Science.gov

Sample records for resolved powder diffraction

  1. In-situ time resolved synchrotron powder diffraction studies of synthesis and chemical reactions

    SciTech Connect

    Norby, P.

    1995-09-01

    Equipment for time and temperature dependent powder diffraction has been developed, especially in order to be able to study hydrothermal syntheses of zeolites. The system is very versatile and has so far been used to study e.g. hydrothermal syntheses of zeolites and aluminophosphates, syntheses of layered phosphates, formation of Sorel cements, dehydration and phase transformations of zeolites, solid state synthesis of lanthanum manganites, ion exchange of zeolites using molten salt, and oxidation/reduction of lanthanum manganites at high temperatures. The sample is contained in quartz capillaries and is heated using a stream of hot air. External pressure can be applied allowing hydrothermal syntheses at temperatures up to 200 C to be performed. Controlled atmosphere is obtained by flowing gas or a mixture of gases through the capillary.

  2. Time-resolved in situ powder X-ray diffraction reveals the mechanisms of molten salt synthesis.

    PubMed

    Moorhouse, Saul J; Wu, Yue; Buckley, Hannah C; O'Hare, Dermot

    2016-11-24

    We report the first use of high-energy monochromatic in situ X-ray powder diffraction to gain unprecedented insights into the chemical processes occurring during high temperature, lab-scale metal oxide syntheses. During the flux synthesis of the n = 4 Aurivillius phase, Bi5Ti3Fe0.5Cr0.5O15 at 950 °C in molten Na2SO4 we observe the progression of numerous metastable phases. Using sequential multiphase Rietveld refinement of the time-dependent in situ XRD data, we are able to obtain mechanistic understanding of this reaction under a range of conditions.

  3. Devitrification of Mechanically Alloyed Zr-Ti-Nb-Cu-Ni-Al Glassy Powders Studied by Time-Resolved X-ray Diffraction

    SciTech Connect

    Scudino, S.; Sordelet, D.J.; Eckert, J.

    2009-04-13

    The crystallization of mechanically alloyed Zr{sub 67}Ti{sub 6.14}Nb{sub 1.92}Cu{sub 10.67}Ni{sub 8.52}Al{sub 5.75} glassy powder is investigated by time-resolved X-ray diffraction. The powder displays a multi-step crystallization behavior characterized by the formation of a metastable nanoscale quasicrystalline phase during the first stage of the crystallization process. At higher temperatures, coinciding with the second crystallization event, the amorphous-to-quasicrystalline transformation is followed by the precipitation of the tetragonal Zr{sub 2}Cu phase (space group I4/mmm) and the tetragonal Zr{sub 2}Ni phase (space group I4/mcm). The transformations are gradual and the quasicrystals and the subsequent phases coexist over a temperature interval of about 25K.

  4. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  5. Macromolecular Powder Diffraction: Ready for genuine biological problems.

    PubMed

    Karavassili, Fotini; Margiolaki, Irene

    2016-01-01

    Knowledge of 3D structures of biological molecules plays a major role in both understanding important processes of life and developing pharmaceuticals. Among several methods available for structure determination, macromolecular X-ray powder diffraction (XRPD) has transformed over the past decade from an impossible dream to a respectable method. XRPD can be employed in biosciences for various purposes such as observing phase transitions, characterizing bulk pharmaceuticals, determining structures via the molecular replacement method, detecting ligands in protein-ligand complexes, as well as combining micro-sized single crystal crystallographic data and powder diffraction data. Studies using synchrotron and laboratory sources in some standard configuration setups are reported in this review, including their respective advantages and disadvantages. Methods presented here provide an alternative, complementary set of tools to resolve structural problems. A variety of already existing software packages for powder diffraction data processing and analysis, some of which have been adapted to large unit cell studies, are briefly described. This review aims to provide necessary elements of theory and current methods, along with practical explanations, available software packages and highlighted case studies.

  6. X-ray diffraction investigation of ultrafine boron nitride powders

    SciTech Connect

    Gurov, S.V.; Chukalin, V.I.; Rezchikova, T.V.; Torbov, V.J.; Troitskii, V.N.

    1986-01-01

    This paper presents an x-ray diffraction analysis of ultrafine boron nitride powders of different mean particle sizes. Diffraction spectra of the ultrafine boron nitride powders were obtained using a DRON-1 apparatus. The experimental facts are indicative of a turbostratic character of deformation of the hexagonal lattice of ultrafinely divided boron nitride.

  7. Pulsed Neutron Powder Diffraction for Materials Science

    NASA Astrophysics Data System (ADS)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1

  8. Pulsed Neutron Powder Diffraction for Materials Science

    SciTech Connect

    Kamiyama, T.

    2008-03-17

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of {delta}d/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 A{sup -1}

  9. The Powder Diffraction File: Past, Present, and Future

    PubMed Central

    Smith, Deane K.; Jenkins, Ron

    1996-01-01

    The Powder Diffraction file has been the primary reference for Powder Diffraction Data for more than half a century. The file is a collection of about 65 000 reduced powder patterns stored as sets of d/I data along with the appropriate crystallographic, physical and experimental information. This paper reviews the development and growth of the PDF and discusses the role of the ICDD in the maintenance and dissemination of the file. PMID:27805163

  10. The Powder Diffraction File: Past, Present, and Future.

    PubMed

    Smith, Deane K; Jenkins, Ron

    1996-01-01

    The Powder Diffraction file has been the primary reference for Powder Diffraction Data for more than half a century. The file is a collection of about 65 000 reduced powder patterns stored as sets of d/I data along with the appropriate crystallographic, physical and experimental information. This paper reviews the development and growth of the PDF and discusses the role of the ICDD in the maintenance and dissemination of the file.

  11. Single Hit Energy-resolved Laue Diffraction

    SciTech Connect

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew; Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H.; Comley, Andrew J.; Foster, John M.

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.

  12. Total-scattering pair-distribution function of organic material from powder electron diffraction data

    DOE PAGES

    Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; ...

    2015-04-01

    This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering datamore » and avoiding beam-damage of the sample are possible to resolve.« less

  13. Total-scattering pair-distribution function of organic material from powder electron diffraction data

    SciTech Connect

    Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; Kolb, Ute

    2015-04-01

    This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam-damage of the sample are possible to resolve.

  14. Idealized powder diffraction patterns for cellulose polymorphs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...

  15. Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams

    SciTech Connect

    Hastings, J.B.; Rudakov, F.M.; Dowell, D.H.; Schmerge, J.F.; Cardoza, J.D.; Castro, J.M.; Gierman, S.M.; Loos, H.; Weber, P.M.; /Brown U.

    2006-10-24

    An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible.

  16. Time resolved fluorescence of cow and goat milk powder

    NASA Astrophysics Data System (ADS)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  17. Powder diffraction studies using anomalous dispersion

    SciTech Connect

    Cox, D.E. ); Wilkinson, A.P. . Dept. of Materials)

    1993-01-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f' for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high [Tc] superconductors, ternary alloys, FeCo[sub 2](PO[sub 4])[sub 3], FeNi[sub 2]BO[sub 5]), oxidation-state contrast (e.g. YBa[sub 2]Cu[sub 3]O[sub 6+x], Eu[sub 3]O[sub 4], GaCl[sub 2], Fe[sub 2]PO[sub 5]), and the effect of coordination geometry (e.g. Y[sub 3]Ga[sub 5]O[sub l2]).

  18. Powder diffraction studies using anomalous dispersion

    SciTech Connect

    Cox, D.E.; Wilkinson, A.P.

    1993-05-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f` for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high {Tc} superconductors, ternary alloys, FeCo{sub 2}(PO{sub 4}){sub 3}, FeNi{sub 2}BO{sub 5}), oxidation-state contrast (e.g. YBa{sub 2}Cu{sub 3}O{sub 6+x}, Eu{sub 3}O{sub 4}, GaCl{sub 2}, Fe{sub 2}PO{sub 5}), and the effect of coordination geometry (e.g. Y{sub 3}Ga{sub 5}O{sub l2}).

  19. Angle-resolved diffraction grating biosensor based on porous silicon

    NASA Astrophysics Data System (ADS)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  20. Powder Diffraction Simulated by a Polycrystalline Film of Spherical Colloids

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Xia, Younan

    2006-01-01

    This article describes a simple way to demonstrate powder diffraction in a classroom setting using a dry film of spherical colloids on a glass substrate. Use of transparent, elastomeric poly(dimethylsiloxane) as a supporting substrate for the spheres rather than glass enables demonstration of the reciprocal lattice effect. (Contains 4 figures and…

  1. Frequency analysis for modulation-enhanced powder diffraction.

    PubMed

    Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi

    2016-07-01

    Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.

  2. The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source

    PubMed Central

    Bergamaschi, Anna; Cervellino, Antonio; Dinapoli, Roberto; Gozzo, Fabia; Henrich, Beat; Johnson, Ian; Kraft, Philipp; Mozzanica, Aldo; Schmitt, Bernd; Shi, Xintian

    2010-01-01

    The MYTHEN single-photon-counting silicon microstrip detector has been developed at the Swiss Light Source for time-resolved powder diffraction experiments. An upgraded version of the detector has been installed at the SLS powder diffraction station allowing the acquisition of diffraction patterns over 120° in 2θ in fractions of seconds. Thanks to the outstanding performance of the detector and to the calibration procedures developed, the quality of the data obtained is now comparable with that of traditional high-resolution point detectors in terms of FWHM resolution and peak profile shape, with the additional advantage of fast and simultaneous acquisition of the full diffraction pattern. MYTHEN is therefore optimal for time-resolved or dose-critical measurements. The characteristics of the MYTHEN detector together with the calibration procedures implemented for the optimization of the data are described in detail. The refinements of two known standard powders are discussed together with a remarkable application of MYTHEN to organic compounds in relation to the problem of radiation damage. PMID:20724787

  3. A compact electron gun for time-resolved electron diffraction

    SciTech Connect

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2015-01-15

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolution of the diffraction pattern.

  4. Fractal analysis of powder X-ray diffraction patterns

    NASA Astrophysics Data System (ADS)

    Ortiz-Cruz, A.; Santolalla, C.; Moreno, E.; de los Reyes-Heredia, J. A.; Alvarez-Ramirez, J.

    2012-02-01

    X-ray diffraction (XRD) patterns with broad background are commonly found in the characterization of materials with a certain degree of amorphicity, so the sharp intensity peaks associated with material phases are not well defined. This work used rescaled range (denoted by R/S) analysis, a method intended for fractal analysis of noisy signals, to characterize XRD patterns with broad background. It is found that XRD patterns with broad background are not random at all, but contain information on regularities expressed as autocorrelations of the intensity signal. Sol-gel alumina fired at different temperatures was used as an example to illustrate the applicability of the method. It is shown that fractal R/S analysis is able to locate angular regions that can be associated to ideal International Centre for Diffraction Data Powder Diffraction File (ICDD PDF) lines of diverse alumina phases.

  5. Developments in Forumlation Analyses by Powder Diffraction Analysis

    SciTech Connect

    Hubbard, Camden R; Fawcett, T. G.; Faber, J.; Needham, F.; Kabekkodu, S.; Kaduk, J.

    2006-01-01

    Diffraction analyses have been used for decades to analyze solid state formulations in both powder and tablet form. The ability to perform a nondestructive analysis is often combined with the capability of Search/Match algorithms to successively identify phases and reanalyze the residual pattern until multiple phases have been identified. One of the strengths of the diffraction technique has been to routinely identify multi-component materials from a single analysis, without pretreatment to physically or chemically separate out the components, thus minimizing the possibility that the specimen has been altered by the preparation method. However this method depends on having a database that can correctly analyze each successive phase in the multi-component analysis. Developments in X-ray analysis hardware and software have combined to dramatically improve the throughput, speed and accuracy of formulation analyses. In this paper, we will focus on a complimentary development, the growth and application of a comprehensive database based on the Powder Diffraction File{trademark} (PDF(reg. sign)). The PDF(reg. sign) is an edited and standardized combination of several crystallographic databases with {approx} 497,000 published entries. The comprehensive nature of this database, combined with phase identification and digital pattern simulations, was used to identify complex formulations with crystalline and non-crystalline ingredients. We will show how these parallel developments enhance the ability to correctly identify complex formularies.

  6. Powder diffraction from solids in the terapascal regime

    SciTech Connect

    Rygg, J. R.; Eggert, J. H.; Lazicki, A. E.; Coppari, F.; Hawreliak, J. A.; Hicks, D. G.; Smith, R. F.; Uphaus, T. M.; Collins, G. W.; Sorce, C. M.; Yaakobi, B.

    2012-11-15

    A method of obtaining powder diffraction data on dynamically compressed solids has been implemented at the Jupiter and OMEGA laser facilities. Thin powdered samples are sandwiched between diamond plates and ramp compressed in the solid phase using a gradual increase in the drive-laser intensity. The pressure history in the sample is determined by back-propagation of the measured diamond free-surface velocity. A pulse of x rays is produced at the time of peak pressure by laser illumination of a thin Cu or Fe foil and collimated at the sample plane by a pinhole cut in a Ta substrate. The diffracted signal is recorded on x-ray sensitive material, with a typical d-spacing uncertainty of {approx}0.01 A. This diagnostic has been used up to 0.9 TPa (9 Mbar) to verify the solidity, measure the density, constrain the crystal structure, and evaluate the strain-induced texturing of a variety of compressed samples spanning atomic numbers from 6 (carbon) to 82 (lead). Further refinement of the technique will soon enable diffraction measurements in solid samples at pressures exceeding 1 TPa.

  7. Powder diffraction from solids in the terapascal regime

    NASA Astrophysics Data System (ADS)

    Rygg, J. R.; Eggert, J. H.; Lazicki, A. E.; Coppari, F.; Hawreliak, J. A.; Hicks, D. G.; Smith, R. F.; Sorce, C. M.; Uphaus, T. M.; Yaakobi, B.; Collins, G. W.

    2012-11-01

    A method of obtaining powder diffraction data on dynamically compressed solids has been implemented at the Jupiter and OMEGA laser facilities. Thin powdered samples are sandwiched between diamond plates and ramp compressed in the solid phase using a gradual increase in the drive-laser intensity. The pressure history in the sample is determined by back-propagation of the measured diamond free-surface velocity. A pulse of x rays is produced at the time of peak pressure by laser illumination of a thin Cu or Fe foil and collimated at the sample plane by a pinhole cut in a Ta substrate. The diffracted signal is recorded on x-ray sensitive material, with a typical d-spacing uncertainty of ˜0.01 Å. This diagnostic has been used up to 0.9 TPa (9 Mbar) to verify the solidity, measure the density, constrain the crystal structure, and evaluate the strain-induced texturing of a variety of compressed samples spanning atomic numbers from 6 (carbon) to 82 (lead). Further refinement of the technique will soon enable diffraction measurements in solid samples at pressures exceeding 1 TPa.

  8. The High Resolution Powder Diffraction Beam Line at ESRF

    PubMed Central

    Fitch, A. N.

    2004-01-01

    The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data. PMID:27366602

  9. New synchrotron powder diffraction facility for long-duration experiments.

    PubMed

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  10. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  11. Powder X-ray diffraction can differentiate between enantiomeric variants of calcium lactate pentahydrate crystal in cheese.

    PubMed

    Tansman, G F; Kindstedt, P S; Hughes, J M

    2014-12-01

    Powder X-ray diffraction has been used for decades to identify crystals of calcium lactate pentahydrate in Cheddar cheese. According to this method, diffraction patterns are generated from a powdered sample of the crystals and compared with reference cards within a database that contains the diffraction patterns of known crystals. During a preliminary study of crystals harvested from various Cheddar cheese samples, we observed 2 slightly different but distinct diffraction patterns that suggested that calcium lactate pentahydrate may be present in 2 different crystalline forms. We hypothesized that the 2 diffraction patterns corresponded to 2 enantiomeric forms of calcium lactate pentahydrate (L- and DL-) that are believed to occur in Cheddar cheese, based on previous studies involving enzymatic analyses of the lactate enantiomers in crystals obtained from Cheddar cheeses. However, the powder X-ray diffraction database currently contains only one reference diffraction card under the title “calcium lactate pentahydrate.” To resolve this apparent gap in the powder X-ray diffraction database, we generated diffraction patterns from reagent-grade calcium l-lactate pentahydrate and laboratory-synthesized calcium dl-lactate pentahydrate. From the resulting diffraction patterns we determined that the existing reference diffraction card corresponds to calcium dl-lactate pentahydrate and that the other form of calcium lactate pentahydrate observed in cheese crystals corresponds to calcium l-lactate pentahydrate. Therefore, this report presents detailed data from the 2 diffraction patterns, which may be used to prepare 2 reference diffraction cards that differentiate calcium l-lactate pentahydrate from calcium dl-lactate pentahydrate. Furthermore, we collected crystals from the exteriors and interiors of Cheddar cheeses to demonstrate the ability of powder X-ray diffraction to differentiate between the 2 forms of calcium lactate pentahydrate crystals in Cheddar cheeses

  12. Synchrotron and laboratory studies utilizing a new powder diffraction technique

    SciTech Connect

    Knapp, G.S.; Beno, M.A.; Jennings, G.; Engbretson, M.; Ramanathan, M.

    1992-10-01

    We have developed a new type of powder diffractometer that is much more efficient than existing methods. The diffractometer has the potential of both high count rates and very high resolution when used at a synchrotron source. The laboratory based instrument has an order of magnitude improvement in count rate over existing methods. The method uses a focusing diffracted beam monochromator in combination with a multichannel detector. The incident x-rays fall on a flat plate or capillary sample and are intercepted by a bent focusing monochromator which has the focus of the bend at the sample surface. The powder diffraction lines emerging from the bent crystal monochromator are detected by a linear or 2-dimensional detector. This allows us to eliminate the background from fluorescence or other scattering and to take data over a range of 3[degrees] to 4[degrees] instead of one angle at a time thereby providing a large improvement over conventional diffractometers. Results are presented for fluorapatite Fe[sub 2]O[sub 3], and a high-TC superconductor.

  13. Synchrotron and laboratory studies utilizing a new powder diffraction technique

    SciTech Connect

    Knapp, G.S.; Beno, M.A.; Jennings, G.; Engbretson, M.; Ramanathan, M.

    1992-10-01

    We have developed a new type of powder diffractometer that is much more efficient than existing methods. The diffractometer has the potential of both high count rates and very high resolution when used at a synchrotron source. The laboratory based instrument has an order of magnitude improvement in count rate over existing methods. The method uses a focusing diffracted beam monochromator in combination with a multichannel detector. The incident x-rays fall on a flat plate or capillary sample and are intercepted by a bent focusing monochromator which has the focus of the bend at the sample surface. The powder diffraction lines emerging from the bent crystal monochromator are detected by a linear or 2-dimensional detector. This allows us to eliminate the background from fluorescence or other scattering and to take data over a range of 3{degrees} to 4{degrees} instead of one angle at a time thereby providing a large improvement over conventional diffractometers. Results are presented for fluorapatite Fe{sub 2}O{sub 3}, and a high-TC superconductor.

  14. Powder diffraction from solids in the terapascal regime

    NASA Astrophysics Data System (ADS)

    Rygg, J.

    2013-06-01

    A method of obtaining powder diffraction data on dynamically-compressed solids has been implemented at the Jupiter and OMEGA laser facilities. Thin powdered samples are sandwiched between diamond plates, and ramp compressed in the solid phase using a gradual increase in the drive-laser intensity. The pressure history in the sample is determined by back-propagation of the measured diamond free-surface velocity. A pulse of x-rays is produced at the time of peak pressure by laser illumination of a thin Cu or Fe foil, and collimated at the sample plane by a pinhole cut in a Ta substrate. The diffracted signal is recorded on x-ray sensitive material, with a typical d-spacing uncertainty of approximately 0.01 Å. This diagnostic has been used up to 1.2 TPa (12 Mbar) to verify the solidity, measure the density, constrain the crystal structure, and evaluate the strain-induced texturing of a variety of compressed samples spanning atomic numbers from 6 (carbon) to 82 (lead).

  15. Femtosecond time-resolved MeV electron diffraction

    DOE PAGES

    Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; ...

    2015-06-02

    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 fC (~3 × 104 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated by observing themore » evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less

  16. Femtosecond time-resolved MeV electron diffraction

    SciTech Connect

    Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; Wu, L.; Cao, J.; Berger, H.; Geck, J.; Kraus, R.; Pjerov, S.; Shen, Y.; Tobey, R. I.; Hill, J. P.; Wang, X. J.

    2015-06-02

    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 fC (~3 × 104 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated by observing the evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.

  17. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE PAGES

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  18. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    SciTech Connect

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; Dooryhee, Eric; Conley, Ray

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.

  19. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements.

    PubMed

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; Dooryhee, Eric; Conley, Ray

    2016-11-01

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2-10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.

  20. Examination of reactor grade graphite using neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Hawari, A. I.

    2009-07-01

    Graphite is of principal interest in Generation IV nuclear reactor concepts. In particular, graphite will be the moderator for the Very High Temperature Reactor. In support of experimental and computational investigations that aim at understanding the behavior of reactor grade graphite under operating conditions, neutron powder diffraction experiments have been performed at the North Carolina State University PULSTAR reactor. The collected diffraction patterns exhibit intense broadening of several of the reflections, characteristic of turbostratic stacking. In order to quantify this disorder structurally, a model combined with a Rietveld-like refinement approach was implemented, which includes several refinable parameters that aim at describing this type of structure. Stacking parameters representing the probabilities of a random and registered shift between stacking packages were defined. The results indicate that the studied reactor grade graphite specimens contain a small fraction of layer disorder. The inferred interlayer spacing for the specimens is slightly larger than the theoretical value for graphite of 0.335 nm and the lattice constant is slightly less than 0.246 nm. The developed methodology is found to be successful in fitting the neutron diffraction patterns of reactor grade graphite.

  1. In situ studies of zeolite syntheses using powder diffraction methods: Crystallization of ``instant zeolite A`` powder and CoAPO-5

    SciTech Connect

    Norby, P.; Christensen, A.N.; Hanson, J.C.

    1994-02-01

    A series of hydrothermal zeolite synthesis were performed on a powder diffractometer using synchrotron radiation and a position sensitive detector. Direct observation of the induction period (nucleation stage), crystallization and transformation of zeolite 4A (Na-LTA) was possible due to the intense X-ray beam which allows fast data collection. High pressure experiments were performed, allowing observation of hydrothermal synthesis of a cobalt substituted AlPO{sub 4}-zeolite, CoAPO-5, up to 165{degrees}C. The temperature dependence of crystallization rates of CoAPO-5 was studied. This is to our knowledge the first time resolved powder diffraction studies of zeolite syntheses using angle dispersive synchrotron powder diffraction.

  2. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    NASA Astrophysics Data System (ADS)

    Post, J. E.; Bish, D. L.; Heaney, P. J.

    2006-05-01

    Sepiolite is a hydrous Mg-silicate clay mineral with fibrous morphology that typically occurs as fine-grained, poorly crystalline masses. It occurs in a wide variety of geological environments and has been mined for centuries because of its many uses, e.g. in the pharmaceutical, fertilizer, and pesticide industries. Its versatile functionality derives from the large surface area and microporosity that are characteristic of the material. In recent years, sepiolite has received considerable attention with regard to the adsorption of organics, for use as a support for catalysts, as a molecular sieve, and as an inorganic membrane for ultrafiltration. Because of its fine-grained and poorly crystalline nature, it has not been possible to study sepiolite's crystal structure using single-crystal X-ray diffraction methods, and consequently many details of the structure are still not well known. In this study, Rietveld refinements using synchrotron powder X-ray diffraction data were used to investigate the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room- temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic water site. The RT structure under vacuum retained only ~1/8 of the zeolitic water and the volume decreased 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic water is lost by ~390 K, accompanied by a decrease in the a and c unit-cell parameters. Above ~600 K the sepiolite structure folds as one-half of the crystallographically bound water is lost. Rietveld refinements of the "anhydrous" sepiolite structure reveal that, in general, unit-cell parameters a, b, â and volume steadily decrease with increasing temperature; there is an obvious change in slope at ~820 K suggesting a phase

  3. Spatially resolved contrast measurement of diffractive micromirror arrays

    NASA Astrophysics Data System (ADS)

    Sicker, Cornelius; Heber, Jörg; Berndt, Dirk; Rückerl, Florian; Tinevez, Jean-Yves; Shorte, Spencer; Wagner, Michael; Schenk, Harald

    2015-02-01

    Diffractive micromirror arrays (MMA) are a special class of optical MEMS, serving as spatial light modulators (SLM) that control the phase of reflected light. Since the surface profile is the determining factor for an accurate phase modulation, high-precision topographic characterization techniques are essential to reach highest optical performance. While optical profiling techniques such as white-light interferometry are still considered to be most suitable to this task, the practical limits of interferometric techniques start to become apparent with the current state of optical MEMS technology. Light scatter from structured surfaces carries information about their topography, making scatter techniques a promising alternative. Therefore, a spatially resolved scatter measurement technique, which takes advantage of the MMA's diffractive principle, has been implemented experimentally. Spectral measurements show very high contrast ratios (up to 10 000 in selected samples), which are consistent with calculations from micromirror roughness parameters obtained by white-light interferometry, and demonstrate a high sensitivity to changes in the surface topography. The technique thus seems promising for the fast and highly sensitive characterization of diffractive MMAs.

  4. Powder neutron diffraction studies of a carbonate fluorapatite

    SciTech Connect

    Leventouri, Th.; Chakoumakos, B. C.; Moghaddam, H. Y.; Perdikatsis, V.

    2000-02-01

    Atomic positional disorder of a single-phase natural carbonate fluorapatite (francolite) is revealed from analysis of the atomic displacement parameters (ADPs) refined from neutron powder diffraction data as a function of temperature and carbonate content. The ADPs of the francolite show a strong disturbance at the P, O3, and F sites. When it is heat treated to partially or completely remove the carbonate, the ADPs as well as the other structural parameters resemble those of a fluorapatite (Harding pegmatite) that was measured under the same conditions. The various structural changes are consistent with a substitution mechanism whereby the planar carbonate group replaces a phosphate group and lies on the mirror plane of the apatite structure. (c) 2000 Materials Research Society.

  5. Parts per Million Powder X-ray Diffraction

    DOE PAGES

    Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.; ...

    2015-10-14

    Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect lowmore » crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.« less

  6. Parts per Million Powder X-ray Diffraction

    SciTech Connect

    Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.; Deng, Fengyuan; Zhang, Shijie; Simpson, Garth J.

    2015-10-14

    Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect low crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.

  7. Powder X-ray diffraction laboratory, Reston, Virginia

    USGS Publications Warehouse

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  8. Quantitative determination of hydrate content of theophylline powder by chemometric X-ray powder diffraction analysis.

    PubMed

    Otsuka, Makoto; Kinoshita, Hajime

    2010-03-01

    The purpose of this study was to establish a calibration model to predict the hydrate content in powder materials consisting of anhydrate (theophylline anhydrate (THA)) and theophylline monohydrate (THM) by using various kinds of X-ray powder diffraction (XRPD) analytical methods. XRPD profiles were measured five times each for 11 standard samples containing of THA and THM. THM content in the standard samples was evaluated based on XRPD profiles by the diffraction peak height and area methods, and the Wakelin's and principal component regression (PCR) methods, respectively. Since THA and THM were cube- and rod-shaped particles, the standard samples consisted of THA and THM showed crystal orientation due to THM crystal shape. THA showed reproducible XRPD profiles, but THM showed fluctuating intensities in some specific peaks in the profiles. The linear calibration models were evaluated based on calibration XRPD datasets of the standard materials by various methods. In the result based on validation XRPD datasets, the order of the mean bias and the mean accuracy were peak height > peak area > Wakelin's > PCR, indicating that PCR was the best method to correct sample crystal orientation. The effectiveness of the PCR method in construction of calibration models was discussed by a scientific approach based on regression vectors.

  9. Zoledronic acid: monoclinic and triclinic polymorphs from powder diffraction data.

    PubMed

    Chernyshev, Vladimir V; Shkavrov, Sergey V; Paseshnichenko, Ksenia A; Puryaeva, Tamara P; Velikodny, Yurii A

    2013-03-01

    The crystal structures of the monoclinic and triclinic polymorphs of zoledronic acid, C5H10N2O7P2, have been established from laboratory powder X-ray diffraction data. The molecules in both polymorphs are described as zwitterions, namely 1-(2-hydroxy-2-phosphonato-2-phosphonoethyl)-1H-imidazol-3-ium. Strong intermolecular hydrogen bonds (with donor-acceptor distances of 2.60 Å or less) link the molecules into layers, parallel to the (100) plane in the monoclinic polymorph and to the (1-10) plane in the triclinic polymorph. The phosphonic acid groups form the inner side of each layer, while the imidazolium groups lie to the outside of the layer, protruding in opposite directions. In both polymorphs, layers related by translation along [100] interact through weak hydrogen bonds (with donor-acceptor distances greater than 2.70 Å), forming three-dimensional layered structures. In the monoclinic polymorph, there are hydrogen-bonded centrosymmetric dimers linked by four strong O-H...O hydrogen bonds, which are not present in the triclinic polymorph.

  10. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  11. Patterson-function direct methods for structure determination of organic compounds from powder diffraction data. XVI.

    PubMed

    Rius, Jordi

    2011-01-01

    A new type of direct methods (DM) called Patterson-function DM are presented that directly explore the Patterson instead of the modulus function. Since they work with the experimental intensities, they are particularly well suited for handling powder diffraction data. These methods are based on the maximization of the sum function S(P) ∝ ∑H(I(H)-)G(-H)(Φ) in terms of the Φ phases of the structure factors. The quantity accessible from the experiment is I(H), the equidistributed multiplet intensity of reflection H, and is the average intensity taken over all non-systematically absent reflections. G(-H)(Φ) is the calculated structure-factor amplitude of the squared structure that includes the positivity and the atomicity of the density function in its definition. The S(P) sum function can be optimized with the Patterson-function tangent formula (TF) using a variant of the S-FFT algorithm [Rius et al. (2007), Acta Cryst. A63, 131-134]. It is important that overlapped reflections also participate in the phase refinement, so that not only the resolved reflections but the whole pattern contribute decisively to the refinement. The increase in effective data resolution minimizes Fourier series termination effects and improves the accuracy of G(Φ). The Patterson-function TF has been applied to synchrotron powder data of various organic compounds. In all cases the molecules were easily identified in the respective Fourier maps. By way of illustration the method is applied to synchrotron powder data of a dimer formed by 30 symmetry-independent non-H atoms. Since single-crystal data may be regarded as overlap-free powder data, it is clear that Patterson-function DM can cope with powder and single-crystal data.

  12. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics

    NASA Astrophysics Data System (ADS)

    Sciaini, Germán; Miller, R. J. Dwayne

    2011-09-01

    One of the great dream experiments in Science is to directly observe atomic motions as they occur. Femtosecond electron diffraction provided the first 'light' of sufficient intensity to achieve this goal by attaining atomic resolution to structural changes on the relevant timescales. This review covers the technical progress that made this new level of acuity possible and gives a survey of the new insights gained from an atomic level perspective of structural dynamics. Atomic level views of the simplest possible structural transition, melting, are discussed for a number of systems in which both thermal and purely electronically driven atomic displacements can be correlated with the degree of directional bonding. Optical manipulation of charge distributions and effects on interatomic forces/bonding can be directly observed through the ensuing atomic motions. New phenomena involving strongly correlated electron-lattice systems are also discussed in which optically induced changes in the potential energy landscape lead to ballistic structural changes. Concepts such as the structural order parameters are now directly observable at the atomic level of inspection to give a remarkable view of the extraordinary degree of cooperativity involved in strongly correlated electron-lattice systems. These recent examples, in combination with time-resolved real space imaging now possible with electron probes, are truly defining an emerging field that holds great promise to make a significant impact in how we understand structural dynamics. This article is dedicated to the memory of Professor David John Hugh Cockayne, a world leader in electron microscopy, who sadly passed away in December.

  13. Differential evolution: crystal structure determination of a triclinic polymorph of adipamide from powder diffraction data.

    PubMed

    Seaton, Colin C; Tremayne, Maryjane

    2002-04-21

    The crystal structure of a previously unknown triclinic polymorph of adipamide has been solved from laboratory X-ray powder diffraction data using a new direct space global optimisation method based on differential evolution.

  14. Monitoring model drug microencapsulation in PLGA scaffolds using X-ray powder diffraction.

    PubMed

    Aina, Adeyinka; Gupta, Manish; Boukari, Yamina; Morris, Andrew; Billa, Nashiru; Doughty, Stephen

    2016-03-01

    The microencapsulation of three model drugs; metronidazole, paracetamol and sulphapyridine into Poly (dl-Lactide-Co-Glycolide) (PLGA) scaffolds were probed using X-ray Powder Diffraction (XRPD). Changes in the diffraction patterns of the PLGA scaffolds after encapsulation was suggestive of a chemical interaction between the pure drugs and the scaffolds and not a physical intermixture.

  15. Monitoring model drug microencapsulation in PLGA scaffolds using X-ray powder diffraction

    PubMed Central

    Aina, Adeyinka; Gupta, Manish; Boukari, Yamina; Morris, Andrew; Billa, Nashiru; Doughty, Stephen

    2015-01-01

    The microencapsulation of three model drugs; metronidazole, paracetamol and sulphapyridine into Poly (dl-Lactide-Co-Glycolide) (PLGA) scaffolds were probed using X-ray Powder Diffraction (XRPD). Changes in the diffraction patterns of the PLGA scaffolds after encapsulation was suggestive of a chemical interaction between the pure drugs and the scaffolds and not a physical intermixture. PMID:27013917

  16. Bayesian probability theory applied to the space group problem in powder diffraction

    NASA Astrophysics Data System (ADS)

    Markvardsen, A. J.

    2004-11-01

    Crystal structure determination from powder diffraction data has become a viable option for molecules with less than 50 non-hydrogen atoms in the asymmetric unit and this includes the majority of compounds of pharmaceutical interest. The solution of crystal structures, including space group determination, is more challenging from powder diffraction data than from single crystal diffraction data. Here, it will be demonstrated how a Bayesian probability analysis of this problem has helped to provide a new algorithm for the determination of the space group symmetry of a crystal from powder diffraction data. Specifically, the relative probabilities of different extinction symbols are accessed within a particular crystal system. Examples will be presented to illustrate this approach.

  17. Femtosecond powder diffraction with a laser-driven hard X-ray source.

    PubMed

    Zamponi, F; Ansari, Z; Woerner, M; Elsaesser, T

    2010-01-18

    X-ray powder diffraction with a femtosecond time resolution is introduced to map ultrafast structural dynamics of polycrystalline condensed matter. Our pump-probe approach is based on photoexcitation of a powder sample with a femtosecond optical pulse and probing changes of its structure by diffracting a hard X-ray pulse generated in a laser-driven plasma source. We discuss the key aspects of this scheme including an analysis of detection sensitivity and angular resolution. Applying this technique to the prototype molecular material ammonium sulfate, up to 20 powder diffraction rings are recorded simultaneously with a time resolution of 100 fs. We describe how to derive transient charge density maps of the material from the extensive set of diffraction data in a quantitative way.

  18. Correlating cycling history with structural evolution in commercial 26650 batteries using in operando neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Goonetilleke, Damian; Pramudita, James C.; Hagan, Mackenzie; Al Bahri, Othman K.; Pang, Wei Kong; Peterson, Vanessa K.; Groot, Jens; Berg, Helena; Sharma, Neeraj

    2017-03-01

    Ex situ and time-resolved in operando neutron powder diffraction (NPD) has been used to study the structural evolution of the graphite negative electrode and LiFePO4 positive electrode within ANR26650M1A commercial batteries from A123 Systems, in what to our knowledge is the first reported NPD study investigating a 26650-type battery. Batteries with different and accurately-known electrochemical and storage histories were studied, enabling the tell-tale signs of battery degradation to be elucidated using NPD. The ex-situ NPD data revealed that the intensity of the graphite/lithiated graphite (LixC6 or LiyC) reflections was affected by battery history, with lower lithiated graphite (LiC12) reflection intensities typically corresponding to more abused batteries. This indicates that the lithiation of graphite is less progressed in more abused batteries, and hence these batteries have lower capacities. In operando NPD allows the rate of structural evolution in the battery electrode materials to be correlated to the applied current. Interestingly, the electrodes exhibit different responses to the applied current that depend on the battery cycling history, with this particularly evident for the negative electrode. Therefore, this work illustrates how NPD can be used to correlate a battery history with electrode structure.

  19. Synchrotron x-ray powder diffraction studies in pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Frings, P.; Vanacken, J.; Detlefs, C.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Bras, W.; Rikken, G. L. J. A.

    2006-06-01

    X-ray powder diffraction experiments under pulsed magnetic fields were carried out at the DUBBLE beamline (BM26B) at the ESRF. A mobile generator delivered 110kJ to the magnet coil, which was sufficient to generate peak fields of 30T. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 8 and 300K. Powder diffraction patterns of several samples were recorded using 21keV monochromatic x-rays and an on-line image plate detector. Here we present the first results on the suppression of the Jahn-Teller structural distortion in TbVO4 by magnetic field. These data clearly demonstrate the feasibility of x-ray powder diffraction experiments under pulsed magnetic fields with relatively inexpensive instrumentation.

  20. Powder x ray diffraction patterns of energetic materials for use as reference standards

    NASA Astrophysics Data System (ADS)

    Sullenger, D. B.; Cantrell, J. S.; Beiter, T. A.

    1993-03-01

    This report lists eighteen quality powder x-ray diffraction patterns produced at Mound for various explosives of recent and current interest. In each case the best possible experimental pattern, obtained from the substance in question via automated diffractometric step-scans, was compared with the corresponding pattern, calculated from the lattice and atomic positional parameters of the crystal structure, if known, and a reconciliation sought between the two was sought. In order to make these patterns more useful to various types of practitioners, previously published patterns for these substances have been included, together with a brief description of their crystallographies, some Chemical Abstracts reference information about them, and an evaluation of their quality via accepted powder diffraction criteria. Most of these patterns have been accepted by the International Center for Diffraction Data for inclusion in their Powder Data File; the others will be submitted in due course.

  1. Ultrafast Time Resolved X-ray Diffraction Studies of Laser Heated Metals and Semiconductors

    NASA Astrophysics Data System (ADS)

    Chen, Peilin; Tomov, I. V.; Rentzepis, P. M.

    1998-03-01

    Time resolved hard x-ray diffraction has been employed to study the dynamics of lattice structure deformation. When laser pulse energy is deposited in a material it generates a non uniform transient temperature distribution, which alters the lattice structure of the crystal. The deformed crystal lattice will change the angle of diffraction for a monochromatic x-ray beam. We report picosecond and nanosecond time resolved x-ray diffraction measurements of the lattice temperature distribution, transient structure and stress, in Pt (111) and GaAs (111) crystals, caused by pulsed UV laser irradiation. An ArF excimer laser operated at 300 Hz was used, both, to drive an x-ray diode with copper anode and heat the crystal. Bragg diffracted x-ray radiation was recorded by a direct imaging x-ray CCD. Changes in the diffraction patterns induced by a few millijouls pulse energy were observed at different time delays between the laser heating pulse and the x-ray probing pulse. A kinematical model for time resolved x-ray diffraction was used to analyze the experimental data. Good agreement between the measured and calculated scattered x-ray intensities profiles was achieved, indicating that detailed time resolved x-ray diffraction measurements can be made with nanosecond and picosecond resolution for small temperature changes. Our system can detect changes in the lattice spacing of about 10-3 A.

  2. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  3. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole.

    PubMed

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-05

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M=Mn(II), Fe(II) or Co(II); etim=1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  4. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction.

    PubMed

    Thompson, S P; Parker, J E; Potter, J; Hill, T P; Birt, A; Cobb, T M; Yuan, F; Tang, C C

    2009-07-01

    The performance characteristics of a new synchrotron x-ray powder diffraction beamline (I11) at the Diamond Light Source are presented. Using an in-vacuum undulator for photon production and deploying simple x-ray optics centered around a double-crystal monochromator and a pair of harmonic rejection mirrors, a high brightness and low bandpass x-ray beam is delivered at the sample. To provide fast data collection, 45 Si(111) analyzing crystals and detectors are installed onto a large and high precision diffractometer. High resolution powder diffraction data from standard reference materials of Si, alpha-quartz, and LaB6 are used to characterize instrumental performance.

  5. Implementation of Lamarckian concepts in a Genetic Algorithm for structure solution from powder diffraction data

    NASA Astrophysics Data System (ADS)

    Turner, Giles W.; Tedesco, Emilio; Harris, Kenneth D. M.; Johnston, Roy L.; Kariuki, Benson M.

    2000-04-01

    Previous implementations of Genetic Algorithms in direct-space strategies for structure solution from powder diffraction data have employed the operations of mating, mutation and natural selection, with the fitness of each structure based on comparison between calculated and experimental powder diffraction patterns (we define fitness as a function of weighted-profile R-factor Rwp). We report an extension to this method, in which each structure generated in the Genetic Algorithm is subjected to local minimization of Rwp with respect to structural variables. This approach represents an implementation of Lamarckian concepts of evolution, and is found to give significant improvements in efficiency and reliability.

  6. Synchrotron X-ray Powder Diffraction Studies in Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Detlefs, C.; Frings, P.; Vanacken, J.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Bras, W.; Rikken, G. L. J. A.

    2007-01-01

    X-ray powder diffraction experiments under pulsed magnetic fields were carried out at the DUBBLE beamline (BM26B) at the ESRF. A mobile generator delivered 110kJ to the magnet coil, which was sufficient to generate peak fields of 30T. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 8K and 300K.

  7. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    SciTech Connect

    Lawson, A.C.; Smith, K.

    1986-09-01

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs.

  8. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods

  9. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders

    PubMed Central

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-01-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni–Se–O–Cl crystals, zeolites, germanates, metal–organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED

  10. Synergy between transmission electron microscopy and powder diffraction: application to modulated structures.

    PubMed

    Batuk, Dmitry; Batuk, Maria; Abakumov, Artem M; Hadermann, Joke

    2015-04-01

    The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).

  11. The impact of powder diffraction on the structural characterization of organic crystalline materials.

    PubMed

    Tremayne, Maryjane

    2004-12-15

    The bulk properties of organic crystalline materials depend on their molecular and crystal structures but, as many of these materials cannot be prepared in a suitable form for conventional single-crystal diffraction studies, structural characterization and rationalization of these properties must be obtained from powder diffraction data. The recent development of direct-space structure solution methods has enabled the study of a wide range of organic materials using powder diffraction data, many of structural complexity only made tractable by these advances in methodology. These direct-space methods are based on a number of global optimization techniques including Monte Carlo, simulated annealing, genetic algorithm and differential evolution approaches. In this article, the implementation and relative efficiency and reliability of these methods are discussed, and their impact on the structural study of organic materials is illustrated by examples of polymorphic systems, pharmaceutical, pigment and polypeptide structures and compounds used in the study of intermolecular networks.

  12. Unmixing 40Ar/39Ar Muscovite Ages Using Powder X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    McAleer, R. J.; Kunk, M. J.; Valley, P. M.; Walsh, G. J.; Bish, D. L.; Wintsch, R. P.

    2014-12-01

    Whole rock powder X-ray diffraction (XRD) experiments from eight samples collected across a retrograde ductile shear zone in the Devonian Littleton Formation near Claremont, NH, exhibit broad and asymmetric to bimodal muscovite 00l reflections. These composite 00l reflections exhibit a systematic change in shape with increasing retrograde strain. Microtextural relationships, electron microprobe quantitative analyses, and element mapping indicate that the change in peak shape reflects progressive dissolution of metastable Na-rich muscovite and the precipitation of stable Na-poor muscovite. 40Ar/39Ar step heating experiments on muscovite concentrates from these samples show a decrease in total gas age from 274 to 258 Ma as the highest strain zone is approached, and steps within individual spectra range in age by ~20 m.y. The correlation between age and 00l peak shape suggests that the argon isotopic system also tracks the dissolution-precipitation process. Furthermore, the variation in age during step heating indicates that these populations exhibit different in-vacuo degassing behavior. Comparison of whole rock and muscovite concentrate XRD patterns from the same samples shows that the mineral separation process can fractionate these muscovite populations. With this knowledge, four muscovite concentrates were prepared from a single hand sample, analyzed by XRD, and dated. Combining modal estimates from XRD experiments with total gas ages, the four splits narrowly define a mixing line that resolves end-member ages of 250 and 300 Ma for the neocrystallized and earlier high grade populations of muscovite, respectively. These ages are consistent with age data from all other samples. The results show that, in some settings, powder XRD provides a powerful and time effective method to both identify the existence of and establish the proportions of multiple compositional populations of muscovite prior to 40Ar/39Ar analysis. This approach will be especially useful in

  13. MnO spin-wave dispersion curves from neutron powder diffraction

    SciTech Connect

    Goodwin, Andrew L.; Dove, Martin T.; Tucker, Matthew G.; Keen, David A.

    2007-02-15

    We describe a model-independent approach for the extraction of spin-wave dispersion curves from powder neutron total scattering data. Our approach is based on a statistical analysis of real-space spin configurations to calculate spin-dynamical quantities. The RMCPROFILE implementation of the reverse Monte Carlo refinement process is used to generate a large ensemble of supercell spin configurations from MnO powder diffraction data collected at 100 K. Our analysis of these configurations gives spin-wave dispersion curves for MnO that agree well with those determined independently using neutron triple-axis spectroscopic techniques.

  14. X-ray powder diffraction patterns for certain beta-lactam, tetracycline and macrolide antibiotic drugs.

    PubMed

    Thangadurai, S; Abraham, J T; Srivastava, A K; Moorthy, M Nataraja; Shukla, S K; Anjaneyulu, Y

    2005-07-01

    X-ray powder diffraction (XRD) data for eight beta-lactam viz., ampicillin sodium, ampicillin trihydrate, penicillin G procaine, benzathine penicillin, benzyl penicillin sodium, cefalexin, cefotaxime sodium and ceftriaxone sodium; three tetracyclines viz., doxycycline hydrochloride, oxytetracycline dihydrate and tetracycline hydrochloride; and two macrolide viz., azithromycin and erythromycin estolate antibiotic drugs were obtained using a powder diffractometer. The drugs were scanned from Bragg angles (2theta) of 10 degrees to 70 degrees. The obtained data were tabulated in terms of the lattice spacing (A) and relative line intensities (I/I(I)). This new information may be useful for identifying these drugs from confiscated materials, which has been frequently encountered in forensic laboratories.

  15. A new approach for structure analysis of two-dimensional membrane protein crystals using X-ray powder diffraction data

    PubMed Central

    Dilanian, R A; Darmanin, C; Varghese, J N; Wilkins, S W; Oka, T; Yagi, N; Quiney, H M; Nugent, K A

    2011-01-01

    The application of powder diffraction methods to problems in structural biology is generally regarded as intractable because of the large number of unresolved, overlapping X-ray reflections. Here, we use information about unit cell lattice parameters, space group transformations, and chemical composition as a priori information in a bootstrap process that resolves the ambiguities associated with overlapping reflections. The measured ratios of reflections that can be resolved experimentally are used to refine the position, the shape, and the orientation of low-resolution molecular structures within the unit cell, in leading to the resolution of the overlapping reflections. The molecular model is then made progressively more sophisticated as additional diffraction information is included in the analysis. We apply our method to the recovery of the structure of the bacteriorhodopsin molecule (bR) to a resolution of 7 Å using experimental data obtained from two-dimensional purple membrane crystals. The approach can be used to determine the structure factors directly or to provide reliable low-resolution phase information that can be refined further by the conventional methods of protein crystallography. PMID:21154412

  16. Powder diffraction by fixed incident angle reflection using a curved position-sensitive detector

    SciTech Connect

    Haggerty, Ryan P.; Sarin, Pankaj; Bérar, Jean-Francois; Apostolov, Zlatomir D.; Kriven, Waltraud M.

    2010-05-25

    As curved position-sensitive detectors improve in angular resolution, the effects that fixed incident angle reflection have on X-ray diffraction peaks become more apparent. In this study the effects of sample transparency, incident beam height, detector resolution and sample displacement on the intensity, location, width and shape of powder diffraction peaks were examined. The functions describing each of these phenomena are presented and were successfully used to quantitatively model the diffraction peaks collected in this geometry. Three distinct regimes of diffraction peak resolution were identified from the phenomena that limit the peak variance. Pertinent criteria based on experimental parameters have been outlined to classify fixed incident angle reflection experiments into each regime. Guidelines for improvement of experimental resolution and for conducting analysis of data acquired using fixed incident angle reflection geometry and curved position-sensitive detectors are also provided.

  17. Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose Iβ

    PubMed

    Hadden, Jodi A; French, Alfred D; Woods, Robert J

    2014-04-01

    Previous studies of calculated diffraction patterns for cellulose crystallites suggest that distortions that arise once models have been subjected to MD simulation are the result of both microfibril twisting and changes in unit cell dimensions induced by the empirical force field; to date, it has not been possible to separate the individual contributions of these effects. To provide a better understanding of how twisting manifests in diffraction data, the present study demonstrates a method for generating twisted and linear cellulose structures that can be compared without the bias of dimensional changes, allowing assessment of the impact of twisting alone. Analysis of unit cell dimensions, microfibril volume, hydrogen bond patterns, glycosidic torsion angles, and hydroxymethyl group orientations confirmed that the twisted and linear structures collected with this method were internally consistent, and theoretical powder diffraction patterns for the two were shown to be effectively indistinguishable. These results indicate that differences between calculated patterns for the crystal coordinates and twisted structures from MD simulation can result entirely from changes in unit cell dimensions, and not from microfibril twisting alone. Although powder diffraction patterns for models in the 81-chain size regime were shown to be unaffected by twisting, suggesting that a modest degree of twist is not inconsistent with experimental data, it may be that other diffraction techniques are capable of detecting this structural difference. Until such time as definitive experimental evidence comes to light, the results of this study suggest that both twisted and linear microfibrils may represent an appropriate model for cellulose Iβ.

  18. Implementation and use of Robust Refinement in Powder Diffraction in the Presence of Impurities

    SciTech Connect

    Stone, K.; Lapidus, S; Stephens, P

    2009-01-01

    A modification to the usual least-squares analysis is implemented for the robust refinement of structural parameters from powder diffraction data in the presence of unmodeled impurities. This is accomplished in the program TOPAS-Academic by an iterative reweighting of the data as the model is refined. The method is tested and characterized using mixtures of known materials, acetaminophen and ibuprofen. The technique is also used to refine two previously unknown structures.

  19. Chemical analyses and x-ray diffraction patterns of powders and films of chloroaluminum phthalocyanine

    NASA Astrophysics Data System (ADS)

    Cote, Roland; Denes, G.; Gastonguay, Louis; Dodelet, Jean-Pol

    1992-12-01

    Fine powders and sublimed films (15 micrometers thick) of pure chloroaluminum phthalocyanine (ClAlPc) undergo both, chemical reaction and structural modification, when immersed in aqueous solutions containing anions (I3-/I- or Br- at various acid pH values). The x-ray diffraction diagrams of powder and films of untreated ClAlPc exhibit a strong characteristic peak corresponding to a d-spacing of 3.29 angstrom. A 48 h. immersion of ClAlPc (powder or film) resulted in the appearance of a new peak at 3.45 angstrom in the diffraction diagram. The peak intensity at d equals 3.45 angstrom is only 11% (powder) or 47% (film) of the main peak intensity at d equals 3.29 angstrom. It clearly shows that the crystal structure of ClAlPc has only been partially modified in both cases. However, the modification is more complete for the film than for the powder. Chemical analyses by neutron activation were performed on fine powders of ClAlPc before and after immersion. For instance ClAlPc absorbs 7.6% by weight of iodine after 24 h of immersion in I3-/I- (0.005 M/0.4 M) redox electrolyte at pH 1.0. The decrease in the chlorine content of untreated ClAlPc from 6.1% to 3.7% after immersion could be explained in terms of an hydrolysis reaction of some ClAlPc. These results lead us to a model where by the surface of the ClAlPc crystallites would be hydrolyzed to HOAlPc and heavily doped with anions taken up from the aqueous solution. These transformations improve the photoactivity of the material.

  20. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    PubMed

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  1. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  2. On the origin of sharp peaks in the X-ray diffraction patterns of xanthan powders.

    PubMed

    Lad, M; Todd, T; Morris, G A; MacNaughtan, W; Sworn, G; Foster, T J

    2013-08-15

    A series of xanthans containing different levels of the charged group pyruvate has been examined. The X-ray diffraction patterns of the powders of these materials had different levels of a sharp pattern superimposed on an amorphous background. As the moisture content increased so the intensity of the sharp pattern increased up to a level between 20% and 40% moisture content where the sharp pattern disappeared. X-ray diffraction pattern identification software and an inorganic X-ray diffraction database showed the origin of the sharp peaks to be due to sodium sulphate polymorphs. The behaviour of the xanthans was thought to be due to the differences in charge on the molecule; however, the increase in the crystalline component observed with increased amounts of water was unexpected. The possibility of the drying of samples was considered but the interplay between ions, the charged polymer and the water present was considered necessary to more closely describe the results.

  3. Time-resolved studies of impact-initiated combustion in aluminum powder compacts

    NASA Astrophysics Data System (ADS)

    Breidenich, Jennifer; Dixon, Sean; Aydelotte, Brady; Thadhani, Naresh

    2011-06-01

    The mechanisms of combustion reaction occurring under impact loading of aluminum powder compacts are studied using UV/Vis spectroscopy to gain time-resolved chemical information. Impact experiments performed on aluminum powder compacts reveal light emission due to reaction at velocities greater than 400m/s in air, while no reaction is observed in a vacuum (50mTorr). Light emission and reaction occurrence is also sensitive to the density of the Al powder compacts. Upon combustion, wavelengths indicative of the well-known reaction Al +O2 --> AlO + O , a sharp doublet at 398 nm and multiple broad peaks between 420 and 500 nm, are observed. Microsecond time-resolved chemical information is gained through analysis of these wavelengths using a spectrometer coupled with an electron multiplier CCD camera. The impact initiated reaction is also monitored by high speed imaging of transient deformation profiles which are compared to those predicted using numerical simulations employing ANSYS-AUTODYN-3D computer code. The insight obtained from the combination of these analyses of impact-initiated combustion reaction in aluminum powder compacts will be presented. Funded by DTRA, Grant No. HDTRA1-10-1-0038

  4. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    SciTech Connect

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  5. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    SciTech Connect

    Haugh, M. J. Jacoby, K. D.; Wu, M.; Loisel, G. P.

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  6. Recombination of photodissociated iodine: A time-resolved x-ray-diffraction study

    SciTech Connect

    Wulff, M.; Bratos, S.; Plech, A.; Vuilleumier, R.; Mirloup, F.; Lorenc, M.; Kong, Q.; Ihee, H.

    2006-01-21

    A time-resolved x-ray-diffraction experiment is presented that aims to study the recombination of laser-dissociated iodine molecules dissolved in CCl{sub 4}. This process is monitored over an extended time interval from pico- to microseconds. The variations of atom-atom distances are probed with a milliangstrom resolution. A recent theory of time-resolved x-ray diffraction is used to analyze the experimental data; it employs the correlation function approach of statistical mechanics. The most striking outcome of this study is the experimental determination of time-dependent I-I atom-atom distribution functions. The structure of the CCl{sub 4} solvent changes simultaneously; the solvent thus appears as a reaction partner rather than an inert medium hosting it. Thermal expansion of the system is nonuniform in time, an effect due to the presence of the acoustic horizon. One concludes that a time-resolved x-ray diffraction permits real-time visualization of solvent and solute motions during a chemical reaction.

  7. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals.

    PubMed

    Haugh, M J; Wu, M; Jacoby, K D; Loisel, G P

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  8. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystalsa)

    NASA Astrophysics Data System (ADS)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  9. Fast X-ray powder diffraction on I11 at Diamond.

    PubMed

    Thompson, Stephen P; Parker, Julia E; Marchal, Julien; Potter, Jonathan; Birt, Adrian; Yuan, Fajin; Fearn, Richard D; Lennie, Alistair R; Street, Steven R; Tang, Chiu C

    2011-07-01

    The commissioning and performance characterization of a position-sensitive detector designed for fast X-ray powder diffraction experiments on beamline I11 at Diamond Light Source are described. The detecting elements comprise 18 detector-readout modules of MYTHEN-II silicon strip technology tiled to provide 90° coverage in 2θ. The modules are located in a rigid housing custom designed at Diamond with control of the device fully integrated into the beamline data acquisition environment. The detector is mounted on the I11 three-circle powder diffractometer to provide an intrinsic resolution of Δ2θ approximately equal to 0.004°. The results of commissioning and performance measurements using reference samples (Si and AgI) are presented, along with new results from scientific experiments selected to demonstrate the suitability of this facility for powder diffraction experiments where conventional angle scanning is too slow to capture rapid structural changes. The real-time dehydrogenation of MgH(2), a potential hydrogen storage compound, is investigated along with ultrafast high-throughput measurements to determine the crystallite quality of different samples of the metastable carbonate phase vaterite (CaCO(3)) precipitated and stabilized in the presence of amino acid molecules in a biomimetic synthesis process.

  10. Assessment of the Stoichiometry of Multicomponent Crystals Using Only X-ray Powder Diffraction Data.

    PubMed

    Maguire, Courtney K; Brunskill, Andrew P J

    2015-06-01

    Knowledge of the unit cell volume of a crystalline form and the expected space filling requirements of an API molecule can be used to determine if a crystalline material is likely to be multicomponent, such as a solvate, hydrate, salt, or a co-crystal. The unit cell information can be readily accessed from powder diffraction data alone utilizing powder indexing methodology. If the unit cell has additional space not likely attributable to the API entity, then there is either a void or another component within the crystal lattice. This "leftover" space can be used to determine the likely stoichiometry of the additional component. A simple approach for calculating the expected required volume for a given molecule within a crystal using an atom based additive approach will be discussed. Coupling this estimation with the actual unit cell volumes and space group information obtained from powder indexing allows for the rapid evaluation of the likely stoichiometry of multicomponent crystals using diffraction data alone. This approach is particularly useful for the early assessment of new phases during salt, co-crystal, and polymorph screening, and also for the characterization of stable and unstable solvates.

