2015-09-01

    The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110001 and 2011GB110004)

  13. Development of the ITER magnetic diagnostic set and specification.

    PubMed

    Vayakis, G; Arshad, S; Delhom, D; Encheva, A; Giacomin, T; Jones, L; Patel, K M; Pérez-Lasala, M; Portales, M; Prieto, D; Sartori, F; Simrock, S; Snipes, J A; Udintsev, V S; Watts, C; Winter, A; Zabeo, L

    2012-10-01

    ITER magnetic diagnostics are now in their detailed design and R&D phase. They have passed their conceptual design reviews and a working diagnostic specification has been prepared aimed at the ITER project requirements. This paper highlights specific design progress, in particular, for the in-vessel coils, steady state sensors, saddle loops and divertor sensors. Key changes in the measurement specifications, and a working concept of software and electronics are also outlined.

  14. Stability of a radiative mantle in ITER

    SciTech Connect

    Mahdavi, M.A.; Staebler, G.M.; Wood, R.D.; Whyte, D.G.; West, W.P.

    1996-12-01

    We report results of a study to evaluate the efficacy of various impurities for heat dispersal by a radiative mantle and radiative divertor(including SOL). We have derived a stability criterion for the mantle radiation which favors low Z impurities and low ratios of edge to core thermal conductivities. Since on the other hand the relative strength of boundary line radiation to core bremsstrahlung favors high Z impurities, we find that for the ITER physics phase argon is the best gaseous impurity for mantle radiation. For the engineering phase of ITER, more detailed analysis is needed to select between krypton and argon.

  15. Parametric analysis of the thermal effects on the divertor in tokamaks during plasma disruptions

    SciTech Connect

    Bruhn, M.L.

    1988-04-01

    Plasma disruptions are an ever present danger to the plasma-facing components in today's tokamak fusion reactors. This threat results from our lack of understanding and limited ability to control this complex phenomenon. In particular, severe energy deposition occurs on the divertor component of the double-null configured tokamak reactor during such disruptions. A hybrid computational model developed to estimate and graphically illustrate global thermal effects of disruptions on the divertor plates is described in detail. The quasi-two-dimensional computer code, TADDPAK (Thermal Analysis Divertor during Disruptions PAcKage), is used to conduct parametric analysis for the TIBER II Tokamak Engineering Test Reactor Design. The dependence of these thermal effects on divertor material choice, disruption pulse length, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is investigated for this reactor design. Results and conclusions from this analysis are presented. Improvements to this model and issues that require further investigation are discussed. Cursory analysis for ITER (International Thermonuclear Experimental Reactor) is also presented in the appendix. 75 refs., 49 figs., 10 tabs.

  16. X-point target divertor concept and the Alcator DX high power divertor test facility

    NASA Astrophysics Data System (ADS)

    Labombard, B.; Marmar, E.; Irby, J.; Vieria, R.; Wolfe, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as `Super X' and `X-point target' have the potential to solve all three challenges by producing a stable, fully detached, low temperature plasma in the divertor while maintaining a hot boundary layer around a clean plasma core. The X-point target divertor may be particularly effective. It places a second X-point in the pathway of the peak parallel heat flux with the intention of forming an X-point MARFE in the divertor volume, well away from the primary X-point that defines the last closed flux surface and at larger major radius, providing detachment front stability. Divertor heat dissipation is via volumetric processes (radiation, ion-neutral collisions), virtually eliminating erosion by ion bombardment and reducing peak heat flux and neutron fluence on remote divertor target components. Alcator DX is conceived as a national facility to test these ideas. It employs the high magnetic field technology of Alcator combined with high-power ICRH to investigate advanced divertors at reactor-level parallel heat flux densities.

  17. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, produce modified schedules, quickly, and exhibits 'anytime' behavior. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. We also show the anytime characteristics of the system. These experiments were performed within the domain of Space Shuttle ground processing.

  18. ITER safety challenges and opportunities

    SciTech Connect

    Piet, S.J.

    1991-01-01

    Results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ITER is capable of meeting anticipated regulatory dose limits,'' but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. We need much research and development (R D) and design analysis to establish that ITER meets regulatory requirements. We have a further opportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, we need to overcome three programmatic challenges and three technical challenges. The first programmatic challenge is to fund a comprehensive safety and environmental ITER R D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of the three key technical challenges is plasma engineering -- burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost. Some design requirements are now too strict; some are too lax. Fuel cycle design requirements are presently too strict, mandating inappropriate T separation from H and D. Heat sink requirements are presently too lax; they should be strengthened to ensure that maximum loss of coolant accident temperatures drop.

  19. Snowflake divertor configuration studies for NSTX-Upgrade

    SciTech Connect

    Soukhanovskii, V A

    2011-11-12

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  20. A method of interpreting the Balmer-alpha high-resolution spectroscopy for tokamak edge plasmas with account of divertor stray light

    NASA Astrophysics Data System (ADS)

    Neverov, V. S.; Kukushkin, A. B.; Alekseev, A. G.

    2016-01-01

    A method is suggested for interpreting the data from the Balmer-alpha high- resolution spectroscopy diagnostics of the edge plasma in the tokamak main chamber, which additionally uses the data from direct observation of the divertor. Such an extension of the diagnostics is motivated by the fact that in a tokamak-reactor with the metal first wall, like ITER tokamak, a significant role of the divertor stray light (DSL), which is emitted by the plasma in the divertor in the same spectral line and reflected from the first wall of the vacuum chamber to a spectrometer in the main chamber, is expected. The results of the first applications of the developed model to interpret the data from the JET-ILW tokamak experiments, which simulate the conditions of occurrence of the DSL in ITER, are discussed.

  1. Impact of W on scenario simulations for ITER

    NASA Astrophysics Data System (ADS)

    Hogeweij, G. M. D.; Leonov, V.; Schweinzer, J.; Sips, A. C. C.; Angioni, C.; Calabrò, G.; Dux, R.; Kallenbach, A.; Lerche, E.; Maggi, C.; Pütterich, Th.; ITPA Integrated Operating Scenarios topical Group; ASDEX Upgrade Team; Contributors, JET

    2015-06-01

    In preparation of ITER operation, large machines have replaced their wall and divertor material to W (ASDEX Upgrade) or a combination of Be for the wall and W for the divertor (JET). Operation in these machines has shown that the influx of W can have a significant impact on the discharge evolution, which has made modelling of this impact for ITER an urgent task. This paper reports on such modelling efforts. Maximum tolerable W concentrations have been determined for various scenarios, both for the current ramp-up and flat-top phase. Results of two independent methods are presented, based on the codes ZIMPUR plus ASTRA and CRONOS, respectively. Both methods have been tested and benchmarked against ITER-like Ip RU experiments at JET. It is found that W significantly disturbs the discharge evolution when the W concentration approaches ˜10-4 this critical level varies somewhat between scenarios.

  2. First results from the dynamic ergodic divertor at TEXTOR

    NASA Astrophysics Data System (ADS)

    Lehnen, M.; Abdullaev, S. S.; Biel, W.; Brezinsek, S.; Finken, K. H.; Harting, D.; von Hellermann, M.; Jakubowski, M.; Jaspers, R.; Kobayashi, M.; Koslowski, H. R.; Krämer-Flecken, A.; Matsunaga, G.; Pospieszczyk, A.; Reiter, D.; van Rompuy, T.; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Wolf, R.; Zimmermann, O.; Textor Team

    2005-03-01

    Experimental results from the dynamic ergodic divertor (DED) at TEXTOR are given, describing the complex structure of the edge plasma and the properties of the divertor as well as its influence on the plasma rotation.

  3. Disruptions in ITER and strategies for their control and mitigation

    NASA Astrophysics Data System (ADS)

    Lehnen, M.; Aleynikova, K.; Aleynikov, P. B.; Campbell, D. J.; Drewelow, P.; Eidietis, N. W.; Gasparyan, Yu.; Granetz, R. S.; Gribov, Y.; Hartmann, N.; Hollmann, E. M.; Izzo, V. A.; Jachmich, S.; Kim, S.-H.; Kočan, M.; Koslowski, H. R.; Kovalenko, D.; Kruezi, U.; Loarte, A.; Maruyama, S.; Matthews, G. F.; Parks, P. B.; Pautasso, G.; Pitts, R. A.; Reux, C.; Riccardo, V.; Roccella, R.; Snipes, J. A.; Thornton, A. J.; de Vries, P. C.

    2015-08-01

    The thermal and electromagnetic loads related to disruptions in ITER are substantial and require careful design of tokamak components to ensure they reach the projected lifetime and to ensure that safety relevant components fulfil their function for the worst foreseen scenarios. The disruption load specifications are the basis for the design process of components like the full-W divertor, the blanket modules and the vacuum vessel and will set the boundary conditions for ITER operations. This paper will give a brief overview on the disruption loads and mitigation strategies for ITER and will discuss the physics basis which is continuously refined through the current disruption R&D programs.

  4. Role of edge turbulence in detached divertor plasmas

    NASA Astrophysics Data System (ADS)

    Gang, F. Y.; Sigmar, D. J.; Krasheninnikov, S. I.

    1996-04-01

    The role of edge turbulence in detached divertor plasmas is investigated. It is shown that the edge turbulence, through poloidal transport of parallel momentum, can produce a significant plasma pressure drop along the magnetic field lines toward the divertor plate, a feature that characterizes the detached divertor plasma regime.

  5. Designing divertor targets for uniform power load

    NASA Astrophysics Data System (ADS)

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2015-08-01

    Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.

  6. Liquid metal cooled divertor for ARIES

    SciTech Connect

    Muraviev, E.

    1995-01-01

    A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m{sup 2}, and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed.

  7. Design Integration of Liquid Surface Divertors

    SciTech Connect

    Nygren, R E; Cowgill, D F; Ulrickson, M A; Nelson, B E; Fogarty, P J; Rognlien, T D; Rensink, M E; Hassanein, A; Smolentsev, S S; Kotschenreuther, M

    2003-11-13

    The US Enabling Technology Program in fusion is investigating the use of free flowing liquid surfaces facing the plasma. We have been studying the issues in integrating a liquid surface divertor into a configuration based upon an advanced tokamak, specifically the ARIES-RS configuration. The simplest form of such a divertor is to extend the flow of the liquid first wall into the divertor and thereby avoid introducing additional fluid streams. In this case, one can modify the flow above the divertor to enhance thermal mixing. For divertors with flowing liquid metals (or other electrically conductive fluids) MHD (magneto-hydrodynamics) effects are a major concern and can produce forces that redirect flow and suppress turbulence. An evaluation of Flibe (a molten salt) as a working fluid was done to assess a case in which the MHD forces could be largely neglected. Initial studies indicate that, for a tokamak with high power density, an integrated Flibe first wall and divertor does not seem workable. We have continued work with molten salts and replaced Flibe with Flinabe, a mixture of lithium and sodium fluorides, that has some potential because of its lower melting temperature. Sn and Sn-Li have also been considered, and the initial evaluations on heat removal with minimal plasma contamination show promise, although the complicated 3-D MHD flows cannot yet be fully modeled. Particle pumping in these design concepts is accomplished by conventional means (ports and pumps). However, trapping of hydrogen in these flowing liquids seems plausible and novel concepts for entrapping helium are also being studied.

  8. Optical dumps for H-alpha and visible spectroscopy in ITER

    SciTech Connect

    Andreenko, E. N.; Alekseev, A. G.; Gorshkov, A. V.; Orlovskiy, I. I.

    2014-08-21

    High-reflective Beryllium cover of ITER first wall (R≈30–60%) causes remarkable increase of divertor stray light component (DSL). Optical dumps are well-known solution for DSL attenuation. In this work few types of optical dumps have been examined both by modeling and experimental studies. Taking into account the limitations, induced by ITER first wall design, OD optimized design has been proposed which could decrease divertor stray light component by 10..100 times depending on incidence angle of light.

  9. Optical dumps for H-alpha and visible spectroscopy in ITER

    NASA Astrophysics Data System (ADS)

    Andreenko, E. N.; Alekseev, A. G.; Gorshkov, A. V.; Orlovskiy, I. I.

    2014-08-01

    High-reflective Beryllium cover of ITER first wall (R≈30-60%) causes remarkable increase of divertor stray light component (DSL). Optical dumps are well-known solution for DSL attenuation. In this work few types of optical dumps have been examined both by modeling and experimental studies. Taking into account the limitations, induced by ITER first wall design, OD optimized design has been proposed which could decrease divertor stray light component by 10..100 times depending on incidence angle of light.

  10. ITER Experts' meeting on density limits

    SciTech Connect

    Borrass, K.; Igitkhanov, Y.L.; Uckan, N.A.

    1989-12-01

    The necessity of achieving a prescribed wall load or fusion power essentially determines the plasma pressure in a device like ITER. The range of operation densities and temperatures compatible with this condition is constrained by the problems of power exhaust and the disruptive density limit. The maximum allowable heat loads on the divertor plates and the maximum allowable sheath edge temperature practically impose a lower limit on the operating densities, whereas the disruptive density limit imposes an upper limit. For most of the density limit scalings proposed in the past an overlap of the two constraints or at best a very narrow accessible density range is predicted for ITER. Improved understanding of the underlying mechanisms is therefore a crucial issue in order to provide a more reliable basis for extrapolation to ITER and to identify possible ways of alleviating the problem.

  11. The ITER in-vessel system

    SciTech Connect

    Lousteau, D.C.

    1994-09-01

    The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.

  12. Cool, high-density regime for poloidal divertors

    SciTech Connect

    Petravic, M.; Post, D.; Heifetz, D.; Schmidt, J.

    1981-08-01

    Calculations have been performed which demonstrate the possibility of operating poloidal divertors at high densities and low temperatures. This operating regime is caused primarily by ionization of recycling neutral gas near the divertor neutralizer plate which amplifies the input particle flux thereby raising the plasma density and lowering the plasma temperature. Low temperature, high density operation of poloidal divertors would ease the design requirements for future large tokamaks such as INTOR or FED by reducing the erosion rate in the divertor and reducing the neutral density and the associated charge exchange erosion near the main plasma. This regime may have already been observed on several divertor and limiter experiments.

  13. Divertor target for magnetic containment device

    DOEpatents

    Luzzi, Jr., Theodore E.

    1982-01-01

    In a plasma containment device of a type having superconducting field coils for magnetically shaping the plasma into approximately the form of a torus, an improved divertor target for removing impurities from a "scrape off" region of the plasma comprises an array of water cooled swirl tubes onto which the scrape off flux is impinged. Impurities reflected from the divertor target are removed from the target region by a conventional vacuum getter system. The swirl tubes are oriented and spaced apart within the divertor region relative to the incident angle of the scrape off flux to cause only one side of each tube to be exposed to the flux to increase the burnout rating of the target. The divertor target plane is oriented relative to the plane of the path of the scrape off flux such that the maximum heat flux onto a swirl tube is less than the tube design flux. The containment device is used to contain the plasma of a tokamak fusion reactor and is applicable to other long pulse plasma containment systems.

  14. Theoretical design of an energy recovering divertor

    NASA Astrophysics Data System (ADS)

    Baver, D. A.

    2010-11-01

    An energy recovering divertor (ERD) is a device for converting thermal to electrical energy in the divertor channel of a tokamak. Because ERD's are a type of heat engine operating at plasma temperatures, they have the thermodynamic potential for extremely high efficiencies. An ERD offers several important benefits to a tokamak fusion reactor. First, any energy recovered by the ERD is subtracted from divertor heat load, thus circumventing materials limitations. Second, energy recovered by the ERD is available for auxiliary heating, thus allowing the reactor to break even at a lower Lawson parameter. Third, an ERD can be used to power auxiliary current drive, thus reducing dependence on bootstrap current. We will present a design for an ERD based on amplification of Alfven waves in a manner analogous to a free-electron laser. While its projected efficiency falls short of the thermodynamic potential for this class of device, it nonetheless demonstrates the theoretical viability of direct power conversion in a tokamak divertor. We will also present potential approaches towards higher efficiency devices of this type. Work supported by the U.S. DOE under grant DE-FG02-97ER54392.

  15. The tungsten divertor experiment at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Krieger, K.; Thoma, A.; Bosch, H.-S.; Deschka, S.; Dux, R.; Engelhardt, W.; García-Rosales, C.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Mertens, V.; Ryter, F.; Rohde, V.; Roth, J.; Sokoll, M.; Stäbler, A.; Suttrop, W.; Weinlich, M.; Zohm, H.; Alexander, M.; Becker, G.; Behler, K.; Behringer, K.; Behrisch, R.; Bergmann, A.; Bessenrodt-Weberpals, M.; Brambilla, M.; Brinkschulte, H.; Büchl, K.; Carlson, A.; Chodura, R.; Coster, D.; Cupido, L.; de Blank, H. J.; de Peña Hempel, S.; Drube, R.; Fahrbach, H.-U.; Feist, J.-H.; Feneberg, W.; Fiedler, S.; Franzen, P.; Fuchs, J. C.; Fußmann, G.; Gafert, J.; Gehre, O.; Gernhardt, J.; Haas, G.; Herppich, G.; Herrmann, W.; Hirsch, S.; Hoek, M.; Hoenen, F.; Hofmeister, F.; Hohenöcker, H.; Jacobi, D.; Junker, W.; Kardaun, O.; Kass, T.; Kollotzek, H.; Köppendörfer, W.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Manso, M. E.; Maraschek, M.; Mast, K.-F.; McCarthy, P.; Meisel, D.; Merkel, R.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pasch, E.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pitcher, C. S.; Poschenrieder, W.; Raupp, G.; Reinmüller, K.; Riedl, R.; Röhr, H.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Scott, B. D.; Seidel, U.; Serra, F.; Speth, E.; Silva, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ulrich, M.; Varela, P.; Verbeek, H.; Verplancke, Ph; Vollmer, O.; Wedler, H.; Wenzel, U.; Wesner, F.; Wolf, R.; Wunderlich, R.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.

    1996-12-01

    Tungsten-coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 600 plasma discharges have been performed to date, around 300 of which were auxiliary heated with heating powers up to 10 MW. The production of tungsten in the divertor was monitored by a W I line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionization states around W XXX was measured. From the intensity of these lines the W content was derived. Under normal discharge conditions W-concentrations around 0741-3335/38/12A/013/img12 or even lower were found. The influence on the main plasma parameters was found to be negligible. The maximum concentrations observed decrease with increasing heating power. In several low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen were comparable to the discharges with the graphite divertor. Furthermore, the density and the 0741-3335/38/12A/013/img13 limits remained unchanged and no negative influence on the energy confinement or on the H-mode threshold was found. Discharges with neon radiative cooling showed the same behaviour as in the graphite divertor case.

  16. Kinetic modeling of divertor heat load fluxes in the Alcator C-Mod and DIII-D tokamaks

    SciTech Connect

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; Park, G. Y.; Chang, C. S.; Ku, S.; Brunner, D.; Hughes, J. W.; LaBombard, B.; Terry, J. L.; Groebner, R. J.

    2015-09-15

    The guiding-center kinetic neoclassical transport code, XGC0 [Chang et al., Phys. Plasmas 11, 2649 (2004)], is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The dependence of the width of heat-load fluxes on neoclassical effects, neutral collisions, and anomalous transport is investigated using the XGC0 code. The XGC0 code includes realistic X-point geometry, a neutral source model, the effects of collisions, and a diffusion model for anomalous transport. It is observed that the width of the XGC0 neoclassical heat-load is approximately inversely proportional to the total plasma current I{sub p.} The scaling of the width of the divertor heat-load with plasma current is examined for an Alcator C-Mod discharge and four DIII-D discharges. The scaling of the divertor heat-load width with plasma current is found to be weaker in the Alcator C-Mod discharge compared to scaling found in the DIII-D discharges. The effect of neutral collisions on the 1/I{sub p} scaling of heat-load width is shown not to be significant. Although inclusion of poloidally uniform anomalous transport results in a deviation from the 1/I{sub p} scaling, the inclusion of the anomalous transport that is driven by ballooning-type instabilities results in recovering the neoclassical 1/I{sub p} scaling. The Bohm or gyro-Bohm scalings of anomalous transport do not strongly affect the dependence of the heat-load width on plasma current. The inclusion of anomalous transport, in general, results in widening the width of neoclassical divertor heat-load and enhances the neoclassical heat-load fluxes on the divertor plates. Understanding heat transport in the tokamak scrape-off layer plasmas is important for strengthening the basis for predicting divertor conditions in ITER.

  17. The role of plasma response in divertor footprint modification by 3D fields in NSTX

    NASA Astrophysics Data System (ADS)

    Ahn, Joonwook; Kim, Kimin; Canal, Gustavo; Gan, Kaifu; Gray, Travis; McLean, Adam; Park, Jong-Kyu; Scotti, Filippo

    2015-11-01

    In NSTX, the divertor footprints of both heat and particle fluxes are found to be significantly modified by externally applied 3D magnetic perturbations. Striations on the divertor surface, indicating separatrix splitting and formation of magnetic lobes, are observed for both n = 1 and n = 3 perturbation fields. These striations can lead to localized heating of the divertor plates and to the re-attachment of detached plasmas, both of which have to be avoided in ITER for successful heat flux management. In this work, the role of plasma response on the formation of separatrix splitting has been investigated in the ideal framework by comparing measured heat and particle flux footprints with field line tracing calculations with and without contributions from the plasma response calculated by the ideal code IPEC. Simulations show that, n = 3 fields are slightly shielded by the plasma, with the measured helical pattern of striations in good agreement with the results from the vacuum approximation. The n = 1 fields are, however, significantly amplified by the plasma response, which provides a better agreement with the measurements. Resistive plasma response calculations by M3D-C1 are also in progress and the results will be compared with those from the ideal code IPEC. This work was supported by DoE Contracts: DE-AC05-00OR22725, DE-AC52-07NA27344 and DE-AC02-09CH11466.

  18. Analysis of a multi-machine database on divertor heat fluxesa)

    NASA Astrophysics Data System (ADS)

    Makowski, M. A.; Elder, D.; Gray, T. K.; LaBombard, B.; Lasnier, C. J.; Leonard, A. W.; Maingi, R.; Osborne, T. H.; Stangeby, P. C.; Terry, J. L.; Watkins, J.

    2012-05-01

    A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D, and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with Ip, which all three tokamaks independently demonstrate. An improved Thomson scattering system on DIII-D has yielded very accurate scrape off layer (SOL) profile measurements from which tests of parallel transport models have been made. It is found that a flux-limited model agrees best with the data at all collisionalities, while a Spitzer resistivity model agrees at higher collisionality where it is more valid. The SOL profile measurements and divertor heat flux scaling are consistent with a heuristic drift based model as well as a critical gradient model.

  19. ITER vacuum vessel design (D201 subtask 1.3 and subtask 3). Final report

    SciTech Connect

    1996-08-01

    ITER Task No. D201, Vacuum Vessel Design (Subtask 1.3 and Subtask 3), was initiated to propose and evaluate local vacuum vessel reinforcement alternatives in proximity to the Neutral Beam, Radial Mid-Plane, Top, and Divertor Ports. These areas were reported to be highly stressed regions based on the results of preliminary stress analyses performed by the USHT (US Home Team) and the ITER Joint Central Team (JCT) at the Garching JWS (Joint Work Site). Initial design activities focused on the divertor port region which was reported to experience the highest stress intensities. Existing stress analysis models and results were reviewed with the USHT stress analysts to obtain an overall understanding of the vessel response to the various applied loads. These reviews indicated that the reported stress intensities in the divertor port region were significantly affected by the loads applied to the vessel in adjacent regions.

  20. Suppression of tritium retention in remote areas of ITER by nonperturbative reactive gas injection.

    PubMed

    Tabarés, F L; Ferreira, J A; Ramos, A; van Rooij, G; Westerhout, J; Al, R; Rapp, J; Drenik, A; Mozetic, M

    2010-10-22

    A technique based on reactive gas injection in the afterglow region of the divertor plasma is proposed for the suppression of tritium-carbon codeposits in remote areas of ITER when operated with carbon-based divertor targets. Experiments in a divertor simulator plasma device indicate that a 4  nm/min deposition can be suppressed by addition of 1  Pa·m³ s⁻¹ ammonia flow at 10 cm from the plasma. These results bolster the concept of nonperturbative scavenger injection for tritium inventory control in carbon-based fusion plasma devices, thus paving the way for ITER operation in the active phase under a carbon-dominated, plasma facing component background.

  1. Flute mode fluctuations in the divertor mirror cell

    SciTech Connect

    Katanuma, I.; Yagi, K.; Nakashima, Y.; Ichimura, M.; Imai, T.

    2010-03-15

    The computer code by reduced magnetohydrodynamic equations were made which can simulate the flute interchange modes (similar to the Rayleigh-Taylor instability) and the instability associated with the presence of nonuniform plasma flows (similar to the Kelvin-Helmholtz instability). This code is applied to a model divertor and the GAMMA10 [M. Inutake et al., Phys. Rev. Lett. 55, 939 (1985)] with divertor in order to investigate the flute modes in these divertor cells. The linear growth rate of the flute instability determined by the nonlocal linear analysis agrees with that in the linear phase of the simulations. There is a stable nonlinear steady state in both divertor cells, but the nonlinear steady state is different between the model divertor and the GAMMA10 with divertor.

  2. Modeling detachment physics in the NSTX snowflake divertor

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Soukhanovskii, V. A.; Bell, R. E.; Diallo, A.; Kaita, R.; LeBlanc, B. P.; McLean, A. G.; Podestà, M.; Rognlien, T. D.; Scotti, F.

    2015-08-01

    The snowflake divertor is a proposed technique for coping with the tokamak power exhaust problem in next-step experiments and eventually reactors, where extreme power fluxes to material surfaces represent a leading technological and physics challenge. In lithium-conditioned National Spherical Torus Experiment (NSTX) discharges, application of the snowflake divertor typically induced partial outer divertor detachment and severalfold heat flux reduction. UEDGE is used to analyze and compare conventional and snowflake divertor configurations in NSTX. Matching experimental upstream profiles and divertor measurements in the snowflake requires target recycling of 0.97 vs. 0.91 in the conventional case, implying partial saturation of the lithium-based pumping mechanism. Density scans are performed to analyze the mechanisms that facilitate detachment in the snowflake, revealing that increased divertor volume provides most of the parallel heat flux reduction. Also, neutral gas power loss is magnified by the increased wetted area in the snowflake, and plays a key role in generating volumetric recombination.

  3. NSTX Plasma Response to Lithium Coated Divertor

    SciTech Connect

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  4. Electron beam facility for divertor target experiments

    SciTech Connect

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-12-31

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m{sup 3}), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts.

  5. Performance of the INTOR poloidal divertor

    SciTech Connect

    Post, D.E.; Petravic, M.; Schmidt, J.A.; Heifetz, D.

    1981-10-01

    The next generation of large tokamak experiments is expected to have large particle and heat outfluxes (approx. 10/sup 23/ particles/sec and 80 MW). These outfluxes must be controlled to provide adequate pumping of the helium ash and to minimize the sputtering erosion of the vacuum vessel walls, limiters, and neutralizer plates. A poloidal divertor design to solve these problems for INTOR has been done using a two-dimensional code which models the plasma as a fluid and solves equations for the flow of particles, momentum and energy, and calculates the neutral gas transport with Monte-Carlo techniques. These calculations show that there is a regime of operation where the density in the divertor is high and the temperature is low, thus easing the heat load and erosion problems. The neutral pressure at the plate is high, resulting in high gas throughputs, with modest pumping speeds.

  6. Synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON): A statistical model based iterative image reconstruction method to eliminate limited-view artifacts and to mitigate the temporal-average artifacts in time-resolved CT

    PubMed Central

    Chen, Guang-Hong; Li, Yinsheng

    2015-01-01

    Purpose: In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON), to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that severely violates the Tuy condition. Methods: In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes during data acquisition. Each image reconstructed from data acquired in a given temporal window represents one time frame and can be denoted as an image vector. Conventionally, each individual time frame is reconstructed independently. In this paper, all image frames are grouped into a spatial–temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the spatial–temporal image matrix is used in SMART-RECON to regularize the reconstruction of all image time frames. This regularizer exploits the low-dimensional structure of the spatial–temporal image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired in some applications to reduce temporal-average artifacts. Both numerical simulations in two dimensional image slices with known ground truth and in vivo human subject data acquired in a contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and temporal fidelity

  7. Divertor and scoop limiter experiments on PDX

    SciTech Connect

    McGuire, K.; Beiersdorfer, P.; Bell, M.; Bol, K.; Boyd, D.; Buchenauer, D.; Budny, R.; Cavallo, A.; Couture, P.; Crowley, T.

    1985-01-01

    Routine operation in the enhanced energy confinement (or H-mode) regime during neutral beam injection was achieved by modifying the PDX divertor hardware to inhibit the influx of neutral gas from the divertor region to the main plasma chamber. A particle scoop limiter has been studied as a mechanical means of controlling particles at the plasma edge, and neutral beam heated discharges with this limiter show similar confinement times (normalized to tau/sub E//I/sub p/) to average H-mode plasmas. Two new instabilities are observed near the plasma edge in PDX during H-mode operation. The first, a quasicoherent fluctuation, occurred in bursts at well-defined frequencies (..delta omega../..omega.. less than or equal to 0.1) in the range 50 to 180 kHz, and had no obvious effects on confinement. The second instability, the edge relaxation phenomena (ERP), did cause deterioration in the global confinement time. The ERP's are characterized by sharp spikes in the divertor plasma density, H/sub ..cap alpha../ emission, and on the x-ray signals they appear as sawtoothlike relaxations at the plasma edge with an inversion radius near the separatrix. Attempts to obtain high ..beta../sub T/ in the H-mode discharges were hampered by a deterioration in the H-mode confinement and major disruptions which limited the achievable ..beta../sub T/. A study of the stability of both the limiter L-mode and divertor H-mode discharges close to the theoretical ..beta.. boundary, showed that the major disruptions observed there are sometimes caused by a fast growing m/n = 1/1 mode with no observable external precursor oscillations.

  8. Constrained ripple optimization of Tokamak bundle divertors

    SciTech Connect

    Hively, L.M.; Rome, J.A.; Lynch, V.E.; Lyon, J.F.; Fowler, R.H.; Peng, Y-K.M.; Dory, R.A.

    1983-02-01

    Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ..xi.. B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have low on-axis ripple (<0.2%) so that, now, most banana-trapped fast ions are confined. Only those ions with banana tips near the outside region (absolute value theta < or equal to 45/sup 0/) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded.

  9. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  10. Two-chamber model for divertors with plasma recycling

    SciTech Connect

    Langer, W.D.; Singer, C.E.

    1985-06-01

    To model particle and heat-loss terms at the edge of a tokamak with a divertor or pumped limiter, a simple two-chamber formuluation of the scrapeoff has been constructed by integrating the fluid equations, including sources, along open field lines. The model is then solved for a wide range of density and temperature conditions in the scrapeoff, using geometrical parameters typical of the poloidal divertor in the poloidal divertor experiment (PDX). The solutions characterize four divertor operating conditions for beam-heated plasmas: plugged, unplugged, blowthrough, and blowback.

  11. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    SciTech Connect

    Linke, J.; Duwe, R.; Kuehnlein, W.

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules, electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.

  12. Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade

    NASA Astrophysics Data System (ADS)

    Meyer, H.; Abel, I. G.; Akers, R. J.; Allan, A.; Allan, S. Y.; Appel, L. C.; Asunta, O.; Barnes, M.; Barratt, N. C.; Ben Ayed, N.; Bradley, J. W.; Canik, J.; Cahyna, P.; Cecconello, M.; Challis, C. D.; Chapman, I. T.; Ciric, D.; Colyer, G.; Conway, N. J.; Cox, M.; Crowley, B. J.; Cowley, S. C.; Cunningham, G.; Danilov, A.; Darke, A.; De Bock, M. F. M.; De Temmerman, G.; Dendy, R. O.; Denner, P.; Dickinson, D.; Dnestrovsky, A. Y.; Dnestrovsky, Y.; Driscoll, M. D.; Dudson, B.; Dunai, D.; Dunstan, M.; Dura, P.; Elmore, S.; Field, A. R.; Fishpool, G.; Freethy, S.; Fundamenski, W.; Garzotti, L.; Ghim, Y. C.; Gibson, K. J.; Gryaznevich, M. P.; Harrison, J.; Havlíčková, E.; Hawkes, N. C.; Heidbrink, W. W.; Hender, T. C.; Highcock, E.; Higgins, D.; Hill, P.; Hnat, B.; Hole, M. J.; Horáček, J.; Howell, D. F.; Imada, K.; Jones, O.; Kaveeva, E.; Keeling, D.; Kirk, A.; Kočan, M.; Lake, R. J.; Lehnen, M.; Leggate, H. J.; Liang, Y.; Lilley, M. K.; Lisgo, S. W.; Liu, Y. Q.; Lloyd, B.; Maddison, G. P.; Mailloux, J.; Martin, R.; McArdle, G. J.; McClements, K. G.; McMillan, B.; Michael, C.; Militello, F.; Molchanov, P.; Mordijck, S.; Morgan, T.; Morris, A. W.; Muir, D. G.; Nardon, E.; Naulin, V.; Naylor, G.; Nielsen, A. H.; O'Brien, M. R.; O'Gorman, T.; Pamela, S.; Parra, F. I.; Patel, A.; Pinches, S. D.; Price, M. N.; Roach, C. M.; Robinson, J. R.; Romanelli, M.; Rozhansky, V.; Saarelma, S.; Sangaroon, S.; Saveliev, A.; Scannell, R.; Seidl, J.; Sharapov, S. E.; Schekochihin, A. A.; Shevchenko, V.; Shibaev, S.; Stork, D.; Storrs, J.; Sykes, A.; Tallents, G. J.; Tamain, P.; Taylor, D.; Temple, D.; Thomas-Davies, N.; Thornton, A.; Turnyanskiy, M. R.; Valovič, M.; Vann, R. G. L.; Verwichte, E.; Voskoboynikov, P.; Voss, G.; Warder, S. E. V.; Wilson, H. R.; Wodniak, I.; Zoletnik, S.; Zagôrski, R.; MAST, the; NBI Teams

    2013-10-01

    New diagnostic, modelling and plant capability on the Mega Ampère Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved Ti measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. Te inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfvén eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows.

  13. Power Radiated from ITER and CIT by Impurities

    DOE R&D Accomplishments Database

    Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.

  14. Power radiated from ITER and CIT by impurities

    SciTech Connect

    Cummings, J.; Cohen, S.A.; Hulse, R.; Post, D.E.; Redi, M.H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed. 22 refs., 16 figs.

  15. Main challenges for ITER optical diagnostics

    SciTech Connect

    Vukolov, K. Yu.; Orlovskiy, I. I.; Alekseev, A. G.; Borisov, A. A.; Andreenko, E. N.; Kukushkin, A. B.; Lisitsa, V. S.; Neverov, V. S.

    2014-08-21

    The review is made of the problems of ITER optical diagnostics. Most of these problems will be related to the intensive neutron radiation from hot plasma. At a high level of radiation loads the most types of materials gradually change their properties. This effect is most critical for optical diagnostics because of degradation of optical glasses and mirrors. The degradation of mirrors, that collect the light from plasma, basically will be induced by impurity deposition and (or) sputtering by charge exchange atoms. Main attention is paid to the search of glasses for vacuum windows and achromatic lens which are stable under ITER irradiation conditions. The last results of irradiation tests in nuclear reactor of candidate silica glasses KU-1, KS-4V and TF 200 are presented. An additional problem is discussed that deals with the stray light produced by multiple reflections from the first wall of the intense light emitted in the divertor plasma.

  16. Main challenges for ITER optical diagnostics

    NASA Astrophysics Data System (ADS)

    Vukolov, K. Yu.; Orlovskiy, I. I.; Alekseev, A. G.; Borisov, A. A.; Andreenko, E. N.; Kukushkin, A. B.; Lisitsa, V. S.; Neverov, V. S.

    2014-08-01

    The review is made of the problems of ITER optical diagnostics. Most of these problems will be related to the intensive neutron radiation from hot plasma. At a high level of radiation loads the most types of materials gradually change their properties. This effect is most critical for optical diagnostics because of degradation of optical glasses and mirrors. The degradation of mirrors, that collect the light from plasma, basically will be induced by impurity deposition and (or) sputtering by charge exchange atoms. Main attention is paid to the search of glasses for vacuum windows and achromatic lens which are stable under ITER irradiation conditions. The last results of irradiation tests in nuclear reactor of candidate silica glasses KU-1, KS-4V and TF 200 are presented. An additional problem is discussed that deals with the stray light produced by multiple reflections from the first wall of the intense light emitted in the divertor plasma.

  17. Novel aspects of plasma control in ITER

    NASA Astrophysics Data System (ADS)

    Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-01

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  18. Threshold power and energy confinement for ITER

    SciTech Connect

    Takizuka, T.

    1996-12-31

    In order to predict the threshold power for L-H transition and the energy confinement performance in ITER, assembling of database and analyses of them have been progressed. The ITER Threshold Database includes data from 10 divertor tokamaks. Investigation of the database gives a scaling of the threshold power of the form P{sub thr} {proportional_to} B{sub t} n{sub e}{sup 0.75} R{sup 2} {times} (n{sub e} R{sup 2}){sup +-0.25}, which predicts P{sub thr} = 100 {times} 2{sup 0{+-}1} MW for ITER at n{sub e} = 5 {times} 10{sup 19} m{sup {minus}3}. The ITER L-mode Confinement Database has also been expanded by data from 14 tokamaks. A scaling of the thermal energy confinement time in L-mode and ohmic phases is obtained; {tau}{sub th} {approximately} I{sub p} R{sup 1.8} n{sub e}{sup 0.4{sub P{sup {minus}0.73}}}. At the ITER parameter, it becomes about 2.2 sec. For the ignition in ITER, more than 2.5 times of improvement will be required from the L-mode. The ITER H-mode Confinement Database is expanded from data of 6 tokamaks to data of 11 tokamaks. A {tau}{sub th} scaling for ELMy H-mode obtained by a standard regression analysis predicts the ITER confinement time of {tau}{sub th} = 6 {times} (1 {+-} 0.3) sec. The degradation of {tau}{sub th} with increasing n{sub e} R{sup 2} (or decreasing {rho}{sub *}) is not found for ELMy H-mode. An offset linear law scaling with a dimensionally correct form also predicts nearly the same {tau}{sub th} value.

  19. Novel aspects of plasma control in ITER

    SciTech Connect

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A.; Ambrosino, G.; Pironti, A.; Felici, F.; Kallenbach, A.; Raupp, G.; Treutterer, W.; Kolemen, E.; Lister, J.; Sauter, O.; Moreau, D.; Schuster, E.

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  20. Thomson scattering diagnostic systems in ITER

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.

    2016-01-01

    Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8ITER environment is imposing specific loads (e.g. gamma and neutron radiation, temperatures, disruption-induced stresses) and also access and reliability constraints that require new designs for many of the sub-systems. The challenges and the proposed solutions for all three TS systems are presented.

  1. Recent ASDEX Upgrade research in support of ITER and DEMO

    NASA Astrophysics Data System (ADS)

    H. Zohmthe ASDEX Upgrade Team; the EUROfusion MST1 Team

    2015-10-01

    Recent experiments on the ASDEX Upgrade tokamak aim at improving the physics base for ITER and DEMO to aid the machine design and prepare efficient operation. Type I edge localized mode (ELM) mitigation using resonant magnetic perturbations (RMPs) has been shown at low pedestal collisionality (νped\\ast <0.4) . In contrast to the previous high ν* regime, suppression only occurs in a narrow RMP spectral window, indicating a resonant process, and a concomitant confinement drop is observed due to a reduction of pedestal top density and electron temperature. Strong evidence is found for the ion heat flux to be the decisive element for the L-H power threshold. A physics based scaling of the density at which the minimum PLH occurs indicates that ITER could take advantage of it to initiate H-mode at lower density than that of the final Q = 10 operational point. Core density fluctuation measurements resolved in radius and wave number show that an increase of R/LTe introduced by off-axis electron cyclotron resonance heating (ECRH) mainly increases the large scale fluctuations. The radial variation of the fluctuation level is in agreement with simulations using the GENE code. Fast particles are shown to undergo classical slowing down in the absence of large scale magnetohydrodynamic (MHD) events and for low heating power, but show signs of anomalous radial redistribution at large heating power, consistent with a broadened off-axis neutral beam current drive current profile under these conditions. Neoclassical tearing mode (NTM) suppression experiments using electron cyclotron current drive (ECCD) with feedback controlled deposition have allowed to test several control strategies for ITER, including automated control of (3,2) and (2,1) NTMs during a single discharge. Disruption mitigation studies using massive gas injection (MGI) can show an increased fuelling efficiency with high field side injection, but a saturation of the fuelling efficiency is observed at high injected

  2. Super-saturated hydrogen effects on radiation damages in tungsten under the high-flux divertor plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kato, D.; Iwakiri, H.; Watanabe, Y.; Morishita, K.; Muroga, T.

    2015-08-01

    Tungsten is a prime candidate as the divertor material of the ITER and DEMO reactors, which would be exposed to unprecedentedly high-flux plasmas as well as neutrons. For a better characterization of radiation damages in the tungsten under the divertor condition, we examine influences of super-saturated hydrogen on vacancies in the tungsten. The present calculations based on density functional theory (DFT) reveal unusual phenomena predicted at a super-saturated hydrogen concentration: (1) strongly enhanced vacancy concentration with the super-saturated hydrogen concentration is predicted by a thermodynamics model assuming multiple-hydrogen trapping, i.e. hydrogen clusters formation, in the vacancies; and (2) DFT molecular dynamics revealed that hydrogen clusters can prevent a vacancy from recombining with the neighboring crowdion-type self-interstitial-atom. This suggests that neutron damage effects will be increased in the presence of the hydrogen clusters.

  3. A time dependent 2D divertor code with TVD scheme for complex divertor configurations

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Takizuka, T.; Hirayama, T.

    1999-11-01

    In order to study the transport of heat and particles in the SOL and divertor plasmas, a two-dimensional divertor code, SOLDOR has been developed. The model used in this code is identical to the B2-code. Fluid equations are discretized in space under a non orthogonal mesh to treat accurately the W shape divertor configuration of JT-60U. The total variation diminishing scheme (TVD), which is a most familiar one in computational fluid dynamics, is applied for convective terms. The equations obtained by a finite volume method (FVM) are discretized in time with a full implicit scheme and are solved time-dependently using the Newton-Raphson method. The discretized equations are solved efficiently using approximate factorization method (AF). Test calculations in the slab geometry successfully reproduced the B2 results (B.J. Braams, NET report 1987) . We are going to apply this code to JT-60U divertor plasma and investigate the flow reversal and impurity transport.

  4. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    SciTech Connect

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  5. OEDGE Modeling of Divertor Fueling at DIII-D

    NASA Astrophysics Data System (ADS)

    Bray, B. D.; Leonard, A. W.; Elder, J. D.; Stangeby, P. C.