  11. Powder X-ray diffraction detection on a paper-based platform.

    PubMed

    Ouyang, Liangfei; Liu, Qian; Xu, Chaoping; Liu, Changgui; Liang, Heng

    2017-03-01

    We developed paper-based powder X-ray diffraction (PP-XRD) to implement phase identification and/or crystal structure determination on paper-based platforms. These aims are not possible with other paper-based detectors, such as Raman spectroscopy and mass spectrometry. PP-XRD overcomes these limitations. Here we reported the simple and low-cost in situ PP-XRD protocol for phase identifications of inorganic and organic materials. We demonstrated that sample amounts of lead nitrate on paper substrate can be reduced into 1/30 of conventional ones by using the standard glass substrate at the same signal-to-noise ratio (S/N) of the X-ray diffraction (XRD) pattern. The paper-based method was comparable in sample quantity and intensity with zero background holder method, even though single crystal Si(100) substrate as zero background holder was used for the specimen preparation of CTAB (C19H42BrN). More importantly, paper substrates helped reduce preferred orientation that was generally present in routine powder XRD. Also, combined with paper chromatography, overlap peaks were eliminated in the XRD detection patterns of lead nitrate and cobalt nitrate hexahydrate. This new PP-XRD protocol may accelerate the process to identify phase or determine the molecular structures of new materials using trace sample directly. It also includes a hyphenated technique of powder XRD with a simple paper-based microfluidic separation of chemical solutions.

  12. Neutron and X-ray powder diffraction study of skutterudite thermoelectrics

    DOE PAGES

    Wang, H.; Kirkham, M. J.; Watkins, T. R.; ...

    2016-02-17

    N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubicmore » symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. Ultimately, this knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.« less

  13. Neutron and X-ray powder diffraction study of skutterudite thermoelectrics

    SciTech Connect

    Wang, H.; Kirkham, M. J.; Watkins, T. R.; Payzant, E. A.; Salvador, J. R.; Thompson, A. J.; Sharp, J.; Brown, D.; Miller, D.

    2016-02-17

    N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubic symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. Ultimately, this knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.

  14. A Mössbauer and X-ray powder diffraction study of some ferrous hematinics.

    PubMed

    Coe, E M; Bowen, L H; Bereman, R D

    1995-06-01

    Iron deficiency anemia is a relatively common illness that can arise from a number of different causes. Three ferrous salts are usually used in its treatment: ferrous fumarate, gluconate, and sulfate. They are administered orally and are relatively well tolerated. These hematinics have been studied by Mössbauer spectroscopy and X-ray powder diffraction, and can easily be distinguished by both techniques. It was found that the two ferrous sulfates studied (Eckerd and SmithKline Beckman Co.) most closely resemble the monohydrate by comparison of the X-ray powder pattern with those of the JCPDS. Both the ferrous fumarate (Femiron) and gluconate (Spring Valley) had approximately 10% ferric iron present. To the authors' knowledge, this is the first reported Mössbauer spectrum for ferrous fumarate.

  15. Development of MnBi permanent magnet: neutron diffraction of MnBi powder

    SciTech Connect

    Cui, Jun; Choi, Jung-Pyung; Li, Guosheng; Polikarpov, Evgueni; Darsell, Jens T.; Kramer, Matthew J.; Zarkevich, Nikolai; Wang, L. L.; Johnson, D. D.; Marinescu, Melania; Huang, Qingzhen; Wu, Hui; Vuong, Nguyen V.; Liu, J.Ping

    2014-03-05

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained power. The result shows that the purity of the obtained powder is about 91wt.% at 300K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K respectively.

  16. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane

    USGS Publications Warehouse

    Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.

    2003-01-01

    Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.

  17. A GUINIER CAMERA FOR SR POWDER DIFFRACTION: HIGH RESOLUTION AND HIGH THROUGHPUT.

    SciTech Connect

    SIDDONS,D.P.; HULBERT, S.L.; STEPHENS, P.W.

    2006-05-28

    The paper describe a new powder diffraction instrument for synchrotron radiation sources which combines the high throughput of a position-sensitive detector system with the high resolution normally only provided by a crystal analyzer. It uses the Guinier geometry which is traditionally used with an x-ray tube source. This geometry adapts well to the synchrotron source, provided proper beam conditioning is applied. The high brightness of the SR source allows a high resolution to be achieved. When combined with a photon-counting silicon microstrip detector array, the system becomes a powerful instrument for radiation-sensitive samples or time-dependent phase transition studies.

  18. On the reliability of powder diffraction Line Profile Analysis of plastically deformed nanocrystalline systems

    PubMed Central

    Rebuffi, Luca; Troian, Andrea; Ciancio, Regina; Carlino, Elvio; Amimi, Amine; Leonardi, Alberto; Scardi, Paolo

    2016-01-01

    An iron-molybdenum alloy powder was extensively deformed by high energy milling, so to refine the bcc iron domain size to nanometer scale (~10 nm) and introduce a strong inhomogeneous strain. Both features contribute to comparable degree to the diffraction peak profile broadening, so that size and strain contributions can be easily separated by exploiting their different dependence on the diffraction angle. To assess the reliability of Line Profile Analysis, results were compared with evidence from other techniques, including scanning and transmission electron microscopy and X-ray small angle scattering. Results confirm the extent of the size broadening effect, whereas molecular dynamics simulations provide insight into the origin of the local atomic, inhomogeneous strain, pointing out the role of dislocations, domain boundaries and interactions among crystalline domains. PMID:26860471

  19. Synchrotron X-ray Powder Diffraction and Absorption Spectroscopy in Pulsed Magnetic Fields with Milliseconds Duration

    NASA Astrophysics Data System (ADS)

    Vanacken, J.; Detlefs, C.; Mathon, O.; Frings, P.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Dominguez, M.-C.; Herczeg, J.; Bras, W.; Moshchalkov, V. V.; Rikken, G.

    2007-03-01

    X-ray Powder Diffraction and X-ray Absorption Spectroscopy experiments (WAS) and X-ray magnetic circular dichroism (XMCD) experiments were carried out at the ESRF DUBBLE beam line (BM26) and at the energy dispersive beam line (ID24), respectively. A mobile pulse generator, developed at the LNCMP, delivered 110kJ to the load coil, which was sufficient to generate peak fields of 30T with a rise time of about 5 ms. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 4.2K and 300K. Powder diffraction patterns of TbVO4 were recorded in a broad temperature range using 21 keV monochromatic X-rays and using an on-line image plate detector. We observed the suppression of the Jahn-Teller structural distortion in TbVO4 due to the high magnetic pulsed field. XAS spectra could be measured and finite XMCD signals, directly proportional to the magnetic moment on the Gd absorber atom, were measured in thin Gd foils. Thanks to its element and orbital selectivity, XMCD proofs to be very useful in probing the magnetic properties and due to the strong brilliance of the synchrotron beam, the signals can be measured even in the ms range.

  20. Optimizations in angular dispersive neutron powder diffraction using divergent beam geometries

    NASA Astrophysics Data System (ADS)

    Buchsteiner, Alexandra; Stüßer, Norbert

    2009-01-01

    Angular dispersive neutron powder diffractometers are usually built using beam divergencies defined by Soller type collimators. To account for the needs of resolution for crystal structure refinement a good in-pile collimation α1, a high take-off angle above 90∘ at the monochromator and a good collimation α3 in front of the detector bank are chosen whereas the value of α2 for the collimation between monochromator and sample is less crucial. During the last years new strategies were developed at our institute using wide divergent beam geometries defined by fan collimators or slit-type diaphragms which correlate ray direction and wavelength within the beam. Here we present the performance of a newly developed fan collimator, which enables one to adjust the opening of the collimator channels on both sides independently. This fan collimator is positioned in front of the monochromator at the instrument E6 at the Helmholtz Centre Berlin (formerly Hahn-Meitner-Institut Berlin). It will be shown that control of the beam divergency allows optimization of the resolution in a large angular diffraction range. Hence the resolution and intensity can be adapted to the needs of powder diffraction. Monte Carlo simulations using McStas are used to check and prove the optimal setting of the instrument. We obtain a very good agreement between experimental and simulated data and demonstrate the superior outcome of the new instrument configuration with respect to Soller type instruments.

  1. Studies of clays and clay minerals using x-ray powder diffraction and the Rietveld method

    SciTech Connect

    Bish, D.L.

    1993-09-01

    The Rietveld method was originally developed (Rietveld, 1967, 1969) to refine crystal structures using neutron powder diffraction data. Since then, the method has been increasingly used with X-ray powder diffraction data, and today it is safe to say that this is the most common application of the method. The method has been applied to numerous natural and synthetic materials, most of which do not usually form crystals large enough for study with single-crystal techniques. It is the ability to study the structures of materials for which sufficiently large single crystals do not exist that makes the method so powerful and popular. It would thus appear that the method is ideal for studying clays and clay minerals. In many cases this is true, but the assumptions implicit in the method and the disordered nature of many clay minerals can limit titsapplicability. This chapter will describe the Rietveld method, emphasizing the assumptions important for the study of disordered materials, and it will outline the potential applications of the method to these minerals. These applications include, in addition to the refinement of crystal structures, quantitative analysis of multicomponent mixtures, analysis of peak broadening, partial structure solution, and refinement of unit-cell parameters.

  2. In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction

    SciTech Connect

    Gualtieri, A.F.; Venturelli, P.

    1999-05-01

    The temperature induced goethite-hematite phase transformation that occurs at about 250 C was studied using in situ synchrotron X-ray powder diffraction with a capillary Debye-Scherrer geometry and a translating image plate system (TIPS). This is the first time the goethite-hematite transformation has been investigated in real time. The sample was a pure, synthetic, stoichiometric goethite with 2 {micro}m long needle-shaped crystals. The microstructural characterization showed that the sample was well crystallized. The Rietveld refinement of 30 powder patterns extracted from the image in the range 25--800 C demonstrates that an intermediate phase with non-stoichiometric composition (protohematite) forms after the decomposition of goethite. The cell parameter b of goethite dramatically decreased during the phase transformation while a and c instead continued to increase. Protohematite is iron-deficient and retains residual hydrolysis for charge balance. With temperature protohematite progressively transforms into hematite. Empty layers (pores) are consequently formed about the hematite clusters. The distribution of iron vacancies was modeled in the powder patterns with stacking faults that were simulated using anisotropic broadening coefficients of the pseudo-Voigt profile function. Its disappearance with temperature was effectively followed with a decrease of the density of stacking faults.

  3. Time Resolved X-Ray Diffraction of Reactive Solids Under Dynamic Loadings

    NASA Astrophysics Data System (ADS)

    Yoo, Choong-Shik

    2015-06-01

    We present novel time-resolved (TR) x-ray diffraction and TR Raman spectroscopy capable of probing structural and chemical evolutions of solids undergoing chemical and phase transformations. These methods are applicable to a wide range of dynamic experiments to study both single event phenomena of solids under thermal, electric or mechanical impact conditions and non-single event phenomena under dynamic-diamond anvil cell (d-DAC) and high frequency pulse (or ramp) laser-heated DAC. In this talk, relevant technology developments are described with several examples of our recent studies on reactive metals and dense molecular systems, which are synergistic to many proposed activities to develop dynamic synchrotron x-ray diffraction capabilities centered at advanced third and fourth generation light sources.

  4. Intramolecular electron diffraction in vibrationally resolved K-shell photoionization of methane

    NASA Astrophysics Data System (ADS)

    Plésiat, Etienne; Argenti, Luca; Kukk, Edwin; Miron, Catalin; Ueda, Kiyoshi; Decleva, Piero; Martín, Fernando

    2012-02-01

    Current techniques based on x-ray or electron diffraction are successfully employed for structure determination in condensed matter but are sometimes limited when applied to low density media such as the gas phase. Here we show that vibrationally resolved photoelectron spectroscopy based on x rays generated by third generation synchrotron light sources can be used to infer the structure of isolated molecules in a simple and efficient way. In particular, we show that vibrational ratios obtained from inner shell C 1s photoelectron spectroscopy of isolated methane molecules exhibit pronounced oscillations that are the fingerprints of electron diffraction by the surrounding atomic centers, thus providing the necessary information for the determination of the molecular geometry.

  5. Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression

    SciTech Connect

    Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong; Rod, Eric; Bai, Ligang; Shen, Guoyin

    2015-07-15

    Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  6. Electro-optic sampling for time resolving relativistic ultrafast electron diffraction

    SciTech Connect

    Scoby, C. M.; Musumeci, P.; Moody, J.; Gutierrez, M.; Tran, T.

    2009-01-22

    The Pegasus laboratory at UCLA features a state-of-the-art electron photoinjector capable of producing ultrashort (<100 fs) high-brightness electron bunches at energies of 3.75 MeV. These beams recently have been used to produce static diffraction patterns from scattering off thin metal foils, and it is foreseen to take advantage of the ultrashort nature of these bunches in future pump-probe time-resolved diffraction studies. In this paper, single shot 2-d electro-optic sampling is presented as a potential technique for time of arrival stamping of electron bunches used for diffraction. Effects of relatively low bunch charge (a few 10's of pC) and modestly relativistic beams are discussed and background compensation techniques to obtain high signal-to-noise ratio are explored. From these preliminary tests, electro-optic sampling is suitable to be a reliable nondestructive time stamping method for relativistic ultrafast electron diffraction at the Pegasus lab.

  7. Time-resolved X-ray diffraction of Ti in dynamic-DAC

    NASA Astrophysics Data System (ADS)

    Tomasino, Dane; Yoo, Choong-Shik

    2017-01-01

    Understanding the dynamic response of solids under extreme conditions of pressure, temperature and strain rate is a fundamental scientific quest and a basic research need in materials science. Specifically, obtaining an atomistic description of structural and chemical changes of solids under rapid heating and/or compression over a large temporal, spatial and energy range is challenging but critical to understanding material stability or metastable structure, chemical mechanism, transition dynamic, and mechanical deformation. In this paper, we present time-resolved synchrotron x-ray diffraction probing the structural evolution of Ti across the α-ω phase transition in dynamic-diamond anvil cell.

  8. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    SciTech Connect

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko

    2015-11-16

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10{sup 4} times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO{sub 4} tetrahedra, which efficiently transduce electric energy into elastic energy.

  9. X-ray diffraction in temporally and spatially resolved biomolecular science.

    PubMed

    Helliwell, John R; Brink, Alice; Kaenket, Surasak; Starkey, Victoria Laurina; Tanley, Simon W M

    2015-01-01

    Time-resolved Laue protein crystallography at the European Synchrotron Radiation Facility (ESRF) opened up the field of sub-nanosecond protein crystal structure analyses. There are a limited number of such time-resolved studies in the literature. Why is this? The X-ray laser now gives us femtosecond (fs) duration pulses, typically 10 fs up to ∼50 fs. Their use is attractive for the fastest time-resolved protein crystallography studies. It has been proposed that single molecules could even be studied with the advantage of being able to measure X-ray diffraction from a 'crystal lattice free' single molecule, with or without temporal resolved structural changes. This is altogether very challenging R&D. So as to assist this effort we have undertaken studies of metal clusters that bind to proteins, both 'fresh' and after repeated X-ray irradiation to assess their X-ray-photo-dynamics, namely Ta6Br12, K2PtI6 and K2PtBr6 bound to a test protein, hen egg white lysozyme. These metal complexes have the major advantage of being very recognisable shapes (pseudo spherical or octahedral) and thereby offer a start to (probably very difficult) single molecule electron density map interpretations, both static and dynamic. A further approach is to investigate the X-ray laser beam diffraction strength of a well scattering nano-cluster; an example from nature being the iron containing ferritin. Electron crystallography and single particle electron microscopy imaging offers alternatives to X-ray structural studies; our structural studies of crustacyanin, a 320 kDa protein carotenoid complex, can be extended either by electron based techniques or with the X-ray laser representing a fascinating range of options. General outlook remarks concerning X-ray, electron and neutron macromolecular crystallography as well as 'NMR crystallography' conclude the article.

  10. Is the Separable Propagator Perturbation Approach Accurate in Calculating Angle Resolved Photoelectron Diffraction Spectra?

    NASA Astrophysics Data System (ADS)

    Ng, C. N.; Chu, T. P.; Wu, Huasheng; Tong, S. Y.; Huang, Hong

    1997-03-01

    We compare multiple scattering results of angle-resolved photoelectron diffraction spectra between the exact slab method and the separable propagator perturbation method. In the slab method,footnote C.H. Li, A.R. Lubinsky and S.Y. Tong, Phys. Rev. B17, 3128 (1978). the source wave and multiple scattering within the strong scattering atomic layers are expanded in spherical waves while interlayer scattering is expressed in plane waves. The transformation between spherical waves and plane waves is done exactly. The plane waves are then matched across the solid-vacuum interface to a single outgoing plane wave in the detector's direction. The separable propagator perturbation approach uses two approximations: (i) A separable representation of the Green's function propagator and (ii) A perturbation expansion of multiple scattering terms. Results of c(2x2) S-Ni(001) show that this approximate method fails to converge due to the very slow convergence of the separable representation for scattering angles less than 90^circ. However, this method is accurate in the backscattering regime and may be applied to XAFS calculations.(J.J. Rehr and R.C. Albers, Phys. Rev. B41, 8139 (1990).) The use of this method for angle-resolved photoelectron diffraction spectra is substantially less reliable.

  11. A novel setup for time-resolved X-ray diffraction on gas gun experiments

    NASA Astrophysics Data System (ADS)

    Zucchini, Frédéric; Chauvin, Camille; Loyen, Arnaud; Combes, Philippe; Petit, Jacques; Bland, Simon

    2017-01-01

    Polymorphic phase transitions in metals have been investigated for a long time under dynamic loadings through usual dynamic compression diagnostics such as velocity and temperature measurements. Such measurements were valuable for revealing the key role of kinetic effects in most phase transition mechanisms. However, the information extracted was mostly macroscopic. Obtaining direct insight about the crystallographic structure under dynamic loadings is critical for understanding mechanisms governing shock-induced structural changes. For example, in order to evidence a mixture phase or to determine the time scale of a transition, structural information may be extremely valuable. Over the last 20 years a significant number of X-ray diffraction experiments were carried under dynamic loading, either using laboratory X-ray sources or synchrotron radiation. We are developing a novel experimental setup based on a compact High Pulsed Power generator capable of producing intense X radiation through an X-pinch X-ray source. This source is specifically designed for time-resolved X-ray diffraction in Bragg geometry on gas gun experiments. Promising preliminary diffraction data obtained under static conditions are presented.

  12. Thermal transport in thin films measured by time-resolved, grazing incidence x-ray diffraction.

    SciTech Connect

    Walko, D. A.; Sheu, Y.-M.; Trigo, M.; Reis, D. A.

    2011-01-01

    We use depth- and time-resolved x-ray diffraction to study thermal transport across single crystal Bi films grown on sapphire in order to determine the thermal conductivity of the film and the Kapitza conductance of the interface. Ultrafast Ti:sapphire laser pulses were used to heat the films; x-ray diffraction then measured the film's lattice expansion. Use of grazing incidence diffraction geometry provided depth sensitivity, as the x-ray angle of incidence was varied near the critical angle. The shift of the film's Bragg peak position with time was used to determine the film temperature averaged over an x-ray penetration depth that could be selected by choice of the angle of incidence. For films that were thick compared to the laser penetration depth, we observed a large temperature gradient at early times. In this case, measurements with the incident angle near or well above the critical angle were more sensitive to the film conductivity or Kapitza conductance, respectively. For thinner films, however, cooling was dominated by the Kapitza conductance at all accessible time scales.

  13. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    PubMed Central

    Lambert, P. K.; Hustedt, C. J.; Vecchio, K. S.; Huskins, E. L.; Casem, D. T.; Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Kannan, V.; Ramesh, K. T.; Kenesei, P.; Okasinski, J. S.; Almer, J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.

    2014-01-01

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼103–104 s−1 in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation. PMID:25273733

  14. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    SciTech Connect

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.; Vecchio, K. S.; Huskins, E. L.; Casem, D. T.; Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T.; Woll, A. R.; Kannan, V.; Ramesh, K. T.; Kenesei, P.; Okasinski, J. S.; Almer, J.

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  15. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading.

    PubMed

    Lambert, P K; Hustedt, C J; Vecchio, K S; Huskins, E L; Casem, D T; Gruner, S M; Tate, M W; Philipp, H T; Woll, A R; Purohit, P; Weiss, J T; Kannan, V; Ramesh, K T; Kenesei, P; Okasinski, J S; Almer, J; Zhao, M; Ananiadis, A G; Hufnagel, T C

    2014-09-01

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ~10(3)-10(4) s(-1) in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10-20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (~40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  16. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy Joe

    2013-01-01

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  17. A 30 T pulsed magnet with conical bore for synchrotron powder diffraction.

    PubMed

    Billette, J; Duc, F; Frings, P; Nardone, M; Zitouni, A; Detlefs, C; Roth, T; Crichton, W; Lorenzo, J E; Rikken, G L J A

    2012-04-01

    We report on the design, construction, and operation of a horizontal field, 30 T magnet system with a conical bore optimized for synchrotron x-ray powder diffraction. The magnet offers ±31° optical access downstream of the sample, which allows to measure a sufficiently large number of Debye rings for an accurate crystal structure analysis. Combined with a 290 kJ generator, magnetic field pulses of 60 ms length were generated in the magnet, with a rise time of 4.1 ms and a repetition rate of 6 pulses/h at 30 T. The coil is mounted inside a liquid nitrogen bath. A liquid helium flow cryostat reaches into the coil and allows sample temperature between 5 and 250 K. The setup was used on the European Synchrotron Radiation Facility beamlines ID20 and ID06.

  18. A 30 T pulsed magnet with conical bore for synchrotron powder diffraction

    NASA Astrophysics Data System (ADS)

    Billette, J.; Duc, F.; Frings, P.; Nardone, M.; Zitouni, A.; Detlefs, C.; Roth, T.; Crichton, W.; Lorenzo, J. E.; Rikken, G. L. J. A.

    2012-04-01

    We report on the design, construction, and operation of a horizontal field, 30 T magnet system with a conical bore optimized for synchrotron x-ray powder diffraction. The magnet offers ±31° optical access downstream of the sample, which allows to measure a sufficiently large number of Debye rings for an accurate crystal structure analysis. Combined with a 290 kJ generator, magnetic field pulses of 60 ms length were generated in the magnet, with a rise time of 4.1 ms and a repetition rate of 6 pulses/h at 30 T. The coil is mounted inside a liquid nitrogen bath. A liquid helium flow cryostat reaches into the coil and allows sample temperature between 5 and 250 K. The setup was used on the European Synchrotron Radiation Facility beamlines ID20 and ID06.

  19. Crystal structure of trirubidium citrate from laboratory X-ray powder diffraction data and DFT comparison

    PubMed Central

    Kaduk, James A.

    2017-01-01

    The crystal structure of trirubidium citrate, 3Rb+·C6H5O7 3−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The two independent Rb+ cations are seven- and eight-coordinate, with bond-valence sums of 0.99 and 0.92 valence units. The coordination polyhedra share edges and corners to form a three-dimensional framework. The only hydrogen bond is an intra­molecular one between the hy­droxy group and the central carboxyl­ate, with graph set S(5). The hydro­phobic methyl­ene groups lie in pockets in the framework. PMID:28217353

  20. Compact low power infrared tube furnace for in situ X-ray powder diffraction.

    PubMed

    Doran, A; Schlicker, L; Beavers, C M; Bhat, S; Bekheet, M F; Gurlo, A

    2017-01-01

    We describe the development and implementation of a compact, low power, infrared heated tube furnace for in situ powder X-ray diffraction experiments. Our silicon carbide (SiC) based furnace design exhibits outstanding thermal performance in terms of accuracy control and temperature ramping rates while simultaneously being easy to use, robust to abuse and, due to its small size and low power, producing minimal impact on surrounding equipment. Temperatures in air in excess of 1100 °C can be controlled at an accuracy of better than 1%, with temperature ramping rates up to 100 °C/s. The complete "add-in" device, minus power supply, fits in a cylindrical volume approximately 15 cm long and 6 cm in diameter and resides as close as 1 cm from other sensitive components of our experimental synchrotron endstation without adverse effects.

  1. Crystal structure of trirubidium citrate from laboratory X-ray powder diffraction data and DFT comparison.

    PubMed

    Rammohan, Alagappa; Kaduk, James A

    2017-02-01

    The crystal structure of trirubidium citrate, 3Rb(+)·C6H5O7(3-), has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The two independent Rb(+) cations are seven- and eight-coordinate, with bond-valence sums of 0.99 and 0.92 valence units. The coordination polyhedra share edges and corners to form a three-dimensional framework. The only hydrogen bond is an intra-molecular one between the hy-droxy group and the central carboxyl-ate, with graph set S(5). The hydro-phobic methyl-ene groups lie in pockets in the framework.

  2. On the numerical corrections of time-of-flight neutron powder diffraction data.

    SciTech Connect

    Avdeev, M.; Jorgensen, J.; Short, S.; Von Dreele, R.

    2007-08-01

    Time-of-flight neutron powder diffraction data for NIST Standard Reference Materials have been used to study the adequacy of the peak profile model obtained from a convolution of back-to-back exponentials with a pseudo-Voigt function that is widely used in Rietveld refinement. It is shown that, while the empirical models for d-spacing (wavelength) dependence of Gaussian and Lorentzian components of the pseudo-Voigt function and rise exponent are satisfactory, the behavior of the decay exponent and peak positions demonstrate significant deviations, which can be corrected by numerical methods. The practical side of this process as implemented in GSAS and FULLPROF and the effect of the corrections on the Rietveld analysis results are discussed.

  3. Elasticity and Anelasticity of Materials from Time-Resolved X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Sinogeikin, S. V.; Smith, J.; Lin, C.; Bai, L.; Rod, E.; Shen, G.

    2014-12-01

    Recent advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have enabled many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to develop and assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. In this talk we will outline recently developed capabilities at HPCAT for studying elasticity and anelasticity of minerals using fast compression and cyclic compression-decompression. A few recent studies will be highlighted. For example, with fast x-ray area detectors having millisecond time resolution, accurate thermal equations of state of materials at temperatures up to 1000K and megabar pressures can be collected in a matter of seconds using membrane-driven diamond anvil cells (DAC), yielding unprecedented time and pressure resolution of true isotherms. Short duration of the experiments eliminates temperature variation during the experiments and in general allows volume measurements at higher pressures and temperatures. Alternatively, high-frequency (kilohertz range) radial diffraction measurements in a panoramic DAC combined with fast, precise cyclic loading/unloading by piezo drive could provide the short time scale necessary for studying rheology of minerals from the elastic response and lattice relaxation as a function of pressure, temperature and strain rate. Finally, we consider some possible future applications for time-resolved high-pressure, high-temperature research of mantle minerals.

  4. In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries.

    PubMed

    Sharma, Neeraj; Pang, Wei Kong; Guo, Zaiping; Peterson, Vanessa K

    2015-09-07

    The ability to directly track the charge carrier in a battery as it inserts/extracts from an electrode during charge/discharge provides unparalleled insight for researchers into the working mechanism of the device. This crystallographic-electrochemical information can be used to design new materials or modify electrochemical conditions to improve battery performance characteristics, such as lifetime. Critical to collecting operando data used to obtain such information in situ while a battery functions are X-ray and neutron diffractometers with sufficient spatial and temporal resolution to capture complex and subtle structural changes. The number of operando battery experiments has dramatically increased in recent years, particularly those involving neutron powder diffraction. Herein, the importance of structure-property relationships to understanding battery function, why in situ experimentation is critical to this, and the types of experiments and electrochemical cells required to obtain such information are described. For each battery type, selected research that showcases the power of in situ and operando diffraction experiments to understand battery function is highlighted and future opportunities for such experiments are discussed. The intention is to encourage researchers to use in situ and operando techniques and to provide a concise overview of this area of research.

  5. Performance calculations of the X-ray powder diffraction beamline at NSLS-II.

    PubMed

    Shi, Xianbo; Ghose, Sanjit; Dooryhee, Eric

    2013-03-01

    The X-ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi-purpose high-energy X-ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double-Laue crystal monochromator to provide X-rays over a large energy range (30-70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi-lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.

  6. High-pressure powder x-ray diffraction study of EuVO{sub 4}

    SciTech Connect

    Garg, Alka B.; Errandonea, D.

    2015-03-15

    The high-pressure structural behavior of europium orthovanadate has been studied using in-situ, synchrotron based, high-pressure x-ray powder diffraction technique. Angle-dispersive x-ray diffraction measurements were carried out at room temperature up to 34.7 GPa using a diamond-anvil cell, extending the pressure range reported in previous experiments. We confirmed the occurrence of zircon–scheelite phase transition at 6.8 GPa and the coexistence of low- and high-pressure phases up to 10.1 GPa. In addition, clear evidence of a scheelite–fregusonite transition is found at 23.4 GPa. The fergusonite structure remains stable up to 34.7 GPa, the highest pressure reached in the present measurements. A partial decomposition of EuVO{sub 4} was also observed from 8.1 to 12.8 GPa; however, this fact did not preclude the identification of the different crystal structures of EuVO{sub 4}. The crystal structures of the different phases have been Rietveld refined and their equations of state (EOS) have been determined. The results are compared with the previous experimental data and theoretical calculations. - Graphical abstract: The high-pressure structural sequence of EuVO{sub 4}. - Highlights: • EuVO{sub 4} is studied under pressure up to 35 GPa using synchrotron XRD. • The zircón–scheelite–fergusonite structural sequence is observed. • Crystal structures are refined and equations of state determined.

  7. Powder diffraction in Bragg–Brentano geometry with straight linear detectors

    PubMed Central

    Kriegner, Dominik; Matěj, Zdeněk; Kužel, Radomír; Holý, Václav

    2015-01-01

    A common way of speeding up powder diffraction measurements is the use of one- or two-dimensional detectors. This usually goes hand in hand with worse resolution and asymmetric peak profiles. In this work the influence of a straight linear detector on the resolution function in the Bragg–Brentano focusing geometry is discussed. Because of the straight nature of most modern detectors geometrical defocusing occurs, which heavily influences the line shape of diffraction lines at low angles. An easy approach to limit the resolution-degrading effects is presented. The presented algorithm selects an adaptive range of channels of the linear detector at low angles, resulting in increased resolution. At higher angles the whole linear detector is used and the data collection remains fast. Using this algorithm a well behaved resolution function is obtained in the full angular range, whereas using the full linear detector the resolution function varies within one pattern, which hinders line-shape and Rietveld analysis. PMID:25844084

  8. Time-, frequency-, and wavevector-resolved x-ray diffraction from single molecules

    PubMed Central

    Bennett, Kochise; Biggs, Jason D.; Zhang, Yu; Dorfman, Konstantin E.; Mukamel, Shaul

    2014-01-01

    Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broadband X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and proteins. PMID:24880284

  9. X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals.

    PubMed

    Perozzo, M A; Ward, K B; Thompson, R B; Ward, W W

    1988-06-05

    The energy transfer protein, green fluorescent protein, from the hydromedusan jellyfish Aequorea victoria has been crystallized in two morphologies suitable for x-ray diffraction analysis. Hexagonal plates have been obtained in the P6122 or P6522 space group with a = b = 77.5, c = 370 A, and no more than three molecules per asymmetric unit. Monoclinic parallel-epipeds have been obtained in the C2 space group with a = 93.3, b = 66.5, c = 45.5 A, beta = 108 degrees, and one molecule per asymmetric unit. The monoclinic form is better suited for use in a structure determination, and a data set was collected from the native crystal. Time-resolved fluorescence measurements of large single crystals are possible due to the unique, covalently bound chromophore present in this molecule. Fluorescence emission spectra of Aequorea green fluorescent protein in solution and from either the hexagonal or monoclinic single crystal show similar profiles suggesting that the conformations of protein in solution and in the crystal are similar. Multifrequency phase fluorimetric data obtained from a single crystal were best fit by a single fluorescence lifetime very close to that exhibited by the protein in solution. The complementary structural data obtained from fluorescence spectroscopy and x-ray diffraction crystallography will aid in the elucidation of this novel protein's structure-function relationship.

  10. Time-Resolved Soft X-ray Diffraction Reveals Transient Structural Distortions of Ternary Liquid Crystals

    PubMed Central

    Quevedo, Wilson; Peth, Christian; Busse, Gerhard; Scholz, Mirko; Mann, Klaus; Techert, Simone

    2009-01-01

    Home-based soft X-ray time-resolved scattering experiments with nanosecond time resolution (10 ns) and nanometer spatial resolution were carried out at a table top soft X-ray plasma source (2.2–5.2 nm). The investigated system was the lyotropic liquid crystal C16E7/paraffin/glycerol/formamide/IR 5. Usually, major changes in physical, chemical, and/or optical properties of the sample occur as a result of structural changes and shrinking morphology. Here, these effects occur as a consequence of the energy absorption in the sample upon optical laser excitation in the IR regime. The liquid crystal shows changes in the structural response within few hundred nanoseconds showing a time decay of 182 ns. A decrease of the Bragg peak diffracted intensity of 30% and a coherent macroscopic movement of the Bragg reflection are found as a response to the optical pump. The Bragg reflection movement is established to be isotropic and diffusion controlled (1 μs). Structural processes are analyzed in the Patterson analysis framework of the time-varying diffraction peaks revealing that the inter-lamellar distance increases by 2.7 Å resulting in an elongation of the coherently expanding lamella crystallite. The present studies emphasize the possibility of applying TR-SXRD techniques for studying the mechanical dynamics of nanosystems. PMID:20087463

  11. Using Variable Temperature Powder X-Ray Diffraction to Determine the Thermal Expansion Coefficient of Solid MgO

    ERIC Educational Resources Information Center

    Corsepius, Nicholas C.; DeVore, Thomas C.; Reisner, Barbara A.; Warnaar, Deborah L.

    2007-01-01

    A laboratory exercise was developed by using variable temperature powder X-ray diffraction (XRD) to determine [alpha] for MgO (periclase)and was tested in the Applied Physical Chemistry and Materials Characterization Laboratories at James Madison University. The experiment which was originally designed to provide undergraduate students with a…

  12. An Inquiry-Based Project Focused on the X-Ray Powder Diffraction Analysis of Common Household Solids

    ERIC Educational Resources Information Center

    Hulien, Molly L.; Lekse, Jonathan W.; Rosmus, Kimberly A.; Devlin, Kasey P.; Glenn, Jennifer R.; Wisneski, Stephen D.; Wildfong, Peter; Lake, Charles H.; MacNeil, Joseph H.; Aitken, Jennifer A.

    2015-01-01

    While X-ray powder diffraction (XRPD) is a fundamental analytical technique used by solid-state laboratories across a breadth of disciplines, it is still underrepresented in most undergraduate curricula. In this work, we incorporate XRPD analysis into an inquiry-based project that requires students to identify the crystalline component(s) of…

  13. Plant powder teabags: a novel and practical approach to resolve culturability and diversity of rhizobacteria.

    PubMed

    Sarhan, Mohamed S; Mourad, Elhussein F; Hamza, Mervat A; Youssef, Hanan H; Scherwinski, Ann-Christin; El-Tahan, Mahmoud; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2016-08-01

    We have developed teabags packed with dehydrated plant powders, without any supplements, for preparation of plant infusions necessary to develop media for culturing rhizobacteria. These bacteria are efficiently cultivated on such plant teabag culture media, with better progressive in situ recoverability compared to standard chemically synthetic culture media. Combining various plant-based culture media and incubation conditions enabled us to resolve unique denaturing gradient gel electrophoresis (DGGE) bands that were not resolved by tested standard culture media. Based on polymerase chain reaction PCR-DGGE of 16S rDNA fingerprints and sequencing, the plant teabag culture media supported higher diversity and significant increases in the richness of endo-rhizobacteria, namely Gammaproteobacteria (Enterobacteriaceae) and predominantly Alphaproteobacteria (Rhizobiaceae). This culminated in greater retrieval of the rhizobacteria taxa associated with the plant roots. We conclude that the plant teabag culture medium by itself, without any nutritional supplements, is sufficient and efficient for recovering and mirroring the complex and diverse communities of rhizobacteria. Our message to fellow microbial ecologists is: simply dehydrate your plant canopy, teabag it and soak it to prepare your culture media, with no need for any additional supplementary nutrients.

  14. High-performance X-ray detectors for the new powder diffraction beamline I11 at Diamond.

    PubMed

    Tartoni, Nicola; Thompson, Stephen P; Tang, Chiu C; Willis, Brian L; Derbyshire, Gareth E; Wright, Anthony G; Jaye, Stephen C; Homer, J Michael; Pizzey, John D; Bell, Anthony M T

    2008-01-01

    The design and performance characterization of a new light-weight and compact X-ray scintillation detector is presented. The detectors are intended for use on the new I11 powder diffraction beamline at the third-generation Diamond synchrotron facility where X-ray beams of high photon brightness are generated by insertion devices. The performance characteristics of these detection units were measured first using a radioactive source (efficiency of detection and background count rate) and then synchrotron X-rays (peak stability, light yield linearity and response consistency). Here, the results obtained from these tests are reported, and the suitability of the design for the Diamond powder beamline is demonstrated by presenting diffraction data obtained from a silicon powder standard using a prototype multicrystal analyser stage.

  15. Powder neutron diffraction of α-UB 2C (α-UB 2C-type)

    NASA Astrophysics Data System (ADS)

    Rogl, Peter; Fischer, Peter

    1991-02-01

    The crystal structure of α-UB 2C (low temperature modification below T = 1675(25)°C) was determined from powder X-ray data (RT) and powder neutron diffraction data (at 29 K) employing the Rietveld-Young-Wiles profile analysis method. α-UB 2C crystallizes in the orthorhombic space group Pmma with a = 0.60338(3), b = 0.35177(2), c = 0.41067(2) nm, V = 0.0872 nm 3, Z = 2. The residuals of the neutron refinement were R1 = 0.032 and RF = 0.043. The crystal structure of α-UB 2C is a new structure type where planar nonregular 6 3-U-metal layers alternate with planar nonmetal layers of the type (B 6C 2) 3. Boron atoms are in a typical triangular prismatic metal surrounding with a tetrakaidekahedral coordination B[U 6B 2C 1], whereas carbon atoms occupy the center points of rectangular bipyramids C[U 4B 2]. The crystal structure of α-UB 2C derives from the high temperature modification β-UB 2C (ThB 2C-type, R overline3m ), which reveals a similar stacking of slightly puckered metal layers 6 3, alternating with planar layers B 6 · (B 6C 3) 2. The phase transition from β-UB 2C to α-UB 2C is thus essentially generated by carbon diffusion within the limit∞2 B 6 · (B 6C 3) 2 layers to form limit∞2 (B 6C 2) 3 layers.

  16. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific

  17. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  18. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil

    NASA Astrophysics Data System (ADS)

    Kappen, P.; Arhatari, B. D.; Luu, M. B.; Balaur, E.; Caradoc-Davies, T.

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography/diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  19. Full phase analysis of portland clinker by penetrating synchrotron powder diffraction.

    PubMed

    de la Torre, A G; Cabeza, A; Calvente, A; Bruque, S; Aranda, M A

    2001-01-15

    Fabrication of portland cements commonly depends on X-ray fluorescence (XRF), which measures the elemental compositions. XRF is used to adjust the raw material proportions and to control the process conditions. However, to predict the mechanical strength of the resulting concrete, it is essential to know the phase composition which is, so far, indirectly inferred by the Bogue method. Here, we report a phase analysis of an industrial portland clinker containing six crystalline phases, Ca3SiO5, Ca2SiO4, Ca4Al2Fe2O10, Ca3Al2O6, NaK3(SO4)2, and CaO, by Rietveld refinement of synchrotron X-ray powder diffraction data (lambda = 0.442377 A). Even the minor component, CaO 0.45(2)%, was readily analyzed. We have also carried out a phase study of the same clinker with laboratory X-rays to characterize the changes in the detection limit and errors. Furthermore, by adding a suitable crystalline standard to the same clinker, we have determined the overall amorphous phase content. The procedure established for this state-of-the-art phase analysis shows the high precision that can be achieved by using penetrating X-rays, which is of interest not only in cement chemistry but in other industrially important multiphase systems such as slags, superalloys, or catalysts.

  20. In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction

    SciTech Connect

    Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E.R.; Fauth, F.; Aranda, M.A.G.; De la Torre, A.G.

    2014-02-15

    Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (α). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (α ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.

  1. Neutron Powder Diffraction Study on the Magnetic Structure of NdPd5Al2

    NASA Astrophysics Data System (ADS)

    Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki; Suzuki, Hiroyuki S.; Hagihala, Masato; Frontzek, Matthias D.; Matsuda, Masaaki; Fernandez-Baca, Jaime A.

    2017-03-01

    The magnetic structure of NdPd5Al2 has been studied by neutron powder diffraction. We observed the magnetic reflections with the modulation vector q = (1/2,0,0) below the ordering temperature TN. We found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group Panma). This "stripe"-like modulation is very similar to that in CePd5Al2 with q = (0.235,0.235,0) with the Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.

  2. X-ray Powder Diffraction for Characterization of Raw Materials in Banknotes.

    PubMed

    Marabello, Domenica; Benzi, Paola; Lombardozzi, Antonietta; Strano, Morela

    2017-01-25

    We report about the X-ray powder diffraction characterization of crystalline materials used to produce genuine and counterfeit banknotes, performed with a single-crystal diffractometer that permits fast and nondestructive measurements in different 0.5-mm sized areas; 20-euro denomination genuine banknotes were analyzed, and results were compared with counterfeit banknotes. The analysis shows that the papers used to print real banknotes are composed, as expected, of cotton-based cellulose and titanium dioxide as crystalline additive, but different polymorphs of TiO2 for different emission countries are evidenced. The counterfeit banknotes are composed of cellulose based on wood pulp; moreover, an unexpected significant quantity of TiO2 was found to be mixed with calcite, indicating that the paper employed by forgers is not simply a common low-cost type. The crystalline index and intensity ratios between the peaks attributable to cellulose and fillers can provide additional information to trace back paper suppliers for forensic purposes.

  3. Quantification of febuxostat polymorphs using powder X-ray diffraction technique.

    PubMed

    Qiu, Jing-bo; Li, Gang; Sheng, Yue; Zhu, Mu-rong

    2015-03-25

    Febuxostat is a pharmaceutical compound with more than 20 polymorphs of which form A is most widely used and usually exists in a mixed polymorphic form with form G. In the present study, a quantification method for polymorphic form A and form G of febuxostat (FEB) has been developed using powder X-ray diffraction (PXRD). Prior to development of a quantification method, pure polymorphic form A and form G are characterized. A continuous scan with a scan rate of 3° min(-1) over an angular range of 3-40° 2θ is applied for the construction of the calibration curve using the characteristic peaks of form A at 12.78° 2θ (I/I0100%) and form G at 11.72° 2θ (I/I0100%). The linear regression analysis data for the calibration plots shows good linear relationship with R(2)=0.9985 with respect to peak area in the concentration range 10-60 wt.%. The method is validated for precision, recovery and ruggedness. The limits of detection and quantitation are 1.5% and 4.6%, respectively. The obtained results prove that the method is repeatable, sensitive and accurate. The proposed developed PXRD method can be applied for the quantitative analysis of mixtures of febuxostat polymorphs (forms A and G).

  4. Anomalous thermal expansion in rare-earth gallium perovskites: a comprehensive powder diffraction study

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Trots, D. M.; Engel, J. M.; Vasylechko, L.; Ehrenberg, H.; Hansen, T.; Berkowski, M.; Fuess, H.

    2009-04-01

    Crystal structures of rare-earth gallium perovskites LaGaO3, PrGaO3, NdGaO3 and Pr1-xNdxGaO3 (x = 0.25, 0.50, 0.75) solid solutions were investigated in the temperature range 12-300 K by high-resolution powder diffraction using synchrotron or neutron radiation. The previously reported negative thermal expansion in the b direction of the PrGaO3 lattice has been found to be persistent in Pr1-xNdxGaO3 solid solutions and its magnitude has been revealed as proportional to the amount of praseodymium. Evaluation of the obtained temperature evolution of cell dimensions indicated a weak anomalous behaviour of the b lattice parameter in NdGaO3, and its origin is supposed to be the same as in PrGaO3, i.e. a coupling of the crystal electric field levels with phonon excitations of about 23-25 meV energy. The performed bond length analysis revealed an anomalous behaviour of both LnO12 (Ln—rare-earth) and GaO6 coordination polyhedra, which can be a structural manifestation of anomalous thermal expansion in the considered compounds.

  5. X-Ray Powder Diffraction Study of Synthetic Palmierite, K{sub 2}Pb(SO{sub 4}){sub 2}

    SciTech Connect

    TISSOT JR.,RALPH G.; RODRIGUEZ,MARK A.; SIPOLA,DIANA L.; VOIGT,JAMES A.

    2000-12-19

    Palmierite (K{sub 2}Pb(SO{sub 4}){sub 2}) has been prepared via a chemical synthesis method. Intensity differences were observed when X-ray powder data from the newly synthesized compound were compared to the published powder diffraction card (PDF) 29-1015 for Palmierite. Investigation of these differences indicated the possibility of preferred orientation and/or chemical inhomogeneity affecting intensities, particularly those of the basal (00{ell}) reflections. Annealing of the Palmierite was found to reduce the effects of preferred orientation. Electron microprobe analysis confirmed K:Pb:S as 2:1:2 for the annealed Palmierite powder. Subsequent least-squares refinement and Rietveld analysis of the annealed powder showed peak intensities very close to that of a calculated Palmierite pattern (based on single crystal data), yet substantially higher than many of the PDF 29-1015 published intensities. Further investigation of peak intensity variation via calculated patterns suggested that the intensity discrepancies between the annealed sample and those found in PDF 29-1015 were potentially due to chemical variation in the K{sub 2}Pb(SO{sub 4}){sub 2} composition. X-ray powder diffraction and crystal data for Palmierite are reported for the annealed sample. Palmierite is Trigonal/Hexagonal with unit cell parameters a = 5.497(1){angstrom}, c = 20.864(2) {angstrom}, space group R-3m (166), and Z = 3.

  6. Neutron powder diffraction studies of LiIO 3 and (HIO 3, 2LiIO 3)

    NASA Astrophysics Data System (ADS)

    Bouillot, J.; Coquet, E.; Pannetier, J.; Crettez, J.-M.

    1986-02-01

    A study of the kinetics of transition of powdered samples of LiIO 3 has been performed in order to determine the domain of stability of the γ-phase and to refine its structure. For a better undertanding of the transition mechanism which may involve the presence of proton impurities, the decomposition of (HIO 3, 2LiIO 3), while increasing the temperature, has been recorded continuously by means of neutron powder diffraction and the different features appearing in the observed patterns have been analyzed. A tentative interpretation is given.

  7. Kinetic Analysis of Cation Exchange in Birnessite using Time-resolved Synchrotron X-ray Diffraction

    SciTech Connect

    C Lopano; P Heaney; J Bandstra; J Post; S Brantley

    2011-12-31

    In this study, we applied time-resolved synchrotron X-ray diffraction (TRXRD) to develop kinetic models that test a proposed two-stage reaction pathway for cation exchange in birnessite. These represent the first rate equations calculated for cation exchange in layered manganates. Our previous work has shown that the substitution of K, Cs, and Ba for interlayer Na in synthetic triclinic birnessite induces measurable changes in unit-cell parameters. New kinetic modeling of this crystallographic data supports our previously postulated two-stage reaction pathway for cation exchange, and we can correlate the kinetic steps with changes in crystal structure. In addition, the initial rates of cation exchange, R ({angstrom}{sup 3} min{sup -1}), were determined from changes in unit-cell volume to follow these rate laws: R = 1.75[K{sup +}{sub (aq)}]{sup 0.56}, R = 41.1[Cs{sup +}{sub (aq)}]{sup 1.10}, R = 1.15[Ba{sup 2+}{sub (aq)}]{sup 0.50}. Thus, the exchange rates for Na in triclinic birnessite decreased in the order: Cs >> K > Ba. These results are likely a function of hydration energy differences of the cations and the preference of the solution phase for the more readily hydrated cation.

  8. Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source

    SciTech Connect

    Sutton, Stephen R.; Lanzirotti, Antonio; Newville, Matthew; Rivers, Mark L.; Eng, Peter; Lefticariu, Liliana

    2017-01-01

    X-ray microprobes (XRM) coupled with high-brightness synchrotron X-ray facilities are powerful tools for environmental biogeochemistry research. One such instrument, the XRM at the Geo Soil Enviro Center for Advanced Radiation Sources Sector 13 at the Advanced Photon Source (APS; Argonne National Laboratory, Lemont, IL) was recently improved as part of a canted undulator geometry upgrade of the insertion device port, effectively doubling the available undulator beam time and extending the operating energy of the branch supporting the XRM down to the sulfur K edge (2.3 keV). Capabilities include rapid, high-resolution, elemental imaging including fluorescence microtomography, microscale X-ray absorption fine structure spectroscopy including sulfur K edge capability, and microscale X-ray diffraction. These capabilities are advantageous for (i) two-dimensional elemental mapping of relatively large samples at high resolution, with the dwell times typically limited only by the count times needed to obtain usable counting statistics for low concentration elements, (ii) three-dimensional imaging of internal elemental distributions in fragile hydrated specimens, such as biological tissues, avoiding the need for physical slicing, (iii) spatially resolved speciation determinations of contaminants in environmental materials, and (iv) identification of contaminant host phases. In this paper, we describe the XRM instrumentation, techniques, applications demonstrating these capabilities, and prospects for further improvements associated with the proposed upgrade of the APS.

  9. Ultrafast structural dynamics studied by kilohertz time-resolved x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Jiang, Zhou-Ya; Chen, Long; Chen, Li-Ming; Xin, Jian-Guo; Peter, M. Rentzepis; Chen, Jie

    2015-10-01

    Ultrashort multi-keV x-ray pulses are generated by electron plasma produced by the irradiation of femtosecond pulses on metals. These sub-picosecond x-ray pulses have extended the field of x-ray spectroscopy into the femtosecond time domain. However, pulse-to-pulse instability and long data acquisition time restrict the application of ultrashort x-ray systems operating at low repetition rates. Here we report on the performance of a femtosecond laser plasma-induced hard x-ray source that operates at 1-kHz repetition rate, and provides a flux of 2.0 × 1010 photons/s of Cu Kα radiation. Using this system for time-resolved x-ray diffraction experiments, we record in real time, the transient processes and structural changes induced by the interaction of 400-nm femtosecond pulse with the surface of a 200-nm thick Au (111) single crystal. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222509 and 11421064) and the W. M. Keck Foundation.

  10. State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar.

    PubMed

    von Zastrow, Alexander; Onvlee, Jolijn; Vogels, Sjoerd N; Groenenboom, Gerrit C; van der Avoird, Ad; van de Meerakker, Sebastiaan Y T

    2014-03-01

    Just as light scattering from an object results in diffraction patterns, the quantum mechanical nature of molecules can lead to the diffraction of matter waves during molecular collisions. This behaviour manifests itself as rapid oscillatory structures in measured differential cross-sections, and such observable features are sensitive probes of molecular interaction potentials. However, these structures have proved challenging to resolve experimentally. Here, we use a Stark decelerator to form a beam of state-selected and velocity-controlled NO radicals and measure state-to-state differential cross-sections for inelastic collisions of NO with He, Ne and Ar atoms using velocity map imaging. The monochromatic velocity distribution of the NO beam produced scattering images with unprecedented sharpness and angular resolution, thereby fully resolving quantum diffraction oscillations. We found excellent agreement with quantum close-coupling scattering calculations for these benchmark systems.

  11. The use of time-resolved X-ray diffraction and sample techniques for studying the muscle structure during relaxation

    NASA Astrophysics Data System (ADS)

    Vazina, A. A.; Gadzhiev, A. M.; Gerasimov, V. S.; Gorbunova, N. P.; Sergienko, P. M.; Korneev, V. N.; Aulchenko, V. M.; Baru, S. E.

    1995-02-01

    The use of the modern time-resolved X-ray diffraction and sample technique has played an important role in studying muscle structures during contraction at various physiological conditions. We represent time-resolved X-ray data on equatorial diffraction and tension response of the frog sartorius muscle during relaxation. The measurements of the time-course of the intensity change of reflections (1,0), (1,1) and the background under them give a possibility to study the effect of potentiation of contraction by repetitive stimulation in fresh and tired muscles. Model calculations of meridional diffraction patterns for various configurations of cross-bridges in the relaxation phase were carried out.

  12. Direct Observation of Phase Transformations in Austenitic Stainless Steel Welds Using In-situ Spatially Resolved and Time-resolved X-ray Diffraction

    SciTech Connect

    Elmer, J.; Wong, J.; Ressler, T.

    1999-09-23

    Spatially resolved x-ray diffraction (SRXRD) and time resolved x-ray diffraction (TRXRD) were used to investigate real time solid state phase transformations and solidification in AISI type 304 stainless steel gas tungsten arc (GTA) welds. These experiments were conducted at Stanford Synchrotron Radiation Laboratory (SSRL) using a high flux beam line. Spatially resolved observations of {gamma} {leftrightarrow} {delta} solid state phase transformations were performed in the heat affected zone (HAZ) of moving welds and time-resolved observations of the solidification sequence were performed in the fusion zone (FZ) of stationary welds after the arc had been terminated. Results of the moving weld experiments showed that the kinetics of the {gamma}{yields}{delta} phase transformation on heating in the HAZ were sufficiently rapid to transform a narrow region surrounding the liquid weld pool to the {delta} ferrite phase. Results of the stationary weld experiments showed, for the first time, that solidification can occur directly to the {delta} ferrite phase, which persisted as a single phase for 0.5s. Upon solidification to {delta}, the {delta} {yields} {gamma} phase transformation followed and completed in 0.2s as the weld cooled further to room temperature.

  13. Pulsed magnetic field synchrotron X-ray powder diffraction of the Jahn-Teller distortion in TbVO4

    NASA Astrophysics Data System (ADS)

    Vanacken, J.; Frings, P.; Detlefs, C.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Bras, W.; Rikken, G.

    2006-11-01

    X-ray powder diffraction experiments under pulsed magnetic fields were carried out at the DUBBLE beam line at the ESRF. A mobile generator delivered 110 kJ to the load coil, which was sufficient to generate peak fields of 30 T. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 8 K and 300 K. Powder diffraction patterns of TbVO4 were recorded in a broad temperature range using 21 keV monochromatic X-rays and an on-line image plate detector. We present results on the suppression of the Jahn-Teller structural distortion in TbVO4by to the magnetic field.

  14. Study of polymorphism of Atenolol and Captopril antihypertensives using x-ray powder diffraction and Rietveld refinement

    NASA Astrophysics Data System (ADS)

    Sato, Juliana; Ferreira, Fabio

    2013-03-01

    Characterization of bulk drugs has become increasingly important in the pharmaceutical industry. X-ray powder diffractometry is an effective technique for the identification of crystalline solid-phase drugs. The technique is unique, since it combines specificity with a high degree of accuracy for the characterization of pharmaceuticals in solid state and is an especially useful method to describe the possible polymorphic behavior of drugs substances. In this work X-ray diffraction data have been obtained for two well-known antihypertensive drugs currently being administered in tablet form. They include atenolol and captopril. Atenolol and captopril were purchased from drugstore. The characterizations of the atenolol and captopril samples were carried out by FTIR spectroscopy and X-ray powder diffraction (XRPD). We would like to thank the Brazilian agencies CNPq and FAPESP for their financial support.

  15. Time-resolved x-ray diffraction and calorimetric studies at low scan rates

    PubMed Central

    Tenchov, Boris G.; Yao, Haruhiko; Hatta, Ichiro

    1989-01-01

    The phase transitions in fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases have been studied by lowangle time-resolved x-ray diffraction under conditions similar to those employed in calorimetry (scan rates 0.05-0.5°C/min and uniform temperature throughout the samples). This approach provides more adequate characterization of the equilibrium transition pathways and allows for close correlations between structural and thermodynamic data. No coexistence of the rippled gel (Pβ') and liquid-crystalline (Lα) phases was found in the main transition of DPPC; rather, a loss of correlation in the lamellar structure, observed as broadening of the lamellar reflections, takes place in a narrow temperature range of ∼100 mK at the transition midpoint. Formation of a long-living metastable phase, denoted by Pβ'(mst), differing from the initial Pβ' was observed in cooling direction by both x-ray diffraction and calorimetry. No direct conversion of Pβ'(mst) into Pβ' occurs for over 24 h but only by way of the phase sequence Pβ'(mst) → Lβ' → Pβ'. According to differential scanning calorimetry (DSC), the enthalpy of the Pβ'(mst)-Lα transition is by ∼5% lower than that of the Pβ'-Lα transition. The effects of ethanol (Rowe, E. S. 1983. Biochemistry. 22:3299-3305; Simon, S. A., and T. J. McIntosh. 1984. Biochim. Biophys. Acta 773:169-172) on the mechanism and reversibility of the DPPC main transition were clearly visualized. At ethanol concentrations inducing formation of interdigitated gel phase, the main transition proceeds through a coexistence of the initial and final phases over a finite temperature range. During the subtransition in DPPC recorded at scan rate 0.3°C/min, a smooth monotonic increase of the lamellar spacing from its subgel (Lc) to its gel (Lβ') phase value takes place. The width of the lamellar reflections remains unchanged during this transformation. This provides grounds to propose a

  16. Neutron powder diffraction experiments on AMnF 4 (A=K, Rb): nuclear and magnetic structures

    NASA Astrophysics Data System (ADS)

    Morón, M. C.; Palacio, F.; Rodriguez-Carvajal, J.

    1992-06-01

    Neutron powder diffraction experiments show that KMnF 4 is monoclinic, space group P2 1/a, and RbMnF 4 orthorhombic, space group Pmab, between room temperature and 1.5K. The magnetic structure of both compounds is antiferromagnetic with Tc =6.6K for KMnF 4 and T = 3.9K for RbMnF 4.

  17. Effect of Stacking Faults on the X-Ray Diffraction Profiles of Beta-SiC Powders

    NASA Technical Reports Server (NTRS)

    Pujar, Vijay V.; Cawley, James D.; Levine, Stanley R. (Technical Monitor)

    1995-01-01

    X-ray diffraction patterns or beta-SiC (3C or the cubic polytype or sic) powders often exhibit an additional peak at d = 0.266 nm, high background intensity around the (111) peak, and relative intensities for peaks which differ from those predicted from the crystal structure. Computer simulations were used to show that all these features are due to stacking faults in the powders and not due to the presence of other polytypes in the powders. Such simulations allow diffraction patterns to be generated for different types, frequencies, and spatial distribution or faults. Comparison of the simulation results to the XRD data indicates that the B-SiC particles consist either of heavily faulted clusters distributed irregularly between regions that have only occasional faults or twins, or the powders consist of two types of particles with different populations of faults: those with a high density of faults and those with only twins or occasional faults. Additional information is necessary to determine which description is correct. However, the simulation results can be used to rule out certain fault configurations.