    2015-11-01

    Onion-skin-modeling (OSM) is used to assess the affect of divertor closure on pedestal fueling sources. The OSM includes information from a wide range of diagnostic measurements at DIII-D to constrain the model background plasma for better simulation of neutrals and impurity ions and spectroscopy to compare to the results of the simulation. DIII-D has open lower divertor and closed upper divertor configurations which can be run with similar discharges. Progress toward modeling the pedestal fueling in low density plasmas for these cases will be presented as well as initial comparisons of recent lower single null discharges with the outer leg on the divertor shelf (fully open) and divertor floor (partially open). Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  6. High heat flux experiments of saddle type divertor module

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoshi; Akiba, Masato; Araki, Masanori; Satoh, Kazuyoshi; Yokoyama, Kenji; Dairaku, Masayuki

    1994-09-01

    JAERI has been extensively developing plasma facing components for next tokomak devices. The authors have developed a saddle type divertor module which consists of saddle-shaped armor tiles brazed on metal heat sink. This paper presents the experimental and analytical results of thermal cycling experiments of the saddle type divertor module. The divertor module has unidirectional CFC armor tiles brazed on OFHC copper heat sink. A twisted tape was inserted in the cooling tube to enhance the heat transfer. In the experiments, thermal response of the divertor module was monitored by an infrared camera and thermocouples. The maximum incident heat flux was 24.5 MW/m 2 for a duration of 30 s. No degradation of thermal response was observed during the experiment. As a result, the saddle type divertor module successfully endured at an incident heat flux of over 20 MW/m 2 under steady state conditions for 1000 cycles.

  7. Comparison of ELM heat loads in snowflake and standard divertors

    SciTech Connect

    Rognlien, T D; Cohen, R H; Ryutov, D D; Umansky, M V

    2012-05-08

    An analysis is given of the impact of the tokamak divertor magnetic structure on the temporal and spatial divertor heat flux from edge localized modes (ELMs). Two configurations are studied: the standard divertor where the poloidal magnetic field (B{sub p}) varies linearly with distance (r) from the magnetic null and the snowflake where B{sub p} varies quadratrically with r. Both one and two-dimensional models are used to analyze the effect of the longer magnetic field length between the midplane and the divertor plate for the snowflake that causes a temporal dilation of the ELM divertor heat flux. A second effect discussed is the appearance of a broad region near the null point where the poloidal plasma beta can substantially exceed unity, especially for the snowflake configuration during the ELM; such a condition is likely to drive additional radial ELM transport.

  8. The energy balance of divertor discharges in the PDX tokamak

    NASA Astrophysics Data System (ADS)

    Bell, M. G.; Fonck, R. J.; Grek, B.; Jaehnig, K. P.; Kaita, R.; Kaye, S. M.; McBride, T.; Mueller, D.; Owens, D. K.; Schmidt, G. L.

    1984-05-01

    The energy balance of divertor discharges in the PDX tokamak has been studied as a function of the divertor geometry, heating method, and discharge parameters. In the original open divertor geometry, energy flow to the neutralizers accounted for 50-60% of the input energy, while radiation from the main plasma accounted for 20-40%, depending on the density and the heating source. For single-null discharges in the modified closed divertor geometry, the main plasma radiation remains at a similar level, but the neutralizer deposition decreases to < 20% and radiation from the divertor scrape-off must be included to achieve energy accountability. The energy deposition width on the neutralizers is found to vary with plasma conditions in the closed geometry.

  9. Divertor for use in fusion reactors

    DOEpatents

    Christensen, Uffe R.

    1979-01-01

    A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.

  10. Magnetic configuration flexibility of snowflake divertor for HL-2M [Analysis of snowflake divertor configurations for HL-2M

    SciTech Connect

    Zheng, G. Y.; Xu, X. Q.; Ryutov, D. D.; Pan, Y. D.; Xia, T. Y.

    2014-07-09

    HL-2M (Li, 2013 [1]) is a tokamak device that is under construction. Based on the magnetic coils design of HL-2M, four kinds of divertor configurations are calculated by CORSICA code (Pearlstein et al., 2001 [2]) with the same main plasma parameters, which are standard divertor, exact snowflake divertor, snowflake-plus divertor and snowflake-minus divertor configurations. The potential properties of these divertors are analyzed and presented in this paper: low poloidal field area around X-point, connection length from outside mid-plane to the primary X-point, target plate design and magnetic field shear. The results show that the snowflake configurations not only can reduce the heat load at divertor target plates, but also may improve the magneto-hydrodynamic stability by stronger magnetic shear at the edge. Furthermore, a new divertor configuration, named “tripod divertor”, is designed by adjusting the positions of the two X-points according to plasma parameters and magnetic coils current of HL-2M.

  11. Simulation study of power load with impurity seeding in advanced divertor "short super-X divertor" for a tokamak reactor

    NASA Astrophysics Data System (ADS)

    Asakura, N.; Hoshino, K.; Shimizu, K.; Shinya, K.; Utoh, H.; Tokunaga, S.; Tobita, K.; Ohno, N.

    2015-08-01

    A short super-X divertor (SXD) is proposed as an option for the Demo divertor, where the field line length from the divertor null to the outer target was largely increased compared to a similar-size conventional divertor. Physics and engineering design studies for a 3 GW-level fusion power Demo reactor (SlimCS) (Tobita et al., 2009) have recently progressed. Minimal number of the divertor coils were installed inside the toroidal field coil, i.e. interlink-winding. Arrangement of the poloidal field coils and their currents were determined, taking into account of the engineering design such as vacuum vessel and the neutron shield structures, and the divertor maintenance scenario. Divertor plasma simulation showed that significant radiation region is produced between the super-X null and the target. Radiation loss in the divertor was increased, producing fully detached plasmas efficiently. Advantages of the short SXD were demonstrated, but the total peak heat load was a marginal level (10 MW m-2) for the engineering design.

  12. Magnetic configuration flexibility of snowflake divertor for HL-2M [Analysis of snowflake divertor configurations for HL-2M

    DOE PAGESBeta

    Zheng, G. Y.; Xu, X. Q.; Ryutov, D. D.; Pan, Y. D.; Xia, T. Y.

    2014-07-09

    HL-2M (Li, 2013 [1]) is a tokamak device that is under construction. Based on the magnetic coils design of HL-2M, four kinds of divertor configurations are calculated by CORSICA code (Pearlstein et al., 2001 [2]) with the same main plasma parameters, which are standard divertor, exact snowflake divertor, snowflake-plus divertor and snowflake-minus divertor configurations. The potential properties of these divertors are analyzed and presented in this paper: low poloidal field area around X-point, connection length from outside mid-plane to the primary X-point, target plate design and magnetic field shear. The results show that the snowflake configurations not only can reducemore » the heat load at divertor target plates, but also may improve the magneto-hydrodynamic stability by stronger magnetic shear at the edge. Furthermore, a new divertor configuration, named “tripod divertor”, is designed by adjusting the positions of the two X-points according to plasma parameters and magnetic coils current of HL-2M.« less

  13. Concept development for the ITER equatorial port visible/infrared wide angle viewing systema)

    NASA Astrophysics Data System (ADS)

    Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Huxford, R.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S.; Walker, C.; Walsh, M.

    2012-10-01

    The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R&D topics are outlined.

  14. Concept development for the ITER equatorial port visible∕infrared wide angle viewing system.

    PubMed

    Reichle, R; Beaumont, B; Boilson, D; Bouhamou, R; Direz, M-F; Encheva, A; Henderson, M; Huxford, R; Kazarian, F; Lamalle, Ph; Lisgo, S; Mitteau, R; Patel, K M; Pitcher, C S; Pitts, R A; Prakash, A; Raffray, R; Schunke, B; Snipes, J; Diaz, A Suarez; Udintsev, V S; Walker, C; Walsh, M

    2012-10-01

    The ITER equatorial port visible∕infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R&D topics are outlined.

  15. Wall conditioning for ITER: Current experimental and modeling activities

    NASA Astrophysics Data System (ADS)

    Douai, D.; Kogut, D.; Wauters, T.; Brezinsek, S.; Hagelaar, G. J. M.; Hong, S. H.; Lomas, P. J.; Lyssoivan, A.; Nunes, I.; Pitts, R. A.; Rohde, V.; de Vries, P. C.

    2015-08-01

    Wall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET-CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.

  16. Modeling of extinguishing ELMs in detached divertor plasmas

    NASA Astrophysics Data System (ADS)

    Pigarov, A.; Krasheninnikov, S.; Hollmann, E.; Rognlien, T.

    2015-11-01

    Detached plasmas, the primary operational regime for divertors in next-step fusion devices, should be compatible with both good H-mode confinement and relatively small ELMs providing tolerable heat power loads on divertor targets. Here, dynamics of boundary plasma, impurities and material walls over a sequence of many type-I ELM events under detached divertor plasma conditions is studied with UEGDE-MB-W, the newest version of 2D edge plasma transport code, which incorporates Macro-Blob (MB) approach to simulate non-diffusive filamentary transport and various ``Wall'' (W) models for time-dependent hydrogen wall inventory and recycling. We present the results of multi-parametric analysis on the impact of the size and frequency of ELMs on the divertor plasma parameters where we vary the MB characteristics under different pedestals and divertor configurations. We discuss the conditions, under which small but frequent type-I ELMs (typical for high-power H-mode discharges on current tokamaks with hard deuterium gas puff) are not ``burning through'' the formed detached divertor plasma. In this case, the inner and outer divertors are filled by sub-eV, recombining, highly-impure plasma. Variations of impurity plasma content, radiation pattern, and deuterium wall inventory over the ELM cycle are analyzed. UEDGE-MB-W modeling results are compared to available experimental data.

  17. A super-cusp divertor configuration for tokamaks

    DOE PAGESBeta

    Ryutov, D. D.

    2015-08-26

    Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough controlmore » that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.« less

  18. A super-cusp divertor configuration for tokamaks

    SciTech Connect

    Ryutov, D. D.

    2015-08-26

    Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough control that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.

  19. Tritium concentration measurements in the JET divertor by optical spectroscopy of a Penning discharge

    SciTech Connect

    Hillis, D.L.; Morgan, P.D.; Ehrenberg, J.K.; Groth, M.; Stamp, M.F.; Hellermann, M. von; Kumar, V.

    1998-06-01

    Obtaining precision measurements of the relative concentrations of hydrogen, deuterium, tritium, and helium in the divertor of a tokamak are an important task for nuclear fusion research. Control of the deuterium-tritium isotopic ratio while limiting the helium ash content in a fusion plasma are key factors for optimizing the fuel burn in a fusion reactor, like the International Tokamak Experimental Reactor (ITER). A diagnostic technique has been developed to measure the deuterium-tritium isotopic ratio in the divertor of the Joint European Torus (JET) with a species-selective Penning vacuum gauge. The Penning discharge provides a source of electrons to excite the neutral hydrogen isotopes in the pumping duct. Subsequently, the visible light from the hydrogen isotopes is collected in an optical fiber bundle, transferred away from the tokamak into a low radiation background area, and analyzed in a high resolution Czerny-Turner spectrometer, which is equipped with a fast charge coupled device (CCD) camera for optical detection. The intensity of the observed line emission (D{sub {alpha}} -- 6561.03 {angstrom}; and T{sub {alpha}} -- 6560.44 {angstrom}) is directly proportional to the partial pressure of each gas found in the divertor. The line intensity of each isotope is calibrated as a function of pressure. The ratio of the line intensities thus provides a direct measurement of the deuterium-tritium isotopic ratio. The lower limit for the determination of the deuterium-tritium isotopic ratio is about 0.5%. The applicable pressure range for this system is from 10{sup {minus}5} mbar to a few times 10{sup {minus}3} mbar.

  20. Analysis of a Multi-Machine Database on Divertor Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Makowski, M. A.

    2011-10-01

    A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Corresponding plasma parameters were systematically varied in each tokamak, resulting in a combined data set in which Ip varies by a factor 3, Bt varies by a factor of 14.5, and major radius varies by a factor of 2.6. The derived scaling relation consistently predicts narrower heat flux widths than relations currently in use. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with Ip. All three tokamaks independently demonstrate this dependence. The midplane SOL profiles in DIII-D are also found to steepen with higher Ip, similar to the divertor heat flux profiles. Weaker dependencies on the toroidal field and normalized Greenwald density, fGW, are also found, but vary across devices and with the measure of the heat flux width used, either FWHM or integral width. In the combined data set, the strongest size scaling is with minor radius resulting in an approximately linear dependence on a /Ip . This suggests a scaling correlated with the inverse of the poloidal field, as would be expected for critical gradient or drift-based transport. Supported by the US DOE under DE-AC52-07NA27344 and DE-FC02-04ER54698.

  1. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    SciTech Connect

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  2. Current and Potential Distribution in a Divertor with Torioidally-Asymmetric Biasing of the Divertor Plate

    SciTech Connect

    Cohen, R H; Ryutov, D D; Counsell, G F; Helander, P

    2006-06-06

    Toroidally-asymmetric biasing of the divertor plate may increase convective cross-field transport in SOL and thereby reduce the divertor heat load. Experiments performed with the MAST spherical tokamak generally agree with a simple theory of non-axisymmetric biasing. However, some of the experimental results have not yet received a theoretical explanation. In particular, existing theory seems to overestimate the asymmetry between the positive and the negative biasing. Also lacking a theoretical explanation is experimentally observed increase of the average floating potential in the main SOL in the presence of biasing. In this paper we attempt to solve these problems by accounting for the closing of the currents (driven by the biasing) in a strong-shear region near the X-point. We come up with the picture which, at least qualitatively, agrees with these experimental results.

  3. Disruption characteristics in PDX with limiter and divertor discharges

    SciTech Connect

    Couture, P.; McGuire, K.

    1986-09-01

    A comparison has been made between the characteristics of disruptions with limiter and divertor configurations in PDX. A large data base on disruptions has been collected over four years of machine operation, and a total of 15,000 discharges are contained in the data file. It was found that divertor discharges have less disruptions during ramp up and flattop of the plasma current. However, for divertor discharges a large number of fast, low current disruptions take place during the current ramp down. These disruptions are probably caused by the deformation of the plasma shape.

  4. Simulations of NSTX with a Liquid Lithium Divertor Module

    SciTech Connect

    Stotler, D. P.; Maingi, R.; Zakharov, L. E.; Kugel, H. W.; Pigarov, A. Yu.; Rognlien, T. D.; Soukhanovskii, V. A.

    2010-02-18

    A strategy to develop self-consistent simulations of the behavior of lithium in the Liquid Lithium Divertor (LLD) module to be installed in NSTX is described. In this initial stage of the plan, the UEDGE edge plasma transport code is used to simulate an existing NSTX shot, with UEDGE's transport coefficients set using midplane and divertor diagnostic data. The LLD is incorporated into the simulations as a reduction in the recycling coefficient over the outer divertor. Heat transfer calculations performed using the resulting heat flux profiles provide preliminary estimates on operating limits for the LLD as well as input data for subsequent steps in the LLD modeling effort.

  5. Simulations of NSTX with a Liquid Lithium Divertor Module

    SciTech Connect

    D. P. Stotler, R. Maingi, H.W. Kugel, A. Yu. Pigarov, T.D. Rognlien, V.A. Soukhanovskii

    2008-07-08

    The UEDGE edge plasma transport code is used to model the effect of the reduced recycling provided by the Liquid Lithium Divertor (LLD) module that will be installed in NSTX. UEDGE's transport coefficients are calibrated against an existing NSTX shot using midplane and divertor diagnostic data. The LLD is then incorporated into the simulations as a reduction in the recycling coefficient over the outer divertor. Heat transfer calculations performed using the resulting heat flux profiles indicate that lithium evaporation will be negligible for pulse lengths < 2 s at low (~ 2 MW) input power. At high input power (~ 7 MW), the pulse length may have to be restricted.

  6. Two-chamber model for divertors with plasma recycling

    SciTech Connect

    Langer, W.D.; Singer, C.E.

    1984-11-01

    To model particle and heat loss terms at the edge of a tokamak with a divertor or pumped limiter, a simple two-chamber formulation of the scrapeoff has been constructed by integrating the fluid equations, including sources, along open field lines. The model is then solved for a wide range of density and temperature conditions in the scrapeoff, using geometrical parameters typical of the PDX poloidal divertor. The solutions characterize four divertor operating conditions for beam-heated plasmas: plugged, unplugged, blowthrough, and blowback.

  7. Monte Carlo simulations of tungsten redeposition at the divertor target

    NASA Astrophysics Data System (ADS)

    Chankin, A. V.; Coster, D. P.; Dux, R.

    2014-02-01

    Recent modeling of controlled edge-localized modes (ELMs) in ITER with tungsten (W) divertor target plates by the SOLPS code package predicted high electron temperatures (>100 eV) and densities (>1 × 1021 m-3) at the outer target. Under certain scenarios W sputtered during ELMs can penetrate into the core in quantities large enough to cause deterioration of the discharge performance, as was shown by coupled SOLPS5.0/STRAHL/ASTRA runs. The net sputtering yield, however, was expected to be dramatically reduced by the ‘prompt redeposition’ during the first Larmor gyration of W1+ (Fussman et al 1995 Proc. 15th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research (Vienna: IAEA) vol 2, p 143). Under high ne/Te conditions at the target during ITER ELMs, prompt redeposition would reduce W sputtering by factor p-2 ˜ 104 (with p ≡ τionωgyro ˜ 0.01). However, this relation does not include the effects of multiple ionizations of sputtered W atoms and the electric field in the magnetic pre-sheath (MPS, or ‘Chodura sheath’) and Debye sheath (DS). Monte Carlo simulations of W redeposition with the inclusion of these effects are described in the paper. It is shown that for p ≪ 1, the inclusion of multiple W ionizations and the electric field in the MPS and DS changes the physics of W redeposition from geometrical effects of circular gyro-orbits hitting the target surface, to mainly energy considerations; the key effect is the electric potential barrier for ions trying to escape into the main plasma. The overwhelming majority of ions are drawn back to the target by a strong attracting electric field. It is also shown that the possibility of a W self-sputtering avalanche by ions circulating in the MPS can be ruled out due to the smallness of the sputtered W neutral energies, which means that they do not penetrate very far into the MPS before ionizing; thus the W ions do not gain a large kinetic energy as they are accelerated back to the surface by the

  8. Sheath over a finely structured divertor plate

    SciTech Connect

    Cohen, R. H., LLNL

    1998-05-15

    The surface of a divertor plate typically has fine structure. Depending on the material - and the duration of exposure to the plasma, the characteristic size of the surface imperfections may vary over a broad range. In this paper, we consider the case where these structures have scale h that is much smaller than the ion gyroradius {rho}{sub i} but greater than the electron gyroradius {rho}{sub e}. The magnetic field intersects the divertor plate at a shallow angle {alpha}<divertor region of a medium-size tokamak (plasma density n{approximately}4x10{sup 13} cm{sup -3}, plasma temperature T{approximately}50 eV, the magnetic field strength B{approximately} 2T), one has: {rho}{sub i} {approximately}500 {micro}m (hydrogen), {rho}{sub e}{approximately}10 {micro}m. We, therefore, are going to analyze the scales of imperfections in the range 10 {micro}m

  9. Coil Designs for Novel Magnetic Geometries to Cure the Divertor Heat Flux Problem for Reactors

    NASA Astrophysics Data System (ADS)

    Pekker, M.; Valanju, P.; Kotschenreuther, M.; Wiley, J. C.; Strickler, D.

    2004-11-01

    Coil designs are developed for novel magnetic divertor geometries with a second axi-symmetric x-point and flux expansion region along the separatrix. Adjacent posters describe how these lead to spreading of heat flux and the possibility of stable, complete detachment to overcome serious physics and engineering problems in reactors. The principal feasibility issue is creating, with simple coils, additional X-points on the separatrix without extensively deforming the magnetic field in the main plasma. For the spherical tokamak NSTX, we show that adding one or two poloidal coils suffices to create a divergent flux at the divertor, i.e., a new x-point. The currents and forces for the extra coils are small. We also modify ARIES ST design to show reactor feasibility. Optimized coil designs for PEGASUS, ARIES RS/AT, and a modular ITER retrofit are also being developed. For our calculations we used self consistent code FBEQ, which was used to design NSTX. We also use NCSX tools for optimization of designs with competing physics and engineering constraints.

  10. Operational limits on WEST inertial divertor sector during the early phase experiment

    NASA Astrophysics Data System (ADS)

    Firdaouss, M.; Corre, Y.; Languille, P.; Greuner, H.; Autissier, E.; Desgranges, C.; Guilhem, D.; Gunn, J. P.; Lipa, M.; Missirlian, M.; Pascal, J.-Y.; Pocheau, C.; Richou, M.; Tsitrone, E.

    2016-02-01

    The primary goal of the WEST project is to be a test bed to characterize the fatigue and lifetime of ITER-like W divertor components subjected to relevant thermal loads. During the first phase of exploitation (S2 2016), these components (W monoblock plasma facing unit—W-PFU) will be installed in conjunction with graphite components (G-PFU). Since the G-PFU will not be actively cooled, it is necessary to ensure the expected pulse duration allows the W-PFU to reach its steady state without overheating the G-PFU assembly structure or the embedded stainless-steel diagnostics. High heat flux tests were performed at the GLADIS facility to assess the thermal behavior of the G-PFU. Some operational limits based on plasma parameters were determined. It was found that it is possible to operate at an injected power such that the maximal incident heat flux on the lower divertor is 10 MW m-2 for the required pulse length.

  11. The physics role of ITER

    SciTech Connect

    Rutherford, P.H.

    1997-04-01

    Experimental research on the International Thermonuclear Experimental Reactor (ITER) will go far beyond what is possible on present-day tokamaks to address new and challenging issues in the physics of reactor-like plasmas. First and foremost, experiments in ITER will explore the physics issues of burning plasmas--plasmas that are dominantly self-heated by alpha-particles created by the fusion reactions themselves. Such issues will include (i) new plasma-physical effects introduced by the presence within the plasma of an intense population of energetic alpha particles; (ii) the physics of magnetic confinement for a burning plasma, which will involve a complex interplay of transport, stability and an internal self-generated heat source; and (iii) the physics of very-long-pulse/steady-state burning plasmas, in which much of the plasma current is also self-generated and which will require effective control of plasma purity and plasma-wall interactions. Achieving and sustaining burning plasma regimes in a tokamak necessarily requires plasmas that are larger than those in present experiments and have higher energy content and power flow, as well as much longer pulse length. Accordingly, the experimental program on ITER will embrace the study of issues of plasma physics and plasma-materials interactions that are specific to a reactor-scale fusion experiment. Such issues will include (i) confinement physics for a tokamak in which, for the first time, the core-plasma and the edge-plasma are simultaneously in a reactor-like regime; (ii) phenomena arising during plasma transients, including so-called disruptions, in regimes of high plasma current and thermal energy; and (iii) physics of a radiative divertor designed for handling high power flow for long pulses, including novel plasma and atomic-physics effects as well as materials science of surfaces subject to intense plasma interaction. Experiments on ITER will be conducted by researchers in control rooms situated at major

  12. Tooling concepts for ITER tokamak assembly and remote disassembly

    SciTech Connect

    Oikawa, A.; Puhn, F.; Helary, J.L.; Shaw, R.; Friend, M.; Piec, Z.; Tachikawa, N.; Acks, M.; Basile, A.

    1995-12-31

    Since ITER has many of the characteristics of a full-scale tokamak reactor, its provisions for assembly and replaceability are relevant to a future fusion power plant. The performance of ITER is dependent on tight tolerances, mainly for the magnets and plasma facing components. The magnetic field must be highly uniform in the toroidal direction to ensure good plasma energy and particle confinement. Alignment of the plasma facing surface of the first wall and divertor target plates is required to avoid large local heat loads on the plasma facing components and, as a consequence, their erosion and contamination of the plasma with impurities. Because of the large and heavy components the major challenge of the ITER tokamak assembly is to hold such tight tolerances using guide tools, adjustable interfaces, accurate measuring tools, and specific procedures to compensate for deformation and fabrication tolerances. The assembly tooling plan also includes verification of the essential remote handling operations.

  13. ITER Safety Analyses with ISAS

    NASA Astrophysics Data System (ADS)

    Gulden, W.; Nisan, S.; Porfiri, M.-T.; Toumi, I.; de Gramont, T. Boubée

    1997-06-01

    Detailed analyses of accident sequences for the International Thermonuclear Experimental Reactor (ITER), from an initiating event to the environmental release of activity, have involved in the past the use of different types of computer codes in a sequential manner. Since these codes were developed at different time scales in different countries, there is no common computing structure to enable automatic data transfer from one code to the other, and no possibility exists to model or to quantify the effect of coupled physical phenomena. To solve this problem, the Integrated Safety Analysis System of codes (ISAS) is being developed, which allows users to integrate existing computer codes in a coherent manner. This approach is based on the utilization of a command language (GIBIANE) acting as a “glue” to integrate the various codes as modules of a common environment. The present version of ISAS allows comprehensive (coupled) calculations of a chain of codes such as ATHENA (thermal-hydraulic analysis of transients and accidents), INTRA (analysis of in-vessel chemical reactions, pressure built-up, and distribution of reaction products inside the vacuum vessel and adjacent rooms), and NAUA (transport of radiological species within buildings and to the environment). In the near future, the integration of S AFALY (simultaneous analysis of plasma dynamics and thermal behavior of in-vessel components) is also foreseen. The paper briefly describes the essential features of ISAS development and the associated software architecture. It gives first results of a typical ITER accident sequence, a loss of coolant accident (LOCA) in the divertor cooling loop inside the vacuum vessel, amply demonstrating ISAS capabilities.

  14. Divertor transport study in the large helical device

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Feng, Y.; Masuzaki, S.; Shoji, M.; Miyazawa, J.; Morisaki, T.; Ohyabu, N.; Ashikawa, N.; Komori, A.; Motojima, O.; Igitkhanov, Y.; Sardei, F.; Reiter, D.; LHD Experimental Group

    2007-06-01

    The edge transport properties in LHD have been investigated in order to clarify divertor/SOL functions of heliotron type device. The momentum loss, mainly through friction of counter-flows induced by ergodic field lines, breaks the pressure conservation along flux tubes. This prevents high recycling regime even at high density operation, n bar ∼ 7 ×1019m-3 . The momentum loss is found to be larger than in W7-AS. This is because of the higher ratio of perpendicular and parallel transport scale length, ∼10-4, in the ergodic layer, which enhances the friction between counter-flows more than in the island divertor. In the heliotron configuration, a large temperature drop from LCFS to divertor by an order of magnitude is easily realized due to the long connection length in the ergodic layer. This is certainly a favourable feature for future reactors in terms of reduction of damage on the divertor plate.

  15. Status of National Spherical Torus Experiment Liquid Lithium Divertor

    NASA Astrophysics Data System (ADS)

    Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.

    2009-11-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  16. Transport studies in the snowflake divertor in TCV

    NASA Astrophysics Data System (ADS)

    Reimerdes, H.; Canal, G. P.; Coda, S.; Duval, B. P.; Labit, B.; Piras, F.; Vijvers, W.; de Temmerman, G.; Zielinski, J.; Tal, B.; Medvedev, S. Y.; Rognlien, T. D.; Ryutov, D. D.; Umansky, M. V.

    2011-10-01

    The transport of heat and particles in a tokamak plasma with a snowflake divertor has been studied in recent TCV experiments. Estimates of the power flux onto the divertor plates are obtained from measurements with multiple infrared cameras and Langmuir probes. The studies include L- and ELMy H-mode plasmas and confirm some of the advantageous properties of the snowflake configuration, such as the distribution of the exhaust power on more strike points than the two that characterize conventional divertor configurations. Modifications of the divertor configuration from single null towards a perfect snowflake (second-order null) show that already near-snowflake configurations lead to an appreciable power flux across the region of weak poloidal magnetic field. This work is partly funded by the Fonds National Suisse de la Recherche Scientifique. LLNL work was performed under DOE contract DE-AC52-07NA27344.

  17. Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    SciTech Connect

    Eck, H. J. N. van; Lof, A.; Meiden, H. J. van der; Rooij, G. J. van; Scholten, J.; Zeijlmans van Emmichoven, P. A.; Kleyn, A. W.

    2012-11-26

    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 Multiplication-Sign 10{sup 20} m{sup -3} and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m{sup -2} and 10{sup 24} m{sup -2} s{sup -1}, respectively. We have shown that the plasma surface interactions are dominated by the incoming ions. The achieved conditions correspond very well to the projected conditions at the divertor strike zones of fusion reactors such as ITER. In addition, the machine has an unprecedented high gas efficiency.

  18. Evidence for enhanced cross-field transport mechanisms in the TCV Snowflake divertor

    NASA Astrophysics Data System (ADS)

    Vijvers, Wouter

    2015-11-01

    TCV experiments demonstrate that cross-field plasma transport is enhanced in the Snowflake divertor (SFD) compared to a standard single-null divertor (SND). This enhanced cross-field transport spreads the exhaust power over a larger surface area than can be achieved by magnetic geometry alone and, thereby, reduces the peak heat flux. Comparison of the experiments with modelling identifies steepened radial gradients, ExB drift effects, and βp-driven instabilities as the responsible transport mechanisms. The uncovered physics is also relevant to the SND and may help improve predictive models for the target profiles in ITER and DEMO. In SFD variants with an X-point in the scrape-off layer (SOL), part of the heat flux profile is split off and redirected to an additional target. The resulting steepened radial gradients enhance cross-field diffusion. This is confirmed by EMC3-Eirene simulations, which show a factor two reduction of the parallel heat flux, even if diffusivities remain constant. Theoretical analysis predicts enhanced ExB drifts in the SFD by increased poloidal gradients of the temperature and density. The predictions are confirmed by target heat and particle flux measurements in dedicated experiments with both toroidal field directions. Cross-field convection by curvature-driven modes at high βp (``churning modes'') explains the large fluxes into the private flux region of the SFD. This activates the extra targets and reduces the peak power to the primary targets up to a factor four. This mechanism is expected to be most effective when the divertor conditions are most severe: near the separatrix of a narrow, high-pressure SOL of a large tokamak. These and other alternative divertor configurations thus provide potential solutions to the power exhaust challenge, as well as laboratories to study SOL transport, one of the most important topics in tokamak research. This project was carried out with financial support from NWO. The work was carried out within

  19. Research and development needs for ITER engineering design

    NASA Astrophysics Data System (ADS)

    Flanagan, C.

    1991-08-01

    In the series of documents that summarize the results of the Conceptual Design Activities (CDA) for the International Thermonuclear Experimental Reactor (ITER), this document describes the research and development (R and D) plans for 1991 - 1995. Part A describes the physics R and D, and Part B the technology R and D. The physics R and D needs are presented in terms of task descriptions of an ITER-related R and D program for 1991/1992 and beyond, while diagnostics R and D needs, although covered in Appendix A, are described in Part B. In Chapter 2 of Part A, 'ITER-related Physics R and D Needs for 91/92 and Beyond', the following tasks are described as most crucial: (1) demonstration that (a) operation with a cold divertor plasma is possible, (b) the peak heat flux onto the divertor plate can be kept below about 10 MW per square meter, and (c) helium exhaust conditions allow a fractional burnup of about three percent or more; (2) a characterization of disruptions that allows to specify their consequences for the plasma-facing-components, and that provides evidence that the number of disruptions expected allows acceptable plasma-facing-component lifetimes; (3) demonstration that steady-state operation in an enhanced-confinement regime and satisfactory plasma purity is possible, and provision of energy confinement scaling allowing the prediction of ITER performance; and (4) ensurance that the presence of a fast ion population does not jeopardize plasma performance in ITER. Part B, 'ITER Technology Research and Development Needs', describes planning R and D for magnets, containment structure, assembly and maintenance, current drive and heating, plasma facing components, blanket, fuel cycle, structural materials, and diagnostics. A table of key milestones for technology R and D is included, as well as cost estimates.

  20. Diagnostics for the DIII-D radiative divertor

    SciTech Connect

    Nilson, D.G.; Brooks, N.H.; Smith, J.P.; Snider, R.T.

    1995-10-01

    This paper reviews the design of new diagnostics and the modifications to existing diagnostics needed to carry out radiative divertor experiments in DIII-D following installation in late 1996 of a set of baffle structures that will restrict the backflow to the core plasma of neutral deuterium atoms and impurity gases. The divertor slots formed by the new baffle structures will inhibit the easy view of the divertor legs and target plates that the open divertor geometry in DIII-D currently affords. We review a basic set of diagnostics that are needed to demonstrate the reduction of divertor heat loading and radiative dissipation of energy within the divertor. This will include IR cameras, bolometry, foil bolometers, and Langmuir probes. Within the limits of available funding, we will implement a supplemental set of instruments which provide a more detailed understanding of the underlying physical processes. Many existing diagnostics require only re-aiming to provide proper coverage of the initial 23 cm long divertor plasma configuration (X- point to floor distance). Other diagnostics need extensive reconfiguration using in-vessel fiber-optic bundles or high power laser mirrors. The new divertor baffle panels provide a protective shelf for diagnostic hardware mounted underneath them, but the water cooling channels in the panels limit the permissible size of through holes and, thereby, restrict the available views of under-the- baffle diagnostics. The successful resolution of the design and implementation of these diagnostic modifications is dependent on a strong coordination between GA and its many diagnostic collaborators.

  1. Application of carbon-aluminum nanostructures in divertor coatings from fusion reactor

    NASA Astrophysics Data System (ADS)

    Ciupina, V.; Lungu, C. P.; Vladoiu, R.; Epure, T. D.; Prodan, G.; Porosnicu, C.; Prodan, M.; Stanescu, I. M.; Contulov, M.; Mandes, A.; Dinca, V.; Zarovschi, V.

    2012-10-01

    Nanostructured carbon materials have increasingly attracted the interest of the scientific community, because of their fascinating physical properties and potential applications in high-tech devices. In the current ITER design, the tiles made of carbon fiber composites (CFCs) are foreseen for the strike point zone and tungsten (W) for other parts of the divertor region. This choice is a compromise based mainly on experience with individual materials in many different tokamaks. Also Carbon-Aluminum composites are the candidate material for the First Wall in ITER. In order to prepare nanostructured carbon-aluminum nanocomposite for the divertor part in fusion applications, the original method thermionic vacuum arc (TVA) was used in two electronic guns configuration. One of the main advantages of this technology is the bombardment of the growing thin film just by the ions of the depositing film. Moreover, the energy of ions can be controlled. Thermo-electrons emitted by an externally heated cathode and focused by a Wehnelt focusing cylinder are strongly accelerated towards the anode whose material is evaporated and bright plasma is ignited by a high voltage DC supply. The nanostructured C-Al films were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Tribological properties in dry sliding were evaluated using a CSM ball-on-disc tribometer. The carbon - aluminum films were identified as a nanocrystals complex (from 2nm to 50 nm diameters) surrounded by amorphous structures with a strong graphitization tendency, allowing the creating of adherent and wear resistant films. The friction coefficients (0.1 - 0.2, 0.5) of the C-Al coatings was decreased more than 2-5 times in comparison with the uncoated substrates proving excellent tribological properties. C-Al nanocomposites coatings were designed to have excellent tribological properties while the structure is composed by nanocrystals complex surrounded by amorphous structures

  2. Electron microscopy characterization of some carbon based nanostructures with application in divertors coatings from fusion reactor

    NASA Astrophysics Data System (ADS)

    Ciupina, V.; Morjan, I.; Lungu, C. P.; Vladoiu, R.; Prodan, G.; Prodan, M.; Zarovschi, V.; Porosnicu, C.; Stanescu, I. M.; Contulov, M.; Mandes, A.; Dinca, V.; Sugiyama, K.

    2011-10-01

    Nanostructured carbon materials have increasingly attracted the interest of the scientific community, because of their fascinating physical properties and potential applications in high-tech devices. In the current ITER design, the tiles made of carbon fiber composites (CFCs) are foreseen for the strike point zone and tungsten (W) for other parts of the divertor region. This choice is a compromise based mainly on experience with individual materials in many different tokamaks. Also Beryllium is the candidate material for the First Wall in ITER. In order to prepare nanostructured carbon-tungsten nanocomposite for the divertor part in fusion applications, the original method thermionic vacuum arc (TVA) was used in two electronic guns configuration. One of the main advantages of this technology is the bombardment of the growing thin film just by the ions of the depositing film. The nanostructured C-W and C-Be films were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The C-W films were identified as a nanocrystals complex (5 nm average diameter) surrounded by amorphous structures with a strong graphitization tendency, allowing the creating of adherent and wear resistant films. The C-Be films are polycrystalline with mean grain size about 15 nm. The friction coefficients (0.15 - 0.35) of the C-W coatings was decreased more than 3-5 times in comparison with the uncoated substrates proving excellent tribological properties. C-W nanocomposites coatings were designed to have excellent tribological properties while the structure is composed by nanocrystals complex surrounded by amorphous structures with a strong graphitization tendency, allowing the creating of adherent and wear resistant films.&updat

  3. DIII-D Research in Support of ITER

    SciTech Connect

    Strait, E

    2008-10-14

    several approaches to mitigation of disruptions, including injection of low-Z gas and low-Z pellets, and have shown the conditions that minimize core impurity accumulation during radiative divertor operation. Investigation of carbon erosion, transport, and co-deposition with hydrogenic species, and methods for the removal of co-deposits, will contribute to the physics basis for initial operation of ITER with a carbon divertor.

  4. Comment on "Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake" [Phys. Plasmas 20, 102507 (2013)

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V.

    2014-05-01

    In the recently published paper "Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake" [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor "quality" is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake "two-null" prescription.

  5. Boundary plasma modelling for ITER. Progress report, July 1, 1992--December 31, 1992

    SciTech Connect

    Braams, B.J.

    1993-01-01

    Computer programs were developed to model the effect of nonaxisymmetric magnetic perturbations upon divertor heat load, and have explored what kind of externally applied perturbations are the most effective for heat load reduction without destroying core plasma confinement. We find that a carefully tuned set of coils located about 0.3 m outside the separatrix can be used to spread the heat load over about 0.1 m perpendicular to flux surfaces at the ITER divertor plate, even at a very low level of anomalous cross-field heat transport. As such a spreading would significantly extend the permissible regime of operation for ITER, we recommend that this study be pursued at the level of detail required for engineering design. In other work under this grant we are in the process of modifying the B2 code to handle correctly a non-orthogonal geometry.

  6. The edge plasma and divertor in TIBER

    SciTech Connect

    Barr, W.L.

    1987-10-16

    An open divertor configuration has been adopted for TIBER. Most recent designs, including DIII-D, NET and CIT use open configurations and rely on a dense edge plasma to shield the plasma from the gas produced at the neutralizer plate. Experiments on ASDEX, PDX, D-III, and recently on DIII-D have shown that a dense edge plasma can be produced by re-ionizing most of the gas produced at the plate. This high recycling mode allows a large flux of particles to carry the heat to the plate, so that the mean energy per particle can be low. Erosion of the plate can be greatly reduced if the average impact energy of the ions at the plate can be reduced to near or below the threshold for sputtering of the plate material. The present configuration allows part of the flux of edge plasma ions to be neutralized at the entrance to the pumping duct so that helium is pumped as well as hydrogen. 7 refs., 3 figs.

  7. Carbon flows in attached divertor plasmas

    SciTech Connect

    Isler, R.C.; Brooks, N.H.; West, W.P.; Porter, G.D. |; The DIII-D Divertor Team

    1999-05-01

    Parallel flow velocities of carbon ions in the DIII-D divertor [J. Luxon {ital et al.}, {ital Plasma Physics Controlled Nuclear Fusion Research}, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; S. L. Allen {ital et al.}, {ital Controlled Fusion and Plasma Physics}, 1987 (Proc. 24th European Conf. Berchtesgaden, 1997), Vol. 21 A, Part III, p. 1129] have been studied under various operating conditions: L-mode (low-confinement mode), H-mode (high-confinement mode) with low-frequency ELMs (edge-localized modes), and H-mode with high-frequency ELMs. Both normal and reversed flows (toward the target plate and away from the target plate, respectively) are observed under all conditions, with the reversed speeds being as much as a factor of four greater than normal speeds. Magnitudes are approximately the same for L-mode and H-mode operation with high-frequency ELMs. In H-mode conditions with low-frequency ELMs, normal velocities are frequently observed to decline while reversed velocities increase in comparison to the other two conditions. {copyright} {ital 1999 American Institute of Physics.}

  8. Vanadium alloys for the radiative divertor program of DIII-D

    SciTech Connect

    Smith, J.P.; Johnson, W.R.; Stambaugh, R.D.; Trester, P.W.; Smith, D.; Bloom, E.

    1995-10-01

    Vanadium alloys provide an attractive solution for fusion power plants as they exhibit a potential for low environmental impact due to low level of activation from neutron fluence and a relatively short half-life. They also have attractive material properties for use in a reactor. General Atomics along with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL), has developed a plan to utilize vanadium alloys as part of the Radiative Divertor Project (RDP) modification for the DIII-D tokamak. The goal for using vanadium alloys is to provide a meaningful step towards developing advanced materials for fusion power applications by demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak in conjunction with developing essential fabrication technology for the manufacture of full-scale vanadium alloy components. A phased approach towards utilizing vanadium in DIII-D is being used starting with small coupons and samples, advancing to a small component, and finally a portion of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. A major portion of the program is research and development to support fabrication and resolve key issues related to environmental effects.

  9. Upgraded divertor Thomson scattering system on DIII-D

    NASA Astrophysics Data System (ADS)

    Glass, F.; Carlstrom, T. N.; Du, D.; McLean, A. G.; Taussig, D. A.; Boivin, R. L.

    2016-11-01

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (Te in the range of 0.5 eV-2 keV, ne in the range of 5 × 1018-1 × 1021 m3) for both low Te in detachment and high Te measurement up beyond the separatrix.

  10. Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation

    NASA Astrophysics Data System (ADS)

    Loarte, A.; Huijsmans, G.; Futatani, S.; Baylor, L. R.; Evans, T. E.; Orlov, D. M.; Schmitz, O.; Becoulet, M.; Cahyna, P.; Gribov, Y.; Kavin, A.; Sashala Naik, A.; Campbell, D. J.; Casper, T.; Daly, E.; Frerichs, H.; Kischner, A.; Laengner, R.; Lisgo, S.; Pitts, R. A.; Saibene, G.; Wingen, A.

    2014-03-01

    Progress in the definition of the requirements for edge localized mode (ELM) control and the application of ELM control methods both for high fusion performance DT operation and non-active low-current operation in ITER is described. Evaluation of the power fluxes for low plasma current H-modes in ITER shows that uncontrolled ELMs will not lead to damage to the tungsten (W) divertor target, unlike for high-current H-modes in which divertor damage by uncontrolled ELMs is expected. Despite the lack of divertor damage at lower currents, ELM control is found to be required in ITER under these conditions to prevent an excessive contamination of the plasma by W, which could eventually lead to an increased disruptivity. Modelling with the non-linear MHD code JOREK of the physics processes determining the flow of energy from the confined plasma onto the plasma-facing components during ELMs at the ITER scale shows that the relative contribution of conductive and convective losses is intrinsically linked to the magnitude of the ELM energy loss. Modelling of the triggering of ELMs by pellet injection for DIII-D and ITER has identified the minimum pellet size required to trigger ELMs and, from this, the required fuel throughput for the application of this technique to ITER is evaluated and shown to be compatible with the installed fuelling and tritium re-processing capabilities in ITER. The evaluation of the capabilities of the ELM control coil system in ITER for ELM suppression is carried out (in the vacuum approximation) and found to have a factor of ˜2 margin in terms of coil current to achieve its design criterion, although such a margin could be substantially reduced when plasma shielding effects are taken into account. The consequences for the spatial distribution of the power fluxes at the divertor of ELM control by three-dimensional (3D) fields are evaluated and found to lead to substantial toroidal asymmetries in zones of the divertor target away from the separatrix

  11. Scaling of divertor power footprint width in RF-heated type-III ELMy H-mode on the EAST superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Wang, L.; Guo, H. Y.; Xu, G. S.; Liu, S. C.; Gan, K. F.; Wang, H. Q.; Gong, X. Z.; Liang, Y.; Zou, X. L.; Hu, J. S.; Chen, L.; Xu, J. C.; Liu, J. B.; Yan, N.; Zhang, W.; Chen, R.; Shao, L. M.; Ding, S.; Hu, G. H.; Feng, W.; Zhao, N.; Xiang, L. Y.; Liu, Y. L.; Li, Y. L.; Sang, C. F.; Sun, J. Z.; Wang, D. Z.; Ding, H. B.; Luo, G. N.; Chen, J. L.; Gao, X.; Hu, L. Q.; Wan, B. N.; Li, J.; the EAST Team

    2014-11-01

    Dedicated experiments for the scaling of divertor power footprint width have been performed in the ITER-relevant radio-frequency (RF)-heated H-mode scheme under the lower single null, double null and upper single null divertor configurations in the Experimental Advanced Superconducting Tokamak (EAST) under lithium wall coating conditioning. A strong inverse scaling of the edge localized mode (ELM)-averaged power fall-off width with the plasma current (equivalently the poloidal field) has been demonstrated for the attached type-III ELMy H-mode as λq \\propto Ip-1.05 by various heat flux diagnostics including the divertor Langmuir probes (LPs), infra-red (IR) thermograph and reciprocating LPs on the low-field side. The IR camera and divertor LP measurements show that λq,IR ≈ {λq,div{-LPs}}/{1.3}=1.15Bp,omp-1.25 , in good agreement with the multi-machine scaling trend during the inter-ELM phase between type-I ELMs or ELM-free enhanced Dα (EDA). H-mode. However, the magnitude is nearly doubled, which may be attributed to the different operation scenarios or heating schemes in EAST, i.e., dominated by electron heating. It is also shown that the type-III ELMs only broaden the power fall-off width slightly, and the ELM-averaged width is representative for the inter-ELM period. Furthermore, the inverse Ip (Bp) scaling appears to be independent of the divertor configurations in EAST. The divertor power footprint integral width, fall-off width and dissipation width derived from EAST IR camera measurements follow the relation, λint ≅ λq + 1.64S, yielding λ_intEAST =(1.39+/- 0.03)λqEAST +(0.97+/- 0.35) mm . Detailed analysis of these three characteristic widths was carried out to shed more light on their extrapolation to ITER.

  12. Modeling of Alcator C-Mod Divertor Baffling Experiments

    SciTech Connect

    D. P. Stotler; C. S. Pitcher; C. J. Boswell; T. K. Chung; B. LaBombard; B. Lipschultz; J. L. Terry; R. J. Kanzleiter

    2000-11-29

    A specific Alcator C-Mod discharge from the series of divertor baffling experiments is simulated with the DEGAS 2 Monte Carlo neutral transport code. A simple two-point plasma model is used to describe the plasma variation between Langmuir probe locations. A range of conductances for the bypass between the divertor plenum and the main chamber are considered. The experimentally observed insensitivity of the neutral current flowing through the bypass and of the D alpha emissions to the magnitude of the conductance is reproduced. The current of atoms in this regime is being limited by atomic physics processes and not the bypass conductance. The simulated trends in the divertor pressure, bypass current, and D alpha emission agree only qualitatively with the experimental measurements, however. Possible explanations for the quantitative differences are discussed.

  13. A novel approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Baelmans, M.; Dekeyser, W.; Gauger, N. R.; Reiter, D.

    2015-08-01

    Divertor exhaust system design and analysis tools are crucial to evolve from experimental fusion reactors towards commercial power plants. In addition to material research and dedicated vessel geometry design, improved magnetic configurations can contribute to sustaining the diverted heat loads. Yet, computational design of the magnetic divertor is a challenging process involving a magnetic equilibrium solver, a plasma edge grid generator and a computationally demanding plasma edge simulation. In this paper, an integrated approach to efficient sensitivity calculations is discussed and applied to a set of slightly reduced divertor models. Sensitivities of target heat load performance to the shaping coil currents are directly evaluated. Using adjoint methods, the cost for a sensitivity evaluation is reduced to about two times the simulation cost of one specific configuration. Further, the use of these sensitivities in an optimal design framework is illustrated by a case with realistic Joint European Torus (JET) configurational parameters.

  14. Plasma transport in a simulated magnetic-divertor configuration

    SciTech Connect

    Strawitch, C. M.

    1981-03-01

    The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

  15. Viewgraphs presented at the ASDEX/DOE workshop on disruptions in divertor tokamaks

    SciTech Connect

    Granetz, R.; Gruber, O.; Zohm, H.

    1994-09-01

    The emphasis of this year`s ASDEX/DOE workshop was on disruptions in diverted tokamaks. The meeting was held here at MIT on 14--15 March. It is particularly appropriate that MIT hosted the workshop this year, since Alcator C-Mod had just recently completed its very first run campaign, and disruptions are one of the key areas of research in our program. There were a total of 14 speakers, with participants from IPP (Garching), CRPP (Lausanne), Culham, General Atomics, PPPL, Sandia, ORNL, the ITER JCT, and MIT. The subjects addressed included statistical analysis of disruption probabilities in ASDEX, modelling of the vertical axisymmetric plasma motion in DIII-D, impact of disruptions on the design of the ITER divertors, modelling of runaway electrons, and TSC calculations of disruption-induced currents and forces in TPX, etc. One item of particular interest to us was the experimental correlation of halo current magnitude with plasma current on ASDEX-Upgrade. The data indicates at least a linear, and possibly even a quadractic dependence. This has important implications for Alcator C-Mod, since it would predict halo currents of order 1 MA or more at full performance. At the conclusion of the talks, an informal discussion of disruption databases was held, primarily for the purpose of helping us develop a useful one for C-Mod.

  16. Broadening of divertor heat flux profile with increasing number of ELM filaments in NSTX

    DOE PAGESBeta

    Ahn, J. -W.; Maingi, R.; Canik, J. M.; Gan, K. F.; Gray, T. K.; McLean, A. G.

    2014-11-13

    Edge localized modes (ELMs) represent a challenge to future fusion devices, owing to cyclical high peak heat fluxes on divertor plasma facing surfaces. One ameliorating factor has been that the heat flux characteristic profile width has been observed to broaden with the size of the ELM, as compared with the inter-ELM heat flux profile. In contrast, the heat flux profile has been observed to narrow during ELMs under certain conditions in NSTX. Here we show that the ELM heat flux profile width increases with the number of filamentary striations observed, i.e., profile narrowing is observed with zero or very fewmore » striations. Because NSTX often lies on the long wavelength current-driven mode side of ideal MHD instabilities, few filamentary structures can be expected under many conditions. Lastly, ITER is also projected to lie on the current driven low-n stability boundary, and therefore detailed projections of the unstable modes expected in ITER and the heat flux driven in ensuing filamentary structures is needed.« less

  17. Gyrokinetic simulation of edge blobs and divertor heat-load footprint

    NASA Astrophysics Data System (ADS)

    Chang, C. S.; Ku, S.; Hager, R.; Churchill, M.; D'Azevedo, E.; Worley, P.

    2015-11-01

    Gyrokinetic study of divertor heat-load width Lq has been performed using the edge gyrokinetic code XGC1. Both neoclassical and electrostatic turbulence physics are self-consistently included in the simulation with fully nonlinear Fokker-Planck collision operation and neutral recycling. Gyrokinetic ions and drift kinetic electrons constitute the plasma in realistic magnetic separatrix geometry. The electron density fluctuations from nonlinear turbulence form blobs, as similarly seen in the experiments. DIII-D and NSTX geometries have been used to represent today's conventional and tight aspect ratio tokamaks. XGC1 shows that the ion neoclassical orbit dynamics dominates over the blob physics in setting Lq in the sample DIII-D and NSTX plasmas, re-discovering the experimentally observed 1/Ip type scaling. Magnitude of Lq is in the right ballpark, too, in comparison with experimental data. However, in an ITER standard plasma, XGC1 shows that the negligible neoclassical orbit excursion effect makes the blob dynamics to dominate Lq. Differently from Lq 1mm (when mapped back to outboard midplane) as was predicted by simple-minded extrapolation from the present-day data, XGC1 shows that Lq in ITER is about 1 cm that is somewhat smaller than the average blob size. Supported by US DOE and the INCITE program.

  18. Broadening of divertor heat flux profile with increasing number of ELM filaments in NSTX

    SciTech Connect

    Ahn, J. -W.; Maingi, R.; Canik, J. M.; Gan, K. F.; Gray, T. K.; McLean, A. G.

    2014-11-13

    Edge localized modes (ELMs) represent a challenge to future fusion devices, owing to cyclical high peak heat fluxes on divertor plasma facing surfaces. One ameliorating factor has been that the heat flux characteristic profile width has been observed to broaden with the size of the ELM, as compared with the inter-ELM heat flux profile. In contrast, the heat flux profile has been observed to narrow during ELMs under certain conditions in NSTX. Here we show that the ELM heat flux profile width increases with the number of filamentary striations observed, i.e., profile narrowing is observed with zero or very few striations. Because NSTX often lies on the long wavelength current-driven mode side of ideal MHD instabilities, few filamentary structures can be expected under many conditions. Lastly, ITER is also projected to lie on the current driven low-n stability boundary, and therefore detailed projections of the unstable modes expected in ITER and the heat flux driven in ensuing filamentary structures is needed.

  19. US ITER Moving Forward

    ScienceCinema

    US ITER / ORNL

    2016-07-12

    US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.

  20. Dual transmission grating based imaging radiometer for tokamak edge and divertor plasmas

    SciTech Connect

    Kumar, Deepak; Clayton, Daniel J.; Parman, Matthew; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael

    2012-10-15

    The designs of single transmission grating based extreme ultraviolet (XUV) and vacuum ultraviolet (VUV) imaging spectrometers can be adapted to build an imaging radiometer for simultaneous measurement of both spectral ranges. This paper describes the design of such an imaging radiometer with dual transmission gratings. The radiometer will have an XUV coverage of 20-200 A with a {approx}10 A resolution and a VUV coverage of 200-2000 A with a {approx}50 A resolution. The radiometer is designed to have a spatial view of 16 Degree-Sign , with a 0.33 Degree-Sign resolution and a time resolution of {approx}10 ms. The applications for such a radiometer include spatially resolved impurity monitoring and electron temperature measurements in the tokamak edge and the divertor. As a proof of principle, the single grating instruments were used to diagnose a low temperature reflex discharge and the relevant data is also included in this paper.

  1. Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry

    SciTech Connect

    Xu, X.Q.

    1998-10-14

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

  2. An analytic model for flow reversal in divertor plasmas

    SciTech Connect

    Cooke, P.I.H.; Prinja, A.K.

    1987-04-01

    An analytic model is developed and used to study the phenomenon of flow reversal which is observed in two-dimensional simulations of divertor plasmas. The effect is shown to be caused by the radial spread of neutral particles emitted from the divertor target which can lead to a strong peaking of the ionization source at certain radial locations. The results indicate that flow reversal over a portion of the width of the scrape-off layer is inevitable in high recycling conditions. Implications for impurity transport and particle removal in reactors are discussed.

  3. Non-ambipolar transport in a magnetic divertor

    SciTech Connect

    Strawitch, C M; Emmert, G A

    1980-02-01

    Plasma transport is studied in a simulated magnetic divertor in the Wisconsin single ring DC machine. The transport perpendicular and parallel to the magnetic field is shown to be non-ambipolar by a variety of measurements, but can be forced to be ambipolar by an appropriately designed divertor target plate. The density profile in the scrape-off zone agrees with the predictions of a one-dimensional diffusion equation that assumes classical cross-field transport and plasma flow parallel to the field at the local ion acoustic velocity.

  4. High Flux FRC Facility for the Stability, Confinement and ITER Divertor Studies

    SciTech Connect

    Hoffman, Alan L.; Milroy, Richard D.

    2014-01-31

    The TCS (Translation, Confinement, & Sustainment) program was begun on 7 August, 1996 to renew basic studies of the Field Reversed Configuration (FRC). The program made use of the old LSX (Large s Experiment) device, which was constructed at STI during the period from 1986 to 1990, but only operated for one year due to a DOE decision at the time to focus exclusively on the tokamak configuration. LSX was transferred to the University of Washington in 1992 and modified (LSX/mod) to perform Tokamak Refueling by Accelerated Plasmoids (TRAP) experiments. The TRAP program was funded from 7 August, 1992 until 6 August, 1996, but was utilized for an additional year while TCS was being constructed. During the first TCS funding period TCS was completed and initial experiments were begun. A large multi-megawatt RF power supply was built by Los Alamos National Laboratory (LANL) for use with a Rotating Magnetic Field (RMF) system, and LANL has been a continuing participant in our experimental program. A smaller prototype facility, called the Star Thrust Experiment (STX) was also built and operated in this period, partly with NASA funding, before TCS came on-line. A final report for this construction period was submitted in September 2000. A first renewal period (2.5 years) provided operating funds for the period between July 7, 2000 and January 6, 2003. A great deal of progress was made in understanding the use of RMF to both form and sustain FRCs during this period. The principal result of the experimental program was the formation of quasi steady-state (as long as RMF power was available) FRCs with densities in the 1-3x1019 m-3 range. However, the plasma temperature (Te or Ti) was limited to sub-25 eV, except transiently during start-up, by the rapid accumulation of impurities. This is not surprising since TCS was only designed to demonstrate RMF flux build-up and was not provided with either fueling capabilities or modern vacuum conditioning technology. (The unplanned for long time steady-state operation was due entirely to recycling.) TCS employed a multi-section quartz vacuum vessel with greased “O”-ring seals. A final report for this second funding period was submitted in May of 2003.

  5. Tungsten dust impact on ITER-like plasma edge

    DOE PAGESBeta

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less

  6. Tungsten dust impact on ITER-like plasma edge

    SciTech Connect

    Smirnov, R. D. Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-15

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impact of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. It is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.

  7. Tungsten dust impact on ITER-like plasma edge

    SciTech Connect

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impact of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.

  8. Power handling of the JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Arnoux, G.; Balboa, I.; Clever, M.; Devaux, S.; De Vries, P.; Eich, T.; Firdaouss, M.; Jachmich, S.; Lehnen, M.; Lomas, P. J.; Matthews, G. F.; Mertens, Ph; Nunes, I.; Riccardo, V.; Ruset, C.; Sieglin, B.; Valcárcel, D. F.; Wilson, J.; Zastrow, K.-D.; contributors, JET-EFDA

    2014-04-01

    The ITER-like wall (ILW) at JET provides a unique opportunity to study the combination of material (beryllium and tungsten) that will be used for the plasma facing components (PFCs) in ITER. Both the limiters (Be) and divertor (CFC W coated and bulk W) have been designed to maximize their power handling capability. During the last experimental campaign (October 2010-July 2011) this capability has been assessed and even challenged in the case of the Be wall. The Be limiters' power handling capability (19 MW m-2 s-1/2), predicted with a simple model, has been proven to be robust by the experiments despite an unexpected power load pattern. This capability has been pushed to its limit leading to Be melt events, which revealed that the power load is toroidally asymmetric. The protection system of the ILW did not prevent melt events mainly because the protection strategy relies on the assumption that the power load is toroidally symmetric. The bulk W divertor target performed as predicted. Operations were constrained by: (i) an energy load limit (60 MJ m-2) (ii) the limited number of cycles of the surface temperature above 1200 °C in order to prevent thermal fatigue. This latter limit has been exceeded about 300 times and no signs of damage or thermal fatigue have been observed by the photogrammetric survey.

  9. Vapor shielding models and the energy absorbed by divertor targets during transient events

    NASA Astrophysics Data System (ADS)

    Skovorodin, D. I.; Pshenov, A. A.; Arakcheev, A. S.; Eksaeva, E. A.; Marenkov, E. D.; Krasheninnikov, S. I.

    2016-02-01

    The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shielding is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level Emax. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that Emax depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the "strength" of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the Emax is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding to the target, and

  10. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  11. RAMI Analysis for Designing and Optimizing Tokamak Cooling Water System (TCWS) for the ITER's Fusion Reactor

    SciTech Connect

    Ferrada, Juan J; Reiersen, Wayne T

    2011-01-01

    U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C and 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment

  12. The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyang; Han, Le; Chang, Haiping; Liu, Nan; Xu, Tiejun

    2016-02-01

    An accurate critical heat flux (CHF) prediction method is the key factor for realizing the steady-state operation of a water-cooled divertor that works under one-sided high heating flux conditions. An improved CHF prediction method based on Euler's homogeneous model for flow boiling combined with realizable k-ɛ model for single-phase flow is adopted in this paper in which time relaxation coefficients are corrected by the Hertz-Knudsen formula in order to improve the calculation accuracy of vapor-liquid conversion efficiency under high heating flux conditions. Moreover, local large differences of liquid physical properties due to the extreme nonuniform heating flux on cooling wall along the circumference direction are revised by formula IAPWS-IF97. Therefore, this method can improve the calculation accuracy of heat and mass transfer between liquid phase and vapor phase in a CHF prediction simulation of water-cooled divertors under the one-sided high heating condition. An experimental example is simulated based on the improved and the uncorrected methods. The simulation results, such as temperature, void fraction and heat transfer coefficient, are analyzed to achieve the CHF prediction. The results show that the maximum error of CHF based on the improved method is 23.7%, while that of CHF based on uncorrected method is up to 188%, as compared with the experiment results of Ref. [12]. Finally, this method is verified by comparison with the experimental data obtained by International Thermonuclear Experimental Reactor (ITER), with a maximum error of 6% only. This method provides an efficient tool for the CHF prediction of water-cooled divertors. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005) and National Natural Science Foundation of China (No. 51406085)

  13. Line Shapes and Opacity Studies in Divertor Plasmas

    SciTech Connect

    Rosato, J.

    2008-10-22

    Large or dense divertor plasmas of magnetic fusion devices can be optically thick to the resonance lines of the hydrogen isotopes. In this work we examine the sensitivity of the line radiation transport to the detailed structure of the spectral profiles.

  14. Mechanical Design of the NSTX Liquid Lithium Divertor

    SciTech Connect

    R. Ellis, R. Kaita, H. Kugel, G. Paluzzi, M. Viola and R. Nygren

    2009-02-19

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuumcompatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  15. Theoretical design of a compact energy recovering divertor

    NASA Astrophysics Data System (ADS)

    Baver, D. A.

    2015-11-01

    An energy recovering divertor (ERD) is a type of plasma direct converter (PDC) designed to fit in the divertor channel of a tokamak. Such a device reduces the heat load to the divertor plate by converting a portion of it into electrical energy. This recovered energy can then be used for auxiliary heating and current drive, fundamentally altering the relationship between scientific and engineering breakeven and reducing dependence on bootstrap current. Previous work on the ERD concept focused on amplification of Alfven waves in a manner similar to a free-electron laser. While conceptually straightforward, this concept was also bulky, thus limiting its applicability to existing tokamak experiments. A design is presented for an ERD based on sheath-localized waves. This makes possible a device sufficiently compact to fit in the divertor channel of many existing tokamak experiments, and moreover requires no new shaping coils to achieve the desired magnetic geometry or topology. In addition, incidental advantages of this concept will be discussed.

  16. Study of material response on simulated ITER disruptive plasma heat load with variable duration

    SciTech Connect

    Litunovsky, V.N.; Ovchinnikov, I.B.; Drozdov, A.A.; Kuznetsov, V.E.; Ljublin, B.V.; Titov, V.A.

    1995-12-31

    The damage of divertor elements during off-normal events (disruptions and giant ELMs) will determine sufficiently the life-time of ITER divertor. The strategy of the solution of a problem of the reliable prediction of divertor components disruptive damages is contained in collection of information on both natural disruptions in existing Tokamaks and simulated ones, and also development of codes for modelling of the experiments and divertor life-time damage. Some results of the study of material response on plasma high heat flux load are given in the report. High power long pulse plasma accelerator of VIKA facility is used as source of plasma high heat flux (w{sub p} {le} 30 MJ/m{sup 2}). The peculiarity of described experiments in variation of rectangular like pulse duration of plasma stream ({tau}{sub p} = 0.09; 0.18; 0.27; 0.36 ms). Some data of plasma parameters in a plasma-material interaction zone are given. The growth of both mass losses and crater depth with irradiation increase is fixed for Al and Cu. As a preliminary result one can mark a tendency to decreasing both crack length for hot (T = 300 C) irradiated Al sample and mass losses for W irradiated at T = 1,000 C.

  17. Three-dimensional simulation of H-mode plasmas with localized divertor impurity injection on Alcator C-Mod using the edge transport code EMC3-EIRENE

    SciTech Connect

    Lore, Jeremy D.; Reinke, M. L.; Brunner, D.; LaBombard, B. A.; Lipschultz, B.; Terry, J. L.; Pitts, R. A.; Feng, Y.

    2015-04-28

    We study experiments in Alcator C-Mod to assess the level of toroidal asymmetry in divertor conditions resulting from poloidally and toroidally localized extrinsic impurity gas seeding show a weak toroidal peaking (~1.1) in divertor electron temperatures for high-power enhanced D-alpha H-modeplasmas. This is in contrast to similar experiments in Ohmically heated L-modeplasmas, which showed a clear toroidal modulation in the divertor electron temperature. Modeling of these experiments using the 3D edge transport code EMC3-EIRENE [Y. Feng et al., J. Nucl. Mater. 241, 930 (1997)] qualitatively reproduces these trends, and indicates that the different response in the simulations is due to the ionization location of the injected nitrogen. Low electron temperatures in the private flux region (PFR) in L-mode result in a PFR plasma that is nearly transparent to neutral nitrogen, while in H-mode the impurities are ionized in close proximity to the injection location, with this latter case yielding a largely axisymmetric radiation pattern in the scrape-off-layer. In conclusion, the consequences for the ITER gas injection system are discussed. Quantitative agreement with the experiment is lacking in some areas, suggesting potential areas for improving the physics model in EMC3-EIRENE.

  18. Three-dimensional simulation of H-mode plasmas with localized divertor impurity injection on Alcator C-Mod using the edge transport code EMC3-EIRENE

    DOE PAGESBeta

    Lore, Jeremy D.; Reinke, M. L.; Brunner, D.; LaBombard, B. A.; Lipschultz, B.; Terry, J. L.; Pitts, R. A.; Feng, Y.

    2015-04-28

    We study experiments in Alcator C-Mod to assess the level of toroidal asymmetry in divertor conditions resulting from poloidally and toroidally localized extrinsic impurity gas seeding show a weak toroidal peaking (~1.1) in divertor electron temperatures for high-power enhanced D-alpha H-modeplasmas. This is in contrast to similar experiments in Ohmically heated L-modeplasmas, which showed a clear toroidal modulation in the divertor electron temperature. Modeling of these experiments using the 3D edge transport code EMC3-EIRENE [Y. Feng et al., J. Nucl. Mater. 241, 930 (1997)] qualitatively reproduces these trends, and indicates that the different response in the simulations is due tomore » the ionization location of the injected nitrogen. Low electron temperatures in the private flux region (PFR) in L-mode result in a PFR plasma that is nearly transparent to neutral nitrogen, while in H-mode the impurities are ionized in close proximity to the injection location, with this latter case yielding a largely axisymmetric radiation pattern in the scrape-off-layer. In conclusion, the consequences for the ITER gas injection system are discussed. Quantitative agreement with the experiment is lacking in some areas, suggesting potential areas for improving the physics model in EMC3-EIRENE.« less

  19. ITER test programme

    NASA Astrophysics Data System (ADS)

    Abdou, M.; Baker, C.; Casini, G.

    1991-07-01

    The International Thermonuclear Experimental Reactor (ITER) was designed to operate in two phases. The first phase, which lasts for 6 years, is devoted to machine checkout and physics testing. The second phase lasts for 8 years and is devoted primarily to technology testing. This report describes the technology test program development for ITER, the ancillary equipment outside the torus necessary to support the test modules, the international collaboration aspects of conducting the test program on ITER, the requirements on the machine major parameters and the R and D program required to develop the test modules for testing in ITER.

  20. Using the Tritium Plasma Experiment to evaluate ITER PFC safety. [Plasma-Facing Components

    SciTech Connect

    Longhurst, G.R.; Anderl, R.A. ); Bartlit, J.R. ); Causey, R.A. ); Haines, J.R. )

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 [times] 10[sup 19] ions/cm[sup 2] [center dot] s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment.

  1. A new visible spectroscopy diagnostic for the JET ITER-like wall main chambera)

    NASA Astrophysics Data System (ADS)

    Maggi, C. F.; Brezinsek, S.; Stamp, M. F.; Griph, S.; Heesterman, P.; Hogben, C.; Horton, A.; Meigs, A.; Morlock, C.; Studholme, W.; Zastrow, K.-D.; JET-EFDA Contributors

    2012-10-01

    In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW), whereby the main plasma facing components, previously of carbon, have been replaced by mainly Be in the main chamber and W in the divertor. As part of the many diagnostic enhancements, a new, survey, visible spectroscopy diagnostic has been installed for the characterization of the ILW. An array of eight lines-of-sight (LOS) view radially one of the two JET neutral beam shine through areas (W coated carbon fibre composite tiles) at the inner wall. In addition, one vertical LOS views the solid W tile at the outer divertor. The light emitted from the plasma is coupled to a series of compact overview spectrometers, with overall wavelength range of 380-960 nm and to one high resolution Echelle overview spectrometer covering the wavelength range 365-720 nm. The new survey diagnostic has been absolutely calibrated in situ by means of a radiometric light source placed inside the JET vessel in front of the whole optical path and operated by remote handling. The diagnostic is operated in every JET discharge, routinely monitoring photon fluxes from intrinsic and extrinsic impurities (e.g., Be, C, W, N, and Ne), molecules (e.g., BeD, D2, ND) and main chamber and divertor recycling (typically Dα, Dβ, and Dγ). The paper presents a technical description of the diagnostic and first measurements during JET discharges.

  2. A new visible spectroscopy diagnostic for the JET ITER-like wall main chamber

    SciTech Connect

    Maggi, C. F.; Brezinsek, S.; Stamp, M. F.; Griph, S.; Heesterman, P.; Hogben, C.; Horton, A.; Meigs, A.; Studholme, W.; Zastrow, K.-D.; Collaboration: JET-EFDA Contributors

    2012-10-15

    In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW), whereby the main plasma facing components, previously of carbon, have been replaced by mainly Be in the main chamber and W in the divertor. As part of the many diagnostic enhancements, a new, survey, visible spectroscopy diagnostic has been installed for the characterization of the ILW. An array of eight lines-of-sight (LOS) view radially one of the two JET neutral beam shine through areas (W coated carbon fibre composite tiles) at the inner wall. In addition, one vertical LOS views the solid W tile at the outer divertor. The light emitted from the plasma is coupled to a series of compact overview spectrometers, with overall wavelength range of 380-960 nm and to one high resolution Echelle overview spectrometer covering the wavelength range 365-720 nm. The new survey diagnostic has been absolutely calibrated in situ by means of a radiometric light source placed inside the JET vessel in front of the whole optical path and operated by remote handling. The diagnostic is operated in every JET discharge, routinely monitoring photon fluxes from intrinsic and extrinsic impurities (e.g., Be, C, W, N, and Ne), molecules (e.g., BeD, D{sub 2}, ND) and main chamber and divertor recycling (typically D{alpha}, D{beta}, and D{gamma}). The paper presents a technical description of the diagnostic and first measurements during JET discharges.

  3. A new visible spectroscopy diagnostic for the JET ITER-like wall main chamber.

    PubMed

    Maggi, C F; Brezinsek, S; Stamp, M F; Griph, S; Heesterman, P; Hogben, C; Horton, A; Meigs, A; Morlock, C; Studholme, W; Zastrow, K-D

    2012-10-01

    In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW), whereby the main plasma facing components, previously of carbon, have been replaced by mainly Be in the main chamber and W in the divertor. As part of the many diagnostic enhancements, a new, survey, visible spectroscopy diagnostic has been installed for the characterization of the ILW. An array of eight lines-of-sight (LOS) view radially one of the two JET neutral beam shine through areas (W coated carbon fibre composite tiles) at the inner wall. In addition, one vertical LOS views the solid W tile at the outer divertor. The light emitted from the plasma is coupled to a series of compact overview spectrometers, with overall wavelength range of 380-960 nm and to one high resolution Echelle overview spectrometer covering the wavelength range 365-720 nm. The new survey diagnostic has been absolutely calibrated in situ by means of a radiometric light source placed inside the JET vessel in front of the whole optical path and operated by remote handling. The diagnostic is operated in every JET discharge, routinely monitoring photon fluxes from intrinsic and extrinsic impurities (e.g., Be, C, W, N, and Ne), molecules (e.g., BeD, D(2), ND) and main chamber and divertor recycling (typically Dα, Dβ, and Dγ). The paper presents a technical description of the diagnostic and first measurements during JET discharges.

  4. Direct ion orbit loss near the plasma edge of a divertor tokamak in the presence of a radial electric field

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.

    1996-07-01

    The loss region in the initial velocity space of the direct orbit loss ions near the plasma edge of tokamaks with the divertor configuration is studied analytically. The results of this analysis are compared with the numerical results of the loss region in the JET case obtained by Chankin and McCracken (1993). The results agree with each other semiquantitatively in several cases involving the presence of a radial electric field. A measure of the direct ion orbit loss Gamma is calculated from the given loss region in the initial velocity space for JET, JT-60U and ITER. When the initial position of an ion is located in the outside torus (r>Rx, where Rx is the radius at the null X point), the dependence of Gamma on the radial electric field shows the existence of a local maximum and a local minimum in the negative region of the radial electric field

  5. Iteration, Not Induction

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2009-01-01

    The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…

  6. Global Evaluation of Prompt Dose Rates in ITER Using Hybrid Monte Carlo/Deterministic Techniques

    SciTech Connect

    Ibrahim, A.; Sawan, M.; Mosher, Scott W; Evans, Thomas M; Peplow, Douglas E.; Wilson, P.; Wagner, John C

    2011-01-01

    The hybrid Monte Carlo (MC)/deterministic techniques - Consistent Adjoint Driven Importance Sampling (CADIS) and Forward Weighted CADIS (FW-CADIS) - enable the full 3-D modeling of very large and complicated geometries. The ability of performing global MC calculations for nuclear parameters throughout the entire ITER reactor was demonstrated. The 2 m biological shield (bioshield) reduces the total prompt operational dose by six orders of magnitude. The divertor cryo-pump port results in a peaking factor of 120 in the prompt operational dose rate behind the bioshield by a factor of 47. The peak values of the prompt dose rates at the back surface of the bioshield were 240 uSv/hr and 94 uSv/hr corresponding to the regions behind the divertor cryo-pump port and the equatorial port, respectively.

  7. Divertor heat and particle control experiments on the DIII-D tokamak

    SciTech Connect

    Mahdavi, M.A; Baker, D.R.; Allen, S.L.

    1994-05-01

    In this paper we present a summary of recent DIII-D divertor physics activity and plans for future divertor upgrades. During the past year, DIII-D experimental effort was focused on areas of active heat and particle control and divertor target erosion studies. Using the DIII-D Advanced Divertor system we have succeeded for the first time to control the plasma density and demonstrate helium exhaust in H-mode plasmas. Divertor heat flux control by means of D{sub 2} gas puffing and impurity injection were studied separately and in, both cases up to a factor of five reduction of the divertor peak heat flux was observed. Using the DiMES sample transfer system we have obtained erosion data on various material samples in well diagnosed plasmas and compared the results with predictions of numerical models.

  8. The influence of the radial particle transport on the divertor plasma detachment

    NASA Astrophysics Data System (ADS)

    Hoshino, K.; Shimizu, K.; Takizuka, T.; Asakura, N.; Nakano, T.

    2015-08-01

    Divertor plasma detachment is the most promising candidate to reduce the divertor heat load in fusion reactors. Present understanding of detachment physics is not sufficient to adequately reproduce experimental observations. Understanding and control of detachment physics is indispensable to design the divertor in future machines. To improve the quality of divertor modeling and reveal limitations of the detachment physics built into state-of-the-art codes, an integrated divertor code SONIC has been applied to modeling of the JT-60U detached divertor plasma. In this study, the radial diffusion coefficient in the private region or the far SOL region is increased to investigate the influence of radial plasma transport on detachment characteristics. Saturation of the reduction in ion flux after roll-over is improved by the radial transport enhancement, while the radial profile at the mid-plane agreed with the experimental data.

  9. An automated approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.

    2015-01-01

    Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.

  10. Detached divertor operation in DIII-D helium plasmas

    SciTech Connect

    Hill, D. N., LLNL

    1998-05-01

    This paper presents results from operating helium plasmas in DIII-D in which helium gas puffing is used to reduce the peak divertor heat flux by factors of four or more. The threshold density for achieving these conditions is nearly the same as for deuterium plasmas, which is surprising given the fact that lack of chemical sputtering reduces the carbon concentration in the plasma by more than a factor of five. Spectroscopic analysis shows that helium becomes the primary radiation in these plasmas, which is possible because, unlike carbon, it is the primary species present. These plasmas differ from the usual partially detached divertor (PDD) plasmas in that there is no concomitant reduction in target plate ion flux with target plate heat flux in the scrape off later outside the separatrix.

  11. Preliminary activation calculations for the Poloidal Divertor Experiment

    SciTech Connect

    Judd, J.L.; Scott, A.J.; Nigg, D.W.; Bohn, T.S.

    1981-01-01

    The Poloidal Divertor Experiment (PDX) tokamak is being operated by the Princeton Plasma Physics Laboratory (PPPL) to study plasma cross section shaping, high power neutral beam heating, and divertor control of plasma impurities in tokamaks. Experiments to date have been performed at relatively low power, but with 6 MW of neutral beam power eventually available, high D-D plasma reaction rates are expected that will yield up to 10/sup 15/ 2.45-MeV neutrons per pulse. This neutron emission level is high enough to cause significant neutron-induced machine activation that will limit the occupancy time of personnel entering the room to repair or change parts. The dose rate depends on the location in the room and, of course, the pulsing history prior to entry. This paper describes one-dimensional activation calculations that have been done for PDX to provide preliminary dose rate information for various times after shutdown following one week of high power operation.

  12. Diagnosing transient plasma status: from solar atmosphere to tokamak divertor

    NASA Astrophysics Data System (ADS)

    Giunta, A. S.; Henderson, S.; O'Mullane, M.; Harrison, J.; Doyle, J. G.; Summers, H. P.

    2016-09-01

    This work strongly exploits the interdisciplinary links between astrophysical (such as the solar upper atmosphere) and laboratory plasmas (such as tokamak devices) by sharing the development of a common modelling for time-dependent ionisation. This is applied to the interpretation of solar flare data observed by the UVSP (Ultraviolet Spectrometer and Polarimeter), on-board the Solar Maximum Mission and the IRIS (Interface Region Imaging Spectrograph), and also to data from B2-SOLPS (Scrape Off Layer Plasma Simulations) for MAST (Mega Ampère Spherical Tokamak) Super-X divertor upgrade. The derived atomic data, calculated in the framework of the ADAS (Atomic Data and Analysis Structure) project, allow equivalent prediction in non-stationary transport regimes and transients of both the solar atmosphere and tokamak divertors, except that the tokamak evolution is about one thousand times faster.

  13. Tokamak power exhaust with the snowflake divertor: Present results and outstanding issues

    DOE PAGESBeta

    Soukhanovskii, V. A.; Xu, X.

    2015-09-15

    Here, a snowflake divertor magnetic configuration (Ryutov in Phys Plasmas 14(6):064502, 2007) with the second-order poloidal field null offers a number of possible advantages for tokamak plasma heat and particle exhaust in comparison with the standard poloidal divertor with the first-order null. Results from snowflake divertor experiments are briefly reviewed and future directions for research in this area are outlined.

  14. Tearing mode physics studies applying the dynamic ergodic divertor on TEXTOR

    NASA Astrophysics Data System (ADS)

    Koslowski, H. R.; Westerhof, E.; de Bock, M.; Classen, I.; Jaspers, R.; Kikuchi, Y.; Krämer-Flecken, A.; Lazaros, A.; Liang, Y.; Löwenbrück, K.; Varshney, S.; von Hellermann, M.; Wolf, R.; Zimmermann, O.; TEXTOR Team

    2006-12-01

    The dynamic ergodic divertor (DED) on the TEXTOR tokamak allows for the reproducible destabilization of the m/n = 2/1 tearing mode which is phase locked to the external static or rotating perturbation field. In combination with its flexible heating systems (co- and counter-neutral beam injection, ion cyclotron resonance heating, electron cyclotron resonance heating (ECRH) with steerable launcher) dedicated experiments to study the mode onset, properties of large islands and mode stabilization can be performed. The dependence of the mode excitation threshold (field penetration) on the plasma rotation shows a resonance character, with minimum threshold when the external perturbation frequency matches the MHD frequency of the 2/1 mode. Mode stabilization by ECRH heating shows that for the TEXTOR plasma heating is more effective than the current drive in O-point. Extrapolation to ITER yields a significant contribution to the mode suppression originating from the temperature increase within the island. Alfvén-like modes, which have been previously identified in the vicinity of large islands on FTU (Buratti et al 2005 Nuclear Fusion 45 1446), are found to be created already before island formation above a certain threshold of the externally applied perturbation field.

  15. Deep deuterium retention and Be/W mixing at tungsten coated surfaces in the JET divertor

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Bykov, I.; Zhou, Y.; Petersson, P.; Possnert, G.; Likonen, J.; Pettersson, J.; Koivuranta, S.; Widdowson, A. M.; contributors, JET

    2016-02-01

    Surface samples from a full poloidal set of divertor tiles exposed in JET through operations 2010-2012 with ITER-like wall have been investigated using SEM, SIMS, ICP-AES analysis and micro beam nuclear reaction analysis (μ-NRA). Deposition of Be and retention of D is microscopically inhomogeneous. With careful overlaying of μ-NRA elemental maps with SEM images, it is possible to separate surface roughness effects from depth profiles at microscopically flat surface regions, without pits. With (3He, p) μ-NRA at 3-5 MeV beam energy the accessible depth for D analysis in W is about 9 μm, sufficient to access the W/Mo and Mo/W interfaces in the coatings and beyond, while for Be in W it is about 6 μm. In these conditions, at all plasma wetted surfaces, D was found throughout the whole accessible depth at concentrations in the range 0.2-0.7 at% in W. Deuterium was found to be preferentially trapped at the W/Mo and Mo/W interfaces. Comparison is made with SIMS profiling, which also shows significant D trapping at the W/Mo interface. Mixing of Be and W occurs mainly in deposited layers.

  16. Analytical calculations for impurity seeded partially detached divertor conditions

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Bernert, M.; Dux, R.; Reimold, F.; Wischmeier, M.; ASDEX Upgrade Team

    2016-04-01

    A simple analytical formula for the impurity seeded partially detached divertor operational point has been developed using 1D modelling. The inclusion of charge exchange momentum loss terms improves the 1D modelling for ASDEX Upgrade conditions and its extrapolation to larger devices. The investigations are concentrated around a partially detached divertor working point of low heat flux and an electron temperature around 2.5 eV at the target which are required to maintain low sputtering rates at a tungsten target plate. An experimental formula for the onset of detachment by nitrogen seeding in ASDEX Upgrade is well reproduced, and predictions are given for N, Ne and Ar seeding for variable device size. Moderate deviations from a linear {{P}\\text{sep}}/R size dependence of the detachment threshold are seen in the modelling caused by upstream radiation at longer field line lengths. The presented formula allows the prediction of the neutral gas or seed impurity pressure which is required to achieve partial detachment for a given {{P}\\text{sep}} in devices with a closed divertor similar to the geometry in ASDEX Upgrade.

  17. Particle recirculation in the ergodic divertor of Tore Supra

    NASA Astrophysics Data System (ADS)

    Gunn, J. P.; Azéroual, A.; Bécoulet, M.; Bucalossi, J.; Bush, C.; Corre, Y.; Costanzo, L.; Devynck, P.; Ghendrih, Ph; Gianella, R.; Grisolia, C.; Guirlet, R.; Grosman, A.; Laugier, F.; Loarer, T.; Martin, G.; Meslin, B.; Monier-Garbet, P.; Moulin, D.; Pascal, J.-Y.; Pégourié, B.; Reichle, R.; Saint-Laurent, F.; Schunke, B.; Vallet, J.-C.

    1999-12-01

    The present paper addresses the issue of particle recirculation in discharges where low-energy flux to ergodic divertor target plates is achieved in highly-radiating detached ohmic plasmas. Plasma temperature and particle flux are measured by flush-mounted probes in the divertor plates and by an upstream fast scanning Mach probe. The scalings with core density of the ion flux and electron temperature are well described by the simple two-point model used in axisymmetric poloidal divertors. The detachment signature is a pressure drop that occurs when the edge temperature falls below 10 eV. The parallel ion flux gradient is always positive, indicating that recombination is unlikely to play an important role in detachment. Visible spectroscopy of a neutralizer plate shows that attainment of cold detached plasmas near the density limit coincides with an abrupt increase of fuelling efficiency for both deuterium and impurities. A feedback algorithm based on real-time Langmuir probe measurements has been developed to monitor detachment and avoid disruptions.

  18. Power distribution in the snowflake divertor in TCV

    NASA Astrophysics Data System (ADS)

    Reimerdes, H.; Canal, G. P.; Duval, B. P.; Labit, B.; Lunt, T.; Vijvers, W. A. J.; Coda, S.; De Temmerman, G.; Morgan, T. W.; Nespoli, F.; Tal, B.; the TCV Team

    2013-12-01

    TCV experiments demonstrate the basic power exhaust properties of the snowflake (SF) plus and SF minus divertor configurations by measuring the heat fluxes at each of their four divertor legs. The measurements indicate an enhanced transport into the private flux region and a reduction of peak heat fluxes compared to a similar single null configuration. There are indications that this enhanced transport cannot be explained by the modified field line geometry alone and likely requires an additional or enhanced cross-field transport channel. The measurements, however, do not show a broadening of the scrape-off layer (SOL) and, hence, no increased cross-field transport in the common flux region. The observations are consistent with the spatial limitation of several characteristic SF properties, such as a low poloidal magnetic field in the divertor region and a long connection length to the inner part of the SOL closest to the separatrix. Although this limitation is typical in a medium sized tokamak like TCV, it does not apply to significantly larger devices where the SF properties are enhanced across the entire expected extent of the SOL.