  18. An Implementation of the Fundamental Parameters Approach for Analysis of X-ray Powder Diffraction Line Profiles

    PubMed Central

    Mendenhall, Marcus H.; Mullen, Katharine; Cline, James P.

    2015-01-01

    This work presents an open implementation of the Fundamental Parameters Approach (FPA) models for analysis of X-ray powder diffraction line profiles. The original literature describing these models was examined and code was developed to allow for their use within a Python based least squares refinement algorithm. The NIST interest in the FPA method is specific to its ability to account for the optical aberrations of the powder diffraction experiment allowing for an accurate assessment of lattice parameter values. Lattice parameters are one of the primary certified measurands of NIST Standard Reference Materials (SRMs) for powder diffraction. Lattice parameter values obtained from analysis of data from SRMs 640e and 660c using both the NIST FPA Python code and the proprietary, commercial code Topas, that constitutes the only other actively supported, complete implementation of FPA models within a least-squares data analysis environment, agreed to within 2 fm. This level of agreement demonstrates that both the NIST code and Topas constitute an accurate implementation of published FPA models. PMID:26958448

  19. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    PubMed

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  20. Examination of Short- and Long-Range Atomic Order Nanocrystalline SiC and Diamond by Powder Diffraction Methods

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.

    2002-01-01

    The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.

  1. A Rietveld refinement method for angular- and wavelength-dispersive neutron time-of-flight powder diffraction data.

    PubMed

    Jacobs, Philipp; Houben, Andreas; Schweika, Werner; Tchougréeff, Andrei L; Dronskowski, Richard

    2015-12-01

    This paper introduces a two-dimensional extension of the well established Rietveld refinement method for modeling neutron time-of-flight powder diffraction data. The novel approach takes into account the variation of two parameters, diffraction angle 2θ and wavelength λ, to optimally adapt to the varying resolution function in diffraction experiments. By doing so, the refinement against angular- and wavelength-dispersive data gets rid of common data-reduction steps and also avoids the loss of high-resolution information typically introduced by integration. In a case study using a numerically simulated diffraction pattern of Rh0.81Fe3.19N taking into account the layout of the future POWTEX instrument, the profile function as parameterized in 2θ and λ is extracted. As a proof-of-concept, the resulting instrument parameterization is then utilized to perform a typical refinement of the angular- and wavelength-dispersive diffraction pattern of CuNCN, yielding excellent residuals within feasible computational efforts. Another proof-of-concept is carried out by applying the same approach to a real neutron diffraction data set of CuNCN obtained from the POWGEN instrument at the Spallation Neutron Source in Oak Ridge. The paper highlights the general importance of the novel approach for data analysis at neutron time-of-flight diffractometers and its possible inclusion within existing Rietveld software packages.

  2. A Rietveld refinement method for angular- and wavelength-dispersive neutron time-of-flight powder diffraction data

    PubMed Central

    Jacobs, Philipp; Houben, Andreas; Schweika, Werner; Tchougréeff, Andrei L.; Dronskowski, Richard

    2015-01-01

    This paper introduces a two-dimensional extension of the well established Rietveld refinement method for modeling neutron time-of-flight powder diffraction data. The novel approach takes into account the variation of two parameters, diffraction angle 2θ and wavelength λ, to optimally adapt to the varying resolution function in diffraction experiments. By doing so, the refinement against angular- and wavelength-dispersive data gets rid of common data-reduction steps and also avoids the loss of high-resolution information typically introduced by integration. In a case study using a numerically simulated diffraction pattern of Rh0.81Fe3.19N taking into account the layout of the future POWTEX instrument, the profile function as parameterized in 2θ and λ is extracted. As a proof-of-concept, the resulting instrument parameterization is then utilized to perform a typical refinement of the angular- and wavelength-dispersive diffraction pattern of CuNCN, yielding excellent residuals within feasible computational efforts. Another proof-of-concept is carried out by applying the same approach to a real neutron diffraction data set of CuNCN obtained from the POWGEN instrument at the Spallation Neutron Source in Oak Ridge. The paper highlights the general importance of the novel approach for data analysis at neutron time-of-flight diffractometers and its possible inclusion within existing Rietveld software packages. PMID:26664340

  3. New routes to synthesizing an ordered perovskite CaCu3Fe2Sb2O12 and its magnetic structure by neutron powder diffraction.

    PubMed

    Larregola, Sebastian A; Zhou, Jianshi; Alonso, Jose A; Pomjakushin, Vladimir; Goodenough, John B

    2014-05-05

    The search for new double-perovskite oxides has grown rapidly in recent years because of their interesting physical properties like ferroelectricity, magnetism, and multiferroics. The synthesis of double perovskites, especially the A-site-ordered perovskites, in most cases needs to be made under high pressure, which is a drawback for applying these materials. Here we have demonstrated synthetic routes at ambient pressure by which we have obtained a high-quality duo-sites-ordered double perovskite, CaCu3Fe2Sb2O12, which has been previously synthesized under high pressure. The availability of a large quantity of the powder sample allows us to determine the crystal and magnetic structures by neutron powder diffraction (NPD) at 300 and 1.3 K. Measurements of the magnetization and heat capacity showed a ferrimagnetic transition at 160 K. A ferrimagnetic structure consisting of the uncompensated antiferromagnetic coupling between neighboring collinear copper and iron spins has been resolved from the low-temperature NPD data.

  4. Elasticity of Tantalum to 105 Gpa using a stress and angle-resolved x-ray diffraction

    SciTech Connect

    Cynn, H; Yoo, C S

    1999-08-11

    Determining the mechanical properties such as elastic constants of metals at Mbar pressures has been a difficult task in experiment. Following the development of anisotropic elastic theory by Singh et al. [l], Mao et a1.[2] have recently developed a novel experimental technique to determine the elastic constants of Fe by using the stress and energy-dispersive x-ray diffraction (SEX). In this paper, we present an improved complementary technique, stress and angle-resolved x-ray diffraction (SAX), which we have applied to determine the elastic constants of tantalum to 105 GPa. The extrapolation of the tantalum elastic data shows an excellent agreement with the low-pressure ultrasonic data [3]. We also discuss the improvement of this SAX method over the previous SEX. [elastic constant, anisotropic elastic theory, angle-dispersive synchrotron x-ray diffraction, mechanical properties

  5. Toward ultrafast time-resolved Debye-Scherrer x-ray diffraction using a laser-plasma source.

    PubMed

    Shymanovich, U; Nicoul, M; Lu, W; Kähle, S; Tarasevitch, A; Sokolowski-Tinten, K; von der Linde, D

    2009-08-01

    An elliptical glass capillary has been used to focus ultrashort Cu K alpha x-ray pulses emitted from a femtosecond laser-produced plasma. Due to its high magnification (7x), the optic transforms the divergent x-ray emission of the plasma into a quasicollimated x-ray beam with a divergence of only 0.18 degrees. As an application we demonstrate the possibility to perform Debye-Scherrer diffraction experiments with the simultaneous detection of several diffraction orders. This will allow one to extend time-resolved x-ray diffraction with femtosecond laser-plasma x-ray sources to a much wider range of materials, which are not easily available as single crystals.

  6. In situ X-ray powder diffraction, synthesis, and magnetic properties of InVO{sub 3}

    SciTech Connect

    Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario . E-mail: Mario_Bieringer@umanitoba.ca

    2006-12-15

    We report the first synthesis and high-temperature in situ X-ray diffraction study of InVO{sub 3}. Polycrystalline InVO{sub 3} has been prepared via reduction of InVO{sub 4} using a carbon monoxide/carbon dioxide buffer gas. InVO{sub 3} crystallizes in the bixbyite structure in space group Ia-3 (206) with a=9.80636(31) A with In{sup 3+}/V{sup 3+} disorder on the (8b) and (24d) cation sites. In situ powder X-ray diffraction experiments and thermal gravimetric analysis in a CO/CO{sub 2} buffer gas revealed the existence of the metastable phase InVO{sub 3}. Bulk samples with 98.5(2)% purity were prepared using low-temperature reduction methods. The preparative methods limited the crystallinity of this new phase to approximately 225(50) A. Magnetic susceptibility and neutron diffraction experiments suggest a spin-glass ground state for InVO{sub 3}. - Graphical abstract: In situ powder X-ray diffractograms for the reduction of InVO{sub 4} in CO/CO{sub 2}. The three temperature regions show the conversion of InVO{sub 4} to InVO{sub 3} and final decomposition into In{sub 2}O{sub 3} and V{sub 2}O{sub 3}.

  7. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    SciTech Connect

    Huang, J. W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S. N.

    2016-03-30

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250–350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters,i.e.instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real timeviasimultaneous imaging and diffraction.

  8. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    PubMed Central

    Huang, J. W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S. N.

    2016-01-01

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250–350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real time via simultaneous imaging and diffraction. PMID:27140150

  9. Quantitative phase analysis of challenging samples using neutron powder diffraction. Sample #4 from the CPD QPA round robin revisited

    DOE PAGES

    Whitfield, Pamela S.

    2016-04-29

    Here, quantitative phase analysis (QPA) using neutron powder diffraction more often than not involves non-ambient studies where no sample preparation is possible. The larger samples and penetration of neutrons versus X-rays makes neutron diffraction less susceptible to inhomogeneity and large grain sizes, but most well-characterized QPA standard samples do not have these characteristics. Sample #4 from the International Union of Crystallography Commission on Powder Diffraction QPA round robin was one such sample. Data were collected using the POWGEN time-of-flight (TOF) neutron powder diffractometer and analysed together with historical data from the C2 diffractometer at Chalk River. The presence of magneticmore » reflections from Fe3O4 (magnetite) in the sample was an additional consideration, and given the frequency at which iron-containing and other magnetic compounds are present during in-operando studies their possible impact on the accuracy of QPA is of interest. Additionally, scattering from thermal diffuse scattering in the high-Qregion (<0.6 Å) accessible with TOF data could impact QPA results during least-squares because of the extreme peak overlaps present in this region. Refinement of POWGEN data was largely insensitive to the modification of longer d-spacing reflections by magnetic contributions, but the constant-wavelength data were adversely impacted if the magnetic structure was not included. A robust refinement weighting was found to be effective in reducing quantification errors using the constant-wavelength neutron data both where intensities from magnetic reflections were ignored and included. Results from the TOF data were very sensitive to inadequate modelling of the high-Q (lowd-spacing) background using simple polynomials.« less

  10. Quantitative phase analysis of challenging samples using neutron powder diffraction. Sample #4 from the CPD QPA round robin revisited

    SciTech Connect

    Whitfield, Pamela S.

    2016-04-29

    Here, quantitative phase analysis (QPA) using neutron powder diffraction more often than not involves non-ambient studies where no sample preparation is possible. The larger samples and penetration of neutrons versus X-rays makes neutron diffraction less susceptible to inhomogeneity and large grain sizes, but most well-characterized QPA standard samples do not have these characteristics. Sample #4 from the International Union of Crystallography Commission on Powder Diffraction QPA round robin was one such sample. Data were collected using the POWGEN time-of-flight (TOF) neutron powder diffractometer and analysed together with historical data from the C2 diffractometer at Chalk River. The presence of magnetic reflections from Fe3O4 (magnetite) in the sample was an additional consideration, and given the frequency at which iron-containing and other magnetic compounds are present during in-operando studies their possible impact on the accuracy of QPA is of interest. Additionally, scattering from thermal diffuse scattering in the high-Qregion (<0.6 Å) accessible with TOF data could impact QPA results during least-squares because of the extreme peak overlaps present in this region. Refinement of POWGEN data was largely insensitive to the modification of longer d-spacing reflections by magnetic contributions, but the constant-wavelength data were adversely impacted if the magnetic structure was not included. A robust refinement weighting was found to be effective in reducing quantification errors using the constant-wavelength neutron data both where intensities from magnetic reflections were ignored and included. Results from the TOF data were very sensitive to inadequate modelling of the high-Q (lowd-spacing) background using simple polynomials.

  11. Crystal structure of anhydrous tripotassium citrate from laboratory X-ray powder diffraction data and DFT comparison

    PubMed Central

    Rammohan, Alagappa; Kaduk, James A.

    2016-01-01

    The crystal structure of anhydrous tripotassium citrate, [K3(C6H5O7)]n, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The three unique potassium cations are 6-, 8-, and 6-coordinate (all irregular). The [KOn] coordination polyhedra share edges and corners to form a three-dimensional framework, with channels running parallel to the c axis. The only hydrogen bond is an intra­molecular one involving the hy­droxy group and the central carboxyl­ate group, with graph-set motif S(5). PMID:27536403

  12. Diffraction-free light droplets for axially-resolved volume imaging.

    PubMed

    Antonacci, G; Domenico, G Di; Silvestri, S; DelRe, E; Ruocco, G

    2017-12-01

    An ideal direct imaging system entails a method to illuminate on command a single diffraction-limited region in a generally thick and turbid volume. The best approximation to this is the use of large-aperture lenses that focus light into a spot. This strategy fails for regions that are embedded deep into the sample, where diffraction and scattering prevail. Airy beams and Bessel beams are solutions of the Helmholtz Equation that are both non-diffracting and self-healing, features that make them naturally able to outdo the effects of distance into the volume but intrinsically do not allow resolution along the propagation axis. Here, we demonstrate diffraction-free self-healing three-dimensional monochromatic light spots able to penetrate deep into the volume of a sample, resist against deflection in turbid environments, and offer axial resolution comparable to that of Gaussian beams. The fields, formed from coherent mixtures of Bessel beams, manifest a more than ten-fold increase in their undistorted penetration, even in turbid milk solutions, compared to diffraction-limited beams. In a fluorescence imaging scheme, we find a ten-fold increase in image contrast compared to diffraction-limited illuminations, and a constant axial resolution even after four Rayleigh lengths. Results pave the way to new opportunities in three-dimensional microscopy.

  13. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    NASA Astrophysics Data System (ADS)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  14. Apparatus and Techniques for Time-resolved Synchrotron X-ray Diffraction using Diamond Anvil Cells

    NASA Astrophysics Data System (ADS)

    Smith, J.; Sinogeikin, S. V.; Lin, C.; Rod, E.; Bai, L.; Shen, G.

    2015-12-01

    Complementary advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have recently made possible many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. Herein we present key aspects of the synchrotron beamline and ancillary equipment, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  15. Azine bridged silver coordination polymers: Powder X-ray diffraction route to crystal structure determination of silver benzotriazole

    SciTech Connect

    Rajeswaran, Manju . E-mail: manju.rajeswaran@kodak.com; Blanton, Thomas N.; Giesen, David J.; Whitcomb, David R.; Zumbulyadis, Nicholas; Antalek, Brian J.; Neumann, Marcus M.; Misture, Scott T.

    2006-04-15

    In continuation of our interest in solid-state structures of silver complexes of photographic importance, the structure for silver benzotriazole (AgBZT), has now been obtained. The preferred method for solving crystal structures is via single-crystal X-ray diffraction (XRD). However, for some materials, growing single crystals of appropriate size and quality is often difficult or even impossible. AgBZT is an example of such a silver complex with poor solubility. The usual routes to preparing single crystals using recrystallization from a cooperating solvent resulted in polycrystalline powder samples. We propose a crystal structure for AgBZT, solved from synchrotron X-ray powder diffraction data, using a direct-space Monte Carlo simulated annealing approach. AgBZT crystals are monoclinic (P2{sub 1} /c), with unit cell dimensions, a=14.8052(3) A, b=3.7498(4) A, c=12.3495(12) A, and {beta}=114.200(6){sup o}. The AgBZT complex is constructed from all three of the Benzotriazole (BZT) nitrogens bonding to a separate silver atom. As a consequence of this bonding mode, the structure is a highly cross-linked, coordination polymer.

  16. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction.

    PubMed

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H; Franz, Hermann

    2015-05-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1's efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation.

  17. Structural analysis of lead magnesium niobate using synchrotron powder X-ray diffraction and the Rietveld method.

    PubMed

    Bhakar, Ashok; Pandey, Adityanarayan H; Singh, M N; Upadhyay, Anuj; Sinha, A K; Gupta, S M; Ganguli, Tapas

    2016-06-01

    The room-temperature synchrotron powder X-ray diffraction pattern of the single phase perovskite lead magnesium niobate (PMN) has shown significant broadening in the q range ∼ 5-7 Å(-1) compared with standard LaB6 synchrotron powder X-ray diffraction data, taken under similar conditions. This broadening/asymmetry lies mainly towards the lower 2θ side of the Bragg peaks. Attempts to fit this data with the paraelectric cubic phase (Pm\\bar 3m) and the local rhombohedral phase (R3m) corresponding to polar nanoregions (PNRs) are made using the Rietveld method. Rietveld refinements show that neither cubic (Pm\\bar 3m) nor rhombohedral (R3m) symmetry can fit this XRD pattern satisfactorily. The two-phase refinement fits the experimental data satisfactorily and suggests that the weight percentage of the PNRs is approximately 12-16% at room temperature. The unit-cell volume of these rhombohedral PNRs is approximately 0.15% larger than that of the unit cell volume of the paraelectric cubic phase.

  18. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction

    PubMed Central

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann

    2015-01-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084

  19. Super-resolving quantum radar: Coherent-state sources with homodyne detection suffice to beat the diffraction limit

    SciTech Connect

    Jiang, Kebei; Lee, Hwang; Gerry, Christopher C.; Dowling, Jonathan P.

    2013-11-21

    There has been much recent interest in quantum metrology for applications to sub-Raleigh ranging and remote sensing such as in quantum radar. For quantum radar, atmospheric absorption and diffraction rapidly degrades any actively transmitted quantum states of light, such as N00N states, so that for this high-loss regime the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the linear Beer's law for classical radar attenuation, and which provide sensitivity at the shot-noise limit in the returned power. We show that coherent radar radiation sources, coupled with a quantum homodyne detection scheme, provide both longitudinal and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at shot-noise in terms of the detected photon power. Our approach provides a template for the development of a complete super-resolving quantum radar system with currently available technology.

  20. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction.

    PubMed

    Moorhouse, Saul J; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  1. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  2. Imaging of strain in laterally overgrown GaAs layers by spatially resolved x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Domagala, J. Z.; Czyzak, A.; Zytkiewicz, Z. R.

    2007-06-01

    Spatially resolved x-ray diffraction is used to analyze the strain in GaAs layers grown by liquid phase epitaxial lateral overgrowth (ELO) on SiO2-masked GaAs substrates. A downward tilt of ELO wings caused by their interaction with the mask is observed. The distribution of the tilt magnitude across the wings width is determined with micrometer-scale spatial resolution. A residual upward tilt originating from inhomogeneous Si dopant distribution in the ELO wing is found after mask removal. If a large area of the sample is studied, the technique provides precise information on the tilt of an individual wing and its distribution.

  3. Effect of microfibril twisting in theoretical powder diffraction studies of cellulose Iß

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies of calculated diffraction patterns for cellulose crystallites have suggested that the distortions arising once models have been subjected to MD simulation are likely the result of dimensional changes induced by the empirical force field, but have been unable to determine to what ext...

  4. Carrier-driven disordering in semiconductors: Time-resolved x-ray diffraction and density functional perturbation theory investigations

    NASA Astrophysics Data System (ADS)

    Hillyard, Patrick Brian

    Time-resolved x-ray science has opened the door to a previously inaccessible experimental world. Now the possibility of imaging ultrafast events with atomic spatial resolution is a reality. This dissertation highlights these new experimental techniques and uses them to study the effects of carrier photo-excitation in semiconductors using both time-resolved x-ray diffraction and time-resolved x-ray absorption spectroscopy. I have probed the ultrafast atomic disordering in InSb after intense photoexcitation with ultrafast x-ray diffraction measurements at the Sub-Picosecond Pulse Source (SPPS), The results indicate that three disordering regimes exist, depending on the photoinduced carrier density. At lower carrier densities, disordering occurs via a thermal mechanism, occurring on a picosecond time scale with the dominant relaxation mechanism being the transfer of energy from hot carriers to the lattice. At intermediate carrier density values, the potential energy surface flattens, allowing the atoms to move with the inertial room temperature velocities for approximately ~500 fs at which point other processes take over including thermal energy transfer, atomic collision, and diffusion. At higher carrier densities, it is observed that accelerated atomic disordering occurs, indicating the formation of a repulsive potential energy surface. These experimental observations are in contrast with previous theoretical work and therefore, I have performed calculations using Density Functional Perturbation Theory (DFPT) to more clearly outline the role of excited carriers in lattice destabilization. The calculations show that with increasing carrier density the transverse acoustic modes soften and the lattice destabilizes first in the (100) direction (X point) with 3.7% of the valence band electrons excited into the conduction band. Increasing the carrier density leads to the entire transverse acoustic mode becoming unstable, indicating a repulsive interatomic potential. A

  5. In-Situ Observations of Phase Transformations During Welding of 1045 Steel using Spatially Resolved and Time Resolved X-Ray Diffraction

    SciTech Connect

    Elmer, J; Palmer, T; DebRoy, T

    2005-10-28

    Synchrotron-based methods have been developed at Lawrence Livermore National Laboratory (LLNL) for the direct observation of microstructure evolution during welding. These techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, allow in-situ experiments to be performed during welding and provide direct observations of high temperature phases that form under the intense thermal cycles that occur. This paper presents observations of microstructural evolution that occur during the welding of a medium carbon AISI 1045 steel, using SRXRD to map the phases that are present during welding, and TRXRD to dynamically observe transformations during rapid heating and cooling. SRXRD was further used to determine the influence of welding heat input on the size of the high temperature austenite region, and the time required to completely homogenize this region during welding. These data can be used to determine the kinetics of phase transformations under the steep thermal gradients of welds, as well as benchmark and verify phase transformation models.

  6. Quantitative determination of mineral composition by powder x-ray diffraction

    DOEpatents

    Pawloski, G.A.

    1984-08-10

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  7. Quantitative determination of mineral composition by powder X-ray diffraction

    DOEpatents

    Pawloski, Gayle A.

    1986-01-01

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  8. Spatiotemporal reaction kinetics of an ultrafast photoreaction pathway visualized by time-resolved liquid x-ray diffraction.

    PubMed

    Kim, Tae Kyu; Lorenc, Maciej; Lee, Jae Hyuk; Lo Russo, Manuela; Kim, Joonghan; Cammarata, Marco; Kong, Qingyu; Noel, Sylvie; Plech, Anton; Wulff, Michael; Ihee, Hyotcherl

    2006-06-20

    We have studied the reaction dynamics for HgI(2) in methanol by using time-resolved x-ray diffraction (TRXD). Although numerous time-resolved spectroscopic studies have provided ample information about the early dynamics of HgI(2), a comprehensive reaction mechanism in the solution phase spanning from picoseconds up to microseconds has been lacking. Here we show that TRXD can provide this information directly and quantitatively. Picosecond optical pulses triggered the dissociation of HgI(2), and 100-ps-long x-ray pulses from a synchrotron probed the evolving structures over a wide temporal range. To theoretically explain the diffracted intensities, the structural signal from the solute, the local structure around the solute, and the hydrodynamics of bulk solvents were considered in the analysis. The results in this work demonstrate that the determination of transient states in solution is strongly correlated with solvent energetics, and TRXD can be used as an ultrafast calorimeter. It also is shown that a manifold of structural channels can be resolved at the same time if the measurements are accurate enough and that global analysis is applied. The rate coefficients for the reactions were obtained by fitting our model against the experimental data in one global fit including all q-values and time delays. The comparison between all putative reaction channels confirms that two-body dissociation is the dominant dissociation pathway. After this primary bond breakage, two parallel channels proceed. Transient HgI associates nongeminately with an iodine atom to form HgI(2), and I(2) is formed by nongeminate association of two iodine atoms.

  9. Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction

    SciTech Connect

    Snellings, R.; Mertens, G.; Cizer, O.; Elsen, J.

    2010-12-15

    The in situ early-age hydration and pozzolanic reaction in cements blended with natural zeolites were investigated by time-resolved synchrotron X-ray powder diffraction with Rietveld quantitative phase analysis. Chabazite and Na-, K-, and Ca-exchanged clinoptilolite materials were mixed with Portland cement in a 3:7 weight ratio and hydrated in situ at 40 {sup o}C. The evolution of phase contents showed that the addition of natural zeolites accelerates the onset of C{sub 3}S hydration and precipitation of CH and AFt. Kinetic analysis of the consumption of C{sub 3}S indicates that the enveloping C-S-H layer is thinner and/or less dense in the presence of alkali-exchanged clinoptilolite pozzolans. The zeolite pozzolanic activity is interpreted to depend on the zeolite exchangeable cation content and on the crystallinity. The addition of natural zeolites alters the structural evolution of the C-S-H product. Longer silicate chains and a lower C/S ratio are deduced from the evolution of the C-S-H b-cell parameter.

  10. Studies of electron diffusion in photo-excited Ni using time-resolved X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Persson, A. I. H.; Jarnac, A.; Wang, Xiaocui; Enquist, H.; Jurgilaitis, A.; Larsson, J.

    2016-11-01

    We show that the heat deposition profile in a laser-excited metal can be determined by time-resolved X-ray diffraction. In this study, we investigated the electron diffusion in a 150 nm thick nickel film deposited on an indium antimonide substrate. A strain wave that mimics the heat deposition profile is generated in the metal and propagates into the InSb, where it influences the temporal profile of X-rays diffracted from InSb. We found that the strain pulse significantly deviated from a simple exponential profile, and that the two-temperature model was needed to reproduce the measured heat deposition profile. Experimental results were compared to simulations based on the two-temperature model carried out using commercial finite-element software packages and on-line dynamical diffraction tools. To reproduce the experimental data, the electron-phonon coupling factor was lowered compared to previously measured values. The experiment was carried out at a third-generation synchrotron radiation source using a high-brightness beam and an ultrafast X-ray streak camera with a temporal resolution of 3 ps.

  11. Data collection strategies for time-resolved X-ray free-electron laser diffraction, and 2-color methods

    PubMed Central

    Li, Chufeng; Schmidt, Kevin; Spence, John C.

    2015-01-01

    We compare three schemes for time-resolved X-ray diffraction from protein nanocrystals using an X-ray free-electron laser. We find expressions for the errors in structure factor measurement using the Monte Carlo pump-probe method of data analysis with a liquid jet, the fixed sample pump-probe (goniometer) method (both diffract-and-destroy, and below the safe damage dose), and a proposed two-color method. Here, an optical pump pulse arrives between X-ray pulses of slightly different energies which hit the same nanocrystal, using a weak first X-ray pulse which does not damage the sample. (Radiation damage is outrun in the other cases.) This two-color method, in which separated Bragg spots are impressed on the same detector readout, eliminates stochastic fluctuations in crystal size, shape, and orientation and is found to require two orders of magnitude fewer diffraction patterns than the currently used Monte Carlo liquid jet method, for 1% accuracy. Expressions are given for errors in structure factor measurement for the four approaches, and detailed simulations provided for cathepsin B and IC3 crystals. While the error is independent of the number of shots for the dose-limited goniometer method, it falls off inversely as the square root of the number of shots for the two-color and Monte Carlo methods, with a much smaller pre-factor for the two-color mode, when the first shot is below the damage threshold. PMID:26798813

  12. Data collection strategies for time-resolved X-ray free-electron laser diffraction, and 2-color methods.

    PubMed

    Li, Chufeng; Schmidt, Kevin; Spence, John C

    2015-07-01

    We compare three schemes for time-resolved X-ray diffraction from protein nanocrystals using an X-ray free-electron laser. We find expressions for the errors in structure factor measurement using the Monte Carlo pump-probe method of data analysis with a liquid jet, the fixed sample pump-probe (goniometer) method (both diffract-and-destroy, and below the safe damage dose), and a proposed two-color method. Here, an optical pump pulse arrives between X-ray pulses of slightly different energies which hit the same nanocrystal, using a weak first X-ray pulse which does not damage the sample. (Radiation damage is outrun in the other cases.) This two-color method, in which separated Bragg spots are impressed on the same detector readout, eliminates stochastic fluctuations in crystal size, shape, and orientation and is found to require two orders of magnitude fewer diffraction patterns than the currently used Monte Carlo liquid jet method, for 1% accuracy. Expressions are given for errors in structure factor measurement for the four approaches, and detailed simulations provided for cathepsin B and IC3 crystals. While the error is independent of the number of shots for the dose-limited goniometer method, it falls off inversely as the square root of the number of shots for the two-color and Monte Carlo methods, with a much smaller pre-factor for the two-color mode, when the first shot is below the damage threshold.

  13. Exploiting powder X-ray diffraction for direct structure determination in structural biology: the P2X4 receptor trafficking motif YEQGL.

    PubMed

    Fujii, Kotaro; Young, Mark T; Harris, Kenneth D M

    2011-06-01

    We report the crystal structure of the 5-residue peptide acetyl-YEQGL-amide, determined directly from powder X-ray diffraction data recorded on a conventional laboratory X-ray powder diffractometer. The YEQGL motif has a known biological role, as a trafficking motif in the C-terminus of mammalian P2X4 receptors. Comparison of the crystal structure of acetyl-YEQGL-amide determined here and that of a complex formed with the μ2 subunit of the clathrin adaptor protein complex AP2 reported previously, reveals differences in conformational properties, although there are nevertheless similarities concerning aspects of the hydrogen-bonding arrangement and the hydrophobic environment of the leucine sidechain. Our results demonstrate the potential for exploiting modern powder X-ray diffraction methodology to achieve complete structure determination of materials of biological interest that do not crystallize as single crystals of suitable size and quality for single-crystal X-ray diffraction.

  14. Crystal structure of penta­sodium hydrogen dicitrate from synchrotron X-ray powder diffraction data and DFT comparison

    PubMed Central

    Kaduk, James A.

    2017-01-01

    The crystal structure of penta­sodium hydrogen dicitrate, Na5H(C6H5O7)2, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Each of the two independent citrate anions is joined into a dimer by very strong centrosymmetric O—H⋯O hydrogen bonds, with O⋯O distances of 2.419 and 2.409 Å. Four octa­hedrally coordinated Na+ ions share edges to form open layers parallel to the ab plane. A fifth Na+ ion in trigonal–bipyramidal coordination shares faces with NaO6 octahedra on both sides of these layers. PMID:28217360

  15. Crystal structure and electronic properties of two nimesulide derivatives: A combined X-ray powder diffraction and quantum mechanical study

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Abir; Ghosh, Soumen; Kankanala, Kavitha; Reddy, Vangala Ranga; Mukkanti, Khagga; Pal, Sarbani; Mukherjee, Alok K.

    2010-06-01

    Crystal structures of two nimesulide derivatives, C 13H 14O 3N 2S ( 2) and C 21H 16O 5N 2S ( 3), have been determined from X-ray powder diffraction data and their electronic structures were calculated at the DFT level. The optimized molecular geometries of 2 and 3 correspond closely to that obtained from the crystallographic analysis. Intermolecular hydrogen bonds and π… π stacking interactions form supramolecular assembly in both compounds. The HOMO-LUMO energy gap (>2.2 eV) indicates a high kinetic stability of both compounds. Although the compound 2 does not exhibit any anti-inflammatory activity, 3 can induce 34% edema inhibition in rat paws.

  16. Crystal structure of caesium di­hydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison

    PubMed Central

    Kaduk, James A.

    2017-01-01

    The crystal structure of caesium di­hydrogen citrate, Cs+·H2C6H5O7 −, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The coordination polyhedra of the nine-coordinate Cs+ cations share edges to form chains along the a-axis. These chains are linked by corners along the c-axis. The un-ionized carb­oxy­lic acid groups form two different types of hydrogen bonds; one forms a helical chain along the c-axis, and the other is discrete. The hy­droxy group participates in both intra- and inter­molecular hydrogen bonds. PMID:28217327

  17. Crystal structure of trirubidium citrate monohydrate from laboratory X-ray powder diffraction data and DFT comparison

    PubMed Central

    Kaduk, James A.

    2017-01-01

    The crystal structure of the title compound, 3Rb+·C6H5O7 3−·H2O, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The hy­droxy group participates in an intra­molecular hydrogen bond to the deprotonated central carboxyl­ate group with graph-set motif S(5). The water mol­ecule acts as a hydrogen-bond donor to both terminal and central carboxyl­ate O atoms. The three independent rubidium cations are seven-, six- and six-coordinate, with bond-valence sums of 0.84, 1.02, and 0.95, respectively. In the extended structure, their polyhedra share edges and corners to form a three-dimensional network. The hydro­phobic methyl­ene groups occupy channels along the b axis. PMID:28217348

  18. Crystal structure of dirubidium hydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison

    PubMed Central

    Rammohan, Alagappa; Kaduk, James A.

    2017-01-01

    The crystal structure of dirubidium hydrogen citrate, 2Rb+·HC6H5O7 2−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The un-ionized carb­oxy­lic acid group forms helical chains of very strong hydrogen bonds (O⋯O ∼ 2.42 Å) along the b axis. The hy­droxy group participates in a chain of intra- and inter­molecular hydrogen bonds along the c axis. These hydrogen bonds result in corrugated hydrogen-bonded layers in the bc plane. The Rb+ cations are six-coordinate, and share edges and corners to form layers in the ab plane. The inter­layer contacts are composed of the hydro­phobic methyl­ene groups. PMID:28083145

  19. Synthesis and Neutron Powder Diffraction Structural Analysis of Oxidized Delafossite YCuO2.5

    SciTech Connect

    Garlea, Vasile O; Darie, Celine; Isnard, Olivier; Bordet, Pierre

    2006-01-01

    We report a study of the evolution of the structure of the delafossite-derived compounds YCuO{sub 2+{delta}} as a function of oxygen stoichiometry. The structural details of the oxygenated material YCuO{sub 2.5} were examined by means of high-resolution neutron powder diffraction. We confirmed that YCuO{sub 2.5} adopts an orthorhombic superstructure (a = {radical}3a{sub H}, b=c{sub H}, c=2a{sub H}) in which the anions are located at the center of corner-sharing triangles to form undulating chains of Cu{sup 2+} (s=1/2), running along a-axis direction.

  20. Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique

    SciTech Connect

    Sabelström, N. Hayashi, M.; Watanabe, T.; Nagata, K.

    2014-10-28

    In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100 °C could be observed.

  1. In Situ Synchrotron Powder Diffraction Studies of Reduction-Oxidation (Redox) Behavior of Iron Ores and Ilmenite

    NASA Astrophysics Data System (ADS)

    Ilyushechkin, Alexander Y.; Kochanek, Mark; Tang, Liangguang; Lim, Seng

    2017-04-01

    Phase transformations of two types of iron-based oxides (iron ore and industrial-grade ilmenite) were studied using synchrotron powder diffraction of the samples processed in reducing and oxidizing atmospheres at 1173 K (900 °C) and 1223 K (950 °C), respectively. In iron ore oxidation, the disappearance of the wustite and fayalite phases was followed by hematite growth and a decrease of the magnetite phase. The magnetite phase was partially recovered by treatment in a reducing atmosphere. Ilmenite oxidation initiated decomposition of the ilmenite phase with rapid growth of hematite and gradual growth of the pseudobrookite phase. In a reducing atmosphere, ilmenite was gradually recovered from pseudobrookite with a relatively fast initial decrease in rutile and hematite content. Under reducing conditions, there was interaction of iron ore with magnesio-ferrites in iron ore-ash mixture and interaction of ilmenite with silica by the formation of fayalite.

  2. Crystal structure of caesium di-hydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison.

    PubMed

    Rammohan, Alagappa; Kaduk, James A

    2017-02-01

    The crystal structure of caesium di-hydrogen citrate, Cs(+)·H2C6H5O7(-), has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The coordination polyhedra of the nine-coordinate Cs(+) cations share edges to form chains along the a-axis. These chains are linked by corners along the c-axis. The un-ionized carb-oxy-lic acid groups form two different types of hydrogen bonds; one forms a helical chain along the c-axis, and the other is discrete. The hy-droxy group participates in both intra- and inter-molecular hydrogen bonds.

  3. Crystal structure of dirubidium hydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison.

    PubMed

    Rammohan, Alagappa; Kaduk, James A

    2017-01-01

    The crystal structure of dirubidium hydrogen citrate, 2Rb(+)·HC6H5O7(2-), has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The un-ionized carb-oxy-lic acid group forms helical chains of very strong hydrogen bonds (O⋯O ∼ 2.42 Å) along the b axis. The hy-droxy group participates in a chain of intra- and inter-molecular hydrogen bonds along the c axis. These hydrogen bonds result in corrugated hydrogen-bonded layers in the bc plane. The Rb(+) cations are six-coordinate, and share edges and corners to form layers in the ab plane. The inter-layer contacts are composed of the hydro-phobic methyl-ene groups.

  4. Synchrotron powder diffraction characterization of the zeolite-based (p-N,N-dimethylnitroaniline-mordenite) guest-host phase.

    PubMed

    Porcher, Florence; Borissenko, Elena; Souhassou, Mohamed; Takata, Masaki; Kato, Kenichi; Rodriguez-Carvajal, Juan; Lecomte, Claude

    2008-12-01

    The crystal structure of a new phase consisting of the inclusion of the hyperpolarizable molecule p-N,N-dimethylnitroaniline (dimethyl-para-nitroaniline or dmpNA) in the large-pore zeolite mordenite (MOR) has been determined from high-resolution synchrotron powder diffraction at 300 and 90 K. The unit-cell parameters and space group at 300 K are similar to those of as-synthesized mordenite. The crystallographic study indicates that the MOR straight channels are almost fully loaded with molecules that are disordered over eight symmetry-related sites. As expected, the molecules are located in the large 12-membered ring channel, at the intersection with the secondary eight-membered channel with which they might form hydrogen bonds. The elongation axes (and then the dipole moments) of the molecules are slightly tilted (28.57 degrees ) from [001]. The configuration found suggests an interaction of dmpNA with framework O atoms through its methyl groups.

  5. In Situ Synchrotron Powder Diffraction Studies of Reduction-Oxidation (Redox) Behavior of Iron Ores and Ilmenite

    NASA Astrophysics Data System (ADS)

    Ilyushechkin, Alexander Y.; Kochanek, Mark; Tang, Liangguang; Lim, Seng

    2017-01-01

    Phase transformations of two types of iron-based oxides (iron ore and industrial-grade ilmenite) were studied using synchrotron powder diffraction of the samples processed in reducing and oxidizing atmospheres at 1173 K (900 °C) and 1223 K (950 °C), respectively. In iron ore oxidation, the disappearance of the wustite and fayalite phases was followed by hematite growth and a decrease of the magnetite phase. The magnetite phase was partially recovered by treatment in a reducing atmosphere. Ilmenite oxidation initiated decomposition of the ilmenite phase with rapid growth of hematite and gradual growth of the pseudobrookite phase. In a reducing atmosphere, ilmenite was gradually recovered from pseudobrookite with a relatively fast initial decrease in rutile and hematite content. Under reducing conditions, there was interaction of iron ore with magnesio-ferrites in iron ore-ash mixture and interaction of ilmenite with silica by the formation of fayalite.

  6. Abinitio powder x-ray diffraction and PIXEL energy calculations on thiophene derived 1,4 dihydropyridine

    NASA Astrophysics Data System (ADS)

    Karthikeyan, N.; Pachamuthu, M. P.; Sivakumar, K.

    2016-05-01

    We focus on the application of powder diffraction data to get abinitio crystal structure determination of thiophene derived 1,4 DHP prepared by cyclocondensation method using solid catalyst. Crystal structure of the compound has been solved by direct-space approach on Monte Carlo search in parallel tempering mode using FOX program. Initial atomic coordinates were derived using Gaussian 09W quantum chemistry software in semi-empirical approach and Rietveld refinement was carried out using GSAS program. The crystal structure of the compound is stabilized by one N-H…O and three C-H…O hydrogen bonds. PIXEL lattice energy calculation was carried out to understand the physical nature of intermolecular interactions in the crystal packing, on which the total lattice energy is contributed into Columbic, polarization, dispersion, and repulsion energies.

  7. X-Ray diffraction on large single crystals using a powder diffractometer

    DOE PAGES

    Jesche, A.; Fix, M.; Kreyssig, A.; ...

    2016-06-16

    Information on the lattice parameter of single crystals with known crystallographic structure allows for estimations of sample quality and composition. In many cases it is sufficient to determine one lattice parameter or the lattice spacing along a certain, high- symmetry direction, e.g. in order to determine the composition in a substitution series by taking advantage of Vegard’s rule. Here we present a guide to accurate measurements of single crystals with dimensions ranging from 200 μm up to several millimeter using a standard powder diffractometer in Bragg-Brentano geometry. The correction of the error introduced by the sample height and the optimizationmore » of the alignment are discussed in detail. Finally, in particular for single crystals with a plate-like habit, the described procedure allows for measurement of the lattice spacings normal to the plates with high accuracy on a timescale of minutes.« less

  8. X-Ray diffraction on large single crystals using a powder diffractometer

    SciTech Connect

    Jesche, A.; Fix, M.; Kreyssig, A.; Meier, W. R.; Canfield, P. C.

    2016-06-16

    Information on the lattice parameter of single crystals with known crystallographic structure allows for estimations of sample quality and composition. In many cases it is sufficient to determine one lattice parameter or the lattice spacing along a certain, high- symmetry direction, e.g. in order to determine the composition in a substitution series by taking advantage of Vegard’s rule. Here we present a guide to accurate measurements of single crystals with dimensions ranging from 200 μm up to several millimeter using a standard powder diffractometer in Bragg-Brentano geometry. The correction of the error introduced by the sample height and the optimization of the alignment are discussed in detail. Finally, in particular for single crystals with a plate-like habit, the described procedure allows for measurement of the lattice spacings normal to the plates with high accuracy on a timescale of minutes.

  9. Investigation of recrystallization of amorphous trehalose through hot-humidity stage X-ray powder diffraction.

    PubMed

    Jójárt-Laczkovich, Orsolya; Katona, Gábor; Aigner, Zoltán; Szabó-Révész, Piroska

    2016-12-01

    The aim of this work was an investigation of the physical changes of the amorphous model material spray-dried trehalose through the use of various analytical techniques and to identify a suitable, rapid method able to quantify the changes. The crystallinity changes and recrystallization process of amorphous samples were investigated by hot-humidity stage X-ray powder diffractometry (HH-XRPD) with fresh samples, conventional X-ray powder diffractometry (XRPD) used stored samples and by differential scanning calorimetry (DSC). The data from the three methods were compared and the various forms of trehalose were analysed. HH-XRPD demonstrated that the recrystallization began at 40 and 60°C up to 45% RH and at 70°C up to 30% RH into dihydrate form. At 70°C up to 60% RH the anhydrous form of trehalose appeared too. Conventional XRPD results showed, that in the 28days stored samples the dihydrate form was detected at 40°C, 50% RH. Storage at 60°C, 40% RH resulted in the appearance of the anhydrous form and at 60°C, 50% RH both polymorphic forms were detected. By carrying out the DSC measurements at different temperatures the fraction of recrystallized trehalose dihydrate was detected. The recrystallization investigated by HH-XRPD and DSC followed Avrami kinetics, the calculated rate constants of isothermal crystallization (K) were same. Both HH-XRPD and conventional XRPD was suitable for the detection of the physical changes of the amorphous model material. DSC measurements showed similar results as HH-XRPD. Primarily HH-XRPD could be suggested for prediction, because the method is fast and every changes could be studied on one sample.

  10. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D).

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2014-12-01

    In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.

  11. X-ray powder diffraction study of poly/carbon monofluoride/, CF/1.12/

    NASA Technical Reports Server (NTRS)

    Mahajan, V. K.; Badachhape, R. B.; Margrave, J. L.

    1974-01-01

    Data from X-ray diffraction studies of the poly(carbon monofluoride) with empirical formula CF(1.09-1.15) are reported, and possible intercalation arrangements for the substance are discussed. The data do not conform to true hexagonal symmetry, indicating that the carbon atoms are not coplanar. Each bond angle of carbon is 118.8 deg, and the carbon-carbon distance is 1.47 A. The interlayer distance is 5.76 A. A total absence of (hkl) reflections in the X-ray pattern shows that the separate CF layers are not regularly arranged with respect to one another.

  12. Accurate unrestrained DDM refinement of crystal structures from highly distorted and low-resolution powder diffraction data.

    PubMed

    Solovyov, Leonid A

    2016-10-01

    The structure of benzene:ethane co-crystal at 90 K is refined with anisotropic displacement parameters without geometric restraints from high-resolution synchrotron X-ray powder diffraction (XRPD) data using the derivative difference method (DDM) with properly chosen weighting schemes. The average C-C bond precision achieved is 0.005 Å and the H-atom positions in ethane are refined independently. A new DDM weighting scheme is introduced that compensates for big distortions of experimental data. The results are compared with density functional theory (DFT) calculations reported by Maynard-Casely et al. [(2016). IUCrJ, 3, 192-199] where a rigid-body Rietveld refinement was also applied to the same dataset due to severe distortions of the powder pattern attributable to experimental peculiarities. For the crystal structure of 2-aminopyridinium fumarate-fumaric acid formerly refined applying 77 geometric restraints by Dong et al. [(2013). Acta Cryst. C69, 896-900], an unrestrained DDM refinement using the same XRPD pattern surprisingly gave two times narrower dispersion of interatomic distances.

  13. Electronic structure of cesium butyratouranylate(VI) as derived from DFT-assisted powder X-ray diffraction data.

    PubMed

    Vologzhanina, Anna V; Savchenkov, Anton V; Dmitrienko, Artem O; Korlyukov, Alexander A; Bushmarinov, Ivan S; Pushkin, Denis V; Serezhkina, Larisa B

    2014-10-16

    Investigation of chemical bonding and electronic structure of coordination polymers that do not form high-quality single crystals requires special techniques. Here, we report the molecular and electronic structure of the first cesium butyratouranylate, Cs[UO(2)(n-C(3)H(7)COO)(3)][UO(2)(n-C(3)H(7)COO)(OH)(H2O)], as obtained from DFT-assisted powder X-ray diffraction data because of the low quality of crystalline sample. The topological analysis of the charge distribution within the quantum theory of atoms-in-molecules (QTAIM) space partitioning and the distribution of electron localization function (ELF) is reported. The constancy of atomic domain of the uranium(VI) atom at different coordination numbers (7 and 8) and the presence of three ELF maxima in equatorial plane of an uranyl cation attributed to the 6s and 6p electrons were demonstrated for the first time. Details of methodologies applied for additional verification of the correctness of powder XRD refinement (Voronoi atomic descriptors and the Morse restraints) are discussed.

  14. Synchrotron powder diffraction simplified: The high-resolution diffractometer at 11-BM at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Ribaud, Lynn; Suchomel, Matthew; von Dreele, Robert; Toby, Brian

    2013-03-01

    Synchrotrons have revolutionized powder diffraction through higher resolution and sensitivity and much faster data collection. Few scientists beyond the synchrotron community make use of these capabilities. To help address this, the high resolution powder diffractometer beamline 11-BM at the APS offers rapid and easy mail-in access with world-class quality data 1. This instrument offers the highest resolution available in the Americas and is a free service for non-proprietary users 2. The instrument can collect a superb pattern in an hour, has an automated sample changer, and features variable temperature sample environments. Users of the mail-in program often receive their data within two weeks of sample receipt. The instrument is also available for on-site experiments requiring other conditions. Our poster will describe this instrument, highlight its capabilities, explain the types of measurements available, and discuss plans to improve access and available sample environments and collection protocols. More information about the 11-BM instrument and our mail-in program can be found at: http://11bm.xray.aps.anl.gov.

  15. Development of customised environmental chambers for time-resolved in situ diffraction studies

    NASA Astrophysics Data System (ADS)

    Styles, M. J.; Riley, D. P.

    2010-11-01

    In an effort to mitigate the expense and broaden the applicability of customised environment chambers, researchers at the University of Melbourne and the Australian Nuclear Science and Technology Organisation (ANSTO) have designed and are currently commissioning a modular reaction chamber, capable of separating the necessities of diffraction methodologies from those of the desired sample environment. The In Situ Reaction Chamber (ISRC) abstracts many of the details intrinsic to the diffractometer, allowing users to design inexpensive environmental inserts that may be readily customised to their individual needs. The first insert to be developed for use with the ISRC is a high temperature furnace capable of providing an oxidising sample environment up to 1600°C.

  16. Parallel readout multiwire proportional chambers for time resolved X-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; Bond, C. C.

    1980-10-01

    Linear position sensitive detectors have been used for a number of years in X-ray diffraction studies from various types of muscle under different physiological conditions. Such detectors are mainly based on either an internal (RC) delay line or an external (LC) delay line for decoding positional information; the counting speed of the detectors is optimally matched to the available photon flux from laboratory based X-ray cameras. However, X-ray cameras based on synchrotron radiation provide photon fluxes which are greater by about three orders of magnitude. We describe in this paper an X-ray detection system based on parallel readout from a multiwire proportional chamber which offers high counting speeds and is designed to perform time slicing experiments with time resolutions down to 1 ms.

  17. A powder X-ray diffraction method for detection of polyprenylated benzophenones in plant extracts associated with HPLC for quantitative analysis.

    PubMed

    Martins, Felipe T; dos Santos, Marcelo H; Coelho, Carla P; Barbosa, Luiz C A; Dias, Gizelly C; Fracca, Mônica P; Neves, Person P; Stringheta, Paulo C; Doriguetto, Antônio C

    2011-02-20

    A robust, direct, rapid and non-destructive X-ray diffraction crystallography method to detect the polyprenylated benzophenones 7-epi-clusianone (1) and guttiferone A (2) in extracts from Garcinia brasiliensis is presented. Powder samples of benzophenones 1 and 2, dried hexane extracts from G. brasiliensis seeds and fruit's pericarp, and the dried ethanolic extract from G. brasiliensis seeds were unambiguously characterized by powder X-ray diffractometry. The calculated X-ray diffraction peaks from crystal structures of analytes 1 and 2, previously determined by single-crystal X-ray diffraction technique, were overlaid to those of the experimental powder diffractograms, providing a practical identification of these compounds in the analyzed material and confirming the pure contents of the powder samples. Using the X-ray diffraction crystallography method, the studied polyprenylated benzophenones were selectively and simultaneously detected in the extracts which were mounted directly on sample holder. In addition, reference materials of the analytes were not required for analyses since the crystal structures of the compounds are known. High performance liquid chromatography analyses also were comparatively carried out to quantify the analytes in the same plant extracts showing to be in agreement with X-ray diffraction crystallography method.

  18. Structure determination of Ba5AlF13 by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations.

    PubMed

    Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck

    2016-10-04

    The room temperature structure of Ba5AlF13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ((19)F and (27)Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the (19)F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba5AlF13, including site-specific dynamical disorder in the fluorine sub-network.

  19. A powder neutron diffraction study of the magnetic structure of FeV{sub 2}S{sub 4}

    SciTech Connect

    Powell, A.V.; Vaqueiro, P.; Ritter, C.

    1999-05-01

    Variable-temperature powder neutron diffraction data demonstrate that FeV{sub 2}S{sub 4} undergoes a transition to a long-range magnetically ordered state at 135(7) K, in agreement with magnetic susceptibility data. High-resolution neutron diffraction data collected at 1.9 K reveal that magnetic ordering results in a doubling of the crystallographic unit-cell dimensions (I2/m a = 5.8303(2), b = 3.2761(1), c = 11.2398(4) {angstrom}, {beta} = 92.046(2){degree}) in the a and c directions and that the magnetic structure is described by a propagation vector of ({1/2}, 0, {1/2}). Cations in an ordered defect layer, 76% of which are Fe(II), possess an average ordered moment of 1.86(5) {mu}{sub B}, which is directed at an angle of 75{degree} to the layer. Cation-cation interactions reduce the average moment of cations in the MS{sub 2} unit to 0.17(4) {mu}{sub B}. The complex magnetic structure involves essentially collinear antiferromagnetic ordering between nearest-neighbor cations.

  20. Anti-site mixing and magnetic properties of Fe3Co3Nb2 studied via neutron powder diffraction

    DOE PAGES

    Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei; ...

    2016-11-02

    We studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe3Co3Nb2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. The temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection of the magnetic moments turned outmore » to be non-zero along the c axis and in the a–b plane of Fe3Co3Nb2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. As a result, these findings suggest that future studies on the magnetism of Fe3Co3Nb2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less

  1. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    SciTech Connect

    Lunt, A. J. G. Xie, M. Y.; Baimpas, N.; Korsunsky, A. M.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.

    2014-08-07

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  2. Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects

    PubMed Central

    Sidorenko, Pavel; Kfir, Ofer; Shechtman, Yoav; Fleischer, Avner; Eldar, Yonina C.; Segev, Mordechai; Cohen, Oren

    2015-01-01

    Phase-retrieval problems of one-dimensional (1D) signals are known to suffer from ambiguity that hampers their recovery from measurements of their Fourier magnitude, even when their support (a region that confines the signal) is known. Here we demonstrate sparsity-based coherent diffraction imaging of 1D objects using extreme-ultraviolet radiation produced from high harmonic generation. Using sparsity as prior information removes the ambiguity in many cases and enhances the resolution beyond the physical limit of the microscope. Our approach may be used in a variety of problems, such as diagnostics of defects in microelectronic chips. Importantly, this is the first demonstration of sparsity-based 1D phase retrieval from actual experiments, hence it paves the way for greatly improving the performance of Fourier-based measurement systems where 1D signals are inherent, such as diagnostics of ultrashort laser pulses, deciphering the complex time-dependent response functions (for example, time-dependent permittivity and permeability) from spectral measurements and vice versa. PMID:26345495

  3. Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects.

    PubMed

    Sidorenko, Pavel; Kfir, Ofer; Shechtman, Yoav; Fleischer, Avner; Eldar, Yonina C; Segev, Mordechai; Cohen, Oren

    2015-09-08

    Phase-retrieval problems of one-dimensional (1D) signals are known to suffer from ambiguity that hampers their recovery from measurements of their Fourier magnitude, even when their support (a region that confines the signal) is known. Here we demonstrate sparsity-based coherent diffraction imaging of 1D objects using extreme-ultraviolet radiation produced from high harmonic generation. Using sparsity as prior information removes the ambiguity in many cases and enhances the resolution beyond the physical limit of the microscope. Our approach may be used in a variety of problems, such as diagnostics of defects in microelectronic chips. Importantly, this is the first demonstration of sparsity-based 1D phase retrieval from actual experiments, hence it paves the way for greatly improving the performance of Fourier-based measurement systems where 1D signals are inherent, such as diagnostics of ultrashort laser pulses, deciphering the complex time-dependent response functions (for example, time-dependent permittivity and permeability) from spectral measurements and vice versa.

  4. Time-resolved X-ray diffraction studies of laser-induced acoustic wave propagation in bilayer metallic thin crystals

    SciTech Connect

    Er, Ali Oguz; Tang, Jau E-mail: prentzepis@ece.tamu.edu; Chen, Jie; Rentzepis, Peter M. E-mail: prentzepis@ece.tamu.edu

    2014-09-07

    Phonon propagation across the interface of a Cu/Ag(111) bilayer and transient lattice disorder, induced by a femtosecond 267 nm pulse, in Ag(111) crystal have been measured by means of time resolved X-ray diffraction. A “blast” force due to thermal stress induced by suddenly heated electrons is formed within two picoseconds after excitation and its “blast wave” propagation through the interface and Ag (111) crystal was monitored by the shift and broadening of the rocking curve, I vs. ω, as a function of time after excitation. Lattice disorder, contraction and expansion as well as thermal strain formation and wave propagation have also been measured. The experimental data and mechanism proposed are supported by theoretical simulations.

  5. Time-resolved x-ray diffraction and electrical resistance measurements of structural phase transitions in zirconium

    SciTech Connect

    Velisavljevic, N.; Sinogeikin, S.; Saavedra, R.; Chellappa, R. S.; Rothkirch, A.; Dattelbaum, D. M.; Konopkova, Z.; Liermann, H. -P.; Bishop, M.; Tsoi, G. M.; Vohra, Y. K.

    2014-05-07

    Here, we have designed a portable pressure controller module to tune compression rates and maximum pressures attainable in a standard gas-membrane diamond anvil cell (DAC). During preliminary experiments, performed on zirconium (Zr) metal sample, pressure jumps of up to 80 GPa were systematically obtained in less than 0.2s (resulting in compression rate of few GPa/s up to more than 400 GPa/s). In-situ x-ray diffraction and electrical resistance measurements were performed simultaneously during this rapid pressure increase to provide the first time resolved data on α → ω → β structural evolution in Zr at high pressures. Direct control of compression rates and peak pressures, which can be held for prolonged time, allows for investigation of structural evolution and kinetics of structural phase transitions of materials under previously unexplored compression rate-pressure conditions that bridge traditional static and shock/dynamic experimental platforms.

  6. Time-resolved x-ray diffraction and electrical resistance measurements of structural phase transitions in zirconium

    DOE PAGES

    Velisavljevic, N.; Sinogeikin, S.; Saavedra, R.; ...

    2014-05-07

    Here, we have designed a portable pressure controller module to tune compression rates and maximum pressures attainable in a standard gas-membrane diamond anvil cell (DAC). During preliminary experiments, performed on zirconium (Zr) metal sample, pressure jumps of up to 80 GPa were systematically obtained in less than 0.2s (resulting in compression rate of few GPa/s up to more than 400 GPa/s). In-situ x-ray diffraction and electrical resistance measurements were performed simultaneously during this rapid pressure increase to provide the first time resolved data on α → ω → β structural evolution in Zr at high pressures. Direct control of compressionmore » rates and peak pressures, which can be held for prolonged time, allows for investigation of structural evolution and kinetics of structural phase transitions of materials under previously unexplored compression rate-pressure conditions that bridge traditional static and shock/dynamic experimental platforms.« less

  7. Generation and Propagation of a Picosecond Acoustic Pulse at a Buried Interface: Time-Resolved X-Ray Diffraction Measurements

    SciTech Connect

    Lee, S.H.; Cavalieri, A.L.; Fritz, D.M.; Swan, M.C.; Reis, D.A.; Hegde, R.S.; Reason, M.; Goldman, R.S.

    2005-12-09

    We report on the propagation of coherent acoustic wave packets in (001) surface oriented Al{sub 0.3}Ga{sub 0.7}As/GaAs heterostructure, generated through localized femtosecond photoexcitation of the GaAs. Transient structural changes in both the substrate and film are measured with picosecond time-resolved x-ray diffraction. The data indicate an elastic response consisting of unipolar compression pulses of a few hundred picosecond duration traveling along [001] and [001] directions that are produced by predominately impulsive stress. The transmission and reflection of the strain pulses are in agreement with an acoustic mismatch model of the heterostructure and free-space interfaces.