  19. Fast reciprocating Langmuir probe for the DIII-D divertor

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Hunter, J.; Tafoya, B.; Ulrickson, M.; Watson, R. D.; Moyer, R. A.; Cuthbertson, J. W.; Gunner, G.; Lehmer, R.; Luong, P.; Hill, D. N.; Mascaro, M.; Robinson, J. I.; Snider, R.; Stambaugh, R.

    1997-01-01

    A new reciprocating Langmuir probe was used to measure density and temperature profiles, ion flow, and potential fluctuation levels from the lower divertor floor up to the X point on the DIII-D Tokamak. This probe is designed to make fast (2 kHz swept, 20 kHz Mach, 500 kHz Vfloat) measurements with 2 mm spatial resolution in the region where the largest gradients on the plasma open flux tubes are found and therefore provide the best benchmarks for scrap-off layer and divertor numerical models. Profiles are constructed using the 300 ms time history of the probe measurements during the 25 cm reciprocating stroke. Both single and double null plasmas can be measured and compared with a 20 Hz divertor Thomson scattering system. The probe head is constructed of four different kinds of graphite to optimize the electrical and thermal characteristics. Electrically insulated pyrolytic graphite rings act as a heat shield to absorb the plasma heat flux on the probe shaft and are mounted on a carbon/carbon composite core for mechanical strength. The Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition, and power supply systems will be described. Initial measurements will also be presented.

  20. Impurity Transport in a Simulated Gas Target Divertor

    NASA Astrophysics Data System (ADS)

    Blush, L. M.; Luckhardt, S.; Seraydarian, R.; Whyte, D.; Conn, R. W.; Schmitz, L.

    1997-11-01

    Previous simulated gas target divertor experiments in the PISCES-A linear plasma device (n <= 3 × 10^19 m-3, kTe <= 20 eV) indicated enhanced impurity retention near the target in comparison to a high recycling divertor regime. A 1 1\\over2-D fluid modeling code suggested that impurities are impeded from transporting away from the target by friction with the neutral and ionized hydrogen. In recent experiments with a PISCES-A ``slot-type'' divertor configuration, we have implemented a spectroscopic detection system to measure the axial density profiles of several impurity charge states. Moreover, we envision adding two extended cylindrical baffles spanning a pumped vacuum section to achieve strong differential pumping. This arrangement will isolate the plasma source from the gas target region and allow us to seed the background hydrogen plasma with higher impurities concentrations and investigate a regime dominated by impurity radiation. In preliminary design experiments, PISCES-A was successfully operated with an electrically isolated, copper baffle (d=5 cm, l=33.5 cm) mounted to reduce the vacuum conductance between the source and target regions. This work supported by US-DoE contract DE-FG03-95ER-54301.

  1. Island Divertor Plate Modeling for the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Massidda, S. D.; Ennis, D. A.; Knowlton, S. F.; Maurer, D. A.; Bader, A.

    2015-11-01

    Edge magnetic island divertors can be used as a method of plasma particle and heat exhaust in long pulse stellarator experiments. Detailed power loading on these structures and its relationship to the long connection length scrape off layer physics is a new Compact Toroidal Hybrid (CTH) research thrust. CTH is a five field period, l = 2 torsatron with R0 = 0 . 75 m, ap ~ 0 . 2 m, and | B | <= 0 . 7 T. For these studies CTH is configured as a pure stellarator using a 28 GHz, 200 kW gyrotron operating at 2nd harmonic for ECRH. We report the results of EMC3-EIRENE modeling of divertor plates near magnetic island structures. The edge rotational transform is varied by adjusting the ratio of currents in the helical and toroidal field coils. A poloidal field coil adjusts the shear of the rotational transform profile, and width of the magnetic island, while the phase of the island is rotated with a set of five error coils producing an n = 1 perturbation. For the studies conducted, a magnetic configuration with a large n = 1 , m = 3 magnetic island at the edge is generated. Results from multiple potential divertor plate locations will be presented and discussed. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  2. ICRF Specific Plasma Wall Interactions in JET with the ITER-Like Wall

    SciTech Connect

    Bobkov, V.; Arnoux, G.; Brezinsek, S.; Coenen, J. W.; Colas, L.; Clever, M.; Czarnecka, A.; Braun, F.; Dux, R.; Huber, Alexander; Lerche, E.; Maggi, C.; Marcotte, F.; Maslov, M.; Matthews, G.; Mayoral, M.-L.; Meigs, A. G.; Monakhov, I.; Putterich, Th.; Rimini, F.; Rooj, G. Van; Sergienko, G.; Van Eester, D.

    2013-01-01

    A variety of plasma wall interactions (PWIs) during operation of the so-called A2 ICRF antennas is observed in JET with the ITER-like wall. Amongst effects of the PWIs, the W content increase is the most significant, especially at low plasma densities. No increase of W source from the main divertor and entrance of the outer divertor during ICRF compared to NBI phases was found by means of spectroscopic and WI (400.9 nm) imaging diagnostics. In contrary, the W flux there is higher during NBI. Charge exchange neutrals of hydrogen isotopes could be excluded as considerable contributors to the W source. The high W content in ICRF heated limiter discharges suggests the possibility of other W sources than the divertor alone. Dependencies of PWIs to individual ICRF antennas during q95-scans, and intensification of those for the 90 phasing, indicate a link between the PWIs and the antenna near-fields. The PWIs include heat loads and Be sputtering pattern on antenna limiters. Indications of some PWIs at the outer divertor entrance are observed which do not result in higher W flux compared to the NBI phases, but are characterized by small antenna-specific (up to 25% with respect to ohmic phases) bipolar variations of WI emission. The first TOPICA calculations show a particularity of the A2 antennas compared to the ITER antenna, due to the presence of long antenna limiters in the RF image current loop and thus high near-fields across the most part of the JET outer wall.

  3. Active control of divertor asymmetry on EAST by localized D2 and Ar puffing

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng; Guo, Houyang; Wang, Huiqian; Luo, Guangnan; Wu, Zhenwei; Wu, Jinhua; Gao, Wei; Wang, Liang; Li, Qiang; East Team

    2011-03-01

    The divertor asymmetry in particle and power fluxes has been investigated on the EAST superconducting tokamak [S. Wu and EAST Team, Fusion Eng. Des. 82, 463 (2007)] for both single null (SN) and double null (DN) divertor configurations. D2 and Ar puffing at various divertor locations has also been explored as an active means to reduce peak target heat load and control divertor asymmetry. For SN, peak heat load on the outer divertor target is 2-3 times that on the inner divertor target under typical ohmic plasma conditions. DN operation leads to a stronger in-out asymmetry favoring the outer divertor. D2 and Ar puffing promotes partial detachment near the strike points, greatly reducing peak target heat load (over 50%), while the far-SOL divertor plasma remains attached. What is remarkable is that the particle flux is even increased away from the strike points when the B×∇B drift is directed toward the divertor target, thus facilitating particle removal.

  4. The effect of the magnetic topology on particle recycling in the ergodic divertor of TEXTOR

    NASA Astrophysics Data System (ADS)

    Lehnen, M.; Abdullaev, S. S.; Brezinsek, S.; Finken, K. H.; Harting, D.; von Hellermann, M.; Jakubowski, M. W.; Jaspers, R.; Kirschner, A.; Pospieszczyk, A.; Reiter, D.; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Wolf, R.; Textor Team

    2007-06-01

    The influence of the divertor geometry of the dynamic ergodic divertor (DED) in TEXTOR on particle recycling is discussed. The geometry can be varied by the choice of the base mode, the edge safety factor and the divertor coil current. The divertor volume is split into the upstream and the downstream area. Strong plasma flows in the downstream area, essential for high screening efficiency, are predicted. The source strength of deuterium and carbon in the downstream area is estimated by using the two-dimensional distribution of Dα and CIII emission in front of the target. The results are compared to EMC3 and ERO-code calculations.

  5. Perl Modules for Constructing Iterators

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  6. Investigations on the heat flux and impurity for the HL-2M divertor

    NASA Astrophysics Data System (ADS)

    Zheng, G. Y.; Cai, L. Z.; Duan, X. R.; Xu, X. Q.; Ryutov, D. D.; Cai, L. J.; Liu, X.; Li, J. X.; Pan, Y. D.

    2016-12-01

    The controllability of the heat load and impurity in the divertor is very important, which could be one of the critical problems to be solved in order to ensure the success for a steady state tokamak. HL-2M has the advantage of the poloidal field (PF) coils placed inside the demountable toroidal field (TF) coils and close to the main plasma. As a result, it is possible to make highly accurate configuration control of the advanced divertor for HL-2M. The divertor target geometry of HL-2M has been designed to be compatible with different divertor configurations to study the divertor physics and support the high performance plasma operations. In this paper, the heat loads and impurities with different divertor configurations, including the standard X-point divertor, the snowflake-minus divertor and two tripod divertor configurations for HL-2M, are investigated by numerical simulations with the SOLPS5.0 code under the current design of the HL-2M divertor geometry. The plasmas with different conditions, such as the low discharge parameters with {{I}\\text{p}}   =  0.5 MA at the first stage of HL-2M and the high parameters with {{I}\\text{p}}   =  2.0 MA during the normal operations, are simulated. The heat load profiles and the impurity distributions are obtained, and the control of the peak heat load and the effect of impurity on the core plasma are discussed. The compatibility of different divertor configurations for HL-2M is also evaluated. It is seen that the excellent compatibility of different divertor configurations with the current divertor geometry has been verified. The results show that the snowflake-minus divertor and the tripod divertor with {{d}x}=30 \\text{cm} present good performance in terms of the heat load profiles and the impurity distributions under different conditions, which may not have a big effect on the core plasma. In addition, it is possible to optimize the distance between the two X-points, {{d}x} , to achieve a better

  7. Diagnostics for ITER

    SciTech Connect

    Donne, A. J. H.; Hellermann, M. G. von; Barnsley, R.

    2008-10-22

    After an introduction into the specific challenges in the field of diagnostics for ITER (specifically high level of nuclear radiation, long pulses, high fluxes of particles to plasma facing components, need for reliability and robustness), an overview will be given of the spectroscopic diagnostics foreseen for ITER. The paper will describe both active neutral-beam based diagnostics as well as passive spectroscopic diagnostics operating in the visible, ultra-violet and x-ray spectral regions.

  8. ITER convertible blanket evaluation

    SciTech Connect

    Wong, C.P.C.; Cheng, E.

    1995-09-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.

  9. Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.

    2015-08-01

    The JET ITER-Like Wall experiment (JET-ILW) provides an ideal test bed to investigate plasma-surface interaction (PSI) and plasma operation with the ITER plasma-facing material selection employing beryllium in the main chamber and tungsten in the divertor. The main PSI processes: material erosion and migration, (b) fuel recycling and retention, (c) impurity concentration and radiation have be1en studied and compared between JET-C and JET-ILW. The current physics understanding of these key processes in the JET-ILW revealed that both interpretation of previously obtained carbon results (JET-C) and predictions to ITER need to be revisited. The impact of the first-wall material on the plasma was underestimated. Main observations are: (a) low primary erosion source in H-mode plasmas and reduction of the material migration from the main chamber to the divertor (factor 7) as well as within the divertor from plasma-facing to remote areas (factor 30 - 50). The energetic threshold for beryllium sputtering minimises the primary erosion source and inhibits multi-step re-erosion in the divertor. The physical sputtering yield of tungsten is low as 10-5 and determined by beryllium ions. (b) Reduction of the long-term fuel retention (factor 10 - 20) in JET-ILW with respect to JET-C. The remaining retention is caused by implantation and co-deposition with beryllium and residual impurities. Outgassing has gained importance and impacts on the recycling properties of beryllium and tungsten. (c) The low effective plasma charge (Zeff = 1.2) and low radiation capability of beryllium reveal the bare deuterium plasma physics. Moderate nitrogen seeding, reaching Zeff = 1.6 , restores in particular the confinement and the L-H threshold behaviour. ITER-compatible divertor conditions with stable semi-detachment were obtained owing to a higher density limit with ILW. Overall JET demonstrated successful plasma operation in the Be/W material combination and confirms its advantageous PSI behaviour

  10. Fusion Physics Toward ITER

    NASA Astrophysics Data System (ADS)

    Stambaugh, R. D.

    2006-04-01

    Stars are powered by fusion, the energy released by fusing together light nuclei, using gravitational confinement of plasma. Fusion on earth will be done in a 100 million degree plasma made of deuterium and tritium and confined by magnetic fields or inertia. The worldwide fusion research community will construct ITER, the first experiment that will burn a DT plasma by copious fusion reactions. ITER's nominal goal is to create 500 MW of fusion power. An energy gain of 10 will mean the plasma is dominantly self-heated by the fusion-produced alpha particles. ITER's all superconducting magnet technology and steady-state heat removal technology will enable nominal 400 s pulses to allow the study of burning plasmas on the longest intrinsic timescale of the confined plasma - diffusive redistribution of the electrical currents in the plasma. The advances in magnetic confinement physics that have led to this opportunity will be described, as well as the research opportunities afforded by ITER. The physics of confining stable plasmas and heating them will produce the high gain state in ITER. Sustained burn will come from the physics of controlling currents in plasmas and how the hot plasma is interfaced to its room temperature surroundings. ITER will provide our first experience with how fusion plasma self-heating will profoundly affect the complex, interlinked physical processes that occur in confined plasmas.

  11. Toward Construction of ITER

    NASA Astrophysics Data System (ADS)

    Shimomura, Yasuo

    The ITER Project has been significantly developed in the past years in preparation for its construction. The ITER Negotiators have developed a draft Joint Implementation Agreement (JIA), ready for completion following the nomination of the Project’s Director General (DG). The ITER International Team and Participant Teams have continued technical and organizational preparations. The actual construction will be able to start immediately after the international ITER organization will be established, following signature of the JIA. The Project is now strongly supported by all the participants as well as by the scientific community with the final high-level negotiations, focused on siting and the concluding details of cost sharing, started in December 2003. The EU, with Cadarache, and Japan, with Rokkasho, have both promised large contributions to the project to strongly support their construction site proposals. The extent to which they both wish to host the ITER facility is such that large contributions to a broader collaboration among the Parties are also proposed by them. This covers complementary activities to help accelerate fusion development towards a viable power source, as well as may allow the Participants to reach a conclusion on ITER siting.

  12. Upper wide-angle viewing system for ITER

    NASA Astrophysics Data System (ADS)

    Lasnier, C. J.; McLean, A. G.; Gattuso, A.; O'Neill, R.; Smiley, M.; Vasquez, J.; Feder, R.; Smith, M.; Stratton, B.; Johnson, D.; Verlaan, A. L.; Heijmans, J. A. C.

    2016-11-01

    The Upper Wide Angle Viewing System (UWAVS) will be installed on five upper ports of ITER. This paper shows major requirements, gives an overview of the preliminary design with reasons for some design choices, examines self-emitted IR light from UWAVS optics and its effect on accuracy, and shows calculations of signal-to-noise ratios for the two-color temperature output as a function of integration time and divertor temperature. Accurate temperature output requires correction for vacuum window absorption vs. wavelength and for self-emitted IR, which requires good measurement of the temperature of the optical components. The anticipated signal-to-noise ratio using presently available IR cameras is adequate for the required 500 Hz frame rate.

  13. Radioactive waste produced by DEMO and commerical fusion reactors extrapolated from ITER and advanced data bases

    SciTech Connect

    Stacey, W.M.; Hertel, N.E.; Hoffman, E.A.

    1994-12-31

    The potential for providing energy with minimal environmental impact is a powerful motivation for the development of fusion and is the long-term objective of most fusion programs. However, the societal acceptability of magnetic fusion may well be decided in the near-term when decisions are taken on the construction of DEMO to follow ITER (if not when the construction decision is taken on ITER). Component wastes were calculated for DEMOs based on each data base by first calculating reactor sizes needed to satisfy the physics, stress and radiation attenuation requirements, and then calculating component replacement rates based on radiation damage and erosion limits. Then, radioactive inventories were calculated and compared to a number of international criteria for {open_quote}near-surface{close_quote} burial. None of the components in either type of design would meet the Japanese LLW criterion (<1 Ci/m{sup 3}) within 10 years of shutdown, although the advanced (V/Li) blanket would do so soon afterwards. The vanadium first wall, divertor and blanket would satisfy the IAEA LLW criterion (<2 mSv/h contact dose) within about 10 years after shutdown, but none of the stainless steel or copper components would. All the components in the advanced data base designs except the stainless steel vacuum vessel and shield readily satisfy the US extended 10CFR61 intruder dose criterion, but none of the components in the {open_quotes}ITER data base{close_quotes} designs do so. It seems unlikely that a stainless steel first wall or a copper divertor plate could satisfy the US (class C) criterion for near surface burial, much less the more stringent international, criteria. On the other hand, the first wall, divertor and blanket of the V/Li system would still satisfy the intruder dose concentration limits even if the dose criterion was reduced by two orders of magnitude.

  14. Study on Axially Distributed Divertor Magnetic Field Configuration in a Mirror Cell

    SciTech Connect

    Islam, M.K.; Nakashima, Y.; Higashizono, Y.; Katanuma, I.; Cho, T

    2005-01-15

    A mirror magnetic field configuration (MFC) is studied in which a divertor is distributed axially using multipole coils. Both configurations of divertor and minimum-B are obtained in a mirror cell. Magnetohydrodynamic (MHD) instability of a mirror cell can be eliminated in this way. Concept of the design and properties of the MFC are discussed.

  15. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamaka)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; McLean, A. G.; Allen, S. L.

    2014-11-01

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and Te monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800-2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma Te, ne estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000-1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor Te monitoring aimed at divertor detachment real-time feedback control.

  16. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamak

    SciTech Connect

    Soukhanovskii, V. A. McLean, A. G.; Allen, S. L.

    2014-11-15

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and T{sub e} monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800–2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma T{sub e}, n{sub e} estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000–1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor T{sub e} monitoring aimed at divertor detachment real-time feedback control.

  17. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamak.

    PubMed

    Soukhanovskii, V A; McLean, A G; Allen, S L

    2014-11-01

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and Te monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800-2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma Te, ne estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000-1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor Te monitoring aimed at divertor detachment real-time feedback control. PMID:25430325

  18. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamak.

    PubMed

    Soukhanovskii, V A; McLean, A G; Allen, S L

    2014-11-01

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and Te monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800-2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma Te, ne estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000-1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor Te monitoring aimed at divertor detachment real-time feedback control.

  19. Magnetic turbulence and resistive MHD instabilities in a 0. 6 < q < 3 poloidal divertor tokamak

    SciTech Connect

    Agim, Y.Z.; Callen, J.D.; Chang, Z.; Dexter, R.N.; Goetz, J.A.; Graessle, D.E.; Haines, E.; Kortbawi, D.; LaPointe, M.A.; Moyer, R.A.

    1988-09-01

    Detailed statistical properties of internal magnetic turbulence, and internal disruptions in magnetically- and materially-limited discharges, are studied in the Tokapole II poloidal divertor tokamak over the safety factor range 0.6 < q{sub a} < 3. A nonlinear MHD code treats tearing modes in the divertor geometry. 9 refs., 2 figs.

  20. Lanczos iterated time-reversal.

    PubMed

    Oberai, Assad A; Feijóo, Gonzalo R; Barbone, Paul E

    2009-02-01

    A new iterative time-reversal algorithm capable of identifying and focusing on multiple scatterers in a relatively small number of iterations is developed. It is recognized that the traditional iterated time-reversal method is based on utilizing power iterations to determine the dominant eigenpairs of the time-reversal operator. The convergence properties of these iterations are known to be suboptimal. Motivated by this, a new method based on Lanczos iterations is developed. In several illustrative examples it is demonstrated that for the same number of transmitted and received signals, the Lanczos iterations based approach is substantially more accurate. PMID:19206835

  1. Reconstruction of Detached Divertor Plasma Conditions in DIII-D Using Spectroscopic and Probe Data

    SciTech Connect

    Stangeby, P; Fenstermacher, M

    2004-12-03

    For some divertor aspects, such as detached plasmas or the private flux zone, it is not clear that the controlling physics has been fully identified. This is a particular concern when the details of the plasma are likely to be important in modeling the problem--for example, modeling co-deposition in detached inner divertors. An empirical method of ''reconstructing'' the plasma based on direct experimental measurements may be useful in such situations. It is shown that a detached plasma in the outer divertor leg of DIII-D can be reconstructed reasonably well using spectroscopic and probe data as input to a simple onion-skin model and the Monte Carlo hydrogenic code, EIRENE. The calculated 2D distributions of n{sub e} and T{sub e} in the detached divertor were compared with direct measurements from the divertor Thomson scattering system, a diagnostic capability unique to DIII-D.

  2. Performance characteristics of the DIII-D advanced divertor cryopump

    SciTech Connect

    Menon, M.M.; Maingi, R.; Wade, M.R.; Baxi, C.B.; Campbell, G.L.; Holtrop, K.L.; Hyatt, A.W.; Laughon, G.J.; Makariou, C.C.; Mahdavi, M.A.; Reis, E.E.; Schaffer, M.J.; Schaubel, K.M.; Scoville, J.T.; Smith, J.P.; Stambaugh, R.D.

    1993-10-01

    A cryocondensation pump, cooled by forced flow of two-phase helium, has been installed for particle exhaust from the divertor region of the DIII-D tokamak. The Inconel pumping surface is of coaxial geometry, 25.4 mm in outer diameter and 11.65 m in length. Because of the tokamak environment, the pump is designed to perform under relatively high pulsed heat loads (300 Wm{sup {minus}2}). Results of measurements made on the pumping characteristics for D{sub 2}, H{sub 2}, and Ar are discussed.

  3. Ballooning Modes in the Systems Stabilized by Divertors

    SciTech Connect

    Arsenin, V.V.; Skovoroda, A.A.; Zvonkov, A.V.

    2005-01-15

    MHD stability of a plasma in systems with closed magnetic field lines and open systems containing the nonparaxial stabilizing cells with large field lines curvature, in particular, divertors is analyzed. It is shown that population of particles trapped in such cells has a stabilizing effect not only on flute modes, but also on ballooning modes that determine the {beta} limit. At kinetic description that accounts for different effect of trapped and passing particles on perturbations, {beta} limit permitted by stability may be much greater then it follows from MHD model.

  4. Crossed-field divertor for a plasma device

    DOEpatents

    Kerst, Donald W.; Strait, Edward J.

    1981-01-01

    A divertor for removal of unwanted materials from the interior of a magnetic plasma confinement device includes the division of the wall of the device into segments insulated from each other in order to apply an electric field having a component perpendicular to the confining magnetic field. The resulting crossed-field drift causes electrically charged particles to be removed from the outer part of the confinement chamber to a pumping chamber. This method moves the particles quickly past the saddle point in the poloidal magnetic field where they would otherwise tend to stall, and provides external control over the rate of removal by controlling the magnitude of the electric field.

  5. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET

    SciTech Connect

    Shumack, A. E.; Rzadkiewicz, J.; Chernyshova, M.; Czarski, T.; Karpinski, L.; Jakubowska, K.; Scholz, M.; Byszuk, A.; Cieszewski, R.; Kasprowicz, G.; Pozniak, K.; Wojenski, A.; Zabolotny, W.; Dominik, W.; Conway, N. J.; Dalley, S.; Tyrrell, S.; Zastrow, K.-D.; Figueiredo, J. [EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB; Associação EURATOM and others

    2014-11-15

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  6. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET.

    PubMed

    Shumack, A E; Rzadkiewicz, J; Chernyshova, M; Jakubowska, K; Scholz, M; Byszuk, A; Cieszewski, R; Czarski, T; Dominik, W; Karpinski, L; Kasprowicz, G; Pozniak, K; Wojenski, A; Zabolotny, W; Conway, N J; Dalley, S; Figueiredo, J; Nakano, T; Tyrrell, S; Zastrow, K-D; Zoita, V

    2014-11-01

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  7. Robust iterative methods

    SciTech Connect

    Saadd, Y.

    1994-12-31

    In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.

  8. Power deposition in the JET divertor during ELMs

    NASA Astrophysics Data System (ADS)

    Clement, S.; Chankin, A.; Ciric, D.; Coad, J. P.; Falter, J.; Gauthier, E.; Lingertat, J.; Puppin, S.

    The power deposited in the JET divertor during ELMs has been evaluated using an infrared camera specifically designed for fast measurements. The first results [E. Gauthier, A. Charkin, S. Clement et al., Proc. 24th Euro. conf. on contr. Fusion and Plasma Phys., Berchtesgaden, 1997 (European Physical Society, 1998), vol. 21A, p. 61.] indicated that during type I ELMs, surface temperatures in excess of 2000°C were measured, leading to peak power fluxes in the order of 4 GW/m 2. The time integrated power flux exceeded the measured plasma energy loss per ELM by a factor of four. The reasons for this discrepancy are studied in this paper. Redeposited carbon layers of up to 40 μm have been found on the divertor surface in the places where the highest temperatures are measured. The impact of such layers on the power flux evaluation has been studied with numerical calculations, and a controlled simulation of ELM heating has been performed in the JET neutral beam test facility. It is found that neglecting the existence of layers on the surface in a 2D calculation can lead to overestimating the power by a factor of 3, whereas the error in the calculation of the energy is much smaller. An energy based calculation reduces the peak power during type I ELMs to values around 1.2 GW/m 2.

  9. Ion Temperature Measurements in the DIII--D Divertor

    NASA Astrophysics Data System (ADS)

    Brooks, N. H.; Isler, R. C.; McKee, G. R.; Tugarinov, S.

    1996-11-01

    Doppler profile measurements of the D_α, He II, C II and C III line emission in the DIII--D divertor have been performed with two high resolution spectrometers: an instrument of Russian design with high optical throughput and 7 ms readout, and a conventional Czerny Turner spectrometer with slower response time, but greater dynamic range in its detector system. In continuous ELMing H--mode plasmas the Doppler profiles are usually single-gaussian, but during operation at low density or during large, discrete ELM events the profiles of the hydrogen-like species are often multi-gaussian. Comparison of ion temperatures inferred from the single-gaussian profiles and electron temperatures measured by Thomson scattering and by spectroscopic line ratio methods yields good agreement for the higher charge states, where equilibration of ion and electron temperatures is expected. When strong D2 puffing triggers the MARFE-like conditions of Partially Detached Divertor plasmas, the D_α line profile, usually a complex asymmetric profile with multiple components, evolves into a single-gaussian profile fitted by a very low temperature (<2 eV) similar to that measured for the electrons by Thomson scattering.

  10. Ballooning modes localized near the null point of a divertor

    SciTech Connect

    Farmer, W. A.

    2014-04-15

    The stability of ballooning modes localized to the null point in both the standard and snowflake divertors is considered. Ideal magnetohydrodynamics is used. A series expansion of the flux function is performed in the vicinity of the null point with the lowest, non-vanishing term retained for each divertor configuration. The energy principle is used with a trial function to determine a sufficient instability threshold. It is shown that this threshold depends on the orientation of the flux surfaces with respect to the major radius with a critical angle appearing due to the convergence of the field lines away from the null point. When the angle the major radius forms with respect to the flux surfaces exceeds this critical angle, the system is stabilized. Further, the scaling of the instability threshold with the aspect ratio and the ratio of the scrape-off-layer width to the major radius is shown. It is concluded that ballooning modes are not a likely candidate for driving convection in the vicinity of the null for parameters relevant to existing machines. However, the results place a lower bound on the width of the heat flux in the private flux region. To explain convective mixing in the vicinity of the null point, new consideration should be given to an axisymmetric mixing mode [W. A. Farmer and D. D. Ryutov, Phys. Plasmas 20, 092117 (2013)] as a possible candidate to explain current experimental results.

  11. First EMC3-Eirene simulations of the TCV snowflake divertor

    NASA Astrophysics Data System (ADS)

    Lunt, T.; Canal, G. P.; Feng, Y.; Reimerdes, H.; Duval, B. P.; Labit, B.; Vijvers, W. A. J.; Coster, D.; Lackner, K.; Wischmeier, M.

    2014-03-01

    One of the approaches to solve the heat load problem in a divertor tokamak is the so called ‘snowflake’ (SF) configuration, a magnetic equilibrium with two nearby x-points and two additional divertor legs. Here we report on the first EMC3-Eirene simulations of plasma- and neutral particle transport in the scrape-off layer of a series of TCV SF equilibria with different values of σ, the distance between the x-points normalized to the minor radius of the plasma. The constant cross-field transport coefficients were chosen such that the power- and particle deposition profiles at the primary inner strike point (SP) match the Langmuir probe measurements for the σ = 0.1 case. At the secondary SP on the floor, however, a significantly larger power flux than that predicted by the simulation was measured by the probes, indicating an enhanced transport across the primary separatrix. As the ideal SF configuration (σ = 0) is approached, the density as well as the radiation maximum are predicted to move from the target plates upward to the x-point by the simulation.

  12. Towards a Lithium Radiative / Vapor-Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Constantin, Marius; Jaworski, Michael; Myers, Rachel; Ono, Masayuki; Schwartz, Jacob; Scotti, Filippo; Qu, Zhaonan

    2014-10-01

    Recent research has indicated that the peak perpendicular heat flux on reactor divertor targets will be hundreds of MW/m2 in the absence of dissipation and/or spatial spreading. Thus we are attracted to both enhanced radiative cooling and continuous vapor shielding. Lithium particle lifetimes <=100 micro-sec enhance radiation efficiency at T < 10 eV, while lithium charge-exchange with neutral hydrogen may enhance radiative efficiency for T > 10 eV and n0/ni > 0.1. We are examining if the latter mechanism plays a role in the narrowing of the heat-flux footprint in lithiated NSTX discharges. In parallel we are investigating the possibility of immersing a reactor divertor leg in a channel of lithium vapor. If we approximate the vapor channel as in local equilibrium with lithium-wetted walls ranging from 300 oC at the entrance point to 950 oC 10m downstream in the parallel direction, we find that the vapor can both balance reactor levels of upstream plasma pressure and stop energetic ions and electrons with energies up to at least 25 keV, as might be produced in ELMs. Each 10 l/sec of lithium evaporated deep in the channel and recondensed in cooler regions spreads 100 MW over a much wider area than the original strike point. This work supported by US DOE Contract DE-AC02-09CH11466.

  13. Axisymmetric curvature-driven instability in a model divertor geometry

    SciTech Connect

    Farmer, W. A.; Ryutov, D. D.

    2013-09-15

    A model problem is presented which qualitatively describes a pressure-driven instability which can occur near the null-point in the divertor region of a tokamak where the poloidal field becomes small. The model problem is described by a horizontal slot with a vertical magnetic field which plays the role of the poloidal field. Line-tying boundary conditions are applied at the planes defining the slot. A toroidal field lying parallel to the planes is assumed to be very strong, thereby constraining the possible structure of the perturbations. Axisymmetric perturbations which leave the toroidal field unperturbed are analyzed. Ideal magnetohydrodynamics is used, and the instability threshold is determined by the energy principle. Because of the boundary conditions, the Euler equation is, in general, non-separable except at marginal stability. This problem may be useful in understanding the source of heat transport into the private flux region in a snowflake divertor which possesses a large region of small poloidal field, and for code benchmarking as it yields simple analytic results in an interesting geometry.

  14. Non-axisymmetric ideal equilibrium and stability of ITER plasmas with rotating RMPs

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Cramp, R. G. J.; Gibson, S.; Lazerson, S. A.; Chapman, I. T.; Kirk, A.

    2016-08-01

    The magnetic perturbations produced by the resonant magnetic perturbation (RMP) coils will be rotated in ITER so that the spiral patterns due to strike point splitting which are locked to the RMP also rotate. This is to ensure even power deposition on the divertor plates. VMEC equilibria are calculated for different phases of the RMP rotation. It is demonstrated that the off harmonics rotate in the opposite direction to the main harmonic. This is an important topic for future research to control and optimize ITER appropriately. High confinement mode (H-mode) is favourable for the economics of a potential fusion power plant and its use is planned in ITER. However, the high pressure gradient at the edge of the plasma can trigger periodic eruptions called edge localized modes (ELMs). ELMs have the potential to shorten the life of the divertor in ITER (Loarte et al 2003 Plasma Phys. Control. Fusion 45 1549) and so methods for mitigating or suppressing ELMs in ITER will be important. Non-axisymmetric RMP coils will be installed in ITER for ELM control. Sampling theory is used to show that there will be significant a {{n}\\text{coils}}-{{n}\\text{rmp}} harmonic sideband. There are nine coils toroidally in ITER so {{n}\\text{coils}}=9 . This results in a significant n  =  6 component to the {{n}\\text{rmp}}=3 applied field and a significant n  =  5 component to the {{n}\\text{rmp}}=4 applied field. Although the vacuum field has similar amplitudes of these harmonics the plasma response to the various harmonics dictates the final equilibrium. Magnetic perturbations with toroidal mode number n  =  3 and n  =  4 are applied to a 15 MA, {{q}95}≈ 3 burning ITER plasma. We use a three-dimensional ideal magnetohydrodynamic model (VMEC) to calculate ITER equilibria with applied RMPs and to determine growth rates of infinite n ballooning modes (COBRA). The {{n}\\text{rmp}}=4 case shows little change in ballooning mode growth rate as the RMP is

  15. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2016-07-12

    ITER (in Latin “the way”) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen – deuterium and tritium – fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project – China, the European Union, India, Japan, Korea, Russia and the United States – represent more than half the world’s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  16. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  17. Iterative software kernels

    SciTech Connect

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  18. ITER global stability limits

    SciTech Connect

    Hogan, J.T.; Uckan, N.A.

    1990-01-01

    The MHD stability limits to the ITER operational space have been examined with the PEST ideal stability code. Constraints on ITER operation have been examined for the nominal operational scenarios and for possible design variants. Rather than rely on evaluation of a relatively small number of sample cases, the approach has been to construct an approximation to the overall operational space, and to compare this with the observed limits in high-{beta} tokamaks. An extensive database with {approximately}20,000 stability results has been compiled for use by the ITER design team. Results from these studies show that the design values of the Troyon factor (g {approximately} 2.5 for ignition studies, and g {approximately} 3 for the technology phase) which are based on present experiments, are also expected to be attainable for ITER conditions, for which the configuration and wall-stabilisation environment differ from those in present experiments. Strongly peaked pressure profiles lead to degraded high-{beta} performance. Values of g {approximately} 4 are found for higher safety factor (q {sub {Psi}} {le} 4) than that of the present design (q{sub {Psi}} {approximately} 3). Profiles with q(0) < 1 are shown to give g {approximately} 2.5, if the current density profile provides optimum shear. The overall operational spaces are presented for g-q{sub {Psi}}, q{sub {Psi}}-1{sub i}, q-{alpha}{sub p} and l{sub i}-q{sub {psi}}.

  19. PREFACE: Progress in the ITER Physics Basis

    NASA Astrophysics Data System (ADS)

    Ikeda, K.

    2007-06-01

    I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were

  20. Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing

    SciTech Connect

    Park, Jin Woo; Na, Y. S.; Hong, S. H.; Ahn, J.W.; Kim, D. K.; Han, Hyunsun; Shim, Seong Bo; Lee, Hae June

    2012-01-01

    Two-dimensional (2D), scrape-off layer (SOL)-divertor transport simulations are performed using the integrated plasma-neutral-impurity code KTRAN developed at Seoul National University. Firstly, the code is applied to reproduce a National Spherical Torus eXperiment (NSTX) discharge by using the prescribed transport coefficients and the boundary conditions obtained from the experiment. The plasma density, the heat flux on the divertor plate, and the D (alpha) emission rate profiles from the numerical simulation are found to follow experimental trends qualitatively. Secondly, predictive simulations are carried out for the baseline operation mode in Korea Superconducting Tokamak Advanced Research (KSTAR) to predict the heat flux on the divertor target plates. The stationary peak heat flux in the KSTAR baseline operation mode is expected to be 6.5 MW/m(2) in the case of an orthogonal divertor. To study the mitigation of the heat flux, we investigated the puffing effects of deuterium and argon gases. The puffing position is assumed to be in front of the strike point at the outer lower divertor plate. In the simulations, mitigation of the peak heat flux at the divertor target plates is found to occur when the gas puffing rate exceeds certain values, similar to 1.0 x 10(20) /s and similar to 5.0 x 10(18) /s for deuterium and argon, respectively. Multi-charged impurity transport is also investigated for both NSTX and KSTAR SOL and divertor regions.

  1. Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Na, Yong-Su; Hong, Sang Hee; Ahn, Joon-Wook; Kim, Deok-Kyu; Han, Hyunsun; Shim, Seong Bo; Lee, Hae June

    2012-08-01

    Two-dimensional (2D), scrape-off layer (SOL)-divertor transport simulations are performed using the integrated plasma-neutral-impurity code KTRAN developed at Seoul National University. Firstly, the code is applied to reproduce a National Spherical Torus eXperiment (NSTX) discharge by using the prescribed transport coefficients and the boundary conditions obtained from the experiment. The plasma density, the heat flux on the divertor plate, and the D α emission rate profiles from the numerical simulation are found to follow experimental trends qualitatively. Secondly, predictive simulations are carried out for the baseline operation mode in Korea Superconducting Tokamak Advanced Research (KSTAR) to predict the heat flux on the divertor target plates. The stationary peak heat flux in the KSTAR baseline operation mode is expected to be 6.5 MW/m2 in the case of an orthogonal divertor. To study the mitigation of the heat flux, we investigated the puffing effects of deuterium and argon gases. The puffing position is assumed to be in front of the strike point at the outer lower divertor plate. In the simulations, mitigation of the peak heat flux at the divertor target plates is found to occur when the gas puffing rate exceeds certain values, ˜1.0 × 1020 /s and ˜5.0 × 1018 /s for deuterium and argon, respectively. Multi-charged impurity transport is also investigated for both NSTX and KSTAR SOL and divertor regions.

  2. Probe measurements of the PDX divertor plasma in ohmic and neutral beam heated discharges

    NASA Astrophysics Data System (ADS)

    Owens, D. K.; Kaye, S. M.; Fonck, R. J.; Schmidt, G. L.

    1984-05-01

    A graphite-shielded probe was recently installed in the divertor region of PDX to continuously monitor local electron temperature, electron density (from the ion saturation current), and plasma floating potential throughout divertor discharges. In ohmically heated deuterium plasmas, the electron temperature near the separatrix was 6 to 12 eV; these values confirm the low Te inferred from the density dependence of Balmer line emission from the divertor plasmas. During neutral beam heating, PDX divertor discharges were characterized by a sharp transition at which time the main chamber plasma density increased rapidly, the divertor H α emission dropped, and the global energy confinement increased abruptly. At later times, edge relaxation oscillations, characterized by spikes in the H α emission, occurred and were accompanied by a clamp in the density rise and lower confinement time. Limited scans of the temperature and density measured by the divertor probe indicated that these parameters changed with discharge conditions primarily near the separatrix. With the onset of neutral beam injection the temperature and density rose by a factor of 1.5 and 2-4 respectively. Transient drops in Te to values as low as 2 eV and concomitant rises in ne were sometimes observed near the time of the transition into the high confinement mode. Later in the discharge, the values returned to their pre-H-mode level. TV camera observations of the divertor probe revealed a "shadow" along the field lines indicating a well-defined flow in the vicinity of the separatrix.

  3. L-H power threshold studies with tungsten/carbon divertor on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Chen, L.; Xu, G. S.; Gao, W.; Zhang, L.; Nielsen, A. H.; Luo, Z. P.; Si, H.; Wang, Y. M.; Qu, H.; Sun, Z.; Duan, Y. M.; Liu, H. Q.; Wang, S. X.; Li, M. H.; Zhang, X. J.; Wu, B.; Chen, R.; Wang, L.; Wang, H. Q.; Ding, S. Y.; Yan, N.; Liu, S. C.; Shao, L. M.; Zhang, W.; Hu, G. H.; Li, J.; Li, Y. L.; Wu, X. Q.; Zhao, N.; Jia, M. N.

    2016-05-01

    The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency heating and molybdenum first wall with lithium coating has been experimentally investigated on the EAST tokamak for two sets of divertor geometries and materials: tungsten/carbon divertor and full carbon divertor. For both sets of divertors, the power threshold was found to decrease with gradual accumulation of the lithium wall coating, suggesting the important role played by the low Z impurities and/or the edge neutral density on the L-H power threshold. When operating in the upper single null configuration, with the ion grad-B drift direction away from the primary X-point, a lower normalized power threshold is observed in EAST with the tungsten/carbon divertor, compared to the carbon divertor after intensive lithium wall coating. A newly installed cryopump increasing the pumping efficiency also plays an important part in the observed lower threshold. In addition, the H-mode in the Quasi-Snowflake divertor configuration has been obtained on EAST, exhibiting higher L-H power threshold compared to the lower single null configuration with similar IP/BT pairs.

  4. An iterative algorithm for a system of generalized implicit variational inclusions.

    PubMed

    Ahmad, Iqbal; Mishra, Vishnu Narayan; Ahmad, Rais; Rahaman, Mijanur

    2016-01-01

    In this paper, we introduce a system of generalized implicit variational inclusions which consists of three variational inclusions. We design an iterative algorithm with error terms based on relaxed resolvent operator due to Ahmad et al. (Stat Optim Inf Comput 4:183-193, 2016) for approximating the solution of our system. The convergence of the iterative sequences generated by the iterative algorithm is also discussed. An example is given which satisfy all the conditions of our main result. PMID:27547658

  5. Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Jardin, A.; Horacek, J.; Borodkina, I.; Autricque, A.; Arnoux, G.; Boom, J.; Brezinsek, S.; Coenen, J. W.; De La Luna, E.; Devaux, S.; Eich, T.; Harting, D.; Kirschner, A.; Lipschultz, B.; Matthews, G. F.; Meigs, A.; Moulton, D.; O'Mullane, M.; Stamp, M.; contributors, JET

    2016-02-01

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode and will be achieved with a tungsten (W) divertor. W atoms sputtered from divertor targets during mitigated ELMs are expected to be the dominant source in ITER. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of the target W source due to sputtering during ELMs and inter-ELMs is important and can be helped by experimental measurements with improved precision. It has been established that the ELMy target ion impact energy has a simple linear dependence with the pedestal electron temperature measured by Electron Cyclotron Emission (ECE). It has also been shown that Langmuir Probes (LP) ion flux measurements are reliable during ELMs due to the surprisingly low electron temperature. Therefore, in this paper, LP and ECE measurements in JET-ITER-Like-Wall (ILW) unseeded Type I ELMy H-mode experiments have been used to estimate the W sputtering flux from divertor targets in ELM and inter-ELM conditions. Comparison with similar estimates using W I spectroscopy measurements shows a reasonable agreement for the ELM and inter-ELM W source. The main advantage of the method involving LP measurements is the very high time resolution of the diagnostic (˜10 μs) allowing very precise description of the W sputtering source during ELMs.

  6. Enhancement of First Wall Damage in Iter Type Tokamak due to Lenr Effects

    NASA Astrophysics Data System (ADS)

    Lipson, Andrei G.; Miley, George H.; Momota, Hiromu

    In recent experiments with pulsed periodic high current (J ~ 300-500 mA/cm2) D2-glow discharge at deuteron energies as low as 0.8-2.45 keV a large DD-reaction yield has been obtained. Thick target yield measurement show unusually high DD-reaction enhancement (at Ed = 1 keV the yield is about nine orders of magnitude larger than that deduced from standard Bosch and Halle extrapolation of DD-reaction cross-section to lower energies) The results obtained in these LENR experiments with glow discharge suggest nonnegligible edge plasma effects in the ITER TOKAMAK that were previously ignored. In the case of the ITER DT plasma core, we here estimate the DT reaction yield at the metal edge due to plasma ion bombardment of the first wall and/or divertor materials.

  7. Projection of ITER performance using the multi-machine L- and H- mode databases

    SciTech Connect

    Kaye, S.M.

    1994-11-01

    An overview of recent analyses of H- and L-mode confinement and L- to H-mode threshold data is presented. The standard subset of the H-mode database, consisting of about 1600 time slices from six tokamaks, leads to power law scalings for ELMy and ELM-free discharges, both of which predict a confinement time for ITER of approximately 5.5 sec. The analysis indicates a strong dependence of confinement time scaling and prediction on the neutral penetration from the divertor into the main chamber. Consideration of dimensionless variables suggest scaling expressions for the H-mode threshold which predict threshold powers for ITER of between 100 and 200 MW. Finally, the L-mode database has been updated to contain over 1500 time-slices from eleven tokamaks. A preliminary empirical scaling based on the total confinement time has been developed.

  8. High power plasma interaction with tungsten grades in ITER relevant conditions

    NASA Astrophysics Data System (ADS)

    Garkusha, I. E.; Makhlaj, V. A.; Aksenov, N. N.; Byrka, O. V.; Malykhin, S. V.; Pugachov, A. T.; Bazylev, B.; Landman, I.; Pinsuk, G.; Linke, J.; Wirtz, M.; Sadowski, M. J.; Skladnik-Sadowska, E.

    2015-03-01

    Experimental simulations of ITER-like transient events with relevant surface heat load parameters (energy density up to 1.1 MJ/m2 and the pulse duration of 0.25 ms) as well as particle loads (varied in wide range from 1023 to 1027 ion/m2 s) were carried out with a quasistationary plasma accelerator QSPA Kh-50. Particular attention was paid to elaboration of damage of tungsten as a main candidate material for ITER divertor surfaces and also as prospective material for DEMO design. Erosion features, cracks evolution and changes in their thickness with increasing exposition dose are studied for different W grades, including deformed material with elongated grains, as well as WTa5 and sintered tungsten.

  9. Performance of JT-60SA divertor Thomson scattering diagnostics

    SciTech Connect

    Kajita, Shin; Hatae, Takaki; Tojo, Hiroshi; Hamano, Takashi; Shimizu, Katsuhiro; Kawashima, Hisato; Enokuchi, Akito

    2015-08-15

    For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, the influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views.

  10. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  11. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  12. Flute instability and the associated radial transport in the tandem mirror with a divertor mirror cell

    SciTech Connect

    Katanuma, I.; Yagi, K.; Haraguchi, Y.; Ichioka, N.; Masaki, S.; Ichimura, M.; Imai, T.

    2010-11-15

    The flute instability and the associated radial transport are investigated in the tandem mirror with a divertor mirror cell (the GAMMA10 A-divertor) with help of computer simulation, where GAMMA10 is introduced [Inutake et al., Phys. Rev. Lett. 55, 939 (1985)]. The basic equations used in the simulation were derived on the assumption of an axisymmetric magnetic field. So the high plasma pressure in a nonaxisymmetric minimum-B anchor mirror cell, which is important for the flute mode stability, is taken into account by redefining the specific volume of a magnetic field line. It is found that the flute modes are stabilized by the minimum-B magnetic field even with a divertor mirror although its stabilizing effects are weaker than that without the divertor mirror. The flute instability enhances the radial transport by intermittently repeating the growing up and down of the Fourier amplitude of the flute instability in time.

  13. Development of microwave interferometer system for divertor simulation experiments in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Kohagura, J.; Wang, X.; Kanno, S.; Yoshikawa, M.; Kuwahara, D.; Nagayama, Y.; Shima, Y.; Chikatsu, M.; Nojiri, K.; Sakamoto, M.; Imai, T.; Nakashima, Y.; Mase, A.

    2015-12-01

    Microwave interferometer has newly been installed on GAMMA 10/PDX for divertor simulation study. A divertor simulation experimental module (D-module) is used to investigate the physics of divertor in the end-cell of GAMMA 10/PDX where an open magnetic field configuration is formed. D-module has a rectangular chamber with an inlet aperture. Two tungsten target plates are mounted in V-shape inside the chamber. In order to develop understandings of divertor simulation experiments the microwave interferometer using heterodyne scheme and a 1D horn-antenna mixer array (HMA) is applied to obtain electron density and density distribution inside the V-shaped target plates. Line-averaged electron density distributions inside D-module are first observed in H2 gas injection experiments.

  14. Intrinsic instabilities in X-point geometry: A tool to understand and predict the Scrape Off Layer transport in standard and advanced divertors

    NASA Astrophysics Data System (ADS)

    Militello, F.; Liu, Y.

    2015-08-01

    Intrinsic Scrape Off Layer (SOL) instabilities are studied using flute approximation and incorporating the appropriate sheath boundary conditions at the target. The linear growth rate and the structure of the modes are obtained. The associated diffusion is estimated using a γ / k⊥2 approach for the fastest growing modes. The model used includes curvature and sheath drives, finite Larmor radius effects and partial line tying at the target. The magnetic geometry is obtained using current carrying wires, representing the plasma current and the divertor coils, and naturally generates X-point geometry and magnetic shear effects. The calculation is performed for ITER relevant parameters and scans in SOL width and distance from the separatrix are presented. In addition to a standard Lower Single Null, Super-X and Snowflake configurations are examined in order to assess the importance of the geometry on the stability of the boundary plasma.

  15. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  16. Overview of Stellarator Divertor Studies: Final Report of LDRD Project 01-ERD-069

    SciTech Connect

    Fenstermacher, M E; Rognlien, T D; Koniges, A; Unmansky, M; Hill, D N

    2003-01-21

    A summary is given of the work carried out under the LDRD project 01-ERD-069 entitled Stellarator Divertor Studies. This project has contributed to the development of a three-dimensional edge-plasma modeling and divertor diagnostic design capabilities at LLNL. Results are demonstrated by sample calculations and diagnostic possibilities for the edge plasma of the proposed U.S. National Compact Stellarator Experiment device. Details of the work are contained in accompanying LLNL reports that have been accepted for publication.

  17. Design and analysis of the DII-D radiative divertor water-cooled structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-10-01

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electromagnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 {degrees}C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed.

  18. Spectroscopic imaging system for quantitative analysis of the divertor plasma of the Tokamak de Varennes

    SciTech Connect

    Meo, F.; Stansfield, B.L.; Chartre, M.; de Villers, P.; Marchand, R.; Ratel, G.

    1997-09-01

    A toroidally viewing spectroscopic imaging system has been developed for the Tokamak de Varennes providing measurements of the poloidal distribution of the absolute radiated power of deuterium and impurity species in the upper divertor region. Real time digitization is achieved using a low cost PC based digital imaging system. This system is used to obtain measurements of the divertor strike point as well as the shape of the flux surfaces in the divertor. The diagnostic{close_quote}s excellent spatial resolution and toroidal view provides an opportunity to quantitatively compare the measured two dimensional (2D) radiated power distribution to that calculated from 2D Monte Carlo transport codes. These 2D images provide unique and valuable information on the physics of local plasma interactions with divertor components and particle transport in a closed divertor. Additionally, by using two cameras simultaneously, the line ratio technique can be applied to the images to estimate plasma parameters in the divertor. {copyright} {ital 1997 American Institute of Physics. }

  19. Critical need for MFE: the Alcator DX advanced divertor test facility

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  20. A Fast Visible Camera Divertor-Imaging Diagnostic on DIII-D

    SciTech Connect

    Roquemore, A; Maingi, R; Lasnier, C; Nishino, N; Evans, T; Fenstermacher, M; Nagy, A

    2007-06-19

    In recent campaigns, the Photron Ultima SE fast framing camera has proven to be a powerful diagnostic when applied to imaging divertor phenomena on the National Spherical Torus Experiment (NSTX). Active areas of NSTX divertor research addressed with the fast camera include identification of types of EDGE Localized Modes (ELMs)[1], dust migration, impurity behavior and a number of phenomena related to turbulence. To compare such edge and divertor phenomena in low and high aspect ratio plasmas, a multi-institutional collaboration was developed for fast visible imaging on NSTX and DIII-D. More specifically, the collaboration was proposed to compare the NSTX small type V ELM regime [2] and the residual ELMs observed during Type I ELM suppression with external magnetic perturbations on DIII-D[3]. As part of the collaboration effort, the Photron camera was installed recently on DIII-D with a tangential view similar to the view implemented on NSTX, enabling a direct comparison between the two machines. The rapid implementation was facilitated by utilization of the existing optics that coupled the visible spectral output from the divertor vacuum ultraviolet UVTV system, which has a view similar to the view developed for the divertor tangential TV camera [4]. A remote controlled filter wheel was implemented, as was the radiation shield required for the DIII-D installation. The installation and initial operation of the camera are described in this paper, and the first images from the DIII-D divertor are presented.

  1. Characterization of energetic deuterium striking the divertor of the DIII-D tokamak

    SciTech Connect

    Bastasz, R.; Wampler, W.R.; Whaley, J.A.; Whyte, D.G.; Parks, P.B.; Brooks, N.H.; West, W.P.; Wong, C.P.C.

    1996-06-01

    The flux and energy of particles striking the divertor during steady state operation and during disruptions are parameters of central interest in the design of power producing tokamaks. The energetic particle flux to the divertor is a critical factor, as it has a large effect on material behavior and the lifetime of plasma-facing components. Here, measurements of the deuterium particle flux and energy to the divertor of the DIII-D tokamak during a series of plasmas that terminated in disruptions have been made using a silicon collector probe installed on the divertor materials exposure system (DiMES). During the steady state portion of each discharge, the probe was located under the separatrix, but immediately before disrupting the plasma, by injecting either Ar or D{sub 2} gas, the strike point of the outer divertor leg was positioned over the probe. Comparison of the amount of retained D in the probe for the two types of disruptions indicates that much of the trapped D could have resulted from exposure in the private flux zone prior to the disruption. Measurements of the depth distribution of the trapped D in the Si imply that the incident ion energy was approximately 100 eV at normal incidence and decreased slightly at oblique angles. The measurements give an upper bound to the energy of deuterons striking the divertor floor in the vicinity of the strikepoint during disruptions.

  2. Divertor Target Heat Load Reduction by Electrical Biasing, and Application to COMPASS-D

    SciTech Connect

    Fielding, S J; Cohen, R H; Helander, P; Ryutov, D D

    2001-03-07

    A toroidally-asymmetric potential structure in the scrape-off layer (SOL) plasma may be formed by toroidally distributed electrical biasing of the divertor target tiles. The resulting ExB convective motions should increase the plasma radial transport in the SOL and thereby reduce the heat load at the divertor [1]. In this paper we develop theoretical modeling and describe the implementation of this concept to the COMPASS-D divertor. We show that strong magnetic shear near the X-point should cause significant squeezing of the convective cells preventing convection from penetrating above the X-point. This should result in reduced heat load at the divertor target without increasing the radial transport in the portion of the SOL in direct contact with the core plasma, potentially avoiding any confinement degradation. implementation of divertor biasing is in hand on COMPASS-D involving insulation of, and modifications to, the present divertor tiles. Calculations based on measured edge parameters suggest that modest currents {approx} 8 A/tile are required, at up to 150V, to drive the convection. A technical test is preceeding full bias experiments.

  3. Summary report for ITER Task-T19: MHD pressure drop and heat transfer study for liquid metal systems

    SciTech Connect

    Reed, C.B.; Hua, T.Q.; Natesan, K.; Kirillov, I.R.; Vitkovski, I.V.; Anisimov, A.M.

    1995-03-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To begin experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, a new test section was prepared. Aluminum oxide was chosen as the first candidate insulating material because it may be used in combination with NaK in the ITER vacuum vessel and/or the divertor. Details on the methods used to produce the aluminum oxide layer as well as the microstructures of the coating and the aluminide sublayer are presented and discussed. The overall MHD pressure drop, local MHD pressure gradient, local transverse MHD pressure difference, and surface voltage distributions in both the circumferential and the axial directions are reported and discussed. The positive results obtained here for high-temperature NaK have two beneficial implications for ITER. First, since NaK may be used in the vacuum vessel and/or the divertor, these results support the design approach of using electrically insulating coatings to substantially reduce MHD pressure drop. Secondly, while Al{sub 2}O{sub 3}/SS is not the same coating/base material combination which would be used in the advanced blanket, this work nonetheless shows that it is possible to produce a viable insulating coating which is stable in contact with a high temperature alkali metal coolant.

  4. Adaptive iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Sedlmair, M.; Stierstorfer, K.; Flohr, T.

    2011-03-01

    It is well known that, in CT reconstruction, Maximum A Posteriori (MAP) reconstruction based on a Poisson noise model can be well approximated by Penalized Weighted Least Square (PWLS) minimization based on a data dependent Gaussian noise model. We study minimization of the PWLS objective function using the Gradient Descent (GD) method, and show that if an exact inverse of the forward projector exists, the PWLS GD update equation can be translated into an update equation which entirely operates in the image domain. In case of non-linear regularization and arbitrary noise model this means that a non-linear image filter must exist which solves the optimization problem. In the general case of non-linear regularization and arbitrary noise model, the analytical computation is not trivial and might lead to image filters which are computationally very expensive. We introduce a new iteration scheme in image space, based on a regularization filter with an anisotropic noise model. Basically, this approximates the statistical data weighting and regularization in PWLS reconstruction. If needed, e.g. for compensation of the non-exactness of backprojector, the image-based regularization loop can be preceded by a raw data based loop without regularization and statistical data weighting. We call this combined iterative reconstruction scheme Adaptive Iterative Reconstruction (AIR). It will be shown that in terms of low-contrast visibility, sharpness-to-noise and contrast-to-noise ratio, PWLS and AIR reconstruction are similar to a high degree of accuracy. In clinical images the noise texture of AIR is also superior to the more artificial texture of PWLS.

  5. Quantum iterated function systems.

    PubMed

    Łoziński, Artur; Zyczkowski, Karol; Słomczyński, Wojciech

    2003-10-01

    An iterated function system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum IFS (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of completely positive maps acting in the space of density operators. This formalism is designed to describe certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.

  6. Iterative Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  7. MLP iterative construction algorithm

    NASA Astrophysics Data System (ADS)

    Rathbun, Thomas F.; Rogers, Steven K.; DeSimio, Martin P.; Oxley, Mark E.

    1997-04-01

    The MLP Iterative Construction Algorithm (MICA) designs a Multi-Layer Perceptron (MLP) neural network as it trains. MICA adds Hidden Layer Nodes one at a time, separating classes on a pair-wise basis, until the data is projected into a linear separable space by class. Then MICA trains the Output Layer Nodes, which results in an MLP that achieves 100% accuracy on the training data. MICA, like Backprop, produces an MLP that is a minimum mean squared error approximation of the Bayes optimal discriminant function. Moreover, MICA's training technique yields novel feature selection technique and hidden node pruning technique

  8. In-out asymmetry of divertor particle flux in H-mode with edge localized modes on EAST

    NASA Astrophysics Data System (ADS)

    Liu, J. B.; Guo, H. Y.; Wang, L.; Xu, G. S.; Xia, T. Y.; Liu, S. C.; Xu, X. Q.; Li, Jie; Chen, L.; Yan, N.; Wang, H. Q.; Xu, J. C.; Feng, W.; Shao, L. M.; Deng, G. Z.; Liu, H.; EAST Probe Team

    2016-06-01

    The in-out divertor asymmetry in the Experimental Advanced Superconducting Tokamak (EAST), as manifested by particle fluxes measured by the divertor triple Langmuir probe arrays, is significantly enhanced during type-I edge localized modes (ELMs), favoring the inner divertor in lower single null (LSN) for the normal toroidal field (B t) direction, i.e. with the ion B  ×  \

  9. Erosion/re-deposition modeling in an ITER divertor-like high-density, low-temperature plasma beam

    NASA Astrophysics Data System (ADS)

    van Swaaij, G. A.; Kirschner, A.; Borodin, D.; Goedheer, W. J.; Bystrov, K.; De Temmerman, G.

    2014-09-01

    Transport of hydrocarbon impurities in a high-density (>1020 m-3), low-temperature (<2 eV) plasma beam was studied with the ERO code. The high ion density and low temperature cause strong Coulomb collisionality between plasma ions and impurity ions. The collisionality is so strong that ions typically do not complete their Larmor orbits. The high collisionality causes impurity entrainment: impurity ions quickly acquire a velocity close to the plasma flow velocity. This causes a relatively high surface impact energy: the calculated mean impact energy of CHx was 8.1 eV in a plasma with Te = 0.7 eV. Simulation results were compared to an a-C : H erosion experiment in the linear plasma generator Pilot-PSI. The large uncertainties in literature values for the sticking probability of hydrocarbon radicals are shown to cause a serious uncertainty in the calculated re-deposition pattern. In contrast, the radial electric field component perpendicular to the axial magnetic field lines did not have a major effect on the redeposition profile.

  10. ECRH System For ITER

    SciTech Connect

    Darbos, C.; Henderson, M.; Gandini, F.; Albajar, F.; Bomcelli, T.; Heidinger, R.; Saibene, G.; Chavan, R.; Goodman, T.; Hogge, J. P.; Sauter, O.; Denisov, G.; Farina, D.; Kajiwara, K.; Kasugai, A.; Kobayashi, N.; Oda, Y.; Ramponi, G.

    2009-11-26

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H and CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H and CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several

  11. Lithium-Metal Infused Trenches: Progress toward a Divertor Solution

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Fiflis, P.; Christenson, M.; Szott, M.; Xu, W.; Jung, S.; Morgan, T. W.; Kalathiparambil, K.

    2014-10-01

    The application of liquid metal, especially liquid lithium, as a plasma facing component (PFC) has the capacity to offer a strong alternative to solid PFCs by reducing damage concerns and enhancing plasma performance. The Liquid-Metal Infused Trenches (LiMIT) concept is a liquid metal divertor alternative which employs thermoelectric current from either plasma or external heating in tandem with the toroidal field to self-propel liquid lithium through a series of trenches. LiMIT has been tested in several devices, namely HT-7, the UIUC SLiDE and TELS facilities and Magnum PSI at heat fluxes of up to 3 MW/m-2. Results of these experiments, including velocity and temperature measurements, power handling considerations, and preliminary vapor shielding results will be discussed, focusing on the 117 shots performed at Magnum scanning magnetic fields and heat fluxes up to ~ 0.3 T and 3 MW/m-2. Concerns over tritium retention and MHD droplet ejection will additionally be addressed. LiMIT has also been proposed to function as a limiter on the EAST moveable limiter arm and tests have been performed with a prototype module inclined at various angles.

  12. Solid-Liquid Lithium Divertor Experiment: SLiDE

    NASA Astrophysics Data System (ADS)

    Jaworski, Michael; Ruzic, David

    2006-10-01

    Liquid lithium has been proposed as a material for the first wall and divertor/limiter of a fusion device. One objection raised against the use of liquid lithium is the high vapor pressure at modest temperature increases. Recent experiments on the CDX-U device show however, that lithium absorbs a surface heat flux of greater than 40 MW/m^2 with negligible evaporation. Observation of a focused electron beam hitting solid lithium in the CDX-U lithium tray saw melting of a large section of the tray. Macroscopic liquid flows were observed which redistributed the incident power. Surface tension effects caused by temperature gradients have been proposed as a mechanism for this convection. These flows were insensitive to MHD effects in fields up to 600G [1]. This paper presents a design of an experiment which will diagnose the flows induced by an intense heat flux onto a lithium pool and measure the maximum heat flux lithium can absorb in an incident magnetic field. A number of diagnostics are considered and evaluated with the goal of being minimally invasive to the induced flows. These results are the first step in the creation of an experimental facility to study the heat transfer capabilities of free-surface liquid lithium at the University of Illinois. [1] Majeski, et al., Final results from the CDX-U lithium program, Presentation at APS-DPP05, Denver, Colorado. 2005.

  13. Calculations of neutral transport in the PDX divertor

    NASA Astrophysics Data System (ADS)

    Heifetz, D. B.; Petravic, M.; Post, D. E.; Lieberson-Heifetz, S.

    1984-05-01

    Neutral particle transport during a typical beam-heated PDX diverted discharge was modeled using the multidimensional code DEGAS. Plasma parameters were taken from probe measurements, and were assumed not to change during the calculations. A realistic plasma/divertor geometry was included in the model, along with a simple particle recycling scheme. Calculated results were compared with the experimentally measured neutral pressures. Without any pumping in the device, the computed pressures were found to be higher than those measured by a factor of approximately two. Introducing a simple pumping model for wall absorption, wherein 10% of the absorbed neutral particles were assumed not to desorb, reduced the calculated pressures to about the measured values. However the pressure was observed to monotonically increase during the discharge, whereas the model results peaked in mid-discharge. One possible explanation of the disagreement is that the saturation of the device walls increases during the discharge, so that the fraction of particles pumped decreases with time. Reduction of the permanently absorbed fraction from 10 to 4% during the course of the discharge caused the calculated pressure to monotonically increase.

  14. Response of NSTX Liquid Lithium divertor to High Heat Loads

    SciTech Connect

    Abrams, Tyler; Kallman, J; Kaitaa, R; Foley, E L; Grayd, T K; Kugel, H; Levinton, F; McLean, A G; Skinner, C H

    2012-07-18

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ~1.5 MW/m2 for 1-3 seconds. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the "bare" sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface. __________________________________________________

  15. Iterated crowdsourcing dilemma game

    NASA Astrophysics Data System (ADS)

    Oishi, Koji; Cebrian, Manuel; Abeliuk, Andres; Masuda, Naoki

    2014-02-01

    The Internet has enabled the emergence of collective problem solving, also known as crowdsourcing, as a viable option for solving complex tasks. However, the openness of crowdsourcing presents a challenge because solutions obtained by it can be sabotaged, stolen, and manipulated at a low cost for the attacker. We extend a previously proposed crowdsourcing dilemma game to an iterated game to address this question. We enumerate pure evolutionarily stable strategies within the class of so-called reactive strategies, i.e., those depending on the last action of the opponent. Among the 4096 possible reactive strategies, we find 16 strategies each of which is stable in some parameter regions. Repeated encounters of the players can improve social welfare when the damage inflicted by an attack and the cost of attack are both small. Under the current framework, repeated interactions do not really ameliorate the crowdsourcing dilemma in a majority of the parameter space.

  16. PREFACE: Light element atom, molecule and radical behaviour in the divertor and edge plasma regions

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Chung, Hyun-Kung

    2015-01-01

    This volume of Journal of Physics: Conference Series contains contributions by participants in an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on "Light element atom, molecule and radical behaviour in the divertor and edge plasma regions" (in magnetic fusion devices). Light elements are the dominant impurity species in fusion experiments and in the near-wall plasma they occur as atoms or ions and also as hydrides and other molecules and molecular ions. Hydrogen (H or D, and T in a reactor) is the dominant species in fusion experiments, but all light elements He - O and Ne are of interest for various reasons. Helium is a product of the D+T fusion reaction and is introduced in experiments for transport studies. Lithium is used for wall coating and also as a beam diagnostic material. Beryllium is foreseen as a wall material for the ITER experiment and is used on the Joint European Torus (JET) experiment. Boron may be used as a coating material for the vessel walls. Carbon (graphite or carbon-fiber composite) is often used as the target material for wall regions subject to high heat load. Nitrogen may be used as a buffer gas for edge plasma cooling. Oxygen is a common impurity in experiments due to residual water vapor. Finally, neon is another choice as a buffer gas. Data for collisional and radiative processes involving these species are important for plasma modelling and for diagnostics. The participants in the CRP met 3 times over the years 2009-2013 for a research coordination meeting. Reports and presentation materials for these meetings are available through the web page on coordinated research projects of the (IAEA) Atomic and Molecular Data Unit [1]. Some of the numerical data generated in the course of the CRP is available through the ALADDIN database [2]. The IAEA takes the opportunity to thank the participants in the CRP for their dedicated efforts in the course of the CRP and for their contributions to this volume. The IAEA

  17. Geometrical Effects in Plasma Stability and Dynamics of Coherent Structures in the Divertor

    SciTech Connect

    Ryutov, D D; Cohen, R H

    2007-05-16

    Plasma dynamics in the divertor region is strongly affected by a variety of phenomena associated with the magnetic field geometry and the shape of the divertor plates. One of the most universal effects is the squeezing of a normal cross-section of a thin magnetic flux-tube on its way from the divertor plate to the main SOL. It leads to decoupling of the most unstable perturbations in the divertor legs from those in the main SOL. For perturbations on either side of the X-point, this effect can be cast as a boundary condition at some 'control surface' situated near the X-point. We discuss several boundary conditions proposed thus far and assess the influence of the magnetic field geometry on them. Another set of geometrical effects is related to the transformation of a flux-tube that occurs when it is displaced in such a way that its central magnetic field line coincides with some other field line, and the magnetic field is not perturbed. These flute-like displacements are of a particular interest for the low-beta edge plasmas. It turns out that this transformation may also lead to a considerable deformation of a flux-tube cross-section; in addition, the distance between plasma particles occupying the flux-tube may change significantly even if there is no parallel plasma motion. We present expressions describing aforementioned transformations for the general tokamak geometry and simplify them for the divertor region (using the proximity of the X-point). We also discuss the effects associated with the shape of the plasma-limiting surfaces, both those designed to intercept the plasma (like divertor plates and limiters) and those that can be hit in some 'abnormal' events, e.g., in the course of a radial motion of an isolated plasma filament. The orientation of the limiting surface with respect to the magnetic field affects the plasma dynamics via the sheath boundary conditions. One can enhance or suppress plasma instabilities in the divertor legs by tilting the divertor

  18. Reciprocating and fixed probe measurements of density and temperature in the DIII-D divertor

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Moyer, R. A.; Cuthbertson, J. W.; Buchenauer, D. A.; Carlstrom, T. N.; Hill, D. N.; Ulrickson, M.

    1997-02-01

    This paper describes divertor density and temperature measurements using both a new reciprocating Langmuir probe (XPT-RCP) which plunges vertically above the divertor floor up to the X-point height and swept, single, Langmuir probes fixed horizontally across the divertor floor. These types of measurements are important for testing models of the SOL and divertor which then are used to determine engineering design criteria for plasma facing components in reactor size tokamaks. The 6 mm diameter fixed single probes (19 domed and 2 flat at radially equivalent locations) are incorporated into the lower divertor floor at 19 radial locations and swept at 250 Hz. These probes are critical for determining plasma detachment from the floor during operation with high density, highly radiating divertors. By sweeping the divertor strike point across the fixed probes, different regions of the target plate incident flux profile can be sampled and a high resolution spatial profile can be obtained from each probe tip as the strike point moves past. The X-point reciprocating probe (XPT-RCP) provides ne and Te profiles with high spatial (2 mm) and temporal (0.5 ms) resolution from the target plate to the X-point along a single vertical chord at the same radial location as a fixed probe tip at a different azimuthal location. The probe ne and Te are compared to the divertor Thomson scattering (DTS) ne and Te (eight vertical points at 20 Hz, RThomson = RX- point- rcp). Recent observations have also shown divertor densities from 3 × 10 19to 4 × 10 20m-3 near the target plate with the highest densities observed with D 2 gas puffing. Electron temperature is typically of the order of 15-25 eV at the target rising to about 70 eV near the X-point. Lower temperature, higher density plasmas are observed along the inner leg. Generally good agreement among the XPT-RCP, the fixed floor probes, and the DTS is observed. Differences between these diagnostic measurements will also be discussed with

  19. Intermittent Divertor Filaments in the National Spherical Torus Experiment and Their Relation to Midplane Blobs

    SciTech Connect

    R.J. Maqueda, D.P. Stotler and the NSTX Team.

    2010-05-19

    While intermittent filamentary structures, also known as blobs, are routinely seen in the low-field-side scrape-off layer of the National Spherical Torus Experiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557), fine structured filaments are also seen on the lower divertor target plates of NSTX. These filaments, not associated with edge localized modes, correspond to the interaction of the turbulent blobs seen near the midplane with the divertor plasma facing components. The fluctuation level of the neutral lithium light observed at the divertor, and the skewness and kurtosis of its probability distribution function, is similar to that of midplane blobs seen in Dα; e.g. increasing with increasing radii outside the outer strike point (OSP) (separatrix). In addition, their toroidal and radial movement agrees with the typical movement of midplane blobs. Furthermore, with the appropriate magnetic topology, i.e. mapping between the portion of the target plates being observed into the field of view of the midplane gas puff imaging diagnostic, very good correlation is observed between the blobs and the divertor filaments. The correlation between divertor plate filaments and midplane blobs is lost close to the OSP. This latter observation is consistent with the existence of ‘magnetic shear disconnection’ due to the lower X-point, as proposed by Cohen and Ryutov (1997 Nucl. Fusion 37 621).

  20. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  1. Power exhaust in all geometric variations of the snowflake divertor on TCV

    NASA Astrophysics Data System (ADS)

    Vijvers, Wouter; Canal, Gustavo; Duval, Basil; Labit, Benoit; Reimerdes, Holger; Coda, Stefano; Lunt, Tilmann; Morgan, Thomas; de Temmerman, Greg

    2013-10-01

    The snowflake (SF) divertor is recognized as a potential exhaust solution for large-scale, high-performance tokamaks. TCV has advanced to a detailed study of the transport through the SF's scrape-off layer (SOL), null region and divertor legs to determine the optimal geometry and quantify parallel and cross-field transport. Experimental SF plasmas have two closely spaced x-points, leading to two additional strike points (SPs) and a larger region of low poloidal field than in a conventional divertor. The relative x-point positions determine the divertor geometry and hence the exhaust properties. The results show that if parallel transport is dominant, either the HFS or LFS SOL power can be distributed to two SPs, with the power ratio depending on the SOL width, inter-x-point distance (D) and geometrical divertor asymmetry. Cross-field transport allows power to reach SPs in the private flux region. Experiments show significant power reaching such SPs already at large D, particularly during ELMs, enabling a 2-3x reduction in flux to the main SPs. As EMC3-Eirene simulations predict much smaller SP powers, additional transport mechanisms beyond perpendicular diffusion are considered. The SF's beneficial magnetic properties are shown to be enhanced in reactor-size devices.

  2. Scaling and transport analysis of divertor conditions on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Goetz, J.; Kurz, C.; Jablonski, D.; Lipschultz, B.; McCracken, G.; Niemczewski, A.; Boivin, R. L.; Bombarda, F.; Christensen, C.; Fairfax, S.; Fiore, C.; Garnier, D.; Graf, M.; Golovato, S.; Granetz, R.; Greenwald, M.; Horne, S.; Hubbard, A.; Hutchinson, I.; Irby, J.; Kesner, J.; Luke, T.; Marmar, E.; May, M.; O'Shea, P.; Porkolab, M.; Reardon, J.; Rice, J.; Schachter, J.; Snipes, J.; Stek, P.; Takase, Y.; Terry, J.; Tinios, G.; Watterson, R.; Welch, B.; Wolfe, S.

    1995-06-01

    Detailed measurements and transport analysis of divertor conditions in Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are presented for a range of line-averaged densities, 0.7divertor, and detached divertor, which can coexist in the same discharge. Local cross-field pressure gradients are found to scale simply with a local electron temperature. This scaling is consistent with classical electron parallel conduction being balanced by anomalous cross-field transport (χ⊥˜0.2 m2 s-1) proportional to the local pressure gradient. A 60%-80% of divertor power is radiated in attached discharges, approaching 100% in detached discharges. Detachment occurs when the heat flux to the plate is low and the plasma pressure is high (Te˜5 eV). High neutral pressures in the divertor are nearly always present (1-20 mTorr), sufficient to remove parallel momentum via ion-neutral collisions.

  3. Engineering design of cryocondensation pumps for the DIII-D Radiative Divertor Program

    SciTech Connect

    Bozek, A.S.; Baxi, C.B.; Del Bene, J.V.; Laughon, G.J.; Reis, E.E.; Shatoff, H.D.; Smith, J.P.

    1995-10-01

    A new double-null, slotted divertor configuration will be installed for the DIII-D Radiative Divertor Program at General Atomics in late 1996. Four cryocondensation pumps, three new and one existing, will be part of this new divertor. The purpose of the pumps is to provide plasma density control and to limit the impurities entering the plasma core by providing pumping at each divertor strike point. The three new pumps are based on the design of the existing pump, installed in 1992 as part of the Advanced Divertor Program. The new pumps require geometry modifications to the original design. Therefore, extensive modal and dynamic analyses were performed to determine the behavior of these pumps and their helium and nitrogen feed lines during disruption events. Thermal and fluid analyses were also performed to characterize the helium two-phase flow regime in the pumps and their feedlines. A flow testing program was completed to test the change in geometry of the pump feed lines with respect to helium flow stability. The results were compared to the helium thermal and fluid analyses to verify predicted flow regimes and flow stability.

  4. Sputtering and Reflection Data for Mixed Tungsten/Beryllium Layers Under Typical FIRE Divertor Fluxes

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Nieto, M.; Alman, D. A.; Brooks, J. N.

    2001-10-01

    Computer modeling has been done as part of the Fusion Ignition Research Experiment (FIRE) design study. The current focus is on beryllium/tungsten mixed-material erosion. The FIRE design calls for a beryllium first wall and tungsten divertors. Beryllium can be sputtered from the first wall and transported to the divertor, forming a Be/W mixture on the divertor. The beryllium sputtering from the first wall is obtained from fluxes calculated by the DEGAS2 neutral transport code. Subsequent transport to the divertor is calculated by the REDEP code. VFTRIM-3D, a variant of the TRIM-SP binary-collision code, is used to investigate the sputtering properties of the Be/W divertor. Finally, WBC can compute beryllium and tungsten erosion and core plasma contamination using the sputtering and reflection coefficients obtained with VFTRIM-3D. In the present work, the VFTRIM-3D code was run on a W/Be surface with the Be content varied from 0 to 100 atomic percent. Deuterium and tritium (ions and neutrals), oxygen, beryllium from the first wall, and tungsten being redeposited are all incident on this mixed W/Be layer. Data on reflection and sputtering coefficients as a function of beryllium content in the bombarded surface will be presented.

  5. CORRIGENDUM: Main safety issues at the transition from ITER to fusion power plants

    NASA Astrophysics Data System (ADS)

    Gulden, W.; Ciattaglia, S.; Massaut, V.; Sardain, P.

    2007-09-01

    In parallel to the ITER design process and in close cooperation with the designers a fusion-specific safety approach was developed and implemented. Detailed safety assessments have been performed and documented in the ITER Generic Site Safety Report (GSSR). Following the decision on ITER construction in France, results from the GSSR and from on-going safety-related activities tailored to the Cadarache site and the French licensing process are now being used to write the ITER Preliminary Safety Analysis Report. In the most recent European fusion power plant conceptual study (PPCS) inherent fusion favourable features have been exploited, by appropriate design and choice of materials, to provide major safety and environmental advantages. The study focused on five power plant models, which are illustrative of a wider spectrum of possibilities. These span a range from relatively near-term concepts, based on limited technology and plasma physics extrapolations, to a more advanced conception. All five PPCS plant models differ substantially in their plasma physics, blanket and divertor technology, size, fusion power and materials compositions, and these differences lead to differences in economic performance and in the details of safety and environmental impacts. This paper uses the quite detailed information available from ITER safety documents and highlights the differences between ITER and future fusion power plants. The main areas investigated are releases and doses during normal operation and under accidental conditions, occupational radiation exposure and optimization and waste management, including recycling and/or final disposal in repositories. Due to an error, an incorrect version of this paper was published in issue 7. For the convenience of the reader we have included the correct full article below rather than a list of changes.

  6. Iterative refinement scheduling

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric

    1992-01-01

    We present a heuristics-based approach to deep space mission scheduling which is modeled on the approach used by expert human schedulers in producing schedules for planetary encounters. New chronological evaluation techniques are used to focus the search by using information gained during the scheduling process to locate, classify, and resolve regions of conflict. Our approach is based on the assumption that during the construction of a schedule there exist several disjunct temporal regions where the demand for one resource type or a single temporal constraint dominates (bottleneck regions). If the scheduler can identify these regions and classify them based on their dominant constraint, then the scheduler can select the scheduling heuristic.

  7. Exposures of tungsten nanostructures to divertor plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Rudakov, D. L.; Wong, C. P. C.; Doerner, R. P.; Wright, G. M.; Abrams, T.; Baldwin, M. J.; Boedo, J. A.; Briesemeister, A. R.; Chrobak, C. P.; Guo, H. Y.; Hollmann, E. M.; McLean, A. G.; Fenstermacher, M. E.; Lasnier, C. J.; Leonard, A. W.; Moyer, R. A.; Pace, D. C.; Thomas, D. M.; Watkins, J. G.

    2016-02-01

    Tungsten nanostructures (W-fuzz) prepared in the PISCES-A linear device have been found to survive direct exposure to divertor plasmas in DIII-D. W-fuzz was exposed in the lower divertor of DIII-D using the divertor material evaluation system. Two samples were exposed in lower single null (LSN) deuterium H-mode plasmas. The first sample was exposed in three discharges terminated by vertical displacement event disruptions, and the second in two discharges near the lowered X-point. More recently, three samples were exposed near the lower outer strike point in predominantly helium H-mode LSN plasmas. In all cases, the W-fuzz survived plasma exposure with little obvious damage except in the areas where unipolar arcing occurred. Arcing is effective in W-fuzz removal, and it appears that surfaces covered with W-fuzz can be more prone to arcing than smooth W surfaces.

  8. Simulation of Turbulence in the Divertor Region of Tokamak Edge Plasma

    SciTech Connect

    Umansky, M; Rognlien, T; Xu, X

    2004-10-04

    Results are presented for turbulence simulations with the fluid edge turbulence code BOUT [1]. The present study is focused on turbulence in the divertor leg region and on the role of the X-point in the structure of turbulence. Results of the present calculations indicate that the ballooning effects are important for the divertor fluctuations. The X-point shear leads to weak correlation of turbulence across the X-point regions, in particular for large toroidal wavenumber. For the saturated amplitudes of the divertor region turbulence it is found that amplitudes of density fluctuations are roughly proportional to the local density of the background plasma. The amplitudes of electron temperature and electric potential fluctuations are roughly proportional to the local electron temperature of the background plasma.

  9. Investigation of SOL parameters and divertor particle flux from electric probe measurements in KSTAR

    NASA Astrophysics Data System (ADS)

    Bak, J. G.; Kim, H. S.; Bae, M. K.; Juhn, J. W.; Seo, D. C.; Bang, E. N.; Shim, S. B.; Chung, K. S.; Lee, H. J.; Hong, S. H.

    2015-08-01

    The upstream scrape-off layer (SOL) profiles and downstream particle fluxes are measured with a fast reciprocating Langmuir probe assembly (FRLPA) at the outboard mid-plane and a fixed edge Langmuir probe array (ELPA) at divertor region, respectively in the KSTAR. It is found that the SOL has a two-layer structure in the outboard wall-limited (OWL) ohmic and L-mode: a near SOL (∼5 mm zone) with a narrow feature and a far SOL with a broader profile. The near SOL width evaluated from the SOL profiles in the OWL plasmas is comparable to the scaling for the L-mode divertor plasmas in the JET and AUG. In the SOL profiles and the divertor particle flux profile during the ELMy H-modes, the characteristic e-folding lengths of electron temperature, plasma density and particle flux during an ELM phase are about two times larger than ones at the inter ELM.

  10. Divertor with a third-order null of the poloidal field

    SciTech Connect

    Ryutov, D. D.; Umansky, M. V.

    2013-09-15

    A concept and preliminary feasibility analysis of a divertor with the third-order poloidal field null is presented. The third-order null is the point where not only the field itself but also its first and second spatial derivatives are zero. In this case, the separatrix near the null-point has eight branches, and the number of strike-points increases from 2 (as in the standard divertor) to six. It is shown that this magnetic configuration can be created by a proper adjustment of the currents in a set of three divertor coils. If the currents are somewhat different from the required values, the configuration becomes that of three closely spaced first-order nulls. Analytic approach, suitable for a quick orientation in the problem, is used. Potential advantages and disadvantages of this configuration are briefly discussed.

  11. Flute instability in the tandem mirror with the divertor/dipole regions

    SciTech Connect

    Katanuma, I.; Masaki, S.; Sato, S.; Sekiya, K.; Ichimura, M.; Imai, T.

    2011-11-15

    The numerical simulation is performed in GAMMA10 A-divertor magnetic configuration, which is a candidate of remodeled device of the GAMMA10 tandem mirror [M. Inutake et al., Phys. Rev. Lett. 55, 939 (1985)]. Both divertor and dipole regions are included in the numerical calculation, which is a new point. The electron short circuit effect along x-point, therefore, is not assumed so that it is not used the boundary condition of the electrostatic perturbations being zero at the separatrix on which the magnetic field lines pass through x-point. The simulation results reveal that the dipole field plays a role of a good magnetic field line curvature to the GAMMA10 A-divertor, and so the flute modes are stabilized without help of electron short circuit effects.

  12. The dynamic ergodic divertor in the TEXTOR tokamak: plasma response to dynamic helical magnetic field perturbations

    NASA Astrophysics Data System (ADS)

    Finken, K. H.; Abdullaev, S. S.; Biel, W.; de Bock, M. F. M.; Busch, C.; Farshi, E.; von Hellermann, M.; Hogeweij, G. M. D.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Kraemer-Flecken, A.; Lazaros, A.; Lehnen, M.; Liang, Y.; Nicolai, A.; Schmitz, O.; Unterberg, B.; Westerhof, E.; Wolf, R.; Zimmermann, O.; de Baar, M.; Bertschinger, G.; Brezinsek, S.; Classen, I. G. J.; Donné, A. J. H.; Esser, H. G.; Gerhauser, H.; Giesen, B.; Harting, D.; Hoekzema, J. A.; Huettemann, P. W.; Jachmich, S.; Jakubowska, K.; Kalupin, D.; Kelly, F.; Kikuchi, Y.; Kirschner, A.; Koch, R.; Korten, M.; Kreter, A.; Krom, J.; Kruezi, U.; Litnovsky, A.; Loozen, X.; Lopes Cardozo, N. J.; Lyssoivan, A.; Marchuk, O.; Mertens, Ph; Messiaen, A.; Neubauer, O.; Philipps, V.; Pospieszczyk, A.; Reiser, D.; Reiter, D.; Rogister, A. L.; Van Rompuy, T.; Savtchkov, A.; Samm, U.; Schorn, R. P.; Schueller, F. C.; Schweer, B.; Sergienko, G.; Telesca, K. H. G.; Tokar, M.; Van Oost, G.; Uhlemann, R.; Van Wassenhove, G.; Weynants, R.; Wiesen, S.; Xu, Y.