  8. Time-resolved x-ray diffraction study of photoinduced strains in h -LuFeO3 thin film

    NASA Astrophysics Data System (ADS)

    Sinha, Kishan; Jiang, Xuanyuan; Wang, Xiao; Dichiara, Anthony; Cheng, Xuemei; Li, Yuelin; Xu, Xiaoshan

    2015-03-01

    We have studied the structural response of epitaxially stabilized h-LuFeO3 (0001) thin film to above-band-gap optical excitation (pump) using time-resolved x-ray diffraction (probe) at picosecond time scale. The shift in (004) Bragg peak induced by a 390 nm excitation (30 ps duration) has been studied as a function of pump fluence and pump-probe time delay. The out-of-plane photoinduced lattice strain (Δc / c) exhibits a non-linear relation with fluence. The relaxation time is on the order of 1 ns. These observations suggest a relaxation mechanism that may be mediated by combined effects of charge recombination and phonon relaxation. This work at is supported by Nebraska EPESCoR (UNL), by NSF CAREER award (No. 1053854) (Bryn Mawr College), and by US-DOE, Office of Science, BES (No. DE-AC02-06CH11357) (ANL).

  9. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan

    2016-02-01

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

  10. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    PubMed Central

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan

    2016-01-01

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems. PMID:26915398

  11. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    DOE PAGES

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; ...

    2016-02-26

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiatedmore » at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less

  12. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy.

    PubMed

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J; Jung, Il Woong; Walko, Donald A; Dufresne, Eric M; Jeong, Jaewoo; Samant, Mahesh G; Parkin, Stuart S P; Freeland, John W; Evans, Paul G; Wen, Haidan

    2016-02-26

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

  13. In-situ Characterization of Water-Gas Shift Catalysts using Time-Resolved X-ray Diffraction

    SciTech Connect

    Rodriguez, J.; Hanson, J; Wen, W; Wang, X; Brito, J; Martnez-Arias, A; Fernandez-Garca, M

    2009-01-01

    Time-resolved X-ray diffraction (XRD) has emerged as a powerful technique for studying the behavior of heterogeneous catalysts (metal oxides, sulfides, carbides, phosphides, zeolites, etc.) in-situ during reaction conditions. The technique can identify the active phase of a heterogeneous catalyst and how its structure changes after interacting with the reactants and products (80 K < T < 1200 K; P < 50 atm). In this article, we review a series of recent works that use in-situ time-resolved XRD for studying the water-gas shift reaction (WGS, CO + H2O ? H2 + CO2) over several mixed-metal oxides: CuMoO4, NiMoO4, Ce1-xCuxO2-d and CuFe2O4. Under reaction conditions the oxides undergo partial reduction. Neutral Cu0 (i.e. no Cu1+ or Cu2+ cations) and Ni0 are the active species in the catalysts, but interactions with the oxide support are necessary in order to obtain high catalytic activity. These studies illustrate the important role played by O vacancies in the mechanism for the WGS. In the case of Ce1-xCuxO2-d, Rietveld refinement shows expansions/contractions in the oxide lattice which track steps within the WGS process: CO(gas) + O(oxi) ? CO2(gas) + O(vac); H2O(gas) + O(vac) ? O(oxi) + H2(gas).

  14. Time-resolved diffraction and interference: Young's interference with photons of different energy as revealed by time resolution.

    PubMed

    Garcia, N; Saveliev, I G; Sharonov, M

    2002-05-15

    We present time-resolved diffraction and two-slit interference experiments using a streak camera as a detector for femtosecond pulses of photons. These experiments show how the diffraction pattern is built by adding frames of a few photons to each frame. It is estimated that after 300 photons the diffraction pattern emerges. With time resolution we can check the speed of light and put an upper limit of 2 ps at our resolution to the time for wave function collapse in the quantum measurement process. We then produce interference experiments with photons of different energies impinging on the slits, i.e. we know which photon impinges on each slit. We show that for poor time resolution, no interference is observed, but for high time resolution, we have interference that is revealed as beats of 100 GHz frequency. The condition for interference is that the two pulses should overlap spatially at the detector, even if the pulses have different energies but are generated from the same pulse of the laser. The interference seems to be in agreement with classical theory at first sight. However, closer study and analysis of the data show deviations in the visibility of the interference fringes and of their phase. These experiments are discussed in connection with quantum mechanics and it may be concluded that the time resolution provides new data for understanding the longstanding and continuing arguments on wave-particle duality initiated by Newton, Young, Fresnel, Planck and others. A thought experiment is presented in the appendix to try to distinguish the photons at the detector by making it sensitive to colour.

  15. Crystal Engineering on Industrial Diaryl Pigments Using Lattice Energy Minimizations and X-ray Powder Diffraction

    SciTech Connect

    Schmidt,M.; Dinnebier, R.; Kalkhof, H.

    2007-01-01

    Diaryl azo pigments play an important role as yellow pigments for printing inks, with an annual pigment production of more than 50,000 t. The crystal structures of Pigment Yellow 12 (PY12), Pigment Yellow 13 (PY13), Pigment Yellow 14 (PY14), and Pigment Yellow 83 (PY83) were determined from X-ray powder data using lattice energy minimizations and subsequent Rietveld refinements. Details of the lattice energy minimization procedure and of the development of a torsion potential for the biphenyl fragment are given. The Rietveld refinements were carried out using rigid bodies, or constraints. It was also possible to refine all atomic positions individually without any constraint or restraint, even for PY12 having 44 independent non-hydrogen atoms per asymmetric unit. For PY14 (23 independent non-hydrogen atoms), additionally all atomic isotropic temperature factors could be refined individually. PY12 crystallized in a herringbone arrangement with twisted biaryl fragments. PY13 and PY14 formed a layer structure of planar molecules. PY83 showed a herringbone structure with planar molecules. According to quantum mechanical calculations, the twisting of the biaryl fragment results in a lower color strength of the pigments, whereas changes in the substitution pattern have almost no influence on the color strength of a single molecule. Hence, the experimentally observed lower color strength of PY12 in comparison with that of PY13 and PY83 can be explained as a pure packing effect. Further lattice energy calculations explained that the four investigated pigments crystallize in three different structures because these structures are the energetically most favorable ones for each compound. For example, for PY13, PY14, or PY83, a PY12-analogous crystal structure would lead to considerably poorer lattice energies and lower densities. In contrast, lattice energy calculations revealed that PY12 could adopt a PY13-type structure with only slightly poorer energy. This structure was

  16. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple

  17. Microstructure analysis of complex CuO/ZnO@carbon adsorbers: what are the limits of powder diffraction methods?

    PubMed

    Tseng, J C; Schmidt, W; Sager, U; Däuber, E; Pommerin, A; Weidenthaler, C

    2015-05-14

    Activate carbon impregnated with a mixture of copper oxide and zinc oxide performs well as active adsorber for NO2 removal in automotive cabin air filters. The oxide-loaded activated carbon exhibits superior long-term stability in comparison to pure activated carbon as has been shown in previous studies. The carbon material was loaded only with 2.5 wt% of each metal oxide. Characterization of the oxide nanoparticles within the pores of the activated carbon is difficult because of the rather low concentration of the oxides. Therefore, a systematic study was performed to evaluate the limits of line profile analysis of X-ray powder diffraction patterns. The method allows evaluation of crystalline domain size distributions, crystal defect concentrations and twinning probabilities of nanoscopic materials. Here, the analysis is hampered by the presence of several phases including more or less amorphous carbon. By using physical mixtures of defined copper oxide and zinc oxide particles with activated carbon, potential errors and limits could be identified. The contribution of the activated carbon to the scattering curve was modeled with a convolution of an exponential decay curve, a Chebyshev polynomial, and two Lorentzian peaks. With this approach, domain size distributions can be calculated that are shifted only by about 0.5-1.0 nm for very low loadings (≤4 wt%). Oxide loadings of 4 wt% and 5 wt% allow very reliable analyses from diffraction patterns measured in Bragg-Brentano and Debye-Scherrer geometry, respectively. For the real adsorber material, mean domain sizes have been calculated to be 2.8 nm and 2.4 nm before and after the NO2 removal tests.

  18. Time-Resolved In Situ X-ray Diffraction Reveals Metal-Dependent Metal-Organic Framework Formation.

    PubMed

    Wu, Yue; Henke, Sebastian; Kieslich, Gregor; Schwedler, Inke; Yang, Miaosen; Fraser, Duncan A X; O'Hare, Dermot

    2016-11-02

    Versatility in metal substitution is one of the key aspects of metal-organic framework (MOF) chemistry, allowing properties to be tuned in a rational way. As a result, it important to understand why MOF syntheses involving different metals arrive at or fail to produce the same topological outcome. Frequently, conditions are tuned by trial-and-error to make MOFs with different metal species. We ask: is it possible to adjust synthetic conditions in a systematic way in order to design routes to desired phases? We have used in situ X-ray powder diffraction to study the solvothermal formation of isostructural M2 (bdc)2 dabco (M=Zn, Co, Ni) pillared-paddlewheel MOFs in real time. The metal ion strongly influences both kinetics and intermediates observed, leading in some cases to multiphase reaction profiles of unprecedented complexity. The standard models used for MOF crystallization break down in these cases; we show that a simple kinetic model describes the data and provides important chemical insights on phase selection.

  19. Structure of Calcium Aluminate Decahydrate (CaAl2O4.10D2O) from Neutron and X-ray Powder Diffraction Data

    SciTech Connect

    Christensen,A.; Lebech, B.; Sheptyakov, D.; Hanson, J.

    2007-01-01

    Calcium aluminate decahydrate is hexagonal with the space group P63/m and Z = 6. The compound has been named CaAl2O4{center_dot}10H2O (CAH10) for decades and is known as the product obtained by hydration of CaAl2O4 (CA) in the temperature region 273-288 K - one of the main components in high-alumina cements. The lattice constants depend on the water content. Several sample preparations were used in this investigation: one CAH10, three CAD10 and one CA(D/H)10, where the latter is a zero-matrix sample showing no coherent scattering contribution from the D/H atoms in a neutron diffraction powder pattern. The crystal structure including the positions of the H/D atoms was determined from analyses of four neutron diffraction powder patterns by means of the ab initio crystal structure determination program FOX and the FULLPROF crystal structure refinement program. Additionally, eight X-ray powder diffraction patterns (Cu K[alpha]1 and synchrotron X-rays) were used to establish phase purity. The analyses of these combined neutron and X-ray diffraction data clearly show that the previously published positions of the O atoms in the water molecules are in error. Thermogravimetric analysis of the CAD10 sample preparation used for the neutron diffraction studies gave the composition CaAl2(OD)8(D2O)2{center_dot}2.42D2O. Neutron and X-ray powder diffraction data gave the structural formula CaAl2(OX)8(X2O)2{center_dot}[gamma]X2O (X = D, H and D/H), where the [gamma] values are sample dependent and lie between 2.3 and 3.3.

  20. Using neutron powder diffraction and first-principles calculations to understand the working mechanisms of porous coordination polymer sorbents.

    PubMed

    Chevreau, Hubert; Duyker, Samuel G; Peterson, Vanessa K

    2015-12-01

    Metal-organic frameworks (MOFs) are promising solid sorbents, showing gas selectivity and uptake capacities relevant to many important applications, notably in the energy sector. To improve and tailor the sorption properties of these materials for such applications, it is necessary to gain an understanding of their working mechanisms at the atomic and molecular scale. Specifically, it is important to understand how features such as framework porosity, topology, chemical functionality and flexibility underpin sorbent behaviour and performance. Such information is obtained through interrogation of structure-function relationships, with neutron powder diffraction (NPD) being a particularly powerful characterization tool. The combination of NPD with first-principles density functional theory (DFT) calculations enables a deep understanding of the sorption mechanisms, and the resulting insights can direct the future development of MOF sorbents. In this paper, experimental approaches and investigations of two example MOFs are summarized, which demonstrate the type of information and the understanding into their functional mechanisms that can be gained. Such information is critical to the strategic design of new materials with targeted gas-sorption properties.

  1. X-ray Powder Diffraction in Conservation Science: Towards Routine Crystal Structure Determination of Corrosion Products on Heritage Art Objects.

    PubMed

    Dinnebier, Robert E; Fischer, Andrea; Eggert, Gerhard; Runčevski, Tomče; Wahlberg, Nanna

    2016-06-08

    The crystal structure determination and refinement process of corrosion products on historic art objects using laboratory high-resolution X-ray powder diffraction (XRPD) is presented in detail via two case studies. The first material under investigation was sodium copper formate hydroxide oxide hydrate, Cu4Na4O(HCOO)8(OH)2∙4H2O (sample 1) which forms on soda glass/copper alloy composite historic objects (e.g., enamels) in museum collections, exposed to formaldehyde and formic acid emitted from wooden storage cabinets, adhesives, etc. This degradation phenomenon has recently been characterized as "glass induced metal corrosion". For the second case study, thecotrichite, Ca3(CH3COO)3Cl(NO3)2∙6H2O (sample 2), was chosen, which is an efflorescent salt forming needlelike crystallites on tiles and limestone objects which are stored in wooden cabinets and display cases. In this case, the wood acts as source for acetic acid which reacts with soluble chloride and nitrate salts from the artifact or its environment. The knowledge of the geometrical structure helps conservation science to better understand production and decay reactions and to allow for full quantitative analysis in the frequent case of mixtures.

  2. Coherent 3D nanostructure of γ-Al2O3: Simulation of whole X-ray powder diffraction pattern

    NASA Astrophysics Data System (ADS)

    Pakharukova, V. P.; Yatsenko, D. A.; Gerasimov, E. Yu.; Shalygin, A. S.; Martyanov, O. N.; Tsybulya, S. V.

    2017-02-01

    The structure and nanostructure features of nanocrystalline γ-Al2O3 obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al2O3 were constructed. The models of nanostructured γ-Al2O3 particles were first confirmed by a direct simulation of powder X-Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al2O3 was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al2O3 platelets were heterogeneous on a nanometer scale and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al2O3 particles with formation of planar defects on {001}, {100}, and {101} planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al2O3 structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al2O3 oxide.

  3. Limits of visual detection for finasteride polymorphs in prepared binary mixtures: analysis by X-ray powder diffraction.

    PubMed

    Bezzon, Vinícius D N; Antonio, Selma G; Paiva-Santos, Carlos O

    2014-11-01

    Finasteride (FNT) is a drug that inhibits human enzyme type II 5α-reductase that metabolizes testosterone into dihydrotestosterone. There are two enantiotropic polymorphs with known crystal structure: designated as forms I and II. Identification and control of these polymorphic forms in mixtures can be performed using X-ray powder diffraction (XRPD) data and Rietveld method (RM). As experimental conditions may limit the detection of minority phases in mixtures, it is interesting to show what are these limits for some usual and one high-resolution equipment. So, in this work, we discuss the parameters to find the limit of the detection in binary mixtures of forms I and II of FNT according to each experimental condition. The samples analyzed were binary mixtures prepared with anhydrous polymorphs of the drug FNT. These samples were measured in four diffractometers with different experimental condition. These equipments represent the main resolutions generally used for drug analysis by XRPD. For the development of this work, a batch of form I was obtained pure, and another batch with forms I and II was used to obtain pure form II by heat treatment. Depending on the experimental condition, the polymorphs could be detected in a proportion as low as 0.5 wt%. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3567-3575, 2014.

  4. The ab-initio crystal structure determination of UPd 2Sn by synchrotron X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Marezio, M.; Cox, D. E.; Rossel, C.; Maple, M. B.

    1988-09-01

    The structure of the heavy-fermion compound UPd 2Sn has been determined by synchrotron x-ray radiation powder diffraction techniques. It is orthorhombic, space group Pnma [lattice parameters a = 9.9787(1), b = 4.58843(5), c = 6.89166(8) Å at room temperature] and Z = 4. All atoms, one U, one Sn, and two Pd are in 4d special positions at (x {1}/{4} z). The refinements were carried out by the Rietveld method with a pseudo-Voigt peak shape function. The final conventional R factors were: R wp = 21.3% and R E = 14.3%. The U positions in the unit cell were unequivocally located, but because of the similarity in x-ray scattering factors it was not possible to determine whether the Pd atoms and the Sn atoms are ordered or disordered on the other three sites. The structural arrangement of UPd 2Sn is of either MnCu 2Al, or ordered NaTl, or disordered Fe 3Al type, all these structures being cubic and b.c.c. related. The orthorhombic distortion is large and is probably due to a size effect of the U atoms which would be in a mixed ( {3+}/{4+}) valence state.

  5. Analysis of an industrial production suspension of Bacillus lentus subtilisin crystals by powder diffraction: a powerful quality-control tool.

    PubMed

    Frankaer, Christian G; Moroz, Olga V; Turkenburg, Johan P; Aspmo, Stein I; Thymark, Majbritt; Friis, Esben P; Stahl, Kenny; Nielsen, Jens E; Wilson, Keith S; Harris, Pernille

    2014-04-01

    A microcrystalline suspension of Bacillus lentus subtilisin (Savinase) produced during industrial large-scale production was analysed by X-ray powder diffraction (XRPD) and X-ray single-crystal diffraction (MX). XRPD established that the bulk microcrystal sample representative of the entire production suspension corresponded to space group P212121, with unit-cell parameters a = 47.65, b = 62.43, c = 75.74 Å, equivalent to those for a known orthorhombic crystal form (PDB entry 1ndq). MX using synchrotron beamlines at the Diamond Light Source with beam dimensions of 20 × 20 µm was subsequently used to study the largest crystals present in the suspension, with diffraction data being collected from two single crystals (∼20 × 20 × 60 µm) to resolutions of 1.40 and 1.57 Å, respectively. Both structures also belonged to space group P2(1)2(1)2(1), but were quite distinct from the dominant form identified by XRPD, with unit-cell parameters a = 53.04, b = 57.55, c = 71.37 Å and a = 52.72, b = 57.13, c = 65.86 Å, respectively, and refined to R = 10.8% and Rfree = 15.5% and to R = 14.1% and Rfree = 18.0%, respectively. They are also different from any of the forms previously reported in the PDB. A controlled crystallization experiment with a highly purified Savinase sample allowed the growth of single crystals of the form identified by XRPD; their structure was solved and refined to a resolution of 1.17 Å with an R of 9.2% and an Rfree of 11.8%. Thus, there are at least three polymorphs present in the production suspension, albeit with the 1ndq-like microcrystals predominating. It is shown how the two techniques can provide invaluable and complementary information for such a production suspension and it is proposed that XRPD provides an excellent quality-control tool for such suspensions.

  6. Analyzing solution-phase time-resolved x-ray diffraction data by isolated-solute models

    SciTech Connect

    Lee, Jae Hyuk; Kim, Kyoung Hwan; Kim, Tae Kyu; Lee, Youhong; Ihee, Hyotcherl

    2006-11-07

    Extracting transient structural information of a solute from time-resolved x-ray diffraction (TRXD) data is not trivial because the signal from a solution contains not only the solute-only term as in the gas phase, but also solvent-related terms. To obtain structural insights, the diffraction signal in q space is often Fourier sine transformed (FT) into r space, and molecular dynamics (MD) simulation-aided signal decomposition into the solute, cage, and solvent terms has so far been indispensable for a clear-cut assignment of structural features. Here we present a convenient method of comparative structural analysis without involving MD simulations by incorporating only isolated-species models for the solute. FT is applied to both the experimental data and candidate isolated-solute models, and comparison of the correlation factors between the experimental FT and the model FTs can distinguish the best candidate among isolated-solute models for the reaction intermediates. The low q region whose influence by solvent-related terms is relatively high can be further excluded, and this mode of truncated Fourier transform (TFT) improves the correlation factors and facilitates the comparison. TFT analysis has been applied to TRXD data on the photodissociation of C{sub 2}H{sub 4}I{sub 2} in two different solvents (methanol and cyclohexane), HgI{sub 2} in methanol, and I{sub 3}{sup -} in methanol excited at 267 nm. The results are consistent with previous conclusions for C{sub 2}H{sub 4}I{sub 2} in methanol and HgI{sub 2} in methanol, and the new TRXD data reveal that the C{sub 2}H{sub 4}I transient radical has a bridged structure in cyclohexane and I{sub 3}{sup -} in methanol decomposes into I+I{sub 2}{sup -} upon irradiation at 267 nm. This TFT method should greatly simplify the analysis because it bypasses MD simulations.

  7. Intercalation chemistry in a LDH system: anion exchange process and staging phenomenon investigated by means of time-resolved, in situ X-ray diffraction.

    PubMed

    Taviot-Guého, Christine; Feng, Yongjun; Faour, Azzam; Leroux, Fabrice

    2010-07-14

    Using time-resolved, in situ energy-dispersive X-ray diffraction (EDXRD), the formation of interstratified LDH structures, with alternate interlayer spaces occupied by different anions, have been demonstrated during anion exchange reactions. Novel hybrid LDH nanostructures can thus be prepared, combining the physicochemical properties of two intercalated anions plus those of the LDH host. A general trend is that inorganic-inorganic anion exchange reactions occur in a one-step process while inorganic-organic exchanges may proceed via a second-stage intermediate, suggesting that staging occurs partly as a result of organic-inorganic separation. Yet, other influencing parameters must be considered such as LDH host composition, LDH affinity for different anions and LDH particle size as well as extrinsic parameters like the reaction temperature. Hence, a correlation between the occurrence of staging phenomenon and the difficulty of the exchange of the initial anion is observed, suggesting that staging is needed to overcome the energy barrier in the case of the exchange by organic anions. Notwithstanding the LiAl(2) system, staging has mainly been observed with Zn(2)Cr LDH host so far, a peculiar LDH composition with a unique Zn/Cr ratio of two and a local order of the cations within the hydroxide layers. The formation of a higher order-staged intermediate than stage two, observed during the exchange reaction of CO(3)(2-) or SO(4)(2-) anions with Zn(2)Cr-tartrate, is in favour of a Daumas-Herold model although this model implies a bending of LDH layers. The analysis of the X-ray powder diffraction pattern of Zn(2)Cr-Cl/tartrate second-stage intermediate, isolated almost as a pure phase during the exchange of Cl(-) with tartrate anions in Zn(2)Cr LDH, indicates a disorder in the stacking sequence and a relative proportion of the two kinds of interlayers slightly different from 50/50. Besides, the microstructural analysis of the XRD pattern reveals a great reduction of the

  8. Time-resolved X-ray diffraction microprobe studies of the conversion of cellulose I to ethylenediamine-cellulose I

    SciTech Connect

    Nishiyama, Yoshiharu; Wada, Masahisa; Hanson, B. Leif; Langan, Paul

    2010-08-03

    Structural changes during the treatment of films of highly crystalline microfibers of Cladophora cellulose with ethylenediamine (EDA) have been studied by time-resolved X-ray microprobe diffraction methods. As EDA penetrates the sample and converts cellulose I to EDA-cellulose I, the measured profile widths of reflections reveal changes in the shapes and average dimensions of cellulose I and EDA-cellulose I crystals. The (200) direction of cellulose I is most resistant to EDA penetration, with EDA penetrating most effectively at the hydrophilic edges of the hydrogen bonded sheets of cellulose chains. Most of the cellulose chains in the initial crystals of cellulose I are incorporated into crystals of EDA-cellulose I. The size of the emerging EDA-cellulose I crystals is limited to about half of their size in cellulose I, most likely due to strains introduced by the penetration of EDA molecules. There is no evidence of any gradual structural transition from cellulose I to EDA-cellulose I involving a continuously changing intermediate phase. Rather, the results point to a rapid transition to EDA-cellulose I in regions of the microfibrils that have been penetrated by EDA.

  9. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction.

    PubMed

    Fortes, A Dominic

    2015-07-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å(-1). The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter-atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter-leaved with planes of XO4 (X = Mo, W) tetra-hedra that are linked by chains of water mol-ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856-2860] but shows that the purported three-centred inter-action involving one of the water mol-ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred 'linear' hydrogen bond.

  10. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction

    PubMed Central

    Fortes, A. Dominic

    2015-01-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å−1. The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter­atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter­leaved with planes of XO4 (X = Mo, W) tetra­hedra that are linked by chains of water mol­ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856–2860] but shows that the purported three-centred inter­action involving one of the water mol­ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred ‘linear’ hydrogen bond. PMID:26279871

  11. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam.

    PubMed

    Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K

    2012-04-07

    Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification.

  12. Angle Resolved Photoelectron and Auger Electron Diffraction as a Structural Probe for Surfaces, Interfaces, and Epitaxial Films.

    NASA Astrophysics Data System (ADS)

    Li, Hong

    The recently developed techniques of angle-resolved photoelectron and Auger electron diffraction (ARXPD/AED) have shown promise in identifying the structures of epitaxial films. This is due to the realization that electrons scattered by other atoms are enhanced along the forward direction. In this dissertation research, we have further investigated the capabilities of the ARXPD/AED technique. First, the complete polar angle distribution of the Auger electron intensity from Cu(001) was measured from the (100) to the (110) azimuth. The presentation of the ARAED in the form of a contour map clearly shows the relationship of the constructive and destructive interference of electron scattering to the crystallographic index of the crystal. Secondly, the angular distributions of electron emissions with initial states of 3p, 3d, 4d, and the Auger emission with electron kinetic energies ranging from 348 eV to 1477 eV were measured for single crystal Ag(001). The results show that all of these electron emissions have similar electron forward scattering enhancements along the directions of nearest and next nearest neighbour atoms in the crystal. The forward scattering enhancements do not shift as the electron kinectic energy changes. The ARXPD/AED combined with low energy electron diffraction (LEED) has been demonstrated to be a very powerful technique in probing both the long range order and the short range order of the epitaxial films. The epitaxial films studied include Co on Cu(001), Fe on Ag(001), Co on Ag(001), and Co on an ultra-thin film of Fe(001), which was epitaxially grown on Ag(001). We find that up to 20 ML thickness of high quality metastable fcc Co can be stabilized on Cu(001) at room temperature. We have directly verified that the Fe on Ag(001) is bcc. The Co on Ag(001) is neither bcc nor fcc for coverages of less than 3 ML. Thick films of Co on Ag(001) are disordered, of which a very small portion has a local structure of bcc. The bcc Co phases has been

  13. Additional evidence from x-ray powder diffraction patterns that icosahedral quasi-crystals of intermetallic compounds are twinned cubic crystals

    SciTech Connect

    Pauling, L. )

    1988-07-01

    Analysis of the measured values of Q for the weak peaks (small maxima, usually considered to be background fluctuations, noise) on the x-ray powder diffraction curves for 17 rapidly quenched alloys leads directly to the conclusion that they are formed by an 820-atom or 1012-atom primitive cubic structure that by icosahedral twinning produces the so-called icosahedral quasi-crystals.

  14. Investigation of the Surface Stress in SiC and Diamond Nanocrystals by In-situ High Pressure Powder Diffraction Technique

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.

    2003-01-01

    The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.

  15. X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: Application to (Gd, Nd)5Si4 compounds

    NASA Astrophysics Data System (ADS)

    Carvalho, A. M. G.; Nunes, R. S.; Coelho, A. A.

    2017-03-01

    Representative compounds of the new family of magnetic materials Gd5-xNdxSi4 were analyzed by X-ray diffraction at the XRD1 beamline at LNLS. To reduce X-ray absorption, thin layers of the powder samples were mounted outside the capillaries and measured in Debye-Scherrer geometry as usual. The X-ray diffraction analyses and the magnetometry results indicate that the behavior of the magnetic transition temperature as a function of Nd content may be directly related to the average of the four smallest interatomic distances between different rare earth sites of the majority phase of each compound. The quality and consistency of the results show that the XRD1 beamline is able to perform satisfactory X-ray diffraction experiments on high-absorption materials even off the best conditions.

  16. Single-crystal and synchrotron x-ray powder diffraction study of the one-dimensial orthorhombic polymer phase of C[sub 60}.

    SciTech Connect

    Papoular, R. J.; Toby, B. H.; Davydov, V. A.; Rakhmanina, A. V.; Dzyabchenko,, A.; Allouchi,, H.; Agafonov, V.; X-Ray Science Division; Leon Brillouin Lab.; Vereshchagin Inst. of High-Presure Physics; Karpov Inst. of Physical Chemistry; Labo. de Synthese Physco-Chimique et Therapeutique; Lab. d'Electrodynamique des Materiaux Avances

    2008-07-20

    The 1D-orthorhombic polymer phase of C{sub 60} was originally mentioned in 1995. The present work provides the first direct experimental quantitative evidences of the 1D-polymer chains, clearly seen by single-crystal diffraction. Geometrical details of the [2+2]-cycloaddition rings are compared with those of C{sub 60} dimers and 2D-polymers. Another key structural parameter is the angle of rotation {Psi} of the 1D chains about the polymerization axis. Single-crystal diffraction yields {Psi} {approx} 78{sup o}, whereas accurate synchrotron powder diffraction independently produces a similar {Psi} {approx} 73{sup o}. These values are in qualitative agreement with a former theoretical prediction ({Psi} {approx} 61{sup o}).

  17. Time-and-state resolved spectroscopy, diffraction, and circular dichroism in core photoelectron emission from clean and oxygen-covered W(110)

    SciTech Connect

    Ynzunza, Ramon Xavier

    1998-10-01

    Several aspects of core-level photoelectron emission fi-om solid surfaces as excited by high-brightness variable-polarization synchrotrons radiation have been studied with a new beamline and experimental station at the Advanced Light Source in Berkeley. These include: resolution of different chemical states and site types via high-resolution photoelectron spectroscopy (PS), the use of state-resolved photoelectron difllaction (PD) to determine local atomic geometries, and the observation and analysis of circular dichroism (CD) effects in photoelectron diffraction. These methods have been applied to clean and oxygen-exposed surfaces of W(110). Full-solid-angle photoelectron diffraction from clean W(110) was measured, with the surface and bulk atoms being clearly resolved.

  18. Testing the limits of sensitivity in a solid-state structural investigation by combined X-ray powder diffraction, solid-state NMR, and molecular modelling.

    PubMed

    Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu

    2011-10-28

    A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data.

  19. Investigation of phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by in situ synchrotron high-temperature powder diffraction

    SciTech Connect

    Ouyang, Xin; Huang, Saifang; Zhang, Weijun; Cao, Peng; Huang, Zhaohui; Gao, Wei

    2014-03-15

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) precursors prepared via solid-state and sol–gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol–gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol–gel precursor. Both precursors are able to be calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study. -- Graphical abstract: The in situ synchrotron HT-XRD patterns of CCTO sol–gel and solid-state precursor. Highlights: • Phase formation sequence/mechanism in two CCTO precursors has been established. • Formation temperature of CCTO via sol–gel method is lower than solid-state method. • Intermediate phases are only observed in the sol–gel precursor. • Both precursors are able to be calcined into sub-micrometric sized powders.

  20. Single-crystal and humidity-controlled powder diffraction study of the breathing effect in a metal-organic framework upon water adsorption/desorption.

    PubMed

    Aríñez-Soriano, Javier; Albalad, Jorge; Vila-Parrondo, Christian; Pérez-Carvajal, Javier; Rodríguez-Hermida, Sabina; Cabeza, Aurelio; Juanhuix, Jordi; Imaz, Inhar; Maspoch, Daniel

    2016-05-26

    Herein we report a study on water adsorption/desorption-triggered single-crystal to single-crystal transformations in a MOF, by single-crystal and humidity-controlled powder X-ray diffraction and water-sorption measurements. We identified a gate-opening effect at a relative humidity of 85% upon water adsorption, and a gate-closure effect at a relative humidity of 55 to 77% upon water desorption. This reversible breathing effect between the "open" and the "closed" structures of the MOF involves the cleavage and formation of several coordination bonds.

  1. Strategies for reducing preferred orientation and strain in powder samples for high-pressure synchrotron X-ray diffraction in diamond-anvil cells

    SciTech Connect

    Tschauner, Oliver; McClure, Jason; Nicol, Malcolm

    2010-07-20

    Among the many problems associated with high-pressure X-ray diffraction from polycrystalline samples in the diamond-anvil cell are strain and preferred orientation. A method is presented for efficiently reducing preferred orientation of powder samples compressed in diamond-anvil cells to pressures in excess of 20 GPa. This method may be successfully applied to samples of yield strength higher than alkalihalides. In addition, the problem of strain is discussed using ice-VII as an example and as an illustration of the importance of laser heating as a method of minimizing strain.

  2. (Z)-3-Methyl-N-(7-nitroacridin-3-yl)-2,3-dihydro-1,3-benzothiazol-2-imine from laboratory powder diffraction data.

    PubMed

    Vallcorba, Oriol; Latorre, Sonia; Alcobé, Xavier; Miravitlles, Carles; Rius, Jordi

    2011-11-01

    The title compound, C(21)H(14)N(4)O(2)S, belongs to a family of molecules possessing nonlinear optical properties in solution. Its structure has been solved from laboratory X-ray powder diffraction data using a new direct-space structure solution method, where the atomic coordinates are directly used as parameters and the molecular geometry is described by restraints. The molecular packing is controlled by two systems of π-π interactions and one weak edge-to-face interaction.

  3. Pressure-Induced Structural Evolution and Elastic Behaviour of Na{6}Cs{2}Ga{6}Ge{6}O{24} Variant of Cancrinite: A Synchrotron Powder Diffraction Study

    SciTech Connect

    Diego Gatta, G.; Lee, Y

    2008-01-01

    The elastic behaviour and the pressure (P) induced structural evolution of Na6Cs2Ga6Ge6O24 Ge(OH)6, a synthetic compound isotypic with cancrinite (CAN topology), have been investigated up to 5.01(5) GPa by means of in situ X-ray synchrotron powder diffraction with a diamond anvil cell and using a nominally penetrating hydrous P-transmitting medium (methanol:ethanol:water = 16:3:1). No evidence of phase-transition was observed within the P-range investigated.

  4. Disorder in the composite crystal structure of the manganese `disilicide' MnSi1.73 from powder X-ray diffraction data.

    PubMed

    Akselrud, L; Cardoso Gil, R; Wagner-Reetz, M; Grin, Yu

    2015-12-01

    The crystal structure of the higher manganese silicide MnSi1.7 (known in the literature as HMS) is investigated in samples with different compositions obtained by different techniques at temperatures not higher than 1273 K. Powder X-ray diffraction was applied. The crystal structure is described as incommensurate composite. In addition to the ordered model already known in the literature, the partial disorder in the silicon substructure was detected and described introducing an additional atomic site with a different modulation function.

  5. A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform

    PubMed Central

    René de Cotret, Laurent P.; Siwick, Bradley J.

    2016-01-01

    The general problem of background subtraction in ultrafast electron powder diffraction (UEPD) is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT) wavelet transforms when applied to simulated UEPD data on the M1–R phase transition in VO2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available. PMID:28083543

  6. A combined approach for characterisation of fresh and brined vine leaves by X-ray powder diffraction, NMR spectroscopy and direct infusion high resolution mass spectrometry.

    PubMed

    Rizzuti, Antonino; Caliandro, Rocco; Gallo, Vito; Mastrorilli, Piero; Chita, Giuseppe; Latronico, Mario

    2013-12-01

    X-ray powder diffraction was combined, for the first time, with Nuclear Magnetic Resonance spectroscopy and direct infusion mass spectrometry to characterise fresh and brined grape leaves. Covariance analysis of data generated by the three techniques was performed with the aim to correlate information deriving from the solid part with those obtained for soluble metabolites. The results obtained indicate that crystalline components can be correlated to the metabolites contained in the grape leaves, paving the way to the use of X-ray diffraction analysis for food fingerprinting purposes. Moreover it was ascertained that, differently from most of the metabolites present in the fresh vine leaves, linolenic acid (an omega-3-fatty acid) and quercetin-3-O-glucuronide (a polyphenol metabolite) do not undergo sensible degradation during the brining process, which is used as preservative method for the grape leaves.

  7. Direct Observations of Austenite, Bainite and Martensite Formation During Arc Welding of 1045 Steel using Time Resolved X-Ray Diffraction

    SciTech Connect

    Elmer, J; Palmer, T; Babu, S; Zhang, W; DebRoy, T

    2004-02-17

    In-situ Time Resolved X-Ray Diffraction (TRXRD) experiments were performed during stationary gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. These synchrotron-based experiments tracked, in real time, phase transformations in the heat-affected zone of the weld under rapid heating and cooling conditions. The diffraction patterns were recorded at 100 ms intervals, and were later analyzed using diffraction peak profile analysis to determine the relative fraction of ferrite ({alpha}) and austenite ({gamma}) phases in each diffraction pattern. Lattice parameters and diffraction peak widths were also measured throughout the heating and cooling cycle of the weld, providing additional information about the phases that were formed. The experimental results were coupled with a thermofluid weld model to calculate the weld temperatures, allowing time-temperature transformation kinetics of the {alpha} {yields} {gamma} phase transformation to be evaluated. During heating, complete austenitization was observed in the heat affected zone of the weld and the kinetics of the {alpha} {yields} {gamma} phase transformation were modeled using a Johnson-Mehl-Avrami (JMA) approach. The results from the 1045 steel weld were compared to those of a 1005 low carbon steel from a previous study. Differences in austenitization rates of the two steels were attributed to differences in the base metal microstructures, particularly the relative amounts of pearlite and the extent of the allotriomorphic ferrite phase. During weld cooling, the austenite transformed to a mixture of bainite and martensite. In situ diffraction was able to distinguish between these two non-equilibrium phases based on differences in their lattice parameters and their transformation rates, resulting in the first real time x-ray diffraction observations of bainite and martensite formation made during welding.

  8. Time-resolved x-ray diffraction experiments to examine the elastic-plastic transition in shocked magnesium-doped LiF

    NASA Astrophysics Data System (ADS)

    Jensen, B. J.; Gupta, Y. M.

    2008-07-01

    Time-resolved x-ray diffraction measurements were used to examine the lattice deformation during elastic-plastic deformation in Mg-doped (approximately 100 ppm) LiF single crystals shocked along [100]. The magnesium impurities significantly increase the elastic limit of the LiF crystals, as compared to the low values observed for ultrapure LiF crystals, leading to a large amplitude elastic wave and significant stress relaxation behind the elastic wave. The objective of the current work was to examine lattice deformation throughout this wave profile using time-resolved, x-ray diffraction methods (2 ns resolution) for plate impact experiments to gain insight into time-dependent, elastic-plastic deformation at the microscopic level. The diffraction data were analyzed using an x-ray model coupled to an existing wave propagation code that incorporated dislocation mechanisms for elastic-plastic deformation including stress relaxation. All experimental results revealed a uniaxial lattice compression at the elastic wave front followed by a rapid transition toward isotropic unit cell compression during stress relaxation. Furthermore, comparison between the experimental data and the calculated streak records indicated that the lattice transition proceeds at a faster rate than predicted by the model. Further implications of these results are discussed.

  9. Time- and angle-resolved x-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions.

    PubMed

    Yoo, Choong-Shik; Wei, Haoyan; Chen, Jing-Yin; Shen, Guoyin; Chow, Paul; Xiao, Yuming

    2011-11-01

    We present novel time- and angle-resolved x-ray diffraction (TARXD) capable of probing structural and chemical evolutions during rapidly propagating exothermic intermetallic reactions between Ni-Al multilayers. The system utilizes monochromatic synchrotron x-rays and a two-dimensional (2D) pixel array x-ray detector in combination of a fast-rotating diffraction beam chopper, providing a time (in azimuth) and angle (in distance) resolved x-ray diffraction image continuously recorded at a time resolution of ~30 μs over a time period of 3 ms. Multiple frames of the TARXD images can also be obtained with time resolutions between 30 and 300 μs over three to several hundreds of milliseconds. The present method is coupled with a high-speed camera and a six-channel optical pyrometer to determine the reaction characteristics including the propagation speed of 7.6 m/s, adiabatic heating rate of 4.0 × 10(6) K/s, and conductive cooling rate of 4.5 × 10(4) K/s. These time-dependent structural and temperature data provide evidences for the rapid formation of intermetallic NiAl alloy within 45 μs, thermal expansion coefficient of 1.1 × 10(-6) K for NiAl, and crystallization of V and Ag(3)In in later time.

  10. Crystal structures of eight mono-methyl alkanes (C26–C32) via single-crystal and powder diffraction and DFT-D optimization

    PubMed Central

    Brooks, Lee; Brunelli, Michela; Pattison, Philip; Jones, Graeme R.; Fitch, Andrew

    2015-01-01

    The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S)-9-methylpentacosane, C26H54; (S)-9-methylheptacosane and (S)-11-methylheptacosane, C28H58; (S)-7-methylnonacosane, (S)-9-methylnonacosane, (S)-11-methylnonacosane and (S)-13-methylnonacosane, C30H62; and (S)-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials. PMID:26306191

  11. Structural properties of Pb{sub 3}Mn{sub 7}O{sub 15} determined from high-resolution synchrotron powder diffraction

    SciTech Connect

    Rasch, Julia C.E.; Sheptyakov, D.V.; Schefer, J.; Keller, L.; Boehm, M.; Gozzo, F.; Volkov, N.V.; Sablina, K.A.; Petrakovskii, G.A.; Grimmer, H.; Conder, K.; Loeffler, J.F.

    2009-05-15

    We report on the crystallographic structure of the layered compound Pb{sub 3}Mn{sub 7}O{sub 15}. Previous analysis based on laboratory X-ray data at room temperature gave contradictory results in terms of the description of the unit cell. Motivated by recent magnetic bulk measurements of this system [N.V. Volkov, K.A. Sablina, O.A. Bayukov, E.V. Eremin, G.A. Petrakovskii, D.A. Velikanov, A.D. Balaev, A.F. Bovina, P. Boni, E. Clementyev, J. Phys. Condens. Matter 20 (2008) 055217], we re-investigated the chemical structure with high-resolution synchrotron powder diffraction at temperatures between 15 and 295 K. Our results show that the crystal structure of stoichiometric Pb{sub 3}Mn{sub 7}O{sub 15} has a pronounced 2-dimensional character and can be described in the orthorhombic space group Pnma. - The crystal structure of Pb{sub 3}Mn{sub 7}O{sub 15} has been reinvestigated by synchrotron powder diffraction. The compound crystallizes in the orthorhombic space group Pnma and shows no structural transition between 15 and 295 K.

  12. Rietveld Analysis of X-ray Powder Diffraction Patterns as a Potential Tool for the Identification of Impact-deformed Carbonate Rocks

    SciTech Connect

    Huson, Sarah A.; Foit, Franklin F.; Watkinson, A. J.; Pope, Michael C.

    2009-11-01

    Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.

  13. Crystal structures of eight mono-methyl alkanes (C26-C32) via single-crystal and powder diffraction and DFT-D optimization.

    PubMed

    Brooks, Lee; Brunelli, Michela; Pattison, Philip; Jones, Graeme R; Fitch, Andrew

    2015-09-01

    The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S)-9-methylpentacosane, C26H54; (S)-9-methylheptacosane and (S)-11-methylheptacosane, C28H58; (S)-7-methylnonacosane, (S)-9-methylnonacosane, (S)-11-methylnonacosane and (S)-13-methylnonacosane, C30H62; and (S)-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.

  14. High temperature neutron powder diffraction study of the Cu12Sb4S13 and Cu4Sn7S16 phases

    NASA Astrophysics Data System (ADS)

    Lemoine, Pierric; Bourgès, Cédric; Barbier, Tristan; Nassif, Vivian; Cordier, Stéphane; Guilmeau, Emmanuel

    2017-03-01

    Ternary copper-containing sulfides Cu12Sb4S13 and Cu4Sn7S16 have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu12Sb4S13 and Cu4Sn7S16 phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu12Sb4S13 decomposes above ≈792 K into Cu3SbS3, and (ii) Cu4Sn7S16 decomposes above ≈891 K into Sn2S3 and a copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu3SnS4 stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu12Sb4S13 are in fair agreement with recent published data, the decomposition behavior of Cu4Sn7S16 differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu4Sn7S16 and tetrahedrite Cu12Sb4S13 phases at 300 K, and for the high temperature form of skinnerite Cu3SbS3 at 843 K.

  15. An in situ sample environment reaction cell for spatially resolved x-ray absorption spectroscopy studies of powders and small structured reactors

    SciTech Connect

    Zhang, Chu; Gustafson, Johan; Merte, Lindsay R.; Evertsson, Jonas; Norén, Katarina; Carlson, Stefan; Svensson, Håkan; Carlsson, Per-Anders

    2015-03-15

    An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described. The design of the cell allows for flexible use of appropriate X-ray transparent windows, shielding the sample from ambient conditions, such that incident X-ray energies as low as 3 keV can be used. Thus, in situ X-ray absorption spectroscopy (XAS) measurements in either transmission or fluorescence mode are facilitated. Total gas flows up to about 500 ml{sub n}/min can be fed while the sample temperature is accurately controlled (at least) in the range of 25–500 °C. The gas feed is composed by a versatile gas-mixing system and the effluent gas flow composition is monitored with mass spectrometry (MS). These systems are described briefly. Results from simultaneous XAS/MS measurements during oxidation of carbon monoxide over a 4% Pt/Al{sub 2}O{sub 3} powder catalyst are used to illustrate the system performance in terms of transmission XAS. Also, 2.2% Pd/Al{sub 2}O{sub 3} and 2% Ag − Al{sub 2}O{sub 3} powder catalysts have been used to demonstrate X-ray absorption near-edge structure (XANES) spectroscopy in fluorescence mode. Further, a 2% Pt/Al{sub 2}O{sub 3} monolith catalyst was used ex situ for transmission XANES. The reaction cell opens for facile studies of structure-function relationships for model as well as realistic catalysts both in the form of powders, small pellets, and coated or extruded monoliths at near realistic conditions. The applicability of the cell for X-ray diffraction measurements is discussed.

  16. A combined solid-state NMR and synchrotron x-ray diffraction powder study on the structure of the antioxidant(+)-catechin 4.5 hydrate.

    SciTech Connect

    Harper, J. K.; Doebbler, J. A.; Jaccques, E.; Grant, D. M.; Von Dreele, R. B.; Univ. of Utah

    2010-03-10

    Analyses combining X-ray powder diffraction (XRD) and solid-state NMR (SSNMR) data can now provide crystal structures in challenging powders that are inaccessible by traditional methods. The flavonoid catechin is an ideal candidate for these methods, as it has eluded crystallographic characterization despite extensive study. Catechin was first described nearly two centuries ago, and its powders exhibit numerous levels of hydration. Here, synchrotron XRD data provide all heavy-atom positions in (+)-catechin 4.5-hydrate and establish the space group as C2. SSNMR data ({sup 13}C tensor and {sup 1}H/{sup 13}C correlation) complete the conformation by providing catechin's five OH hydrogen orientations. Since 1903, this phase has been erroneously identified as a 4.0 hydrate, but XRD and density data establish that this discrepancy is due to the facile loss of the water molecule located at a Wyckoff special position in the unit cell. A final improvement to heavy-atom positions is provided by a geometry optimization of bond lengths and valence angles with XRD torsion angles held constant. The structural enhancement in this final structure is confirmed by the significantly improved fit of computed {sup 13}C tensors to experimental data.

  17. New large volume hydrothermal reaction cell for studying chemical processes under supercritical hydrothermal conditions using time-resolved in situ neutron diffraction

    NASA Astrophysics Data System (ADS)

    Ok, Kang Min; O'Hare, Dermot; Smith, Ronald I.; Chowdhury, Mohammed; Fikremariam, Hanna

    2010-12-01

    The design and testing of a new large volume Inconel pressure cell for the in situ study of supercritical hydrothermal syntheses using time-resolved neutron diffraction is introduced for the first time. The commissioning of this new cell is demonstrated by the measurement of the time-of-flight neutron diffraction pattern for TiO2 (Anatase) in supercritical D2O on the POLARIS diffractometer at the United Kingdom's pulsed spallation neutron source, ISIS, Rutherford Appleton Laboratory. The sample can be studied over a wide range of temperatures (25-450 °C) and pressures (1-355 bar). This novel apparatus will now enable us to study the kinetics and mechanisms of chemical syntheses under extreme environments such as supercritical water, and in particular to study the crystallization of a variety of technologically important inorganic materials.

  18. New large volume hydrothermal reaction cell for studying chemical processes under supercritical hydrothermal conditions using time-resolved in situ neutron diffraction.

    PubMed

    Ok, Kang Min; O'Hare, Dermot; Smith, Ronald I; Chowdhury, Mohammed; Fikremariam, Hanna

    2010-12-01

    The design and testing of a new large volume Inconel pressure cell for the in situ study of supercritical hydrothermal syntheses using time-resolved neutron diffraction is introduced for the first time. The commissioning of this new cell is demonstrated by the measurement of the time-of-flight neutron diffraction pattern for TiO(2) (Anatase) in supercritical D(2)O on the POLARIS diffractometer at the United Kingdom's pulsed spallation neutron source, ISIS, Rutherford Appleton Laboratory. The sample can be studied over a wide range of temperatures (25-450 °C) and pressures (1-355 bar). This novel apparatus will now enable us to study the kinetics and mechanisms of chemical syntheses under extreme environments such as supercritical water, and in particular to study the crystallization of a variety of technologically important inorganic materials.

  19. Time-resolved resonant soft x-ray diffraction with free-electron lasers: Femtosecond dynamics across the Verwey transition in magnetite

    SciTech Connect

    Pontius, N.; Kachel, T.; Schuessler-Langeheine, C.; Schlotter, W. F.; Beye, M.; Sorgenfrei, F.; Wurth, W.; Chang, C. F.; Foehlisch, A.; Berglund, M.; Metcalf, P.

    2011-05-02

    Resonant soft x-ray diffraction (RSXD) with femtosecond (fs) time resolution is a powerful tool for disentangling the interplay between different degrees of freedom in strongly correlated electron materials. It allows addressing the coupling of particular degrees of freedom upon an external selective perturbation, e.g., by an optical or infrared laser pulse. Here, we report a time-resolved RSXD experiment from the prototypical correlated electron material magnetite using soft x-ray pulses from the free-electron laser FLASH in Hamburg. We observe ultrafast melting of the charge-orbital order leading to the formation of a transient phase, which has not been observed in equilibrium.

  20. In situ powder X-ray diffraction, synthesis, and magnetic properties of the defect zircon structure ScVO(4-x).

    PubMed

    Shafi, Shahid P; Kotyk, Matthew W; Cranswick, Lachlan M D; Michaelis, Vladimir K; Kroeker, Scott; Bieringer, Mario

    2009-11-16

    We report the formation pathway of ScVO(4) zircon from ScVO(3) bixbyite with emphasis on the synthesis and stability of the novel intermediate defect zircon phase ScVO(4-x) (0.0 < x powder X-ray diffraction. The oxidation of ScVO(3) to ScVO(4) involves two intermediates of composition ScVO(3.5+y) (0.00 powder X-ray diffraction, neutron diffraction, and bulk magnetic susceptibility data as well as (45)Sc and (51)V solid state NMR spectroscopy. ScVO(4-x) can only be obtained by oxidation of ScVO(3) or ScVO(3.5+y) while the reduction of ScVO(4) does not yield the novel defect structure. Mechanistic insights into the oxidative formation of ScVO(4) via the defect structure are presented.

  1. Possibilities and limitations of synchrotron X-ray powder diffraction with double crystal and double multilayer monochromators for microscopic speciation studies

    NASA Astrophysics Data System (ADS)

    De Nolf, Wout; Jaroszewicz, Jakub; Terzano, Roberto; Lind, Ole Christian; Salbu, Brit; Vekemans, Bart; Janssens, Koen; Falkenberg, Gerald

    2009-08-01

    The performance of a combined microbeam X-ray fluorescence/X-ray powder diffraction (XRF/XRPD) measurement station at Hamburger Synchrotronstrahlungslabor (HASYLAB) Beamline L is discussed in comparison to that at European Synchrotron Radiation Facility (ESRF) ID18F/ID22. The angular resolution in the X-ray diffractograms is documented when different combinations of X-ray source, optics and X-ray diffraction detectors are employed. Typical angular resolution values in the range 0.3-0.5° are obtained at the bending magnet source when a 'pink' beam form of excitation is employed. A similar setup at European Synchrotron Radiation Facility beamlines ID18F and ID22 allows to reach angular resolution values of 0.1-0.15°. In order to document the possibilities and limitations for speciation of metals in environmental materials by means of Hamburger Synchrotronstrahlungslabor Beamline L X-ray fluorescence/X-ray powder diffraction setup, two case studies are discussed, one involved in the identification of the crystal phases in which heavy metals such as chromium, iron, barium and lead are present in polluted soils of an industrial site (Val Basento, Italy) and another involved in the speciation of uranium in depleted uranium particles (Ceja Mountains, Kosovo). In the former case, the angular resolution is sufficient to allow identification of most crystalline phases present while in the latter case, it is necessary to dispose of an angular resolution of ca. 0.2° to distinguish between different forms of oxidized uranium.

  2. A time resolved high energy X-ray diffraction study of cooling liquid SiO2.

    PubMed

    Skinner, L B; Benmore, C J; Weber, J K R; Wilding, M C; Tumber, S K; Parise, J B

    2013-06-14

    The evolution of the X-ray structure factor and corresponding pair distribution function of SiO2 has been measured upon cooling from the melt using high energy X-ray diffraction combined with aerodynamic levitation. Small changes in the position of the average Si-O bond distance and peak width are found to occur at ~1500(100) K in the region of the calorimetric glass transition temperature, T(g) and the observed density minima. At higher temperatures deviations from linear behavior are seen in the first sharp diffraction peak width, height and area at around 1750(50) K, which coincides with the reported density maximum around 1.2T(g).

  3. Time-Resolved Diffraction Profiles and Atomic Dynamics in Short-Pulse Laser-Induced Structural Transformations: Molecular Dynamics Study

    DTIC Science & Technology

    2006-05-16

    Touloukian , Thermophysical Properties of Matter, Vol. 4: Specific Heat: Metallic Elements and Alloys IFI/Plenum, New York, 1970. 31Y. S. Touloukian ...Thermophysical Properties of Matter, Vol. 12: Thermal Expansion: Metallic Elements and Alloys IFI/Plenum, New York, 1975. 32S. I. Anisimov and B...nm aluminum films irradiated with 120 fs laser pulses.11 The diffraction intensity over a range of scattering vectors was measured in this work

  4. Exploring the structural changes on excitation of a luminescent organic bromine-substituted complex by in-house time-resolved pump-probe diffraction

    PubMed Central

    Basuroy, Krishnayan; Chen, Yang; Sarkar, Sounak; Benedict, Jason; Coppens, Philip

    2017-01-01

    The structural changes accompanying the excitation of the luminescent dibromobenzene derivative, 1,4-dibromo-2,5-bis(octyloxy)benzene, have been measured by in-house monochromatic time-resolved (TR) diffraction at 90 K. Results show an increment of the very short intermolecular Br•••Br contact distance from 3.290 Å to 3.380 Å. Calculations show the Br…Br interaction to be strongly repulsive in both the Ground and Excited states but significantly relaxed by the lengthening of the contact distance on excitation. The stability of the crystals is attributed to the many weak C-H···Br and C-H···π intermolecular interactions. The study described is the first practical application of In-House Time-Resolved diffraction, made possible by the continuing increase in the brightness of X-ray sources and the sensitivity of our detectors. PMID:28382318

  5. In-situ high-pressure powder X-ray diffraction study of α-zirconium phosphate.

    PubMed

    Readman, Jennifer E; Lennie, Alistair; Hriljac, Joseph A

    2014-06-01

    The high-pressure structural chemistry of α-zirconium phosphate, α-Zr(HPO4)2·H2O, was studied using in-situ high-pressure diffraction and synchrotron radiation. The layered phosphate was studied under both hydrostatic and non-hydrostatic conditions and Rietveld refinement carried out on the resulting diffraction patterns. It was found that under hydrostatic conditions no uptake of additional water molecules from the pressure-transmitting medium occurred, contrary to what had previously been observed with some zeolite materials and a layered titanium phosphate. Under hydrostatic conditions the sample remained crystalline up to 10 GPa, but under non-hydrostatic conditions the sample amorphized between 7.3 and 9.5 GPa. The calculated bulk modulus, K0 = 15.2 GPa, showed the material to be very compressible with the weak linkages in the structure of the type Zr-O-P.

  6. In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Storm, Mie Møller; Johnsen, Rune E.; Norby, Poul

    2016-08-01

    Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermal reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses.

  7. Time-resolved neutron diffraction investigation of the effect of hydrogen on the high- Tc superconductor YBa 2Cu 3O 7-δ

    NASA Astrophysics Data System (ADS)

    Balagurov, A. M.; Mironova, G. M.; Rudnickij, L. A.; Galkin, V. Ju.

    1990-12-01

    The results of a time-resolved neutron diffraction investigation of the interaction of hydrogen flow with the high- Tc superconductor YBa 2Cu 3O 7-δ are presented. The experiment was carried out on the TOF diffractometer DN-2 at the reactor IBR-2 in Dubna. Hydrogenation was performed on small pieces of 1-2-3 ceramics which were enclosed inside a quartz tube. The sample was heated up to 350°C at a constant rate of 5°C/min. Diffraction patterns were collected every 3 min within the dhkl-interval of 1-20 Å. Up to 220°C the refinement yielded the well-known orthorhombic phase of the 1-2-3 structure without any remarkable reduction of the ( b- a)/( a+ b) ratio. Below this temperature the only change in the specimen was a gradual increase of the incoherent background which occured even at room temperature. Once the temperature of 220°C was reached, sample degradation took place as evidence by precipitation of metallic copper, a drastic increase of background and widening of the diffraction peaks. Simultaneously, the occupancy of O(4)+ O(5) sites fell to 0.6. No evidence was found for the formation of a solid solution of hydrogen in 1-2-3 structure.

  8. In-situ Time-Resolved Neutron Diffraction Measurements of Microstructure Variations during Friction Stir Welding in a 6061-T6 Aluminum Alloy

    SciTech Connect

    Woo, Wan Chuck; Wang, Xun-Li; Ungar, Prof Tomas; Feng, Zhili; David, Stan A; Clausen, B; Hubbard, Camden R

    2008-01-01

    The microstructure change is one of the most important research areas in the friction stir welding (FSW). However, direct observation of microstructure changes during FSW has been extremely challenging because many measurement techniques are inapplicable. Recently developed in-situ time-resolved neutron diffraction methodology, which drastically improves the temporal resolution of neutron diffraction, enables to observe the transient microstructure changes during FSW. We installed a portable FSW system in the Spectrometer for MAterials Research at Temperature and Stress (SMARTS) at Los Alamos Neutron Science Center and the FSW was made on 6.35mm-thickness 6061-T6 Al alloy plate. At the same time, the neutron beam was centered on the mid-plane of the Al plate at 8 mm from the tool center (underneath the tool shoulder) and the diffraction peak was continuously measured during welding. The peak broadening analysis has been performed using the Williamson-Hall Method. The result shows that the dislocation density of about 3.2 x 10^15 m-2 duing FSW, which is the significant increse compared to the before (4.5 x 10^14 m-2) and after (4.0 x 10^14 m-2) the FSW. The quantitatively analysis of the grain structure can provide an insight to understand the transient variation of the microstructure during FSW.