    2004-12-01

    Recently, the dynamic ergodic divertor (DED) of TEXTOR has been studied in an m/n = 3/1 set-up which is characterized by a relatively deep penetration of the perturbation field. The perturbation field creates (a) a helical divertor, (b) an ergodic pattern and/or (c) excitation of tearing modes, depending on whether the DED current is static, rotating in the co-current direction or in the counter-current direction. Characteristic divertor properties such as the high recycling regime or enhanced shielding have been studied. A strong effect of the ergodization is spin up of the plasma rotation, possibly due to the electric field at the plasma edge. Tearing modes are excited in a rather reproducible way and their excitation threshold value, their motion and their reduction due to the ECRH/ECCD have been studied. The different scenarios are characterized by strong modifications of the toroidal velocity profile and by a reduced or enhanced radial transport.

  13. Attainment of high confinement in neutral beam heated divertor discharges in the PDX tokamak

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Bell, M. G.; Bol, K.; Boyd, D.; Brau, K.; Buchenauer, D.; Budny, R.; Cavallo, A.; Couture, P.; Crowley, T.; Darrow, D. S.; Eubank, H.; Fonck, R. J.; Goldston, R.; Grek, B.; Jaehnig, K. P.; Johnson, D.; Kaita, R.; Kugel, H.; Leblanc, B.; Manickam, J.; Manos, D.; Mansfield, D.; Mazzucato, E.; McCann, R.; McCune, D.; McGuire, K.; Mueller, D.; Murdock, A.; Okabayashi, M.; Okano, K.; Owens, D. K.; Post, D. E.; Reusch, M.; Schmidt, G. L.; Sesnic, S.; Slusher, R.; Suckewer, S.; Surko, C.; Takahashi, H.; Tenney, F.; Towner, H.; Valley, J.

    1984-05-01

    The PDX divertor configuration has recently been converted from an open to a closed geometry to inhibit the return of neutral gas from the divertor region to the main chamber. Since then, operation in a regime with high energy confinement in neutral beam heated discharges (ASDEX H-mode) has been routine over a wide range of operating conditions. These H-mode discharges are characterized by a sudden drop in divertor density and H α emission and a spontaneous rise in main chamber plasma density during neutral beam injection. The confinement time is found to scale nearly linearly with plasma current, but can be degraded due either to the presence of edge instabilities or heavy gas puffing. Detailed Thomson scattering temperature profiles show high values of Tc near the plasma edge (˜ 450 eV) with sharp radial gradients (˜ 400 eV/cm) near the separatrix. Density profiles are broad and also exhibit steep gradients close to the separatrix.

  14. Enhancement of cross-field transport into the private region of detached-divertor in Large Helical Device

    SciTech Connect

    Tanaka, H.; Ohno, N.; Tsuji, Y.; Kajita, S.; Masuzaki, S.; Kobayashi, M.; Morisaki, T.; Tsuchiya, H.; Komori, A.

    2010-10-15

    The fluctuation of ion saturation currents in the attached- and detached-divertor plasmas of the Large Helical Device [Fujiwara et al., Nucl. Fusion 41, 1355 (2001)] has been measured using a Langmuir probe array embedded in a divertor plate. Analytical results indicate that these fluctuation properties differ considerably from each other; for instance, the mean value distribution expands to and positive spikes propagate toward a private region from the divertor leg in the detached-divertor. We investigated the magnetic field lines traced from probe electrodes by using the KMAG code [Nakamura et al., J. Plasma Fusion Res. 69, 41 (1993)], and it is then confirmed that the propagation direction of positive spikes corresponds to that predicted by the theory of blobby plasma transport. This phenomenon is expected to lead to the broadening of plasma particle and heat fluxes to the divertor plate.

  15. ITER Diagnostic First Wal

    SciTech Connect

    G. Douglas Loesser, et. al.

    2012-09-21

    The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The DFW design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the first wall. At the first wall, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement is opposed by the wish for a thicker FW element to accommodate surface erosion and other off-normal plasma events.

  16. Mode conversion in ITER

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Myra, J. R.

    2006-10-01

    Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).

  17. Time-resolved optical diffusion tomography

    NASA Astrophysics Data System (ADS)

    Appledorn, C. Robert; Kruger, Robert A.; Liu, Pingyu

    1994-05-01

    A mathematical model is proposed describing time-resolved output measurements obtained on the surface of a diffusely scattering body due to an input pulse of near-IR light at a different location also on the surface. Such measurements can be obtained using a pulsed near-IR laser coupled with a CCD streak camera. The scattering body is assumed to exhibit homogenous scattering and spatially varying absorption. Using this model, an iterative algorithm is derived using maximum likelihood methods that allows the reconstruction of the spatial absorption pattern from a set of time-resolved tomographic measurements. The methodology places no restrictions upon the time-of-arrival of the detected photons, thus permitting the entire time-resolved signal to be used in the reconstruction process. The reconstruction algorithm is easily initialized and preliminary results indicate that stable reconstructions can be performed.

  18. ELM PARTICLE AND ENERGY TRANSPORT IN THE SOL AND DIVERTOR OF DIII-D

    SciTech Connect

    FENSTERMACHER,ME; LEONARD,AW; SNYDER,PB; BOEDO,JA; COLCHIN,RJ; GROEBNER,RJ; GRAY,DS; GROTH,M; HOLLMANN,E; LASNIER,CJ; OSBORNE,TH; PETRIE,TW; RUDAKOV,DL; TAKAHASHI,H; WATKINS,JG; ZENG,L

    2003-04-01

    A271 ELM PARTICLE AND ENERGY TRANSPORT IN THE SOL AND DIVERTOR OF DIII-D. Results from a series of dedicated experiments measuring the effect of particle and energy pulses from Type-I Edge Localized Modes (ELMs) in the DIII-D scrape-off layer (SOL) and divertor are compared with a simple model of ELM propagation in the boundary plasma. The simple model asserts that the propagation of ELM particle and energy perturbations is dominated by ion parallel convection along SOL fields lines and the recovery from the ELM perturbation is determined by recycling physics. Time scales associated with the initial changes of boundary plasma parameters are expected to be on the order of the ion transit time from the outer midplane, where the ELM instability is initiated, to the divertor targets. To test the model, the ion convection velocity is changed in the experiment by varying the plasma density. At moderate to high density, n{sub e}/n{sub Gr} = 0.5-0.8, the delays in the response of the boundary plasma to the midplane ELM pulses, the density dependence of those delays and other observations are consistent with the model. However, at the lowest densities, n{sub e}/n{sub Gr} {approx} 0.35, small delays between the response sin the two divertors, and changes in the response of the pedestal thermal energy to ELM events, indicate that additional factors including electron conduction in the SOL, the pre-ELM condition of the divertor plasma, and the ratio of ELM instability duration to SOL transit time, may be playing a role. The results show that understanding the response of the SOL and divertor plasmas to ELMs, for various pre-ELM conditions, is just as important to predicting the effect of ELM pulses on the target surfaces of future devices as is predicting the characteristics of the ELM perturbation of the core plasma.

  19. Experimental Demonstration of High Frequency ELM Pacing by Pellet Injection on DIII-D and Extrapolation to ITER

    SciTech Connect

    Baylor, Larry R; Commaux, Nicolas JC; Jernigan, Thomas C; Meitner, Steven J; Brooks, N. H.; Combs, Stephen Kirk; Evans, T.E.; Fenstermacher, M. E.; Lasnier, C. J.; Moyer, R.A.; Osborne, T. H.; Parks, P. B.; Strait, E. J.; Unterberg, Ezekial A; Loarte, A.

    2012-01-01

    . The injection of high repetition rate deuterium pellets is shown to trigger high-frequency edge localized modes (ELMs) in otherwise low natural ELM frequency H-mode deuterium discharges in the DIII-D tokamak. The resulting triggered ELMs have significantly lower energy and particle fluxes to the divertor than the natural ELMs. The plasma global energy confinement and density are not strongly affected by the pellet perturbations. The plasma core impurity density is strongly reduced with the application of the pellets. These experiments were performed in plasmas designed to match the ITER baseline configuration in shape and normalized operation with input power just above the H-mode power threshold. This strongly reduced ELM intensity shows promise for exploitation in ITER to control ELM size while maintaining high plasma purity and performance.

  20. Gas fueling with an axisymmetric magnetic divertor in the Tara tandem mirror

    SciTech Connect

    Post, R.S.; Brau, K.; Horne, S.; Casey, J.; Golovato, S.; Sevillano, E.; Shuy, G.; Smith, D.K.

    1987-07-01

    An axisymmetric divertor has been installed at the central cell midplane of Tara to provide magnetohydrodynamics stability and to generate a high-density halo at the edge of the plasma. A dense halo aids sloshing ion buildup in the plug cells and increases shielding of the core plasma from charge exchange recombination. Separate gas fueling of the halo in the divertor allows for the different fueling requirements of the potential-confined core plasma and the flow-confined edge during plugged operation.

  1. The dynamic ergodic divertor in the TEXTOR tokamak: First results and future prospects

    NASA Astrophysics Data System (ADS)

    Wolf, R. C.; Finken, K. H.; Abdullaev, S. S.; Giesen, B.; Jakubowski, M.; Kobayashi, M.; Koslowski, H. R.; Krämer-Flecken, A.; Lehnen, M.; Neubauer, O.; Pospieszczyk, A.; Samm, U.; Schweer, B.; Sergienko, G.; Unterberg, B.; Zimmermann, O.; Jaspers, R.; Westerhof, E.; Jachmich, S.; Koch, R.; Spatschek, K. H.

    2003-10-01

    The tokamak TEXTOR has been equipped with a dynamic ergodic divertor which is resonant to the edge magnetic flux surface with q=3 and can be operated between DC and 10 kHz. First results indicate a redistribution of particle and energy fluxes which becomes evident in a characteristic stripe pattern. The dynamic mode leads to a uniform divertor target load. Prospects of confinement and MHD stability control, based on the specific edge properties outside the last closed flux surface (an ergodic region followed by a laminar zone with short connection lengths) together with the possibility to transfer momentum to the plasma, are discussed.

  2. Applicability of LIBS for in situ monitoring of deposition and retention on the ITER-like wall of JET - Comparison to SIMS

    NASA Astrophysics Data System (ADS)

    Karhunen, J.; Hakola, A.; Likonen, J.; Lissovski, A.; Laan, M.; Paris, P.

    2015-08-01

    Laser-induced breakdown spectroscopy (LIBS) is a potential method for in situ monitoring of deposition and retention in fusion devices and is developed with the aim of being integrated in the diagnostics system of ITER. The inner divertor of the ITER-like wall of JET was studied by LIBS to show the applicability of the method in JET and ITER. The elemental depth profiles agreed with those given by earlier SIMS measurements. Deuterium was detected in the deposited layers and successfully distinguished from hydrogen. The poloidal patterns of the retained deuterium and deposited beryllium were also in line with the SIMS results with the largest deposition and retention taking place on the top part of Tile 1 and bottom part of Tile 3. The results of these studies support LIBS as a promising in situ solution to replace the present post mortem methods in monitoring metallic deposited layers.

  3. Gamma ray spectrometer for ITER

    SciTech Connect

    Gin, D.; Chugunov, I.; Shevelev, A.; Khilkevitch, E.; Doinikov, D.; Naidenov, V.; Pasternak, A.; Polunovsky, I.; Kiptily, V.

    2014-08-21

    Gamma diagnostics is considered to be primary for the confined α-particles and runaway electrons measurements on ITER. The gamma spectrometer will be embedded into a neutron dump of the ITER Neutral Particle Analyzer diagnostic complex. It will supplement NPA measurements on the fuel isotope ratio and confined alphas/fast ions. In this paper an update on ITER gamma spectrometer developments is given. A new geometry of the system is described and detailed analysis of expected signals for the spectrometer is presented.

  4. Channeled spectropolarimetry using iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Dennis J.; LaCasse, Charles F.; Craven, Julia M.

    2016-05-01

    Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.

  5. 2D tritium distribution on tungsten tiles used in JET ITER-like wall project

    NASA Astrophysics Data System (ADS)

    Hatano, Y.; Widdowson, A.; Bekris, N.; Ayres, C.; Baron-Wiechec, A.; Likonen, J.; Koivuranta, S.; Ikonen, J.; Yumizuru, K.

    2015-08-01

    Post-mortem measurements of 2-dimensional tritium (T) distribution using an imaging plate (IP) technique were performed for tungsten (W) divertor tiles (W-coated CFC) used in JET-ITER like wall (ILW) project. The observed T distributions were clearly inhomogeneous, and there were band-like regions with high T concentrations that extended in the toroidal direction on tiles 1, 3, 4 and 6. The concentrations of T in the band-like regions were higher by an order of magnitude than the concentrations in other parts. The inhomogeneous T distributions were explained by non-uniform co-deposition with other elements such as beryllium. The concentrations of T on the outboard vertical tiles (tiles 7 and 8) were low and relatively uniform in comparison with other tiles.

  6. Materials effects and design implications of disruptions and off-normal events in ITER

    SciTech Connect

    Hassanein, A.; Federici, G.; Konkashbaev, I.; Zhitlukhin, A.; Litunovsky, V.

    1997-08-01

    Damage to plasma-facing components (PFCs) and structural materials during abnormal plasma behavior such as hard disruptions, edge-localized modes (ELMs), and vertical displacement events (VDEs) is considered a serious life-limiting concern for these components. The PFCs in the International Thermonuclear Experimental Reactor (ITER), such as the divertor, limiter, and parts of the first wall, will be subjected to high energy deposition during these plasma instabilities. High erosion losses on material surfaces, high temperature rise in structural materials (particularly at the bonding interface), and high heat flux levels and possible burnout of the coolant tubes are critical constraints that severely limit component lifetime and therefore degrade reactor performance, safety, and economics. Recently developed computer models and simulation experiments are being used to evaluate various damage to PFCs during the abnormal events. The design implications of plasma-facing and nearby components are discussed, and recommendations are made to mitigate the effects of these events.

  7. ITER nuclear components, preparing for the construction and R&D results

    NASA Astrophysics Data System (ADS)

    Ioki, K.; Akiba, M.; Barabaschi, P.; Barabash, V.; Chiocchio, S.; Daenner, W.; Elio, F.; Enoeda, M.; Ezato, K.; Federici, G.; Gervash, A.; Grebennikov, D.; Jones, L.; Kajiura, S.; Krylov, V.; Kuroda, T.; Lorenzetto, P.; Maruyama, S.; Merola, M.; Miki, N.; Morimoto, M.; Nakahira, M.; Ohmori, J.; Onozuka, M.; Rozov, V.; Sato, K.; Strebkov, Yu; Suzuki, S.; Tanchuk, V.; Tivey, R.; Utin, Yu

    2004-08-01

    Progress has been made in the preparation of the procurement specifications for key nuclear components of ITER. Detailed design of the vacuum vessel (VV) and in-vessel components is being performed to consider fabrication methods and non-destructive tests (NDT). R&D activities are being carried out on vacuum vessel UT inspection with waves launched at an angle of 20° or 30°, on flow distribution tests of a two-channel model, on fabrication and testing of FW mock-ups and panels, on the blanket flexible support as a complete system including the housing, on the blanket co-axial pipe connection with guard vacuum for leak detection, and on divertor vertical target prototypes. The results give confidence in the validity of the design and identify possibilities of attractive alternate fabrication methods.

  8. Poloidal divertor experiment with applied E vector x B vector/B/sup 2/ drift

    SciTech Connect

    Strait, E J

    1980-05-01

    It has been proposed that the E vector x B vector/B/sup 2/ drift arising from an externally applied electric field could be used in a tokamak or other toroidal device to remove plasma and impurities from the region near the wall and to reduce the amount of plasma striking the wall, either assisting or replacing a conventional magnetic field divertor. A poloidal magnetic divertor (without pumping chamber) was added to the Wisconsin Levitated Toroidal Octupole, and the octupole was operated with a tokamak-like magnetic field configuration (q = 0.7). A radial electric field was applied in the scrape-off zone, causing an E vector x B vector/B/sup 2/ drift with a large poloidal component. This reduced plasma flux reaching the wall of the toroid by up to a factor of 5 beyond the effect of the magnetic divertor, for divertor configurations with both high and low magnetic mirror ratios, in good agreement with a simple theoretical model. Plasma density and density scale length were also reduced in the scrape-off zone, in qualitative agreement with the model. This was not accompanied by any new instabilities in the scrape-off zone, nor by any appreciable degradation of confinement of the central plasma.

  9. Density fluctuations at high density in the ergodic divertor configuration of Tore Supra

    NASA Astrophysics Data System (ADS)

    Devynck, P.; Gunn, J.; Ghendrih, Ph.; Garbet, X.; Antar, G.; Beyer, P.; Boucher, C.; Honore, C.; Gervais, F.; Hennequin, P.; Quémeneur, A.; Truc, A.

    2001-03-01

    The effect of the ergodic divertor on the plasma edge in Tore Supra is to enhance the perpendicular transport through ergodization of the magnetic field lines [Ph. Ghendrih et al., Contrib. Plasma Phys. 32 (3&4) (1992) 179]. Nevertheless, the hot spots observed on the divertor plates during ergodic divertor operation indicate that the cross-field transport driven by the fluctuations is still playing an important role, although measurements by CO 2 laser scattering and reflectometry show a decrease of the turbulence level [J. Payan, X. Garbet, J.H. Chatenet et al., Nucl. Fusion 35 (1995) 1357; P. Beyer, X. Garbet, P. Ghendrih, Phys. Plasmas 5 (12) (1998) 4271]. In order to gain more understanding, fluctuation level and poloidal velocity have been measured with a reciprocating Langmuir probe biased to collect the ion saturation current ( jsat) and with a CO 2 laser scattering diagnostic. Though the relative fluctuation level behaves as previously observed at low density, a new interesting result is that this picture is gradually modified when the density is increased. Both diagnostics observe an increase of δn/ n with density in the ergodic region, which is not the usual behavior observed in limiter configuration. This increase is detected on both sides of the Er inversion radius and is therefore also affecting the plasma bulk. Finally, the confinement time is found to follow an L-mode law at all densities indicating that the ergodic divertor does not change the global confinement properties of the plasma.

  10. Effect of separatrix magnetic geometry on divertor behavior in DIII-D

    NASA Astrophysics Data System (ADS)

    Petrie, T. W.; Canik, J. M.; Lasnier, C. J.; Leonard, A. W.; Mahdavi, M. A.; Watkins, J. G.; Fenstermacher, M. E.; Ferron, J. R.; Groebner, R. J.; Hill, D. N.; Hyatt, A. W.; Holcomb, C. T.; Luce, T. C.; Moyer, R. A.; Stangeby, P. C.

    2013-07-01

    We report on recent experiments on DIII-D that examined the effects that variations in the parallel connection length in the scrape-off layer (SOL), L||, and the radial location of the outer divertor target, RTAR, have on divertor plasma properties. Two-point modeling of the SOL plasma predicts that larger values of L|| and RTAR should lower temperature and raise density at the outer divertor target for fixed upstream separatrix density and temperature, i.e., nTAR ∝ [RTAR]2[L||]6/7 and TTAR ∝ [RTAR]-2[L||]-4/7. The dependence of nTAR and TTAR on L|| was consistent with our data, but the dependence of nTAR and TTAR on RTAR was not. The surprising result that the divertor plasma parameters did not depend on RTAR in the predicted way may be due to convected heat flux, driven by escaping neutrals, in the more open configuration of the larger RTAR cases. Modeling results using the SOLPS code support this postulate.

  11. A tangentially viewing visible TV system for the DIII-D divertor

    SciTech Connect

    Fenstermacher, M.E.; Meyer, W.H.; Wood, R.D.

    1996-02-01

    A video camera system has been installed on the DIII-D tokamak for 2-D spatial studies of line emission in the lower divertor region. The system views the divertor tangentially from an outer port at approximately the height of the X-point. At the tangency plane the entire divertor from inner wall to outside the DIII-D bias ring is viewed with spatial resolution of approximately 1 cm. The image contains information from approximately 90 degrees of toroidal angle. In a recent upgrade, remotely controllable filter changers were added which have produced images from nominally identical shots using a series of spectral lines. Software was developed to calculate the response function matrix using distributed computing techniques and assuming toroidal symmetry. Standard sparse matrix algorithms are then used to invert the 3-D images onto a poloidal plane. Spatial resolution of the inverted images is 2 cm; higher resolution simply increases the size of the response function matrix. Initial results from a series of experiments with multiple identical shots show that the emission from CII and CIII, which appears along the inner scrape-off layer above and below the X-point during ELMing H-mode, moves outward and becomes localized near the X-point in Partially Detached Divertor (PDD) operation.

  12. L to H mode transitions and associated phenomena in divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Punjabi, A.

    1990-09-01

    This is the final report for the research project titled, L to H Mode Transitions and Associated Phenomena in Divertor Tokamaks. The period covered by this project is the fiscal year 1990. This report covers the development of Advanced Two Chamber Model.

  13. A helical hydrogen-MARFE-like phenomenon in the divertor of the Wendelstein 7-AS stellarator

    NASA Astrophysics Data System (ADS)

    Wenzel, U.; König, R.; Pedersen, T. Sunn; the W7-AS Team

    2015-01-01

    In the island divertor of the W7-AS stellarator a high-density zone (HDZ) near the divertor plates was discovered some years ago (Ramasubramanian et al 2004 Nucl. Fusion 44 992-8) with electron densities up to 7 × 1020 m-3. We shed further light on this phenomenon by determining the poloidal and radial location of this zone and discussing potential implications of these findings. The HDZ is in the vicinity of, but clearly separated from the nearest X-point line. The carbon emission is clearly spatially separated, residing near or at the X-point lines. The HDZ shows many similarities with the hydrogen or wall MARFE in Textor-94 (Samm et al 1999 J. Nucl. Mater. 266-269 666). The structure is associated with a strongly increased neutral pressure, thus enabling efficient pumping. This offers the possibility for a very efficient exhaust regime in a stellarator with island divertor such as W7-X, simultaneously with significantly reduced convective heat loads onto the divertor itself. The spatial separation of the HDZ and the carbon radiation region may imply that such a state can be reached even in a non-carbon machine, and might therefore be DEMO-relevant.

  14. Development of ion source for simulation of edge localized mode in divertor plasma

    SciTech Connect

    Daibo, A. Okamoto, A.; Takahashi, H.; Kumagai, T.; Takahashi, T.; Tsubota, S.; Kitajima, S.

    2014-02-15

    A helium ion beam is injected into a linear plasma device for the development of an ion beam source simulating high energy particle flux in divertor plasma. Beam current density more than 10 mA/cm{sup 2} is extracted. Measurement of beam currents indicates that the beam is transported along the linear device and reaches to the downstream end plate.

  15. Enhanced \\boldsymbol{\\vec{{E}}\\times \\vec{{B}}} drift effects in the TCV snowflake divertor

    NASA Astrophysics Data System (ADS)

    Canal, G. P.; Lunt, T.; Reimerdes, H.; Duval, B. P.; Labit, B.; Vijvers, W. A. J.; the TCV Team

    2015-11-01

    Measurements of various plasma parameters at the divertor targets of snowflake (SF) and conventional single-null configurations indicate an enhanced effect of the E× B drift in the scrape-off layer of plasmas in the SF configuration. Plasma boundary transport simulations using the EMC3-Eirene code show that the poloidal gradients of the kinetic profiles in the vicinity of the null-point of a SF divertor are substantially larger than those of a conventional single-null configuration. These gradients are expected to drive larger E× B flows in the SF divertor and are thought to be responsible for the formation of the double-peaked particle and heat flux target profiles observed experimentally. Experiments in forward and reversed toroidal magnetic field directions further support this conclusion. The formation of such a double-peaked profiles is enhanced at higher plasma densities and may have beneficial effects on the divertor heat loads since they lead to broader target profiles and lower peak heat fluxes.

  16. Divertor heat loads in RMP ELM controlled H-mode plasmas on DIII-D*

    SciTech Connect

    Jakubowski, M; Lasnier, C; Schmitz, O; Evans, T; Fenstermacher, M; Groth, M; Watkins, J; Eich, T; Moyer, R; Wolf, R; Baylor, L; Boedo, J; Burrell, K; Frerichs, H; deGrassie, J; Gohil, P; Joseph, I; Lehnen, M; Leonard, A; Petty, C; Pinsker, R; Reiter, D; Rhodes, T; Samm, U; Snyder, P; Stoschus, H; Osborne, T; Unterberg, B; West, W

    2008-10-13

    In this paper the manipulation of power deposition on divertor targets at DIII-D by application of resonant magnetic perturbations (RMPs) is analyzed. It has been found that heat transport shows a different reaction to the applied RMP depending on the plasma pedestal collisionality. At pedestal electron collisionality above 0.5 the heat flux during the ELM suppressed phase is of the same order as the inter-ELM in the non-RMP phase. Below this collisionality value we observe a slight increase of the total power flux to the divertor. This can be caused by much more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area and/or so called pump out effect. In the second part we discuss modification of ELM behavior due to the RMP. It is shown, that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns seem to be controlled by the externally induced magnetic perturbation. D{sub 2} pellets injected into the plasma bulk during ELM-free RMP H-mode lead in some cases to a short term small transients, which have very similar properties to ELMs in the initial RMP-on phase.

  17. Effect of changes in separatrix magnetic geometry on divertor behaviour in DIII-D

    NASA Astrophysics Data System (ADS)

    Petrie, T. W.; Canik, J. M.; Lasnier, C. J.; Leonard, A. W.; Mahdavi, M. A.; Watkins, J. G.; Fenstermacher, M. E.; Ferron, J. R.; Groebner, R. J.; Hill, D. N.; Hyatt, A. W.; Holcomb, C. T.; Luce, T. C.; Makowski, M.; Moyer, R. A.; Osborne, T. E.; Stangeby, P. C.

    2013-11-01

    Results and interpretation of recent experiments on DIII-D designed to evaluate divertor geometries favourable for radiative heat dispersal are presented. Two approaches examined here involved lengthening the parallel connection in the scrape-off layer, L‖, and increasing the radius of the outer divertor separatrix strike point, ROSP, with the goal of reducing target temperature, TTAR, and increasing target density, nTAR. From one-dimensional (1D) two-point modelling based on conducted parallel heat flux, it is expected that: n_{TAR} \\propto R_{OSP}^{2} L_{\\parallel}^{6/7} n_{SEP}^{3} and T_{TAR} \\propto R_{OSP}^{-2} L_{\\parallel}^{{-4}/7} n_{SEP}^{-2} , where nSEP is the midplane separatrix density. These scalings suggest that conditions conducive to a radiative divertor solution can be achieved at low nSEP by increasing either ROSP or L‖. Our data are consistent with the above L‖ scalings. On the other hand, the observed dependence of nTAR and TTAR on ROSP displayed a more complex behaviour, under certain conditions deviating from the above scalings. Our analysis indicates that deviations from the ROSP scaling were due to the presence of convected heat flux, driven by escaping neutrals, in the more open configurations of the larger ROSP cases. A comparison of ‘open’ versus ‘closed’ divertor configurations for the H-mode plasmas in this study show that the ‘closed’ case provides at least 30% reduction in the peaked heat flux at common density with the ‘open’ case and partial divertor detachment at lower plasma density.

  18. ITER Construction--Plant System Integration

    SciTech Connect

    Tada, E.; Matsuda, S.

    2009-02-19

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  19. Investigation of the influence of grain boundary chemistry, test temperatures, and strain rate on the fracture behavior of ITER copper alloys

    SciTech Connect

    Leedy, K.; Stubbins, J.F.; Krus, D.

    1997-08-01

    In an effort to understand the mechanical behavior at elevated temperatures (>200{degrees}C) of the various copper alloys being considered for use in the ITER first wall, divertor, and limiter, a collaborative study has been initiated by the University of Illinois and PNNL with two industrial producers of copper alloys, Brush Wellman and OMG Americas. Details of the experimental matrix and test plans have been finalized and the appropriate specimens have already been fabricated and delivered to the University of Illinois and PNNL for testing and analysis. The experimental matrix and testing details are described in this report.

  20. ITER project and fusion technology

    NASA Astrophysics Data System (ADS)

    Takatsu, H.

    2011-09-01

    In the sessions of ITR, FTP and SEE of the 23rd IAEA Fusion Energy Conference, 159 papers were presented in total, highlighted by the remarkable progress of the ITER project: ITER baseline has been established and procurement activities have been started as planned with a target of realizing the first plasma in 2019; ITER physics basis is sound and operation scenarios and operational issues have been extensively studied in close collaboration with the worldwide physics community; the test blanket module programme has been incorporated into the ITER programme and extensive R&D works are ongoing in the member countries with a view to delivering their own modules in a timely manner according to the ITER master schedule. Good progress was also reported in the areas of a variety of complementary activities to DEMO, including Broader Approach activities and long-term technology. This paper summarizes the highlights of the papers presented in the ITR, FTP and SEE sessions with a minimum set of background information.

  1. Recent Progress in the NSTX/NSTX-U Lithium Program and Prospects for Reactor-Relevant Liquid-Lithium Based Divertor Development

    SciTech Connect

    M. Ono, et al.

    2012-10-27

    Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. While tungsten has been identified as the most attractive solid divertor material, the NSTX/NSTX-U lithium (Li) program is investigating the viability of liquid lithium (LL) as a potential reactor compatible divertor plasma facing component (PFC) . In the near term, operation in NSTX-U is projected to provide reactor-like divertor heat loads < 40 MW/m^2 for 5 s. During the most recent NSTX campaign, ~ 0.85 kg of Li was evaporated onto the NSTX PFCs where a ~50% reduction in heat load on the Liquid Lithium Divertor (LLD) was observed, attributable to enhanced divertor bolometric radiation. This reduced divertor heat flux through radiation observed in the NSTX LLD experiment is consistent with the results from other lithium experiments and calculations. These results motivate an LL-based closed radiative divertor concept proposed here for NSTX-U and fusion reactors. With an LL coating, the Li is evaporated from the divertor strike point surface due to the intense heat. The evaporated Li is readily ionized by the plasma due to its low ionization energies, and the ionized Li ions can radiate strongly, resulting in a significant reduction in the divertor heat flux. Due to the rapid plasma transport in divertor plasma, the radiation values can be significantly enhanced up to ~ 11 MJ/cc of LL. This radiative process has the desired function of spreading the focused divertor heat load to the entire divertor chamber facilitating the divertor heat removal. The LL divertor surface can also provide a "sacrificial" surface to protect the substrate solid material from transient high heat flux such as the ones caused by the ELMs. The closed radiative LLD concept has the advantages of providing some degree of partition in terms of plasma disruption forces on the LL, Li particle divertor retention, and strong divertor pumping action from the

  2. Construction Safety Forecast for ITER

    SciTech Connect

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  3. Error Field Correction in ITER

    SciTech Connect

    Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Schaffer, Michael J.

    2008-05-22

    A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code (IPEC). The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered.

  4. The real mission of ITER

    SciTech Connect

    Wurden, G A

    2009-01-01

    For future machines, the plasma stored energy is going up by factors of 20-40x, and plasma currents by 2-3x, while the surface to volume ratio is at the same time decreasing. Therefore the disruption forces, even for constant B, (which scale like IxB), and associated possible localized heating on machine components, are more severe. Notably, Tore Supra has demonstrated removal of more than 1 GJ of input energy, over nearly a 400 second period. However, the instantaneous stored energy in the Tore Supra system (which is most directly related to the potential for disruption damage) is quite small compared to other large tokamaks. The goal of ITER is routinely described as studying DT burning plasmas with a Q {approx} 10. In reality, ITER has a much more important first order mission. In fact, if it fails at this mission, the consequences are that ITER will never get to the eventual stated purpose of studying a burning plasma. The real mission of ITER is to study (and demonstrate successfully) plasma control with {approx}10-17 MA toroidal currents and {approx}100-400 MJ plasma stored energy levels in long-pulse scenarios. Before DT operation is ever given a go-ahead in ITER, the reality is that ITER must demonstrate routine and reliable control of high energy hydrogen (and deuterium) plasmas. The difficulty is that ITER must simultaneously deal with several technical problems: (1) heat removal at the plasma/wall interface, (2) protection of the wall components from off-normal events, and (3) generation of dust/redeposition of first wall materials. All previous tokamaks have encountered hundred's of major disruptions in the course of their operation. The consequences of a few MA of runaway electrons (at 20-50 MeV) being generated in ITER, and then being lost to the walls are simply catastrophic. They will not be deposited globally, but will drift out (up, down, whatever, depending on control system), and impact internal structures, unless 'ameliorated'. Basically, this

  5. Iterated binomial sums and their associated iterated integrals

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Blümlein, J.; Raab, C. G.; Schneider, C.

    2014-11-01

    We consider finite iterated generalized harmonic sums weighted by the binomial binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic, and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for N → ∞ and the iterated integrals at x = 1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit N → ∞ of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to N in {C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as, e.g., for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.

  6. Integral estimation of number of resolvable signal levels of digital cameras

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Kurbatova, E. A.; Starikov, R. S.; Starikov, S. N.

    2016-08-01

    Number of signal levels of modern photo- and videocameras equals thousands and tens of thousands. However because of temporal and spatial camera pixels noises and linear dynamic range limitation, number of resolvable signal levels is significantly lower. Earlier iterative method of estimation of number of resolvable signal levels of cameras was proposed. In this paper integral method of estimation of number of resolvable signal levels of cameras is proposed and applied to consumer camera.

  7. Delayed Over-Relaxation for iterative methods

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colicchio, G.

    2016-09-01

    We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.

  8. ODE System Solver W. Krylov Iteration & Rootfinding

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,more » LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.« less

  9. Continued Fractions and Iterative Processes.

    ERIC Educational Resources Information Center

    Bevis, Jean H.; Boal, Jan L.

    1982-01-01

    Continued fractions and associated sequences are viewed to constitute a rich area of study for mathematics students, by supporting instruction on algebraic and computational skills, mathematical induction, convergence of sequences, and interpretation of function graphs. An iterative method of approximating square roots opens suggestions for…

  10. Energetic ions in ITER plasmas

    NASA Astrophysics Data System (ADS)

    Pinches, S. D.; Chapman, I. T.; Lauber, Ph. W.; Oliver, H. J. C.; Sharapov, S. E.; Shinohara, K.; Tani, K.

    2015-02-01

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma ( r / a > 0.5 ) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  11. Networking Theories by Iterative Unpacking

    ERIC Educational Resources Information Center

    Koichu, Boris

    2014-01-01

    An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is…

  12. Self-consistent treatment of the sheath boundary conditions by introducing anisotropic ion temperatures and virtual divertor model

    NASA Astrophysics Data System (ADS)

    Togo, Satoshi; Takizuka, Tomonori; Nakamura, Makoto; Hoshino, Kazuo; Ibano, Kenzo; Lang, Tee Long; Ogawa, Yuichi

    2016-04-01

    One-dimensional SOL-divertor plasma fluid simulation code which considers anisotropy of ion temperature has been developed so as to deal with sheath theory self-consistently. In our fluid modeling, explicit use of boundary condition for Mach number M at divertor plate, e.g., M = 1, becomes unnecessary. In order to deal with the Bohm condition and the sheath heat transmission factors at divertor plate self-consistently, we introduced a virtual divertor (VD) model which sets an artificial region beyond divertor plates and artificial sinks for particle, momentum and energy there to model the effects of the sheath region in front of the divertor plate. Validity of our fluid model with VD model is confirmed by showing that simulation results agree well with those from a kinetic code regarding the Bohm condition, ion temperature anisotropy and supersonic flow. We also show that the strength of artificial sinks in VD region does not affect profiles in plasma region at least in the steady state and that sheath heat transmission factors can be adjusted to theoretical values by VD model. Validity of viscous flux is also investigated.

  13. Divertor Heat Flux Mitigation in High-Performance H-mode Plasmas in the National Spherical Torus Experiment.

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D; Menard, J; Paul, S F; Raman, R; Roquemore, A L; Bell, R E; Bush, C; Kaita, R

    2008-09-22

    Experiments conducted in high-performance 1.0-1.2 MA 6 MW NBI-heated H-mode plasmas with a high flux expansion radiative divertor in NSTX demonstrate that significant divertor peak heat flux reduction and access to detachment may be facilitated naturally in a highly-shaped spherical torus (ST) configuration. Improved plasma performance with high {beta}{sub p} = 15-25%, a high bootstrap current fraction f{sub BS} = 45-50%, longer plasma pulses, and an H-mode regime with smaller ELMs has been achieved in the lower single null configuration with higher-end elongation 2.2-2.4 and triangularity 0.6-0.8. Divertor peak heat fluxes were reduced from 6-12 MW/m{sup 2} to 0.5-2 MW/m{sup 2} in ELMy H-mode discharges using high magnetic flux expansion and partial detachment of the outer strike point at several D{sub 2} injection rates, while good core confinement and pedestal characteristics were maintained. The partially detached divertor regime was characterized by a 30-60% increase in divertor plasma radiation, a peak heat flux reduction by up to 70%, measured in a 10 cm radial zone, a five-fold increase in divertor neutral pressure, and a significant volume recombination rate increase.

  14. Active beam spectroscopy for ITER

    NASA Astrophysics Data System (ADS)

    von Hellermann, M. G.; Barnsley, R.; Biel, W.; Delabie, E.; Hawkes, N.; Jaspers, R.; Johnson, D.; Klinkhamer, F.; Lischtschenko, O.; Marchuk, O.; Schunke, B.; Singh, M. J.; Snijders, B.; Summers, H. P.; Thomas, D.; Tugarinov, S.; Vasu, P.

    2010-11-01

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1> r/ a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0< r/ a<0.7) using a top observation port. Thus optimum radial resolution is ensured for each system with better than a/30 resolution. Finally, the US will develop a dedicated MSE system making use of the HNBs and two equatorial ports. With appropriate modification, these systems could also potentially provide information on alpha particle slowing-down features. . On the engineering side, comprehensive preparations were made involving the development of an observation periscope, a neutron labyrinth optical system and design studies for remote maintenance including the exchange of the first mirror assembly, a critical issue for the operation of the CXRS diagnostic in the harsh ITER environment. Additionally, an essential change of the orientation of the DNB injection angle and specification of suitable blanket aperture has been made to avoid trapped particle damage to the first wall.

  15. 3D effects of edge magnetic field configuration on divertor/scrape-off layer transport and optimization possibilities for a future reactor

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Xu, Y.; Ida, K.; Corre, Y.; Feng, Y.; Schmitz, O.; Frerichs, H.; Tabares, F. L.; Evans, T. E.; Coenen, J. W.; Liang, Y.; Bader, A.; Itoh, K.; Yamada, H.; Ghendrih, Ph.; Ciraolo, G.; Tafalla, D.; Lopez-Fraguas, A.; Guo, H. Y.; Cui, Z. Y.; Reiter, D.; Asakura, N.; Wenzel, U.; Morita, S.; Ohno, N.; Peterson, B. J.; Masuzaki, S.

    2015-10-01

    This paper assesses the three-dimensional (3D) effects of the edge magnetic field structure on divertor/scrape-off layer transport, based on an inter-machine comparison of experimental data and on the recent progress of 3D edge transport simulation. The 3D effects are elucidated as a consequence of competition between transports parallel (\\parallel ) and perpendicular (\\bot ) to the magnetic field, in open field lines cut by divertor plates, or in magnetic islands. The competition has strong impacts on divertor functions, such as determination of the divertor density regime, impurity screening and detachment control. The effects of magnetic perturbation on the edge electric field and turbulent transport are also discussed. Parameterization to measure the 3D effects on the edge transport is attempted for the individual divertor functions. Based on the suggested key parameters, an operation domain of the 3D divertor configuration is discussed for future devices.

  16. Study of a water-cooled convective divertor prototype for the DEMO fusion reactor

    NASA Astrophysics Data System (ADS)

    Di Maio, P.; Oliveri, E.; Vella, G.

    2000-04-01

    The plasma facing components of a fusion power reactor have a large impact on the overall plant design, its performance and availability and on the cost of electricity. The present work concerns a study of feasibility for a water-cooled prototype of the convective divertor component of the DEMO fusion reactor. The study has been carried out in two steps. In the first one thermal-hydraulic and neutronic parametric analyses have been performed to find out the prototype optimized configuration. In the second step thermo-mechanical analyses have been carried out on the obtained configuration to investigate the potential and limits of the proposed prototype, with a particular reference to the maximum heat flux it can undergo without incoming both in critical heat flux and in mechanical stress limits. The results show that the proposed divertor prototype is able to safely withstand peak heat fluxes of 9 MW/m2.

  17. Retention property of deuterium for fuel recovery in divertor by using hydrogen storage material

    NASA Astrophysics Data System (ADS)

    Mera, Saori; Tonegawa, Akira; Matsumura, Yoshihito; Sato, Kohnosuke; Kawamura, Kazutaka

    2014-10-01

    Magnetic confinement fusion reactor by using Deuterium and Tritium of hydrogen isotope as fuels is suggested as one of the future energy source. Most fuels don't react and are exhausted out of fusion reactor. Especially, Tritium is radioisotope and rarely exists in nature, so fuels recovery is necessary. This poster presentation will explain about research new fuel recovery method by using hydrogen storage materials in divertor simulator TPD-Sheet IV. Samples are tungsten coated with titanium; tungsten of various thickness, and titanium films deposited by ion plating on tungsten substrates. The sample surface temperature is measured by radiation thermometer. Retention property of deuterium after deuterium plasma irradiation was examined with thermal desorption spectroscopy (TDS). As a result, the TDS measurement shows that deuterium is retained in titanium. Therefore, Titanium as a hydrogen storage material expects to be possible to use separating and recovering fuel particles in divertor.

  18. End loss analyzer system for measurements of plasma flux at the C-2U divertor electrode

    NASA Astrophysics Data System (ADS)

    Griswold, M. E.; Korepanov, S.; Thompson, M. C.

    2016-11-01

    An end loss analyzer system consisting of electrostatic, gridded retarding-potential analyzers and pyroelectric crystal bolometers was developed to characterize the plasma loss along open field lines to the divertors of C-2U. The system measures the current and energy distribution of escaping ions as well as the total power flux to enable calculation of the energy lost per escaping electron/ion pair. Special care was taken in the construction of the analyzer elements so that they can be directly mounted to the divertor electrode. An attenuation plate at the entrance to the gridded retarding-potential analyzer reduces plasma density by a factor of 60 to prevent space charge limitations inside the device, without sacrificing its angular acceptance of ions. In addition, all of the electronics for the measurement are isolated from ground so that they can float to the bias potential of the electrode, 2 kV below ground.

  19. Free-boundary ideal MHD stability of W7-X divertor equilibria

    NASA Astrophysics Data System (ADS)

    Nührenberg, C.

    2016-07-01

    Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.

  20. A 250 GHz microwave interferometer for divertor experiments on DIII-D

    SciTech Connect

    James, R.A.; Nilson, D.G.; Stever, R.D.; Hill, D.N.; Casper, T.A.

    1994-01-31

    A new 250 GHz, two-frequency microwave interferometer system has been developed to diagnose divertor plasmas on DIII-D. This diagnostic will measure the line-averaged density across both the inner and outer, lower divertor legs. With a cut-off density of over 7 {times} 10{sup 14} cm{sup {minus}3}, temporal measurements of ELMs, MARFs and plasma detachment are expected. The outer leg system will use a double pass method while the inner leg system will be single pass. Two special 3D carbon composite tiles are used, one to protect the microwave antennas mounted directly under the strike point and the other as the outer leg reflecting surface. Performance, design constraints, and the thermalmechanical design of the 3D carbon composite tiles are discussed.

  1. Modeling of ultra-high recycling divertors with the PLANET code

    SciTech Connect

    Petravic, M.

    1993-07-01

    The handling of power carried by the charged particles into the scrape-off layer of a tokamak reactor remains a major obstacle for its continuous and reliable operation. Ways of reducing this power through radiation have been studied numerically using fluid models for both the plasma and neutral gas. A new model for the combined plasma and neutral gas 2-D transport capable of simultaneously representing regions of fully-ionized plasma, partially ionized plasma, and pure neutral gas has been assembled and implemented in the PLANET code. Divertor plasma temperatures of just below 1 eV have been achieved in a pure hydrogen plasma, resulting in an ionization-free region together with ionization and recombination fronts detached from the material walls. In this regime energy reaches the walls almost exclusively in the form of radiation which, in principle, solves the divertor heat load problems.

  2. Observation of Non-Maxwellian Electron Distributions in th e NSTX Divertor

    SciTech Connect

    M.A. Jaworski, et. al.

    2013-03-07

    The scrape-off layer plasma at the tokamak region is characterized by open field lines and often contains large variations in plasma properties along these field-lines. Proper characterization of local plasma conditions is critical to assessing plasma-material interaction processes occuring at the target. Langmuir probes are frequently employed in tokamak divertors but are challenging to interpretation. A kinetic interpretation for Langmuir probes in NSTX has yielded non-Maxwellian electron distributions in the divertor characterized by cool bulk populations and energetic tail populations with temperatures of 2-4 times the bulk. Spectroscopic analysis and modeling confirms the bulk plasma temperature and density which can only be obtained with the kinetic interpretation

  3. Study of a Water-Cooled Convective Divertor Prototype for the DEMO Fusion Reactor

    SciTech Connect

    P. Di Maio; E. Oliveri; G. Vella

    2000-12-31

    The plasma facing components of a fusion power reactor have a large impact on the overall plant design, its performance and availability and on the cost of electricity. The present work concerns a study of feasibility for a water-cooled prototype of the convective divertor component of the DEMO fusion reactor. The study has been carried out in two steps. In the first one thermal-hydraulic and neutronic parametric analyses have been performed to find out the prototype optimized configuration. In the second step thermo-mechanical analyses have been carried out on the obtained configuration to investigate the potential and limits of the proposed prototype, with a particular reference to the maximum heat flux it can undergo without incoming both in critical heat flux and in mechanical stress limits. the results show that the proposed divertor prototype is able to safely withstand peak heat fluxes of 9 MW/m{sup 2}.

  4. High density Langmuir probe array for NSTX scrape-off layer measurements under lithiated divertor conditions

    SciTech Connect

    Kallman, J.; Jaworski, M. A.; Kaita, R.; Kugel, H.; Gray, T. K.

    2010-01-01

    A high density Langmuir probe array has been developed for measurements of scrape-off layer parameters in NSTX. Relevant scale lengths for heat and particle fluxes are 1-5 cm. Transient edge plasma events can occur on a time scale of several milliseconds, and the duration of a typical plasma discharge is similar to 1 s. The array consists of 99 individual electrodes arranged in three parallel radial rows to allow both swept and triple-probe operation and is mounted in a carbon tile located in the lower outer divertor of NSTX between two segments of the newly installed liquid lithium divertor. Initial swept probe results tracking the outer strike point through probe flux measurements are presented.

  5. High density Langmuir probe array for NSTX scrape-off layer measurements under lithiated divertor conditions.

    PubMed

    Kallman, J; Jaworski, M A; Kaita, R; Kugel, H; Gray, T K

    2010-10-01

    A high density Langmuir probe array has been developed for measurements of scrape-off layer parameters in NSTX. Relevant scale lengths for heat and particle fluxes are 1-5 cm. Transient edge plasma events can occur on a time scale of several milliseconds, and the duration of a typical plasma discharge is ∼1 s. The array consists of 99 individual electrodes arranged in three parallel radial rows to allow both swept and triple-probe operation and is mounted in a carbon tile located in the lower outer divertor of NSTX between two segments of the newly installed liquid lithium divertor. Initial swept probe results tracking the outer strike point through probe flux measurements are presented.

  6. High density Langmuir probe array for NSTX scrape-off layer measurements under lithiated divertor conditions

    SciTech Connect

    Kallman, J.; Jaworski, M. A.; Kaita, R.; Kugel, H.; Gray, T. K.

    2010-10-15

    A high density Langmuir probe array has been developed for measurements of scrape-off layer parameters in NSTX. Relevant scale lengths for heat and particle fluxes are 1-5 cm. Transient edge plasma events can occur on a time scale of several milliseconds, and the duration of a typical plasma discharge is {approx}1 s. The array consists of 99 individual electrodes arranged in three parallel radial rows to allow both swept and triple-probe operation and is mounted in a carbon tile located in the lower outer divertor of NSTX between two segments of the newly installed liquid lithium divertor. Initial swept probe results tracking the outer strike point through probe flux measurements are presented.

  7. A tangentially viewing VUV TV system for the DIII-D divertor

    SciTech Connect

    Nilson, D.G.; Ellis, R.; Fenstermacher, M.E.; Brewis, G.; Jalufka, N.

    1998-07-01

    A video camera system capable of imaging VUV emission in the 120--160 nm wavelength range, from the entire divertor region in the DIII-D tokamak, was designed. The new system has a tangential view of the divertor similar to an existing tangential camera system which has produced two dimensional maps of visible line emission (400--800 nm) from deuterium and carbon in the divertor region. However, the overwhelming fraction of the power radiated by these elements is emitted by resonance transitions in the ultraviolet, namely the C IV line at 155.0 nm and Ly-{alpha} line at 121.6 nm. To image the ultraviolet light with an angular view including the inner wall and outer bias ring in DIII-D, a 6-element optical system (f/8.9) was designed using a combination of reflective and refractive optics. This system will provide a spatial resolution of 1.2 cm in the object plane. An intermediate UV image formed in a secondary vacuum is converted to the visible by means of a phosphor plate and detected with a conventional CID camera (30 ms framing rate). A single MgF{sub 2} lens serves as the vacuum interface between the primary and secondary vacuums; a second lens must be inserted in the secondary vacuum to correct the focus at 155 nm. Using the same tomographic inversion method employed for the visible TV, they reconstruct the poloidal distribution of the UV divertor light. The grain size of the phosphor plate and the optical system aberrations limit the best focus spot size to 60 {micro}m at the CID plane. The optical system is designed to withstand 350 C vessel bakeout, 2 T magnetic fields, and disruption-induced accelerations of the vessel.

  8. Recent progress in the NSTX/NSTX-U lithium programme and prospects for reactor-relevant liquid-lithium based divertor development

    NASA Astrophysics Data System (ADS)

    Ono, M.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Ahn, J.-W.; Allain, J. P.; Bell, M. G.; Bell, R. E.; Clayton, D. J.; Canik, J. M.; Ding, S.; Gerhardt, S.; Gray, T. K.; Guttenfelder, W.; Hirooka, Y.; Kallman, J.; Kaye, S.; Kumar, D.; LeBlanc, B. P.; Maingi, R.; Mansfield, D. K.; McLean, A.; Menard, J.; Mueller, D.; Nygren, R.; Paul, S.; Podesta, M.; Raman, R.; Ren, Y.; Sabbagh, S.; Scotti, F.; Skinner, C. H.; Soukhanovskii, V.; Surla, V.; Taylor, C. N.; Timberlake, J.; Zakharov, L. E.; the NSTX Research Team

    2013-11-01

    Developing a reactor-compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and other plasma performance benefits. During the 2010 NSTX campaign, application of a relatively modest amount of Li (300 mg prior to the discharge) resulted in a ˜50% reduction in heat load on the liquid lithium divertor (LLD) attributable to enhanced divertor bolometric radiation. These promising Li results in NSTX and related modelling calculations motivated the radiative LLD concept proposed here. Li is evaporated from the liquid lithium (LL) coated divertor strike-point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating the divertor heat removal. The LL coating of divertor surfaces can also provide a ‘sacrificial’ protective layer to protect the substrate solid material from transient high heat flux such as the ones caused by the edge localized modes. By operating at lower temperature than the first wall, the LL covered large divertor chamber wall surfaces can serve as an effective particle pump for the entire reactor chamber, as impurities generally migrate towards lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity (e.g., ˜1 l s-1 for ˜1% level ‘impurities’) is envisioned for a steady-state 1 GW-electric class fusion power plant.

  9. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    SciTech Connect

    Kugel, W.; Bell, M.; Berzak,L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren,R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov L. E.

    2008-09-26

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW~1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with longpulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  10. Detecting divertor damage during steady state operation of Wendelstein 7-X from thermographic measurements.

    PubMed

    Rodatos, A; Greuner, H; Jakubowski, M W; Boscary, J; Wurden, G A; Pedersen, T S; König, R

    2016-02-01

    Wendelstein 7-X (W7-X) aims to demonstrate the reactor capability of the stellarator concept, by creating plasmas with pulse lengths of up to 30 min at a heating power of up to 10 MW. The divertor plasma facing components will see convective steady state heat flux densities of up to 10 MW/m(2). These high heat flux target elements are actively cooled and are covered with carbon fibre reinforced carbon (CFC) as plasma facing material. The CFC is bonded to the CuCrZr cooling structure. Over the life time of the experiment this interface may weaken and cracks can occur, greatly reducing the heat conduction between the CFC tile and the cooling structure. Therefore, there is not only the need to monitor the divertor to prevent damage by overheating but also the need to detect these fatigue failures of the interface. A method is presented for an early detection of fatigue failures of the interface layer, solely by using the information delivered by the IR-cameras monitoring the divertor. This was developed and validated through experiments made with high heat flux target elements prior to installation in W7-X. PMID:26931848

  11. Measurements of non-axisymmetric effects in the DIII-D divertor

    SciTech Connect

    Evans, T.E,; Leonard, A.W.; Petrie, T.W.; Schaffer, M.J.; Lasnier, C.J.; Hill, D.N.; Fenstermacher, M.E.

    1994-07-01

    Non-stationary toroidal asymmetries are observed in the DIII-D divertor heat flux and scrape-off layer (SOL) currents. Using the present DIII-D diagnostics asymmetries are seen much less frequently in single-null H-modes (<5%) than in double-null H-modes (>50%). Divertor heat flux asymmetries are characterized by toroidal variations in the radial profile (i.e., multiple or bifurcated peaks at some toroidal locations and single peaks at others) while SOL currents sometimes have a strongly bipolar toroidal structure. SOL current asymmetries are particularly large during Edge Localized Modes (ELMs). In some cases heat flux variations of as much as a factor of two are seen. The measurements reported here indicate that these asymmetries are best described by a model in which non-axisymmetric radial magnetic perturbations create magnetic islands in the plasma boundary and scrape-off layer which then cause toroidal variation in the divertor heat flux and the scrape-off layer currents.

  12. Power exhaust in the snowflake divertor for L- and H-mode TCV tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Vijvers, W. A. J.; Canal, G. P.; Labit, B.; Reimerdes, H.; Tal, B.; Coda, S.; De Temmerman, G. C.; Duval, B. P.; Morgan, T. W.; Zielinski, J. J.; the TCV Team

    2014-02-01

    The snowflake (SF) divertor is a plasma configuration that may enable tokamak operation at high performance and lower peak heat loads on the plasma-facing components than a standard single-null divertor. This paper reports on the results of experiments performed on the TCV tokamak in both the low- and high-confinement regimes, wherein the divertor configuration was continuously varied between a standard single-null and a ‘SF-plus’, which features auxiliary strike points (SPs) in the private flux region of the primary separatrix. The measured edge properties show that, in L-mode, the fraction of the exhaust power reaching the additional SPs is small. During edge-localized modes, up to ˜20% of the exhausted energy is redistributed to the additional SPs even at an x-point separation of 0.6 times the plasma minor radius, thereby reducing the peak heat flux to the inner primary SP by a factor of 2-3. The observed behaviour is qualitatively consistent with a proposed model for enhanced cross-field transport through the SF's relatively large region of low poloidal field by instability-driven convection.

  13. Plasma flow and electron losses in the expander divertor of FRC

    NASA Astrophysics Data System (ADS)

    Yushmanov, P.; Barnes, D.; Dettrick, S.; Gupta, S.; Ryutov, D.; Krasheninnikov, S.; Necas, A.; Putvinski, S.

    2014-10-01

    Expander divertor is planned to be used in the design of next generation FRC device. The main goal of magnetic field expansion is to decrease heat load on the target plates and slow down heat losses through electron channel. A comprehensive study of expander divertor physics is initiated in Tri Alpha. It started with revision of pre-sheath electrostatic potential formation in the expander using both analytic and numerical means. An adaptation of 3D code KSOL has been developed to analyze electron physics and electrostatic potential formation. Initial results are presented. The key issue of the study is the analysis of the interaction of plasma with neutrals. Presence of neutrals affects expander physics in several ways. First of all, charge exchange and ionization modify pattern of ion flow in the expander magnetic field. That changes plasma density profile and affects formation of pre-sheath electrostatic potential. Second, ionization (as well as secondary electron emission) creates population of cold electrons in the expander which flow into confinement vessel and enhance out-flux of hot electrons. Distribution of neutrals is calculated in realistic geometry of expander divertor and effect on electron losses is evaluated.

  14. Exposures of tungsten nanostructures to divertor plasmas in DIII-D

    DOE PAGESBeta

    Rudakov, D. L.; Wong, C. P. C.; Doerner, R. P.; Wright, G. M.; Abrams, T.; Baldwin, M. J.; Boedo, J. A.; Briesemeister, A. R.; Chrobak, C. P.; Guo, H. Y.; et al

    2016-01-22

    Tungsten nanostructures (W-fuzz) prepared in the PISCES-A linear device have been found to survive direct exposure to divertor plasmas in DIII-D. W-fuzz was exposed in the lower divertor of DIII-D using the divertor material evaluation system. Two samples were exposed in lower single null (LSN) deuterium H-mode plasmas. The first sample was exposed in three discharges terminated by vertical displacement event disruptions, and the second in two discharges near the lowered X-point. More recently, three samples were exposed near the lower outer strike point in predominantly helium H-mode LSN plasmas. In all cases, the W-fuzz survived plasma exposure with littlemore » obvious damage except in the areas where unipolar arcing occurred. In conclusion, arcing is effective in W-fuzz removal, and it appears that surfaces covered with W-fuzz can be more prone to arcing than smooth W surfaces.« less

  15. Attainment of high confinement in neutral beam heated divertor discharges in the PDX tokamak

    SciTech Connect

    Kaye, S.M.; Bell, M.; Bol, K.; Boyd, D.; Brau, K.; Buchenauer, D.; Budny, R.; Cavallo, A.; Couture, P.; Crowley, T.

    1983-11-01

    The PDX divertor configuration has recently been converted from an open to a closed geometry to inhibit the return of neutral gas from the divertor region to the main chamber. Since then, operation in a regime with high energy confinement in neutral beam heated discharges (ASDEX H-mode) has been routine over a wide range of operating conditions. These H-mode discharges are characterized by a sudden drop in divertor density and H/sub ..cap alpha../ emission and a spontaneous rise in main chamber plasma density during neutral beam injection. The confinement time is found to scale nearly linearly with plasma current, but it can be degraded due to either the presence of edge instabilities or heavy gas puffing. Detailed Thomson scattering temperature profiles show high values of Te near the plasma edge (approx. 450 eV) with sharp radial gradients (approx. 400 eV/cm) near the separatrix. Density profiles are broad and also exhibit steep gradients close to the separatrix.

  16. High heat flux Langmuir probe array for the DIII-D divertor plates

    SciTech Connect

    Watkins, J. G.; Nygren, R. E.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.

    2008-10-15

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m{sup 2} for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5 deg. surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric 'rooftop' design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of J{sub sat}, T{sub e}, and V{sub f} with 4 mm spatial resolution are shown.

  17. Finite Element Modelling of Transport and Drift Effects in Tokamak Divertor and SOL.

    NASA Astrophysics Data System (ADS)

    Simard, M.; Marchand, R.; Stansfield, B. L.; Boucher, C.; Mailloux, J.; Gunn, J. P.

    1996-11-01

    A finite element code is used to simulate transport of a single-species plasma in the edge and divertor of a tokamak. The physical model is based on Braginskii's fluid equations for the conservation of particles, parallel momentum, ion and electron energy. In modelling recycling, transport of neutral density and energy is treated in the diffusion approximation. The electrostatic potential is obtained self-consistently from the charge conservation equation and from the generalized Ohm's law. In the transport equations, particle drifts (both E×B and diamagnetic) are included. Transport also accounts for a current flowing in the edge. Simulations with different types of boundary conditions, recently proposed in the literature, are considered and assessed. Comparisons are made between simulation and experimental results from TdeV. Particular attention is given to density and temperature profiles at the divertor plates, and to the plasma parallel velocity in the SOL with and without divertor plate biasing. Supported by the Government of Canada, Hydro-Québec and INRS

  18. Automated divertor target design by adjoint shape sensitivity analysis and a one-shot method

    SciTech Connect

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2014-12-01

    As magnetic confinement fusion progresses towards the development of first reactor-scale devices, computational tokamak divertor design is a topic of high priority. Presently, edge plasma codes are used in a forward approach, where magnetic field and divertor geometry are manually adjusted to meet design requirements. Due to the complex edge plasma flows and large number of design variables, this method is computationally very demanding. On the other hand, efficient optimization-based design strategies have been developed in computational aerodynamics and fluid mechanics. Such an optimization approach to divertor target shape design is elaborated in the present paper. A general formulation of the design problems is given, and conditions characterizing the optimal designs are formulated. Using a continuous adjoint framework, design sensitivities can be computed at a cost of only two edge plasma simulations, independent of the number of design variables. Furthermore, by using a one-shot method the entire optimization problem can be solved at an equivalent cost of only a few forward simulations. The methodology is applied to target shape design for uniform power load, in simplified edge plasma geometry.

  19. Detecting divertor damage during steady state operation of Wendelstein 7-X from thermographic measurements

    NASA Astrophysics Data System (ADS)

    Rodatos, A.; Greuner, H.; Jakubowski, M. W.; Boscary, J.; Wurden, G. A.; Pedersen, T. S.; König, R.

    2016-02-01

    Wendelstein 7-X (W7-X) aims to demonstrate the reactor capability of the stellarator concept, by creating plasmas with pulse lengths of up to 30 min at a heating power of up to 10 MW. The divertor plasma facing components will see convective steady state heat flux densities of up to 10 MW/m2. These high heat flux target elements are actively cooled and are covered with carbon fibre reinforced carbon (CFC) as plasma facing material. The CFC is bonded to the CuCrZr cooling structure. Over the life time of the experiment this interface may weaken and cracks can occur, greatly reducing the heat conduction between the CFC tile and the cooling structure. Therefore, there is not only the need to monitor the divertor to prevent damage by overheating but also the need to detect these fatigue failures of the interface. A method is presented for an early detection of fatigue failures of the interface layer, solely by using the information delivered by the IR-cameras monitoring the divertor. This was developed and validated through experiments made with high heat flux target elements prior to installation in W7-X.

  20. High internal inductance for steady-state operation in ITER and a reactor

    NASA Astrophysics Data System (ADS)

    Ferron, J. R.; Holcomb, C. T.; Luce, T. C.; Park, J. M.; Kolemen, E.; La Haye, R. J.; Solomon, W. M.; Turco, F.

    2015-07-01

    Increased confinement and ideal stability limits at relatively high values of the internal inductance ({{\\ell}i} ) have enabled an attractive scenario for steady-state tokamak operation to be demonstrated in DIII-D. Normalized plasma pressure in the range appropriate for a reactor has been achieved in high elongation and triangularity double-null divertor discharges with {β\\text{N}}≈ 5 at {{\\ell}i}≈ 1.3 , near the ideal n=1 kink stability limit calculated without the effect of a stabilizing vacuum vessel wall, with the ideal-wall limit still higher at {β\\text{N}}>5.5 . Confinement is above the H-mode level with {{H}98≤ft(\\text{y,2\\right)}}≈ 1.8 . At {{q}95}≈ 7.5 , the current is overdriven, with bootstrap current fraction {{f}\\text{BS}}≈ 0.8 , noninductive current fraction {{f}\\text{NI}}>1 and negative surface voltage. For ITER (which has a single-null divertor shape), operation at {{\\ell}i}≈ 1 is a promising option with {{f}\\text{BS}}≈ 0.5 and the remaining current driven externally near the axis where the electron cyclotron current drive efficiency is high. This scenario has been tested in the ITER shape in DIII-D at {{q}95}=4.8 , so far reaching {{f}\\text{NI}}=0.7 and {{f}\\text{BS}}=0.4 at {β\\text{N}}≈ 3.5 with performance appropriate for the ITER Q=5 mission, {{H}89}{β\\text{N}}/q952≈ 0.3 . Modeling studies explored how increased current drive power for DIII-D could be applied to maintain a stationary, fully noninductive high {{\\ell}i} discharge. Stable solutions in the double-null shape are found without the vacuum vessel wall at {β\\text{N}}=4 , {{\\ell}i}=1.07 and {{f}\\text{BS}}=0.5 , and at {β\\text{N}}=5 with the vacuum vessel wall.

  1. Establishing Physical and Engineering Science Base to Bridge from ITER to Demo

    NASA Astrophysics Data System (ADS)

    Peng, Y.-K. Martin; Abdou, M.; Gates, D.; Hegna, C.; Hill, D.; Najmabadi, F.; Navratil, G.; Parker, R.

    2007-11-01

    A Nuclear Component Testing (NCT) Discussion Group emerged recently to clarify how ``a lowered-risk, reduced-cost approach can provide a progressive fusion environment beyond the ITER level to explore, discover, and help establish the remaining, critically needed physical and engineering sciences knowledge base for Demo.'' The group, assuming success of ITER and other contemporary projects, identified critical ``gap-filling'' investigations: plasma startup, tritium self-sufficiency, plasma facing surface performance and maintainability, first wall/blanket/divertor materials defect control and lifetime management, and remote handling. Only standard or spherical tokamak plasma conditions below the advanced regime are assumed to lower the anticipated physics risk to continuous operation (˜2 weeks). Modular designs and remote handling capabilities are included to mitigate the risk of component failure and ease replacement. Aspect ratio should be varied to lower the cost, accounting for the contending physics risks and the near-term R&D. Cost and time-effective staging from H-H, D-D, to D-T will also be considered. *Work supported by USDOE.

  2. Investigation of transport in the ignited ITER plasma by computer simulations

    NASA Astrophysics Data System (ADS)

    Becker, G.

    1993-10-01

    Transport simulations with special versions of the one dimensional BALDUR predictive code are used to explore the energy and particle confinement, bootstrap current, ideal ballooning stability and burn control in the high density scenario of the ITER (CDA) physics phase. The code applies empirical transport coefficients for ELMy H mode plasmas and includes a scrape-off layer (SOL) model, an impurity radiation model for helium and iron, and burn control by neutral beam injection feedback. It is shown that a self-sustained thermonuclear burn with (Ti) approximately=10 keV can be achieved for the proposed 200 s and that the burn control scheme is efficient, even in the presence of sawteeth. The required energy confinement time is found to be 4.2 s, which is achievable according to the ITER H mode scaling. The radiation loss necessary for halving the divertor heat load is attained with 0.2% iron while blowing in carbon fails because of its unfavourable radiation profile. Inclusion of the SOL model yields self-consistent densities (ne(rs)=5*1019m-3) and temperatures at the separatrix. A bootstrap current of 2.7 MA is computed, which represents a small fraction of the total current and has little impact on the current profile. The resistive timescale for current redistribution is about 100 s. Local analysis of the ideal ballooning stability shows that the plasma is stable, even with the bootstrap current included. Sensitivity studies for some uncertain parameters and dependences are carried out

  3. A protection system for the JET ITER-like wall based on imaging diagnostics.

    PubMed

    Arnoux, G; Devaux, S; Alves, D; Balboa, I; Balorin, C; Balshaw, N; Beldishevski, M; Carvalho, P; Clever, M; Cramp, S; de Pablos, J-L; de la Cal, E; Falie, D; Garcia-Sanchez, P; Felton, R; Gervaise, V; Goodyear, A; Horton, A; Jachmich, S; Huber, A; Jouve, M; Kinna, D; Kruezi, U; Manzanares, A; Martin, V; McCullen, P; Moncada, V; Obrejan, K; Patel, K; Lomas, P J; Neto, A; Rimini, F; Ruset, C; Schweer, B; Sergienko, G; Sieglin, B; Soleto, A; Stamp, M; Stephen, A; Thomas, P D; Valcárcel, D F; Williams, J; Wilson, J; Zastrow, K-D

    2012-10-01

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  4. Bioinspired Iterative Synthesis of Polyketides

    NASA Astrophysics Data System (ADS)

    Hong, Ran; Zheng, Kuan; Xie, Changmin

    2015-05-01

    Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development.

  5. Bioinspired iterative synthesis of polyketides

    PubMed Central

    Zheng, Kuan; Xie, Changmin; Hong, Ran

    2015-01-01

    Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development. PMID:26052510

  6. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    NASA Technical Reports Server (NTRS)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  7. Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER

    NASA Astrophysics Data System (ADS)

    Eich, T.; Leonard, A. W.; Pitts, R. A.; Fundamenski, W.; Goldston, R. J.; Gray, T. K.; Herrmann, A.; Kirk, A.; Kallenbach, A.; Kardaun, O.; Kukushkin, A. S.; LaBombard, B.; Maingi, R.; Makowski, M. A.; Scarabosio, A.; Sieglin, B.; Terry, J.; Thornton, A.; ASDEX Upgrade Team; EFDA Contributors, JET

    2013-09-01

    A multi-machine database for the H-mode scrape-off layer power fall-off length, λq in JET, DIII-D, ASDEX Upgrade, C-Mod, NSTX and MAST has been assembled under the auspices of the International Tokamak Physics Activity. Regression inside the database finds that the most important scaling parameter is the poloidal magnetic field (or equivalently the plasma current), with λq decreasing linearly with increasing Bpol. For the conventional aspect ratio tokamaks, the regression finds \\lambda_{q} \\propto B_{tor}^{-0.8} \\cdot q_{95}^{1.1} \\cdot P_{SOL}^{0.1} \\cdot R_{geo}^{0} , yielding λq,ITER ≅ 1 mm for the baseline inductive H-mode burning plasma scenario at Ip = 15 MA. The experimental divertor target heat flux profile data, from which λq is derived, also yield a divertor power spreading factor (S) which, together with λq, allows an integral power decay length on the target to be estimated. There are no differences in the λq scaling obtained from all-metal or carbon dominated machines and the inclusion of spherical tokamaks has no significant influence on the regression parameters. Comparison of the measured λq with the values expected from a recently published heuristic drift based model shows satisfactory agreement for all tokamaks.

  8. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  9. ITER Plasma Control System Development

    NASA Astrophysics Data System (ADS)

    Snipes, Joseph; ITER PCS Design Team

    2015-11-01

    The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.

  10. Progress on US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Johnson, David; Feder, Russ

    2010-11-01

    There have been significant advances in the design concepts for the 8 ITER diagnostic systems being provided by the US. Concepts for integration of the diagnostics into the port plugs have also evolved. A prerequisite for the signoff of the procurement arrangements for these each diagnostic is a Conceptual Design Review organized by the ITER Organization. US experts under contract with the USIPO have been assisting the IO to prepare for these Reviews. In addition, a design team at PPPL has been working with these experts and designers from other ITER parties to package diagnostic front-ends into the 5 US plugs. Modular diagnostic shield modules are now being considered in order to simplify the interfaces between the diagnostics within each plug. Diagnostic first wall elements are envisioned to be integral with these shield modules. This simplifies the remote handling of the diagnostics and provides flexibility for future removal of one diagnostic minimally affecting others. Front-end configurations will be presented, along with lists of issues needing resolution prior to the start of preliminary design.

  11. Iterative Methods to Solve Linear RF Fields in Hot Plasma

    NASA Astrophysics Data System (ADS)

    Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo

    2014-10-01

    Most magnetic plasma confinement devices use radio frequency (RF) waves for current drive and/or heating. Numerical modeling of RF fields is an important part of performance analysis of such devices and a predictive tool aiding design and development of future devices. Prior attempts at this modeling have mostly used direct solvers to solve the formulated linear equations. Full wave modeling of RF fields in hot plasma with 3D nonuniformities is mostly prohibited, with memory demands of a direct solver placing a significant limitation on spatial resolution. Iterative methods can significantly increase spatial resolution. We explore the feasibility of using iterative methods in 3D full wave modeling. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating along test particle orbits. The wave equation is discretized using a finite difference approach. The initial guess is important in iterative methods, and we examine different initial guesses including the solution to the cold plasma wave equation. Work is supported by the U.S. DOE SBIR program.

  12. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-11-01

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature Te estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300-1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time Te-dependent signal within a characteristic divertor detachment equilibration time of ˜10-15 ms is expected.

  13. Rater variables associated with ITER ratings.

    PubMed

    Paget, Michael; Wu, Caren; McIlwrick, Joann; Woloschuk, Wayne; Wright, Bruce; McLaughlin, Kevin

    2013-10-01

    Advocates of holistic assessment consider the ITER a more authentic way to assess performance. But this assessment format is subjective and, therefore, susceptible to rater bias. Here our objective was to study the association between rater variables and ITER ratings. In this observational study our participants were clerks at the University of Calgary and preceptors who completed online ITERs between February 2008 and July 2009. Our outcome variable was global rating on the ITER (rated 1-5), and we used a generalized estimating equation model to identify variables associated with this rating. Students were rated "above expected level" or "outstanding" on 66.4 % of 1050 online ITERs completed during the study period. Two rater variables attenuated ITER ratings: the log transformed time taken to complete the ITER [β = -0.06, 95 % confidence interval (-0.10, -0.02), p = 0.002], and the number of ITERs that a preceptor completed over the time period of the study [β = -0.008 (-0.02, -0.001), p = 0.02]. In this study we found evidence of leniency bias that resulted in two thirds of students being rated above expected level of performance. This leniency bias appeared to be attenuated by delay in ITER completion, and was also blunted in preceptors who rated more students. As all biases threaten the internal validity of the assessment process, further research is needed to confirm these and other sources of rater bias in ITER ratings, and to explore ways of limiting their impact.

  14. Iterates of maps with symmetry

    NASA Technical Reports Server (NTRS)

    Chossat, Pascal; Golubitsky, Martin

    1988-01-01

    Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.

  15. Development of ITER 15 MA ELMy H-mode Inductive Scenario

    SciTech Connect

    Kessel, C. E.; Campbell, D.; Gribov, Y.; Saibene, G.; Ambrosino, G.; Casper, T.; Cavinato, M.; Fujieda, H.; Hawryluk, R.; Horton, L. D.; Kavin, A.; Kharyrutdinov, R.; Koechl, F.; Leuer, J.; Loarte, A.; Lomas, P. J.; Luce, T.; Lukash, V.; Mattei, M.; Nunes, I.; Parail, V.; Polevoi, A.; Portone, A.; Sartori, R.; Sips, A. C.C.; Thomas, P. R.; Welander, A.; Wesley, J.

    2008-10-16

    The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming, and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode, and a late H-mode onset. Equilibrium analyses for this scenario indicate that the original PF coil limitations do not allow low li (<0.8) operation or lower flux states, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the CS and PF coils during a series of disturbances and a feasibility assessment of the 17 MA scenario was undertaken. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation.

  16. Experimental measurements and modeling of impurity transport in the divertor and boundary plasma of DIII-D

    SciTech Connect

    West, W.P.; Brooks, N.H.; Allen, S.L.

    1994-07-01

    Analysis of trace impurity injection experiments on DIII-D during a beam power scan is presented. Spectroscopic measu- rements indicate that as beam power is increased, and concomitantly ELM frequency and scrape-off-layer thickness increase while energy confinement decreases, the core impurity content decreases only slightly. Modeling of the edge plasma using the UEDGE 2D and NEWT1D plasma fluid codes indicate that as beam power is increased, the parallel forces on an impurity ion increase in the direction from the divertor and toward the core plasma. Experiments using the divertor cryopump to induce higher parallel particle flow toward the divertor demonstrate significant reduction in core impurity content. These results indicate that parallel forces on impurity ions in the scrape off layer are playing a significant role in core impurity content.

  17. Coherence imaging of scrape-off-layer and divertor impurity flows in the Mega Amp Spherical Tokamak (invited)

    SciTech Connect

    Silburn, S. A. Sharples, R. M.; Harrison, J. R.; Meyer, H.; Michael, C. A.; Howard, J.; Gibson, K. J.

    2014-11-15

    A new coherence imaging Doppler spectroscopy diagnostic has been deployed on the UK’s Mega Amp Spherical Tokamak for scrape-off-layer and divertor impurity flow measurements. The system has successfully obtained 2D images of C III, C II, and He II line-of-sight flows, in both the lower divertor and main scrape-off-layer. Flow imaging has been obtained at frame rates up to 1 kHz, with flow resolution of around 1 km/s and spatial resolution better than 1 cm, over a 40° field of view. C III data have been tomographically inverted to obtain poloidal profiles of the parallel impurity flow in the divertor under various conditions. In this paper we present the details of the instrument design, operation, calibration, and data analysis as well as a selection of flow imaging results which demonstrate the diagnostic's capabilities.

  18. Coherence imaging of scrape-off-layer and divertor impurity flows in the Mega Amp Spherical Tokamak (invited).

    PubMed

    Silburn, S A; Harrison, J R; Howard, J; Gibson, K J; Meyer, H; Michael, C A; Sharples, R M

    2014-11-01

    A new coherence imaging Doppler spectroscopy diagnostic has been deployed on the UK's Mega Amp Spherical Tokamak for scrape-off-layer and divertor impurity flow measurements. The system has successfully obtained 2D images of C III, C II, and He II line-of-sight flows, in both the lower divertor and main scrape-off-layer. Flow imaging has been obtained at frame rates up to 1 kHz, with flow resolution of around 1 km/s and spatial resolution better than 1 cm, over a 40° field of view. C III data have been tomographically inverted to obtain poloidal profiles of the parallel impurity flow in the divertor under various conditions. In this paper we present the details of the instrument design, operation, calibration, and data analysis as well as a selection of flow imaging results which demonstrate the diagnostic's capabilities.

  19. A physical model of an ejection suppressed CPS liquid lithium divertor target

    NASA Astrophysics Data System (ADS)

    Ou, Wei; Zheng, X. J.; Gou, F. J.; Deng, B. Q.; Peng, L. L.; Cao, X.; Zhang, W. W.; Xue, X. Y.

    2015-04-01

    A physical model has been developed which includes high temperature liquid lithium evaporation, the expanding motion of the liquid lithium vapour cloud, the shielding effects of the vapour cloud on incident plasma particle bombardments, ejection suppressed analysis and a perpendicular field proposal, and photon radiation, heat flux and transport in the lithium vapour cloud plasma. The engineering outline design scheme and the relevant parameters for the liquid lithium surface divertor target plate configured by discrete tiny capillary arrays have been established. Splashing can be suppressed by utilizing discrete and electrical insulating capillary porous systems (CPSs), since the conductivity among the capillary cells has been cut off by adopting a special kind of ceramic composite material made of a non-conducting and unbreakable composite which is able to withstand high temperatures. The formula to describe the temperature-dependent evaporation power has been derived. The maximum temperature increases of the discrete plasma-facing liquid lithium surface divertor target plate have been compared under the high energy flux deposition of 10 MJ m-2 during a 1 ms time duration with or without evaporation power. The results show that a high surface heat load can be withstood by the designed discrete plasma-facing liquid lithium surface divertor target plate due to violent evaporation. The energy deposition of incident energetic particles and weakly relativistic electrons from the scrape-off layer have been calculated. A laboratory experimental facility to simulate liquid lithium surface interactions with plasma has been set up. Research on lithium evaporation, re-deposition and ejection suppressed experiments under high density linear plasma dumping is ongoing.

  20. Far ultraviolet polychromator for spectroscopic characterization of the tokamak divertor and plasma scrape-off layer

    SciTech Connect

    Soukhanovskii, V.A.; Stutman, D.; May, M.J.; Finkenthal, M.; Moos, H.W.; Terry, J.L.; Goetz, J.A.; Lipschultz, B.

    1999-01-01

    The Plasma Spectroscopy Group of The Johns Hopkins University is developing diagnostics for spectroscopic characterization of the tokamak plasma scrape-off layer and divertor regions. A far ultraviolet polychromator has been designed for radiative divertor studies at the Alcator C-Mod and D-IIID tokamaks. Local measurements of resonant transitions of lithium- to boron-like ions of intrinsic or seeded low {ital Z} impurity elements will be performed along multiple chords around the {ital X} point. Planar diffraction gratings and stacked grids will be used for dispersion and angular collimation of radiation. Phosphor wavelength converters coupled to a photomultiplier tube by an optical fiber will be used as detectors. The design provides a wavelength resolution of {approx_equal}10 {Angstrom}, a spatial resolution of {le}2 cm, and an adequate photometric sensitivity. The in-vessel instrument, proposed for the Alcator C-Mod tokamak, will measure intensities of the lines at 1240 (N V), 765, 923 (N IV), and 990 {Angstrom} (N III). The port-mounted polychromator at DIII-D will be able to monitor intensities of 1550 (C IV), 977, 1176 (C III), and 1335 {Angstrom} (C II) lines. This, together with visible and bolometric diagnostics, should enable estimates of power losses, charge state distribution and local transport of the impurity ions in the divertor. A one-channel prototype of the C-Mod and D-IIID instruments is being built for the CDX-U spherical tokamak. Line-integrated brightnesses of the 2s{endash}2p transition at 1550 {Angstrom} will be measured and inverted to obtain C IV emissivity distribution. {copyright} {ital 1999 American Institute of Physics.}

  1. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    SciTech Connect

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-04-01

    V-4Cr-4-Ti alloy has been recently selected for use in the manufacture of a portion of the DIII-D Radiative Divertor modification, as part of an overall DIII-D vanadium alloy deployment effort developed by General Atomics (GA) in conjunction with the Argonne and Oak Ridge National Laboratories (ANL or ORNL). The goal of this work is to produce a production-scale heat of the alloy and fabricate it into product forms for the manufacture of a portion of the Radiative Divertor (RD) for the DIII-D tokamak, to develop the fabrications technology for manufacture of the vanadium alloy radiative Divertor components, and to determine the effects of typical tokamak environments in the behavior of the vanadium alloy. The production of a {approx}1300-kg heat of V-4Cr-4Ti alloy is currently in progress at Teledyne Wah Chang of Albany, oregon (TWCA) to provide sufficient material for applicable product forms. Two unalloyed vanadium ingots for the alloy have already been produced by electron beam melting of raw processes vanadium. Chemical compositions of one ingot and a portion of the second were acceptable, and Charpy V-Notch (CVN) impact test performed on processed ingot samples indicated ductile behavior. Material from these ingots are currently being blended with chromium and titanium additions, and will be vacuum-arc remelted into a V-4Cr-4Ti alloy ingot and converted into product forms suitable for components of the DIII-D RD structure. Several joining methods selected for specific applications in fabrication of the RD components are being investigated, and preliminary trials have been successful in the joining of V-alloy to itself by both resistance and inertial welding processes and to Inconel 625 by inertial welding.

  2. ETR/ITER systems code

    SciTech Connect

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  3. ITER Port Interspace Pressure Calculations

    SciTech Connect

    Carbajo, Juan J; Van Hove, Walter A

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  4. Iterated Stretching of Viscoelastic Jets

    NASA Technical Reports Server (NTRS)

    Chang, Hsueh-Chia; Demekhin, Evgeny A.; Kalaidin, Evgeny

    1999-01-01

    We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of FENE and Oldroyd-B jets of initial radius r(sub 0), shear viscosity nu, Weissenberg number We, retardation number S, and capillary number Ca. The usual Rayleigh instability stretches the local uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius [Ca(1 - S)/ We](sup 1/2)r(sub 0) between two beads. The strain-rate within the filament remains constant while its radius (elastic stress) decreases (increases) exponentially in time with a long elastic relaxation time 3We(r(sup 2, sub 0)/nu). Instabilities convected from the bead relieve the tension at the necks during this slow elastic drainage and trigger a filament recoil. Secondary filaments then form at the necks from the resulting stretching. This iterated stretching is predicted to occur successively to generate high-generation filaments of radius r(sub n), (r(sub n)/r(sub 0)) = square root of 2[r(sub n-1)/r(sub 0)](sup 3/2) until finite-extensibility effects set in.

  5. Impurity ion flow and temperature measured in a detached divertor with externally applied non-axisymmetric fields on DIII-D

    DOE PAGESBeta

    Briesemeister, A. R.; Isler, R. C.; Allen, S. L.; Ahn, J. -W.; McLean, A. G.; Unterberg, E. A.; Hillis, D. L.; Fenstermacher, M. E.; Meyer, W. H.

    2014-11-15

    Externally applied non-axisymmetric magnetic fields are shown to have little effect on the impurity ion flow velocity and temperature as measured by the multichord divertor spectrometer in the DIII-D divertor for both attached and detached conditions. These experiments were performed in H-mode plasmas with the grad-B drift toward the target plates, with and without n = 3 resonant magnetic perturbations (RMPs). The flow velocity in the divertor is shown to change by as much as 30% when deuterium gas puffing is used to create detachment of the divertor plasma. No measurable changes in the C III flow were observed inmore » response to the RMP fields for the conditions used in this work. Images of the C III emission are used along with divertor Thomson scattering to show that the local electron and C III temperatures are equilibrated for the conditions shown.« less

  6. Experimental Evidence on Iterated Reasoning in Games

    PubMed Central

    Grehl, Sascha; Tutić, Andreas

    2015-01-01

    We present experimental evidence on two forms of iterated reasoning in games, i.e. backward induction and interactive knowledge. Besides reliable estimates of the cognitive skills of the subjects, our design allows us to disentangle two possible explanations for the observed limits in performed iterated reasoning: Restrictions in subjects’ cognitive abilities and their beliefs concerning the rationality of co-players. In comparison to previous literature, our estimates regarding subjects’ skills in iterated reasoning are quite pessimistic. Also, we find that beliefs concerning the rationality of co-players are completely irrelevant in explaining the observed limited amount of iterated reasoning in the dirty faces game. In addition, it is demonstrated that skills in backward induction are a solid predictor for skills in iterated knowledge, which points to some generalized ability of the subjects in iterated reasoning. PMID:26312486

  7. Magnetic-divertor stabilization of an axisymmetric plasma with anisotropic temperature

    SciTech Connect

    Sasagawa, Y.; Katanuma, I.; Mizoguchi, Y.; Cho, T.; Pastukhov, V. P.