  9. Vacancy-induced nanoscale phase separation in KxFe2–ySe₂ single crystals evidenced by Raman scattering and powder x-ray diffraction

    DOE PAGES

    Lazarević, N.; Abeykoon, M.; Stephens, P. W.; ...

    2012-08-06

    Polarized Raman scattering spectra of KxFe2–ySe₂ were analyzed in terms of peculiarities of both I4/m and I4/mmm space group symmetries. The presence of the Raman active modes from both space group symmetries (16 Raman-active modes of the I4/m phase and two Raman-active modes of the I4/mmm phase) confirmed the existence of two crystallographic domains with different space group symmetry in a KxFe2–ySe₂ sample. High-resolution synchrotron powder x-ray diffraction structural refinement of the same sample confirmed the two-phase description, and determined the atomic positions and occupancies for both domains.

  10. Crystal structure of silica-ZSM-12 by the combined use of high-resolution solid-state MAS NMR spectroscopy and synchrotron x-ray powder diffraction

    SciTech Connect

    Fyfe, C.A.; Kokotailo, G.T. ); Gies, H.; Marler, B. ); Cox, D.E. )

    1990-05-03

    The crystal structure of the synthetic zeolite silica-ZSM-12, 56 SiO{sub 2}, has been solved by the combined use of high-resolution solid-state MAS NMR spectroscopy and high-resolution synchrotron X-ray powder diffraction ZSM-12 crystallizes in the monoclinic space group C2/c with a{sub 0} = 24.863 {angstrom}, b{sub 0} = 5.012 {angstrom}, c{sub 0} = 24.328 {angstrom}, and {beta} = 107.7{degree}. The zeolite host structure is built from corner-linked SiO{sub 4} tetrahedra to give a three-dimensional 4-connected net. The pores of the structure are one-dimensional channels that do not intersect, with 12-membered ring pore openings of approximately 5.6 {times} 7.7 {angstrom}. The structure of ZSM-12 is frequently twinned with (100) as the twin plane, which indicates a new zeolite structure type.

  11. Polymorphism of ceramide 6: a vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(alpha-hydroxyoctadecanoyl)-phytosphingosine.

    PubMed

    Raudenkolb, Steve; Wartewig, Siegfried; Neubert, R H H

    2005-01-01

    A preparative chromatographic method was developed for the quantitative isolation of the diastereomers of synthetic N-(alpha-hydroxyoctadecanoyl)-phytosphingosine (DL-CER6). The L- and the D-compound were studied each by means X-ray powder diffraction, FT-Raman and FT-IR spectroscopy. The diastereomers exhibit different thermotropic polymorphism. Three lamellar crystalline and a lamellar liquid crystalline phase were found for L-CER6. The natural occurring D-CER6 forms an Lalpha phase with a larger repeating distance than the L-CER6. The two lamellar crystalline phases of the D-compound have a significant larger dimension than those of the L-compound. The addition of water lowers the phase transition temperatures but does not induce structural changes such as incorporation into the lamellar sheets.

  12. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis

    NASA Astrophysics Data System (ADS)

    Habibi, Neda

    2015-02-01

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33 nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the Nsbnd CH3 functional group about 2850 cm-1 is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field.

  13. Quadrupole lamp furnace for high temperature (up to 2050 K) synchrotron powder x-ray diffraction studies in air in reflection geometry.

    SciTech Connect

    Sarin, P.; Yoon, W.; Jurkschat, K.; Zschack, P.; Kriven, W. M.; Univ. of Illinois; Frederick-Seitz Materials Research Lab.

    2006-09-01

    A four-lamp thermal image furnace has been developed to conduct high temperature x-ray diffraction in reflection geometry on oxide ceramic powder samples in air at temperatures {le} 2050 K using synchrotron radiation. A refractory crucible made of Pt20%Rh alloy was used as a specimen holder. A material with well characterized lattice expansion properties was used as an internal crystallographic thermometer to determine the specimen temperature and displacement. The performance of the apparatus was verified by measurement of the thermal expansion properties of CeO{sub 2}, MgO, and Pt which were found to be within {+-} 3% of the acceptable values. The advantages, limitations, and important considerations of the instrument developed are discussed.

  14. Quadrupole lamp furnace for high temperature (up to 2050 K) synchrotron powder x-ray diffraction studies in air in reflection geometry

    SciTech Connect

    Sarin, P.; Yoon, W.; Jurkschat, K.; Zschack, P.; Kriven, W. M.

    2006-09-15

    A four-lamp thermal image furnace has been developed to conduct high temperature x-ray diffraction in reflection geometry on oxide ceramic powder samples in air at temperatures {<=}2050 K using synchrotron radiation. A refractory crucible made of Pt20%Rh alloy was used as a specimen holder. A material with well characterized lattice expansion properties was used as an internal crystallographic thermometer to determine the specimen temperature and displacement. The performance of the apparatus was verified by measurement of the thermal expansion properties of CeO{sub 2}, MgO, and Pt which were found to be within {+-}3% of the acceptable values. The advantages, limitations, and important considerations of the instrument developed are discussed.

  15. Molecular and crystalline structures of three (S)-4-alkoxycarbonyl-2-azetidinones containing long alkyl side chains from synchrotron X-ray powder diffraction data.

    PubMed

    Seijas, Luis E; Mora, Asiloé J; Delgado, Gerzon E; López-Carrasquero, Francisco; Báez, María E; Brunelli, Michela; Fitch, Andrew N

    2009-12-01

    The (S)-4-alkoxo-2-azetidinecarboxylic acids are optically active beta-lactam derivatives of aspartic acid, which are used as precursors of carbapenem-type antibiotics and poly-beta-aspartates. The crystal structures of three (S)-4-alkoxo-2-azetidinecarboxylic acids with alkyl chains with 10, 12 and 16 C atoms were solved using parallel tempering and refined against the X-ray powder diffraction data using the Rietveld method. The azetidinone rings in the three compounds display a pattern of asymmetrical bond distances and an almost planar conformation; these characteristics are compared with periodic solid-state, gas-phase density-functional theory (DFT) calculations and MOGUL average bond distances and angles from the CSD. The compounds pack along [001] as corrugated sheets separated by approximately 4.40 A and connected by hydrogen bonds of the type N-H...O.

  16. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    NASA Astrophysics Data System (ADS)

    Blagoev, K.; Grozeva, M.; Malcheva, G.; Neykova, S.

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893-972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts.

  17. Maximum Entropy Method and Charge Flipping, a Powerful Combination to Visualize the True Nature of Structural Disorder from in situ X-ray Powder Diffraction Data

    SciTech Connect

    Samy, A.; Dinnebier, R; van Smaalen, S; Jansen, M

    2010-01-01

    In a systematic approach, the ability of the Maximum Entropy Method (MEM) to reconstruct the most probable electron density of highly disordered crystal structures from X-ray powder diffraction data was evaluated. As a case study, the ambient temperature crystal structures of disordered {alpha}-Rb{sub 2}[C{sub 2}O{sub 4}] and {alpha}-Rb{sub 2}[CO{sub 3}] and ordered {delta}-K{sub 2}[C{sub 2}O{sub 4}] were investigated in detail with the aim of revealing the 'true' nature of the apparent disorder. Different combinations of F (based on phased structure factors) and G constraints (based on structure-factor amplitudes) from different sources were applied in MEM calculations. In particular, a new combination of the MEM with the recently developed charge-flipping algorithm with histogram matching for powder diffraction data (pCF) was successfully introduced to avoid the inevitable bias of the phases of the structure-factor amplitudes by the Rietveld model. Completely ab initio electron-density distributions have been obtained with the MEM applied to a combination of structure-factor amplitudes from Le Bail fits with phases derived from pCF. All features of the crystal structures, in particular the disorder of the oxalate and carbonate anions, and the displacements of the cations, are clearly obtained. This approach bears the potential of a fast method of electron-density determination, even for highly disordered materials. All the MEM maps obtained in this work were compared with the MEM map derived from the best Rietveld refined model. In general, the phased observed structure factors obtained from Rietveld refinement (applying F and G constraints) were found to give the closest description of the experimental data and thus lead to the most accurate image of the actual disorder.

  18. Single-crystal X-ray and powder neutron diffraction of ThB 2C (ThB 2C-type)

    NASA Astrophysics Data System (ADS)

    Rogl, Peter; Fischer, Peter

    1989-02-01

    The crystal structure of ThB 2C was determined using single-crystal X-ray and powder neutron diffraction data. ThB 2C crystallizes in the rhombohedral space group R overline3m with a = 0.66761(23), c = 1.13760(31) nm, {c}/{a} = 1.704, V = 0.4391 nm 3, Z = 9 . X-ray intensity data were obtained from a four-circle diffractometer; the structure was solved by Patterson methods and refined by full-matrix least-squares calculation. R = {∑|ΔF|}/{∑|F o| } = 0.034 for an asymmetric set of 219 independent reflections (| Fo| > 2 σ( Fo)). Precise nonmetal atom parameters and bond distances have been derived from room-temperature neutron powder diffraction data employing the Rietveld-Young profile analysis method. The reliability value of the neutron refinement was RI = 0.067. The crystal structure of ThB 2C is a new structure type with slightly puckered 6 3-Th-metal layers alternating with nonmetal layers each composed of hexagons of boron atoms, the hexagons being linked by carbon atoms. Boron atoms are in a triangular prismatic metal surrounding of a tetrakaidekahedral coordination |Th 6B 2C 1|B, whereas carbon atoms occupy the center points of quadratic bipyramids |Th 4B 2|C. The crystal structure of ThB 2C derives from the AlB 2-type structure with carbon atoms entering the boron nets to form a 2∞ - (6B) · (6B(3C)) 2 layer.

  19. In situ x-ray and neutron powder diffraction study of LaNi5-xSnx-H systems

    NASA Technical Reports Server (NTRS)

    Bowman, Robert C., Jr.; Nakamara, Yumiko; Akiba, Etsuo

    2004-01-01

    This paper will present results of in situ XRD measurements of LaNi4.75Sn0.25 .during the initial absorption-desorption cycle, These measurements were performed under a similar condition to that for LaNi4.75Al0.25 previously reported [1]. The data were analyzed by the Rietveld method. Lattice parameter change and strain formation accompanying hydride phase formation and decomposition will be discussed. In addition, results of in situ neutron diffraction of LaNi4.78Sn0.22, focusing on hydrogen occupation in the hydride phase, will be presented.

  20. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl/sub 6/ and other alloys are twinned cubic crystals

    SciTech Connect

    Pauling, L.

    1987-06-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl/sub 6/ and Mg/sub 32/(Al,Zn)/sub 49/ and the neutron powder diffraction pattern of MnAl/sub 5/ are compatible with the proposed 820-atom primitive cubic structure. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl/sub 6/ and 24.313 A (x-ray) for Mg/sub 32/(Al,Zn)/sub 49/.

  1. High-throughput and time-resolved energy-dispersive X-ray diffraction (EDXRD) study of the formation of CAU-1-(OH)2: microwave and conventional heating.

    PubMed

    Ahnfeldt, Tim; Moellmer, Jens; Guillerm, Vincent; Staudt, Reiner; Serre, Christian; Stock, Norbert

    2011-05-27

    Aluminium dihydroxyterephthalate [Al(8)(OH)(4)(OCH(3))(8)(BDC(OH)(2))(6)]⋅x H(2)O (denoted CAU-1-(OH)(2)) was synthesized under solvothermal conditions and characterized by X-ray powder diffraction, IR spectroscopy, sorption measurements, as well as thermogravimetric and elemental analysis. CAU-1-(OH)(2) is isoreticular to CAU-1 and its pores are lined with OH groups. It is stable under ambient conditions and in water, and it exhibits permanent porosity and two types of cavities with effective diameters of approximately 1 and 0.45 nm. The crystallization of CAU-1-(OH)(2) was studied by in situ energy-dispersive X-ray diffraction (EDXRD) experiments in the 120-145 °C temperature range. Two heating methods-conventional and microwave-were investigated. The latter leads to shorter induction periods as well as shorter reaction times. Whereas CAU-1-(OH)(2) is formed at all investigated temperatures using conventional heating, it is only observed below 130 °C using microwave heating. The calculation of the activation energy of the crystallization of CAU-1-(OH)(2) exhibits similar values for microwave and conventional synthesis.

  2. The Surprising Outburst Behavior of Z Canis Majoris, and Resolving the Alpha Oph Companion Near the Diffraction limit

    NASA Astrophysics Data System (ADS)

    Hinkley, Sasha; Pope, Benjamin; Martinache, Frantz; Hillenbrand, Lynne; Kraus, Adam L.; Ireland, Michael; Oppenheimer, Ben R.; Rice, Emily L.; Monnier, John D.; Tuthill, Peter; Latyshev, Alexey

    2015-01-01

    We present recent high resolution Palomar and Keck observations on two intriguing binary star systems: Z Canis Majoris and Alpha Ophiuchus. We have obtained near-infrared Keck and Palomar photometry and spectra for each component of the Z Canis Majoris system, a very young binary composed of an FU Ori object and a Herbig Ae/Be object. Our high angular resolution photometry of this very young (~1 Myr) binary conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works. Further, our high-resolution K-band spectra during a quiescent phase definitively demonstrate that the 2.294 micron CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings greatly clarify previous analyses of the origin of the CO emission in this complex system. In a different study, we detected the faint companion to the star Alpha Ophiuchus using the Palomar 5m Hale Telescope Adaptive Optics system combined with kernel phase interferometry, a recently-developed post-processing technique for high contrast imaging. The technique of kernel phase interferometry has never before been used to detect faint companions to nearby stars using ground-based observations. Our Palomar observations detect the Alpha Oph companion passing near its periastron point with separation of only ~130 miliarcseconds, close to the Palomar infrared diffraction limit. Alpha Oph is a particularly important binary system with the primary star rotating close to its breakup velocity. Thus, establishing the host star mass with high precision through dynamical orbital analysis is extremely valuable. This technique holds great promise for detecting high contrast objects at, or just inside, the formal

  3. Static and Dynamical Structural Investigations of Metal-Oxide Nanocrystals by Powder X-ray Diffraction: Colloidal Tungsten Oxide as a Case Study

    SciTech Connect

    Caliandro, Rocco; Sibillano, Teresa; Belviso, B. Danilo; Scarfiello, Riccardo; Dooryhee, Eric; Manca, Michele; Cozzoli, P. Davide

    2016-02-02

    In this study, we have developed a general X-ray powder diffraction (XPD) methodology for the simultaneous structural and compositional characterization of inorganic nanomaterials. The approach is validated on colloidal tungsten oxide nanocrystals (WO3-x NCs), as a model polymorphic nanoscale material system. Rod-shaped WO3-x NCs with different crystal structure and stoichiometry are comparatively investigated under an inert atmosphere and after prolonged air exposure. An initial structural model for the as-synthesized NCs is preliminarily identified by means of Rietveld analysis against several reference crystal phases, followed by atomic pair distribution function (PDF) refinement of the best-matching candidates (static analysis). Subtle stoichiometry deviations from the corresponding bulk standards are revealed. NCs exposed to air at room temperature are monitored by XPD measurements at scheduled time intervals. The static PDF analysis is complemented with an investigation into the evolution of the WO3-x NC structure, performed by applying the modulation enhanced diffraction technique to the whole time series of XPD profiles (dynamical analysis). Prolonged contact with ambient air is found to cause an appreciable increase in the static disorder of the O atoms in the WO3-x NC lattice, rather than a variation in stoichiometry. Finally, the time behavior of such structural change is identified on the basis of multivariate analysis.

  4. Static and Dynamical Structural Investigations of Metal-Oxide Nanocrystals by Powder X-ray Diffraction: Colloidal Tungsten Oxide as a Case Study.

    PubMed

    Caliandro, Rocco; Sibillano, Teresa; Belviso, B Danilo; Scarfiello, Riccardo; Hanson, Jonathan C; Dooryhee, Eric; Manca, Michele; Cozzoli, P Davide; Giannini, Cinzia

    2016-03-03

    We have developed a general X-ray powder diffraction (XPD) methodology for the simultaneous structural and compositional characterization of inorganic nanomaterials. The approach is validated on colloidal tungsten oxide nanocrystals (WO3-x NCs), as a model polymorphic nanoscale material system. Rod-shaped WO3-x NCs with different crystal structure and stoichiometry are comparatively investigated under an inert atmosphere and after prolonged air exposure. An initial structural model for the as-synthesized NCs is preliminarily identified by means of Rietveld analysis against several reference crystal phases, followed by atomic pair distribution function (PDF) refinement of the best-matching candidates (static analysis). Subtle stoichiometry deviations from the corresponding bulk standards are revealed. NCs exposed to air at room temperature are monitored by XPD measurements at scheduled time intervals. The static PDF analysis is complemented with an investigation into the evolution of the WO3-x NC structure, performed by applying the modulation enhanced diffraction technique to the whole time series of XPD profiles (dynamical analysis). Prolonged contact with ambient air is found to cause an appreciable increase in the static disorder of the O atoms in the WO3-x NC lattice, rather than a variation in stoichiometry. The time behavior of such structural change is identified on the basis of multivariate analysis.

  5. Synthesis, solid-state NMR, and X-ray powder diffraction characterization of group 12 coordination polymers, including the first example of a C-mercuriated pyrazole.

    PubMed

    Masciocchi, Norberto; Galli, Simona; Alberti, Enrica; Sironi, Angelo; Di Nicola, Corrado; Pettinari, Claudio; Pandolfo, Luciano

    2006-10-30

    Cadmium and mercury acetates have been reacted with pyrazole (Hpz) and 3,5-dimethylpyrazole (Hdmpz), affording distinct mixed-ligand species, selectively prepared upon slightly modifying the reaction conditions. Two polymorphs of [{Cd(mu-ac)2(Hpz)2}n], as well as the [{Cd(mu-ac)2(Hdmpz)2}n] species (Hac = acetic acid), were obtained by solution chemistry, while the two-dimensional [{Cd3(mu3-ac)4(mu-pz)2(Hpz)2}n] and [{Cd(mu-ac)(mu-pz)}n] polymers were prepared upon controlled thermal treatment of one of the [{Cd(mu-ac)2(Hpz)2}n] forms. Two mercury derivatives, [{Hg3(mu-ac)3(mu-pz)3}n] and [{Hg(ac)(mu-dmpz)}n], were also prepared, the latter containing one-dimensional chains of Hg(II) ions bridged by C-mercuriated Hdmpz ligands. All their crystal structures (but one) were determined by powder diffraction methods using conventional X-ray laboratory equipment, supported by 13C CPMAS NMR measurements. The latter method helped in assigning a C-metalated nature to an amorphous material of [Hg(ac)(pz)] formula, obtained by employing EtOH as a solvent. A few other Hdmpz-containing cadmium acetates were also prepared, but their polyphasic nature, evidenced by diffraction methods, hampered their complete structural characterization.

  6. Structure determination of the crystalline phase of n-butanol by powder X-ray diffraction and study of intermolecular associations by Raman spectroscopy.

    PubMed

    Derollez, Patrick; Hédoux, Alain; Guinet, Yannick; Danède, Florence; Paccou, Laurent

    2013-04-01

    X-ray powder diffraction patterns of n-butanol at 110 K and the isothermal transformation above the glass transition temperature of the supercooled liquid into the glacial state were recorded with a laboratory diffractometer. The starting structural model of the crystalline stable phase was found by a Monte-Carlo simulated annealing method. The final structure was obtained through Rietveld refinements with soft restraints on the interatomic bond lengths and angles. The cell is triclinic with space group P1 and contains two molecules. The width of the Bragg peaks is interpreted by a phenomenological microstructural approach in terms of anisotropic strain effects. The study of the hydrogen bonds by Raman spectroscopy shows the existence of two main kinds of hydrogen bonds in the crystal, in agreement with the structure obtained by diffraction. The glacial state resulting from an abortive crystallization is composed of microcrystallites of the stable phase coexisting with non-transformed supercooled liquid. Crystalline features of the glacial state were determined as closely connected to the microstructural description of the crystal, leading to information about the origin of the glacial state.

  7. Static and Dynamical Structural Investigations of Metal-Oxide Nanocrystals by Powder X-ray Diffraction: Colloidal Tungsten Oxide as a Case Study

    DOE PAGES

    Caliandro, Rocco; Sibillano, Teresa; Belviso, B. Danilo; ...

    2016-02-02

    In this study, we have developed a general X-ray powder diffraction (XPD) methodology for the simultaneous structural and compositional characterization of inorganic nanomaterials. The approach is validated on colloidal tungsten oxide nanocrystals (WO3-x NCs), as a model polymorphic nanoscale material system. Rod-shaped WO3-x NCs with different crystal structure and stoichiometry are comparatively investigated under an inert atmosphere and after prolonged air exposure. An initial structural model for the as-synthesized NCs is preliminarily identified by means of Rietveld analysis against several reference crystal phases, followed by atomic pair distribution function (PDF) refinement of the best-matching candidates (static analysis). Subtle stoichiometry deviationsmore » from the corresponding bulk standards are revealed. NCs exposed to air at room temperature are monitored by XPD measurements at scheduled time intervals. The static PDF analysis is complemented with an investigation into the evolution of the WO3-x NC structure, performed by applying the modulation enhanced diffraction technique to the whole time series of XPD profiles (dynamical analysis). Prolonged contact with ambient air is found to cause an appreciable increase in the static disorder of the O atoms in the WO3-x NC lattice, rather than a variation in stoichiometry. Finally, the time behavior of such structural change is identified on the basis of multivariate analysis.« less

  8. Anti-site mixing and magnetic properties of Fe3Co3Nb2 studied via neutron powder diffraction

    SciTech Connect

    Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei; Balasubramanian, Balamurugan; Das, Bhaskar; Liu, Yaohua; Huq, Ashfia; Sellmyer, David

    2016-11-02

    We studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe3Co3Nb2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. The temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection of the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe3Co3Nb2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. As a result, these findings suggest that future studies on the magnetism of Fe3Co3Nb2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.

  9. Neutron powder diffraction study of the crystal and magnetic structures of BiNiO{sub 3} at low temperature

    SciTech Connect

    Carlsson, Sandra J.E.; Azuma, Masaki; Shimakawa, Yuichi; Takano, Mikio; Hewat, Alan; Attfield, J. Paul

    2008-03-15

    The crystal and magnetic structures of the charge ordered perovskite BiNiO{sub 3} have been studied at temperatures from 5 to 300 K using neutron diffraction. Rietveld analysis of the data shows that the structure remains triclinic (space group P1-bar) throughout the whole temperature range. Bond-valence sum calculations based on the Bi-O and Ni-O bond distances confirm that the charge distribution is Bi{sup 3+}{sub 0.5}Bi{sup 5+}{sub 0.5}Ni{sup 2+}O{sub 3} down to 5 K. The magnetic cell is identical to that of the triclinic superstructure and a G-type antiferromagnetic model gives a good fit to the magnetic intensities, with an ordered Ni{sup 2+} moment of 1.76(3) {mu}{sub B} at 5 K. However, BiNiO{sub 3} is ferrimagnetic due to the inexact cancellation of opposing, inequivalent moments in the low symmetry cell. - Graphical abstract: A neutron diffraction study shows that the perovskite BiNiO{sub 3} retains the unusual charge distribution Bi{sup 3+}{sub 0.5}Bi{sup 5+}{sub 0.5}Ni{sup 2+}O{sub 3} down to 5 K. The Ni{sup 2+} moments are ordered in the G-type antiferromagnetic arrangement shown; however, BiNiO{sub 3} is ferrimagnetic due to the inexact cancellation of the four inequivalent moments in the triclinic unit cell.

  10. Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study

    SciTech Connect

    Paarmann, A.; Mueller, M.; Ernstorfer, R.; Gulde, M.; Schaefer, S.; Schweda, S.; Maiti, M.; Ropers, C.; Xu, C.; Hohage, T.; Schenk, F.

    2012-12-01

    We numerically investigate the properties of coherent femtosecond single electron wave packets photoemitted from nanotips in view of their application in ultrafast electron diffraction and non-destructive imaging with low-energy electrons. For two different geometries, we analyze the temporal and spatial broadening during propagation from the needle emitter to an anode, identifying the experimental parameters and challenges for realizing femtosecond time resolution. The simple tip-anode geometry is most versatile and allows for electron pulses of several ten of femtosecond duration using a very compact experimental design, however, providing very limited control over the electron beam collimation. A more sophisticated geometry comprising a suppressor-extractor electrostatic unit and a lens, similar to typical field emission electron microscope optics, is also investigated, allowing full control over the beam parameters. Using such a design, we find {approx}230 fs pulses feasible in a focused electron beam. The main limitation to achieve sub-hundred femtosecond time resolution is the typical size of such a device, and we suggest the implementation of more compact electron optics for optimal performance.

  11. Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate

    SciTech Connect

    Navirian, H. A.; Schick, D. Leitenberger, W.; Bargheer, M.; Gaal, P.; Shayduk, R.

    2014-01-13

    We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO{sub 3} electrode sandwiched between a ferroelectric Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film with negative thermal expansion and a SrTiO{sub 3} substrate. SrRuO{sub 3} is rapidly heated by fs-laser pulses with 208 kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120 ps to 5 μs with a relative accuracy up to Δc/c = 10{sup −6}. The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}.

  12. Time-resolved x-ray diffraction and Raman studies of the phase transition mechanisms of methane hydrate

    SciTech Connect

    Hirai, Hisako Kadobayashi, Hirokazu; Hirao, Naohisa; Ohishi, Yasuo; Ohtake, Michika; Yamamoto, Yoshitaka; Nakano, Satoshi

    2015-01-14

    The mechanisms by which methane hydrate transforms from an sI to sH structure and from an sH to filled-ice Ih structure were examined using time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device camera observation under fixed pressure conditions. The XRD data obtained for the sI–sH transition at 0.8 GPa revealed an inverse correlation between sI and sH, suggesting that the sI structure is replaced by sH. Meanwhile, the Raman analysis demonstrated that although the 12-hedra of sI are retained, the 14-hedra are replaced sequentially by additional 12-hedra, modified 12-hedra, and 20-hedra cages of sH. With the sH to filled-ice Ih transition at 1.8 GPa, both the XRD and Raman data showed that this occurs through a sudden collapse of the sH structure and subsequent release of solid and fluid methane that is gradually incorporated into the filled-ice Ih to complete its structure. This therefore represents a typical reconstructive transition mechanism.

  13. Evolution of polytypism in GaAs nanowires during growth revealed by time-resolved in situ x-ray diffraction.

    PubMed

    Schroth, Philipp; Köhl, Martin; Hornung, Jean-Wolfgang; Dimakis, Emmanouil; Somaschini, Claudio; Geelhaar, Lutz; Biermanns, Andreas; Bauer, Sondes; Lazarev, Sergey; Pietsch, Ullrich; Baumbach, Tilo

    2015-02-06

    In III-V nanowires the energetic barriers for nucleation in the zinc blende or wurtzite arrangement are typically of a similar order of magnitude. As a result, both arrangements can occur in a single wire. Here, we investigate the evolution of this polytypism in self-catalyzed GaAs nanowires on Si(111) grown by molecular beam epitaxy with time-resolved in situ x-ray diffraction. We interpret our data in the framework of a height dependent Markov model for the stacking in the nanowires. In this way, we extract the mean sizes of faultless wurtzite and zinc blende segments-a key parameter of polytypic nanowires-and their temporal evolution during growth. Thereby, we infer quantitative information on the differences of the nucleation barriers including their evolution without requiring a model of the nucleus.

  14. Revisited: Decomposition or melting? Formation mechanism investigation of LiCoO2 via in-situ time-resolved X-ray diffraction.

    PubMed

    Wicker, Scott A; Walker, Edwin H

    2013-02-18

    We report the first in-situ time-resolved X-ray diffraction investigation in conjunction with a non-isothermal kinetic study using the model-free isoconversional kinetic method to determine the formation mechanism for the solid-state synthesis of electrochemically active LiCoO(2) from Li(2)CO(3) and Co(3)O(4). Detailed information on the phase evolution as well as thermal events during the heating process was clearly observed, explained, and supported. This investigation provides structural as well as kinetic evidence for a multistep reaction and proposes the first plausible formation mechanism for the solid-state synthesis of LiCoO(2).

  15. Reversible phase transition in laser-shocked 3Y-TZP ceramics observed via nanosecond time-resolved x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Hu, Jianbo; Ichiyanagi, Kouhei; Takahashi, Hiroshi; Koguchi, Hiroaki; Akasaka, Takeaki; Kawai, Nobuaki; Nozawa, Shunsuke; Sato, Tokushi; Sasaki, Yuji C.; Adachi, Shin-ichi; Nakamura, Kazutaka G.

    2012-03-01

    The high-pressure phase stability of the metastable tetragonal zirconia is still under debate. The transition dynamics of shocked Y2O3 (3 mol. %) stabilized tetragonal zirconia ceramics under laser-shock compression has been directly studied using nanosecond time-resolved x-ray diffraction. The martensitic phase transformation to the monoclinic phase, which is the stable phase for pure zirconia at ambient pressure and room temperature, has been observed during compression at 5 GPa within 20 ns without any intermediates. This monoclinic phase reverts back to the tetragonal phase during pressure release. The results imply that the stabilization effect due to the addition of Y2O3 is to some extent negated by the shear stress under compression.

  16. Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed Ta using time-resolved in situ Laue diffraction

    DOE PAGES

    Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; ...

    2015-09-29

    We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa.more » The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.« less

  17. Communication: The formation of rarefaction waves in semiconductors after ultrashort excitation probed by grazing incidence ultrafast time-resolved x-ray diffraction

    PubMed Central

    Höfer, S.; Kämpfer, T.; Förster, E.; Stöhlker, T.; Uschmann, I.

    2016-01-01

    We explore the InSb-semiconductor lattice dynamics after excitation of high density electron-hole plasma with an ultrashort and intense laser pulse. By using time resolved x-ray diffraction, a sub-mÅ and sub-ps resolution was achieved. Thus, a strain of 4% was measured in a 3 nm thin surface layer 2 ps after excitation. The lattice strain was observed for the first 5 ps as exponentially decaying, changing rapidly by time and by depth. The observed phenomena can only be understood assuming nonlinear time dependent laser absorption where the absorption depth decreases by a factor of twenty compared to linear absorption. PMID:27704034

  18. [Study on X-ray powder diffraction of various structured zinc titanate prepared by the method of direct precipitation].

    PubMed

    Guo, Jian; Wang, Zhi-hua; Tao, Dong-liang; Guo, Guang-sheng

    2007-05-01

    Zinc titanate powders were prepared from Ti(SO4)2, Zn(NO3)2 x (6)H2O and (NH4)2CO3 by the method of direct precipitation. The effects of reaction conditions on the structure of zinc titanate were studied. The sample was analyzed by means of XRD and TG-DTA. The structure of zinc titanate was affected by the reaction subsequence of the formation of titanic acid and zinc carbonate. In the reaction system where titanic acid was generated earlier, collision reaction occurred between the generated zinc carbonate molecule and the surrounding titanic acid molecule. When titanic acid was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2Ti3O8 was obtained because of the sufficient collision reaction and superfluous titanic acid. In the reaction system where zinc carbonate was generated earlier, collision reaction occurred between the generated titanic acid molecule and the surrounding zinc carbonate molecule. When zinc carbonate was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2TiO4 was obtained because of the sufficient collision reaction and superfluous zinc carbonate. In addition, the kinds and structure of the production were affected by the dosage of precipitant and the reaction temperature. Zn2Ti3O8 or Zn2TiO4 could be obtained easier when using more precipitant or higher reaction temperature which could cause more sufficient collision reaction. ZnTiO3 could be obtained under the conditions of less precipitant and lower reaction temperature.

  19. Development of a fast pixel array detector for use in microsecond time-resolved x-ray diffraction

    SciTech Connect

    Barna, S.L.; Gruner, S.M.; Shepherd, J.A.

    1995-08-01

    A large-area pixel x-ray detector is being developed to collect eight successive frames of wide dynamic range two-dimensional images at 200kHz rates. Such a detector, in conjunction with a synchrotron radiation x-ray source, will enable time-resolved x-ray studies of proteins and other materials on time scales which have previously been inaccessible. The detector will consist of an array of fully-depleted 150 micron square diodes connected to a CMOS integrated electronics layer with solder bump-bonding. During each framing period, the current resulting from the x-rays stopped in the diodes is integrated in the electronics layer, and then stored in one of eight storage capacitors underneath the pixel. After the last frame, the capacitors are read out at standard data transmission rates. The detector has been designed for a well-depth of at least 10,000 x-rays (at 20keV), and a noise level of one x-ray. Ultimately, the authors intend to construct a detector with over one million pixels (1024 by 1024). They present the results of their development effort and various features of the design. The electronics design is discussed, with special attention to the performance requirements. The choice and design of the detective diodes, as they relate to x-ray stopping power and charge collection, are presented. An analysis of various methods of bump bonding is also presented. Finally, the authors discuss the possible need for a radiation-blocking layer, to be placed between the electronics and the detective layer, and various methods they have pursued in the construction of such a layer.

  20. Molecular Visualization of Methane - Carbon Dioxide Solid Solution in Gas Hydrates by High Resolution Neutron Powder Diffraction

    NASA Astrophysics Data System (ADS)

    Everett, M.; Rawn, C.; Huq, A.; Chakoumakos, B. C.; Phelps, T. J.

    2012-12-01

    The exchange of CO2 for CH4 in natural gas hydrates could produce energy from untapped sources while at the same time sequestering CO2. In addition to the energy and environmental aspects the solid solution of (CH4)1-x(CO2)x 5.75H2O provides a framework inclusion structure that enables the scientific study of how two molecules that differ greatly in their bonding, shape, coordination and molecular weight can influence the structure and properties of the compound and interact with the framework that occludes the molecules. Samples synthesized by cooling liquid water pressurized with either pure CH4 or CO2 or mixtures of the two gases to temperatures where hydrate formation occurs have been studied using high-resolution neutron diffraction. Static images of the nuclear scattering density of the free moving gas molecules have been determined. Cage occupants and occupancies, the volume change of the unit cell and the individual cages based on composition have been determined.

  1. Local ordering of Jahn-Teller orbitals in LiNiO2 by neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Chung, Jae-Ho; Egami, Takeshi; Shamoto, Shin-Ichi; Proffen, Thomas; Ghorayeb, Andre

    2004-03-01

    The orbital state of LiNiO2 has been controversial, since there is no signature of long-range Jahn-Teller distortion, unlike NaNiO2 that shows ferromagnetic orbital order. We have neutron pair distribution function analysis to reveal important features, such as the local J-T distortion, the sharp oxygen-oxygen distance correlations, and unusual temperature dependence. These observations can be explained by a local ordering of Ni^3+ Jahn-Teller orbitals, where three neighboring 3d_z^2-r^2/3 orbitals share an oxygen site to form a trimer. Under this arrangement, it is expected that a medium-range elastic field will induce a curvature on NiO2 layers, which frustrates long-range order and is consistent with the systematic peak broadening observed in the neutron diffraction profiles. We propose that this local ordering is the basis for the complex magnetic properties observed in this material.

  2. Quantitative phase analysis from powder diffraction using de Rietveld method in hydrogen storage alloys based on TiCr

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Bellon, D.; Reina, L.

    2016-08-01

    Hydrogen storage is one of the important steps in the implementation of the hydrogen economy; metal hydrides are a promising way to achieve this goal. We present in this work the use of Rietveld analysis to characterize structurally TiCr-based alloys that are able to store hydrogen. TiCruV09, TiCrL1V0.45Nb0.45, TiCr1.1V0.2 Nb0.8, TiCr1.1Nb0.9 alloys were synthesized in an arc furnace under argon atmosphere. The analysis of phases was developed by X-Ray Diffraction (XRD) for further refinement of both the two lattice parameters and the percentage of the phases. Our results confirmed that a structure bcc, mostly combined with a small percentage of Laves phases, leads to obtain important properties in this area. Rietveld analysis was performed by the Fullprof program and this program allows us to obtain the different structural parameters.

  3. Characterisation of the UFXC32k hybrid pixel detector for time-resolved pump-probe diffraction experiments at Synchrotron SOLEIL

    NASA Astrophysics Data System (ADS)

    Dawiec, A.; Maj, P.; Ciavardini, A.; Gryboś, P.; Laulhé, C.; Menneglier, C.; Szczygieł, R.

    2017-03-01

    The experimental set-up for time-resolved studies of ultra-fast photo-induced structural dynamics at the Synchrotron SOLEIL is based on a general pump-probe scheme that has been developed and implemented on the CRISTAL hard X-ray diffraction beamline [1,2]. In a so-called pump-probe cycle, the sample is excited with an ultra-short laser pulse of ≈40 fs duration (the pump), and induced changes in its atomic structure are studied by measuring, with a precisely controlled delay, a diffraction pattern from a single pulse of synchrotron radiation (the probe) with a 2-D pixel detector. An improvement to the classical scheme is proposed, where the sample's response is probed at two different delays after each laser excitation. The first measurement at short delays allows studying the photo-induced dynamics. The second one is a reference measurement taken after sample's relaxation, which permits detection of drifts in the experimental conditions (e.g. beam misalignment, sample degradation). A hybrid pixel detector with a very fast readout time, a high dynamic range and extended linearity was tested to achieve the experiment objectives. In this paper, the first results obtained with the UFXC32k single photon counting detector are presented.

  4. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    SciTech Connect

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, II Woong; Walko, Donald A.; Dufresne, Eric M.; Jaewoo, Jeong; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan

    2016-02-26

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

  5. Thermal expansion of anatase and rutile between 300 and 575 K using synchrotron powder X-ray diffraction

    SciTech Connect

    Hummer,D.; Heaney, P.; Post, J.

    2007-01-01

    High-precision unit-cell parameters for the TiO2 polymorphs anatase and rutile at temperatures between 300 and 575 K have been determined using Rietveld analysis of synchrotron powder XRD data. Polynomial models were used to express the tetragonal unit-cell parameters as a function of absolute temperature, with a (anatase)=1.759 37x10-8xT2+6.418 16x10-6xT+3.779 84, c (anatase)=6.6545x10-8xT2+4.0464x10-5xT+9.4910, V (anatase)=2.237 58x10-6xT2+1.027 77x10-3xT+135.602, a (rutile)=-6.636 42x10-11xT3+1.005 01x10-7xT2-1.009 9310-5xT+4.586 34, c (rutile)=-4.115 50x10-11xT3+6.405 94x10-8xT2+4.675 61x10-7T+2.951 81, and V (rutile)=-2.7790x10-9xT3+4.2386x10-6xT2-3.3551x10-4xT+62.100. The polynomial expressions were used to calculate linear (alpha) and volume (beta) thermal expansion coefficients of anatase and rutile between 300 and 575 K. At 298.15 K, these values were alphaa=4.46943x10-6 K-1, alphac=8.4283x10-6 K-1, and beta=17.3542x10-6 K-1 for anatase, and alphaa=6.99953x10-6 K-1, alphac=9.36625x10-6 K-1, and beta=28.680x10-6 K-1 for rutile.

  6. Determination of tacrolimus crystalline fraction in the commercial immediate release amorphous solid dispersion products by a standardized X-ray powder diffraction method with chemometrics.

    PubMed

    Rahman, Ziyaur; Siddiqui, Akhtar; Bykadi, Srikant; Khan, Mansoor A

    2014-11-20

    Clinical performance of an amorphous solid dispersion (ASD) drug product is related to the amorphous drug content because of the greater bioavailability of this form of the drug than its crystalline form. Therefore, it is paramount to monitor the amorphous and the crystalline fractions in the ASD products. The objective of the present investigation was to study the feasibility of using a standardized X-ray powder diffraction (XRPD) in conjunction with chemometric methods to quantitate the amorphous and crystalline fraction of the drug in several tacrolimus ASD products. Three ASD products were prepared in which drug to excipients ratios ranged from 1:19 to 1:49. The amorphous and crystalline drug products were mixed in various proportions so that amorphous/crystalline tacrolimus in the samples vary from 0 to 100%. XRPD of the samples of the drug products were collected, and PLSR and PCR chemometric methods were applied to the data. The R(2) was greater than '0.987' for all the models and bias in the models were statistically insignificant (p>0.05). RMSEP and SEP values were smaller for PLSR models than PCR models. The models prediction capabilities were good and can predict as low as 10% when drug to excipient ratio is as high as 1:49. In summary, XRPD and chemometric provide powerful analytical tools to monitor the crystalline fractions of the drug in the ASD products.

  7. X-Ray Powder Diffraction Data for Na8(AlSiO4)6(ReO4)2

    SciTech Connect

    McCready, David E.; Mattigod, Shas V.; Young, James S.; McGrail, B. Peter

    2004-01-31

    X-ray powder diffraction data for a new zeolite, Na8(AlSiO4)6(ReO4)2, are reported. Rietveld refinement shows this compound adopts the primitive cubic structure of sodalite (Space Group , #218) with a = 9.1528 (1) Å. The calculated value of the reference intensity ratio (RIR, or I/Ic) is 7.54. The experimental density (Dm) is 2.98 ± 0.10 g/cm3, in agreement with the calculated density (Dx) of 3.029 g/cm3. Chemical analysis of Na8(AlSiO4)6(ReO4)2 gives its composition as 11.7 ± 1.6 wt % Na; 10.7 ± 0.2 wt % Al; 11.6 ± 0.9 wt % Si; 30.6 ± 1.2 wt % Re, which compares favorably with the theoretical composition of 13.2 wt % Na, 11.6 wt% Al, 12.1 wt% Si; 26.6 wt % Re. In addition, scanning electron microscopy reveals a doubly terminated trapezohedral crystal morphology for Na8(AlSiO4)6(ReO4)2, which is typical of sodalite.

  8. Electron paramagnetic resonance, scanning electron microscopy with energy dispersion X-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays.

    PubMed

    Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura

    2005-12-01

    The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.

  9. The Stoichiometry of Synthetic Alunite as a Function of Hydrothermal Aging Investigated by Solid-State NMR Spectroscopy, Powder X-ray Diffraction and Infrared Spectroscopy

    SciTech Connect

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1–31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7–10 % impurities in the samples.

  10. X-ray powder diffraction, spectroscopic study, dielectric properties and thermal analysis of new doped compound TiGa0.67Te2.33O8

    NASA Astrophysics Data System (ADS)

    Smaoui, S.; Ben Aribia, W.; Kabadou, A.; Abdelmouleh, M.

    2017-04-01

    A novel mixed valence tellurium oxide, TiGa0.67Te2.33O8, was synthesized and its crystal structure determined using the X-ray powder diffraction technique. The obtained oxide was found to crystallize in a cubic unit-cell, Ia 3 bar space group, with the lattice parameter a = 10.9557(1) Å. Rietveld refinement of the structure led to ultimate confidence factors Rp = 7.63 and Rwp = 6.71. This structure was based on slabs containing groups of (Te/Ga)O4 joined by the metal cations Ti4+. The structure analysis showed a cation ordering of Te4+ and Te6+ yielding a TiGa2/3Te7/3O8 formula. The IR and RAMAN spectra confirmed the presence of the TiO6 and (Te/Ga)O4 groups. The dielectric anomalies observed at 500 K were attributed to the mixed valence structure, arising from the mixed-valence Te6+/Te4+. We detected only one peak in thermal behavior by the DTA/TG analysis; which implied a melting reaction.

  11. Structural studies of Ni{sub 2+x}Mn{sub 1-x}Ga by powder x-ray diffraction and total energy calculations

    SciTech Connect

    Banik, S.; Bhardwaj, S.; Lalla, N. P.; Awasthi, A. M.; Sathe, V.; Phase, D. M.; Barman, S. R.; Ranjan, R.; Pandey, D.; Chakrabarti, A.; Mukhopadhyay, P. K.

    2007-03-01

    The crystal structure of Ni{sub 2+x}Mn{sub 1-x}Ga has been studied as a function of composition (x) by powder x-ray diffraction. For Ni{sub 2.24}Mn{sub 0.75}Ga, where one-fourth of the Mn atoms are replaced by Ni, the experimentally determined lattice constants are in good agreement with theoretical equilibrium lattice constants calculated by minimization of total energy using full potential linearized augmented plane-wave method. For 0.15{<=}x{<=}0.35, a nonmodulated tetragonal martensitic phase is obtained at room temperature, whose lattice constant c increases and a decreases linearly with increasing x following Vegard's law. A 7M modulated monoclinic phase is obtained for x=0.2 due to annealing. The small width of the hysteresis of the martensitic transition shows its thermoelastic nature that is the characteristic of a shape memory alloy. Phase coexistence is observed for 0.1{<=}x{<=}0.15 at room temperature, confirming the first-order nature of the martensitic transition.

  12. Revealing the Formation Mechanism and Effect of Pressure on the Magnetic Order of Multiferroic BiMn2O5 Through Neutron Powder Diffraction

    NASA Astrophysics Data System (ADS)

    Dang, N. T.; Kozlenko, D. P.; Kichanov, S. E.; Jabarov, S. G.; Mammadov, A. I.; Mekhtieva, R. Z.; Phan, T. L.; Smotrakov, V. G.; Eremkin, V. V.; Savenko, B. N.

    2017-02-01

    The crystal and magnetic structures of the strong magnetoelectric BiMn2O5 have been studied as a function of pressure up to 5.7 GPa in the temperature range from 10 K to 60 K by means of neutron powder diffraction. The results reveal that the Pbam orthorhombic crystal structure remains unchanged in the investigated thermodynamic range. At ambient pressure, a long-range commensurate antiferromagnetic (AFM) phase with propagation vector q = (1/2, 0, 1/2) formed below T N = 41(2) K, accompanied by anomalies in the temperature dependence of structural parameters including the lattice parameters, interatomic distances, and bond angles. This AFM phase remained stable in the studied pressure range, and the relevant pressure coefficient of the Néel temperature was determined to be 3.0(4) K/GPa. No incommensurate AFM phase was detected. The magnetic properties of BiMn2O5 and their difference from most other RMn2O5 compounds were analyzed in terms of competing exchange interactions.

  13. Rietveld refinement of the semiconducting system Bi{sub 2-x}Fe{sub x}Te{sub 3} from X-ray powder diffraction

    SciTech Connect

    Adam, Alia

    2007-12-04

    The semiconducting system Bi{sub 2-x}Fe{sub x}Te{sub 3} (x = 0.0, 0.02, 0.04 and 0.08) was synthesized at 1000 deg. C for 30 h. The scanning electron microscope (SEM) image reveals the tendency of the Bi{sub 2-x}Fe{sub x}Te{sub 3} system to form a sheet structure with more pronounced alignment and to enhance the formation of some microstructure tubes. The structure of the system under study was refined on the basis of X-ray powder diffraction data using the Rietveld method. The analysis revealed the complete miscibility of Fe in the Bi{sub 2}Te{sub 3} matrix and hence the formation of single phase. The system crystallizes in the space group R-3m [1 6 6]. The lattice parameters and the unit cell size slightly change by the incorporation of Fe. The refinement of instrumental and structural parameters led to reliable values for the R{sub B}, R{sub F} and Chi{sup 2}.

  14. Characterisation of Incommensurate Bi2+xSr2-xCuOz by X-Ray Powder Diffraction and Oxygen Content Determinations

    NASA Astrophysics Data System (ADS)

    Sinclair, D. C.; Irvine, J. T. S.; West, A. R.

    1990-11-01

    The composition-temperature stability region of the solid solution Bi2+xSr2-xCuOz, phase R, has been determined. At 800°C, 0.15powder diffraction pattern can be indexed using a pseudo-tetragonal subcell, a{=}b{=}5.390(1), c{=}24.59 Å, with a supercell vector q* given by q*{=}nδ b*-n\\varepsilon c*, where δ{=}0.21, \\varepsilon{=}0.55, for x{=}0.30 and n{=}1, 2\\cdots. Both a and \\varepsilon increased with x, c decreased with x and δ was independent of x. The excess oxygen content, α, was determined to be (0.18± 0.02) by citrate iodometry and was independent of x. The total oxygen content z, given by z{=}6+x/2+α, was confirmed to be 6.33± 0.04, for x{=}0.30, by hydrogen reduction thermogravimetry.

  15. Crystal structure of dicesium hydrogen citrate from laboratory single-crystal and powder X-ray diffraction data and DFT comparison.

    PubMed

    Rammohan, Alagappa; Sarjeant, Amy A; Kaduk, James A

    2017-02-01

    The crystal structure of dicesium hydrogen citrate, 2Cs(+)·C6H6O7(2-), has been solved using laboratory X-ray single-crystal diffraction data, refined using laboratory powder X-ray data, and optimized using density functional techniques. The Cs(+) cation is nine-coordinate, with a bond-valence sum of 0.92 valence units. The CsO9 coordination polyhedra share edges and corners to form a three-dimensional framework. The citrate anion is located on a mirror plane. Its central hy-droxy/carboxyl-ate O-H⋯O hydrogen bond is short, and (unusually) inter-molecular. The centrosymmetric end-end carboxyl-ate hydrogen bond is exceptionally short (O⋯O = 2.416 Å) and strong. These hydrogen bonds contribute 16.5 and 21.7 kcal mol(-1), respectively, to the crystal energy. The hydro-phobic methyl-ene groups occupy pockets in the framework.

  16. The Structure of High Pressure Ca(OD) 2II from Powder Neutron Diffraction: Relationship to the ZrO 2and EuI 2Structures

    NASA Astrophysics Data System (ADS)

    Leinenweber, Kurt; Partin, Dan E.; Schuelke, Udo; O'Keeffe, Michael; Von Dreele, Robert B.

    1997-09-01

    The "unquenchable" high pressure form of Ca(OD) 2[Ca(OH) 2II] has been synthesized at 9 GPa and 400°C and recovered to ambient pressure at cryogenic temperatures. The structure was determined from powder neutron diffraction data using the Rietveld technique. The symmetry is monoclinic P2 1/ cwith a=5.3979(4) Å, b=6.0931(4) Å, c=5.9852(4) Å, β=103.581(6)°, Z=4 at 1 atm and 11 K. Rwp=2.8%, Rp=1.9%, reduced χ2=6.6. for 117 variables. The calcium and oxygen substructure is intermediate between that in α-PbO 2and that in fluorite; it was previously described as isostructural with baddeleyite (ZrO 2), but it is more accurately described as isostructural with EuI 2. This structure is distinguished by the presence of a 3 6anion net parallel to (100). Only one of the two kinds of D atoms in the structure shows appreciable hydrogen bonding to O, with a second neighbor D … O distance of 1.91 Å, and an O-D … O angle of 153.2°; the other D atom has 3 second-neighbor oxygens near 2.6 Å away.

  17. Pulsed supercritical synthesis of anatase TiO₂ nanoparticles in a water-isopropanol mixture studied by in situ powder X-ray diffraction.

    PubMed

    Rostgaard Eltzholtz, Jakob; Tyrsted, Christoffer; Ørnsbjerg Jensen, Kirsten Marie; Bremholm, Martin; Christensen, Mogens; Becker-Christensen, Jacob; Brummerstedt Iversen, Bo

    2013-03-21

    A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania nanoparticles were synthesized in a 50/50 mixture of water and isopropanol near and above the critical point of water (P = 250 bar, T = 300, 350, 400, 450, 500 and 550 °C). The evolution of the reaction product was followed by sequentially recording PXRD patterns with a time resolution of less than two seconds. The crystallite size of titania is found to depend on both temperature and residence time, and increasing either parameter leads to larger crystallites. A simple adjustment of either temperature or residence time provides a direct method for gram scale production of anatase nanoparticles of average crystallite sizes between 7 and 35 nm, thus giving the option of synthesizing tailor-made nanoparticles. Modeling of the in situ growth curves using an Avrami growth model gave an activation energy of 66(19) kJ mol(-1) for the initial crystallization. The in situ PXRD data also provide direct information about the size dependent macrostrain in the nanoparticles and with decreasing crystallite size the unit cell contracts, especially along the c-direction. This agrees well with previous ex situ results obtained for hydrothermal synthesis of titania nanoparticles.

  18. Neutron powder diffraction study of Pb 2Sr 2YCu 3O 8, the prototype of a new family of superconductors

    NASA Astrophysics Data System (ADS)

    Cava, R. J.; Marezio, M.; Krajewski, J. J.; Peck, W. F.; Santoro, A.; Beech, F.

    1989-02-01

    The structure of Pb 2Sr 2YCu 3O 8 has been analyzed with powder neutron diffraction techniques and profile analysis. The results of this study confirm the general structural features determined by X-ray single-crystal methods. The material has pseudo tetragonal symmetry, but is orthorhombic, space group Cmmm with lattice parameters a=5.3933(2), b=5.4311(2), and c=15.7334(6)Å. The orthorhombic distortion is caused by the disordering in the ab plane of the oxygen atoms of the PbO layers over the general position of the space group, with x=0.275(5) and y=0.402(5) Å. The structure of this compound can be derived from that of YBa 2Cu 3O 6 by substituting the Cu layers with blocks of … PbO.Cu.PbO… . Of the two Cu atoms in the asymmetric unit, one has two fold coordination while the other has five fold pyramidal coordination with the apex elongated along the c-axis.

  19. Germanate with three-dimensional 12 × 12 × 11-ring channels solved by X-ray powder diffraction with charge-flipping algorithm.

    PubMed

    Xu, Yan; Liu, Leifeng; Chevrier, Daniel M; Sun, Junliang; Zhang, Peng; Yu, Jihong

    2013-09-16

    A new open-framework germanate, denoted as GeO-JU90, was prepared by the hydrothermal synthesis method using 1,5-bis(methylpyrrolidinium)pentane dihydroxide as the organic structure-directing agent (SDA). The structure of GeO-JU90 was determined from synchrotron X-ray powder diffraction (XRPD) data using the charge-flipping algorithm. It revealed a complicated framework structure containing 11 Ge atoms in the asymmetric unit. The framework is built of 7-connected Ge7 clusters and additional tetrahedral GeO3(OH) units forming a new three-dimensional interrupted framework with interesting 12 × 12 × 11-ring intersecting channels. The Ge K-edge extended X-ray absorption fine structure (EXAFS) analysis was performed to provide the local structural information around Ge atoms, giving rise to a first-shell contribution from about 4.2(2) O atoms at the average distance of 1.750(8) Å. The guest species in the channels were subsequently determined by the simulated annealing method from XRPD data combining with other characterization techniques, e.g., (13)C NMR spectroscopy, infrared spectroscopy (FTIR), compositional analyses, and thermogravimetric analysis (TGA). Crystallographic data |(C15N2H32)(NH4)|[Ge11O21.5(OH)4], orthorhombic Ama2 (No. 40), a = 37.82959 Å, b = 15.24373 Å, c = 12.83659 Å, and Z = 8.

  20. In situ synchrotron X-ray powder diffraction for studying the role of induced structural defects on the thermoluminescence mechanism of nanocrystalline LiF.

    PubMed

    El Ashmawy, Mostafa; Amer, Hany; Abdellatief, Mahmoud

    2016-03-01

    The correlation between the thermoluminescence (TL) response of nanocrystalline LiF and its microstructure was studied. To investigate the detailed TL mechanism, the glow curves of nanocrystalline LiF samples produced by high-energy ball-milling were analyzed. The microstructure of the prepared samples was analyzed by synchrotron X-ray powder diffraction (XRPD) at room temperature. Then, the microstructure of a representative pulverized sample was investigated in detail by performing in situ XRPD in both isothermal and non-isothermal modes. In the present study, the dislocations produced by ball-milling alter the microstructure of the lattice where the relative concentration of the vacancies, responsible for the TL response, changes with milling time. An enhancement in the TL response was recorded for nanocrystalline LiF at high-temperature traps (after dislocations recovery starts >425 K). It is also found that vacancies are playing a major role in the dislocations recovery mechanism. Moreover, the interactions among vacancies-dislocations and/or dislocations-dislocations weaken the TL response.

  1. On the estimation of statistical uncertainties on powder diffraction and small-angle scattering data from two-dimensional X-ray detectors

    SciTech Connect

    Yang, X.; Juhás, P.; Billinge, S. J. L.

    2014-07-19

    Optimal methods are explored for obtaining one-dimensional powder pattern intensities from two-dimensional planar detectors with good estimates of their standard deviations. Methods are described to estimate uncertainties when the same image is measured in multiple frames as well as from a single frame. The importance of considering the correlation of diffraction points during the integration and the resampling process of data analysis is shown. It is found that correlations between adjacent pixels in the image can lead to seriously overestimated uncertainties if such correlations are neglected in the integration process. Off-diagonal entries in the variance–covariance (VC) matrix are problematic as virtually all data processing and modeling programs cannot handle the full VC matrix. It is shown that the off-diagonal terms come mainly from the pixel-splitting algorithm used as the default integration algorithm in many popular two-dimensional integration programs, as well as from rebinning and resampling steps later in the processing. When the full VC matrix can be propagated during the data reduction, it is possible to get accurate refined parameters and their uncertainties at the cost of increasing computational complexity. However, as this is not normally possible, the best approximate methods for data processing in order to estimate uncertainties on refined parameters with the greatest accuracy from just the diagonal variance terms in the VC matrix is explored.

  2. Crystal structure of dicesium hydrogen citrate from laboratory single-crystal and powder X-ray diffraction data and DFT comparison

    PubMed Central

    Rammohan, Alagappa; Sarjeant, Amy A.; Kaduk, James A.

    2017-01-01

    The crystal structure of dicesium hydrogen citrate, 2Cs+·C6H6O7 2−, has been solved using laboratory X-ray single-crystal diffraction data, refined using laboratory powder X-ray data, and optimized using density functional techniques. The Cs+ cation is nine-coordinate, with a bond-valence sum of 0.92 valence units. The CsO9 coordination polyhedra share edges and corners to form a three-dimensional framework. The citrate anion is located on a mirror plane. Its central hy­droxy/carboxyl­ate O—H⋯O hydrogen bond is short, and (unusually) inter­molecular. The centrosymmetric end-end carboxyl­ate hydrogen bond is exceptionally short (O⋯O = 2.416 Å) and strong. These hydrogen bonds contribute 16.5 and 21.7 kcal mol−1, respectively, to the crystal energy. The hydro­phobic methyl­ene groups occupy pockets in the framework. PMID:28217349

  3. Crystal structure of carnidazole form II from synchrotron X-ray powder diffraction: structural comparison with form I, the hydrated form and the low energy conformations in vacuo.