    2006-12-15

    Magnetohydrodynamic stabilization of an axisymmetric mirror plasma with a magnetic divertor is studied. An equation is found for the flute modes, which includes the stabilizing influence of ion temperature anisotropy and nonparaxial magnetic fields, as well as a finite ion Larmor radius. It is shown that if the density profile is sufficiently gentle, then the nonparaxial configuration can stabilize all modes as long as ion temperature is radially uniform. This can be demonstrated even when the density vanishes on the separatrix and even for small ion Larmor radii. It is found, however, that the ion temperature gradient makes the unstable region wider; high ion temperature is required to stabilize the flute mode.

  8. One-dimensional transport code modelling of the limiter-divertor region in tokamaks

    SciTech Connect

    Ogden, J.M.; Post, D.E.; Jensen, R.V.; Seidl, F.G.P.

    1980-02-01

    A model of the limiter-divertor scrape-off region has been incorporated into the BALDUR one-dimensional tokamak transport code. Simulations of PDX and ALCATOR have been carried out for ohmic and neutral beam heated cases. In particular, we have studied how the edge conditions and energy loss mechanisms of PDX depend upon plasma density, and compared our results with analytic estimates. The sensitivity of the results to changes in the transport coefficients and scrape-off model is also discussed.

  9. Design and calibration of the fast ion diagnostic experiment detector on the poloidal divertor experiment

    SciTech Connect

    Kaita, R.; Goldston, R.J.; Meyerhofer, D.; Eridon, J.

    1981-12-01

    A special purpose charge-exchange analyzer was constructed to measure the spatial distribution of hot-plasma ions, as a function of energy and time, in the poloidal divertor experiment (PDX). The fast neutrals produced by charge exchange within the tokamak are reionized as they pass through a helium stripping cell in the detector. The energies of these ions are determined by the trajectories they follow between cylindrical deflection plates which are set at known electrostatic potentials. We describe the technique used to calibrate the response of this system as it depends on the energies and the masses of the particles which are being detected.

  10. Fast time resolution charge-exchange measurements during the fishbone instability in the poloidal divertor experiment

    SciTech Connect

    Beiersdorfer, P.; Kaita, R.; Goldston, R.J.

    1984-01-01

    Measurements of fast ion losses due to the fishbone instability during high ..beta../sub T/q neutral beam heated discharges in the Poloidal Divertor Experiment have been made using two new vertical-viewing charge-exchange analyzers. The measurements show that the instability has an n=1 toroidal mode number, and that it ejects beam ions in a toroidally rotating beacon directed outward along a major radius. Observations of ejected ions with energies up to twice the beam injection energy at R approx. = R/sub 0/ + a indicate the presence of a non-..mu..-conserving acceleration mechanism.

  11. Preconditioned iterations to calculate extreme eigenvalues

    SciTech Connect

    Brand, C.W.; Petrova, S.

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  12. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    SciTech Connect

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  13. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    NASA Astrophysics Data System (ADS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  14. Simulation of transport in the ignited ITER with 1.5-D predictive code

    NASA Astrophysics Data System (ADS)

    Becker, G.

    1995-01-01

    The confinement in the bulk and scrape-off layer plasmas of the ITER EDA and CDA is investigated with special versions of the 1.5-D BALDUR predictive transport code for the case of peaked density profiles (Cu=1.0). The code self-consistently computes 2-D equilibria and solves 1-D transport equations with empirical transport coefficients for the ohmic, L and ELMy H mode regimes. Self-sustained steady state thermonuclear burn is demonstrated for up to 500 s. It is shown to be compatible with the strong radiation losses for divertor heat load reduction caused by the seeded impurities iron, neon and argon. The corresponding global and local energy and particle transport are presented. The required radiation corrected energy confinement times of the EDA and CDA are found to be close to 4 s, which is attainable according to the ITER ELMy H mode scalings. In the reference cases, the steady state helium fraction is 7%, which already causes significant dilution of the DT fuel. The fractions of iron, neon and argon needed for the prescribed radiative power loss are given. It is shown that high radiative losses from the confinement zone, mainly by bremsstrahlung, cannot be avoided. The radiation profiles of iron and argon are found to be the same, with two thirds of the total radiation being emitted from closed flux surfaces. Fuel dilution due to iron and argon is small. The neon radiation is more peripheral, since only half of the total radiative power is lost within the separatrix. But neon is found to cause high fuel. Dilution. The combined dilution effect by helium and neon conflicts with burn control, self-sustained burn and divertor power reduction. Raising the helium fraction above 10% leads to the same difficulties owing to fuel dilution. The high helium levels of the present EDA design are thus unacceptable. For the reference EDA case, the self-consistent electron density and temperature at the separatrix are 5.6*1019 m-3 and 130 eV, respectively. The bootstrap

  15. TOPICAL REVIEW: Tritium inventory in ITER plasma-facing materials and tritium removal procedures

    NASA Astrophysics Data System (ADS)

    Roth, Joachim; Tsitrone, Emmanuelle; Loarer, Thierry; Philipps, Volker; Brezinsek, Sebastijan; Loarte, Alberto; Counsell, Glenn F.; Doerner, Russell P.; Schmid, Klaus; Ogorodnikova, Olga V.; Causey, Rion A.

    2008-10-01

    Interactions between the plasma and the vessel walls constitute a major engineering problem for next step fusion devices, such as ITER, determining the choice of the plasma-facing materials. A prominent issue in this choice is the tritium inventory build-up in the vessel, which must be limited for safety reasons. The initial material selection, i.e. beryllium (Be) on the main vessel walls, tungsten (W) on the divertor upper baffle and dome, and carbon fibre composite around the strike points on the divertor plates, results both from the attempt to reduce the tritium inventory and to optimize the lifetime of the plasma-facing components. In the framework of the EU Task Force on Plasma-Wall Interaction (PWI TF), the many physics aspects governing the tritium inventory are brought together. Together with supporting information from international experts represented by the ITPA SOL/DIV section, this paper describes the present status of knowledge of the in-vessel tritium inventory build-up. Firstly, the main results from present fusion devices in this field are briefly reviewed. Then, the processes involved are discussed: implantation, trapping and diffusion in plasma-facing materials are considered as well as surface erosion and co-deposition of tritium with eroded material. The intermixing of the different materials and its influence on hydrogen retention and co-deposition is a major source of uncertainty on present estimates and is also addressed. Based on the previous considerations, estimates for the tritium inventory build-up are given for the initial choice of ITER materials, as well as for alternative options. Present estimates indicate a build-up of the tritium inventory to the administrative limit within a few hundred nominal full power D : T discharges, co-deposition with carbon being the dominant process. Therefore, tritium removal methods are also an active area of research within the EU PWI TF, and are discussed. An integrated operational scheme to slow

  16. Planning as an Iterative Process

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    2012-01-01

    Activity planning for missions such as the Mars Exploration Rover mission presents many technical challenges, including oversubscription, consideration of time, concurrency, resources, preferences, and uncertainty. These challenges have all been addressed by the research community to varying degrees, but significant technical hurdles still remain. In addition, the integration of these capabilities into a single planning engine remains largely unaddressed. However, I argue that there is a deeper set of issues that needs to be considered namely the integration of planning into an iterative process that begins before the goals, objectives, and preferences are fully defined. This introduces a number of technical challenges for planning, including the ability to more naturally specify and utilize constraints on the planning process, the ability to generate multiple qualitatively different plans, and the ability to provide deep explanation of plans.

  17. Electron energy distribution function in the divertor region of the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Dimitrova, M.; Hasan, E.; Ivanova, P.; Vasileva, E.; Popov, Tsv; Dejarnac, R.; Stöckel, J.; Panek, R.

    2016-03-01

    The plasma parameters during an L-mode hydrogen discharge in the COMPASS tokamak with a toroidal magnetic field BT =1.15 T, line-averaged electron density ne = 6×1019 m-3 and a plasma current variation from 209 kA to 100 kA were studied in the divertor region. The electron energy distribution function for 209 kA at the high-field side and the private region is Maxwellian with a temperature in the range of 5 -- 9 eV, while around the outer strike point and the low-field side it is bi-Maxwellian with a low-energy electron group (4 -- 5 eV) and higher energy electrons (10 -- 20 eV). As the plasma current decreases, the appearance of the bi-Maxwellian EEDF is shifted towards the low-field side; at plasma current of 100 kA, the EEDF is Maxwellian in the whole divertor region.

  18. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    SciTech Connect

    Johnson, W.R.; Smith, J.P.

    1997-08-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging.

  19. Analytic criteria for power exhaust in divertors due to impurity radiation

    NASA Astrophysics Data System (ADS)

    Post, D.; Putvinskaya, N.; Perkins, F. W.; Nevins, W.

    1995-04-01

    Impurity radiation is a key mechanism in divertor concepts to transfer the energy from the edge plasma to the main chamber and divertor chamber walls [G. Janeschitz, J. Nucl. Mater., to appear (1994)]. Using ADPAK impurity radiation rates [R. Hulse, Nucl. Techn./Fusion 3 (1989) 259; D.E. Post, R.V. Jensen, C.B. Tarter, W.H. Grasberger, W.A. Lokke, At. Data Nucl. Data Tables 20 (1977) 397], we have developed criteria both for the required impurity fraction, impurity species, connection length and mid-plane electron temperature and density and for the required enhancement over coronal equilibrium due to charge exchange recombination and impurity recycling to radiate a given power for Be, C, Ne, and Ar [L. Lengyel, IPP, 1/191 (1981); P.H. Rebut, B.J. Green, Plasma Physics and Controlled Nuclear Fusion Research 1976, vol. 2 (IAEA, 1977) pp. 3-17; K. Lackner, R. Schneider, Fusion Eng. Design 22 (1993) 107; R.A. Hulse, D.E. Post, D.R. Mikkelsen, J. Phys. B 13 (1980) 3895); J. Hogan, Physics of Electronic and Atomic Collisions, S. Datz, ed. (North-Holland, Amsterdam, 1982); S. Allen, M. Rensink, D. Hill, R. Wood, J. Nucl. Mater. 196-198 (1992) 804].

  20. Measurements of plasma sheath heat flux in the Alcator C-Mod divertor

    NASA Astrophysics Data System (ADS)

    Brunner, Dan; Labombard, Brian; Terry, Jim; Reinke, Matt

    2010-11-01

    Heat flux is one of the most important parameters controlling the lifetime of first-wall components in fusion experiments and reactors. The sheath heat flux coefficient (γ) is a parameter relating heat flux (from a plasma to a material surface) to the electron temperature and ion saturation current. Being such a simple expression for a kinetic process, it is of great interest to plasma edge fluid modelers. Under the assumptions of equal ion and electron temperatures, no secondary electron emission, and no net current to the surface the value of γ is approximately 7 [1]. Alcator C-Mod provides a unique opportunity among today's experiments to measure reactor-relevant heat fluxes (100's of MW/m^2 parallel to the magnetic field) in reactor-like divertor geometry. Motivated by the DoE 2010 joint milestone to measure heat flux footprints, the lower outer divertor of Alcator has been instrumented with a suite of Langmuir probes, novel surface thermocouples, and calorimeters in tiles purposefully ramped to eliminate shadowing; all within view of an IR camera. Initial results indicate that the experimentally inferred values of γ are found to agree with simple theory in the sheath limited regime and diverges to lower values as the density increases.

  1. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    SciTech Connect

    Johnson, W.R.; Smith, J.P.; Trester, P.W.

    1997-04-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy.

  2. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  3. Comparison Between Experiments and EMC3-Eirene Simulations of the Snowflake Divertor in TCV

    NASA Astrophysics Data System (ADS)

    Canal, G. P.; Lunt, T.; Feng, Y.; Reimerdes, H.; Duval, B. P.; Labit, B.; Vijvers, W. A. J.; Coda, S.; Morgan, T. W.; Nespoli, F.; Tal, B.; de Temmerman, G.

    2013-10-01

    In reactor-size machines like DEMO, conventional divertor solutions are not expected to be sufficient to keep the heat load within the operating limits of the plasma-facing components. The ``snowflake'' (SF) divertor has emerged as a potential way to reduce the heat loads. EMC3-Eirene simulations of the plasma- and neutral particle-transport in the scrape-off layer of SF plasmas were performed for various distances between primary and secondary X-points. Anomalously large cross-field transport coefficients had to be chosen to match the experimental particle and heat flux profiles at the primary strike points. Although these profiles are well matched, the heat fluxes at the strike points in the private flux region are underestimated compared to those obtained experimentally, suggesting an additional cross-field transport mechanism not included in the simulation. The model also predicts the formation of a high density plasma blob at the primary X-point for small distances between X-points, which has not yet been seen experimentally, further supporting the hypothesis of an additional cross-field transport mechanism. The influence of particle drifts on the particle and heat flux profiles will be discussed. This work was supported in part by the Swiss National Science Foundation.

  4. Numerical investigation of disruption characteristics for the snowflake divertor configuration in HL-2M

    NASA Astrophysics Data System (ADS)

    Xue, L.; Duan, X. R.; Zheng, G. Y.; Liu, Y. Q.; Pan, Y. D.; Yan, S. L.; Dokuka, V. N.; Lukash, V. E.; Khayrutdinov, R. R.

    2016-05-01

    Cold and hot vertical displacement events (VDEs) are frequently related to the disruption of vertically-elongated tokamaks. The weak poloidal magnetic field around the null-points of a snowflake divertor configuration may influence the vertical displacement process. In this paper, the major disruption with a cold VDE and the vertical disruption in the HL-2M tokamak are investigated by the DINA code. In order to better illustrate the effect from the weak poloidal field, a double-null snowflake configuration is compared with the standard divertor (SD) configuration under the same plasma parameters. Computational results show that the weak poloidal magnetic field can be partly beneficial for mitigating the vertical instability of the plasma under small perturbations. For major disruption, the peak poloidal halo current fraction is almost the same between the snowflake and the SD configurations. However, this fraction becomes much larger for the snowflake in the event of a hot VDE. Furthermore, during the disruption for a snowflake configuration, the distribution of electromagnetic force on a vacuum vessel gets more non-uniform during the current quench.

  5. Impact of ELM filaments on divertor heat flux dynamics in NSTX

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Maingi, R.; Canik, J. M.; Gan, K. F.; Gray, T. K.; McLean, A. G.

    2015-08-01

    The ELM induced change in wetted area (Awet) and peak heat flux (qpeak) of divertor heat flux is investigated as a function of the number of striations, which represent ELM filaments, observed in the heat flux profile in NSTX. More striations are found to lead to larger Awet and lower qpeak. The typical number of striations observed in NSTX is 0-9, while 10-15 striations are normally observed in other machines such as JET, and the ELM contracts heat flux profile when the number of striations is less than 3-4 but broadens it with more of them. The smaller number of striations in NSTX is attributed to the fact that NSTX ELMs are against kink/peeling boundary with lower toroidal mode number (n = 1-5), while typical peeling-ballooning ELMs have higher mode number of n = 10-20. For ELMs with smaller number of striations, relative Awet change is rather constant and qpeak change rapidly increases with increasing ELM size, while Awet change slightly increases leading to a weaker increase of qpeak change for ELMs with larger number of striations, both of which are unfavourable trend for the material integrity of divertor tiles.

  6. An accelerated subspace iteration for eigenvector derivatives

    NASA Technical Reports Server (NTRS)

    Ting, Tienko

    1991-01-01

    An accelerated subspace iteration method for calculating eigenvector derivatives has been developed. Factors affecting the effectiveness and the reliability of the subspace iteration are identified, and effective strategies concerning these factors are presented. The method has been implemented, and the results of a demonstration problem are presented.

  7. Iterative methods for weighted least-squares

    SciTech Connect

    Bobrovnikova, E.Y.; Vavasis, S.A.

    1996-12-31

    A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.

  8. Rater Variables Associated with ITER Ratings

    ERIC Educational Resources Information Center

    Paget, Michael; Wu, Caren; McIlwrick, Joann; Woloschuk, Wayne; Wright, Bruce; McLaughlin, Kevin

    2013-01-01

    Advocates of holistic assessment consider the ITER a more authentic way to assess performance. But this assessment format is subjective and, therefore, susceptible to rater bias. Here our objective was to study the association between rater variables and ITER ratings. In this observational study our participants were clerks at the University of…

  9. New concurrent iterative methods with monotonic convergence

    SciTech Connect

    Yao, Qingchuan

    1996-12-31

    This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.

  10. Resolving writer's block.

    PubMed Central

    Huston, P.

    1998-01-01

    PROBLEM BEING ADDRESSED: Writer's block, or a distinctly uncomfortable inability to write, can interfere with professional productivity. OBJECTIVE OF PROGRAM: To identify writer's block and to outline suggestions for its early diagnosis, treatment, and prevention. MAIN COMPONENTS OF PROGRAM: Once the diagnosis has been established, a stepwise approach to care is recommended. Mild blockage can be resolved by evaluating and revising expectations, conducting a task analysis, and giving oneself positive feedback. Moderate blockage can be addressed by creative exercises, such as brainstorming and role-playing. Recalcitrant blockage can be resolved with therapy. Writer's block can be prevented by taking opportunities to write at the beginning of projects, working with a supportive group of people, and cultivating an ongoing interest in writing. CONCLUSIONS: Writer's block is a highly treatable condition. A systematic approach can help to alleviate anxiety, build confidence, and give people the information they need to work productively. PMID:9481467

  11. Transport simulations of ITER with empirical heat diffusivity scaling

    NASA Astrophysics Data System (ADS)

    Becker, G.

    1998-02-01

    Radiative mantle scenarios of the ignited ITER Engineering Design Activity (EDA) with argon and neon influxing are explored by computer experiments using special versions of the 1.5 dimensional (1.5-D) BALDUR predictive transport code. An empirical scaling law for the effective heat diffusivity, compatible with the ITERH92-P ELMy H mode scaling and validated against experiments, is applied. The prescribed flat density profiles, conductive heat loss across the separatrix of 200 MW and ratio τ*He/ τE,r of 10 are reached in the simulations. Self-sustained thermonuclear burn is achieved for at least 485 s. The helium ash concentrations of up to 9.5% are found to cause significant fuel dilution. Owing to the high electron density, only small argon and neon fractions of 0.07 and 0.27%, respectively, are needed. In the argon scenario, the required radiation corrected thermal energy confinement time τE,r is 4.8 s. The confinement time predicted by the local scaling law is 1.4 times longer and agrees with the global scaling prediction. With argon, the design parameters are reached by radiating 128 MW within the separatrix, thus reducing the energy flow to the divertor to 73 MW. In the neon case with its more peripheral radiation, the radiative loss within the separatrix has to be diminished. Owing to the flat profile of the fuel ion density, the neoclassical drift velocities of argon and neon are directed outwards in the whole plasma. In the argon scenario, the sensitivity of transport to the density profile shape is studied. It is found that τE,r remains almost unchanged, varying between 4.5 and 4.8 s, which is explained by an analytic expression for the thermal energy. Peaking of the electron and impurity densities does not alter the required argon concentration but causes a peaking of the radiation profiles and reduction in the temperatures. Sufficiently narrow fuel ion density profiles are shown to cause inward directed neoclassical drift velocities of argon in the

  12. Overview of the results on divertor heat loads in RMP controlled H-modeplasmas on DIII-D

    SciTech Connect

    Jakubowski, M. W.; Evans, T. E.; Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.; Leonard, A. W.; Schmitz, O.; Watkins, J. G.; Eich, T.; Fundamenski, W.; Moyer, R. A.; Wolf, R. C.; Baylor, L. B.; Boedo, J. A.; Burrell, K. H.; Frerichs, H.; deGrassie, J. S.; Gohil, P.; Joseph, I.; Mordijck, S.; Lehnen, M.; Petty, C. C.; Pinsker, R. I.; Reiter, D.; Rhodes, T. L.; Samm, U.; Schaffer, M. J.; Snyder, P. B.; Stoschus, H.; Osborne, T.; Unterberg, B.; Unterberg, E.

    2009-08-14

    This paper demonstrates the manipulation of power deposition on divertor targets at DIII-D by the application of resonant magnetic perturbations (RMPs) for suppression of large type-I edge localized modes (ELMs) is analysed. We discuss the modification of the ELM characteristics by the RMP applied. It is shown that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns are controlled by the externally induced magnetic perturbation. It was also found that the manipulation of heat transport due to the application of small, edge RMP depends on the plasma pedestal electron collisionality. We then compare in this analysis RMP and no RMP phases with and without complete ELM suppression. At high , the heat flux during the ELM suppressed phase is of the same order as the inter-ELM and the no-RMP phase. However, below this collisionality value, a slight increase in the total power flux to the divertor is observed during the RMP phase. We surmised that this is most likely caused by a more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area along perturbed, open field lines.

  13. Overview of the results on divertor heat loads in RMP controlled H-modeplasmas on DIII-D

    DOE PAGESBeta

    Jakubowski, M. W.; Evans, T. E.; Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.; Leonard, A. W.; Schmitz, O.; Watkins, J. G.; Eich, T.; Fundamenski, W.; et al

    2009-08-14

    This paper demonstrates the manipulation of power deposition on divertor targets at DIII-D by the application of resonant magnetic perturbations (RMPs) for suppression of large type-I edge localized modes (ELMs) is analysed. We discuss the modification of the ELM characteristics by the RMP applied. It is shown that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns are controlled by the externally induced magnetic perturbation. It was also found that the manipulation of heat transport due to the application of small, edge RMPmore » depends on the plasma pedestal electron collisionality. We then compare in this analysis RMP and no RMP phases with and without complete ELM suppression. At high , the heat flux during the ELM suppressed phase is of the same order as the inter-ELM and the no-RMP phase. However, below this collisionality value, a slight increase in the total power flux to the divertor is observed during the RMP phase. We surmised that this is most likely caused by a more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area along perturbed, open field lines.« less

  14. Loss of beam ions to the inside of the PDX (Poloidal Divertor Experiment) tokamak during the fishbone instability

    SciTech Connect

    Heidbrink, W.W.; Beiersdorfer, P.

    1986-11-01

    Using data from two vertical charge-exchange detectors on the Poloidal Divertor Experiment (PDX), we have identified a set of conditions for which loss of beam ions inward in major radius is observed during the fishbone instability. Previously, it was reported that beam ions were lost only to the outside of the PDX tokamak.

  15. TRANSP simulations of ITER plasmas

    SciTech Connect

    Budny, R.V.; McCune, D.C.; Redi, M.H.; Schivell, J.; Wieland, R.M.

    1995-12-01

    The TRANSP code is used to construct comprehensive, self-consistent models for ITER discharges. Plasma parameters are studied for two discharges from the ITER ``Interim Design`` database producing 1.5 GW fusion power with a plasma current of 21 MA and 20 toroidal field coils generating 5.7 T Steady state profiles for T{sub ion}, T{sub e}, n{sub e}, Z{sub eff}, and P{sub rad} from the database are specified. TRANSP models the full up/down asymmetric plasma boundary within the separatrix. Effects of high-energy neutral beam injection, sawteeth mixing, toroidal field ripple, and helium ash transport are included. Results are given for the fusion rate profiles, and parameters describing effects such as alpha particle slowing down, the heating of electrons and thermal ions, and the thermalization rates. The deposition of 1 MeV neutral beam ions is predicted to peak near the plasma center, and the average beam ion energy is predicted to be half the injected energy. Sawtooth mixing is predicted to broaden the fast alpha profile. The toroidal ripple losses rate of alpha energy is estimated to be 3% before sawtooth crashes and to increase by a factor of three to four immediately following sawtooth crashes. Assumptions for the thermal He transport and the He recycling coefficient at the boundary are discussed. If the ratio of helium and energy confinement times, {tau}*{sub He}/{tau}{sub E} is less than 15, the steady state fusion power is predicted to 1.5 GW or greater. The values of the transport coefficients required for this fusion power depend on the He recycling coefficient at the separatrix. If R{sub rec} is near 1, the required He diffusivity must be much larger than that measured in tokamaks. If R{sub rec} {le} 0.50, and if the inward pinch is small, values comparable to those measured are compatible with 1.5 GW.

  16. On the interplay between inner and outer iterations for a class of iterative methods

    SciTech Connect

    Giladi, E.

    1994-12-31

    Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.

  17. Divertor Heat Flux Mitigation in High-Performance H-mode Discharges in the National Spherical Torus Experiment.

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D; Menard, J

    2008-12-31

    Experiments conducted in high-performance 1.0 MA and 1.2 MA 6 MW NBI-heated H-mode discharges with a high magnetic flux expansion radiative divertor in NSTX demonstrate that significant divertor peak heat flux reduction and access to detachment may be facilitated naturally in a highly-shaped spherical torus (ST) configuration. Improved plasma performance with high {beta}{sub t} = 15-25%, a high bootstrap current fraction f{sub BS} = 45-50%, longer plasma pulses, and an H-mode regime with smaller ELMs has been achieved in the strongly-shaped lower single null configuration with elongation {kappa} = 2.2-2.4 and triangularity {delta} = 0.6-0.8. Divertor peak heat fluxes were reduced from 6-12 MW/m{sup 2} to 0.5-2 MW/m{sup 2} in ELMy H-mode discharges using the inherently high magnetic flux expansion f{sub m} = 16-25 and the partial detachment of the outer strike point at several D{sub 2} injection rates. A good core confinement and pedestal characteristics were maintained, while the core carbon concentration and the associated Z{sub eff} were reduced. The partially detached divertor regime was characterized by an increase in divertor radiated power, a reduction of ion flux to the plate, and a large neutral compression ratio. Spectroscopic measurements indicated a formation of a high-density, low temperature region adjacent to the outer strike point, where substantial increases in the volume recombination rate and CII, CIII emission rates was measured.

  18. Impact of nonlinear 3D equilibrium response on edge topology and divertor heat load in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Geiger, J.

    2016-06-01

    The impact of the 3D equilibrium response on the plasma edge topology is studied. In Wendelstein 7-X, the island divertor concept is used to assess scenarios for quasi-steady-state operation. However, the boundary islands necessary for the island divertor are strongly susceptible to plasma beta and toroidal current density effects because of the low magnetic shear. The edge magnetic topology for quasi-steady-state operation scenarios is calculated with the HINT-code to study the accompanying changes of the magnetic field structures. Two magnetic configurations have been selected, which had been investigated in self consistent neoclassical transport simulations for low bootstrap current but which use the alternative natural island chains to the standard iota value of 1 (ι b   =  5/5, periodicity), namely, at high-iota (ι b   =  5/4) and at low-iota (ι b   =  5/6). For the high-iota configuration, the boundary islands are robust but the stochasticity around them is enhanced with beta. The addition of toroidal current densities enhances the stochasticity further. The increased stochasticity changes the footprints on in-vessel components with a direct impact on the corresponding heat loads. In the low-iota configuration the boundary islands used for the island divertor are dislocated radially due to the low shear and even show healing effects, i.e. the island width vanishes. In the latter case the plasma changes from divertor to limiter operation. To realize the predicted high-performance quasi-steady-state operation of the transport simulations, further adjustments of the magnetic configuration may be necessary to achieve a proper divertor compatibility of the scenarios.

  19. Resource Prospector: The RESOLVE Payload

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Smith, J.; J., Captain; Paz, A.; Colaprete, A.; Elphic, R.; Zacny, K.

    2015-10-01

    NASA has been developing a lunar volatiles exploration payload named RESOLVE. Now the primary science payload on-board the Resource Prospector (RP) mission, RESOLVE, consists of several instruments that evaluate lunar volatiles.

  20. Computational methods in stellarator divertor topology design and the ARIES-CS

    NASA Astrophysics Data System (ADS)

    Canavan, Michael

    The ARIES-CS project was a multi-year multi-institutional project to assess the feasibility of a compact stellarator as a fusion power plant. The work herein describes efforts to help design one aspect of the device, the divertor, which is responsible for the removal of particle and heat flux from the system, acting as the first point of contact between the magnetically confined hot plasma and the outside world. Specifically, its location and topology are explored, extending previous work on the subject. An optimized design is determined for the thermal particle flux using a suite of 3D stellarator design codes which trace magnetic fieldlines from just inside the confined plasma edge to their strike points on divertor plates. These divertor plates are specified with a newly developed plate design code. It is found that a satisfactory thermal design exists which maintains the plate temperature and heat load distribution below tolerable engineering limits. The design is unique, including a toroidal taper on the outboard plates which was found to be important to our results. The maximum thermal heat flux for the final design was 3.61 MW/m 2 and the maximum peaking factor was 10.3, below prescribed limits of 10 MW/m2 and 15.6, respectively. The median length of fieldlines reaching the plates is about 250m and their average angle of inclination to the surface is 2°. Finally, an analysis of the fast alphas, resulting from fusion in the core, which escape the plasma was performed. A method is developed for obtaining the mapping from magnetic coordinates to real-space coordinates for the ARIES-CS. This allows the alpha exit locations to be identified in real space for the first time. These were then traced using the fieldline algorithm as well as a guiding center routine accounting for their mass, charge, and specific direction and energy. Results show that the current design is inadequate for accommodating the alpha heat flux, capturing at most one third of lost alphas

  1. Modeling ITER ECH Waveguide Performance

    NASA Astrophysics Data System (ADS)

    Kaufman, M. C.; Lau, C. H.

    2014-10-01

    There are stringent requirements for mode purity and for on-target power as a percentage of source power for the ECH transmission lines on ITER. The design goal is less than 10% total power loss through the line and 95% HE11 mode at the diamond window. The dominant loss mechanism is mode conversion (MC) into higher order modes, and to maintain mode purity, these losses must be minimized. Miter bends and waveguide curvature are major sources of mode conversion. This work uses a code which calculates the mode conversion and attenuation of an arbitrary set of polarized waveguide modes in circular corrugated waveguide with non-zero axial curvature and miter bends. The transmission line is modeled as a structural beam with deformations due to misalignment of waveguide supports, tilts at the interfaces between waveguide sections, gravitational loading, and the extrusion and fabrication process. As these sources of curvature are statistical in nature, the resulting MC losses are found via Monte Carlo modeling. The results of this analysis will provide design guidance for waveguide support span lengths, requirements for minimum alignment offsets, and requirements for waveguide fabrication and quality control.

  2. Progress on ITER Diagnostic Integration

    NASA Astrophysics Data System (ADS)

    Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael

    2013-10-01

    On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.

  3. Iterants, Fermions and Majorana Operators

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  4. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  5. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-09-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ``International Thermonuclear Experimental Reactor (ITER)`` will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  6. Spatially resolved scattering polarimeter.

    PubMed

    Kohlgraf-Owens, Thomas; Dogariu, Aristide

    2009-05-01

    We demonstrate a compact, spatially resolved polarimeter based on a coherent optical fiber bundle coupled with a thin layer of scattering centers. The use of scattering for polarization encoding allows the polarimeter to work across broad angular and spectral domains. Optical fiber bundles provide high spatial resolution of the incident field. Because neighboring elements of the bundle interact with the incident field differently, only a single interaction of the fiber bundle with the unknown field is needed to perform the measurement. Experimental results are shown to demonstrate the capability to perform imaging polarimetry. PMID:19412259

  7. 3D vacuum magnetic field modelling of the ITER ELM control coil during standard operating scenarios

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Orlov, D. M.; Wingen, A.; Wu, W.; Loarte, A.; Casper, T. A.; Schmitz, O.; Saibene, G.; Schaffer, M. J.; Daly, E.

    2013-09-01

    In-vessel, non-axisymmetric, control coils have proven to be an important option for mitigating and suppressing edge-localized modes (ELMs) in high performance operating regimes on a growing number of tokamaks. Additionally, an in-vessel non-axisymmetric ELM control coil is being considered in the ITER baseline design. In preparing for the initial operation of this coil set, a comprehensive study was carried out to characterize the linear superposition of the 3D vacuum magnetic field, produced by the ELM coil, on a series of equilibria representing nine standard ITER operating scenarios. Here, the spatial phase angle of toroidally distributed currents, specified with a cosine waveform, in the upper and lower rows of the ITER ELM coil (IEC) set is varied in 2° steps while holding the current in the equatorial row of coils constant. The peak current in each of the three toroidal rows of window-frame coils making up the IEC is scanned between 5 kAt and 90 kAt in 5 kAt steps and the width of the edge region covered by overlapping vacuum field magnetic islands is calculated. This width is compared to a vacuum field ELM suppression correlation criterion found in DIII-D. A minimum coil current satisfying the DIII-D criterion, along with an associated set of phase angles, is identified for each ITER operating scenario. These currents range from 20 kAt to 75 kAt depending on the operating scenario being used and the toroidal mode number (n) of the cosine waveform. Comparisons between the scaling of the divertor footprint area in cases with n = 3 perturbation fields versus those with n = 4 show significant advantages when using n = 3. In addition, it is found that the DIII-D correlation criterion can be satisfied in the event that various combinations of individual IEC window-frame coils need to be turned off due to malfunctioning components located inside the vacuum vessel. Details of these results for both the full set of 27 window-frame coils and various reduced sets

  8. Using AORSA to simulate helicon waves in DIIID and ITER

    SciTech Connect

    Lau, Cornwall H; Jaeger, E. F.; Berry, Lee Alan; Bertelli, Nicola; Green, David L; Murakami, Masanori; Park, J. M.; Prater, Ron

    2014-01-01

    Recent efforts by Vdovin [1] and Prater [2] have shown that helicon waves (fast waves at ~30 ion cyclotron frequency harmonic) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIIID, ITER and DEMO. For DIIID scenarios, the ray tracing code GENRAY has been extensively used to study helicon current drive efficiency and location as a function many plasma parameters. has some limitations on absorption at high cyclotron harmonics, so the full wave code AORSA, which is applicable to arbitrary Larmor radius and can therefore resolve high ion cyclotron harmonics, has been recently used to validate the GENRAY model. It will be shown that the GENRAY and AORSA driven current drive profiles are comparable for the envisioned high temperature and density advanced scenarios for DIIID, where there is high single pass absorption due to electron Landau damping. AORSA results will be shown for various plasma parameters for DIIID and for ITER. Computational difficulties in achieving these AORSA results will also be discussed. * Work supported by USDOE Contract No. DE-AC05-00OR22725 [1] V. L. Vdovin, Plasma Physics Reports, V.39, No.2, 2013 [2] R. Prater et al, Nucl. Fusion, 52, 083024, 2014

  9. Chevron beam dump for ITER edge Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Yatsuka, E.; Hatae, T.; Vayakis, G.; Bassan, M.; Itami, K.

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  10. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  11. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D

    SciTech Connect

    Lasnier, C. J. Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G.; Crabtree, K.; Van Zeeland, M. A.

    2014-11-15

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  12. Plasma isotopic change over experiments in JET under Carbon and ITER-Like Wall conditions

    NASA Astrophysics Data System (ADS)

    Loarer, T.; Brezinsek, S.; Philipps, V.; Romanelli-Gruenhagen, S.; Alves, D.; Carvalho, I.; Douai, D.; Esser, H. G.; Felton, R.; Frigione, D.; Kruezi, U.; Reux, C.; Smith, R.; Stamp, M. F.; Vartanian, S.

    2015-08-01

    Starting with a wall loaded by H2, change over experiments from H2 to D2 have been carried out in JET-ILW. A series of 13 repetitive pulses (cumulating 215 s in divertor configuration) have been performed under conditions of: Ip = 2.0 MA, BT = 2.4 T, = 4.5 × 1019 m-3 with a constant gas injection of 3.0 × 1021 D s-1 and 0.5 MW of auxiliary heating by ICRH in L-mode. Gas balance analysis shows that the total amount of H removed from the wall is in the range of 3 × 1022 D compared to 2 × 1023 D for JET-C. This is consistent with the faster decay of the H plasma concentration and the drop of the retention also by a similar factor when removing all the carbon components. Isotopic plasma wall changeover is also demonstrated to allow for removal of some D/T from the device. However, since plasma change over also contributes to long-term retention by codeposition, in ITER, change over in between each discharge might not be effective to reduce the fuel retention on the long-term.

  13. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D.

    PubMed

    Lasnier, C J; Allen, S L; Ellis, R E; Fenstermacher, M E; McLean, A G; Meyer, W H; Morris, K; Seppala, L G; Crabtree, K; Van Zeeland, M A

    2014-11-01

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  14. Experimental study of ELM-like heat loading on beryllium under ITER operational conditions

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-02-01

    The experimental fusion reactor ITER, currently under construction in Cadarache, France, is transferring the nuclear fusion research to the power plant scale. ITER’s first wall (FW), armoured by beryllium, is subjected to high steady state and transient power loads. Transient events like edge localized modes not only deposit power densities of up to 1.0 GW m-2 for 0.2-0.5 ms in the divertor of the machine, but also affect the FW to a considerable extent. Therefore, a detailed study was performed, in which transient power loads with absorbed power densities of up to 1.0 GW m-2 were applied by the electron beam facility JUDITH 1 on beryllium specimens at base temperatures of up to 300 °C. The induced damage was evaluated by means of scanning electron microscopy and laser profilometry. As a result, the observed damage was highly dependent on the base temperatures and absorbed power densities. In addition, five different classes of damage, ranging from ‘no damage’ to ‘crack network plus melting’, were defined and used to locate the damage, cracking, and melting thresholds within the tested parameter space.

  15. Modified Visible and Infrared Optical Design for the ITER Upper Ports

    SciTech Connect

    Lasnier, C; Seppala, L; Morris, K

    2008-04-24

    This document reports the results of a follow-on optical design study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. The major objectives of this work are to move the viewing aperture closer to the plasma so that the optical path does not cut through any adjacent blanket shield module other than the module designated for the port; move optics forward into the port tube to increase the aperture size and therefore improve the spatial resolution; assess the trade-off between spatial resolution and spatial coverage by reducing the field of view; and create a mechanical model with a neutron labyrinth. Here we show an optical design incorporating all these aspects. The new design fits into a 360 mm ID tube, as did the previous design. The entrance aperture is increased from 10 mm to 21 mm, with a corresponding increase in spatial resolution. The Airy disk diameter for 3.8 {micro}m wavelength IR light is 5.1 mm at the most distant target point in the field of view. The field of view is reduced from 60 toroidal degrees (full toroidal coverage with 6 cameras) to 50 toroidal degrees. The 10 degrees eliminated are those nearest the camera, which have the poorest view of the divertor plate and in fact saw little of the plate. The Cassegrain telescope that was outside the vacuum windows in the previous design is now in vacuum, along with lenses for visible light. The Cassegrain for visible light is eliminated. An additional set of optical relay lenses is added for the visible and for the IR.

  16. Transport simulations of ITER with broad density profiles and high radiative fraction

    NASA Astrophysics Data System (ADS)

    Becker, G.

    1995-08-01

    Special versions of the 1.5-D BALDUR predictive transport code are used to explore the confinement in the ignited ITER EDA by self-consistent calculations. The code computes 2-D equilibria and solves 1-D transport equations in the bulk and scrape-off layer with empirical transport coefficients for the ohmic, L and ELMy H mode regimes. The emphasis is on scenarios with flat density profiles and high, fixed radiative power in the main chamber due to the seeded impurities argon and neon. It is shown that self-sustained steady state thermonuclear burn is achieved for 370 s and is compatible with the flat density profiles and strong radiative cooling. The necessary local energy and particle transport are presented. In the argon and neon scenarios, the required radiation corrected energy confinement times are 4.1 and 3.5 s, respectively, which are achievable according to the ITER ELMy H mode scaling. The advantage of neon originates from its smaller radiative loss within the separatrix of 37% of the total radiation in the main chamber, compared with 60% in the case of argon. A significant radiative loss from the confinement zone, mainly by bremsstrahlung, cannot be avoided. It raises the required energy confinement time and is the price to be paid for reduction of the divertor heat load by radiative cooling in the main chamber. In steady state, a helium fraction of 5% is computed. The fractions of helium, argon and neon and the resulting fuel dilution are considerably lower than with peaked density profiles

  17. Cloud Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.

  18. RESOLVE 2010 Field Test

    NASA Technical Reports Server (NTRS)

    Captain, J.; Quinn, J.; Moss, T.; Weis, K.

    2010-01-01

    This slide presentation reviews the field tests conducted in 2010 of the Regolith Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE). The Resolve program consist of several mechanism: (1) Excavation and Bulk Regolith Characterization (EBRC) which is designed to act as a drill and crusher, (2) Regolith Volatiles Characterization (RVC) which is a reactor and does gas analysis,(3) Lunar Water Resources Demonstration (LWRD) which is a fluid system, water and hydrogen capture device and (4) the Rover. The scientific goal of this test is to demonstrate evolution of low levels of hydrogen and water as a function of temperature. The Engineering goals of this test are to demonstrate:(1) Integration onto new rover (2) Miniaturization of electronics rack (3) Operation from battery packs (elimination of generator) (4) Remote command/control and (5) Operation while roving. Views of the 2008 and the 2010 mechanisms, a overhead view of the mission path, a view of the terrain, the two drill sites, and a graphic of the Master Events Controller Graphical User Interface (MEC GUI) are shown. There are descriptions of the Gas chromatography (GC), the operational procedure, water and hydrogen doping of tephra. There is also a review of some of the results, and future direction for research and tests.

  19. Probabilistic failure analysis of a water-cooled tungsten divertor: Impact of embrittlement

    NASA Astrophysics Data System (ADS)

    You, J.-H.; Komarova, I.

    2008-04-01

    Inherent brittleness and neutron embrittlement are critical weaknesses of tungsten for fusion application. Pronounced scattering of the fracture strength of tungsten requires a statistical treatment. Thus, the risk of structural failure of a tungsten component can be estimated only in a probabilistic framework. In this work, we applied a probabilistic failure analysis code STAU to estimate the failure risk of a water-cooled tungsten mono-block divertor component. The STAU code was based on the weakest-link failure theory and linear elastic fracture mechanics. A typical heat flux load being expected for a fusion reactor was considered for the FEM stress analysis. The failure probability was computed considering various mixed-mode fracture criteria. Both the experimentally estimated and hypothetical Weibull parameters were used as material data. In the case of unirradiated tungsten, the failure probability was acceptably small whereas reduced Weibull parameters led to significantly increased failure risk.

  20. A Fusion Chamber Design with a Liquid First Wall and Divertor

    SciTech Connect

    Nygren, R; Sze, D; Nelson, B; Fogarty, P; Eberle, C; Rognlien, T; Rensink, M; Smolentsev, S; Youssef, M; Sawan, M; Merrill, B; Majeski, R

    2003-11-11

    The APEX study is investigating the use of free flowing liquid surfaces to form the inner surface of the chamber around a fusion plasma. We present a design for the chamber of a 3840MW fusion reactor based on the configuration for the chamber and magnets from ARIESRS but with a fast flowing molten salt of mixed Be, Li and Na fluorides for the first wall and divertor and molten salt blanket with a ferritic steel structure. Our design analysis includes strong radiation from the core and edge plasma, (liquid) MHD effects on the weakly conducting molten salt, a recycling first wall stream that enables a high efficiency thermal conversion, and evaluations of breeding, neutronics, tritium recovery and safety.