    PubMed

    de Armas, Héctor Novoa; Peeters, Oswald M; Blaton, Norbert; Van den Mooter, Guy; De Ridder, Dirk J A; Schenk, Henk

    2006-10-01

    The crystal structure of carnidazole form II, O-methyl [2-(2-methyl-5-nitro-1H-imidazole-1-yl)ethyl]thiocarbamate, has been determined using synchrotron X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined by the Rietveld method. For structure solution, 12 degrees of freedom were defined: one motion group and six torsions. Form II crystallizes in space group P2(1)/n, Z=4, with unit cell parameters after Rietveld refinement: a=13.915(4), b=8.095(2), c=10.649(3) A, beta=110.83(1) degrees, and V=1121.1(5) A3. The two polymorphic forms, as well as the hydrate, crystallize in the monoclinic space group P2(1)/n having four molecules in the cell. In form II, the molecules are held together by forming two infinite zig-zag chains via hydrogen bonds of the type N--H...N, the same pattern as in form I. A conformational study of carnidazole, at semiempirical PM3 level, was performed using stochastic approaches based on modification of the flexible torsion angles. The values of the torsion angles for the molecules of the two polymorphic forms and the hydrate of carnidazole are compared to those obtained from the conformational search. Form I and form II are enantiotropic polymorphic pairs this agrees with the fact that the two forms are conformational polymorphs.

  4. Thermal expansion and cation partitioning of MnFe2O4 (Jacobsite) from 1.6 to 1276 K studied by using neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Levy, Davide; Pastero, Linda; Hoser, Andreas; Viscovo, Gabriele

    2015-01-01

    MnFe2O4 is a low-cost and stable magnetic spinel ferrite. In this phase, the influence of the inversion degree on the magnetic properties is still not well understood. To understand this relationship, Mn-ferrite was synthesized by a chemical co-precipitation method modified in our laboratory and studied by using the Neutron Powder Diffraction from 1.6 K to 1243 K. A full refinement of both crystal and magnetic structures was performed in order to correlate the high-temperature cation partitioning, the Curie transition and the structure changes of the Mn-ferrite. In this work three main temperature intervals are detected, characterized by different Mn-ferrite behaviors: first, ranging from 1.6 K to 573 K, where MnFe2O4 is magnetic; second, from 573 K to 623 K, where MnFe2O4 becomes paramagnetic without cation partitioning; and lastly, from 673 K to 1243 K, where cation partitioning occurs.

  5. The use of in situ powder X-ray diffraction in the investigation of dolomite as a potential reversible high-temperature CO2 sorbent.

    PubMed

    Readman, Jennifer E; Blom, Richard

    2005-03-21

    We report the use of gas sorption experiments and in situ powder X-ray diffraction to study the use of dolomite (MgCa(CO3)2) as a potential reversible high-temperature CO2 sorbent. When dolomite is treated in inert atmosphere at 900 degrees C it decomposes into separate CaO and MgO rich phases and dolomite is never reformed pon CO2 sorption. Gas sorption studies show that the calcined dolomite can go through several cycles of CO2 sorption/desorption in a reversible manner, however, the sorption capacity diminishes with each cycle. Only calcium seems to be involved in the CO2 sorption, while MgO acts as a carrier for the calcium phase. Some evidence of magnesium contamination of the calcium phase was found. BET and SEM measurements were carried out to find differences in the surface area/particle morphology that may explain similarities in the sorption capacities of dolomite and calcite (CaCO3).

  6. Crystal structure of α- and β-Na{sub 2}U{sub 2}O{sub 7}: From Rietveld refinement using powder neutron diffraction data

    SciTech Connect

    IJdo, D.J.W. Akerboom, S.; Bontenbal, A.

    2015-01-15

    The crystal structures of α- and β-Na{sub 2}U{sub 2}O{sub 7} have been determined from neutron powder diffraction. At 293 K, the compound α-Na{sub 2}U{sub 2}O{sub 7} has a monoclinic unit cell, space group P2{sub 1}/a, with a=12.7617(14) Å, b=7.8384(10) Å, c=6.8962(9) Å, β=111.285(9)°, and Z=4. At 773 K, β-Na{sub 2}U{sub 2}O{sub 7} is also monoclinic, space group C2/m, with a=12.933(1) Å, b=7.887(1) Å, c=6.9086(8) Å, β=110.816(10)°, and Z=4. The structures can be described by layers U{sub 2}O{sub 7}{sup 2−} built from corner linked deformed UO{sub 6} octahedra with pentagonal UO{sub 7} bipyramids in between linked with common edges to each other and to the octahedra. The Na atoms occupy the interlayer space. The Na{sub 2}U{sub 2}O{sub 7} layers are similar as in K{sub 2}U{sub 2}O{sub 7}, but with a different stacking sequence of the layers. The layers in β-Na{sub 2}U{sub 2}O{sub 7} are more symmetric. The relationship with the compounds A{sub 2}U{sub 2}O{sub 7} (A=K, Rb, and Cs) is discussed. - Graphical abstract: The U{sub 2}O{sub 7} layer of α-Na{sub 2}U{sub 2}O{sub 7} (left) at 293 K and of β-Na{sub 2}U{sub 2}O{sub 7} (right) at 773 K determined by neutron diffraction. Some Na atoms between the layers are visible. - Highlights: • Na{sub 2}U{sub 2}O{sub 7} has been prepared by means of a solid state reaction. • The structure has been determined using neutron diffraction. • At 293 K, the compound adopts a monoclinic structure with space group P2{sub 1}/a. • The structure at 773 K is closely related, and is described in the space group C2/m.

  7. Combustion front dynamics in the combustion synthesis of refractory metal carbides and di-borides using time-resolved X-ray diffraction.

    PubMed

    Wong, Joe; Larson, E M; Waide, P A; Frahm, R

    2006-07-01

    A compact diffraction-reaction chamber, using a 2-inch photodiode array detector, has been employed to investigate the chemical dynamics at the combustion front of a selected series of refractory metal carbides and di-borides from their constituent element reactants as well as binary products from B4C as a reactant. These systems are denoted as (i) M + C --> MC; (ii) M + 2B --> MB2; and (iii) 3M + B4C --> 2MB2 + MC, where M = Ti, Zr, Nb, Hf or Ta. Time-resolved X-ray diffraction using intense synchrotron radiation at frame rates up to 10 frames s(-1) (or 100 ms frame(-1)) was employed. The combustion reactions were found to complete within 200-400 ms. In contrast to the Ta + C --> TaC combustion system studied earlier, in which a discernible intermediate sub-carbide phase was first formed, reacted further and disappeared to yield the final TaC product, no intermediate sub-carbide or sub-boride was detected in the current systems. Combustion for the Ti, Zr and Hf systems involved a liquid phase, in which the adiabatic temperatures Tad are well above the melting points of the respective reactant metals and have a typical combustion front velocity of 5-6 mm s(-1). The Nb and Ta systems have lower Tad, involving no liquid phase. These are truly solid combustion systems and have a lower combustion front velocity of 1-2 mm s(-1). The current study opens up a new avenue to chemical dynamics and macrokinetic investigations of high-temperature solid-state reactions.

  8. Direct Observations of Phase Transitions in Ti-6Al-4V Alloy Transient Welds using Time Resolved X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Babu, S S; Zhang, W; Debroy, T

    2003-11-11

    Time Resolved X-Ray Diffraction (TRXRD) experiments were used to directly observe phase transformations occurring during gas tungsten arc spot welding of Ti-6Al-4V. These in-situ x-ray diffraction experiments tracked the evolution of the {alpha} {yields} {beta} {yields} L {yields} {beta} {yields} {alpha}/{alpha}{prime} phase transformation sequence in real time during rapid weld heating and cooling. Three different weld locations were examined, providing kinetic information about phase transformations in the fusion zone (FZ) and heat affected zone (HAZ) under different heating and cooling rates and at different temperatures. The TRXRD data were further coupled with the results of thermodynamic calculations of phase equilibria and numerical modeling to compute the weld temperatures. The results suggest that significant superheat is required above the {beta} transus temperature to complete the {alpha} {yields} {beta} transformation at all locations during weld heating, and that the amount of superheat decreases with distance from the center of the weld where the heating rates are lower. Johnson-Mehl-Avrami modeling of the weld heating kinetics produced a set of parameters that allowed the prediction of the {alpha} {yields} {beta} phase transformation rate at each location, but were not successful in determining a definitive mechanism for the transformation. The {beta} {yields} {alpha} transformation during weld cooling in the HAZ was shown to initiate at the {beta} transus temperature and reach completion below the Ms temperature, producing substantial {alpha}{prime}martensite. In the FZ, the {beta} {yields} {alpha} transformation during weld cooling was shown to initiate below the Ms temperature, and to completely transform the microstructure to {alpha}{prime} martensite.

  9. Temperature- and moisture-dependent studies on alunogen and the crystal structure of meta-alunogen determined from laboratory powder diffraction data

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Braun, Doris E.; Krüger, Hannes; Schmidmair, Daniela; Orlova, Maria

    2017-02-01

    Starting from a synthetic sample with composition Al2(SO4)3·16.6H2O, the high-temperature- and moisture-dependent behavior of alunogen has been unraveled by TGA measurements, in situ powder X-ray diffraction as well as by gravimetric moisture sorption/desorption studies. Heating experiments using the different techniques show that alunogen undergoes a first dehydration process already starting at temperatures slightly above 40 °C. The crystalline product of the temperature-induced dehydration corresponds to the synthetic equivalent of meta-alunogen and has the following chemical composition: Al2(SO4)3·13.8H2O or Al2(SO4)3(H2O)12·1.8H2O. At 90 °C a further reaction can be monitored resulting in the formation of an X-ray amorphous material. The sequence of "amorphous humps" in the patterns persists up to 250 °C, where a re-crystallization process is indicated by a sudden appearance of a larger number of sharp Bragg peaks. Phase analysis confirmed this compound to be anhydrous Al2(SO4)3. Furthermore, meta-alunogen can be also obtained from alunogen at room temperature when stored at relative humidities (RH) lower than 20 %. The transformation is reversible, however, water sorption of meta-alunogen to alunogen and the corresponding desorption reaction show considerable hysteresis. For RH values above 80 %, deliquescence of the material was observed. Structural investigations on meta-alunogen were performed using a sample that has been stored at dry conditions (0 % RH) over phosphorus pentoxide. Powder diffraction data were acquired on an in-house high-resolution diffractometer in transmission mode using a sealed glass capillary as sample holder. Indexing resulted in a triclinic unit cell with the following lattice parameters: a = 14.353(6) Å, b = 12.490(6) Å, c = 6.092(3) Å, α = 92.656(1)°, β = 96.654(1)°, γ = 100.831(1)°, V = 1062.8(8) Å3 and Z = 2. These data correct earlier findings suggesting an orthorhombic cell. Ab-initio structure solution in

  10. Temperature- and moisture-dependent studies on alunogen and the crystal structure of meta-alunogen determined from laboratory powder diffraction data.

    PubMed

    Kahlenberg, Volker; Braun, Doris E; Krüger, Hannes; Schmidmair, Daniela; Orlova, Maria

    2017-01-01

    Starting from a synthetic sample with composition Al2(SO4)3·16.6H2O, the high-temperature- and moisture-dependent behavior of alunogen has been unraveled by TGA measurements, in situ powder X-ray diffraction as well as by gravimetric moisture sorption/desorption studies. Heating experiments using the different techniques show that alunogen undergoes a first dehydration process already starting at temperatures slightly above 40 °C. The crystalline product of the temperature-induced dehydration corresponds to the synthetic equivalent of meta-alunogen and has the following chemical composition: Al2(SO4)3·13.8H2O or Al2(SO4)3(H2O)12·1.8H2O. At 90 °C a further reaction can be monitored resulting in the formation of an X-ray amorphous material. The sequence of "amorphous humps" in the patterns persists up to 250 °C, where a re-crystallization process is indicated by a sudden appearance of a larger number of sharp Bragg peaks. Phase analysis confirmed this compound to be anhydrous Al2(SO4)3. Furthermore, meta-alunogen can be also obtained from alunogen at room temperature when stored at relative humidities (RH) lower than 20 %. The transformation is reversible, however, water sorption of meta-alunogen to alunogen and the corresponding desorption reaction show considerable hysteresis. For RH values above 80 %, deliquescence of the material was observed. Structural investigations on meta-alunogen were performed using a sample that has been stored at dry conditions (0 % RH) over phosphorus pentoxide. Powder diffraction data were acquired on an in-house high-resolution diffractometer in transmission mode using a sealed glass capillary as sample holder. Indexing resulted in a triclinic unit cell with the following lattice parameters: a = 14.353(6) Å, b = 12.490(6) Å, c = 6.092(3) Å, α = 92.656(1)°, β = 96.654(1)°, γ = 100.831(1)°, V = 1062.8(8) Å(3) and Z = 2. These data correct earlier findings suggesting an orthorhombic cell. Ab

  11. Temperature- and moisture-dependent studies on alunogen and the crystal structure of meta-alunogen determined from laboratory powder diffraction data

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Braun, Doris E.; Krüger, Hannes; Schmidmair, Daniela; Orlova, Maria

    2016-09-01

    Starting from a synthetic sample with composition Al2(SO4)3·16.6H2O, the high-temperature- and moisture-dependent behavior of alunogen has been unraveled by TGA measurements, in situ powder X-ray diffraction as well as by gravimetric moisture sorption/desorption studies. Heating experiments using the different techniques show that alunogen undergoes a first dehydration process already starting at temperatures slightly above 40 °C. The crystalline product of the temperature-induced dehydration corresponds to the synthetic equivalent of meta-alunogen and has the following chemical composition: Al2(SO4)3·13.8H2O or Al2(SO4)3(H2O)12·1.8H2O. At 90 °C a further reaction can be monitored resulting in the formation of an X-ray amorphous material. The sequence of "amorphous humps" in the patterns persists up to 250 °C, where a re-crystallization process is indicated by a sudden appearance of a larger number of sharp Bragg peaks. Phase analysis confirmed this compound to be anhydrous Al2(SO4)3. Furthermore, meta-alunogen can be also obtained from alunogen at room temperature when stored at relative humidities (RH) lower than 20 %. The transformation is reversible, however, water sorption of meta-alunogen to alunogen and the corresponding desorption reaction show considerable hysteresis. For RH values above 80 %, deliquescence of the material was observed. Structural investigations on meta-alunogen were performed using a sample that has been stored at dry conditions (0 % RH) over phosphorus pentoxide. Powder diffraction data were acquired on an in-house high-resolution diffractometer in transmission mode using a sealed glass capillary as sample holder. Indexing resulted in a triclinic unit cell with the following lattice parameters: a = 14.353(6) Å, b = 12.490(6) Å, c = 6.092(3) Å, α = 92.656(1)°, β = 96.654(1)°, γ = 100.831(1)°, V = 1062.8(8) Å3 and Z = 2. These data correct earlier findings suggesting an orthorhombic cell. Ab-initio structure solution in

  12. Structural characterization of iron oxide/hydroxide nanoparticles in nine different parenteral drugs for the treatment of iron deficiency anaemia by electron diffraction (ED) and X-ray powder diffraction (XRPD).

    PubMed

    Fütterer, S; Andrusenko, I; Kolb, U; Hofmeister, W; Langguth, P

    2013-12-01

    Drug products containing iron oxide and hydroxide nanoparticles (INPs) are important for the treatment of iron deficiency anaemia. Pharmaceuticals prepared by the complexation of different kinds of INPs and carbohydrates have different physicochemical and biopharmaceutic characteristics. The increasing number of parenteral non-biological complex drugs (NBCD) containing iron requires physicochemical methods for characterization and enabling of cross comparisons. In this context the structure and the level of crystallinity of the iron phases may be connected to the in vitro and in vivo dissolution rates, which etiologically determine the therapeutic and toxic effects. X-ray powder diffraction (XRPD) and electron diffraction (ED) methods were used in order to investigate the nine different parenteral iron formulations Ferumoxytol (Feraheme(®)), sodium ferric gluconate sucrose (Ferrlecit(®)), iron sucrose (Venofer(®)), low molecular weight iron dextran (CosmoFer(®)), low molecular weight iron dextran (Infed(®)), high molecular weight iron dextran (Ironate(®)), high molecular weight iron dextran (Dexferrum(®)), iron carboxymaltose (Ferinject(®)) and iron isomaltoside 1000 (Monofer(®)). The iron phase in CosmoFer(®), Ferinject(®), Monofer(®), Infed(®), Ironate(®) and Dexferrum(®) was identified as Akaganéite/Akaganéite-like (β-FeOOH), with low amounts of chloride. By combining results of both methods the iron oxide in Feraheme(®) was identified as Magnetite (Fe3O4) with spinel-like structure. Ferrlecit(®) and Venofer(®) were difficult to analyze due to the low degree of crystallinity, but the iron phase seems to fit Lepidocrocite/Lepidocrocite-like (γ-FeOOH) or an amorphous kind of structure. The structural information on the type of iron oxide or hydroxide together with the particle size allows predicting the stability of the different complexes including their labile iron content. The combination of ED and XRPD methods is a very helpful approach

  13. Electronic and geometric structure of thin CoO(100) films studied by angle-resolved photoemission spectroscopy and Auger electron diffraction

    NASA Astrophysics Data System (ADS)

    Heiler, M.; Chassé, A.; Schindler, K.-M.; Hollering, M.; Neddermeyer, H.

    2000-05-01

    We have prepared ordered thin films of CoO by evaporating cobalt in an O 2 atmosphere on to a heated (500 K) Ag(100) substrate. The geometric and electronic structure of the films was characterized by means of Auger electron diffraction (AED) and angle-resolved photoemission spectroscopy (ARUPS), respectively. The experimental AED results were compared with simulated data, which showed that the film grows in (100) orientation on the Ag(100) substrate. Synchrotron-radiation-induced photoemission investigations were performed in the photon energy range from 25 eV to 67 eV. The dispersion of the transitions was found to be similar to that of previous results on a single-crystal CoO(100) surface. The resonance behaviour of the photoemission lines in the valence-band region was investigated by constant-initial-state (CIS) spectroscopy. The implications of this behaviour for assignment of the photoemission lines to specific electronic transitions is discussed and compared with published theoretical models of the electronic structure.

  14. Metal-like heat conduction in laser-excited InSb probed by picosecond time-resolved x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Sondhauss, P.; Synnergren, O.; Hansen, T. N.; Canton, S. E.; Enquist, H.; Srivastava, A.; Larsson, J.

    2008-09-01

    A semiconductor (InSb) showed transient metal-like heat conduction after excitation of a dense electron-hole plasma via short and intense light pulses. A related ultrafast strain relaxation was detected using picosecond time-resolved x-ray diffraction. The deduced heat conduction was, by a factor of 30, larger than the lattice contribution. The anomalously high heat conduction can be explained once the contribution from the degenerate photocarrier plasma is taken into account. The magnitude of the effect could provide the means for guiding heat in semiconductor nanostructures. In the course of this work, a quantitative model for the carrier dynamics in laser-irradiated semiconductors has been developed, which does not rely on any adjustable parameters or ad hoc assumptions. The model includes various light absorption processes (interband, free carrier, two photon, and dynamical Burstein-Moss shifts), ambipolar diffusion, energy transport (heat and chemical potential), electrothermal effects, Auger recombination, collisional excitation, and scattering (elastic and inelastic). The model accounts for arbitrary degrees of degeneracy.

  15. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5

    PubMed Central

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G.

    2015-01-01

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization. PMID:26314613

  16. Mapping Phase Transformations in the Heat-Affected-Zone of Carbon Manganese Steel Welds using Spatially Resolved X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Wong, J; Ressler, T; Palmer, T A

    2001-12-04

    Spatially Resolved X-Ray Diffraction (SRXRD) was used to investigate phase transformations that occur in the heat affected zone (HAZ) of gas tungsten arc (GTA) welds in AISI 1005 carbon-manganese steel. In situ SRXRD experiments performed at the Stanford Synchrotron Radiation Laboratory (SSRL) probed the phases present in the HAZ during welding, and these real-time observations of the HAZ phases were used to construct a map of the phase transformations occurring in the HAZ. This map identified 5 principal phase regions between the liquid weld pool and the unaffected base metal for the carbon-manganese steel studied in this investigation. Regions of annealing, recrystallization, partial transformation and complete transformation to {alpha}-Fe, {gamma}-Fe, and {delta}-Fe phases were identified using SRXRD, and the experimental results were combined with a heat flow model of the weld to investigate transformation kinetics under both positive and negative temperature gradients in the HAZ. From the resulting phase transformation map, the kinetics of phase transformations that occur under the highly non-isothermal heating and cooling cycles produced during welding of steels can now be better understood and modeled.

  17. Mapping Phase Transformations in the Heat-Affected-Zone of Carbon Manganese Steel Welds using Spatially Resolved X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Wong, J; Ressler, T; Palmer, T A

    2002-02-12

    Spatially Resolved X-Ray Diffraction (SRXRD) was used to investigate phase transformations that occur in the heat affected zone (HAZ) of gas tungsten arc (GTA) welds in AISI 1005 carbon-manganese steel. In situ SRXRD experiments performed at the Stanford Synchrotron Radiation Laboratory (SSRL) probed the phases present in the HAZ during welding, and these real-time observations of the HAZ phases were used to construct a map of the phase transformations occurring in the HAZ. This map identified 5 principal phase regions between the liquid weld pool and the unaffected base metal. Regions of annealing, recrystallization, partial transformation and complete transformation to {alpha}-Fe, {gamma}-Fe, and {delta}-Fe phases were identified using SRXRD, and the experimental results were combined with a heat flow model of the weld and thermodynamic calculations to compare these results with the important phase transformation isotherms. From the resulting phase transformation map, the kinetics of phase transformations that occur under the highly non-isothermal heating and cooling cycles produced during welding of steels can be better understood and modeled.

  18. Analysis of the average poly-cyclic aromatic unit in a meta-anthracite coal using conventional x-ray powder diffraction and intensity separation methods

    SciTech Connect

    Wertz, D.L.; Bissell, M.

    1994-12-31

    X-ray characterizations of coals and coal products have occurred for many years. Hirsch and Cartz measured the diffraction from several coals over the reciprocal space region from s = 0.12 {angstrom}{sup -1} to 7.5 {angstrom}{sup -1} where s = (4{pi}/{lambda}) sin{Theta}. In these studies, a 9 cm powder camera was used to study the high angle region, and a transmission type focusing camera equipped with a LiF monochromator was used for the low angle measurements. They reported that the height of the graphene peak measured for each coal is proportional to the % carbon in the coals. Hirsch also suggested that the ontyberem anthracite has a lamellar diameter of ca. 16 {angstrom} corresponding to an aromatic lamellae of ca. C{sub 87}. For coals with lower carbon content, Hirsch proposed much smaller lamellae; C{sub 19} for a coal with 80% carbon, and C{sub 24} for a coal with 89% carbon. The subject coal for this study is a meta-anthracite which was derived from the Portsmouth, RI mine. The Narragansett Basin contains anthracite and meta-anthracite coals of Pennsylvanian Age. The Basin was a techtonically active non-marine coal-forming basin which has been impacted by several tectonic events. Because of the importance placed by coal scientists no correctly characterizing the nature of the micro-level structural cluster(s) in coals and because of improvements in both x-ray experimentation capabilities and computing power, we have measured the x-ray diffraction and scattering produced from irradiation of this meta-anthracite coal which contains about 94% aromatic carbon. The goal of our study is to determine the intra-planar, and where possible, inter-planar structural details of coals. To accomplish this goal we have utilized the methods normally used for the molecular analysis of non-crystalline condensed phases such as liquids, solutions, and amorphous solids. Reported herein are the results obtained from the high angle x-ray analysis of this coal.

  19. Pulsed supercritical synthesis of anatase TiO2 nanoparticles in a water-isopropanol mixture studied by in situ powder X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Eltzholtz, Jakob Rostgaard; Tyrsted, Christoffer; Jensen, Kirsten Marie Ørnsbjerg; Bremholm, Martin; Christensen, Mogens; Becker-Christensen, Jacob; Iversen, Bo Brummerstedt

    2013-02-01

    A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania nanoparticles were synthesized in a 50/50 mixture of water and isopropanol near and above the critical point of water (P = 250 bar, T = 300, 350, 400, 450, 500 and 550 °C). The evolution of the reaction product was followed by sequentially recording PXRD patterns with a time resolution of less than two seconds. The crystallite size of titania is found to depend on both temperature and residence time, and increasing either parameter leads to larger crystallites. A simple adjustment of either temperature or residence time provides a direct method for gram scale production of anatase nanoparticles of average crystallite sizes between 7 and 35 nm, thus giving the option of synthesizing tailor-made nanoparticles. Modeling of the in situ growth curves using an Avrami growth model gave an activation energy of 66(19) kJ mol-1 for the initial crystallization. The in situ PXRD data also provide direct information about the size dependent macrostrain in the nanoparticles and with decreasing crystallite size the unit cell contracts, especially along the c-direction. This agrees well with previous ex situ results obtained for hydrothermal synthesis of titania nanoparticles.A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania

  20. KYHP 3O 10: Rietveld refinement using X-ray powder diffraction data and Raman study of the conductivity phase transition

    NASA Astrophysics Data System (ADS)

    Zouari, N.; Hadrich, A.; Mhiri, T.; Daoud, A.; Gravereau, P.

    2002-02-01

    Potassium yttrium hydrogen triphosphate (KYHP 3O 10) crystallises in the triclinic system P1¯ at room temperature with the following parameters: a=6.8522(2), b=7.6254(2), c=8.5351(2) Å, α=106.658(1), β=106.435(2) and γ=82.344(2)°; Z=2. This structure has been refined from X-ray powder diffraction data using the Rietveld method, with the isostructural compounds KSmHP 3O 10 and NH 4BiHP 3O 10 as the starting model. Refinement of 70 parameters by the Rietveld method, using 2447 reflections, led to cRwp=0.138, cRp=0.104 and RB=0.041. This compound is a chain-based structure. The K + and Y 3+ cations are intercalated between chains, formed of (HP 3O 104-) groups linked by OH⋯O hydrogen bonding along the c-axis. The yttrium atoms are in an eight-fold coordination and also build infinite chains of edge-sharing YO 8 polyhedra running parallel to the a-axis. The potassium cations are coordinated by 10 oxygen atoms and build chains of KO 10 polyhedra running parallel to the b-axis. A calorimetric study of the title compound shows one endothermal peak, which is detected at 519 K. Samples were examined by impedance and Raman spectroscopy techniques. The Raman spectra of KYHP 3O 10, recorded at different temperatures in the frequency range 50-1250 cm -1 show the presence of a transition, which is characterised by an unusual high conductivity caused by breaking of the hydrogen bridges and suggests a great dynamic disorder of protons. This permits H + ions at high temperature to contribute with the potassium cations to the ionic conductivity of the product.

  1. Hidden Superlattice in Tl2(SC6H4S) and Tl2(SeC6H4Se) Solved from Powder X-ray Diffraction

    SciTech Connect

    K Stone; D Turner; M Singh; T Vaid; P Stephens

    2011-12-31

    The crystal structures of the isostructural title compounds poly[({mu}-benzene-1,4-dithiolato)dithallium], Tl{sub 2}(SC{sub 6}H{sub 4}S), and poly[({mu}-benzene-1,4-diselenolato)dithallium], Tl{sub 2}(SeC{sub 6}H{sub 4}Se), were solved by simulated annealing from high-resolution synchrotron X-ray powder diffraction. Rietveld refinements of an initial structure with one formula unit per triclinic cell gave satisfactory agreement with the data, but led to a structure with impossibly close non-bonded contacts. A disordered model was proposed to alleviate this problem, but an alternative supercell structure leads to slightly improved agreement with the data. The isostructural superlattice structures were confirmed for both compounds through additional data collection, with substantially better counting statistics, which revealed the presence of very weak superlattice peaks not previously seen. Overall, each structure contains Tl-S or Tl-Se two-dimensional networks, connected by phenylene bridges. The sulfur (or selenium) coordination sphere around each thallium is a highly distorted square pyramid or a 'see-saw' shape, depending upon how many Tl-S or Tl-Se interactions are considered to be bonds. In addition, the two compounds contain pairs of Tl{sup I} ions that interact through a closed-shell 'thallophilic' interaction: in the sulfur compound there are two inequivalent pairs of Tl atoms with Tl-Tl distances of 3.49 and 3.58 {angstrom}, while in the selenium compound those Tl-Tl interactions are at 3.54 and 3.63 {angstrom}.

  2. Crystal structures of spinel-type Na2MoO4 and Na2WO4 revisited using neutron powder diffraction.

    PubMed

    Fortes, A Dominic

    2015-06-01

    Time-of-flight neutron powder diffraction data have been collected from Na2MoO4 and Na2WO4 to a resolution of sin (θ)/λ = 1.25 Å(-1), which is substanti-ally better than the previous analyses using Mo Kα X-rays, providing roughly triple the number of measured reflections with respect to the previous studies [Okada et al. (1974 ▶). Acta Cryst. B30, 1872-1873; Bramnik & Ehrenberg (2004 ▶). Z. Anorg. Allg. Chem. 630, 1336-1341]. The unit-cell parameters are in excellent agreement with literature data [Swanson et al. (1962 ▶). NBS Monograph No. 25, sect. 1, pp. 46-47] and the structural parameters for the molybdate agree very well with those of Bramnik & Ehrenberg (2004 ▶). However, the tungstate structure refinement of Okada et al. (1974 ▶) stands apart as being conspicuously inaccurate, giving significantly longer W-O distances, 1.819 (8) Å, and shorter Na-O distances, 2.378 (8) Å, than are reported here or in other simple tungstates. As such, this work represents an order-of-magnitude improvement in precision for sodium molybdate and an equally substantial improvement in both accuracy and precision for sodium tungstate. Both compounds adopt the spinel structure type. The Na(+) ions have site symmetry .-3m and are in octa-hedral coordination while the transition metal atoms have site symmetry -43m and are in tetra-hedral coordination.

  3. Crystal structures of spinel-type Na2MoO4 and Na2WO4 revisited using neutron powder diffraction

    PubMed Central

    Fortes, A. Dominic

    2015-01-01

    Time-of-flight neutron powder diffraction data have been collected from Na2MoO4 and Na2WO4 to a resolution of sin (θ)/λ = 1.25 Å−1, which is substanti­ally better than the previous analyses using Mo Kα X-rays, providing roughly triple the number of measured reflections with respect to the previous studies [Okada et al. (1974 ▸). Acta Cryst. B30, 1872–1873; Bramnik & Ehrenberg (2004 ▸). Z. Anorg. Allg. Chem. 630, 1336–1341]. The unit-cell parameters are in excellent agreement with literature data [Swanson et al. (1962 ▸). NBS Monograph No. 25, sect. 1, pp. 46–47] and the structural parameters for the molybdate agree very well with those of Bramnik & Ehrenberg (2004 ▸). However, the tungstate structure refinement of Okada et al. (1974 ▸) stands apart as being conspicuously inaccurate, giving significantly longer W—O distances, 1.819 (8) Å, and shorter Na—O distances, 2.378 (8) Å, than are reported here or in other simple tungstates. As such, this work represents an order-of-magnitude improvement in precision for sodium molybdate and an equally substantial improvement in both accuracy and precision for sodium tungstate. Both compounds adopt the spinel structure type. The Na+ ions have site symmetry .-3m and are in octa­hedral coordination while the transition metal atoms have site symmetry -43m and are in tetra­hedral coordination. PMID:26090129

  4. Cation Movements during Dehydration and NO2 Desorption in a Ba-Y,FAU zeolite: an in situ Time-resolved X-ray Diffraction Study

    SciTech Connect

    Wang, Xianqin; Hanson, Jonathan C.; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-02-28

    Synchrotron-based in situ time-resolved X-ray diffraction and Rietveld analysis were used to probe the interactions between BaY, FAU zeolite frameworks and H2O or NO2 molecules. These results provided information about the migration of the Ba2+ cations in the zeolite framework during dehydration and during NO2 adsorption/desorption processes in a water free zeolite. In the hydrated structure water molecules form four double rings of hexagonal ice-like clusters [(H2O)6] in the 12-ring openings of the super-cage. These water rings interacted with the cations and the zeolite framework through four cation/water clusters centered over the four 6-membered rings of the super-cage (site II). Interpenetrating tetrahedral water clusters [(H2O)4] and tetrahedral Ba+2 cation clusters were observed in the sodalite cage. Consistent with the reported FT-IR results, three different ionic NOx species (NO+, NO+-NO2, and NO3-) were observed following NO2 adsorption by the dehydrated Ba-Y,FAU zeolite. The structure of the water and the NOx species were correlated with the interactions between the adsorbates, the cations, and the framework. The population of Ba2+ ions at different cationic positions strongly depended on the amount of bound water or NOx species. Both dehydration and NO2 adsorption/desorption resulted in facile migration of Ba2+ ions among the different cationic positions. Data obtained in this work have provided direct evidence for the Ba2+ cation migration to accommodate the binding of gas molecules. This important feature may play a pivotal role in the strong binding of NO2 to Ba-Y,FAU zeolite, a prerequisite for high catalytic activity in lean NOx reduction catalysis.

  5. In-situ spatially resolved x-ray diffraction mapping of the alpha to beta to alpha transformation in commercially pure titanium arc welds

    SciTech Connect

    Elmer, J. W., LLNL

    1998-05-15

    Spatially Resolved X-Ray Diffraction (SRXRD) is used to map the {alpha}{r_arrow}{beta}{r_arrow}{alpha} phase transformation in the heat affected zone (HAZ) of commercially pure titanium gas tungsten arc welds. In-situ SRXRD experiments were conducted on arc welds using a 200 pm diameter x-ray beam at Stanford Synchrotron Radiation Laboratory (SSRL). A map was created which identifies six HAZ microstructural regions that exist between the liquid weld pool and the base metal during welding. The first region is single phase {beta}-Ti that forms in a 2- to 3-mm band adjacent to the liquid weld pool. The second region is back transformed {alpha}-Ti that forms behind the portion of the HAZ where {beta}-Ti was once present at higher temperatures. The third region is completely recrystallized {alpha}-Ti that forms in a 2- to 3-mm band surrounding the single phase {beta}-Ti region. Recrystallized {alpha}-Ti was observed by itself and also with varying amounts of {beta}-Ti. The fourth region of the weld is the partially transformed zone where {alpha}-Ti and {beta}-Ti coexist during welding. The fifth region is directly behind the partially transformed zone and consists of a mixture of recrystallized and back transformed {alpha}-Ti The sixth region is farthest from the weld pool and consists of {alpha}-Ti that is undergoing annealing and recrystallization. Annealing of the base metal was observed to some degree in all of the SRXRD patterns, showing that annealing exceeded 13 mm from the centerline of the weld. Although the microstructure consisted predominantly of {alpha}-Ti, both prior to the weld and after the weld, the (002) texture of the starting material was altered during welding to produce a predominantly (101) texture within the resulting HAZ.

  6. Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.

    2003-01-01

    Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.

  7. Nepheline: Structure of Three Samples from the Bancroft Area, Ontario, Obtained using Synchrotron High-Resolution Powder X-Ray Diffraction

    SciTech Connect

    Antao, Sytle M.; Hassan, Ishmael

    2010-05-25

    The crystal structure of three samples of nepheline (ideally, K{sub 2}Na{sub 6}[Al{sub 8}Si{sub 8}O{sub 32}]) from the Bancroft area of Ontario (1a, b: Egan Chute, 2: Nephton, and 3: Davis Hill), each with different types of superstructure reflections, has been studied using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinement. The samples have different origins. The structure was refined in space group P6{sub 3}. The R{sub F}{sup 2} index, number of unique observed reflections, pseudohexagonal subcell parameters, and site-occupancy factor (sof) for the K site are as follows: Sample 1b: R{sub F}{sup 2} = 0.0433, N{sub obs} = 1399, a = 9.99567(1), c = 8.37777(1) {angstrom}, V = 724.907(2) {angstrom}{sub 3}, and K (sof) = 0.716(1). Sample 2: R{sub F}{sup 2} = 0.0669, N{sub obs} = 1589, a = 10.00215(1), c = 8.38742(1) {angstrom}, V = 726.684(1) {angstrom}{sub 3}, and K (sof) = 0.920(1). Sample 3: R{sub F}{sup 2} = 0.0804, N{sub obs} = 1615, a = 9.99567(1), c = 8.37873(1) {angstrom}, V = 724.991(1) {angstrom}{sub 3}, and K (sof) = 0.778(2). Sample 2 has the largest sof for K and the largest volume. The satellite reflections in the three nepheline samples were observed in the HRPXRD traces and give rise to different incommensurate superstructures. The Al and Si atoms in the T{sub 3} and T{sub 4} sites are ordered differently in the three samples, which may indicate the presence of a domain structure based on Al-Si order. The positions for the Al and Si atoms were interchanged in two samples because of the resulting distances. The slight excess of Si over Al atoms, characteristically encountered in well-analyzed samples of nepheline, is reflected in the distances.

  8. Space and time resolved X-ray diffraction as a tool to image mesoporous transport of water in a weakly-hydrated swelling clay

    NASA Astrophysics Data System (ADS)

    Meheust, Y.; Hemmen, H.; Ramstad Alme, L.; Fossum, J. O.

    2010-12-01

    Imposing a humidity gradient between the two ends of a quasi-onedimensional temperature-controlled weakly-hydrated sample of synthetic swelling clay, we follow the transport of water in the material using X-ray diffraction. Indeed, the swelling clay grains are nano-layered, that is, they consist of stacks of individual 1 nm-thick clay particles. They have the ability to incorporate water molecules in the nano-porosity between the layers, causing the interlayer repetition distance (d-spacing) of the stacks to depend on temperature and on the humidity present in the surrounding meso-porosity. A first experiment performed under controlled constant temperature and controlled humidity level all around the sample, varying the ambient relative humidity by steps, allows us to map the monotonous evolution of the d-spacing as a function of the relative humidity surrounding the clay. The reproducibility and reliability of this relative humidity-controlled d-shift enables us to use d as a measure of the local humidity surrounding the clay particles in the second experiment, which addresses quasi-onedimensional water transport in the clay. In this second experiment, we map the d-spacing in space and time as water progresses along the sample, and are able to extract profiles of the relative humidity along the sample length. Their time evolution describes the transport of water through the mesoporous space inside the clay: we are using space- and time-resolved X-ray diffraction as a tool for imaging the humidity content of our clay sample in situ, in a non-invasive manner. An analysis of the measured humidity profiles based on the Boltzmann transform, under certain simplifying assumptions, yields a diffusive behavior that is either normal or possibly weakly anomalous. References: * G. Løvoll, B. Sandnes, Y. Méheust, K. J. Måløy, J. O. Fossum, G. J. da Silva, M. S. P. Mundim, R. Droppa, D. M. Fonseca, Dynamics of water intercalation fronts in a nano-layered synthetic silicate

  9. Dynamics of phase transformations and microstructure evolution in carbon-manganese steel arc welds using time-resolved synchrotron X-ray diffraction.

    PubMed

    Wong, Joe; Ressler, Thorsten; Elmer, John W

    2003-03-01

    Phase transformations that occur in both the heat-affected zone (HAZ) and the fusion zone (FZ) of a carbon-manganese steel spot weld have been investigated using time-resolved X-ray diffraction (TRXRD) with time resolutions down to 50 ms. It is found that in both zones the gamma(f.c.c.) --> alpha(b.c.c.) transformation on cooling is twice as fast as the forward transformation of alpha --> gamma on heating. Profile analysis of the major Bragg reflections recorded in the TRXRD patterns reveals similarities and differences in the microstructural evolution with time in the HAZ and in the FZ. The latter undergoes melting and solidification in addition to solid-state transformations. With increasing temperature, the (110) d-spacing of the alpha phase prior to and during the alpha --> gamma transformation and the (111) d-spacing of the gamma phase just after the same transformation exhibit a decrease. The observed (and unusual) lattice contraction with temperature rise may be attributed to chemical effects, such as carbide precipitation in the alpha matrix, and/or mechanical effects due to stress relief. In the FZ, the gamma-Fe that forms has a preferential (200) texture on solidification of the liquid, whereas, on cooling in the HAZ, the gamma-Fe retains largely a (111) texture that is induced in the alpha --> gamma transformation on heating. On cooling in the HAZ, the width of the gamma(111) reflection increases initially, which is indicative of microstrain developing in the f.c.c. lattice, but decreases as expected, with a reduction of thermal disorder, on further cooling until the completion of the gamma --> alpha transformation. In the FZ, however, the microstrain in the gamma phase increases steadily on solidification and more rapidly for the duration of the gamma --> alpha transformation on further cooling. The final microstructure of the FZ is likely to consist of a single alpha phase dispersed in two morphological entities, whereas in the HAZ the alpha phase

  10. Isothermal nucleation and growth kinetics of Pd/Ag alloy phase via in-situ time-resolved high-temperature x-ray diffraction (HTXRD) analysis

    SciTech Connect

    Ayturk, Mahmut Engin; Payzant, E Andrew; Speakman, Scott A; Ma, Yi Hua

    2008-01-01

    Among several different approaches to form Pd/Ag alloys for hydrogen separation applications, ex-situ studies carried by conventional X-ray point scanning detectors might fail to reveal the key aspects of the phase transformation between Pd and Ag metals. In this respect, in-situ time-resolved high temperature X-ray diffraction (HTXRD) was employed to study the Pd/Ag alloy phase nucleation and growth kinetics. By the use of linear position sensitive detectors, advanced optics and profile fitting with the use of JADE-6.5 software, isothermal phase evolution of the Pd/Ag alloy at 500 C, 550 C and 600 C under hydrogen atmosphere were quantified to elucidate the mechanistic details of the Pd/Ag alloy phase nucleation and growth pattern. Analysis of the HTXRD data by the Avrami model indicated that the nucleation of the Pd/Ag alloy phase was instantaneous where the growth mechanism was through diffusion-controlled one-dimensional thickening of the Pd/Ag alloy layer. The value of the Avrami exponent, n, was found to increase with temperature with the values of 0.34, 0.39 and 0.67 at 500oC, 550oC and 600oC, respectively. In addition, parabolic rate law analysis suggested that the nucleation of the Pd/Ag alloy phase was through a heterogeneous nucleation mode, in which the nucleation sites were defined as the non-equilibrium defects. The cross-sectional SEI micrographs indicated that the Pd/Ag alloy phase growth was strongly dependent upon the deposition morphology of the as-synthesized Pd and Ag layers formed by the electroless plating. Based on the Avrami model and the parabolic rate law, the estimated activation energies for the phase transformation were 236.5 and 185.6 kJ/mol and in excellent agreement with the literature values (183-239.5 kJ/mol).

  11. Molecular and crystalline structure of cycloheptanespiro-3'(4'H)-6',7',8',9'-tetrahydrocyclohexa[b][1,4]thiazole-2'(5'H)-thione from powder synchrotron X-ray diffraction data.

    PubMed

    Avila, Edward E; Mora, Asiloé J; Delgado, Gerzon E; Contreras, Ricardo R; Fitch, Andrew N; Brunelli, Michela

    2008-04-01

    A series of bidentate nitrogen-sulfur pro-ligands has been designed and synthesized with the purpose of introducing a structural modification that favours the tetrahedral site distortions of metalloprotein systems with metallic centers surrounded by ligands containing two N atoms and two S atoms as donor groups. Some of these new pro-ligands were obtained only as powders. Here we present the molecular and crystalline structure of cycloheptanespiro-3'(4'H)-6',7',8',9'-tetrahydrocyclohexa[b][1,4]thiazole-2'(5'H)-thione (I) solved and refined from powder synchrotron X-ray diffraction data. Two independent molecules comprising a total of 36 non-H atoms were obtained from the direct-methods solution and refined against the powder X-ray diffraction data using the Rietveld method. The molecular conformations of the heterocyclic benzothiazine ring, the fused heptenyl ring and the heptanyl spiro ring are thoroughly discussed and compared with VASP theoretical calculations and other related structures. The packing of molecules in (I) is based on hydrogen bonds of the type N-H...S and hydrophobic C-H interactions.

  12. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    NASA Astrophysics Data System (ADS)

    Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.

    2013-03-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  13. A second polymorph of sodium di­hydrogen citrate, NaH2C6H5O7: structure solution from powder diffraction data and DFT comparison

    PubMed Central

    Rammohan, Alagappa; Kaduk, James A.

    2016-01-01

    The crystal structure of a second polymorph of sodium di­hydrogen citrate, Na+·H2C6H5O7 −, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The powder pattern of the commercial sample used in this study did not match that corresponding to the known crystal structure [Glusker et al. (1965). Acta Cryst. 19, 561–572; refcode NAHCIT]. In this polymorph, the [NaO7] coordination polyhedra form edge-sharing chains propagating along the a axis, while in NAHCIT the octa­hedral [NaO6] groups form edge-sharing pairs bridged by two hy­droxy groups. The most notable difference is that in this polymorph one of the terminal carboxyl groups is deprotonated, while in NAHCIT the central carboxyl­ate group is deprotonated, as is more typical. PMID:27308058

  14. Ab-initio crystal structure of hydroxy adipate of nickel and hydroxy subarate of nickel and cobalt from synchrotron powder diffraction and magnetic properties

    SciTech Connect

    Mesbah, Adel; Carton, Anne; Aranda, Lionel; Mazet, Thomas; Porcher, Florence; Francois, Michel

    2008-12-15

    Organic-inorganic hybrid compounds Ni(II){sub 5}(OH){sub 6}(C{sub 6}H{sub 8}O{sub 4}){sub 2}(1), Ni(II){sub 5}(OH){sub 6}(C{sub 8}H{sub 12}O{sub 4}){sub 2}(2) and Co(II){sub 5}(OH){sub 6}(C{sub 8}H{sub 12}O{sub 4}){sub 2}(3) have a similar layered structure as determined ab initio from synchrotron powder diffraction analysis. The metal sites are octahedrally coordinated by O atoms. The slabs are built from edge-sharing octahedra in such a way that channels with an average size of 4 A are formed. Bis-bidentate and bridging dicarboxylate anions lead to a 3D framework. The compounds (1) and (2) order antiferromagnetically below T{sub N}=26.5 and 19.3 K, respectively, while (3) is ferrimagnetic with T{sub C}=16.2 K. Crystal data for compounds are as follows: (1)a=11.6504(1) A, b=6.8021(3) A, c=6.3603(1) A, {alpha}=73.52(1){sup o}, {beta}=99.69(1){sup o}, {gamma}=96.16(1){sup o}, R{sub B}=0.070, 668 reflections; (2)a=13.9325(1) A, b=6.7893(1) A, c=6.3534(4) A, {alpha}=73.63(1){sup o}, {beta}=95.14(1){sup o}, {gamma}=91.80(1){sup o}, R{sub B}=0.052, 804 reflections; (3)a=13.9806(1) A, b=6.9588(1) A, c=6.3967(1) A, {alpha}=73.05(1){sup o}, {beta}=94.51(1){sup o}, {gamma}=92.19(1){sup o}, R{sub B}=0.048, 410 reflections. The space group is P-1 for the three compounds. - Graphical abstract: The hybrid metal-organic compounds Ni(II){sub 5}(OH){sub 6}(C{sub 6}H{sub 8}O{sub 4}){sub 2}(1), Ni(II){sub 5}(OH){sub 6}(C{sub 8}H{sub 12}O{sub 4}){sub 2}(2) and Co(II){sub 5}(OH){sub 6}(C{sub 8}H{sub 12}O{sub 4}){sub 2}(3) have been synthesized by the hydrothermal route. The microporous metal hydroxide layers are bridged by dicarboxylates anions. (1) and (2) are antiferromagnetic with T{sub N}=26.5 and 19.3 K, respectively, while (3) is ferrimagnetic with T{sub C}=16.2 K.

  15. Hydrogenation properties of Li{sub x}Sr{sub 1−x}AlSi studied by quantum-chemical methods (0≤x≤1) and in-situ neutron powder diffraction (x=1)

    SciTech Connect

    Kunkel, Nathalie; Reichert, Christian; Springborg, Michael; Wallacher, Dirk; Kohlmann, Holger

    2015-01-15

    In-situ neutron powder diffraction studies of the Half-Heusler phase LiAlSi under high deuterium pressures and first principle calculations of solid solutions of Li{sub x}Sr{sub 1−x}AlSi and their hydrides Li{sub x}Sr{sub 1−x}AlSiH were carried out. In contrast to an earlier study, there is no experimental evidence for hydrogen (deuterium) uptake up to gas pressures of 15 MPa and temperatures of 550 °C. Instead a slow decomposition reaction according to LiAlSi+1/2H{sub 2}=LiH+Al+Si was found by in-situ neutron powder diffraction. Theoretical calculations by DFT methods on hypothetical solid solutions of Li{sub x}Sr{sub 1−x}AlSi show the LiAlSi type to be the energetically most stable structure for 0.7powder diffraction of LiAlSi under high D{sub 2} pressure. - Highlights: • In-situ neutron powder diffraction of LiAlSi under high D{sub 2} pressure was carried out. • LiAlSi decomposes according to LiAlSi + ½ H{sub 2} = LiH + Al + Si. • Mixed crystals Li{sub x}Sr{sub 1-x}AlSi and LixSr{sub 1-x}AlSiH were studied theoretically.

  16. High temperature phase stability in Li{sub 0.12}Na{sub 0.88}NbO{sub 3}: A combined powder X-ray and neutron diffraction study

    SciTech Connect

    Mishra, S. K.; Krishna, P. S. R.; Shinde, A. B.; Jayakrishnan, V. B.; Mittal, R.; Sastry, P. U.; Chaplot, S. L.

    2015-09-07

    The phase stabilities of ecofriendly piezoelectric material of lithium doped sodium niobate for composition Li{sub 0.12}Na{sub 0.88}NbO{sub 3} (LNN12) have been investigated by a combination of powder X-ray and neutron diffraction techniques in the temperature range of 300–1100 K. We observed interesting changes with appearance or disappearance of the super-lattice reflections in the powder diffraction patterns. Unambiguous experimental evidence is shown for coexistence of paraelectric and ferroelectric orthorhombic phases in the temperature range of 525 K to 675 K. We identified the correct crystal structure of LNN12 with temperature and correlated it with observed anomaly in the physical properties. Identification of crystal structure also helps in the mode assignments in Raman and infrared spectroscopies. We argued that application of chemical pressure as a result of Li substitution in NaNbO{sub 3} matrix favors the freezing of zone centre phonons in contrast to the freezing of zone boundary phonons in pure NaNbO{sub 3} with the variation of temperature.

  17. The interfacial and surface properties of thin Fe and Gd films grown on W(110) as studied by scanning tunneling microscopy, site-resolved photoelectron diffraction, and spin polarized photoelectron diffraction

    SciTech Connect

    Tober, Eric D.

    1997-06-01

    Combined scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) measurements from Gd films grown on W(110) prepared with and without annealing have been used to provide a detailed picture of the growth of such films, permitting a quantitative structural explanation for previously-measured magnetic properties and the identification of a new two-dimensional structure for the first monolayer. The analysis of the film roughness of room-temperature-grown films as a function of coverage and lateral length scale reveals that the growing Gd surface follows scaling laws for a self-affine surface. Annealing these as-deposited films at elevated temperatures is found to drastically alter the morphology of the films, as seen by both STM and LEED. Nanometer-scale islands of relatively well-defined size and shape are observed under certain conditions. Finally, the first monolayer of Gd is observed to form a (7x14) superstructure with pseudo-(7x7) symmetry that is consistent with a minimally-distorted hexagonal two-dimensional Gd(0001) film. Furthermore, a new beamline and photoelectron spectrometer/diffractometer at the Advanced Light Source have been used to obtain full-solid-angle and site-specific photoelectron diffraction (PD) data from interface W atoms just beneath (1x1) Fe and (7x14) Gd monolayers on W(110) by utilizing the core level shift in the W 4f7/2 spectrum. A comparison of experiment with multiple scattering calculations permits determining the Fe adsorption site and the relative interlayer spacing to the first and second W layers. These Fe results are also compared to those from the very different Gd overlayer and from the clean W(110) surface. Such interface PD measurements show considerable promise for future studies. Finally, the rare-earth ferromagnetic system of Gd(0001) has been examined through the use of spin polarized photoelectron diffraction from the Gd 4s and 5s photoelectron multiplets.

  18. Structural analysis of PrBaMn2O5+δ under SOFC anode conditions by in-situ neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven

    2016-10-01

    The crystal structure and oxygen stoichiometry of the proposed double perovskite solid oxide fuel cell (SOFC) anode material PrBaMn2O5+δ were determined under SOFC anode conditions via in-situ neutron diffraction. Measurements were performed in reducing atmospheres between 692 K and 984 K. The structure was fit to a tetragonal (space group P4/mmm) layered double perovskite structure with alternating Pr and Ba A-site cation layers. Under all conditions examined, the oxygen sites in the Ba and Mn layers were fully occupied, while the sites in the Pr layer were close to completely vacant. The results of the neutron diffraction experiments are compared to previous thermogravimetric analysis experiments to verify the accuracy of both experiments. PrBaMn2O5+δ was shown to be stable over a wide range of reducing atmospheres similar to anode operating conditions in solid oxide fuel cells without significant structural changes.

  19. Polymorphism of ceramide 3. Part 2: a vibrational spectroscopic and X-ray powder diffraction investigation of N-octadecanoyl phytosphingosine and the analogous specifically deuterated d(35) derivative.

    PubMed

    Raudenkolb, Steve; Wartewig, Siegfried; Neubert, Reinhard H H

    2003-07-01

    In order to characterize the arrangements of the hydrocarbon chains of ceramide 3, the thermotropic phase behaviour of the ceramides N-octadecanoylphytosphingosine (CER3) and its chain deuterated derivative N-(d(35)-octadecanoyl)phytosphingosine (d(35)CER3) was studied by means of X-ray powder diffraction, FT-IR and Raman spectroscopy. CER3 and d(35)CER3 exhibit an identical thermotropic polymorphism involving three different crystalline phases. The selective deuteration of the fatty acid chain enables to distinguish the sphingoid part from the fatty acid part by means of FT-IR and Raman spectroscopy. It could be shown that both hydrocarbon chains are arranged in different subcells. Temperature dependent Raman measurements elucidate simultaneously the changes in the trans/gauche ratios and the packing of both the hydrocarbon chains of the fatty acid and of the sphingoid part. The phase behaviour of CER3 and d(35)CER3, both dry and hydrated, was investigated.

  20. Order-disorder transition in Sr/sub 2/IrD/sub 5/: evidence for square pyramidal IrD/sub 5/ units from powder neutron diffraction data

    SciTech Connect

    Zhuang, J.; Hastings, J.M.; Corliss, L.M.; Bau, R.; Wei, C.Y.; Moyer, R.O. Jr.

    1981-12-01

    Neutron diffraction data have been collected on a powdered sample of Sr/sub 2/IrD/sub 6/ over a range of temperatures. The compound, which is cubic at room temperature, has been found to exhibit a gradual transformation to a tetragonal phase in the temperature range 200 to 140 K. As a result of the transition, deuterium atoms which randomly occupy sixfold positions in the cubic phase, become tetragonally ordered. A small fraction of the cubic phase remained untransformed at 4.2 K. Both the cubic and tetragonal structures are consistent with square pyramidal IrD/sub 5/ units with average Ir-D distances of 1.714 and 1.718 A, respectively. Agreement factors, R/sub 1/, for the two structural analyses are 3.44 and 4.94%.

  1. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    NASA Astrophysics Data System (ADS)

    Boldyreva, E. V.; Sowa, H.; Ahsbahs, H.; Goryainov, S. V.; Chernyshev, V. V.; Dmitriev, V. P.; Seryotkin, Y. V.; Kolesnik, E. N.; Shakhtshneider, T. P.; Ivashevskaya, S. N.; Drebushchak, T. N.

    2008-07-01

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, β-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions.

  2. The high-pressure phase diagram of synthetic epsomite (MgSO4·7H2O and MgSO4·7D2O) from ultrasonic and neutron powder diffraction measurements

    NASA Astrophysics Data System (ADS)

    Gromnitskaya, E. L.; Yagafarov, O. F.; Lyapin, A. G.; Brazhkin, V. V.; Wood, I. G.; Tucker, M. G.; Fortes, A. D.

    2013-03-01

    We present an ultrasonic and neutron powder diffraction study of crystalline MgSO4·7H2O (synthetic epsomite) and MgSO4·7D2O under pressure up to ~3 GPa near room temperature and up to ~2 GPa at lower temperatures. Both methods provide complementary data on the phase transitions and elasticity of magnesium sulphate heptahydrate, where protonated and deuterated counterparts exhibit very similar behaviour and properties. Under compression in the declared pressure intervals, we observed three different sequences of phase transitions: between 280 and 295 K, phase transitions occurred at approximately 1.4, 1.6, and 2.5 GPa; between 240 and 280 K, only a single phase transition occurred; below 240 K, there were no phase transformations. Overall, we have identified four new phase fields at high pressure, in addition to that of the room-pressure orthorhombic structure. Of these, we present neutron powder diffraction data obtained in situ in the three phase fields observed near room temperature. We present evidence that these high-pressure phase fields correspond to regions where MgSO4·7H2O decomposes to a lower hydrate by exsolving water. Upon cooling to liquid nitrogen temperatures, the ratio of shear modulus G to bulk modulus B increases and we observe elastic softening of both moduli with pressure, which may be a precursor to pressure-induced amorphization. These observations may have important consequences for modelling the interiors of icy planetary bodies in which hydrated sulphates are important rock-forming minerals, such as the large icy moons of Jupiter, influencing their internal structure, dynamics, and potential for supporting life.

  3. Position-sensitive detector system OBI for High Resolution X-Ray Powder Diffraction using on-site readable image plates

    NASA Astrophysics Data System (ADS)

    Knapp, M.; Joco, V.; Baehtz, C.; Brecht, H. H.; Berghaeuser, A.; Ehrenberg, H.; von Seggern, H.; Fuess, H.

    2004-04-01

    A one-dimensional detector system has been developed using image plates. The detector is working in transmission mode or Debye-Scherrer geometry and is on-site readable which reduces the effort for calibration. It covers a wide angular range up to 110° and shows narrow reflection half-widths depending on the capillary diameter. The acquisition time is in the range of minutes and the data quality allows for reliable Rietveld refinement of complicated structures, even in multi-phase samples. The detector opens a wide field of new applications in kinetics and temperature resolved measurements.

  4. In situ time-resolved X-ray diffraction of tobermorite formation in autoclaved aerated concrete: Influence of silica source reactivity and Al addition

    SciTech Connect

    Matsui, Kunio; Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Sato, Masugu

    2011-05-15

    The hydrothermal formation of tobermorite during the processing of autoclaved aerated concrete was investigated by in situ X-ray diffraction (XRD) analysis. High-energy X-rays from a synchrotron radiation source in combination with a newly developed autoclave cell and a photon-counting pixel array detector were used. To investigate the effects of the silica source, reactive quartz from chert and less-reactive quartz from quartz sand were used as starting materials. The effect of Al addition on tobermorite formation was also studied. In all cases, C-S-H, hydroxylellestadite and katoite were clearly observed as intermediates. Acceleration of tobermorite formation by Al addition was clearly observed. However, Al addition did not affect the dissolution rate of quartz. Two pathways, via C-S-H and katoite, were also observed in the Al-containing system. These results suggest that the structure of initially formed C-S-H is important for the subsequent tobermorite formation reactions.

  5. Time-resolved X-ray diffraction studies of myosin head movements in live frog sartorius muscle during isometric and isotonic contractions.

    PubMed

    Martin-Fernandez, M L; Bordas, J; Diakun, G; Harries, J; Lowy, J; Mant, G R; Svensson, A; Towns-Andrews, E

    1994-06-01

    Using the facilities at the Daresbury Synchrotron Radiation Source, meridional diffraction patterns of muscles at ca 8 degrees C were recorded with a time resolution of 2 or 4 ms. In isometric contractions tetanic peak tension (P0) is reached in ca 400 ms. Under such conditions, following stimulation from rest, the timing of changes in the major reflections (the 38.2 nm troponin reflection, and the 21.5 and 14.34/14.58 nm myosin reflections) can be explained in terms of four types of time courses: K1, K2, K3 and K4. The onset of K1 occurs immediately after stimulation, but that of K2, K3 and K4 is delayed by a latent period of ca 16 ms. Relative to the end of their own latent periods the half-times for K1, K2, K3 and K4 are 14-16, 16, 32 and 52 ms, respectively. In half-times, K1, K2, K3 lead tension rise by 52, 36 and 20 ms, respectively. K4 parallels the time course of tension rise. From an analysis of the data we conclude that K1 reflects thin filament activation which involves the troponin system; K2 arises from an order-disorder transition during which the register between the filaments is lost; K3 is due to the formation of an acto-myosin complex which (at P0) causes 70% or more of the heads to diffract with actin-based periodicities; and K4 is caused by a change in the axial orientation of the myosin heads (relative to thin filament axis) which is estimated to be from 65-70 degrees at rest to ca 90 degrees at P0. Isotonic contraction experiments showed that during shortening under a load of ca 0.27 P0, at least 85% of the heads (relative to those forming an acto-myosin complex at P0) diffract with actin-based periodicities, whilst their axial orientation does not change from that at rest. During shortening under a negligible load, at most 5-10% of the heads (relative to those forming an acto-myosin complex at P0) diffract with actin-based periodicities, and their axial orientation also remains the same as that at rest. This suggests that in isometric

  6. Femtosecond laser induced structural dynamics and melting of Cu (111) single crystal. An ultrafast time-resolved x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Li, Runze; Ashour, Omar A.; Chen, Jie; Elsayed-Ali, H. E.; Rentzepis, Peter M.

    2017-02-01

    Femtosecond, 8.04 keV x-ray pulses are used to probe the lattice dynamics of a 150 nm Cu (111) single crystal on a mica substrate irradiated with 400 nm, 100 fs laser pulses. For pump fluences below the damage and melting thresholds, we observed lattice contraction due to the formation of a blast force and coherent acoustic phonons with a period of ˜69 ps. At larger pump fluence, solid to liquid phase transition, annealing, and recrystallization were measured in real time by monitoring the intensity evolution of the probing fs x-ray rocking curves, which agreed well with theoretical simulation results. The experimental data suggest that the melting process is a purely thermal phase transition. This study provides, in real time, an ultrafast time-resolved detailed description of the significant processes that occur as a result of the interaction of a femtosecond light-pulse with the Cu (111) crystal surface.

  7. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  8. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction

    SciTech Connect

    Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

    2010-01-01

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

  9. Structure and conformational analysis of a bidentate pro-ligand, C21H34N2S2, from powder synchrotron diffraction data and solid-state DFTB calculations.

    PubMed

    Avila, Edward E; Mora, Asiloé J; Delgado, Gerzon E; Contreras, Ricardo R; Rincón, Luis; Fitch, Andrew N; Brunelli, Michela

    2009-10-01

    The molecular and crystalline structure of ethyl 1',2',3',4',4a',5',6',7'-octahydrodispiro[cyclohexane-1,2'-quinazoline-4',1''-cyclohexane]-8'-carbodithioate (I) was solved and refined from powder synchrotron X-ray diffraction data. The initial model for the structural solution in direct space using the simulated annealing algorithm implemented in DASH [David et al. (2006). J. Appl. Cryst. 39, 910-915] was obtained performing a conformational study on the fused six-membered rings of the octahydroquinazoline system and the two spiran cyclohexane rings of (I). The best model was chosen using experimental evidence from 1H and 13C NMR [Contreras et al. (2001). J. Heterocycl. Chem. 38, 1223-1225] in combination with semi-empirical AM1 calculations. In the refined structure the two spiran rings have the chair conformation, while both of the fused rings in the octahydroquinazoline system have half-chair conformations compared with in-vacuum density-functional theory (DFT) B3LYP/6-311G*, DFTB (density-functional tight-binding) theoretical calculations in the solid state and other related structures from X-ray diffraction data. Compound (I) presents weak intramolecular hydrogen bonds of the type N-H...S and C-H...S, which produce delocalization of the electron density in the generated rings described by graph symbols S(6) and S(5). Packing of the molecules is dominated by van der Waals interactions.

  10. Magnetic ground state of the two isostructual polymeric quantum magnets [Cu(HF2)(pyrazine)2]SbF6 and [Co(HF2)(pyrazine)2]SbF6 investigated with neutron powder diffraction

    DOE PAGES

    Brambleby, J.; Goddard, P. A.; Johnson, R. D.; ...

    2015-10-07

    The magnetic ground state of two isostructural coordination polymers, (i) the quasi-two-dimensional S=1/2 square-lattice antiferromagnet [Cu(HF2)(pyrazine)2]SbF6 and (ii) a related compound [Co(HF2)(pyrazine)2]SbF6, was examined with neutron powder diffraction measurements. We find that the ordered moments of the Heisenberg S=1/2 Cu(II) ions in [Cu(HF2)(pyrazine)2]SbF6 are 0.6(1)μb, while the ordered moments for the Co(II) ions in [Co(HF2)(pyrazine)2]SbF6 are 3.02(6)μb. For Cu(II), this reduced moment indicates the presence of quantum fluctuations below the ordering temperature. We also show from heat capacity and electron spin resonance measurements that due to the crystal electric field splitting of the S=3/2 Co(II) ions in [Co(HF2)(pyrazine)2]SbF6, this isostructualmore » polymer also behaves as an effective spin-half magnet at low temperatures. Furthermore, the Co moments in [Co(HF2)(pyrazine)2]SbF6 show strong easy-axis anisotropy, neutron diffraction data, which do not support the presence of quantum fluctuations in the ground state, and heat capacity data, which are consistent with 2D or close to 3D spatial exchange anisotropy.« less

  11. Structural studies of a non-stoichiometric channel hydrate using high resolution X-ray powder diffraction, solid-state nuclear magnetic resonance, and moisture sorption methods.

    PubMed

    Kiang, Y-H; Cheung, Eugene; Stephens, Peter W; Nagapudi, Karthik

    2014-09-01

    Structural investigations of a nonstoichiometric hydrate, AMG 222 tosylate, a DPP-IV inhibitor in clinical development for type II diabetes, were performed using a multitechnique approach. The moisture sorption isotherm is in good agreement with a simple Langmuir model, suggesting that the hydrate water is located in well-defined crystallographic sites, which become vacant during dehydration. Crystal structures of AMG 222 tosylate at ambient and dry conditions were determined from high-resolution X-ray diffraction using the direct space method. On the basis of these crystal structures, hydrated water is located in channels formed by the drug framework. Upon dehydration, an isostructural dehydrate is formed with the channels remaining void and accessible to water for rehydration. Kitaigorodskii packing coefficients of the solid between relative humidity of 0% and 90% indicate that the equilibrium form of AMG 222 tosylate is the fully hydrated monohydrate.

  12. Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction – a benchmark structure–property study

    SciTech Connect

    Lock, Nina; Jensen, Ellen M. L.; Mi, Jianli; Mamakhel, Aref; Norén, Katarina; Qingbo, Meng; Iversen, Bo B.

    2013-01-01

    Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0–2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water–isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5–7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300–1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).

  13. Investigation of structural and dynamic properties of NH 4[N(CN) 2] by means of X-ray and neutron powder diffraction as well as vibrational and solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.; Senker, Jürgen; Kockelmann, Winfried; Schnick, Wolfgang

    2003-11-01

    The crystal structure, spectroscopic and thermal properties of ammonium dicyanamide NH 4[N(CN) 2] have been thoroughly investigated by means of temperature-dependent single-crystal X-ray and neutron powder diffraction, vibrational and MAS-NMR spectroscopy as well as thermoanalytical measurements. The comprehensive elucidation of structural details is of special interest with respect to the unique solid-state transformation of ammonium dicyanamide into dicyandiamide. This reaction occurs at temperatures >80°C and it represents the isolobal analogue of Wöhler's historic transformation of ammonium cyanate into urea. NH 4[N(CN) 2] crystallizes in the monoclinic space group P2 1/ c with lattice constants a=3.7913(8), b=12.412(2), c=9.113(2) Å, β=91.49(2)° and Z=4 (single-crystal X-ray data, T=200 K). The temperature dependence of the lattice constants shows anisotropic behavior, however, no evidence for phase transitions in the investigated temperature range was observed. The hydrogen positions could be localized by neutron diffraction (10-370 K), and the temperature-dependent behavior of the ammonium group has been analyzed by Rietveld refinements using anisotropic thermal displacement parameters. They were interpreted by utilizing a rigid body model and extracting the libration and translation matrices of the ammonium ion by applying the TLS formalism. The results obtained by the diffraction methods were confirmed and supplemented by vibrational spectroscopy and solid-state 15N and 13C MAS-NMR investigations.

  14. Calculating cellulose diffraction patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  15. Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed Ta using time-resolved in situ Laue diffraction

    SciTech Connect

    Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; Coppari, F.; Fratanduono, D.; Huntington, C. M.; Maddox, B. R.; Park, H. -S.; Plechaty, C.; Prisbrey, S. T.; Remington, B. A.; Rudd, R. E.

    2015-09-29

    We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa. The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.

  16. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies.

    PubMed

    Szlachetko, J; Nachtegaal, M; de Boni, E; Willimann, M; Safonova, O; Sa, J; Smolentsev, G; Szlachetko, M; van Bokhoven, J A; Dousse, J-Cl; Hoszowska, J; Kayser, Y; Jagodzinski, P; Bergamaschi, A; Schmitt, B; David, C; Lücke, A

    2012-10-01

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  17. Time-resolved synchrotron x-ray diffraction studies of the crystallization of amorphous Co(80-x)FexB20

    NASA Astrophysics Data System (ADS)

    Simmons, L. M.; Greig, D.; Lucas, C. A.; Kilcoyne, S. H.

    2014-09-01

    This paper addresses the time-dependent crystallization process occurring in "bulk" amorphous Co80-xFexB20 (x = 20, 40) metallic ribbons by means of synchrotron x-ray diffraction (SXRD) and transmission electron microscopy. Metallic ribbons, produced via melt-spinning technique, were annealed in-situ, with SXRD patterns collected every 60 s. SXRD reveals that Co40Fe40B20 alloys crystallize from an amorphous structure to a primary bcc α-(Co,Fe) phase, whereas Co60Fe20B20 initially crystallizes into the same bcc α-(Co,Fe) but exhibits cooperative growth of both stable and metastable boride phases later into the hold. Johnson-Mehl-Avrami-Kolmogorov statistics was used on post annealed samples to determine the mechanisms of growth and the activation energy (Ea) of the α-(Co,Fe) phase. Results indicate that the growth mechanisms are similar for both alloy compositions for all annealing temperatures, with the Avrami exponent of n = 1.51(1) and 2.02(6) for x = 20 and 40, respectively, suggesting one-dimensional growth, with a decreasing nucleation rate. Activation energy for α-(Co,Fe) was determined to be 2.7(1) eV and 2.4(3) eV in x = 20 and 40, respectively, suggesting that those alloys with a lower Co content have a stronger resistance to crystallization. Based on these results, fabrication of CoFeB magnetic tunnel junctions via depositing amorphous layers and subsequently annealing to induce lattice matching presents itself as a viable and efficient method, for increasing the giant magnetoresistance in magnetic tunnel junctions.

  18. Time-resolved synchrotron x-ray diffraction studies of the crystallization of amorphous Co(80-x)FexB₂₀

    SciTech Connect

    Simmons, L. M.; Greig, D.; Lucas, C. A.; Kilcoyne, S. H.

    2014-09-28

    This paper addresses the time-dependent crystallization process occurring in “bulk” amorphous Co(80-x)FexB₂₀ (x = 20, 40) metallic ribbons by means of synchrotron x-ray diffraction (SXRD) and transmission electron microscopy. Metallic ribbons, produced via melt-spinning technique, were annealed in-situ, with SXRD patterns collected every 60 s. SXRD reveals that Co₄₀Fe₄₀B₂₀ alloys crystallize from an amorphous structure to a primary bcc α-(Co,Fe) phase, whereas Co₆₀Fe₂₀B₂₀ initially crystallizes into the same bcc α-(Co,Fe) but exhibits cooperative growth of both stable and metastable boride phases later into the hold. Johnson-Mehl-Avrami-Kolmogorov statistics was used on post annealed samples to determine the mechanisms of growth and the activation energy (Ea) of the α-(Co,Fe) phase. Results indicate that the growth mechanisms are similar for both alloy compositions for all annealing temperatures, with the Avrami exponent of n = 1.51(1) and 2.02(6) for x = 20 and 40, respectively, suggesting one-dimensional growth, with a decreasing nucleation rate. Activation energy for α-(Co,Fe) was determined to be 2.7(1) eV and 2.4(3) eV in x = 20 and 40, respectively, suggesting that those alloys with a lower Co content have a stronger resistance to crystallization. Based on these results, fabrication of CoFeB magnetic tunnel junctions via depositing amorphous layers and subsequently annealing to induce lattice matching presents itself as a viable and efficient method, for increasing the giant magnetoresistance in magnetic tunnel junctions.

  19. FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffraction

    SciTech Connect

    Stoica, Mihai Scudino, Sergio; Bednarčik, Jozef; Kaban, Ivan; Eckert, Jürgen

    2014-02-07

    By adding 0.5 at. % Cu to the strong but brittle [(Fe{sub 0.5}Co{sub 0.5}){sub 0.75}Si{sub 0.05}B{sub 0.20}]{sub 96}Nb{sub 4} bulk metallic glass, fully amorphous rods with diameters up to 2 mm were obtained. The monolithic samples with 1 mm diameter revealed a fracture strain of 3.80% and a maximum stress of 4143 MPa upon compression, together with a slight work-hardening behavior. SEM micrographs of fractured samples did neither reveal any shear bands on the lateral surface nor the typical vein patterns which characterize ductile fracture. However, some layers appear to have flowed and this phenomenon took place before the brittle final fracture. An estimate of the temperature rise ΔT in the shear plane gives 1039 K, which is large enough to melt a layer of 120 nm. The overall performance and the macroscopic plastic strain depend on the interaction between cleavage-like and viscous flow-like features. Mechanical tests performed in-situ under synchrotron radiation allowed the calculation of the strain tensor components, using the reciprocal-space data and analyzing the shift of the first (the main) and the second broad peak positions in the X-ray diffraction patterns. The results revealed that each atomic shell may have a different stiffness, which may explain the macroscopic compressive plastic deformation. Also, there were no signs of (nano) crystallization induced by the applied stress, but the samples preserve a monolithic amorphous structure until catastrophic failure occurs.

  20. High-pressure Powder X-ray Diffraction Study of Cu5Si and Pressure-driven Isostructural Phase Transition

    SciTech Connect

    Li, C.; Yu, Z.; Liu, H.; Lu, T.

    2012-12-03

    The structural behaviour of Cu5Si under high-pressure (HP) has been studied by angular dispersive X-ray diffraction up to 49.9 GPa. The experimental results suggest that a pressure-induced isostructural phase transition occurs around 13.5 GPa as revealed by a discontinuity in volume as a function of pressure. The lattice parameter decreases with the pressure increasing for both low-pressure (LP) and HP phases of Cu5Si. However, a plot of the lattice parameter vs. pressure shows the existence of a plateau between 11.7 and 15.3 GPa. The bulk moduli, derived from the fitting of Birch–Murnaghan equation of state, are 150(2) GPa and 210(3) GPa for the LP phase and the HP phase of Cu5Si, respectively. A change in the electronic state of the copper is assumed to govern the observed structural phase transition.

  1. Time- and space-resolved high energy operando X-ray diffraction for monitoring the methanol to hydrocarbons reaction over H-ZSM-22 zeolite catalyst in different conditions

    NASA Astrophysics Data System (ADS)

    del Campo, Pablo; Slawinski, Wojciech Andrzej; Henry, Reynald; Erichsen, Marius Westgård; Svelle, Stian; Beato, Pablo; Wragg, David; Olsbye, Unni

    2016-06-01

    The conversion of methanol to hydrocarbons (MTH) over H-ZSM-22 was studied by operando time- and space-resolved X-ray diffraction (XRD) at 370-385 °C and WHSV = 2 g/g h at the Swiss-Norwegian Beamline at ESRF. The performance of a commercial H-ZSM-22 sample was compared before and after acid-base treatment, and with and without propanol co-feed, respectively. N2 adsorption, Scanning Electron Microscopy and propyl amine desorption experiments showed that acid-base treatment led to enhanced accessibility of acid sites, mainly due to the formation of mesopores between agglomerated H-ZSM-22 crystals. The catalytic set-up allowed us to simultaneously observe the catalyst activity and unit cell volume variations by time- and space-resolved HXRD in operando conditions. The expansion of the unit cell and final flattening at different positions in the catalytic bed matched very nicely with the catalytic activity gradients. Different scenarios provided different behaviors and gave insights in the effect of morphology and co-feed process on the activity in the MTH process. This technique is the only one which has so far been able to provide direct evidence of the behavior of the species inside the catalytic reactor.

  2. Direct Observations of the (Alpha to Gamma) Transformation at Different Input Powers in the Heat Affected Zone of 1045 C-Mn Steel Arc Welds Observed by Spatially Resolved X-Ray Diffraction

    SciTech Connect

    Palmer, T A; Elmer, J W

    2005-03-16

    Spatially Resolved X-Ray Diffraction (SRXRD) experiments have been performed during Gas Tungsten Arc (GTA) welding of AISI 1045 C-Mn steel at input powers ranging from 1000 W to 3750 W. In situ diffraction patterns taken at discreet locations across the width of the heat affected zone (HAZ) near the peak of the heating cycle in each weld show regions containing austenite ({gamma}), ferrite and austenite ({alpha}+{gamma}), and ferrite ({alpha}). Changes in input power have a demonstrated effect on the resulting sizes of these regions. The largest effect is on the {gamma} phase region, which nearly triples in width with increasing input power, while the width of the surrounding two phase {alpha}+{gamma} region remains relatively constant. An analysis of the diffraction patterns obtained across this range of locations allows the formation of austenite from the base metal microstructure to be monitored. After the completion of the {alpha} {yields} {gamma} transformation, a splitting of the austenite peaks is observed at temperatures between approximately 860 C and 1290 C. This splitting in the austenite peaks results from the dissolution of cementite laths originally present in the base metal pearlite, which remain after the completion of the {alpha} {yields} {gamma} transformation, and represents the formation of a second more highly alloyed austenite constituent. With increasing temperatures, carbon, originally present in the cementite laths, diffuses from the second newly formed austenite constituent to the original austenite constituent. Eventually, a homogeneous austenitic microstructure is produced at temperatures of approximately 1300 C and above, depending on the weld input power.

  3. X-ray and neutron powder diffraction analyses of Gly·MgSO4·5H2O and Gly·MgSO4·3H2O, and their deuterated counterparts.

    PubMed

    Howard, Christopher; Wood, Ian G; Knight, Kevin S; Fortes, A Dominic

    2016-03-01

    We have identified a new compound in the glycine-MgSO4-water ternary system, namely glycine magnesium sulfate trihydrate (or Gly·MgSO4·3H2O) {systematic name: catena-poly[[tetraaquamagnesium(II)]-μ-glycine-κ(2)O:O'-[diaquabis(sulfato-κO)magnesium(II)]-μ-glycine-κ(2)O:O']; [Mg(SO4)(C2D5NO2)(D2O)3]n}, which can be grown from a supersaturated solution at ∼350 K and which may also be formed by heating the previously known glycine magnesium sulfate pentahydrate (or Gly·MgSO4·5H2O) {systematic name: hexaaquamagnesium(II) tetraaquadiglycinemagnesium(II) disulfate; [Mg(D2O)6][Mg(C2D5NO2)2(D2O)4](SO4)2} above ∼330 K in air. X-ray powder diffraction analysis reveals that the trihydrate phase is monoclinic (space group P21/n), with a unit-cell metric very similar to that of recently identified Gly·CoSO4·3H2O [Tepavitcharova et al. (2012). J. Mol. Struct. 1018, 113-121]. In order to obtain an accurate determination of all structural parameters, including the locations of H atoms, and to better understand the relationship between the pentahydrate and the trihydrate, neutron powder diffraction measurements of both (fully deuterated) phases were carried out at 10 K at the ISIS neutron spallation source, these being complemented with X-ray powder diffraction measurements and Raman spectroscopy. At 10 K, glycine magnesium sulfate pentahydrate, structurally described by the `double' formula [Gly(d5)·MgSO4·5D2O]2, is triclinic (space group P-1, Z = 1), and glycine magnesium sulfate trihydrate, which may be described by the formula Gly(d5)·MgSO4·3D2O, is monoclinic (space group P21/n, Z = 4). In the pentahydrate, there are two symmetry-inequivalent MgO6 octahedra on sites of -1 symmetry and two SO4 tetrahedra with site symmetry 1. The octahedra comprise one [tetraaquadiglcyinemagnesium](2+) ion (centred on Mg1) and one [hexaaquamagnesium](2+) ion (centred on Mg2), and the glycine zwitterion, NH3(+)CH2COO(-), adopts a monodentate coordination to Mg2. In the

  4. Spin crossover in iron(II) tris(2-(2 '-pyridyl)benzimidazole) complex monitored by variable temperature methods: synchrotron powder diffraction, DSC, IR spectra, Mössbauer spectra, and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Boča, R.; Boča, M.; Ehrenberg, H.; Fuess, H.; Linert, W.; Renz, F.; Svoboda, I.

    2003-09-01

    The thermal expansion of the spin crossover system [Fe(pybzim) 3](ClO 4) 2 · H 2O (pybzim=2-(2 '-pyridyl)benzimidazole) has been determined from powder X-ray data between 50 and 250 K; the wavelength of the synchrotron source was 1.21888(1) Å. The unit cell parameters of the triclinic crystal system were a=12.091 Å, b=12.225 Å, c=14.083 Å, α=77.70°, β=80.35°, γ=74.35°, and V=1944.9 Å 3 at 250 K. In addition to the linear thermal expansion of the unit cell volume, an extra expansion due to the low-spin (LS) to high-spin (HS) transition is observed. The V( T) function shows a sudden increase comparable with the step in the effective magnetic moment at the transition region (140 K). A similar behavior is obtained on the basis of the infrared spectra. The absorption bands corresponding to the metal-ligand stretching modes change their intensities upon heating: the bands corresponding to the low-spin molecules (at ca. 409, 430, 443, and 460 cm -1) disappear in the gain of the high-spin bands (at 259 and 285 cm -1). The variable-temperature data obtained by different techniques (powder diffraction, EXAFS, IR spectra, Mössbauer spectra, magnetic susceptibility, DSC) have been transformed to a common basis - the temperature dependence of the high-spin mole fraction xHS( T). The application of the Ising-like (two-level) model of the spin crossover led to the thermodynamic data Δ H=2.6 kJ mol -1 and Δ S=19 J K -1 mol -1 as well as to the cooperativeness J/ k≈110 K (subtracted from the susceptibility data) that characterizes the abruptness of the spin crossover in the solid state.

  5. The ammonium ion in a silicate under compression: infrared spectroscopy and powder X-ray diffraction of NH4AlSi3O8—buddingtonite to 30 GPa

    NASA Astrophysics Data System (ADS)

    E. Vennari, Cara; O'Bannon, Earl F.; Williams, Quentin

    2017-02-01

    The behavior of the ammoniated feldspar buddingtonite, NH4AlSi3O8, has been studied using infrared (IR) spectroscopy up to 30 GPa and using synchrotron powder X-ray diffraction to 10 GPa at room temperature. We examine the bonding of the ammonium ion under pressure and in particular whether hydrogen bonding is enhanced by compaction, as well as probe how the ammonium ion affects the elasticity and behavior of the aluminosilicate framework at pressure. Powder diffraction data yield a bulk modulus of 49 GPa for a pressure derivative of 4, implying that the ammonium ion substitution may induce a modest softening of the feldspar lattice relative to the potassium ion. Under compression, the N-H vibrations are remarkably insensitive to pressure throughout the pressure range of these experiments. However, the vibrations of the aluminosilicate framework of buddingtonite undergo changes in their slope at 13 GPa, implying that a change in compressional mechanism occurs near this pressure, but the vibrational modes of the ammonium molecule show little response to this change. These results show that (1) there is little, if any, enhancement of hydrogen bonding between the ammonium ion and the oxygen ions of the silica and aluminum tetrahedral framework under pressure, as manifested by the slight (and mostly positive) shifts in the N-H stretching vibrations of the ammonium ion; (2) ordering of the ammonium ion is not observed under compression, as no changes in peak width or in the general appearance of the spectra are observed under compression; and (3) structural changes induced by pressure in the aluminosilicate framework do not produce significant changes in the bonding of the ammonium ion. Hence, it appears that the ammonium ion interacts minimally with its surrounding lattice, even at high pressures: Its behavior is compatible with it being, aside from Coulombic attraction to the oxygen-dominated matrix, a largely non-interactive guest molecule within the silicate

  6. Crystal structure and proton conductivity of BaSn0.6Sc0.4O3-δ : insights from neutron powder diffraction and solid-state NMR spectroscopy.

    PubMed

    Kinyanjui, Francis G; Norberg, Stefan T; Knee, Christopher S; Ahmed, Istaq; Hull, Stephen; Buannic, Lucienne; Hung, Ivan; Gan, Zhehong; Blanc, Frédéric; Grey, Clare P; Eriksson, Sten G

    2016-04-14

    The solid-state synthesis and structural characterisation of perovskite BaSn1-x Sc x O3-δ (x = 0.0, 0.1, 0.2, 0.3, 0.4) and its corresponding hydrated ceramics are reported. Powder and neutron X-ray diffractions reveal the presence of cubic perovskites (space group Pm3m) with an increasing cell parameter as a function of scandium concentration along with some indication of phase segregation. (119)Sn and (45)Sc solid-state NMR spectroscopy data highlight the existence of oxygen vacancies in the dry materials, and their filling upon hydrothermal treatment with D2O. It also indicates that the Sn(4+) and Sc(3+) local distribution at the B-site of the perovskite is inhomogeneous and suggests that the oxygen vacancies are located in the scandium dopant coordination shell at low concentrations (x ≤ 0.2) and in the tin coordination shell at high concentrations (x ≥ 0.3). (17)O NMR spectra on (17)O enriched BaSn1-x Sc x O3-δ materials show the existence of Sn-O-Sn, Sn-O-Sc and Sc-O-Sc bridging oxygen environments. A further room temperature neutron powder diffraction study on deuterated BaSn0.6Sc0.4O3-δ refines the deuteron position at the 24k crystallographic site (x, y, 0) with x = 0.579(3) and y = 0.217(3) which leads to an O-D bond distance of 0.96(1) Å and suggests tilting of the proton towards the next nearest oxygen. Proton conduction was found to dominate in wet argon below 700 °C with total conductivity values in the range 1.8 × 10(-4) to 1.1 × 10(-3) S cm(-1) between 300 and 600 °C. Electron holes govern the conduction process in dry oxidizing conditions, whilst in wet oxygen they compete with protonic defects leading to a wide mixed conduction region in the 200 to 600 °C temperature region, and a suppression of the conductivity at higher temperature.

  7. Phase-targeted X-ray diffraction

    PubMed Central

    Hansford, G. M.

    2016-01-01

    A powder X-ray diffraction (XRD) method to enhance the signal of a specific crystalline phase within a mixture is presented for the first time. Specificity to the targeted phase relies on finding coincidences in the ratios of crystal d spacings and the ratios of elemental characteristic X-ray energies. Such coincidences can be exploited so that the two crystal planes diffract through the same scattering angle at two different X-ray energies. An energy-resolving detector placed at the appropriate scattering angle will detect a significantly enhanced signal at these energies if the target mineral or phase is present in the sample. When implemented using high scattering angles, for example 2θ > 150°, the method is tolerant to sample morphology and distance on the scale of ∼2 mm. The principle of the method is demonstrated experimentally using Pd Lα1 and Pd Lβ1 emission lines to enhance the diffraction signal of quartz. Both a pure quartz powder pellet and an unprepared mudstone rock specimen are used to test and develop the phase-targeted method. The technique is further demonstrated in the sensitive detection of retained austenite in steel samples using a combination of In Lβ1 and Ti Kβ emission lines. For both these examples it is also shown how the use of an attenuating foil, with an absorption edge close to and above the higher-energy characteristic X-ray line, can serve to isolate to some degree the coincidence signals from other fluorescence and diffraction peaks in the detected spectrum. The phase-targeted XRD technique is suitable for implementation using low-cost off-the-shelf components in a handheld or in-line instrument format. PMID:27738415

  8. In-situ powder X-ray diffraction investigation of reaction pathways for the BaCO(3)-CeO(2)-In(2)O(3) and CeO(2)-In(2)O(3) systems.

    PubMed

    Bhella, Surinderjit Singh; Shafi, Shahid P; Trobec, Francesca; Bieringer, Mario; Thangadurai, Venkataraman

    2010-02-15

    We report the first in-situ powder X-ray diffraction (PXRD) study of the BaCO(3)-CeO(2)-In(2)O(3) and CeO(2)-In(2)O(3) systems in air over a wide range of temperature between 25 and 1200 degrees C. Herein, we are investigating the formation pathway and chemical stability of perovskite-type BaCe(1-x)In(x)O(3-delta) (x = 0.1, 0.2, and 0.3) and corresponding fluorite-type Ce(1-x)In(x)O(2-delta) phases. The potential direct solid state reaction between CeO(2) and In(2)O(3) for the formation of indium-doped fluorite-type phase is not observed even up to 1200 degrees C in air. The formation of the BaCe(1-x)In(x)O(3-delta) perovskite structures was investigated and rationalized using in-situ PXRD. Furthermore the decomposition of the indium-doped perovskites in CO(2) is followed using high temperature diffraction and provides insights into the reaction pathway as well as the thermal stability of the Ce(1-x)In(x)O(3-delta) system. In CO(2) flow, BaCe(1-x)In(x)O(3-delta) decomposes above T = 600 degrees C into BaCO(3) and Ce(1-x)In(x)O(2-delta). Furthermore, for the first time, the in-situ PXRD confirmed that Ce(1-x)In(x)O(2-delta) decomposes above 800 degrees C and supported the previously claimed metastability. The maximum In-doping level for CeO(2) has been determined using PXRD. The lattice constant of the fluorite-type structure Ce(1-x)In(x)O(2-delta) follows the Shannon ionic radii trend, and crystalline domain sizes were found to be dependent on indium concentration.

  9. Evidence of local defects in the oxygen excess apatite La{sub 9.67}(SiO{sub 4}){sub 6}O{sub 2.5} from high resolution neutron powder diffraction

    SciTech Connect

    Guillot, Stephanie; Beaudet-Savignat, Sophie; Lambert, Sebastien; Vannier, Rose-Noelle; Roussel, Pascal; Porcher, Florence

    2009-12-15

    From neutron diffraction data collected at 3 K on a powder of La{sub 9.67}(SiO{sub 4}){sub 6}O{sub 2.5} composition and a careful examination of the average structure, a model was proposed to explain the oxygen over-stoichiometry in the apatite structure. This model leads to realistic distances to neighbouring atoms. Moreover, it accounts perfectly for the maximum oxygen content observed in these materials. Up to 0.5 oxygen atom located at the vicinity of the 2a site (0, 0, 1/4) would be shifted to a new interstitial position in the channel at (-0.01, 0.04, 0.06), creating a Frenkel defect, with the possibility of a maximum occupancy in this site equal to twice the Frenkel defect numbers. This structural model is in good agreement with the oxygen diffusion pathways recently proposed by Bechade et al. (2009) using computer modeling techniques. It supports preferred oxygen diffusion pathways via interstitial oxygen atoms and vacant sites along [0 0 1], close to the centre of the La(2)-O channels. - Graphical abstract legend: Structural defect position and possible conduction mechanism along the c-axis (representation of two adjacent unit-cells)

  10. Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: a combined solution chemistry and X-ray powder diffraction study.

    PubMed

    Ryan, P C; Hillier, S; Wall, A J

    2008-12-15

    Sequential extraction procedures (SEPs) are commonly used to determine speciation of trace metals in soils and sediments. However, the non-selectivity of reagents for targeted phases has remained a lingering concern. Furthermore, potentially reactive phases such as phyllosilicate clay minerals often contain trace metals in structural sites, and their reactivity has not been quantified. Accordingly, the objective of this study is to analyze the behavior of trace metal-bearing clay minerals exposed to the revised BCR 3-step plus aqua regia SEP. Mineral quantification based on stoichiometric analysis and quantitative powder X-ray diffraction (XRD) documents progressive dissolution of chlorite (CCa-2 ripidolite) and two varieties of smectite (SapCa-2 saponite and SWa-1 nontronite) during steps 1-3 of the BCR procedure. In total, 8 (+/-1) % of ripidolite, 19 (+/-1) % of saponite, and 19 (+/-3) % of nontronite (% mineral mass) dissolved during extractions assumed by many researchers to release trace metals from exchange sites, carbonates, hydroxides, sulfides and organic matter. For all three reference clays, release of Ni into solution is correlated with clay dissolution. Hydrolysis of relatively weak Mg-O bonds (362 kJ/mol) during all stages, reduction of Fe(III) during hydroxylamine hydrochloride extraction and oxidation of Fe(II) during hydrogen peroxide extraction are the main reasons for clay mineral dissolution. These findings underscore the need for precise mineral quantification when using SEPs to understand the origin/partitioning of trace metals with solid phases.

  11. Comparison of X-ray powder diffraction and solid-state nuclear magnetic resonance in estimating crystalline fraction of tacrolimus in sustained-release amorphous solid dispersion and development of discriminating dissolution method.

    PubMed

    Rahman, Ziyaur; Bykadi, Srikant; Siddiqui, Akhtar; Khan, Mansoor A

    2015-05-01

    The focus of present investigation was to explore X-ray powder diffraction (XRPD) and solid-state nuclear magnetic resonance (ssNMR) techniques for amorphous and crystalline tacrolimus quantification in the sustained-release amorphous solid dispersion (ASD), and to propose discriminating dissolution method that can detect crystalline drug. The ASD and crystalline physical mixture was mixed in various proportions to make sample matrices containing 0%-100% crystalline-amorphous tacrolimus. Partial-least-square regression and principle component regression were applied to the spectral data. Dissolution of the ASD in the US FDA recommended dissolution medium with and without surfactant was performed. R(2) > 0.99 and slope was close to one for all the models. Root-mean-square of prediction, standard error of prediction, and bias were higher in ssNMR-based models when compared with XRPD data models. Dissolution of the ASD decreased with an increase in the crystalline tacrolimus in the formulations. Furthermore, detection of crystalline tacrolimus in the ASD was progressively masked with an increase in the surfactant level in the dissolution medium. XRPD and ssNMR can be used equally to quantitate the crystalline and amorphous fraction of tacrolimus in the ASD with good accuracy; however, ssNMR data collection time is excessively long, and minimum surfactant level in the dissolution medium maximizes detection of crystalline reversion in the formulation.

  12. Combined MAS NMR and X-ray powder diffraction structural characterization of hydrofluorocarbon-134 adsorbed on zeolite NaY: Observation of cation migration and strong sorbate-cation interactions

    SciTech Connect

    Grey, C.P.; Poshni, F.I.; Gualtieri, A.F.; Norby, P. |; Hanson, J.C.; Corbin, D.R.

    1997-02-26

    {sup 23}Na MAS NMR and synchrotron X-ray powder diffraction methods have been used to study the binding of hydrofluorocarbon-134 (HFC-134, CF{sub 2}HCF{sub 2}H) in zeolite NaY. A contraction of the volume of the unit cell is observed on gas adsorption, and the interaction of HFC-134 with the extraframework sodium cations is so strong that extraframework sodium cations in the sodalite cages (site I`) migrate into the supercages. These sodium cations are found on positions close to the site III` positions of zeolite NaX. Both ends of the HFC molecules are bound sodium cations, the HFC molecule bridging the site II and III` cations in the supercages. The strong cation-HFC interaction results in a considerable displacement of the sodium site II cation along the [111] direction into the supercage and an increase in the T-O-T bond angle for the three oxygen atoms coordinated to this cation. A decrease in the {sup 23}Na quadrupole coupling constant on HFC adsorption from 4.4 to less than 2.8 MHz, for the sodium cations originally located in the sodalite cages (site I`), is consistent with the sodium cation migrations. 26 refs., 7 figs., 5 tabs.

  13. Powder X-ray diffraction, infrared and (13)C NMR spectroscopic studies of the homologous series of some solid-state zinc(II) and sodium(I) n-alkanoates.

    PubMed

    Nelson, Peter N; Taylor, Richard A

    2015-03-05

    A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state (13)C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc>8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.

  14. Assessment of the optimum degree of Sr{sub 3}Fe{sub 2}MoO{sub 9} electron-doping through oxygen removal: An X-ray powder diffraction and {sup 57}Fe Moessbauer spectroscopy study

    SciTech Connect

    Lopez, Carlos A.; Viola, Maria del C.; Pedregosa, Jose C.; Mercader, Roberto C.

    2010-10-15

    We describe the preparation and structural characterization by X-ray powder diffraction (XRPD) and Moessbauer spectroscopy of three electron-doped perovskites Sr{sub 3}Fe{sub 2}MoO{sub 9-{delta}} with Fe/Mo = 2 obtained from Sr{sub 3}Fe{sub 2}MoO{sub 9}. The compounds were synthesized by topotactic reduction with H{sub 2}/N{sub 2} (5/95) at 600, 700 and 800 {sup o}C. Above 800 {sup o}C the Fe/Mo ratio changes from Fe/Mo = 2-1 < Fe/Mo < 2. The structural refinements of the XRPD data for the reduced perovskites were carried out by the Rietveld profile analysis method. The crystal structure of these phases is cubic, space group Fm3-bar m, with cationic disorder at the two different B sites that can be populated in variable proportions by the Fe atoms. The Moessbauer spectra allowed determining the evolution of the different species formed after the treatments at different temperatures and confirm that Fe ions in the samples reduced at 600, 700 and 800 {sup o}C are only in the high-spin Fe{sup 3+} electronic state.

  15. The thermal behaviour and structural stability of nesquehonite, MgCO3.3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: New constraints on CO2 sequestration within minerals.

    PubMed

    Ballirano, Paolo; De Vito, Caterina; Ferrini, Vincenzo; Mignardi, Silvano

    2010-06-15

    In order to gauge the appropriateness of CO(2) reaction with Mg chloride solutions as a process for storing carbon dioxide, the thermal behaviour and structural stability of its solid product, nesquehonite (MgCO(3).3H(2)O), were investigated in situ using real-time laboratory parallel-beam X-ray powder diffraction. The results suggest that the nesquehonite structure remains substantially unaffected up to 373 K, with the exception of a markedly anisotropic thermal expansion acting mainly along the c axis. In the 371-390 K range, the loss of one water molecule results in the nucleation of a phase of probable composition MgCO(3).2H(2)O, which is characterized by significant structural disorder. At higher temperatures (423-483 K), both magnesite and MgO.2MgCO(3) coexist. Finally, at 603 K, periclase nucleation starts and the disappearance of carbonate phases is completed at 683 K. Consequently, the structural stability of nesquehonite at high temperatures suggests that it will remain stable under the temperature conditions that prevail at the Earth's surface. These results will help (a) to set constraints on the temperature conditions under which nesquehonite may be safely stored and (b) to develop CO(2) sequestration via the synthesis of nesquehonite for industrial application.

  16. Neutron powder diffraction study of nuclear and magnetic structures of multiferroic (Bi0.8Ba0.2)(Fe0.8Ti0.2)O3: Evidence for isostructural phase transition and magnetoelastic and magnetoelectric couplings

    NASA Astrophysics Data System (ADS)

    Singh, Anar; Senyshyn, Anatoliy; Fuess, Hartmut; Chatterji, Tapan; Pandey, Dhananjai

    2011-02-01

    We report here the results of a high-resolution neutron powder diffraction study on the multiferroic solid solution system (Bi0.8Ba0.2)(Fe0.8Ti0.2)O3 in the temperature range 4 to 700 K. Using irreducible representation theory to analyze the magnetic structure by Rietveld refinement, we show that the magnetic structure is collinear G-type antiferromagnetic. Further, we confirm the occurrence of an isostructural phase transition (IPT) accompanying the magnetic ordering around ˜625 K in (Bi0.8Ba0.2)(Fe0.8Ti0.2)O3. It is shown that as a result of the IPT, the positions of all the atoms change significantly in the magnetically ordered phase, leading to an excess polarization which scales linearly with the sublattice magnetization obtained by Rietveld refinement of the magnetic structure. Structural evidence for magnetoelastic coupling for the magnetic transitions below room temperature is also presented.

  17. Unraveling the Hydrogenation of TiO 2 and Graphene Oxide/TiO 2 Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis

    SciTech Connect

    Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; Gamalski, Andrew D.; Vovchok, Dimitry; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Fujita, Etsuko; Rodriguez, José A.; Senanayake, Sanjaya D.

    2016-02-18

    The functionalization of graphene oxide (GO) and graphene by TiO2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO2 and TiO2 under H2 reduction. Sequential Rietveld refinement was employed to gain insight into the evolution of crystal growth of TiO2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.

  18. Structures of the cation-deficient perovskite Nd(0.7)Ti(0.9)Al(0.1)O3 from high-resolution neutron powder diffraction in combination with group-theoretical analysis.

    PubMed

    Zhang, Zhaoming; Howard, Christopher J; Knight, Kevin S; Lumpkin, Gregory R

    2006-02-01

    The crystal structures of Nd(0.7)Ti(0.9)Al(0.1)O3, taken to represent the ideal Nd(2/3)TiO3, have been elucidated from 4 to 1273 K using high-resolution neutron powder diffraction in combination with group-theoretical analysis. The room-temperature structure is monoclinic in C2/m, on a cell with a = 7.6764 (1), b = 7.6430 (1), c = 7.7114 (1) A, beta = 90.042 (2) degrees . Pertinent features are the layered ordering of the A-site Nd cations/vacancies along the z axis and out-of-phase tilting of the (Ti/Al)O6 octahedra around both the x and z axes. From about 750 to 1273 K, the octahedra are tilted around just one axis (x axis) perpendicular to the direction of the cation ordering, giving rise to an orthorhombic structure with space-group symmetry Cmmm.

  19. Unraveling the Hydrogenation of TiO 2 and Graphene Oxide/TiO 2 Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis

    DOE PAGES

    Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; ...

    2016-02-18

    The functionalization of graphene oxide (GO) and graphene by TiO2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO2 and TiO2 under H2 reduction. Sequential Rietveld refinement was employed to gain insight into the evolution of crystalmore » growth of TiO2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.« less

  20. Isothermal equation of state and high-pressure phase transitions of synthetic meridianiite (MgSO4·11D2O) determined by neutron powder diffraction and quasielastic neutron spectroscopy

    PubMed Central

    Fortes, A. Dominic; Fernandez-Alonso, Felix; Tucker, Matthew; Wood, Ian G.

    2017-01-01

    We have collected neutron powder diffraction data from MgSO4·11D2O (the deuterated analogue of meridianiite), a highly hydrated sulfate salt that is thought to be a candidate rock-forming mineral in some icy satellites of the outer solar system. Our measurements, made using the PEARL/HiPr and OSIRIS instruments at the ISIS neutron spallation source, covered the range 0.1 < P < 800 MPa and 150 < T < 280 K. The refined unit-cell volumes as a function of P and T are parameterized in the form of a Murnaghan integrated linear equation of state having a zero-pressure volume V 0 = 706.23 (8) Å3, zero-pressure bulk modulus K 0 = 19.9 (4) GPa and its first pressure derivative, K′ = 9 (1). The structure’s compressibility is highly anisotropic, as expected, with the three principal directions of the unit-strain tensor having compressibilities of 9.6 × 10−3, 3.4 × 10−2 and 3.4 × 10−3 GPa−1, the most compressible direction being perpendicular to the long axis of a discrete hexadecameric water cluster, (D2O)16. At high pressure we observed two different phase transitions. First, warming of MgSO4·11D2O at 545 MPa resulted in a change in the diffraction pattern at 275 K consistent with partial (peritectic) melting; quasielastic neutron spectra collected simultaneously evince the onset of the reorientational motion of D2O molecules with characteristic time-scales of 20–30 ps, longer than those found in bulk liquid water at the same temperature and commensurate with the lifetime of solvent-separated ion pairs in aqueous MgSO4. Second, at ∼ 0.9 GPa, 240 K, MgSO4·11D2O decomposed into high-pressure water ice phase VI and MgSO4·9D2O, a recently discovered phase that has hitherto only been formed at ambient pressure by quenching small droplets of MgSO4(aq) in liquid nitrogen. The fate of the high-pressure enneahydrate on further compression and warming is not clear from the neutron diffraction data, but its occurrence

  1. Shedding Light on the Photochemistry of Coinage-Metal Phosphorescent Materials: A Time-Resolved Laue Diffraction Study of an AgI-CuI Tetranuclear Complex

    SciTech Connect

    Jarzembska, Katarzyna N.; Kami,; #324; ski, Radoslaw; Fournier, Bertrand; Trzop, El; #380; bieta,; Sokolow, Jesse D.; Henning, Robert; Chen, Yang; Coppens, Philip

    2014-11-14

    The triplet excited state of a new crystalline form of a tetranuclear coordination d10–d10-type complex, Ag2Cu2L4 (L = 2-diphenylphosphino-3-methylindole ligand), containing AgI and CuI metal centers has been explored using the Laue pump–probe technique with ≈80 ps time resolution. The relatively short lifetime of 1 μs is accompanied by significant photoinduced structural changes, as large as the Ag1···Cu2 distance shortening by 0.59(3) Å. The results show a pronounced strengthening of the argentophilic interactions and formation of new Ag···Cu bonds on excitation. Theoretical calculations indicate that the structural changes are due to a ligand-to-metal charge transfer (LMCT) strengthening the Ag···Ag interaction, mainly occurring from the methylindole ligands to the silver metal centers. QM/MM optimizations of the ground and excited states of the complex support the experimental results. Comparison with isolated molecule optimizations demonstrates the restricting effect of the crystalline matrix on photoinduced distortions. The work represents the first time-resolved Laue diffraction study of a heteronuclear coordination complex and provides new information on the nature of photoresponse of coinage metal complexes, which have been the subject of extensive studies.

  2. Quantitative determination of two polymorphic forms of imatinib mesylate in a drug substance and tablet formulation by X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Bellur Atici, Esen; Karlığa, Bekir

    2015-10-10

    Imatinib has been identified as a tyrosine kinase inhibitor that selectively inhibits the Abl tyrosine kinases, including Bcr-Abl. The active substance used in drug product is the mesylate salt form of imatinib, a phenylaminopyrimidine derivative and chemically named as N-(3-(4-(pyridin-3-yl) pyrimidin-2-ylamino)-4-methylphenyl)-4-((4-methylpiperazin-1-yl) methyl)-benzamide methanesulfonic acid salt. It exhibits many polymorphic forms and most stable and commercialized polymorphs are known as α and β forms. Molecules in α and β polymorphic forms exhibit significant conformational differences due to their different intra- and intermolecular interactions, which stabilize their molecular conformations and affect their physicochemical properties such as bulk density, melting point, solubility, stability, and processability. The manufacturing process of a drug tablet included granulation, compression, coating, and drying may cause polymorphic conversions. Therefore, polymorphic content of the drug substance should be controlled during quality control and stability testing. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) methods were evaluated for determination of the polymorphic content of the drug substance and drug product; and PXRD was the most accurate technique and selected as preferred method and validated. Prior to development of a quantification method, pure α and β polymorphs were characterized and used throughout the method development and validation studies. Mixtures with different ratios of α and β forms were scanned using X-ray diffractometer with a scan rate of 0.250°/min over an angular range of 19.5-21.0° 2θ and the peak heights for characteristic peak of β form at 20.5 ± 0.2° 2θ diffraction angle were used to generate a calibration curve. The detection limit of β polymorph in α form imatinib mesylate tablets was found as 4% and

  3. Powder neutron diffraction studies of structure and magnetic Ce ordering in the strongly correlated electron compound Ce{sub 0.75}La{sub 0.25}{sup 11}B{sub 6}

    SciTech Connect

    Fischer, P.; Iwasa, K.; Kunii, S.; Kuwahara, K.; Kohgi, M.; Hansen, T.

    2005-07-01

    By means of powder neutron diffraction investigations, chemical structure and magnetic Ce ordering of Ce{sub 0.75}La{sub 0.25}{sup 11}B{sub 6} have been investigated at temperatures down to 105 mK. In the antiferromagnetic low-temperature phase III Ce{sub 0.75}La{sub 0.25}{sup 11}B{sub 6} resembles pure CeB{sub 6}, but has a lower Neel temperature T{sub N} between 0.89 and 1.25 K. Similar to the recently determined magnetic ordering in pure CeB{sub 6} (model C), one obtains the compared to CeB{sub 6} smaller ordered magnetic Ce moments {mu}{sub Ce(1)}=0.53(1) {mu}{sub B} at z=0 and {mu}{sub Ce(2)}=0.12(1) {mu}{sub B} at z=1/2 with respect to the magnetic unit cell at 105 mK. Presumably this magnetic ordering, which is characterized by both propagation vectors k=[1/4,1/4,0] and k{sup '}=[1/4,1/4,1/2], is caused by competition between magnetic dipole and multipolar ordering. At 0.89 K the magnetic moments are reduced to {mu}{sub Ce(1)}=0.31(1){mu}{sub B} and {mu}{sub Ce(2)}=0.08(1){mu}{sub B}. At 1.25 K in phase IV with presumably multipolar Ce ordering no significant magnetic Bragg peaks associated with magnetic dipole Ce moments were observed, supporting the octupole model of Kubo and Kuramoto for this phase.

  4. Impact of the long chain omega-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy.

    PubMed

    Kessner, Doreen; Brezesinski, Gerald; Funari, Sergio S; Dobner, Bodo; Neubert, Reinhard H H

    2010-01-01

    The stratum corneum (SC), the outermost layer of the mammalian skin, is the main skin barrier. Ceramides (CERs) as the major constituent of the SC lipid matrix are of particular interest. At the moment, 11 classes of CERs are identified, but the effect of each single ceramide species is still not known. Therefore in this article, the thermotropic behaviour of the long chain omega-acylceramides CER[EOS] and CER[EOP] was studied using X-ray powder diffraction and FT-Raman spectroscopy. It was found that the omega-acylceramides CER[EOS] and CER[EOP] do not show a pronounced polymorphism which is observed for shorter chain ceramides as a significant feature. The phase behaviour of both ceramides is strongly influenced by the extremely long acyl-chain residue. The latter has a much stronger influence compared with the structure of the polar head group, which is discussed as extremely important for the appearance of a rich polymorphism. Despite the strong influence of the long chain, the additional OH-group of the phyto-sphingosine type CER[EOP] influences the lamellar repeat distance and the chain packing. The less polar sphingosine type CER[EOS] is stronger influenced by the long acyl-chain residue. Hydration is necessary for the formation of an extended hydrogen-bonding network between the polar head groups leading to the appearance of a long-periodicity phase (LPP). In contrast, the more polar CER[EOP] forms the LPP with densely packed alkyl chains already in the dry state.

  5. On the crystal structures of Ln{sub 3}MO{sub 7} (Ln=Nd, Sm, Y and M=Sb, Ta)-Rietveld refinement using X-ray powder diffraction data

    SciTech Connect

    Fu, W.T.; IJdo, D.J.W.

    2009-09-15

    We have investigated, using X-ray powder diffraction data, the crystal structures of some fluorite derivatives with the formula Ln{sub 3}MO{sub 7} (Ln=lanthanide or Y and M=Sb and Ta). In these compounds ordering of Ln and M occurs, leading to a parent structure in Cmmm. Tilting of the MO{sub 6} octahedra causes doubling of one of the cubic axes, leading to a number of non-isomorphic subgroups, e.g. Cmcm, Ccmm and Cccm. We have identified an alternative space group Ccmm instead of C222{sub 1} for those compounds containing a medium sized lanthanide or Y and M being Sb or Ta. Interestingly this is an alternative setting for the space group of the structure obtained when Ln is large (Cmcm). However, there tilting of the octahedra is around the a-axis of the parent structure, rather than around the b-axis as it is found in the compounds which we are reporting on here. In one compound, Nd{sub 3}TaO{sub 7}, both tilts occur. The phase transition between the two possible structures is a slow and difficult process above 80 K, allowing both phases to coexist. - Graphical abstract: (a) A projected view of Ln{sub 3}MO{sub 7} along the a-axis showing the ordering of Ln and M cations in the fluoride lattice. Note that the unit cells of the fluorite (dashed line), the parent Cmmm (dashed line) and the Cmcm/Ccmm structures (continuous line) are indicated. (b) Schematic representations of the crystal structures of Y{sub 3}SbO{sub 7} showing SbO{sub 6} octahedra and Y. Oxygens that do not bond to M cations are also shown.

  6. Crystal structure analysis of tetragonal bronzes {beta}-SrTa{sub 2}O{sub 6} and {beta}'-SrTa{sub 2}O{sub 6} by synchrotron x-ray and neutron powder diffraction.

    SciTech Connect

    Lee, E.; Park, C-H.; Shoemaker, D. P.; Avdeev, M.; Kim, Y-I.

    2012-07-01

    Strontium ditantalum oxide SrTa{sub 2}O{sub 6} exists in {alpha}-, {beta}-, and {beta}{prime}-polymorphs. Herein the crystal structures of the latter two were studied using synchrotron X-ray and constant-wavelength neutron powder diffraction. While {beta}{prime}-SrTa{sub 2}O{sub 6} [space group P4/mbm, a = 12.47099(1) {angstrom}, c = 3.898210(5) {angstrom}, V = 606.271(2) {angstrom}{sup 3}, Z = 5] belongs to the regular tetragonal tungsten bronze (TTB) family, it contains locally disordered strontium atoms within the pentagonal channel. {beta}-SrTa{sub 2}O{sub 6} [space group Pnam, a = 12.36603(2) {angstrom}, b = 12.43467(2) {angstrom}, c = 7.72403(1) {angstrom}, V = 1187.705(4) {angstrom}{sup 3}, Z = 10] can be described as an orthorhombic modification of the TTB, where the octahedral tilting distortion effectively alleviates the bonding strains around TaO{sub 6} and SrO{sub 13} polyhedra. For comparison, rynersonite type {alpha}-SrTa{sub 2}O{sub 6} [space group Pnma, a = 11.00610(6) {angstrom}, b = 7.63397(3) {angstrom}, c = 5.62634(3) {angstrom}, V = 472.727(5) {angstrom}{sup 3}, and Z = 4] is built from edge-shared dimer units of TaO{sub 6} octahedra. As measured by diffuse-reflection absorption spectroscopy, {alpha}-, {beta}-, and {beta}{prime}-SrTa{sub 2}O{sub 6} have indirect band gap energies of 4.4, 4.0, and 3.8 eV, respectively.

  7. The crystal structure and thermal expansion of the perovskite-type Nd0.75Sm0.25GaO3: powder diffraction and lattice dynamical studies

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Oganov, A. R.; Vasylechko, L.; Ehrenberg, H.; Bismayer, U.; Berkowski, M.; Matkovskii, A.

    2004-01-01

    The structure of Nd0.75Sm0.25GaO3 was studied by high-resolution powder diffraction methods using conventional x-ray and synchrotron radiation in the temperature range 85-1173 K. The GdFeO3 structure type was confirmed for Nd0.75Sm0.25GaO3 in the temperature region investigated and no structural transitions were observed. The cell parameters show a monotonic and anisotropic increase with temperature. The interatomic potential was fitted using the GULP code. Using this potential, a self-consistent approximation following the Debye model was constructed from the elastic constants of the crystals. The total phonon DOS, its projections onto atomic species, heat capacity Cv, Grüneisen parameter ggr and thermal expansion coefficient agr were considered in the framework of quasiharmonic lattice dynamics and the Debye model. The shape of the phonon DOS calculated from lattice dynamics differs significantly from the respected Debye DOS. The rare earth, gallium and oxygen atoms dominate in different frequency regions of the phonon spectrum. The heat capacity is well reproduced by the Debye model below 100 K, where acoustic phonons play an important role and above 800 K when the classical limit is reached. Predicted values of Grüneisen parameter and thermal expansion coefficients in the frame of the Debye model are {\\sim } 35% too low. Therefore, the thermal properties of Nd0.75Sm0.25GaO3 cannot be explained by acoustic phonons only and hence, Nd0.75Sm0.25GaO3 cannot be described perfectly as a Debye-like solid with respect to its thermodynamic properties.

  8. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO2 transforming to β-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  9. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE PAGES

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; ...

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO2 transforming to β-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumptionmore » by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.« less

  10. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    NASA Astrophysics Data System (ADS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an "area" detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  11. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    SciTech Connect

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-15

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  12. Solid state 13C-NMR, infrared, X-ray powder diffraction and differential thermal studies of the homologous series of some mono-valent metal (Li, Na, K, Ag) n-alkanoates: A comparative study

    NASA Astrophysics Data System (ADS)

    Nelson, Peter N.; Ellis, Henry A.; White, Nicole A. S.

    2015-06-01

    A comparative study of the molecular packing, lattice structures and phase behaviors of the homologous series of some mono-valent metal carboxylates (Li, Na, K and Ag) is carried out via solid state FT-infrared and 13C-NMR spectroscopes, X-rays powder diffraction, density measurements, differential scanning calorimetry, polarizing light microscopy and variable temperature infrared spectroscopy. It is proposed that, for lithium, sodium and potassium carboxylates, metal-carboxyl coordination is via asymmetric chelating bidentate bonding with extensive intermolecular interactions to form tetrahedral metal centers, irrespective of chain length. However, for silver n-alkanoates, carboxyl moieties are bound to silver ions via syn-syn type bridging bidentate coordination to form dimeric units held together by extensive head group inter-molecular interactions. Furthermore, the fully extended hydrocarbon chains which are crystallized in the all-trans conformation are tilted at ca. 30°, 27°, 15° and 31° with respect to a normal to the metal plane, for lithium, sodium, silver and potassium carboxylates, respectively. All compounds are packed as lamellar bilayer structures, however, lithium compounds are crystallized in a triclinic crystal system whilst silver, sodium and potassium n-alkanoates are all monoclinic with possible P1 bravais lattice. Odd-even alternation observed in various physical features is associated with different inter-planar spacing between closely packed layers in the bilayer which are not in the same plane; a phenomenon controlled by lattice packing symmetry requirements. All compounds, except silver carboxylates, show partially reversibly first order pre-melting transitions; the number of which increases with increasing chain length. These transitions are associated, for the most part, with lamellar collapse followed by increased gauche-trans isomerism in the methylene group assembly, irrespective of chain length. It is proposed that the absence of

  13. Solid state ¹³C-NMR, infrared, X-ray powder diffraction and differential thermal studies of the homologous series of some mono-valent metal (Li, Na, K, Ag) n-alkanoates: a comparative study.

    PubMed

    Nelson, Peter N; Ellis, Henry A; White, Nicole A S

    2015-06-15

    A comparative study of the molecular packing, lattice structures and phase behaviors of the homologous series of some mono-valent metal carboxylates (Li, Na, K and Ag) is carried out via solid state FT-infrared and (13)C-NMR spectroscopes, X-rays powder diffraction, density measurements, differential scanning calorimetry, polarizing light microscopy and variable temperature infrared spectroscopy. It is proposed that, for lithium, sodium and potassium carboxylates, metal-carboxyl coordination is via asymmetric chelating bidentate bonding with extensive intermolecular interactions to form tetrahedral metal centers, irrespective of chain length. However, for silver n-alkanoates, carboxyl moieties are bound to silver ions via syn-syn type bridging bidentate coordination to form dimeric units held together by extensive head group inter-molecular interactions. Furthermore, the fully extended hydrocarbon chains which are crystallized in the all-trans conformation are tilted at ca. 30°, 27°, 15° and 31° with respect to a normal to the metal plane, for lithium, sodium, silver and potassium carboxylates, respectively. All compounds are packed as lamellar bilayer structures, however, lithium compounds are crystallized in a triclinic crystal system whilst silver, sodium and potassium n-alkanoates are all monoclinic with possible P1 bravais lattice. Odd-even alternation observed in various physical features is associated with different inter-planar spacing between closely packed layers in the bilayer which are not in the same plane; a phenomenon controlled by lattice packing symmetry requirements. All compounds, except silver carboxylates, show partially reversibly first order pre-melting transitions; the number of which increases with increasing chain length. These transitions are associated, for the most part, with lamellar collapse followed by increased gauche-trans isomerism in the methylene group assembly, irrespective of chain length. It is proposed that the absence

  14. Structural characterization of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    SciTech Connect

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-28

    The structure of Bi{sub 2}Te{sub 3} (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb{sub 2}Te{sub 3} have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20 K to 300 K for Bi{sub 2}Te{sub 3} and from 10 K to 298 K for Sb{sub 2}Te{sub 3}. The EXAFS technique for studying the local structure of the two compounds was conducted from 19 K to 298 K. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} are isostructural, with a space group of R3{sup ¯}m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M = Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi{sub 2}Te{sub 3} are similar to those of Sb{sub 2}Te{sub 3} within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi{sub 2}Te{sub 3} relative to Sb{sub 2}Te{sub 3}.

  15. Crystal structure analysis of tungsten bronzes {beta}-SrTa{sub 2}O{sub 6} and {beta} Prime -SrTa{sub 2}O{sub 6} by synchrotron X-ray and neutron powder diffraction

    SciTech Connect

    Lee, Eunhye; Park, Cheol-Hee; Shoemaker, Daniel P.; Avdeev, Maxim; Kim, Young-Il

    2012-07-15

    Strontium ditantalum oxide SrTa{sub 2}O{sub 6} exists in {alpha}-, {beta}-, and {beta} Prime -polymorphs. Herein the crystal structures of the latter two were studied using synchrotron X-ray and constant-wavelength neutron powder diffraction. While {beta} Prime -SrTa{sub 2}O{sub 6} [space group P4/mbm, a=12.47099(1) A, c=3.898210(5) A, V=606.271(2) Angstrom-Sign {sup 3}, Z=5] belongs to the regular tetragonal tungsten bronze (TTB) family, it contains locally disordered strontium atoms within the pentagonal channel. {beta}-SrTa{sub 2}O{sub 6} [space group Pnam, a=12.36603(2) Angstrom-Sign , b=12.43467(2) A, c=7.72403(1) A, V=1187.705(4) Angstrom-Sign {sup 3}, Z=10] can be described as an orthorhombic modification of the TTB, where the octahedral tilting distortion effectively alleviates the bonding strains around TaO{sub 6} and SrO{sub 13} polyhedra. For comparison, rynersonite type {alpha}-SrTa{sub 2}O{sub 6} [space group Pnma, a=11.00610(6) Angstrom-Sign , b=7.63397(3) Angstrom-Sign , c=5.62634(3) Angstrom-Sign , V=472.727(5) Angstrom-Sign {sup 3}, and Z=4] is built from edge-shared dimer units of TaO{sub 6} octahedra. As measured by diffuse-reflection absorption spectroscopy, {alpha}-, {beta}-, and {beta} Prime -SrTa{sub 2}O{sub 6} have indirect band gap energies of 4.4, 4.0, and 3.8 eV, respectively. - Graphical Abstract: Difference Fourier map for {beta} Prime -SrTa{sub 2}O{sub 6} at z=0. Highlights: Black-Right-Pointing-Pointer Structure refinements of {beta}-SrTa{sub 2}O{sub 6} and {beta} Prime -SrTa{sub 2}O{sub 6}. Black-Right-Pointing-Pointer Strontium disorder in tetragonal tungsten bronze {beta} Prime -SrTa{sub 2}O{sub 6}. Black-Right-Pointing-Pointer Orthorhombic distortion and cell doubling in {beta}-SrTa{sub 2}O{sub 6}.

  16. Ultrafast electron diffraction from aligned molecules

    SciTech Connect

    Centurion, Martin

    2015-08-17

    The aim of this project was to record time-resolved electron diffraction patterns of aligned molecules and to reconstruct the 3D molecular structure. The molecules are aligned non-adiabatically using a femtosecond laser pulse. A femtosecond electron pulse then records a diffraction pattern while the molecules are aligned. The diffraction patterns are then be processed to obtain the molecular structure.

  17. Kinetics of the barotropic ripple (P beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated dimyristoylphosphatidylcholine (DMPC) monitored by time-resolved x-ray diffraction.

    PubMed Central

    Caffrey, M; Hogan, J; Mencke, A

    1991-01-01

    We present here the first study of the use of a pressure-jump to induce the ripple (P beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The transition was monitored by using time-resolved x-ray diffraction (TRXRD). Applying a pressure-jump from atmospheric to 11.3 MPa (1640 psig, 111.6 atm) in 2.5 s induces the L alpha to P beta' phase transition which takes place in two stages. The lamellar repeat spacing initially increases from a value of 66.0 +/- 0.1 A (n = 4) to a maximum value of 70.3 +/- 0.8 A (n = 4) after 10 s and after a further 100-150 s decreases slightly to 68.5 +/- 0.3 A (n = 4). The reverse transition takes place following a pressure jump in 5.5 s from 11.3 MPa to atmospheric pressure. Again, the transition occurs in two stages with the repeat spacing steadily decreasing from an initial value of 68.5 +/- 0.3 A (n = 3) to a minimum value of 66.6 +/- 0.3 A (n = 3) after 50 s and then increasing by approximately 0.5 A over a period of 100 s. The transition temperature increases linearly with pressure up to 14.1 MPa in accordance with the Clapeyron relation, giving a dT/dP value of 0.285 degrees C/MPa (28.5 degrees C/kbar) and an associated volume change of 40 microliters/g. A dynamic compressibility of 0.13 +/- 0.01 A/MPa has been determined for the L alpha phase. This value is compared with the equilibrium compressibilities of bilayer and nonbilayer phases reported in the literature. The results suggest testable mechanisms for the pressure-induced transition involving changes in periodicity, phase hydration, chain order, and orientation. A more complete understanding of the transition mechanism will require improvement in detector spatial resolution and sensitivity, and data on the pressure sensitivity of phase hydration. PMID:1912281

  18. Dynamics of NH3 ligands and ClO4- anions in the phase transition in [Cd(NH3)6](ClO4)2 studied by x-ray powder diffraction, neutron scattering methods and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hetmańczyk, Łukasz; Hetmańczyk, Joanna

    2017-02-01

    Phase transition, reorientational dynamics of NH3 ligands and ClO4- anions and crystal structure changes were investigated using x-ray powder diffraction (XRPD), neutron powder diffraction (NPD), quasi-elastic neutron scattering (QENS) and Fourier transform infrared spectroscopy (FT-IR). Most measurements were carried out in the temperature range 9-300 K. The diffraction techniques revealed that NH3 ligands and ClO4- anions are orientationally disordered at room temperature. During the cooling process, the high temperature cubic phase transforms into a lower symmetry phase (most probably of monoclinic structure). The QENS results confirm that NH3 ligands perform picoseconds reorientational motions both in the high and low temperature phases. This motion is almost unaffected by the observed phase transition (Tc=138.9 K on heating) and can be well described assuming the three fold jump model. On the other hand, the band shape analysis performed for the IR band connected with ClO4- internal vibration mode δd(OClO)E at 461 cm-1 clearly shows that ClO4- anions reorientate quickly in the high temperature phase, but that motion begins slowing down in the vicinity of the phase transition. Below 150 K the exponential reorientation relaxation term vanishes and only the vibrational relaxation term is present; small discontinuity is also visible. Moreover, below the phase transition temperature Tc splitting of the infrared absorption bands connected with some NH3 internal vibrations is observed.

  19. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    SciTech Connect

    Clausen, Bjorn; Brown, Donald W; Tome, Carlos N; Balogh, Levente; Vogel, Sven C

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  20. Femtosecond single-electron diffraction

    PubMed Central

    Lahme, S.; Kealhofer, C.; Krausz, F.; Baum, P.

    2014-01-01

    Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphite polycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration. PMID:26798778

  1. Note: An X-ray powder diffractometer with a wide scattering-angle range of 72° using asymmetrically positioned one-dimensional detectors

    SciTech Connect

    Katsuya, Yoshio; Tanaka, Masahiko; Song, Chulho; Ito, Kimihiko; Kubo, Yoshimi; Sakata, Osami

    2016-01-15

    An X-ray powder diffractometer has been developed for a time-resolved measurement without the requirement of a scattering angle (2θ) scan. Six one-dimensional detector modules are asymmetrically arranged in a vertical line at a designed distance of 286.5 mm. A detector module actually covers a diffraction angle of about 12° with an angular resolution of 0.01°. A diffracted intensity pattern is simultaneously recorded in a 2θ angular range from 1.63° to 74.37° in a “one shot” measurement. We tested the performance of the diffractometer with reference CeO{sub 2} powders and demonstrated diffraction measurements from an operating lithium-air battery.

  2. Diffraction at HFIR

    SciTech Connect

    Chakoumakos, Bryan C; Fernandez-Baca, Jaime A; Garlea, Vasile O; Hubbard, Camden R; Wang, Xun-Li

    2008-01-01

    Of the planned suite of powder and single-crystal diffractometers for the HFIR, only two are currently operating, the Neutron Residual Stress Mapping Facility (NRSF2) diffractometer, and the Wide Angle Neutron Diffractometer (WAND). The NSRF2 was recently upgraded and is available to external users via the High Temperature Materials Laboratory (HTML) User Program for studies of stress, texture and phase mapping. The WAND is a flat-cone geometry diffractometer equipped with a curve 1-D PSD, suitable for high intensity powder diffraction (e.g., kinetics, high pressure) and diffuse scattering studies of single-crystals. A rebuild of the old HFIR powder diffractometer, originally located at HB-4 station is now underway, and is expected to begin commissioning by summer 2008. This instrument has a Debye-Scherrer geometry, with a detector bank consisting of 44 3He tubes each with 6' Soller collimators. A four-circle single-crystal diffractometer is located at the HB-3A station, and is slowly being brought back to life after the long hiatus connected to the reactor upgrade. A Letter of Intent to build a quasi-Laue diffractometer, called IMAGINE, in the HFIR Cold Guide Hall has been presented to and endorsed by the Neutron Scattering Science Advisory Committee.

  3. Sinterable Powders from Laser Driven Reactions

    DTIC Science & Technology

    1982-03-01

    4 flow rate on the resulting Si powder particle size (reaction cell pressure of 0.6 atm). 39 21. The effect of SiR 4 flow rate on the ratio of Si...should be expected, therefore, that the relative emissivity of the SiR 4 flame will fall somewhere between following a /K dependence and following...electron diffraction. The diffraction patterns were identical to those for Si powder made from SiH 4 . The powders from SiR 4 and C2H4 runs showed

  4. The Amblygonite (LiAlPO{sub 4}F)-Montebrasite (LiAlPO{sub 4}OH) Solid Solution: A Combined powder and single-crystal neutron diffraction and solid-state {sup 6}Li MAS, CP MAS, and REDOR NMR study

    SciTech Connect

    Groat, Lee A.; Chakoumakos, Bryan C.; Brouwer, Darren H.; Hoffman, Christina M.; Fyfe, Colin A.; Morell, Heiko; Schultz, Arthur J.

    2003-01-01

    The amblygonite-montebrasite series of minerals, common constituents of granitic pegmatites and topaz-bearing granites, show complete solid solution with ideal composition LiAlPO{sub 4}(F, OH). These compounds are ideal for studying F {leftrightarrow} OH solid solution in minerals because natural members of the series generally show little deviation from the ideal composition. In this study, we used powder and single-crystal neutron diffraction and solid-state {sup 6}Li MAS, CP MAS, and REDOR NMR techniques to study the effect of F {leftrightarrow} OH substitution on the series. Lattice parameters refined from single-crystal neutron diffraction data show increasing b and decreasing a, c, and V with increasing F/(F + OH). The volume is highest for the OH end-member because of the presence of an additional atom (H). The a and c parameters decrease with increasing F/(F + OH) because the O-H vector is close to the a-c plane and the Al-OH/F vectors are approximately parallel to c. Lattice parameters refined from neutron powder diffraction patterns collected at lower T show that thermal contraction increases with F/(F + OH), presumably because the F anion takes up less space than the OH molecule. The results show that the OH/F position is always fully occupied. The H displacement ellipsoid shows little change with occupancy, which obviously corresponds negatively with increasing F/(F + OH). However, the Li displacement ellipsoid becomes extremely large and anisotropic with increasing F fraction. Most of the distortion is associated with the U{sub 3} eigenvalue, which lies between the c and c* directions. U{sub eq} values corresponding to the Li atom show a greater reduction with decreasing temperature than the other atoms. The temperature dependence of Li is the same regardless of F content. Even when extrapolated to absolute zero the Li displacement ellipsoid is very large, which implies a large static disorder.

  5. In-situ mechanical testing during X-ray diffraction

    SciTech Connect

    Van Swygenhoven, Helena Van Petegem, Steven

    2013-04-15

    Deforming metals during recording X-ray diffraction patterns is a useful tool to get a deeper understanding of the coupling between microstructure and mechanical behaviour. With the advances in flux, detector speed and focussing techniques at synchrotron facilities, in-situ mechanical testing is now possible during powder diffraction and Laue diffraction. The basic principle is explained together with illustrative examples.

  6. High-temperature, high-pressure hydrothermal synthesis, crystal structure, and solid-state NMR spectroscopy of Cs2(UO2)(Si2O6) and variable-temperature powder X-ray diffraction study of the hydrate phase Cs2(UO2)(Si2O6) x 0.5H2O.

    PubMed

    Chen, Chih-Shan; Chiang, Ray-Kuang; Kao, Hsien-Ming; Lii, Kwang-Hwa

    2005-05-30

    A new uranium(VI) silicate, Cs2(UO2)(Si2O6), has been synthesized by a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction and solid-state NMR spectroscopy. It crystallizes in the orthorhombic space group Ibca (No. 73) with a = 15.137(1) A, b = 15.295(1) A, c = 16.401(1) A, and Z = 16. Its structure consists of corrugated achter single chains of silicate tetrahedra extending along the c axis linked together via corner-sharing by UO6 tetragonal bipyramids to form a 3-D framework which delimits 8- and 6-ring channels. The Cs+ cations are located in the channels or at sites between channels. The 29Si and 133Cs MAS NMR spectra are consistent with the crystal structure as determined from X-ray diffraction, and the resonances in the spectra are assigned. Variable-temperature in situ powder X-ray diffraction study of the hydrate Cs2(UO2)(Si2O6) x 0.5H2O indicates that the framework structure is stable up to 800 degrees C and transforms to the structure of the title compound at 900 degrees C. A comparison of related uranyl silicate structures is made.

  7. Magnetic field dependent neutron powder diffraction studies of Ru{sub 0.9}Sr{sub 2}YCu{sub 2.1}O{sub 7.9}

    SciTech Connect

    Nigam, R.; Pan, A. V.; Dou, S. X.; Kennedy, S. J.; Studer, A. J.; Stuesser, N.

    2010-05-15

    Temperature and magnetic field dependent neutron diffraction has been used to study the magnetic order in Ru{sub 0.9}Sr{sub 2}YCu{sub 2.1}O{sub 7.9}. The appearance of (1/2, 1/2, 1/2), (1/2, 1/2, 3/2), and (1/2, 1/2, 5/2) peaks below T{sub M}=140 K manifests the antiferromagnetic order. Neutron diffraction patterns measured in applied magnetic fields from 0 to 6 T show the destruction of the antiferromagnetic order with increasing field. There is no evidence of spontaneous or field-induced long range ferromagnetic order. This latter result contradicts the vast majority of other experimental observations for this system.

  8. Photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Fadley, Charles S.

    1987-01-01

    The use of core-level photoelectron diffraction for structural studies of surfaces and epitaxial overlayers is discussed. Photoelectron diffraction is found to provide several direct and rather unique types of structural information, including the sites and positions of adsorbed atoms; the orientations of small molecules or fragments bound to surfaces; the orientations, layer thicknesses, vertical lattice constants, and degrees of short-range order of epitaxial or partially-epitaxial overlayers; and the presence of short-range spin order in magnetic materials. Specific systems considered are the reaction of oxygen with Ni(001), the growth of epitaxial Cu on Ni(001), the well-defined test case S on Ni(001), and short-range spin order in the antiferromagnet KMnF3. A rather straightforward single scattering cluster (SSC) model also proves capable of quantitatively describing such data, particularly for near-surface species and with corrections for spherical-wave scattering effects and correlated vibrational motion. Promising new directions in such studies also include measurements with high angular resolution and the expanded use of synchrotron radiation.

  9. Photon diffraction

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  10. Resolving Insurgencies

    DTIC Science & Technology

    2011-06-01

    Army, the Department of Defense, or the U.S. Government . Authors of Strategic Studies Institute (SSI) publica- tions enjoy full academic freedom...century, the author identifies four ways in which insurgencies have ended. Clear- cut victories for either the government or the insur- gents occurred...threatened government has resolved the conflict by co-opting the insurgents. After achieving a strategic stalemate and persuading the belligerents that

  11. Low-temperature high magnetic field powder x-ray diffraction setup for field-induced structural phase transition studies from 2 to 300 K and at 0 to 8-T field.

    PubMed

    Shahee, Aga; Sharma, Shivani; Kumar, Dhirendra; Yadav, Poonam; Bhardwaj, Preeti; Ghodke, Nandkishor; Singh, Kiran; Lalla, N P; Chaddah, P

    2016-10-01

    A low-temperature and high magnetic field powder x-ray diffractometer (XRD) has been developed at UGC-DAE CSR (UGC: University Grant Commission, DAE: Department of Atomic Energy, and CSR: Consortium for scientific research), Indore, India. The setup has been developed around an 18 kW rotating anode x-ray source delivering Cu-Kα x-rays coming from a vertical line source. It works in a symmetric θ-2θ parallel beam geometry. It consists of a liquid helium cryostat with an 8 T split-pair Nb-Ti superconducting magnet comprising two x-ray windows each covering an angular range of 65°. This is mounted on a non-magnetic type heavy duty goniometer equipped with all necessary motions along with data collection accessories. The incident x-ray beam has been made parallel using a parabolic multilayer mirror. The scattered x-ray is detected using a NaI detector through a 0.1° acceptance solar collimator. To control the motions of the goniometer, a computer programme has been developed. The wide-angle scattering data can be collected in a range of 2°-115° of 2θ with a resolution of ∼0.1°. The whole setup is tightly shielded for the scattered x-rays using a lead hutch. The functioning of the goniometer and the artifacts arising possibly due to the effect of stray magnetic field on the goniometer motions, on the x-ray source, and on the detector have been characterized by collecting powder XRD data of a National Institute of Standards and Technology certified standard reference material LaB6 (SRM-660b) and Si powder in zero-field and in-field conditions. Occurrence of field induced structural-phase transitions has been demonstrated on various samples like Pr0.5Sr0.5MnO3, Nd0.49Sr0.51MnO3-δ and La0.175Pr0.45Ca0.375MnO3 by collecting data in zero field cool and field cool conditions.

  12. Low-temperature high magnetic field powder x-ray diffraction setup for field-induced structural phase transition studies from 2 to 300 K and at 0 to 8-T field

    NASA Astrophysics Data System (ADS)

    Shahee, Aga; Sharma, Shivani; Kumar, Dhirendra; Yadav, Poonam; Bhardwaj, Preeti; Ghodke, Nandkishor; Singh, Kiran; Lalla, N. P.; Chaddah, P.

    2016-10-01

    A low-temperature and high magnetic field powder x-ray diffractometer (XRD) has been developed at UGC-DAE CSR (UGC: University Grant Commission, DAE: Department of Atomic Energy, and CSR: Consortium for scientific research), Indore, India. The setup has been developed around an 18 kW rotating anode x-ray source delivering Cu-Kα x-rays coming from a vertical line source. It works in a symmetric θ-2θ parallel beam geometry. It consists of a liquid helium cryostat with an 8 T split-pair Nb-Ti superconducting magnet comprising two x-ray windows each covering an angular range of 65°. This is mounted on a non-magnetic type heavy duty goniometer equipped with all necessary motions along with data collection accessories. The incident x-ray beam has been made parallel using a parabolic multilayer mirror. The scattered x-ray is detected using a NaI detector through a 0.1° acceptance solar collimator. To control the motions of the goniometer, a computer programme has been developed. The wide-angle scattering data can be collected in a range of 2°-115° of 2θ with a resolution of ˜0.1°. The whole setup is tightly shielded for the scattered x-rays using a lead hutch. The functioning of the goniometer and the artifacts arising possibly due to the effect of stray magnetic field on the goniometer motions, on the x-ray source, and on the detector have been characterized by collecting powder XRD data of a National Institute of Standards and Technology certified standard reference material LaB6 (SRM-660b) and Si powder in zero-field and in-field conditions. Occurrence of field induced structural-phase transitions has been demonstrated on various samples like Pr0.5Sr0.5MnO3, Nd0.49Sr0.51MnO3-δ and La0.175Pr0.45Ca0.375MnO3 by collecting data in zero field cool and field cool conditions.

  13. The impact of charge transfer and structural disorder on the thermoelectric properties of cobalt intercalated TiS2 † †Electronic supplementary information (ESI) available: Powder X-ray diffraction data, thermal analysis data and additional magnetic and transport property data. See DOI: 10.1039/c5tc04217h Click here for additional data file.

    PubMed Central

    Guélou, Gabin; Vaqueiro, Paz; Prado-Gonjal, Jesús; Barbier, Tristan; Hébert, Sylvie; Guilmeau, Emmanuel; Kockelmann, Winfried

    2016-01-01

    A family of phases, CoxTiS2 (0 ≤ x ≤ 0.75) has been prepared and characterised by powder X-ray and neutron diffraction, electrical and thermal transport property measurements, thermal analysis and SQUID magnetometry. With increasing cobalt content, the structure evolves from a disordered arrangement of cobalt ions in octahedral sites located in the van der Waals' gap (x ≤ 0.2), through three different ordered vacancy phases, to a second disordered phase at x ≥ 0.67. Powder neutron diffraction reveals that both octahedral and tetrahedral inter-layer sites are occupied in Co0.67TiS2. Charge transfer from the cobalt guest to the TiS2 host affords a systematic tuning of the electrical and thermal transport properties. At low levels of cobalt intercalation (x < 0.1), the charge transfer increases the electrical conductivity sufficiently to offset the concomitant reduction in |S|. This, together with a reduction in the overall thermal conductivity leads to thermoelectric figures of merit that are 25% higher than that of TiS2, ZT reaching 0.30 at 573 K for CoxTiS2 with 0.04 ≤ x ≤ 0.08. Whilst the electrical conductivity is further increased at higher cobalt contents, the reduction in |S| is more marked due to the higher charge carrier concentration. Furthermore both the charge carrier and lattice contributions to the thermal conductivity are increased in the electrically conductive ordered-vacancy phases, with the result that the thermoelectric performance is significantly degraded. These results illustrate the competition between the effects of charge transfer from guest to host and the disorder generated when cobalt cations are incorporated in the inter-layer space. PMID:27774151

  14. Energetic powder

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  15. Crystal structure of Kuzel's salt 3CaO.Al{sub 2}O{sub 3}.1/2CaSO{sub 4}.1/2CaCl{sub 2}.11H{sub 2}O determined by synchrotron powder diffraction

    SciTech Connect

    Mesbah, Adel; Francois, Michel; Cau-dit-Coumes, Celine; Frizon, Fabien; Leroux, Fabrice; Ravaux, Johann

    2011-05-15

    The crystal structure of Kuzel's salt has been successfully determined by synchrotron powder diffraction. It crystallizes in the rhombohedral R3-bar symmetry with a = 5.7508 (2) A, c = 50.418 (3) A, V = 1444.04 (11) A{sup 3}. Joint Rietveld refinement was realized using three X-ray powder patterns recorded with a unique wavelength and three different sample-to-detector distances. Kuzel's salt is the chloro-sulfoaluminate AFm phase and belongs to the layered double hydroxide (LDH) large family. Its structure is composed of positively charged main layer [Ca{sub 2}Al(OH){sub 6}]{sup +} and negatively charged interlayer [Cl{sub 0.50}.(SO{sub 4}){sub 0.25}.2.5H{sub 2}O]{sup -}. Chloride and sulfate anions are ordered into two independent crystallographic sites and fill successive interlayer leading to the formation of a second-stage compound. The two kinds of interlayer have the compositions [Cl.2H{sub 2}O]{sup -} and [(SO{sub 4}){sub 0.5}.3H{sub 2}O]{sup -}. The crystal structure explains why chloride and sulfate anions are not substituted and why the formation of extended solid solution in the chloro-sulfate AFm system does not occur.

  16. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca{sub 5}Bi{sub 3}D{sub 0.93}, Yb{sub 5}Bi{sub 3}H{sub x}, and Sm{sub 5}Bi{sub 3}H{sub a}pprox{sub 1} by powder neutron or single crystal X-ray diffraction

    SciTech Connect

    Alejandro Leon-Escamilla, E.; Dervenagas, Panagiotis; Stassis, Constantine; Corbett, John D.

    2010-01-15

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub a}pprox{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of beta-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures. - Graphical abstract: The structure of Ca{sub 5}Bi{sub 3}H{sub 0.93} occurs in the novel Ca{sub 5}Sb{sub 3}F structure type with D centered in the shaded calcium tetrahedra.

  17. A single crystal X-ray and powder neutron diffraction study on NASICON-type Li1+xAlxTi2-x(PO4)3 (0 ≤ x ≤ 0.5) crystals: Implications on ionic conductivity

    NASA Astrophysics Data System (ADS)

    Redhammer, G. J.; Rettenwander, D.; Pristat, S.; Dashjav, E.; Kumar, C. M. N.; Topa, D.; Tietz, F.

    2016-10-01

    Single crystals of NASICON-type material Li1+xTi2-xAlx(PO4)3 (LATP) with 0 ≤ x ≤ 0.5 were successfully grown using long-term sintering techniques. Sample material was studied by chemical analysis, single crystal X-ray and neutron diffraction. The Ti4+ replacement scales very well with the Al3+ and Li+ incorporation. The additional Li+ thereby enters the M3 cavity of the NASICON framework at x, y, z ∼ (0.07, 0.34, 0.09) and is regarded to be responsible for the enhanced Li+ conduction of LATP as compared to Al-free LTP. Variations in structural parameters, associated with the Ti4+ substitution with Al3+ + Li+ will be discussed in detail in this paper.

  18. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithiumion batteries

    SciTech Connect

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.

  19. Restricted Photochemistry in the Molecular Solid State: Structural Changes on Photoexcitation of Cu(I) Phenanthroline Metal-to-Ligand Charge Transfer (MLCT) Complexes by Time-Resolved Diffraction

    SciTech Connect

    Makal, Anna; Benedict, Jason; Trzop, Elzbieta; Sokolow, Jesse; Fournier, Bertrand; Chen, Yang; Kalinowski, Jaros; #322; aw A.; Graber, Tim; Henning, Robert; Coppens, Philip

    2015-10-15

    The excited-state structure of Cu{sup I}[(1,10-phenanthroline-N,N') bis(triphenylphosphine)] cations in their crystalline [BF{sub 4}] salt has been determined at both 180 and 90 K by single-pulse time-resolved synchrotron experiments with the modified polychromatic Laue method. The two independent molecules in the crystal show distortions on MLCT excitation that differ in magnitude and direction, a difference attributed to a pronounced difference in the molecular environment of the two complexes. As the excited states differ, the decay of the emission is biexponential with two strongly different lifetimes, the longer lifetime, assigned to the more restricted molecule, becoming more prevalent as the temperature increases. Standard deviations in the current Laue study are very much lower than those achieved in a previous monochromatic study of a Cu(I) 2,9-dimethylphenanthroline substituted complex (J. Am. Chem. Soc. 2009, 131, 6566), but the magnitudes of the shifts on excitation are similar, indicating that lattice restrictions dominate over the steric effect of the methyl substitution. Above all, the study illustrates emphatically that molecules in solids have physical properties different from those of isolated molecules and that their properties depend on the specific molecular environment. This conclusion is relevant for the understanding of the properties of molecular solid-state devices, which are increasingly used in current technology.

  20. Diffraction from nonperiodic models of cellulose crystals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powder and fiber diffraction patterns were calculated for model cellulose crystallites with chains 20 glucose units long. Model sizes ranged from four chains to 169 chains, based on cellulose I' coordinates, and were subjected to various combinations of energy minimization and molecular dynamics (M...

  1. Low-Flow-Rate Dry-Powder Feeder

    NASA Technical Reports Server (NTRS)

    Ramsey, Keith E.

    1994-01-01

    Apparatus feeds small, precise flow of dry powder through laser beam of optical analyzer measuring patterns of light created by forward scattering (Fraunhofer diffraction) of laser beam from powder particles. From this optical measurement, statistical distribution of sizes of powder particles computed. Rates of flow optimized for measurement of particle-size distributions. Developed for analyzing particle-size distributions of solid-propellant powders. Also adapted to pharmaceutical industry, in manufacture of metal powder, and in other applications where particle-size distributions of materials used to control rates of chemical reactions and/or physical characteristics of processes.

  2. Low-Flow-Rate Dry-Powder Feeder

    NASA Technical Reports Server (NTRS)

    Ramsey, Keith E.

    1994-01-01

    Apparatus feeds small, precise flow of dry powder through laser beam of optical analyzer, measuring patterns of light created by forward scattering (Fraunhofer diffraction) of laser beam from powder particles. From measurement, statistical distribution of sizes of powder particles computed. Developed for analyzing particle-size distributions of solid-propellant powders. Also adapted to use in pharmaceutical industry, in manufacture of metal powder, and in other applications in which particle-size distributions of materials used to control rates of chemical reactions and/or physical characteristics of processes.

  3. Synchrotron and neutron powder diffraction study of phase transition in weberite-type Nd[subscript 3]NbO[subscript 7] and La[subscript 3]NbO[subscript 7

    SciTech Connect

    Cai, Lu; Nino, Juan C.

    2011-11-07

    La{sub 3}NbO{sub 7} and Nd{sub 3}NbO{sub 7} are insulating compounds that have an orthorhombic weberite-type crystal structure and undergo a phase transition at about 360 and 450 K, respectively. The nature of the phase transitions was investigated via heat capacity measurements, synchrotron X-ray and neutron diffraction experiments. It is here shown that above the phase transition temperature, the compounds possess a weberite-type structure described by space group Cmcm (No. 63). Below the phase transition, the high temperature phase transforms into a weberite-type structure with space group Pmcn (No. 62). The phase transformation primarily involves the off-center shifting of Nb{sup 5+} ions inside the NbO{sub 6} octahedra, combined with shifts of one third of the Ln{sup 3+} (Ln{sup 3+} = La{sup 3+} and Nd{sup 3+}) ions at the center of the LnO{sub 8} polyhedra towards off-center positions. The phase transition was also proven to have great impacts on the dielectric properties.

  4. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  5. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  6. Investigation of oxidation process of mechanically activated ultrafine iron powders

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Vlasov, V. A.; Zhuravkov, S. P.

    2016-02-01

    The oxidation of mechanically activated ultrafine iron powders was studied using X- ray powder diffraction and thermogravimetric analyzes. The powders with average particles size of 100 nm were made by the electric explosion of wire, and were subjected to mechanical activation in planetary ball mill for 15 and 40 minutes. It was shown that a certain amount of FeO phase is formed during mechanical activation of ultrafine iron powders. According to thermogravimetric analysis, the oxidation process of non-milled ultrafine iron powders is a complex process and occurs in three stages. The preliminary mechanical activation of powders considerably changes the nature of the iron powders oxidation, leads to increasing in the temperature of oxidation onset and shifts the reaction to higher temperatures. For the milled powders, the oxidation is more simple process and occurs in a single step.

  7. Fingerprinting ordered diffractions in multiply diffracted waves

    NASA Astrophysics Data System (ADS)

    Meles, Giovanni Angelo; Curtis, Andrew

    2014-09-01

    We show how to `fingerprint' individual diffractors inside an acoustic medium using interrogative wave energy from arrays of sources and receivers. For any recorded multiply diffracted wave observed between any source and any receiver, the set of such fingerprints is sufficient information to identify all diffractors involved in the corresponding diffraction path, and the sequential order in which diffractors are encountered. The method herein thus decomposes complex, multiply diffracted wavefields into constituent, single-diffraction interactions.

  8. Structural study of (N{sub 2}H{sub 5},H){sub 2.9}U{sub 1.1}Ce{sub 0.9}(C{sub 2}O{sub 4}){sub 5}·10H{sub 2}O from a conventional X-ray diffraction diagram obtained on a powder synthesized by a fast vortex process

    SciTech Connect

    Brackx, E.; Laval, J.P.; Dugne, O.; Feraud, J.P.; Arab-Chapelet, B.

    2015-01-15

    In the context of research on U/minor actinides for nuclear fuel reprocessing in the transmutation process, developments are first studied with surrogates containing uranium and lanthanides to facilitate testing. The tests consist of precipitating and calcining a hydrazinium uranium/cerium oxalate. The structure of this oxalate had not been previously determined, but was necessary to validate the physicochemical mechanisms involved. The present study, firstly demonstrates the structural similarity of the U/Ce oxalate phase (N{sub 2}H{sub 5},H){sub 2.9}U{sub 1.1}Ce{sub 0.9}(C{sub 2}O{sub 4}){sub 5}·10H{sub 2}O, synthesized using a vortex precipitator for continuous synthesis of actinide oxalates, with previously known oxalates, crystallizing in P6{sub 3}/mmc symmetry, obtained by more classical methods. This fast precipitation process induces massive nucleation of fine powders. Their structural and microstructural determination confirms that the raw and dried phases belong to the same structural family as (NH{sub 4}){sub 2}U{sub 2}(C{sub 2}O{sub 4}){sub 5}·0.7H{sub 2}O whose structure was described by Chapelet-Arab in P6{sub 3}/mmc symmetry, using single crystal data. However, they present an extended disorder inside the tunnels of the structure, even after drying at 100 °C, between water and hydrazinium ions. This disorder is directly related to the fast vortex method. This structure determination can be used as a basis for further semi-quantitative analysis on the U/minor actinides products formed under various experimental conditions. - Highlights: • Uranium cerium oxalate precipitate characterization by X-ray powder diffraction. • Morphology characterization by SEM analysis. • Structure determination by unit cell Rietveld refinement.

  9. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  10. Synchrotron and neutron powder diffraction study of phase transition in weberite-type Nd{sub 3}NbO{sub 7} and La{sub 3}NbO{sub 7}

    SciTech Connect

    Cai Lu; Nino, Juan C.

    2011-08-15

    La{sub 3}NbO{sub 7} and Nd{sub 3}NbO{sub 7} are insulating compounds that have an orthorhombic weberite-type crystal structure and undergo a phase transition at about 360 and 450 K, respectively. The nature of the phase transitions was investigated via heat capacity measurements, synchrotron X-ray and neutron diffraction experiments. It is here shown that above the phase transition temperature, the compounds possess a weberite-type structure described by space group Cmcm (No. 63). Below the phase transition, the high temperature phase transforms into a weberite-type structure with space group Pmcn (No. 62). The phase transformation primarily involves the off-center shifting of Nb{sup 5+} ions inside the NbO{sub 6} octahedra, combined with shifts of one third of the Ln{sup 3+} (Ln{sup 3+}=La{sup 3+} and Nd{sup 3+}) ions at the center of the LnO{sub 8} polyhedra towards off-center positions. The phase transition was also proven to have great impacts on the dielectric properties. - Graphical abstract: The phase transition of La{sub 3}NbO{sub 7} and Nd{sub 3}NbO{sub 7} upon cooling primarily involves the off-center shifting of Nb{sup 5+} ions inside the NbO{sub 6} octahedra, combined with shifts of one third of the Ln{sup 3+} (Ln{sup 3+}=La{sup 3+} and Nd{sup 3+}) ions at the center of the LnO{sub 8} polyhedra towards off-center positions. Above the phase transition temperature, Ln{sup 3+} and Nb{sup 5+} sit at a position with mirror symmetry and 2-fold axis. Below the phase transition temperature, Ln{sup 3+} and Nb{sup 5+} shift away from the 2-fold axis but still in the mirror plane. Highlights: > La{sub 3}NbO{sub 7} and Nd{sub 3}NbO{sub 7} exhibit a phase transition at 360 and 450 K, respectively. > The phase transformation primarily involves the off-center shifting of Nb{sup 5+} and Ln{sup 3+}. > The off-center ionic displacement decreases with increasing temperature. > Dielectric properties are greatly related to the off-center displacement.

  11. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  12. Resin-Powder Dispenser

    NASA Technical Reports Server (NTRS)

    Standfield, Clarence E.

    1994-01-01

    Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.

  13. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  14. Preparation of metal diboride powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group of consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  15. Formation of ettringite, Ca 6Al 2(SO 4) 3(OH) 12·26H 2O, AFt, and monosulfate, Ca 4Al 2O 6(SO 4)·14H 2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide—calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Christensen, Axel Nørlund; Jensen, Torben R.; Hanson, Jonathan C.

    2004-06-01

    In the hydration of calcium aluminum oxide-gypsum mixtures, i.e., Ca 3Al 2O 6, Ca 12Al 14O 33 and CaSO 4·2H 2O, the reaction products can be ettringite, Ca 6Al 2(SO 4) 3(OH) 12·26H 2O, monosulfate, Ca 4Al 2O 6(SO 4)·14H 2O, or the calcium aluminum oxide hydrate, Ca 4Al 2O 7·19H 2O. Ettringite is formed if sufficient CaSO 4·2H 2O is present in the mixture. Ettringite is converted to monosulfate when all CaSO 4·2H 2O is consumed in the synthesis of ettringite. The reactions were investigated in the temperature range 25-170°C using in situ synchrotron X-ray powder diffraction. This technique allows the study of very fast chemical reactions that are observed here under hydrothermal conditions. A new experimental approach was developed to perform in situ mixing of the reactants during X-ray data collection.

  16. Synthesis under high-oxygen pressure, magnetic and structural characterization from neutron powder diffraction data of YGa{sub 1-x}Mn{sub 1+x}O{sub 5} (x = 0.23): A comparison with YMn{sub 2}O{sub 5}

    SciTech Connect

    Calle, C. de la Alonso, J.A.; Martinez-Lope, M.J.; Garcia-Hernandez, M.; Andre, G.

    2008-02-05

    A new material of nominal stoichiometry YGaMnO{sub 5} has been prepared in polycrystalline form from citrate precursors followed by thermal treatments under high-oxygen pressure. This compound has been characterized from neutron powder diffraction (NPD) data and magnetic measurements. For comparison, the parent compound YMn{sub 2}O{sub 5} has also been synthesized and its crystal structure refined by NPD data. The new oxide has an actual stoichiometry YGa{sub 1-x}Mn{sub 1+x}O{sub 5} (x = 0.23), determined by NPD, showing an important cationic disorder between both metal sites; it is orthorhombic, Pbam (SG), and its crystal structure contains chains of Mn{sup 4+}O{sub 6} edge-sharing octahedra, linked together by Ga{sup 3+}O{sub 5} pyramids and YO{sub 8} units. With respect to YMn{sub 2}O{sub 5}, containing axially elongated MnO{sub 5} pyramids due to the Jahn-Teller effect of Mn{sup 3+} cations, the GaO{sub 5} pyramidal units in YGa{sub 0.77}Mn{sub 1.23}O{sub 5} are substantially flattened. This compound has a paramagnetic behaviour with two weak anomalies at about 50 K and 350 K. The magnetic structures, studied at 1.4 K and 100 K show a ferromagnetic coupling along the chains of MnO{sub 6} octahedra.

  17. Status of the Neutron Imaging and Diffraction Instrument IMAT

    NASA Astrophysics Data System (ADS)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  18. Synthesis and time-resolved structural characterization of framework and mineral sulfides

    NASA Astrophysics Data System (ADS)

    Cahill, Christopher Langley

    A new class of open-framework organic/inorganic hybrid materials based on In-S chemistry has been discovered. The compounds therein exhibit unprecedented structural diversity compared to known porous sulfides, primarily due to variation in framework building units. Further, large increases in pore dimensions (vs. zeolites, for example) are observed as these materials consist of comer and edge linked clusters, e.g. In10S20, In9S17, In4S10 and In6S 15. Choice of organic structure directing agents (templates) and careful control of reaction conditions (temperature, pH) both in the In-S and Ge-S systems is shown not only to dictate which building unit will form, but also to direct the resulting framework topology. Several of the compounds described herein crystallize either as powders, or as crystals too small for standard in-house X-ray structural analysis. Diffraction experiments have thus required synchrotron based single crystal techniques for structure determination. Further, certain reaction mixture compositions result in multi-phase end products, the formation pathways of which have been studied with time resolved, in situ synchrotron powder diffraction. An extension of the applicability of the in situ techniques investigated the role of oxygen in hydrothermal systems. Oxidation state is proposed to dictate speciation in the Ni-Ge-S system and to promote phase transformations in the Fe-S mineral system.

  19. Crystal Structures of Al-Nd Codoped Zirconolite Derived from Glass Matrix and Powder Sintering.

    PubMed

    Liao, Chang-Zhong; Shih, Kaimin; Lee, William E

    2015-08-03

    Zirconolite is a candidate host for immobilizing long-lived radionuclides. Zirconolite-based glass-ceramics in the CaO-SiO2-Al2O3-TiO2-ZrO2-Nd2O3-Na2O matrix are a potential waste form for immobilizing actinide radionuclides and can offer double barriers to immobilize radioactive elements. However, the X-ray diffraction patterns of the zirconolite derived from the glass matrix (glass ceramic, GC) are significantly different from those prepared by powder sintering (PS). In this Article, the crystal structures of Al-Nd codoped zirconolite grown via the glass matrix route and the powder sintering route are investigated in detail. Two samples of Al-Nd codoped zirconolite were prepared: one was grown from a CaO-SiO2-Al2O3-TiO2-ZrO2-Nd2O3-Na2O glass matrix, and the other was prepared with a Ca0.75Nd0.25ZrTi1.75Al0.25O7 composition by powder sintering. The samples were then characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX), and selected area electron diffraction (SAED). The chemical composition of the 100-500 nm zirconolite crystals grown from a glass matrix was determined by TEM-EDX to be Ca0.83Nd0.25Zr0.85Ti1.95Al0.11O7. PXRD and SAED results showed that these two Al-Nd codoped zirconolite phases were crystallized in space group C12/c1. The HRTEM images and SAED results showed that there were heavy stacking faults in the zirconolite crystals grown from the glass matrix. In contrast, far fewer defects were found in the zirconolite crystals prepared by powder sintering. The split-atom model was adopted for the first time to construct the Al-Nd codoped zirconolite structure grown from glass during the Rietveld refinement. The isostructural method assisted by Rietveld refinement was used to resolve the Al-Nd codoped zirconolite structures prepared by different methods. The occupancies of the cation sites were identified, and the distribution behavior of Nd

  20. A new theory for X-ray diffraction.

    PubMed

    Fewster, Paul F

    2014-05-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the `Bragg position' even if the `Bragg condition' is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many `Bragg positions'. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on `Bragg-type' scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the `background'. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.

  1. X-ray powder diffraction, vibration and thermal studies of [A{sub 0.92}(NH{sub 4}){sub 0.08}]{sub 2}TeCl{sub 4}Br{sub 2} with A = Cs, Rb: Influence of mixed cationic and anionic substitutions

    SciTech Connect

    Aribia, W. Ben; Abdelmouleh, M.; Kabadou, A.; Van Der Lee, A.

    2012-05-15

    Graphical abstract: The structures of [A{sub 0.92}(NH{sub 4}){sub 0.08}]{sub 2}TeCl{sub 4}Br{sub 2} with A = Cs, Rb belong to the tetragonal {beta}-K{sub 2}SnCl{sub 6} structure type. Highlights: Black-Right-Pointing-Pointer The two new compound crystallises in P4/mnc tetragonal space group. Black-Right-Pointing-Pointer The structure is considered as isolated octahedred TeCl{sub 4}Br{sup 2-}. Black-Right-Pointing-Pointer The octahedra connected by ionic and hydrogen bonding through the Cs/Rb or N atoms. Black-Right-Pointing-Pointer A DTA/TGA experiment reveals one endothermic peak at 780 K for these compounds. Black-Right-Pointing-Pointer One endothermic peak is detected at around 213 K by DSC experiment. -- Abstract: The crystal structures of [A{sub 0.92}(NH{sub 4}){sub 0.08}]{sub 2}TeCl{sub 4}Br{sub 2} with A = Cs, Rb have been determined using X-ray powder diffraction techniques. The two compounds crystallize in the tetragonal space group P4/mnc, with the unit cell parameters: a = 7.452(1) Angstrom-Sign , c = 10.544(3) Angstrom-Sign , Z = 2 and a = 7.315(2) Angstrom-Sign , c = 10.354(4) Angstrom-Sign , Z = 2 in the presence of Cs and Rb, respectively. These two compounds have an antifluorite-type arrangement of NH{sub 4}{sup +}/Rb{sup +}/Cs{sup +} and octahedral TeCl{sub 4}Br{sub 2}{sup 2-} anions. The stability of these structure is by ionic and hydrogen bonding contacts: A Midline-Horizontal-Ellipsis Cl, A Midline-Horizontal-Ellipsis Br and N-H Midline-Horizontal-Ellipsis Cl, N-H Midline-Horizontal-Ellipsis Br. The different vibrational modes of these powders were analysed by FTIR and Raman spectroscopic studies. A DTA/TGA experiment reveals one endothermic peak at 780 K implicating the decomposition of the sample. At low temperature, one endothermic peak in thermal behavior is detected at around 213 K by DSC experiment. This transition was confirmed by dielectric measurements.

  2. Energy-dispersive diffraction with synchrotron radiation and a germanium detector.

    PubMed

    Honkimäki, Veijo; Suortti, Pekka

    2007-07-01

    The response of an intrinsic Ge detector in energy-dispersive diffraction measurements with synchrotron radiation is studied with model calculations and diffraction from perfect Si single-crystal samples. The high intensity and time-structure of the synchrotron radiation beam leads to pile-up of the output pulses, and the energy distribution of the pile-up pulses is characteristic of the fill pattern of the storage ring. The pile-up distribution has a single peak and long tail when the interval of the radiation bunches is small, as in the uniform fill pattern, but there are many pile-up peaks when the bunch distance is a sizable fraction of the length of the shaping amplifier output pulse. A model for the detecting chain response is used to resolve the diffraction spectrum from a perfect Si crystal wafer in the symmetrical Laue case. In the 16-bunch fill pattern of the ESRF storage ring the spectrum includes a large number of ;extra reflections' owing to pile-up, and the model parameters are refined by a fit to the observed energy spectrum. The model is used to correct for the effects of pile-up in a measurement with the 1/3 fill pattern of the storage ring. Si reflections (2h,2h,0) are resolved up to h = 7. The pile-up corrections are very large, but a perfect agreement with the integrated intensities calculated from dynamical diffraction theory is achieved after the corrections. The result also demonstrates the convergence of kinematical and dynamical theories at the limit where the extinction length is much larger than the effective thickness of the perfect crystal. The model is applied to powder diffraction using different fill patterns in simulations of the diffraction pattern, and it is demonstrated that the regularly spaced pile-up peaks might be misinterpreted to arise from superlattices or phase transitions. The use of energy-dispersive diffraction in strain mapping in polycrystalline materials is discussed, and it is shown that low count rates but still

  3. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  4. Methyl­ergometrine maleate from synchrotron powder diffraction data

    PubMed Central

    Rohlíček, Jan; Hušák, Michal; Kratochvíl, Bohumil; Jegorov, Alexandr

    2009-01-01

    The title compound {systematic name: 9,10-didehydro-N-[1-(hydroxy­meth­yl)prop­yl]-d-lysergamide maleate}, C20H26N3O2 +·C4H3O4 −, contains a large rigid ergolene group. This group consists of an indole plane connected to a six-membered carbon ring adopting an envelope conformation and N-methyl­tetra­hydro­pyridine where the methyl group is in an equatorial position. In the crystal, inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds form an extensive three-dimensional hydrogen-bonding network, which holds the cations and anions together. PMID:21578950

  5. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  6. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-12-31

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  7. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-01-01

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  8. Spectral partitioning in diffraction tomography

    SciTech Connect

    Lehman, S K; Chambers, D H; Candy, J V

    1999-06-14

    The scattering mechanism of diffraction tomography is described by the integral form of the Helmholtz equation. The goal of diffraction tomography is to invert this equation in order to reconstruct the object function from the measured scattered fields. During the forward propagation process, the spatial spectrum of the object under investigation is ''smeared,'' by a convolution in the spectral domain, across the propagating and evanescent regions of the received field. Hence, care must be taken in performing the reconstruction, as the object's spectral information has been moved into regions where it may be considered to be noise rather than useful information. This will reduce the quality and resolution of the reconstruction. We show haw the object's spectrum can be partitioned into resolvable and non-resolvable parts based upon the cutoff between the propagating and evanescent fields. Operating under the Born approximation, we develop a beam-forming on transmit approach to direct the energy into either the propagating or evanescent parts of the spectrum. In this manner, we may individually interrogate the propagating and evanescent regions of the object spectrum.

  9. Development of heavy mineral and heavy element database of soil sediments in Japan using synchrotron radiation X-ray powder diffraction and high-energy (116 keV) X-ray fluorescence analysis: 1. Case study of Kofu and Chiba region.

    PubMed

    Bong, Willy Shun Kai; Nakai, Izumi; Furuya, Shunsuke; Suzuki, Hiroko; Abe, Yoshinari; Osaka, Keiichi; Matsumoto, Takuya; Itou, Masayoshi; Imai, Noboru; Ninomiya, Toshio

    2012-07-10

    We have started the construction of a nationwide forensic soil sediment database for Japan based on the heavy mineral and trace heavy element compositions of stream sediments collected at 3024 points all over Japan obtained by high-resolution synchrotron X-ray powder diffraction (SR-XRD) and high-energy synchrotron X-ray fluorescence analysis (HE-SR-XRF). In this study, the performance of both techniques was demonstrated by analyzing soil sediments from two different geological regions, the Kofu and Chiba regions in Kanto province, to construct database that can be applied in the future to provenance analysis of soil evidence from a crime scene. The sediments from the quaternary volcanic lithology of the Chiba region were found to be dominated by heavy minerals of volcanic origin - orthopyroxene, clinopyroxene, and amphibole, and the REEs (rare earth elements) within the region showed similar geochemical behavior. On the other hand, four distinct heavy mineral groups were identified in the sediments of the Kofu region, where there is a great variety of underlying bedrock, and the geochemical behavior of the REEs in the sediments also varied accordingly to their geological origins. As such, our study shows that high-resolution SR-XRD data can provide information on the spatial distribution patterns of heavy minerals in stream sediments, playing an important role in determining their likely geographical origin. Meanwhile, the highly sensitive HE-SR-XRF data allow us to study the geochemical behavior of trace heavy elements, especially the REEs in the sediments, providing additional support to further constrain the likely geographical origin of the sediments determined by heavy minerals.

  10. Diffraction-limited ultrabroadband terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Baillergeau, M.; Maussang, K.; Nirrengarten, T.; Palomo, J.; Li, L. H.; Linfield, E. H.; Davies, A. G.; Dhillon, S.; Tignon, J.; Mangeney, J.

    2016-05-01

    Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipulation concept to achieve ultrabroadband THz spectroscopy system with diffraction-limited resolution. Applying this concept to a large-area photoconductive emitter, we demonstrate diffraction-limited ultra-broadband spectroscopy system up to 14.5 THz with a dynamic range of 103. The strong focusing of ultrabroadband THz radiation provided by our approach is essential for investigating single micrometer-scale objects such as graphene flakes or living cells, and besides for achieving intense ultra-broadband THz electric fields.

  11. Diffraction-limited ultrabroadband terahertz spectroscopy

    PubMed Central

    Baillergeau, M.; Maussang, K.; Nirrengarten, T.; Palomo, J.; Li, L. H.; Linfield, E. H.; Davies, A. G.; Dhillon, S.; Tignon, J.; Mangeney, J.

    2016-01-01

    Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipulation concept to achieve ultrabroadband THz spectroscopy system with diffraction-limited resolution. Applying this concept to a large-area photoconductive emitter, we demonstrate diffraction-limited ultra-broadband spectroscopy system up to 14.5 THz with a dynamic range of 103. The strong focusing of ultrabroadband THz radiation provided by our approach is essential for investigating single micrometer-scale objects such as graphene flakes or living cells, and besides for achieving intense ultra-broadband THz electric fields. PMID:27142959

  12. Powder Handling Device for Analytical Instruments

    NASA Technical Reports Server (NTRS)

    Sarrazin, Philippe C. (Inventor); Blake, David F. (Inventor)

    2006-01-01

    Method and system for causing a powder sample in a sample holder to undergo at least one of three motions (vibration, rotation and translation) at a selected motion frequency in order to present several views of an individual grain of the sample. One or more measurements of diffraction, fluorescence, spectroscopic interaction, transmission, absorption and/or reflection can be made on the sample, using light in a selected wavelength region.

  13. X-ray diffraction studies of shocked lunar analogs

    NASA Technical Reports Server (NTRS)

    Hanss, R. E.

    1979-01-01

    The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.

  14. Physical and chemical characterization techniques for metallic powders

    SciTech Connect

    Slotwinski, J. A.; Stutzman, P. E.; Ferraris, C. F.; Watson, S. S.; Peltz, M. A.; Garboczi, E. J.

    2014-02-18

    Systematic studies have been carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. An extensive array of characterization techniques were applied to these two powders. The physical techniques included laser-diffraction particle-size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to chemistry included X-ray diffraction and energy-dispersive analytical X-ray analysis. The background of these techniques will be summarized and some typical findings comparing different samples of virgin additive manufacturing powders, taken from the same lot, will be given. The techniques were used to confirm that different samples of powder from the same lot were essentially identical, within the uncertainty of the measurements.

  15. Multiple feed powder splitter

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    2001-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  16. Multiple feed powder splitter

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    2002-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  17. Granulation of fine powder

    DOEpatents

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  18. The rotating-crystal method in femtosecond X-ray diffraction.

    PubMed

    Freyer, B; Stingl, J; Zamponi, F; Woerner, M; Elsaesser, T

    2011-08-01

    We report the first implementation of the rotating-crystal method in femtosecond X-ray diffraction. Applying a pump-probe scheme with 100 fs hard X-ray probe pulses from a laser-driven plasma source, the novel technique is demonstrated by mapping structural dynamics of a photoexcited bismuth crystal via changes of the diffracted intensity on a multitude of Bragg reflections. The method is compared to femtosecond powder diffraction and to Bragg diffraction from a crystal with stationary orientation.

  19. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  20. Robustness of Cantor diffractals.

    PubMed

    Verma, Rupesh; Sharma, Manoj Kumar; Banerjee, Varsha; Senthilkumaran, Paramasivam

    2013-04-08

    Diffractals are electromagnetic waves diffracted by a fractal aperture. In an earlier paper, we reported an important property of Cantor diffractals, that of redundancy [R. Verma et. al., Opt. Express 20, 8250 (2012)]. In this paper, we report another important property, that of robustness. The question we address is: How much disorder in the Cantor grating can be accommodated by diffractals to continue to yield faithfully its fractal dimension and generator? This answer is of consequence in a number of physical problems involving fractal architecture.